Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 1991, 1992 Linus Torvalds
   4 * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
   5 * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
   6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
   7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
   8 *	-  July2000
   9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
  10 */
  11
  12/*
  13 * This handles all read/write requests to block devices
  14 */
  15#include <linux/kernel.h>
  16#include <linux/module.h>
 
  17#include <linux/bio.h>
  18#include <linux/blkdev.h>
  19#include <linux/blk-pm.h>
  20#include <linux/blk-integrity.h>
  21#include <linux/highmem.h>
  22#include <linux/mm.h>
  23#include <linux/pagemap.h>
  24#include <linux/kernel_stat.h>
  25#include <linux/string.h>
  26#include <linux/init.h>
  27#include <linux/completion.h>
  28#include <linux/slab.h>
  29#include <linux/swap.h>
  30#include <linux/writeback.h>
  31#include <linux/task_io_accounting_ops.h>
  32#include <linux/fault-inject.h>
  33#include <linux/list_sort.h>
  34#include <linux/delay.h>
  35#include <linux/ratelimit.h>
  36#include <linux/pm_runtime.h>
  37#include <linux/t10-pi.h>
  38#include <linux/debugfs.h>
  39#include <linux/bpf.h>
  40#include <linux/part_stat.h>
  41#include <linux/sched/sysctl.h>
  42#include <linux/blk-crypto.h>
  43
  44#define CREATE_TRACE_POINTS
  45#include <trace/events/block.h>
  46
  47#include "blk.h"
  48#include "blk-mq-sched.h"
  49#include "blk-pm.h"
  50#include "blk-cgroup.h"
  51#include "blk-throttle.h"
  52
  53struct dentry *blk_debugfs_root;
  54
  55EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
  56EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
  57EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
  58EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
  59EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
  60EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
  61
  62static DEFINE_IDA(blk_queue_ida);
 
 
 
 
 
  63
  64/*
  65 * For queue allocation
  66 */
  67static struct kmem_cache *blk_requestq_cachep;
  68
  69/*
  70 * Controlling structure to kblockd
  71 */
  72static struct workqueue_struct *kblockd_workqueue;
  73
  74/**
  75 * blk_queue_flag_set - atomically set a queue flag
  76 * @flag: flag to be set
  77 * @q: request queue
  78 */
  79void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
  80{
  81	set_bit(flag, &q->queue_flags);
 
 
 
 
 
 
 
 
 
  82}
  83EXPORT_SYMBOL(blk_queue_flag_set);
  84
  85/**
  86 * blk_queue_flag_clear - atomically clear a queue flag
  87 * @flag: flag to be cleared
  88 * @q: request queue
  89 */
  90void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
  91{
  92	clear_bit(flag, &q->queue_flags);
 
 
 
 
 
 
  93}
  94EXPORT_SYMBOL(blk_queue_flag_clear);
  95
  96/**
  97 * blk_queue_flag_test_and_set - atomically test and set a queue flag
  98 * @flag: flag to be set
  99 * @q: request queue
 100 *
 101 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
 102 * the flag was already set.
 103 */
 104bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
 105{
 106	return test_and_set_bit(flag, &q->queue_flags);
 107}
 108EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
 109
 110#define REQ_OP_NAME(name) [REQ_OP_##name] = #name
 111static const char *const blk_op_name[] = {
 112	REQ_OP_NAME(READ),
 113	REQ_OP_NAME(WRITE),
 114	REQ_OP_NAME(FLUSH),
 115	REQ_OP_NAME(DISCARD),
 116	REQ_OP_NAME(SECURE_ERASE),
 117	REQ_OP_NAME(ZONE_RESET),
 118	REQ_OP_NAME(ZONE_RESET_ALL),
 119	REQ_OP_NAME(ZONE_OPEN),
 120	REQ_OP_NAME(ZONE_CLOSE),
 121	REQ_OP_NAME(ZONE_FINISH),
 122	REQ_OP_NAME(ZONE_APPEND),
 123	REQ_OP_NAME(WRITE_ZEROES),
 124	REQ_OP_NAME(DRV_IN),
 125	REQ_OP_NAME(DRV_OUT),
 126};
 127#undef REQ_OP_NAME
 128
 129/**
 130 * blk_op_str - Return string XXX in the REQ_OP_XXX.
 131 * @op: REQ_OP_XXX.
 132 *
 133 * Description: Centralize block layer function to convert REQ_OP_XXX into
 134 * string format. Useful in the debugging and tracing bio or request. For
 135 * invalid REQ_OP_XXX it returns string "UNKNOWN".
 136 */
 137inline const char *blk_op_str(enum req_op op)
 138{
 139	const char *op_str = "UNKNOWN";
 
 
 
 
 140
 141	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
 142		op_str = blk_op_name[op];
 
 143
 144	return op_str;
 
 
 
 
 
 
 
 
 
 
 
 
 145}
 146EXPORT_SYMBOL_GPL(blk_op_str);
 147
 148static const struct {
 149	int		errno;
 150	const char	*name;
 151} blk_errors[] = {
 152	[BLK_STS_OK]		= { 0,		"" },
 153	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
 154	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
 155	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
 156	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
 157	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
 158	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
 159	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
 160	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
 161	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
 162	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
 163	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
 164	[BLK_STS_OFFLINE]	= { -ENODEV,	"device offline" },
 165
 166	/* device mapper special case, should not leak out: */
 167	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
 168
 169	/* zone device specific errors */
 170	[BLK_STS_ZONE_OPEN_RESOURCE]	= { -ETOOMANYREFS, "open zones exceeded" },
 171	[BLK_STS_ZONE_ACTIVE_RESOURCE]	= { -EOVERFLOW, "active zones exceeded" },
 172
 173	/* everything else not covered above: */
 174	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
 175};
 
 176
 177blk_status_t errno_to_blk_status(int errno)
 178{
 179	int i;
 
 
 
 
 180
 181	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
 182		if (blk_errors[i].errno == errno)
 183			return (__force blk_status_t)i;
 
 
 
 
 
 
 
 
 184	}
 
 
 
 
 
 
 185
 186	return BLK_STS_IOERR;
 
 
 
 187}
 188EXPORT_SYMBOL_GPL(errno_to_blk_status);
 189
 190int blk_status_to_errno(blk_status_t status)
 
 
 
 
 
 
 
 
 
 
 191{
 192	int idx = (__force int)status;
 
 
 
 
 193
 194	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
 195		return -EIO;
 196	return blk_errors[idx].errno;
 
 
 
 
 
 
 
 
 
 
 197}
 198EXPORT_SYMBOL_GPL(blk_status_to_errno);
 199
 200const char *blk_status_to_str(blk_status_t status)
 
 
 
 
 
 
 
 
 
 201{
 202	int idx = (__force int)status;
 
 
 
 
 
 203
 204	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
 205		return "<null>";
 206	return blk_errors[idx].name;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 207}
 
 208
 209/**
 210 * blk_sync_queue - cancel any pending callbacks on a queue
 211 * @q: the queue
 212 *
 213 * Description:
 214 *     The block layer may perform asynchronous callback activity
 215 *     on a queue, such as calling the unplug function after a timeout.
 216 *     A block device may call blk_sync_queue to ensure that any
 217 *     such activity is cancelled, thus allowing it to release resources
 218 *     that the callbacks might use. The caller must already have made sure
 219 *     that its ->submit_bio will not re-add plugging prior to calling
 220 *     this function.
 221 *
 222 *     This function does not cancel any asynchronous activity arising
 223 *     out of elevator or throttling code. That would require elevator_exit()
 224 *     and blkcg_exit_queue() to be called with queue lock initialized.
 225 *
 226 */
 227void blk_sync_queue(struct request_queue *q)
 228{
 229	del_timer_sync(&q->timeout);
 230	cancel_work_sync(&q->timeout_work);
 
 
 
 
 
 
 
 
 
 
 
 231}
 232EXPORT_SYMBOL(blk_sync_queue);
 233
 234/**
 235 * blk_set_pm_only - increment pm_only counter
 236 * @q: request queue pointer
 
 
 
 
 
 
 
 237 */
 238void blk_set_pm_only(struct request_queue *q)
 239{
 240	atomic_inc(&q->pm_only);
 
 
 
 
 
 
 
 
 
 
 
 
 241}
 242EXPORT_SYMBOL_GPL(blk_set_pm_only);
 243
 244void blk_clear_pm_only(struct request_queue *q)
 
 
 
 
 
 
 
 
 245{
 246	int pm_only;
 
 247
 248	pm_only = atomic_dec_return(&q->pm_only);
 249	WARN_ON_ONCE(pm_only < 0);
 250	if (pm_only == 0)
 251		wake_up_all(&q->mq_freeze_wq);
 252}
 253EXPORT_SYMBOL_GPL(blk_clear_pm_only);
 254
 255static void blk_free_queue_rcu(struct rcu_head *rcu_head)
 
 
 
 
 
 
 
 
 256{
 257	struct request_queue *q = container_of(rcu_head,
 258			struct request_queue, rcu_head);
 
 
 259
 260	percpu_ref_exit(&q->q_usage_counter);
 261	kmem_cache_free(blk_requestq_cachep, q);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 262}
 
 263
 264static void blk_free_queue(struct request_queue *q)
 
 
 
 
 
 
 
 
 
 
 
 265{
 266	if (q->poll_stat)
 267		blk_stat_remove_callback(q, q->poll_cb);
 268	blk_stat_free_callback(q->poll_cb);
 
 
 
 
 
 
 
 
 
 
 269
 270	blk_free_queue_stats(q->stats);
 271	kfree(q->poll_stat);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 272
 273	if (queue_is_mq(q))
 274		blk_mq_release(q);
 275
 276	ida_free(&blk_queue_ida, q->id);
 277	call_rcu(&q->rcu_head, blk_free_queue_rcu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 278}
 279
 280/**
 281 * blk_put_queue - decrement the request_queue refcount
 282 * @q: the request_queue structure to decrement the refcount for
 283 *
 284 * Decrements the refcount of the request_queue and free it when the refcount
 285 * reaches 0.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 286 */
 287void blk_put_queue(struct request_queue *q)
 288{
 289	if (refcount_dec_and_test(&q->refs))
 290		blk_free_queue(q);
 
 
 
 291}
 292EXPORT_SYMBOL(blk_put_queue);
 293
 294void blk_queue_start_drain(struct request_queue *q)
 295{
 296	/*
 297	 * When queue DYING flag is set, we need to block new req
 298	 * entering queue, so we call blk_freeze_queue_start() to
 299	 * prevent I/O from crossing blk_queue_enter().
 300	 */
 301	blk_freeze_queue_start(q);
 302	if (queue_is_mq(q))
 303		blk_mq_wake_waiters(q);
 304	/* Make blk_queue_enter() reexamine the DYING flag. */
 305	wake_up_all(&q->mq_freeze_wq);
 
 
 
 
 
 
 
 
 306}
 
 307
 308/**
 309 * blk_queue_enter() - try to increase q->q_usage_counter
 310 * @q: request queue pointer
 311 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
 
 
 312 */
 313int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
 314{
 315	const bool pm = flags & BLK_MQ_REQ_PM;
 316
 317	while (!blk_try_enter_queue(q, pm)) {
 318		if (flags & BLK_MQ_REQ_NOWAIT)
 319			return -EAGAIN;
 
 320
 321		/*
 322		 * read pair of barrier in blk_freeze_queue_start(), we need to
 323		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
 324		 * reading .mq_freeze_depth or queue dying flag, otherwise the
 325		 * following wait may never return if the two reads are
 326		 * reordered.
 327		 */
 328		smp_rmb();
 329		wait_event(q->mq_freeze_wq,
 330			   (!q->mq_freeze_depth &&
 331			    blk_pm_resume_queue(pm, q)) ||
 332			   blk_queue_dying(q));
 333		if (blk_queue_dying(q))
 334			return -ENODEV;
 335	}
 336
 337	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 338}
 
 339
 340int __bio_queue_enter(struct request_queue *q, struct bio *bio)
 
 341{
 342	while (!blk_try_enter_queue(q, false)) {
 343		struct gendisk *disk = bio->bi_bdev->bd_disk;
 
 344
 345		if (bio->bi_opf & REQ_NOWAIT) {
 346			if (test_bit(GD_DEAD, &disk->state))
 347				goto dead;
 348			bio_wouldblock_error(bio);
 349			return -EAGAIN;
 350		}
 351
 352		/*
 353		 * read pair of barrier in blk_freeze_queue_start(), we need to
 354		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
 355		 * reading .mq_freeze_depth or queue dying flag, otherwise the
 356		 * following wait may never return if the two reads are
 357		 * reordered.
 358		 */
 359		smp_rmb();
 360		wait_event(q->mq_freeze_wq,
 361			   (!q->mq_freeze_depth &&
 362			    blk_pm_resume_queue(false, q)) ||
 363			   test_bit(GD_DEAD, &disk->state));
 364		if (test_bit(GD_DEAD, &disk->state))
 365			goto dead;
 366	}
 
 
 
 367
 368	return 0;
 369dead:
 370	bio_io_error(bio);
 371	return -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 372}
 373
 374void blk_queue_exit(struct request_queue *q)
 375{
 376	percpu_ref_put(&q->q_usage_counter);
 377}
 378
 379static void blk_queue_usage_counter_release(struct percpu_ref *ref)
 380{
 381	struct request_queue *q =
 382		container_of(ref, struct request_queue, q_usage_counter);
 383
 384	wake_up_all(&q->mq_freeze_wq);
 385}
 386
 387static void blk_rq_timed_out_timer(struct timer_list *t)
 388{
 389	struct request_queue *q = from_timer(q, t, timeout);
 390
 391	kblockd_schedule_work(&q->timeout_work);
 392}
 393
 394static void blk_timeout_work(struct work_struct *work)
 395{
 396}
 397
 398struct request_queue *blk_alloc_queue(int node_id)
 399{
 400	struct request_queue *q;
 
 401
 402	q = kmem_cache_alloc_node(blk_requestq_cachep, GFP_KERNEL | __GFP_ZERO,
 403				  node_id);
 404	if (!q)
 405		return NULL;
 406
 407	q->last_merge = NULL;
 408
 409	q->id = ida_alloc(&blk_queue_ida, GFP_KERNEL);
 410	if (q->id < 0)
 411		goto fail_q;
 412
 413	q->stats = blk_alloc_queue_stats();
 414	if (!q->stats)
 415		goto fail_id;
 416
 
 
 
 
 417	q->node = node_id;
 418
 419	atomic_set(&q->nr_active_requests_shared_tags, 0);
 420
 421	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
 422	INIT_WORK(&q->timeout_work, blk_timeout_work);
 
 
 
 
 
 423	INIT_LIST_HEAD(&q->icq_list);
 
 
 
 
 
 
 424
 425	refcount_set(&q->refs, 1);
 426	mutex_init(&q->debugfs_mutex);
 427	mutex_init(&q->sysfs_lock);
 428	mutex_init(&q->sysfs_dir_lock);
 429	spin_lock_init(&q->queue_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 430
 431	init_waitqueue_head(&q->mq_freeze_wq);
 432	mutex_init(&q->mq_freeze_lock);
 433
 434	/*
 435	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
 436	 * See blk_register_queue() for details.
 437	 */
 438	if (percpu_ref_init(&q->q_usage_counter,
 439				blk_queue_usage_counter_release,
 440				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
 441		goto fail_stats;
 442
 443	blk_set_default_limits(&q->limits);
 444	q->nr_requests = BLKDEV_DEFAULT_RQ;
 445
 446	return q;
 447
 448fail_stats:
 449	blk_free_queue_stats(q->stats);
 
 
 
 
 450fail_id:
 451	ida_free(&blk_queue_ida, q->id);
 452fail_q:
 453	kmem_cache_free(blk_requestq_cachep, q);
 454	return NULL;
 455}
 
 456
 457/**
 458 * blk_get_queue - increment the request_queue refcount
 459 * @q: the request_queue structure to increment the refcount for
 
 
 
 
 
 
 
 
 
 
 
 
 460 *
 461 * Increment the refcount of the request_queue kobject.
 
 
 
 462 *
 463 * Context: Any context.
 464 */
 465bool blk_get_queue(struct request_queue *q)
 
 
 
 
 
 
 
 
 
 
 466{
 467	if (unlikely(blk_queue_dying(q)))
 468		return false;
 469	refcount_inc(&q->refs);
 470	return true;
 471}
 472EXPORT_SYMBOL(blk_get_queue);
 473
 474#ifdef CONFIG_FAIL_MAKE_REQUEST
 
 
 
 475
 476static DECLARE_FAULT_ATTR(fail_make_request);
 
 
 477
 478static int __init setup_fail_make_request(char *str)
 479{
 480	return setup_fault_attr(&fail_make_request, str);
 
 
 481}
 482__setup("fail_make_request=", setup_fail_make_request);
 483
 484bool should_fail_request(struct block_device *part, unsigned int bytes)
 
 
 
 
 485{
 486	return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 487}
 
 488
 489static int __init fail_make_request_debugfs(void)
 490{
 491	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
 492						NULL, &fail_make_request);
 
 
 493
 494	return PTR_ERR_OR_ZERO(dir);
 495}
 
 496
 497late_initcall(fail_make_request_debugfs);
 498#endif /* CONFIG_FAIL_MAKE_REQUEST */
 499
 500static inline void bio_check_ro(struct bio *bio)
 501{
 502	if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
 503		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
 504			return;
 505		pr_warn("Trying to write to read-only block-device %pg\n",
 506			bio->bi_bdev);
 507		/* Older lvm-tools actually trigger this */
 508	}
 
 
 509}
 510
 511static noinline int should_fail_bio(struct bio *bio)
 
 
 
 
 512{
 513	if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
 514		return -EIO;
 515	return 0;
 
 
 
 
 
 
 
 
 516}
 517ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
 518
 519/*
 520 * Check whether this bio extends beyond the end of the device or partition.
 521 * This may well happen - the kernel calls bread() without checking the size of
 522 * the device, e.g., when mounting a file system.
 523 */
 524static inline int bio_check_eod(struct bio *bio)
 525{
 526	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
 527	unsigned int nr_sectors = bio_sectors(bio);
 528
 529	if (nr_sectors && maxsector &&
 530	    (nr_sectors > maxsector ||
 531	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
 532		pr_info_ratelimited("%s: attempt to access beyond end of device\n"
 533				    "%pg: rw=%d, sector=%llu, nr_sectors = %u limit=%llu\n",
 534				    current->comm, bio->bi_bdev, bio->bi_opf,
 535				    bio->bi_iter.bi_sector, nr_sectors, maxsector);
 536		return -EIO;
 
 
 
 
 
 
 
 
 
 537	}
 538	return 0;
 539}
 540
 541/*
 542 * Remap block n of partition p to block n+start(p) of the disk.
 
 543 */
 544static int blk_partition_remap(struct bio *bio)
 
 545{
 546	struct block_device *p = bio->bi_bdev;
 547
 548	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
 549		return -EIO;
 550	if (bio_sectors(bio)) {
 551		bio->bi_iter.bi_sector += p->bd_start_sect;
 552		trace_block_bio_remap(bio, p->bd_dev,
 553				      bio->bi_iter.bi_sector -
 554				      p->bd_start_sect);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 555	}
 556	bio_set_flag(bio, BIO_REMAPPED);
 
 557	return 0;
 558}
 559
 560/*
 561 * Check write append to a zoned block device.
 
 562 */
 563static inline blk_status_t blk_check_zone_append(struct request_queue *q,
 564						 struct bio *bio)
 565{
 566	int nr_sectors = bio_sectors(bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 567
 568	/* Only applicable to zoned block devices */
 569	if (!bdev_is_zoned(bio->bi_bdev))
 570		return BLK_STS_NOTSUPP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 571
 572	/* The bio sector must point to the start of a sequential zone */
 573	if (bio->bi_iter.bi_sector & (bdev_zone_sectors(bio->bi_bdev) - 1) ||
 574	    !bio_zone_is_seq(bio))
 575		return BLK_STS_IOERR;
 576
 
 577	/*
 578	 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
 579	 * split and could result in non-contiguous sectors being written in
 580	 * different zones.
 
 581	 */
 582	if (nr_sectors > q->limits.chunk_sectors)
 583		return BLK_STS_IOERR;
 
 
 
 584
 585	/* Make sure the BIO is small enough and will not get split */
 586	if (nr_sectors > q->limits.max_zone_append_sectors)
 587		return BLK_STS_IOERR;
 
 588
 589	bio->bi_opf |= REQ_NOMERGE;
 
 
 
 
 
 
 
 
 
 590
 591	return BLK_STS_OK;
 
 
 
 
 
 
 
 
 
 
 592}
 593
 594static void __submit_bio(struct bio *bio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 595{
 596	struct gendisk *disk = bio->bi_bdev->bd_disk;
 
 
 
 
 
 
 
 597
 598	if (unlikely(!blk_crypto_bio_prep(&bio)))
 599		return;
 600
 601	if (!disk->fops->submit_bio) {
 602		blk_mq_submit_bio(bio);
 603	} else if (likely(bio_queue_enter(bio) == 0)) {
 604		disk->fops->submit_bio(bio);
 605		blk_queue_exit(disk->queue);
 606	}
 
 607}
 608
 609/*
 610 * The loop in this function may be a bit non-obvious, and so deserves some
 611 * explanation:
 
 
 
 
 
 612 *
 613 *  - Before entering the loop, bio->bi_next is NULL (as all callers ensure
 614 *    that), so we have a list with a single bio.
 615 *  - We pretend that we have just taken it off a longer list, so we assign
 616 *    bio_list to a pointer to the bio_list_on_stack, thus initialising the
 617 *    bio_list of new bios to be added.  ->submit_bio() may indeed add some more
 618 *    bios through a recursive call to submit_bio_noacct.  If it did, we find a
 619 *    non-NULL value in bio_list and re-enter the loop from the top.
 620 *  - In this case we really did just take the bio of the top of the list (no
 621 *    pretending) and so remove it from bio_list, and call into ->submit_bio()
 622 *    again.
 623 *
 624 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
 625 * bio_list_on_stack[1] contains bios that were submitted before the current
 626 *	->submit_bio, but that haven't been processed yet.
 627 */
 628static void __submit_bio_noacct(struct bio *bio)
 629{
 630	struct bio_list bio_list_on_stack[2];
 631
 632	BUG_ON(bio->bi_next);
 
 
 
 
 633
 634	bio_list_init(&bio_list_on_stack[0]);
 635	current->bio_list = bio_list_on_stack;
 
 
 
 
 
 
 
 636
 637	do {
 638		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
 639		struct bio_list lower, same;
 
 
 
 640
 641		/*
 642		 * Create a fresh bio_list for all subordinate requests.
 643		 */
 644		bio_list_on_stack[1] = bio_list_on_stack[0];
 645		bio_list_init(&bio_list_on_stack[0]);
 646
 647		__submit_bio(bio);
 
 
 
 648
 649		/*
 650		 * Sort new bios into those for a lower level and those for the
 651		 * same level.
 652		 */
 653		bio_list_init(&lower);
 654		bio_list_init(&same);
 655		while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
 656			if (q == bdev_get_queue(bio->bi_bdev))
 657				bio_list_add(&same, bio);
 658			else
 659				bio_list_add(&lower, bio);
 660
 661		/*
 662		 * Now assemble so we handle the lowest level first.
 663		 */
 664		bio_list_merge(&bio_list_on_stack[0], &lower);
 665		bio_list_merge(&bio_list_on_stack[0], &same);
 666		bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
 667	} while ((bio = bio_list_pop(&bio_list_on_stack[0])));
 668
 669	current->bio_list = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 670}
 
 671
 672static void __submit_bio_noacct_mq(struct bio *bio)
 673{
 674	struct bio_list bio_list[2] = { };
 675
 676	current->bio_list = bio_list;
 
 
 
 677
 678	do {
 679		__submit_bio(bio);
 680	} while ((bio = bio_list_pop(&bio_list[0])));
 
 
 
 681
 682	current->bio_list = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 683}
 684
 685void submit_bio_noacct_nocheck(struct bio *bio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 686{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 687	/*
 688	 * We only want one ->submit_bio to be active at a time, else stack
 689	 * usage with stacked devices could be a problem.  Use current->bio_list
 690	 * to collect a list of requests submited by a ->submit_bio method while
 691	 * it is active, and then process them after it returned.
 692	 */
 693	if (current->bio_list)
 694		bio_list_add(&current->bio_list[0], bio);
 695	else if (!bio->bi_bdev->bd_disk->fops->submit_bio)
 696		__submit_bio_noacct_mq(bio);
 697	else
 698		__submit_bio_noacct(bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 699}
 700
 701/**
 702 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
 703 * @bio:  The bio describing the location in memory and on the device.
 704 *
 705 * This is a version of submit_bio() that shall only be used for I/O that is
 706 * resubmitted to lower level drivers by stacking block drivers.  All file
 707 * systems and other upper level users of the block layer should use
 708 * submit_bio() instead.
 709 */
 710void submit_bio_noacct(struct bio *bio)
 711{
 712	struct block_device *bdev = bio->bi_bdev;
 713	struct request_queue *q = bdev_get_queue(bdev);
 714	blk_status_t status = BLK_STS_IOERR;
 715	struct blk_plug *plug;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 716
 717	might_sleep();
 718
 719	plug = blk_mq_plug(bio);
 720	if (plug && plug->nowait)
 721		bio->bi_opf |= REQ_NOWAIT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 722
 723	/*
 724	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
 725	 * if queue does not support NOWAIT.
 726	 */
 727	if ((bio->bi_opf & REQ_NOWAIT) && !bdev_nowait(bdev))
 728		goto not_supported;
 729
 730	if (should_fail_bio(bio))
 731		goto end_io;
 732	bio_check_ro(bio);
 733	if (!bio_flagged(bio, BIO_REMAPPED)) {
 734		if (unlikely(bio_check_eod(bio)))
 735			goto end_io;
 736		if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
 737			goto end_io;
 738	}
 739
 740	/*
 741	 * Filter flush bio's early so that bio based drivers without flush
 742	 * support don't have to worry about them.
 
 743	 */
 744	if (op_is_flush(bio->bi_opf) &&
 745	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
 746		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
 747		if (!bio_sectors(bio)) {
 748			status = BLK_STS_OK;
 749			goto end_io;
 750		}
 751	}
 752
 753	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
 754		bio_clear_polled(bio);
 755
 756	switch (bio_op(bio)) {
 757	case REQ_OP_DISCARD:
 758		if (!bdev_max_discard_sectors(bdev))
 759			goto not_supported;
 760		break;
 761	case REQ_OP_SECURE_ERASE:
 762		if (!bdev_max_secure_erase_sectors(bdev))
 763			goto not_supported;
 764		break;
 765	case REQ_OP_ZONE_APPEND:
 766		status = blk_check_zone_append(q, bio);
 767		if (status != BLK_STS_OK)
 768			goto end_io;
 769		break;
 
 770	case REQ_OP_ZONE_RESET:
 771	case REQ_OP_ZONE_OPEN:
 772	case REQ_OP_ZONE_CLOSE:
 773	case REQ_OP_ZONE_FINISH:
 774		if (!bdev_is_zoned(bio->bi_bdev))
 775			goto not_supported;
 776		break;
 777	case REQ_OP_ZONE_RESET_ALL:
 778		if (!bdev_is_zoned(bio->bi_bdev) || !blk_queue_zone_resetall(q))
 779			goto not_supported;
 780		break;
 781	case REQ_OP_WRITE_ZEROES:
 782		if (!q->limits.max_write_zeroes_sectors)
 783			goto not_supported;
 784		break;
 785	default:
 786		break;
 787	}
 788
 789	if (blk_throtl_bio(bio))
 790		return;
 
 
 
 
 
 791
 792	blk_cgroup_bio_start(bio);
 793	blkcg_bio_issue_init(bio);
 794
 795	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
 796		trace_block_bio_queue(bio);
 797		/* Now that enqueuing has been traced, we need to trace
 798		 * completion as well.
 799		 */
 800		bio_set_flag(bio, BIO_TRACE_COMPLETION);
 801	}
 802	submit_bio_noacct_nocheck(bio);
 803	return;
 804
 805not_supported:
 806	status = BLK_STS_NOTSUPP;
 807end_io:
 808	bio->bi_status = status;
 809	bio_endio(bio);
 
 810}
 811EXPORT_SYMBOL(submit_bio_noacct);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 812
 813/**
 814 * submit_bio - submit a bio to the block device layer for I/O
 815 * @bio: The &struct bio which describes the I/O
 816 *
 817 * submit_bio() is used to submit I/O requests to block devices.  It is passed a
 818 * fully set up &struct bio that describes the I/O that needs to be done.  The
 819 * bio will be send to the device described by the bi_bdev field.
 820 *
 821 * The success/failure status of the request, along with notification of
 822 * completion, is delivered asynchronously through the ->bi_end_io() callback
 823 * in @bio.  The bio must NOT be touched by the caller until ->bi_end_io() has
 824 * been called.
 825 */
 826void submit_bio(struct bio *bio)
 827{
 828	if (blkcg_punt_bio_submit(bio))
 829		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 830
 831	if (bio_op(bio) == REQ_OP_READ) {
 832		task_io_account_read(bio->bi_iter.bi_size);
 833		count_vm_events(PGPGIN, bio_sectors(bio));
 834	} else if (bio_op(bio) == REQ_OP_WRITE) {
 835		count_vm_events(PGPGOUT, bio_sectors(bio));
 
 
 
 
 836	}
 837
 838	submit_bio_noacct(bio);
 839}
 840EXPORT_SYMBOL(submit_bio);
 841
 842/**
 843 * bio_poll - poll for BIO completions
 844 * @bio: bio to poll for
 845 * @iob: batches of IO
 846 * @flags: BLK_POLL_* flags that control the behavior
 847 *
 848 * Poll for completions on queue associated with the bio. Returns number of
 849 * completed entries found.
 850 *
 851 * Note: the caller must either be the context that submitted @bio, or
 852 * be in a RCU critical section to prevent freeing of @bio.
 
 
 
 
 
 
 
 
 853 */
 854int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
 
 855{
 856	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
 857	blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
 858	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 859
 860	if (cookie == BLK_QC_T_NONE ||
 861	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
 
 
 
 
 
 
 862		return 0;
 
 
 
 
 
 
 
 863
 864	/*
 865	 * As the requests that require a zone lock are not plugged in the
 866	 * first place, directly accessing the plug instead of using
 867	 * blk_mq_plug() should not have any consequences during flushing for
 868	 * zoned devices.
 869	 */
 870	blk_flush_plug(current->plug, false);
 871
 872	if (bio_queue_enter(bio))
 873		return 0;
 874	if (queue_is_mq(q)) {
 875		ret = blk_mq_poll(q, cookie, iob, flags);
 876	} else {
 877		struct gendisk *disk = q->disk;
 
 878
 879		if (disk && disk->fops->poll_bio)
 880			ret = disk->fops->poll_bio(bio, iob, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 881	}
 882	blk_queue_exit(q);
 883	return ret;
 884}
 885EXPORT_SYMBOL_GPL(bio_poll);
 886
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 887/*
 888 * Helper to implement file_operations.iopoll.  Requires the bio to be stored
 889 * in iocb->private, and cleared before freeing the bio.
 890 */
 891int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
 892		    unsigned int flags)
 893{
 894	struct bio *bio;
 895	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 896
 897	/*
 898	 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
 899	 * point to a freshly allocated bio at this point.  If that happens
 900	 * we have a few cases to consider:
 901	 *
 902	 *  1) the bio is beeing initialized and bi_bdev is NULL.  We can just
 903	 *     simply nothing in this case
 904	 *  2) the bio points to a not poll enabled device.  bio_poll will catch
 905	 *     this and return 0
 906	 *  3) the bio points to a poll capable device, including but not
 907	 *     limited to the one that the original bio pointed to.  In this
 908	 *     case we will call into the actual poll method and poll for I/O,
 909	 *     even if we don't need to, but it won't cause harm either.
 910	 *
 911	 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
 912	 * is still allocated. Because partitions hold a reference to the whole
 913	 * device bdev and thus disk, the disk is also still valid.  Grabbing
 914	 * a reference to the queue in bio_poll() ensures the hctxs and requests
 915	 * are still valid as well.
 916	 */
 917	rcu_read_lock();
 918	bio = READ_ONCE(kiocb->private);
 919	if (bio && bio->bi_bdev)
 920		ret = bio_poll(bio, iob, flags);
 921	rcu_read_unlock();
 922
 923	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 924}
 925EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
 926
 927void update_io_ticks(struct block_device *part, unsigned long now, bool end)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 928{
 929	unsigned long stamp;
 930again:
 931	stamp = READ_ONCE(part->bd_stamp);
 932	if (unlikely(time_after(now, stamp))) {
 933		if (likely(try_cmpxchg(&part->bd_stamp, &stamp, now)))
 934			__part_stat_add(part, io_ticks, end ? now - stamp : 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 935	}
 936	if (part->bd_partno) {
 937		part = bdev_whole(part);
 938		goto again;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 939	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 940}
 
 941
 942unsigned long bdev_start_io_acct(struct block_device *bdev,
 943				 unsigned int sectors, enum req_op op,
 944				 unsigned long start_time)
 945{
 946	const int sgrp = op_stat_group(op);
 
 947
 948	part_stat_lock();
 949	update_io_ticks(bdev, start_time, false);
 950	part_stat_inc(bdev, ios[sgrp]);
 951	part_stat_add(bdev, sectors[sgrp], sectors);
 952	part_stat_local_inc(bdev, in_flight[op_is_write(op)]);
 953	part_stat_unlock();
 
 954
 955	return start_time;
 956}
 957EXPORT_SYMBOL(bdev_start_io_acct);
 958
 959/**
 960 * bio_start_io_acct - start I/O accounting for bio based drivers
 961 * @bio:	bio to start account for
 962 *
 963 * Returns the start time that should be passed back to bio_end_io_acct().
 
 
 
 
 964 */
 965unsigned long bio_start_io_acct(struct bio *bio)
 966{
 967	return bdev_start_io_acct(bio->bi_bdev, bio_sectors(bio),
 968				  bio_op(bio), jiffies);
 
 
 
 969}
 970EXPORT_SYMBOL_GPL(bio_start_io_acct);
 971
 972void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
 973		      unsigned long start_time)
 
 
 974{
 975	const int sgrp = op_stat_group(op);
 976	unsigned long now = READ_ONCE(jiffies);
 977	unsigned long duration = now - start_time;
 978
 979	part_stat_lock();
 980	update_io_ticks(bdev, now, true);
 981	part_stat_add(bdev, nsecs[sgrp], jiffies_to_nsecs(duration));
 982	part_stat_local_dec(bdev, in_flight[op_is_write(op)]);
 983	part_stat_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 984}
 985EXPORT_SYMBOL(bdev_end_io_acct);
 986
 987void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
 988			      struct block_device *orig_bdev)
 989{
 990	bdev_end_io_acct(orig_bdev, bio_op(bio), start_time);
 
 
 
 
 
 
 
 991}
 992EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 993
 994/**
 995 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
 996 * @q : the queue of the device being checked
 997 *
 998 * Description:
 999 *    Check if underlying low-level drivers of a device are busy.
1000 *    If the drivers want to export their busy state, they must set own
1001 *    exporting function using blk_queue_lld_busy() first.
1002 *
1003 *    Basically, this function is used only by request stacking drivers
1004 *    to stop dispatching requests to underlying devices when underlying
1005 *    devices are busy.  This behavior helps more I/O merging on the queue
1006 *    of the request stacking driver and prevents I/O throughput regression
1007 *    on burst I/O load.
1008 *
1009 * Return:
1010 *    0 - Not busy (The request stacking driver should dispatch request)
1011 *    1 - Busy (The request stacking driver should stop dispatching request)
1012 */
1013int blk_lld_busy(struct request_queue *q)
1014{
1015	if (queue_is_mq(q) && q->mq_ops->busy)
1016		return q->mq_ops->busy(q);
1017
1018	return 0;
1019}
1020EXPORT_SYMBOL_GPL(blk_lld_busy);
1021
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1022int kblockd_schedule_work(struct work_struct *work)
1023{
1024	return queue_work(kblockd_workqueue, work);
1025}
1026EXPORT_SYMBOL(kblockd_schedule_work);
1027
1028int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1029				unsigned long delay)
1030{
1031	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1032}
1033EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1034
1035void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
 
1036{
1037	struct task_struct *tsk = current;
1038
1039	/*
1040	 * If this is a nested plug, don't actually assign it.
1041	 */
1042	if (tsk->plug)
1043		return;
1044
1045	plug->mq_list = NULL;
1046	plug->cached_rq = NULL;
1047	plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1048	plug->rq_count = 0;
1049	plug->multiple_queues = false;
1050	plug->has_elevator = false;
1051	plug->nowait = false;
1052	INIT_LIST_HEAD(&plug->cb_list);
1053
1054	/*
1055	 * Store ordering should not be needed here, since a potential
1056	 * preempt will imply a full memory barrier
1057	 */
1058	tsk->plug = plug;
1059}
 
1060
1061/**
1062 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1063 * @plug:	The &struct blk_plug that needs to be initialized
1064 *
1065 * Description:
1066 *   blk_start_plug() indicates to the block layer an intent by the caller
1067 *   to submit multiple I/O requests in a batch.  The block layer may use
1068 *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1069 *   is called.  However, the block layer may choose to submit requests
1070 *   before a call to blk_finish_plug() if the number of queued I/Os
1071 *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1072 *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1073 *   the task schedules (see below).
1074 *
1075 *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1076 *   pending I/O should the task end up blocking between blk_start_plug() and
1077 *   blk_finish_plug(). This is important from a performance perspective, but
1078 *   also ensures that we don't deadlock. For instance, if the task is blocking
1079 *   for a memory allocation, memory reclaim could end up wanting to free a
1080 *   page belonging to that request that is currently residing in our private
1081 *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1082 *   this kind of deadlock.
1083 */
1084void blk_start_plug(struct blk_plug *plug)
1085{
1086	blk_start_plug_nr_ios(plug, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1087}
1088EXPORT_SYMBOL(blk_start_plug);
1089
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1090static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1091{
1092	LIST_HEAD(callbacks);
1093
1094	while (!list_empty(&plug->cb_list)) {
1095		list_splice_init(&plug->cb_list, &callbacks);
1096
1097		while (!list_empty(&callbacks)) {
1098			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1099							  struct blk_plug_cb,
1100							  list);
1101			list_del(&cb->list);
1102			cb->callback(cb, from_schedule);
1103		}
1104	}
1105}
1106
1107struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1108				      int size)
1109{
1110	struct blk_plug *plug = current->plug;
1111	struct blk_plug_cb *cb;
1112
1113	if (!plug)
1114		return NULL;
1115
1116	list_for_each_entry(cb, &plug->cb_list, list)
1117		if (cb->callback == unplug && cb->data == data)
1118			return cb;
1119
1120	/* Not currently on the callback list */
1121	BUG_ON(size < sizeof(*cb));
1122	cb = kzalloc(size, GFP_ATOMIC);
1123	if (cb) {
1124		cb->data = data;
1125		cb->callback = unplug;
1126		list_add(&cb->list, &plug->cb_list);
1127	}
1128	return cb;
1129}
1130EXPORT_SYMBOL(blk_check_plugged);
1131
1132void __blk_flush_plug(struct blk_plug *plug, bool from_schedule)
1133{
1134	if (!list_empty(&plug->cb_list))
1135		flush_plug_callbacks(plug, from_schedule);
1136	if (!rq_list_empty(plug->mq_list))
 
 
 
 
 
 
1137		blk_mq_flush_plug_list(plug, from_schedule);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1138	/*
1139	 * Unconditionally flush out cached requests, even if the unplug
1140	 * event came from schedule. Since we know hold references to the
1141	 * queue for cached requests, we don't want a blocked task holding
1142	 * up a queue freeze/quiesce event.
1143	 */
1144	if (unlikely(!rq_list_empty(plug->cached_rq)))
1145		blk_mq_free_plug_rqs(plug);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1146}
 
1147
1148/**
1149 * blk_finish_plug - mark the end of a batch of submitted I/O
1150 * @plug:	The &struct blk_plug passed to blk_start_plug()
1151 *
1152 * Description:
1153 * Indicate that a batch of I/O submissions is complete.  This function
1154 * must be paired with an initial call to blk_start_plug().  The intent
1155 * is to allow the block layer to optimize I/O submission.  See the
1156 * documentation for blk_start_plug() for more information.
 
 
 
 
 
 
 
 
 
 
 
1157 */
1158void blk_finish_plug(struct blk_plug *plug)
1159{
1160	if (plug == current->plug) {
1161		__blk_flush_plug(plug, false);
1162		current->plug = NULL;
 
 
 
 
 
 
 
 
1163	}
 
 
1164}
1165EXPORT_SYMBOL(blk_finish_plug);
1166
1167void blk_io_schedule(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
1168{
1169	/* Prevent hang_check timer from firing at us during very long I/O */
1170	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1171
1172	if (timeout)
1173		io_schedule_timeout(timeout);
1174	else
1175		io_schedule();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1176}
1177EXPORT_SYMBOL_GPL(blk_io_schedule);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1178
1179int __init blk_dev_init(void)
1180{
1181	BUILD_BUG_ON((__force u32)REQ_OP_LAST >= (1 << REQ_OP_BITS));
1182	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1183			sizeof_field(struct request, cmd_flags));
1184	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1185			sizeof_field(struct bio, bi_opf));
1186
1187	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1188	kblockd_workqueue = alloc_workqueue("kblockd",
1189					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1190	if (!kblockd_workqueue)
1191		panic("Failed to create kblockd\n");
1192
 
 
 
1193	blk_requestq_cachep = kmem_cache_create("request_queue",
1194			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1195
1196	blk_debugfs_root = debugfs_create_dir("block", NULL);
1197
1198	return 0;
1199}
v4.10.11
 
   1/*
   2 * Copyright (C) 1991, 1992 Linus Torvalds
   3 * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
   4 * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
   5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
   6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
   7 *	-  July2000
   8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
   9 */
  10
  11/*
  12 * This handles all read/write requests to block devices
  13 */
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/backing-dev.h>
  17#include <linux/bio.h>
  18#include <linux/blkdev.h>
  19#include <linux/blk-mq.h>
 
  20#include <linux/highmem.h>
  21#include <linux/mm.h>
 
  22#include <linux/kernel_stat.h>
  23#include <linux/string.h>
  24#include <linux/init.h>
  25#include <linux/completion.h>
  26#include <linux/slab.h>
  27#include <linux/swap.h>
  28#include <linux/writeback.h>
  29#include <linux/task_io_accounting_ops.h>
  30#include <linux/fault-inject.h>
  31#include <linux/list_sort.h>
  32#include <linux/delay.h>
  33#include <linux/ratelimit.h>
  34#include <linux/pm_runtime.h>
  35#include <linux/blk-cgroup.h>
 
 
 
 
 
  36
  37#define CREATE_TRACE_POINTS
  38#include <trace/events/block.h>
  39
  40#include "blk.h"
  41#include "blk-mq.h"
  42#include "blk-wbt.h"
 
 
 
 
  43
  44EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
  45EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
  46EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
  47EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
  48EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
 
  49
  50DEFINE_IDA(blk_queue_ida);
  51
  52/*
  53 * For the allocated request tables
  54 */
  55struct kmem_cache *request_cachep;
  56
  57/*
  58 * For queue allocation
  59 */
  60struct kmem_cache *blk_requestq_cachep;
  61
  62/*
  63 * Controlling structure to kblockd
  64 */
  65static struct workqueue_struct *kblockd_workqueue;
  66
  67static void blk_clear_congested(struct request_list *rl, int sync)
 
 
 
 
 
  68{
  69#ifdef CONFIG_CGROUP_WRITEBACK
  70	clear_wb_congested(rl->blkg->wb_congested, sync);
  71#else
  72	/*
  73	 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
  74	 * flip its congestion state for events on other blkcgs.
  75	 */
  76	if (rl == &rl->q->root_rl)
  77		clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
  78#endif
  79}
 
  80
  81static void blk_set_congested(struct request_list *rl, int sync)
 
 
 
 
 
  82{
  83#ifdef CONFIG_CGROUP_WRITEBACK
  84	set_wb_congested(rl->blkg->wb_congested, sync);
  85#else
  86	/* see blk_clear_congested() */
  87	if (rl == &rl->q->root_rl)
  88		set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
  89#endif
  90}
 
  91
  92void blk_queue_congestion_threshold(struct request_queue *q)
 
 
 
 
 
 
 
 
  93{
  94	int nr;
 
 
  95
  96	nr = q->nr_requests - (q->nr_requests / 8) + 1;
  97	if (nr > q->nr_requests)
  98		nr = q->nr_requests;
  99	q->nr_congestion_on = nr;
 100
 101	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
 102	if (nr < 1)
 103		nr = 1;
 104	q->nr_congestion_off = nr;
 105}
 
 
 
 
 
 
 
 
 106
 107/**
 108 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
 109 * @bdev:	device
 110 *
 111 * Locates the passed device's request queue and returns the address of its
 112 * backing_dev_info.  This function can only be called if @bdev is opened
 113 * and the return value is never NULL.
 114 */
 115struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
 116{
 117	struct request_queue *q = bdev_get_queue(bdev);
 118
 119	return &q->backing_dev_info;
 120}
 121EXPORT_SYMBOL(blk_get_backing_dev_info);
 122
 123void blk_rq_init(struct request_queue *q, struct request *rq)
 124{
 125	memset(rq, 0, sizeof(*rq));
 126
 127	INIT_LIST_HEAD(&rq->queuelist);
 128	INIT_LIST_HEAD(&rq->timeout_list);
 129	rq->cpu = -1;
 130	rq->q = q;
 131	rq->__sector = (sector_t) -1;
 132	INIT_HLIST_NODE(&rq->hash);
 133	RB_CLEAR_NODE(&rq->rb_node);
 134	rq->cmd = rq->__cmd;
 135	rq->cmd_len = BLK_MAX_CDB;
 136	rq->tag = -1;
 137	rq->start_time = jiffies;
 138	set_start_time_ns(rq);
 139	rq->part = NULL;
 140}
 141EXPORT_SYMBOL(blk_rq_init);
 142
 143static void req_bio_endio(struct request *rq, struct bio *bio,
 144			  unsigned int nbytes, int error)
 145{
 146	if (error)
 147		bio->bi_error = error;
 
 
 
 
 
 
 
 
 
 
 
 
 148
 149	if (unlikely(rq->rq_flags & RQF_QUIET))
 150		bio_set_flag(bio, BIO_QUIET);
 151
 152	bio_advance(bio, nbytes);
 
 
 153
 154	/* don't actually finish bio if it's part of flush sequence */
 155	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
 156		bio_endio(bio);
 157}
 158
 159void blk_dump_rq_flags(struct request *rq, char *msg)
 160{
 161	int bit;
 162
 163	printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
 164		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
 165		(unsigned long long) rq->cmd_flags);
 166
 167	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
 168	       (unsigned long long)blk_rq_pos(rq),
 169	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
 170	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
 171	       rq->bio, rq->biotail, blk_rq_bytes(rq));
 172
 173	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
 174		printk(KERN_INFO "  cdb: ");
 175		for (bit = 0; bit < BLK_MAX_CDB; bit++)
 176			printk("%02x ", rq->cmd[bit]);
 177		printk("\n");
 178	}
 179}
 180EXPORT_SYMBOL(blk_dump_rq_flags);
 181
 182static void blk_delay_work(struct work_struct *work)
 183{
 184	struct request_queue *q;
 185
 186	q = container_of(work, struct request_queue, delay_work.work);
 187	spin_lock_irq(q->queue_lock);
 188	__blk_run_queue(q);
 189	spin_unlock_irq(q->queue_lock);
 190}
 
 191
 192/**
 193 * blk_delay_queue - restart queueing after defined interval
 194 * @q:		The &struct request_queue in question
 195 * @msecs:	Delay in msecs
 196 *
 197 * Description:
 198 *   Sometimes queueing needs to be postponed for a little while, to allow
 199 *   resources to come back. This function will make sure that queueing is
 200 *   restarted around the specified time. Queue lock must be held.
 201 */
 202void blk_delay_queue(struct request_queue *q, unsigned long msecs)
 203{
 204	if (likely(!blk_queue_dead(q)))
 205		queue_delayed_work(kblockd_workqueue, &q->delay_work,
 206				   msecs_to_jiffies(msecs));
 207}
 208EXPORT_SYMBOL(blk_delay_queue);
 209
 210/**
 211 * blk_start_queue_async - asynchronously restart a previously stopped queue
 212 * @q:    The &struct request_queue in question
 213 *
 214 * Description:
 215 *   blk_start_queue_async() will clear the stop flag on the queue, and
 216 *   ensure that the request_fn for the queue is run from an async
 217 *   context.
 218 **/
 219void blk_start_queue_async(struct request_queue *q)
 220{
 221	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
 222	blk_run_queue_async(q);
 223}
 224EXPORT_SYMBOL(blk_start_queue_async);
 225
 226/**
 227 * blk_start_queue - restart a previously stopped queue
 228 * @q:    The &struct request_queue in question
 229 *
 230 * Description:
 231 *   blk_start_queue() will clear the stop flag on the queue, and call
 232 *   the request_fn for the queue if it was in a stopped state when
 233 *   entered. Also see blk_stop_queue(). Queue lock must be held.
 234 **/
 235void blk_start_queue(struct request_queue *q)
 236{
 237	WARN_ON(!irqs_disabled());
 238
 239	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
 240	__blk_run_queue(q);
 241}
 242EXPORT_SYMBOL(blk_start_queue);
 243
 244/**
 245 * blk_stop_queue - stop a queue
 246 * @q:    The &struct request_queue in question
 247 *
 248 * Description:
 249 *   The Linux block layer assumes that a block driver will consume all
 250 *   entries on the request queue when the request_fn strategy is called.
 251 *   Often this will not happen, because of hardware limitations (queue
 252 *   depth settings). If a device driver gets a 'queue full' response,
 253 *   or if it simply chooses not to queue more I/O at one point, it can
 254 *   call this function to prevent the request_fn from being called until
 255 *   the driver has signalled it's ready to go again. This happens by calling
 256 *   blk_start_queue() to restart queue operations. Queue lock must be held.
 257 **/
 258void blk_stop_queue(struct request_queue *q)
 259{
 260	cancel_delayed_work(&q->delay_work);
 261	queue_flag_set(QUEUE_FLAG_STOPPED, q);
 262}
 263EXPORT_SYMBOL(blk_stop_queue);
 264
 265/**
 266 * blk_sync_queue - cancel any pending callbacks on a queue
 267 * @q: the queue
 268 *
 269 * Description:
 270 *     The block layer may perform asynchronous callback activity
 271 *     on a queue, such as calling the unplug function after a timeout.
 272 *     A block device may call blk_sync_queue to ensure that any
 273 *     such activity is cancelled, thus allowing it to release resources
 274 *     that the callbacks might use. The caller must already have made sure
 275 *     that its ->make_request_fn will not re-add plugging prior to calling
 276 *     this function.
 277 *
 278 *     This function does not cancel any asynchronous activity arising
 279 *     out of elevator or throttling code. That would require elevator_exit()
 280 *     and blkcg_exit_queue() to be called with queue lock initialized.
 281 *
 282 */
 283void blk_sync_queue(struct request_queue *q)
 284{
 285	del_timer_sync(&q->timeout);
 286
 287	if (q->mq_ops) {
 288		struct blk_mq_hw_ctx *hctx;
 289		int i;
 290
 291		queue_for_each_hw_ctx(q, hctx, i) {
 292			cancel_work_sync(&hctx->run_work);
 293			cancel_delayed_work_sync(&hctx->delay_work);
 294		}
 295	} else {
 296		cancel_delayed_work_sync(&q->delay_work);
 297	}
 298}
 299EXPORT_SYMBOL(blk_sync_queue);
 300
 301/**
 302 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
 303 * @q:	The queue to run
 304 *
 305 * Description:
 306 *    Invoke request handling on a queue if there are any pending requests.
 307 *    May be used to restart request handling after a request has completed.
 308 *    This variant runs the queue whether or not the queue has been
 309 *    stopped. Must be called with the queue lock held and interrupts
 310 *    disabled. See also @blk_run_queue.
 311 */
 312inline void __blk_run_queue_uncond(struct request_queue *q)
 313{
 314	if (unlikely(blk_queue_dead(q)))
 315		return;
 316
 317	/*
 318	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
 319	 * the queue lock internally. As a result multiple threads may be
 320	 * running such a request function concurrently. Keep track of the
 321	 * number of active request_fn invocations such that blk_drain_queue()
 322	 * can wait until all these request_fn calls have finished.
 323	 */
 324	q->request_fn_active++;
 325	q->request_fn(q);
 326	q->request_fn_active--;
 327}
 328EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
 329
 330/**
 331 * __blk_run_queue - run a single device queue
 332 * @q:	The queue to run
 333 *
 334 * Description:
 335 *    See @blk_run_queue. This variant must be called with the queue lock
 336 *    held and interrupts disabled.
 337 */
 338void __blk_run_queue(struct request_queue *q)
 339{
 340	if (unlikely(blk_queue_stopped(q)))
 341		return;
 342
 343	__blk_run_queue_uncond(q);
 
 
 
 344}
 345EXPORT_SYMBOL(__blk_run_queue);
 346
 347/**
 348 * blk_run_queue_async - run a single device queue in workqueue context
 349 * @q:	The queue to run
 350 *
 351 * Description:
 352 *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
 353 *    of us. The caller must hold the queue lock.
 354 */
 355void blk_run_queue_async(struct request_queue *q)
 356{
 357	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
 358		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
 359}
 360EXPORT_SYMBOL(blk_run_queue_async);
 361
 362/**
 363 * blk_run_queue - run a single device queue
 364 * @q: The queue to run
 365 *
 366 * Description:
 367 *    Invoke request handling on this queue, if it has pending work to do.
 368 *    May be used to restart queueing when a request has completed.
 369 */
 370void blk_run_queue(struct request_queue *q)
 371{
 372	unsigned long flags;
 373
 374	spin_lock_irqsave(q->queue_lock, flags);
 375	__blk_run_queue(q);
 376	spin_unlock_irqrestore(q->queue_lock, flags);
 377}
 378EXPORT_SYMBOL(blk_run_queue);
 379
 380void blk_put_queue(struct request_queue *q)
 381{
 382	kobject_put(&q->kobj);
 383}
 384EXPORT_SYMBOL(blk_put_queue);
 385
 386/**
 387 * __blk_drain_queue - drain requests from request_queue
 388 * @q: queue to drain
 389 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
 390 *
 391 * Drain requests from @q.  If @drain_all is set, all requests are drained.
 392 * If not, only ELVPRIV requests are drained.  The caller is responsible
 393 * for ensuring that no new requests which need to be drained are queued.
 394 */
 395static void __blk_drain_queue(struct request_queue *q, bool drain_all)
 396	__releases(q->queue_lock)
 397	__acquires(q->queue_lock)
 398{
 399	int i;
 400
 401	lockdep_assert_held(q->queue_lock);
 402
 403	while (true) {
 404		bool drain = false;
 405
 406		/*
 407		 * The caller might be trying to drain @q before its
 408		 * elevator is initialized.
 409		 */
 410		if (q->elevator)
 411			elv_drain_elevator(q);
 412
 413		blkcg_drain_queue(q);
 414
 415		/*
 416		 * This function might be called on a queue which failed
 417		 * driver init after queue creation or is not yet fully
 418		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
 419		 * in such cases.  Kick queue iff dispatch queue has
 420		 * something on it and @q has request_fn set.
 421		 */
 422		if (!list_empty(&q->queue_head) && q->request_fn)
 423			__blk_run_queue(q);
 424
 425		drain |= q->nr_rqs_elvpriv;
 426		drain |= q->request_fn_active;
 427
 428		/*
 429		 * Unfortunately, requests are queued at and tracked from
 430		 * multiple places and there's no single counter which can
 431		 * be drained.  Check all the queues and counters.
 432		 */
 433		if (drain_all) {
 434			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
 435			drain |= !list_empty(&q->queue_head);
 436			for (i = 0; i < 2; i++) {
 437				drain |= q->nr_rqs[i];
 438				drain |= q->in_flight[i];
 439				if (fq)
 440				    drain |= !list_empty(&fq->flush_queue[i]);
 441			}
 442		}
 443
 444		if (!drain)
 445			break;
 446
 447		spin_unlock_irq(q->queue_lock);
 448
 449		msleep(10);
 450
 451		spin_lock_irq(q->queue_lock);
 452	}
 453
 454	/*
 455	 * With queue marked dead, any woken up waiter will fail the
 456	 * allocation path, so the wakeup chaining is lost and we're
 457	 * left with hung waiters. We need to wake up those waiters.
 458	 */
 459	if (q->request_fn) {
 460		struct request_list *rl;
 461
 462		blk_queue_for_each_rl(rl, q)
 463			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
 464				wake_up_all(&rl->wait[i]);
 465	}
 466}
 467
 468/**
 469 * blk_queue_bypass_start - enter queue bypass mode
 470 * @q: queue of interest
 471 *
 472 * In bypass mode, only the dispatch FIFO queue of @q is used.  This
 473 * function makes @q enter bypass mode and drains all requests which were
 474 * throttled or issued before.  On return, it's guaranteed that no request
 475 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
 476 * inside queue or RCU read lock.
 477 */
 478void blk_queue_bypass_start(struct request_queue *q)
 479{
 480	spin_lock_irq(q->queue_lock);
 481	q->bypass_depth++;
 482	queue_flag_set(QUEUE_FLAG_BYPASS, q);
 483	spin_unlock_irq(q->queue_lock);
 484
 485	/*
 486	 * Queues start drained.  Skip actual draining till init is
 487	 * complete.  This avoids lenghty delays during queue init which
 488	 * can happen many times during boot.
 489	 */
 490	if (blk_queue_init_done(q)) {
 491		spin_lock_irq(q->queue_lock);
 492		__blk_drain_queue(q, false);
 493		spin_unlock_irq(q->queue_lock);
 494
 495		/* ensure blk_queue_bypass() is %true inside RCU read lock */
 496		synchronize_rcu();
 497	}
 498}
 499EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
 500
 501/**
 502 * blk_queue_bypass_end - leave queue bypass mode
 503 * @q: queue of interest
 504 *
 505 * Leave bypass mode and restore the normal queueing behavior.
 506 */
 507void blk_queue_bypass_end(struct request_queue *q)
 508{
 509	spin_lock_irq(q->queue_lock);
 510	if (!--q->bypass_depth)
 511		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
 512	WARN_ON_ONCE(q->bypass_depth < 0);
 513	spin_unlock_irq(q->queue_lock);
 514}
 515EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
 516
 517void blk_set_queue_dying(struct request_queue *q)
 518{
 519	spin_lock_irq(q->queue_lock);
 520	queue_flag_set(QUEUE_FLAG_DYING, q);
 521	spin_unlock_irq(q->queue_lock);
 522
 523	if (q->mq_ops)
 
 
 524		blk_mq_wake_waiters(q);
 525	else {
 526		struct request_list *rl;
 527
 528		blk_queue_for_each_rl(rl, q) {
 529			if (rl->rq_pool) {
 530				wake_up(&rl->wait[BLK_RW_SYNC]);
 531				wake_up(&rl->wait[BLK_RW_ASYNC]);
 532			}
 533		}
 534	}
 535}
 536EXPORT_SYMBOL_GPL(blk_set_queue_dying);
 537
 538/**
 539 * blk_cleanup_queue - shutdown a request queue
 540 * @q: request queue to shutdown
 541 *
 542 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
 543 * put it.  All future requests will be failed immediately with -ENODEV.
 544 */
 545void blk_cleanup_queue(struct request_queue *q)
 546{
 547	spinlock_t *lock = q->queue_lock;
 548
 549	/* mark @q DYING, no new request or merges will be allowed afterwards */
 550	mutex_lock(&q->sysfs_lock);
 551	blk_set_queue_dying(q);
 552	spin_lock_irq(lock);
 553
 554	/*
 555	 * A dying queue is permanently in bypass mode till released.  Note
 556	 * that, unlike blk_queue_bypass_start(), we aren't performing
 557	 * synchronize_rcu() after entering bypass mode to avoid the delay
 558	 * as some drivers create and destroy a lot of queues while
 559	 * probing.  This is still safe because blk_release_queue() will be
 560	 * called only after the queue refcnt drops to zero and nothing,
 561	 * RCU or not, would be traversing the queue by then.
 562	 */
 563	q->bypass_depth++;
 564	queue_flag_set(QUEUE_FLAG_BYPASS, q);
 
 
 
 
 565
 566	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
 567	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
 568	queue_flag_set(QUEUE_FLAG_DYING, q);
 569	spin_unlock_irq(lock);
 570	mutex_unlock(&q->sysfs_lock);
 571
 572	/*
 573	 * Drain all requests queued before DYING marking. Set DEAD flag to
 574	 * prevent that q->request_fn() gets invoked after draining finished.
 575	 */
 576	blk_freeze_queue(q);
 577	spin_lock_irq(lock);
 578	if (!q->mq_ops)
 579		__blk_drain_queue(q, true);
 580	queue_flag_set(QUEUE_FLAG_DEAD, q);
 581	spin_unlock_irq(lock);
 582
 583	/* for synchronous bio-based driver finish in-flight integrity i/o */
 584	blk_flush_integrity();
 585
 586	/* @q won't process any more request, flush async actions */
 587	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
 588	blk_sync_queue(q);
 589
 590	if (q->mq_ops)
 591		blk_mq_free_queue(q);
 592	percpu_ref_exit(&q->q_usage_counter);
 593
 594	spin_lock_irq(lock);
 595	if (q->queue_lock != &q->__queue_lock)
 596		q->queue_lock = &q->__queue_lock;
 597	spin_unlock_irq(lock);
 598
 599	bdi_unregister(&q->backing_dev_info);
 600
 601	/* @q is and will stay empty, shutdown and put */
 602	blk_put_queue(q);
 603}
 604EXPORT_SYMBOL(blk_cleanup_queue);
 605
 606/* Allocate memory local to the request queue */
 607static void *alloc_request_struct(gfp_t gfp_mask, void *data)
 608{
 609	int nid = (int)(long)data;
 610	return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
 611}
 612
 613static void free_request_struct(void *element, void *unused)
 614{
 615	kmem_cache_free(request_cachep, element);
 616}
 
 
 617
 618int blk_init_rl(struct request_list *rl, struct request_queue *q,
 619		gfp_t gfp_mask)
 620{
 621	if (unlikely(rl->rq_pool))
 622		return 0;
 623
 624	rl->q = q;
 625	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
 626	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
 627	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
 628	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
 629
 630	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
 631					  free_request_struct,
 632					  (void *)(long)q->node, gfp_mask,
 633					  q->node);
 634	if (!rl->rq_pool)
 635		return -ENOMEM;
 636
 637	return 0;
 638}
 639
 640void blk_exit_rl(struct request_list *rl)
 641{
 642	if (rl->rq_pool)
 643		mempool_destroy(rl->rq_pool);
 644}
 645
 646struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
 647{
 648	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
 649}
 650EXPORT_SYMBOL(blk_alloc_queue);
 651
 652int blk_queue_enter(struct request_queue *q, bool nowait)
 653{
 654	while (true) {
 655		int ret;
 656
 657		if (percpu_ref_tryget_live(&q->q_usage_counter))
 658			return 0;
 659
 660		if (nowait)
 661			return -EBUSY;
 662
 663		ret = wait_event_interruptible(q->mq_freeze_wq,
 664				!atomic_read(&q->mq_freeze_depth) ||
 665				blk_queue_dying(q));
 666		if (blk_queue_dying(q))
 667			return -ENODEV;
 668		if (ret)
 669			return ret;
 670	}
 671}
 672
 673void blk_queue_exit(struct request_queue *q)
 674{
 675	percpu_ref_put(&q->q_usage_counter);
 676}
 677
 678static void blk_queue_usage_counter_release(struct percpu_ref *ref)
 679{
 680	struct request_queue *q =
 681		container_of(ref, struct request_queue, q_usage_counter);
 682
 683	wake_up_all(&q->mq_freeze_wq);
 684}
 685
 686static void blk_rq_timed_out_timer(unsigned long data)
 687{
 688	struct request_queue *q = (struct request_queue *)data;
 689
 690	kblockd_schedule_work(&q->timeout_work);
 691}
 692
 693struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
 
 
 
 
 694{
 695	struct request_queue *q;
 696	int err;
 697
 698	q = kmem_cache_alloc_node(blk_requestq_cachep,
 699				gfp_mask | __GFP_ZERO, node_id);
 700	if (!q)
 701		return NULL;
 702
 703	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
 
 
 704	if (q->id < 0)
 705		goto fail_q;
 706
 707	q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
 708	if (!q->bio_split)
 709		goto fail_id;
 710
 711	q->backing_dev_info.ra_pages =
 712			(VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
 713	q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
 714	q->backing_dev_info.name = "block";
 715	q->node = node_id;
 716
 717	err = bdi_init(&q->backing_dev_info);
 718	if (err)
 719		goto fail_split;
 720
 721	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
 722		    laptop_mode_timer_fn, (unsigned long) q);
 723	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
 724	INIT_LIST_HEAD(&q->queue_head);
 725	INIT_LIST_HEAD(&q->timeout_list);
 726	INIT_LIST_HEAD(&q->icq_list);
 727#ifdef CONFIG_BLK_CGROUP
 728	INIT_LIST_HEAD(&q->blkg_list);
 729#endif
 730	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
 731
 732	kobject_init(&q->kobj, &blk_queue_ktype);
 733
 
 
 734	mutex_init(&q->sysfs_lock);
 735	spin_lock_init(&q->__queue_lock);
 736
 737	/*
 738	 * By default initialize queue_lock to internal lock and driver can
 739	 * override it later if need be.
 740	 */
 741	q->queue_lock = &q->__queue_lock;
 742
 743	/*
 744	 * A queue starts its life with bypass turned on to avoid
 745	 * unnecessary bypass on/off overhead and nasty surprises during
 746	 * init.  The initial bypass will be finished when the queue is
 747	 * registered by blk_register_queue().
 748	 */
 749	q->bypass_depth = 1;
 750	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
 751
 752	init_waitqueue_head(&q->mq_freeze_wq);
 
 753
 754	/*
 755	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
 756	 * See blk_register_queue() for details.
 757	 */
 758	if (percpu_ref_init(&q->q_usage_counter,
 759				blk_queue_usage_counter_release,
 760				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
 761		goto fail_bdi;
 762
 763	if (blkcg_init_queue(q))
 764		goto fail_ref;
 765
 766	return q;
 767
 768fail_ref:
 769	percpu_ref_exit(&q->q_usage_counter);
 770fail_bdi:
 771	bdi_destroy(&q->backing_dev_info);
 772fail_split:
 773	bioset_free(q->bio_split);
 774fail_id:
 775	ida_simple_remove(&blk_queue_ida, q->id);
 776fail_q:
 777	kmem_cache_free(blk_requestq_cachep, q);
 778	return NULL;
 779}
 780EXPORT_SYMBOL(blk_alloc_queue_node);
 781
 782/**
 783 * blk_init_queue  - prepare a request queue for use with a block device
 784 * @rfn:  The function to be called to process requests that have been
 785 *        placed on the queue.
 786 * @lock: Request queue spin lock
 787 *
 788 * Description:
 789 *    If a block device wishes to use the standard request handling procedures,
 790 *    which sorts requests and coalesces adjacent requests, then it must
 791 *    call blk_init_queue().  The function @rfn will be called when there
 792 *    are requests on the queue that need to be processed.  If the device
 793 *    supports plugging, then @rfn may not be called immediately when requests
 794 *    are available on the queue, but may be called at some time later instead.
 795 *    Plugged queues are generally unplugged when a buffer belonging to one
 796 *    of the requests on the queue is needed, or due to memory pressure.
 797 *
 798 *    @rfn is not required, or even expected, to remove all requests off the
 799 *    queue, but only as many as it can handle at a time.  If it does leave
 800 *    requests on the queue, it is responsible for arranging that the requests
 801 *    get dealt with eventually.
 802 *
 803 *    The queue spin lock must be held while manipulating the requests on the
 804 *    request queue; this lock will be taken also from interrupt context, so irq
 805 *    disabling is needed for it.
 806 *
 807 *    Function returns a pointer to the initialized request queue, or %NULL if
 808 *    it didn't succeed.
 809 *
 810 * Note:
 811 *    blk_init_queue() must be paired with a blk_cleanup_queue() call
 812 *    when the block device is deactivated (such as at module unload).
 813 **/
 814
 815struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
 816{
 817	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
 
 
 
 818}
 819EXPORT_SYMBOL(blk_init_queue);
 820
 821struct request_queue *
 822blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
 823{
 824	struct request_queue *uninit_q, *q;
 825
 826	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
 827	if (!uninit_q)
 828		return NULL;
 829
 830	q = blk_init_allocated_queue(uninit_q, rfn, lock);
 831	if (!q)
 832		blk_cleanup_queue(uninit_q);
 833
 834	return q;
 835}
 836EXPORT_SYMBOL(blk_init_queue_node);
 837
 838static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
 839
 840struct request_queue *
 841blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
 842			 spinlock_t *lock)
 843{
 844	if (!q)
 845		return NULL;
 846
 847	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
 848	if (!q->fq)
 849		return NULL;
 850
 851	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
 852		goto fail;
 853
 854	INIT_WORK(&q->timeout_work, blk_timeout_work);
 855	q->request_fn		= rfn;
 856	q->prep_rq_fn		= NULL;
 857	q->unprep_rq_fn		= NULL;
 858	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
 859
 860	/* Override internal queue lock with supplied lock pointer */
 861	if (lock)
 862		q->queue_lock		= lock;
 863
 864	/*
 865	 * This also sets hw/phys segments, boundary and size
 866	 */
 867	blk_queue_make_request(q, blk_queue_bio);
 868
 869	q->sg_reserved_size = INT_MAX;
 870
 871	/* Protect q->elevator from elevator_change */
 872	mutex_lock(&q->sysfs_lock);
 873
 874	/* init elevator */
 875	if (elevator_init(q, NULL)) {
 876		mutex_unlock(&q->sysfs_lock);
 877		goto fail;
 878	}
 879
 880	mutex_unlock(&q->sysfs_lock);
 881
 882	return q;
 883
 884fail:
 885	blk_free_flush_queue(q->fq);
 886	wbt_exit(q);
 887	return NULL;
 888}
 889EXPORT_SYMBOL(blk_init_allocated_queue);
 890
 891bool blk_get_queue(struct request_queue *q)
 892{
 893	if (likely(!blk_queue_dying(q))) {
 894		__blk_get_queue(q);
 895		return true;
 896	}
 897
 898	return false;
 899}
 900EXPORT_SYMBOL(blk_get_queue);
 901
 902static inline void blk_free_request(struct request_list *rl, struct request *rq)
 
 
 
 903{
 904	if (rq->rq_flags & RQF_ELVPRIV) {
 905		elv_put_request(rl->q, rq);
 906		if (rq->elv.icq)
 907			put_io_context(rq->elv.icq->ioc);
 
 
 908	}
 909
 910	mempool_free(rq, rl->rq_pool);
 911}
 912
 913/*
 914 * ioc_batching returns true if the ioc is a valid batching request and
 915 * should be given priority access to a request.
 916 */
 917static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
 918{
 919	if (!ioc)
 920		return 0;
 921
 922	/*
 923	 * Make sure the process is able to allocate at least 1 request
 924	 * even if the batch times out, otherwise we could theoretically
 925	 * lose wakeups.
 926	 */
 927	return ioc->nr_batch_requests == q->nr_batching ||
 928		(ioc->nr_batch_requests > 0
 929		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
 930}
 
 931
 932/*
 933 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
 934 * will cause the process to be a "batcher" on all queues in the system. This
 935 * is the behaviour we want though - once it gets a wakeup it should be given
 936 * a nice run.
 937 */
 938static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
 939{
 940	if (!ioc || ioc_batching(q, ioc))
 941		return;
 942
 943	ioc->nr_batch_requests = q->nr_batching;
 944	ioc->last_waited = jiffies;
 945}
 946
 947static void __freed_request(struct request_list *rl, int sync)
 948{
 949	struct request_queue *q = rl->q;
 950
 951	if (rl->count[sync] < queue_congestion_off_threshold(q))
 952		blk_clear_congested(rl, sync);
 953
 954	if (rl->count[sync] + 1 <= q->nr_requests) {
 955		if (waitqueue_active(&rl->wait[sync]))
 956			wake_up(&rl->wait[sync]);
 957
 958		blk_clear_rl_full(rl, sync);
 959	}
 
 960}
 961
 962/*
 963 * A request has just been released.  Account for it, update the full and
 964 * congestion status, wake up any waiters.   Called under q->queue_lock.
 965 */
 966static void freed_request(struct request_list *rl, bool sync,
 967		req_flags_t rq_flags)
 968{
 969	struct request_queue *q = rl->q;
 970
 971	q->nr_rqs[sync]--;
 972	rl->count[sync]--;
 973	if (rq_flags & RQF_ELVPRIV)
 974		q->nr_rqs_elvpriv--;
 975
 976	__freed_request(rl, sync);
 977
 978	if (unlikely(rl->starved[sync ^ 1]))
 979		__freed_request(rl, sync ^ 1);
 980}
 981
 982int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
 983{
 984	struct request_list *rl;
 985	int on_thresh, off_thresh;
 986
 987	spin_lock_irq(q->queue_lock);
 988	q->nr_requests = nr;
 989	blk_queue_congestion_threshold(q);
 990	on_thresh = queue_congestion_on_threshold(q);
 991	off_thresh = queue_congestion_off_threshold(q);
 992
 993	blk_queue_for_each_rl(rl, q) {
 994		if (rl->count[BLK_RW_SYNC] >= on_thresh)
 995			blk_set_congested(rl, BLK_RW_SYNC);
 996		else if (rl->count[BLK_RW_SYNC] < off_thresh)
 997			blk_clear_congested(rl, BLK_RW_SYNC);
 998
 999		if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1000			blk_set_congested(rl, BLK_RW_ASYNC);
1001		else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1002			blk_clear_congested(rl, BLK_RW_ASYNC);
1003
1004		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1005			blk_set_rl_full(rl, BLK_RW_SYNC);
1006		} else {
1007			blk_clear_rl_full(rl, BLK_RW_SYNC);
1008			wake_up(&rl->wait[BLK_RW_SYNC]);
1009		}
1010
1011		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1012			blk_set_rl_full(rl, BLK_RW_ASYNC);
1013		} else {
1014			blk_clear_rl_full(rl, BLK_RW_ASYNC);
1015			wake_up(&rl->wait[BLK_RW_ASYNC]);
1016		}
1017	}
1018
1019	spin_unlock_irq(q->queue_lock);
1020	return 0;
1021}
1022
1023/*
1024 * Determine if elevator data should be initialized when allocating the
1025 * request associated with @bio.
1026 */
1027static bool blk_rq_should_init_elevator(struct bio *bio)
 
1028{
1029	if (!bio)
1030		return true;
1031
1032	/*
1033	 * Flush requests do not use the elevator so skip initialization.
1034	 * This allows a request to share the flush and elevator data.
1035	 */
1036	if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA))
1037		return false;
1038
1039	return true;
1040}
1041
1042/**
1043 * rq_ioc - determine io_context for request allocation
1044 * @bio: request being allocated is for this bio (can be %NULL)
1045 *
1046 * Determine io_context to use for request allocation for @bio.  May return
1047 * %NULL if %current->io_context doesn't exist.
1048 */
1049static struct io_context *rq_ioc(struct bio *bio)
1050{
1051#ifdef CONFIG_BLK_CGROUP
1052	if (bio && bio->bi_ioc)
1053		return bio->bi_ioc;
1054#endif
1055	return current->io_context;
1056}
1057
1058/**
1059 * __get_request - get a free request
1060 * @rl: request list to allocate from
1061 * @op: operation and flags
1062 * @bio: bio to allocate request for (can be %NULL)
1063 * @gfp_mask: allocation mask
1064 *
1065 * Get a free request from @q.  This function may fail under memory
1066 * pressure or if @q is dead.
1067 *
1068 * Must be called with @q->queue_lock held and,
1069 * Returns ERR_PTR on failure, with @q->queue_lock held.
1070 * Returns request pointer on success, with @q->queue_lock *not held*.
1071 */
1072static struct request *__get_request(struct request_list *rl, unsigned int op,
1073		struct bio *bio, gfp_t gfp_mask)
1074{
1075	struct request_queue *q = rl->q;
1076	struct request *rq;
1077	struct elevator_type *et = q->elevator->type;
1078	struct io_context *ioc = rq_ioc(bio);
1079	struct io_cq *icq = NULL;
1080	const bool is_sync = op_is_sync(op);
1081	int may_queue;
1082	req_flags_t rq_flags = RQF_ALLOCED;
1083
1084	if (unlikely(blk_queue_dying(q)))
1085		return ERR_PTR(-ENODEV);
1086
1087	may_queue = elv_may_queue(q, op);
1088	if (may_queue == ELV_MQUEUE_NO)
1089		goto rq_starved;
1090
1091	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1092		if (rl->count[is_sync]+1 >= q->nr_requests) {
1093			/*
1094			 * The queue will fill after this allocation, so set
1095			 * it as full, and mark this process as "batching".
1096			 * This process will be allowed to complete a batch of
1097			 * requests, others will be blocked.
1098			 */
1099			if (!blk_rl_full(rl, is_sync)) {
1100				ioc_set_batching(q, ioc);
1101				blk_set_rl_full(rl, is_sync);
1102			} else {
1103				if (may_queue != ELV_MQUEUE_MUST
1104						&& !ioc_batching(q, ioc)) {
1105					/*
1106					 * The queue is full and the allocating
1107					 * process is not a "batcher", and not
1108					 * exempted by the IO scheduler
1109					 */
1110					return ERR_PTR(-ENOMEM);
1111				}
1112			}
1113		}
1114		blk_set_congested(rl, is_sync);
1115	}
1116
1117	/*
1118	 * Only allow batching queuers to allocate up to 50% over the defined
1119	 * limit of requests, otherwise we could have thousands of requests
1120	 * allocated with any setting of ->nr_requests
1121	 */
1122	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1123		return ERR_PTR(-ENOMEM);
1124
1125	q->nr_rqs[is_sync]++;
1126	rl->count[is_sync]++;
1127	rl->starved[is_sync] = 0;
1128
1129	/*
1130	 * Decide whether the new request will be managed by elevator.  If
1131	 * so, mark @rq_flags and increment elvpriv.  Non-zero elvpriv will
1132	 * prevent the current elevator from being destroyed until the new
1133	 * request is freed.  This guarantees icq's won't be destroyed and
1134	 * makes creating new ones safe.
1135	 *
1136	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1137	 * it will be created after releasing queue_lock.
1138	 */
1139	if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1140		rq_flags |= RQF_ELVPRIV;
1141		q->nr_rqs_elvpriv++;
1142		if (et->icq_cache && ioc)
1143			icq = ioc_lookup_icq(ioc, q);
1144	}
1145
1146	if (blk_queue_io_stat(q))
1147		rq_flags |= RQF_IO_STAT;
1148	spin_unlock_irq(q->queue_lock);
1149
1150	/* allocate and init request */
1151	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1152	if (!rq)
1153		goto fail_alloc;
1154
1155	blk_rq_init(q, rq);
1156	blk_rq_set_rl(rq, rl);
1157	blk_rq_set_prio(rq, ioc);
1158	rq->cmd_flags = op;
1159	rq->rq_flags = rq_flags;
1160
1161	/* init elvpriv */
1162	if (rq_flags & RQF_ELVPRIV) {
1163		if (unlikely(et->icq_cache && !icq)) {
1164			if (ioc)
1165				icq = ioc_create_icq(ioc, q, gfp_mask);
1166			if (!icq)
1167				goto fail_elvpriv;
1168		}
1169
1170		rq->elv.icq = icq;
1171		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1172			goto fail_elvpriv;
1173
1174		/* @rq->elv.icq holds io_context until @rq is freed */
1175		if (icq)
1176			get_io_context(icq->ioc);
1177	}
1178out:
1179	/*
1180	 * ioc may be NULL here, and ioc_batching will be false. That's
1181	 * OK, if the queue is under the request limit then requests need
1182	 * not count toward the nr_batch_requests limit. There will always
1183	 * be some limit enforced by BLK_BATCH_TIME.
1184	 */
1185	if (ioc_batching(q, ioc))
1186		ioc->nr_batch_requests--;
1187
1188	trace_block_getrq(q, bio, op);
1189	return rq;
 
 
1190
1191fail_elvpriv:
1192	/*
1193	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1194	 * and may fail indefinitely under memory pressure and thus
1195	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1196	 * disturb iosched and blkcg but weird is bettern than dead.
1197	 */
1198	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1199			   __func__, dev_name(q->backing_dev_info.dev));
1200
1201	rq->rq_flags &= ~RQF_ELVPRIV;
1202	rq->elv.icq = NULL;
1203
1204	spin_lock_irq(q->queue_lock);
1205	q->nr_rqs_elvpriv--;
1206	spin_unlock_irq(q->queue_lock);
1207	goto out;
1208
1209fail_alloc:
1210	/*
1211	 * Allocation failed presumably due to memory. Undo anything we
1212	 * might have messed up.
1213	 *
1214	 * Allocating task should really be put onto the front of the wait
1215	 * queue, but this is pretty rare.
1216	 */
1217	spin_lock_irq(q->queue_lock);
1218	freed_request(rl, is_sync, rq_flags);
1219
1220	/*
1221	 * in the very unlikely event that allocation failed and no
1222	 * requests for this direction was pending, mark us starved so that
1223	 * freeing of a request in the other direction will notice
1224	 * us. another possible fix would be to split the rq mempool into
1225	 * READ and WRITE
1226	 */
1227rq_starved:
1228	if (unlikely(rl->count[is_sync] == 0))
1229		rl->starved[is_sync] = 1;
1230	return ERR_PTR(-ENOMEM);
1231}
1232
1233/**
1234 * get_request - get a free request
1235 * @q: request_queue to allocate request from
1236 * @op: operation and flags
1237 * @bio: bio to allocate request for (can be %NULL)
1238 * @gfp_mask: allocation mask
1239 *
1240 * Get a free request from @q.  If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1241 * this function keeps retrying under memory pressure and fails iff @q is dead.
1242 *
1243 * Must be called with @q->queue_lock held and,
1244 * Returns ERR_PTR on failure, with @q->queue_lock held.
1245 * Returns request pointer on success, with @q->queue_lock *not held*.
1246 */
1247static struct request *get_request(struct request_queue *q, unsigned int op,
1248		struct bio *bio, gfp_t gfp_mask)
1249{
1250	const bool is_sync = op_is_sync(op);
1251	DEFINE_WAIT(wait);
1252	struct request_list *rl;
1253	struct request *rq;
1254
1255	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1256retry:
1257	rq = __get_request(rl, op, bio, gfp_mask);
1258	if (!IS_ERR(rq))
1259		return rq;
1260
1261	if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1262		blk_put_rl(rl);
1263		return rq;
1264	}
1265
1266	/* wait on @rl and retry */
1267	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1268				  TASK_UNINTERRUPTIBLE);
1269
1270	trace_block_sleeprq(q, bio, op);
1271
1272	spin_unlock_irq(q->queue_lock);
1273	io_schedule();
1274
1275	/*
1276	 * After sleeping, we become a "batching" process and will be able
1277	 * to allocate at least one request, and up to a big batch of them
1278	 * for a small period time.  See ioc_batching, ioc_set_batching
1279	 */
1280	ioc_set_batching(q, current->io_context);
1281
1282	spin_lock_irq(q->queue_lock);
1283	finish_wait(&rl->wait[is_sync], &wait);
1284
1285	goto retry;
1286}
1287
1288static struct request *blk_old_get_request(struct request_queue *q, int rw,
1289		gfp_t gfp_mask)
1290{
1291	struct request *rq;
1292
1293	BUG_ON(rw != READ && rw != WRITE);
1294
1295	/* create ioc upfront */
1296	create_io_context(gfp_mask, q->node);
1297
1298	spin_lock_irq(q->queue_lock);
1299	rq = get_request(q, rw, NULL, gfp_mask);
1300	if (IS_ERR(rq)) {
1301		spin_unlock_irq(q->queue_lock);
1302		return rq;
1303	}
1304
1305	/* q->queue_lock is unlocked at this point */
1306	rq->__data_len = 0;
1307	rq->__sector = (sector_t) -1;
1308	rq->bio = rq->biotail = NULL;
1309	return rq;
1310}
1311
1312struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1313{
1314	if (q->mq_ops)
1315		return blk_mq_alloc_request(q, rw,
1316			(gfp_mask & __GFP_DIRECT_RECLAIM) ?
1317				0 : BLK_MQ_REQ_NOWAIT);
1318	else
1319		return blk_old_get_request(q, rw, gfp_mask);
1320}
1321EXPORT_SYMBOL(blk_get_request);
1322
1323/**
1324 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1325 * @rq:		request to be initialized
1326 *
1327 */
1328void blk_rq_set_block_pc(struct request *rq)
1329{
1330	rq->cmd_type = REQ_TYPE_BLOCK_PC;
1331	memset(rq->__cmd, 0, sizeof(rq->__cmd));
1332}
1333EXPORT_SYMBOL(blk_rq_set_block_pc);
1334
1335/**
1336 * blk_requeue_request - put a request back on queue
1337 * @q:		request queue where request should be inserted
1338 * @rq:		request to be inserted
1339 *
1340 * Description:
1341 *    Drivers often keep queueing requests until the hardware cannot accept
1342 *    more, when that condition happens we need to put the request back
1343 *    on the queue. Must be called with queue lock held.
1344 */
1345void blk_requeue_request(struct request_queue *q, struct request *rq)
1346{
1347	blk_delete_timer(rq);
1348	blk_clear_rq_complete(rq);
1349	trace_block_rq_requeue(q, rq);
1350	wbt_requeue(q->rq_wb, &rq->issue_stat);
1351
1352	if (rq->rq_flags & RQF_QUEUED)
1353		blk_queue_end_tag(q, rq);
1354
1355	BUG_ON(blk_queued_rq(rq));
1356
1357	elv_requeue_request(q, rq);
1358}
1359EXPORT_SYMBOL(blk_requeue_request);
1360
1361static void add_acct_request(struct request_queue *q, struct request *rq,
1362			     int where)
1363{
1364	blk_account_io_start(rq, true);
1365	__elv_add_request(q, rq, where);
1366}
1367
1368static void part_round_stats_single(int cpu, struct hd_struct *part,
1369				    unsigned long now)
1370{
1371	int inflight;
1372
1373	if (now == part->stamp)
1374		return;
1375
1376	inflight = part_in_flight(part);
1377	if (inflight) {
1378		__part_stat_add(cpu, part, time_in_queue,
1379				inflight * (now - part->stamp));
1380		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1381	}
1382	part->stamp = now;
1383}
1384
1385/**
1386 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1387 * @cpu: cpu number for stats access
1388 * @part: target partition
1389 *
1390 * The average IO queue length and utilisation statistics are maintained
1391 * by observing the current state of the queue length and the amount of
1392 * time it has been in this state for.
1393 *
1394 * Normally, that accounting is done on IO completion, but that can result
1395 * in more than a second's worth of IO being accounted for within any one
1396 * second, leading to >100% utilisation.  To deal with that, we call this
1397 * function to do a round-off before returning the results when reading
1398 * /proc/diskstats.  This accounts immediately for all queue usage up to
1399 * the current jiffies and restarts the counters again.
 
 
 
 
 
 
 
 
1400 */
1401void part_round_stats(int cpu, struct hd_struct *part)
1402{
1403	unsigned long now = jiffies;
1404
1405	if (part->partno)
1406		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1407	part_round_stats_single(cpu, part, now);
1408}
1409EXPORT_SYMBOL_GPL(part_round_stats);
1410
1411#ifdef CONFIG_PM
1412static void blk_pm_put_request(struct request *rq)
1413{
1414	if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1415		pm_runtime_mark_last_busy(rq->q->dev);
1416}
1417#else
1418static inline void blk_pm_put_request(struct request *rq) {}
1419#endif
1420
1421/*
1422 * queue lock must be held
1423 */
1424void __blk_put_request(struct request_queue *q, struct request *req)
1425{
1426	req_flags_t rq_flags = req->rq_flags;
1427
1428	if (unlikely(!q))
1429		return;
 
 
 
1430
1431	if (q->mq_ops) {
1432		blk_mq_free_request(req);
1433		return;
1434	}
1435
1436	blk_pm_put_request(req);
 
 
 
 
 
 
 
 
 
 
1437
1438	elv_completed_request(q, req);
1439
1440	/* this is a bio leak */
1441	WARN_ON(req->bio != NULL);
 
 
 
1442
1443	wbt_done(q->rq_wb, &req->issue_stat);
1444
1445	/*
1446	 * Request may not have originated from ll_rw_blk. if not,
1447	 * it didn't come out of our reserved rq pools
1448	 */
1449	if (rq_flags & RQF_ALLOCED) {
1450		struct request_list *rl = blk_rq_rl(req);
1451		bool sync = op_is_sync(req->cmd_flags);
1452
1453		BUG_ON(!list_empty(&req->queuelist));
1454		BUG_ON(ELV_ON_HASH(req));
1455
1456		blk_free_request(rl, req);
1457		freed_request(rl, sync, rq_flags);
1458		blk_put_rl(rl);
1459	}
1460}
1461EXPORT_SYMBOL_GPL(__blk_put_request);
1462
1463void blk_put_request(struct request *req)
1464{
1465	struct request_queue *q = req->q;
1466
1467	if (q->mq_ops)
1468		blk_mq_free_request(req);
1469	else {
1470		unsigned long flags;
1471
1472		spin_lock_irqsave(q->queue_lock, flags);
1473		__blk_put_request(q, req);
1474		spin_unlock_irqrestore(q->queue_lock, flags);
1475	}
1476}
1477EXPORT_SYMBOL(blk_put_request);
1478
1479bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1480			    struct bio *bio)
1481{
1482	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1483
1484	if (!ll_back_merge_fn(q, req, bio))
1485		return false;
1486
1487	trace_block_bio_backmerge(q, req, bio);
1488
1489	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1490		blk_rq_set_mixed_merge(req);
1491
1492	req->biotail->bi_next = bio;
1493	req->biotail = bio;
1494	req->__data_len += bio->bi_iter.bi_size;
1495	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1496
1497	blk_account_io_start(req, false);
1498	return true;
1499}
1500
1501bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1502			     struct bio *bio)
1503{
1504	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1505
1506	if (!ll_front_merge_fn(q, req, bio))
1507		return false;
1508
1509	trace_block_bio_frontmerge(q, req, bio);
1510
1511	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1512		blk_rq_set_mixed_merge(req);
1513
1514	bio->bi_next = req->bio;
1515	req->bio = bio;
1516
1517	req->__sector = bio->bi_iter.bi_sector;
1518	req->__data_len += bio->bi_iter.bi_size;
1519	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1520
1521	blk_account_io_start(req, false);
1522	return true;
1523}
1524
1525/**
1526 * blk_attempt_plug_merge - try to merge with %current's plugged list
1527 * @q: request_queue new bio is being queued at
1528 * @bio: new bio being queued
1529 * @request_count: out parameter for number of traversed plugged requests
1530 * @same_queue_rq: pointer to &struct request that gets filled in when
1531 * another request associated with @q is found on the plug list
1532 * (optional, may be %NULL)
1533 *
1534 * Determine whether @bio being queued on @q can be merged with a request
1535 * on %current's plugged list.  Returns %true if merge was successful,
1536 * otherwise %false.
1537 *
1538 * Plugging coalesces IOs from the same issuer for the same purpose without
1539 * going through @q->queue_lock.  As such it's more of an issuing mechanism
1540 * than scheduling, and the request, while may have elvpriv data, is not
1541 * added on the elevator at this point.  In addition, we don't have
1542 * reliable access to the elevator outside queue lock.  Only check basic
1543 * merging parameters without querying the elevator.
1544 *
1545 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1546 */
1547bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1548			    unsigned int *request_count,
1549			    struct request **same_queue_rq)
1550{
1551	struct blk_plug *plug;
1552	struct request *rq;
1553	bool ret = false;
1554	struct list_head *plug_list;
1555
1556	plug = current->plug;
1557	if (!plug)
1558		goto out;
1559	*request_count = 0;
1560
1561	if (q->mq_ops)
1562		plug_list = &plug->mq_list;
1563	else
1564		plug_list = &plug->list;
1565
1566	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1567		int el_ret;
1568
1569		if (rq->q == q) {
1570			(*request_count)++;
1571			/*
1572			 * Only blk-mq multiple hardware queues case checks the
1573			 * rq in the same queue, there should be only one such
1574			 * rq in a queue
1575			 **/
1576			if (same_queue_rq)
1577				*same_queue_rq = rq;
1578		}
1579
1580		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1581			continue;
1582
1583		el_ret = blk_try_merge(rq, bio);
1584		if (el_ret == ELEVATOR_BACK_MERGE) {
1585			ret = bio_attempt_back_merge(q, rq, bio);
1586			if (ret)
1587				break;
1588		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1589			ret = bio_attempt_front_merge(q, rq, bio);
1590			if (ret)
1591				break;
1592		}
1593	}
1594out:
1595	return ret;
1596}
1597
1598unsigned int blk_plug_queued_count(struct request_queue *q)
1599{
1600	struct blk_plug *plug;
1601	struct request *rq;
1602	struct list_head *plug_list;
1603	unsigned int ret = 0;
1604
1605	plug = current->plug;
1606	if (!plug)
1607		goto out;
1608
1609	if (q->mq_ops)
1610		plug_list = &plug->mq_list;
1611	else
1612		plug_list = &plug->list;
1613
1614	list_for_each_entry(rq, plug_list, queuelist) {
1615		if (rq->q == q)
1616			ret++;
1617	}
1618out:
1619	return ret;
1620}
1621
1622void init_request_from_bio(struct request *req, struct bio *bio)
1623{
1624	req->cmd_type = REQ_TYPE_FS;
1625	if (bio->bi_opf & REQ_RAHEAD)
1626		req->cmd_flags |= REQ_FAILFAST_MASK;
1627
1628	req->errors = 0;
1629	req->__sector = bio->bi_iter.bi_sector;
1630	if (ioprio_valid(bio_prio(bio)))
1631		req->ioprio = bio_prio(bio);
1632	blk_rq_bio_prep(req->q, req, bio);
1633}
1634
1635static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1636{
1637	struct blk_plug *plug;
1638	int el_ret, where = ELEVATOR_INSERT_SORT;
1639	struct request *req;
1640	unsigned int request_count = 0;
1641	unsigned int wb_acct;
1642
1643	/*
1644	 * low level driver can indicate that it wants pages above a
1645	 * certain limit bounced to low memory (ie for highmem, or even
1646	 * ISA dma in theory)
 
1647	 */
1648	blk_queue_bounce(q, &bio);
1649
1650	blk_queue_split(q, &bio, q->bio_split);
1651
1652	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1653		bio->bi_error = -EIO;
1654		bio_endio(bio);
1655		return BLK_QC_T_NONE;
1656	}
1657
1658	if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) {
1659		spin_lock_irq(q->queue_lock);
1660		where = ELEVATOR_INSERT_FLUSH;
1661		goto get_rq;
1662	}
1663
1664	/*
1665	 * Check if we can merge with the plugged list before grabbing
1666	 * any locks.
1667	 */
1668	if (!blk_queue_nomerges(q)) {
1669		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1670			return BLK_QC_T_NONE;
1671	} else
1672		request_count = blk_plug_queued_count(q);
1673
1674	spin_lock_irq(q->queue_lock);
1675
1676	el_ret = elv_merge(q, &req, bio);
1677	if (el_ret == ELEVATOR_BACK_MERGE) {
1678		if (bio_attempt_back_merge(q, req, bio)) {
1679			elv_bio_merged(q, req, bio);
1680			if (!attempt_back_merge(q, req))
1681				elv_merged_request(q, req, el_ret);
1682			goto out_unlock;
1683		}
1684	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1685		if (bio_attempt_front_merge(q, req, bio)) {
1686			elv_bio_merged(q, req, bio);
1687			if (!attempt_front_merge(q, req))
1688				elv_merged_request(q, req, el_ret);
1689			goto out_unlock;
1690		}
1691	}
1692
1693get_rq:
1694	wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1695
1696	/*
1697	 * Grab a free request. This is might sleep but can not fail.
1698	 * Returns with the queue unlocked.
1699	 */
1700	req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
1701	if (IS_ERR(req)) {
1702		__wbt_done(q->rq_wb, wb_acct);
1703		bio->bi_error = PTR_ERR(req);
1704		bio_endio(bio);
1705		goto out_unlock;
1706	}
1707
1708	wbt_track(&req->issue_stat, wb_acct);
1709
1710	/*
1711	 * After dropping the lock and possibly sleeping here, our request
1712	 * may now be mergeable after it had proven unmergeable (above).
1713	 * We don't worry about that case for efficiency. It won't happen
1714	 * often, and the elevators are able to handle it.
1715	 */
1716	init_request_from_bio(req, bio);
1717
1718	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1719		req->cpu = raw_smp_processor_id();
1720
1721	plug = current->plug;
1722	if (plug) {
1723		/*
1724		 * If this is the first request added after a plug, fire
1725		 * of a plug trace.
1726		 *
1727		 * @request_count may become stale because of schedule
1728		 * out, so check plug list again.
1729		 */
1730		if (!request_count || list_empty(&plug->list))
1731			trace_block_plug(q);
1732		else {
1733			struct request *last = list_entry_rq(plug->list.prev);
1734			if (request_count >= BLK_MAX_REQUEST_COUNT ||
1735			    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1736				blk_flush_plug_list(plug, false);
1737				trace_block_plug(q);
1738			}
1739		}
1740		list_add_tail(&req->queuelist, &plug->list);
1741		blk_account_io_start(req, true);
1742	} else {
1743		spin_lock_irq(q->queue_lock);
1744		add_acct_request(q, req, where);
1745		__blk_run_queue(q);
1746out_unlock:
1747		spin_unlock_irq(q->queue_lock);
1748	}
1749
1750	return BLK_QC_T_NONE;
1751}
1752
1753/*
1754 * If bio->bi_dev is a partition, remap the location
 
 
 
 
 
 
1755 */
1756static inline void blk_partition_remap(struct bio *bio)
1757{
1758	struct block_device *bdev = bio->bi_bdev;
1759
1760	/*
1761	 * Zone reset does not include bi_size so bio_sectors() is always 0.
1762	 * Include a test for the reset op code and perform the remap if needed.
1763	 */
1764	if (bdev != bdev->bd_contains &&
1765	    (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) {
1766		struct hd_struct *p = bdev->bd_part;
1767
1768		bio->bi_iter.bi_sector += p->start_sect;
1769		bio->bi_bdev = bdev->bd_contains;
1770
1771		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1772				      bdev->bd_dev,
1773				      bio->bi_iter.bi_sector - p->start_sect);
1774	}
1775}
1776
1777static void handle_bad_sector(struct bio *bio)
1778{
1779	char b[BDEVNAME_SIZE];
1780
1781	printk(KERN_INFO "attempt to access beyond end of device\n");
1782	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1783			bdevname(bio->bi_bdev, b),
1784			bio->bi_opf,
1785			(unsigned long long)bio_end_sector(bio),
1786			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1787}
1788
1789#ifdef CONFIG_FAIL_MAKE_REQUEST
1790
1791static DECLARE_FAULT_ATTR(fail_make_request);
1792
1793static int __init setup_fail_make_request(char *str)
1794{
1795	return setup_fault_attr(&fail_make_request, str);
1796}
1797__setup("fail_make_request=", setup_fail_make_request);
1798
1799static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1800{
1801	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1802}
1803
1804static int __init fail_make_request_debugfs(void)
1805{
1806	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1807						NULL, &fail_make_request);
1808
1809	return PTR_ERR_OR_ZERO(dir);
1810}
1811
1812late_initcall(fail_make_request_debugfs);
1813
1814#else /* CONFIG_FAIL_MAKE_REQUEST */
1815
1816static inline bool should_fail_request(struct hd_struct *part,
1817					unsigned int bytes)
1818{
1819	return false;
1820}
1821
1822#endif /* CONFIG_FAIL_MAKE_REQUEST */
1823
1824/*
1825 * Check whether this bio extends beyond the end of the device.
1826 */
1827static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1828{
1829	sector_t maxsector;
1830
1831	if (!nr_sectors)
1832		return 0;
1833
1834	/* Test device or partition size, when known. */
1835	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1836	if (maxsector) {
1837		sector_t sector = bio->bi_iter.bi_sector;
1838
1839		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1840			/*
1841			 * This may well happen - the kernel calls bread()
1842			 * without checking the size of the device, e.g., when
1843			 * mounting a device.
1844			 */
1845			handle_bad_sector(bio);
1846			return 1;
1847		}
1848	}
1849
1850	return 0;
1851}
1852
1853static noinline_for_stack bool
1854generic_make_request_checks(struct bio *bio)
1855{
1856	struct request_queue *q;
1857	int nr_sectors = bio_sectors(bio);
1858	int err = -EIO;
1859	char b[BDEVNAME_SIZE];
1860	struct hd_struct *part;
1861
1862	might_sleep();
1863
1864	if (bio_check_eod(bio, nr_sectors))
1865		goto end_io;
1866
1867	q = bdev_get_queue(bio->bi_bdev);
1868	if (unlikely(!q)) {
1869		printk(KERN_ERR
1870		       "generic_make_request: Trying to access "
1871			"nonexistent block-device %s (%Lu)\n",
1872			bdevname(bio->bi_bdev, b),
1873			(long long) bio->bi_iter.bi_sector);
1874		goto end_io;
1875	}
1876
1877	part = bio->bi_bdev->bd_part;
1878	if (should_fail_request(part, bio->bi_iter.bi_size) ||
1879	    should_fail_request(&part_to_disk(part)->part0,
1880				bio->bi_iter.bi_size))
1881		goto end_io;
1882
1883	/*
1884	 * If this device has partitions, remap block n
1885	 * of partition p to block n+start(p) of the disk.
1886	 */
1887	blk_partition_remap(bio);
 
1888
1889	if (bio_check_eod(bio, nr_sectors))
1890		goto end_io;
 
 
 
 
 
 
 
1891
1892	/*
1893	 * Filter flush bio's early so that make_request based
1894	 * drivers without flush support don't have to worry
1895	 * about them.
1896	 */
1897	if ((bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) &&
1898	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1899		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
1900		if (!nr_sectors) {
1901			err = 0;
1902			goto end_io;
1903		}
1904	}
1905
 
 
 
1906	switch (bio_op(bio)) {
1907	case REQ_OP_DISCARD:
1908		if (!blk_queue_discard(q))
1909			goto not_supported;
1910		break;
1911	case REQ_OP_SECURE_ERASE:
1912		if (!blk_queue_secure_erase(q))
1913			goto not_supported;
1914		break;
1915	case REQ_OP_WRITE_SAME:
1916		if (!bdev_write_same(bio->bi_bdev))
1917			goto not_supported;
 
1918		break;
1919	case REQ_OP_ZONE_REPORT:
1920	case REQ_OP_ZONE_RESET:
 
 
 
1921		if (!bdev_is_zoned(bio->bi_bdev))
1922			goto not_supported;
1923		break;
 
 
 
 
1924	case REQ_OP_WRITE_ZEROES:
1925		if (!bdev_write_zeroes_sectors(bio->bi_bdev))
1926			goto not_supported;
1927		break;
1928	default:
1929		break;
1930	}
1931
1932	/*
1933	 * Various block parts want %current->io_context and lazy ioc
1934	 * allocation ends up trading a lot of pain for a small amount of
1935	 * memory.  Just allocate it upfront.  This may fail and block
1936	 * layer knows how to live with it.
1937	 */
1938	create_io_context(GFP_ATOMIC, q->node);
1939
1940	if (!blkcg_bio_issue_check(q, bio))
1941		return false;
1942
1943	trace_block_bio_queue(q, bio);
1944	return true;
 
 
 
 
 
 
 
1945
1946not_supported:
1947	err = -EOPNOTSUPP;
1948end_io:
1949	bio->bi_error = err;
1950	bio_endio(bio);
1951	return false;
1952}
1953
1954/**
1955 * generic_make_request - hand a buffer to its device driver for I/O
1956 * @bio:  The bio describing the location in memory and on the device.
1957 *
1958 * generic_make_request() is used to make I/O requests of block
1959 * devices. It is passed a &struct bio, which describes the I/O that needs
1960 * to be done.
1961 *
1962 * generic_make_request() does not return any status.  The
1963 * success/failure status of the request, along with notification of
1964 * completion, is delivered asynchronously through the bio->bi_end_io
1965 * function described (one day) else where.
1966 *
1967 * The caller of generic_make_request must make sure that bi_io_vec
1968 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1969 * set to describe the device address, and the
1970 * bi_end_io and optionally bi_private are set to describe how
1971 * completion notification should be signaled.
1972 *
1973 * generic_make_request and the drivers it calls may use bi_next if this
1974 * bio happens to be merged with someone else, and may resubmit the bio to
1975 * a lower device by calling into generic_make_request recursively, which
1976 * means the bio should NOT be touched after the call to ->make_request_fn.
1977 */
1978blk_qc_t generic_make_request(struct bio *bio)
1979{
1980	/*
1981	 * bio_list_on_stack[0] contains bios submitted by the current
1982	 * make_request_fn.
1983	 * bio_list_on_stack[1] contains bios that were submitted before
1984	 * the current make_request_fn, but that haven't been processed
1985	 * yet.
1986	 */
1987	struct bio_list bio_list_on_stack[2];
1988	blk_qc_t ret = BLK_QC_T_NONE;
1989
1990	if (!generic_make_request_checks(bio))
1991		goto out;
1992
1993	/*
1994	 * We only want one ->make_request_fn to be active at a time, else
1995	 * stack usage with stacked devices could be a problem.  So use
1996	 * current->bio_list to keep a list of requests submited by a
1997	 * make_request_fn function.  current->bio_list is also used as a
1998	 * flag to say if generic_make_request is currently active in this
1999	 * task or not.  If it is NULL, then no make_request is active.  If
2000	 * it is non-NULL, then a make_request is active, and new requests
2001	 * should be added at the tail
2002	 */
2003	if (current->bio_list) {
2004		bio_list_add(&current->bio_list[0], bio);
2005		goto out;
2006	}
2007
2008	/* following loop may be a bit non-obvious, and so deserves some
2009	 * explanation.
2010	 * Before entering the loop, bio->bi_next is NULL (as all callers
2011	 * ensure that) so we have a list with a single bio.
2012	 * We pretend that we have just taken it off a longer list, so
2013	 * we assign bio_list to a pointer to the bio_list_on_stack,
2014	 * thus initialising the bio_list of new bios to be
2015	 * added.  ->make_request() may indeed add some more bios
2016	 * through a recursive call to generic_make_request.  If it
2017	 * did, we find a non-NULL value in bio_list and re-enter the loop
2018	 * from the top.  In this case we really did just take the bio
2019	 * of the top of the list (no pretending) and so remove it from
2020	 * bio_list, and call into ->make_request() again.
2021	 */
2022	BUG_ON(bio->bi_next);
2023	bio_list_init(&bio_list_on_stack[0]);
2024	current->bio_list = bio_list_on_stack;
2025	do {
2026		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2027
2028		if (likely(blk_queue_enter(q, false) == 0)) {
2029			struct bio_list lower, same;
2030
2031			/* Create a fresh bio_list for all subordinate requests */
2032			bio_list_on_stack[1] = bio_list_on_stack[0];
2033			bio_list_init(&bio_list_on_stack[0]);
2034			ret = q->make_request_fn(q, bio);
2035
2036			blk_queue_exit(q);
2037
2038			/* sort new bios into those for a lower level
2039			 * and those for the same level
2040			 */
2041			bio_list_init(&lower);
2042			bio_list_init(&same);
2043			while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2044				if (q == bdev_get_queue(bio->bi_bdev))
2045					bio_list_add(&same, bio);
2046				else
2047					bio_list_add(&lower, bio);
2048			/* now assemble so we handle the lowest level first */
2049			bio_list_merge(&bio_list_on_stack[0], &lower);
2050			bio_list_merge(&bio_list_on_stack[0], &same);
2051			bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2052		} else {
2053			bio_io_error(bio);
2054		}
2055		bio = bio_list_pop(&bio_list_on_stack[0]);
2056	} while (bio);
2057	current->bio_list = NULL; /* deactivate */
2058
2059out:
2060	return ret;
2061}
2062EXPORT_SYMBOL(generic_make_request);
2063
2064/**
2065 * submit_bio - submit a bio to the block device layer for I/O
2066 * @bio: The &struct bio which describes the I/O
2067 *
2068 * submit_bio() is very similar in purpose to generic_make_request(), and
2069 * uses that function to do most of the work. Both are fairly rough
2070 * interfaces; @bio must be presetup and ready for I/O.
2071 *
 
 
 
 
2072 */
2073blk_qc_t submit_bio(struct bio *bio)
2074{
2075	/*
2076	 * If it's a regular read/write or a barrier with data attached,
2077	 * go through the normal accounting stuff before submission.
2078	 */
2079	if (bio_has_data(bio)) {
2080		unsigned int count;
2081
2082		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2083			count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2084		else
2085			count = bio_sectors(bio);
2086
2087		if (op_is_write(bio_op(bio))) {
2088			count_vm_events(PGPGOUT, count);
2089		} else {
2090			task_io_account_read(bio->bi_iter.bi_size);
2091			count_vm_events(PGPGIN, count);
2092		}
2093
2094		if (unlikely(block_dump)) {
2095			char b[BDEVNAME_SIZE];
2096			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2097			current->comm, task_pid_nr(current),
2098				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2099				(unsigned long long)bio->bi_iter.bi_sector,
2100				bdevname(bio->bi_bdev, b),
2101				count);
2102		}
2103	}
2104
2105	return generic_make_request(bio);
2106}
2107EXPORT_SYMBOL(submit_bio);
2108
2109/**
2110 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2111 *                              for new the queue limits
2112 * @q:  the queue
2113 * @rq: the request being checked
 
 
 
2114 *
2115 * Description:
2116 *    @rq may have been made based on weaker limitations of upper-level queues
2117 *    in request stacking drivers, and it may violate the limitation of @q.
2118 *    Since the block layer and the underlying device driver trust @rq
2119 *    after it is inserted to @q, it should be checked against @q before
2120 *    the insertion using this generic function.
2121 *
2122 *    Request stacking drivers like request-based dm may change the queue
2123 *    limits when retrying requests on other queues. Those requests need
2124 *    to be checked against the new queue limits again during dispatch.
2125 */
2126static int blk_cloned_rq_check_limits(struct request_queue *q,
2127				      struct request *rq)
2128{
2129	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2130		printk(KERN_ERR "%s: over max size limit.\n", __func__);
2131		return -EIO;
2132	}
2133
2134	/*
2135	 * queue's settings related to segment counting like q->bounce_pfn
2136	 * may differ from that of other stacking queues.
2137	 * Recalculate it to check the request correctly on this queue's
2138	 * limitation.
2139	 */
2140	blk_recalc_rq_segments(rq);
2141	if (rq->nr_phys_segments > queue_max_segments(q)) {
2142		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2143		return -EIO;
2144	}
2145
2146	return 0;
2147}
2148
2149/**
2150 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2151 * @q:  the queue to submit the request
2152 * @rq: the request being queued
2153 */
2154int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2155{
2156	unsigned long flags;
2157	int where = ELEVATOR_INSERT_BACK;
2158
2159	if (blk_cloned_rq_check_limits(q, rq))
2160		return -EIO;
2161
2162	if (rq->rq_disk &&
2163	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2164		return -EIO;
2165
2166	if (q->mq_ops) {
2167		if (blk_queue_io_stat(q))
2168			blk_account_io_start(rq, true);
2169		blk_mq_insert_request(rq, false, true, false);
2170		return 0;
2171	}
2172
2173	spin_lock_irqsave(q->queue_lock, flags);
2174	if (unlikely(blk_queue_dying(q))) {
2175		spin_unlock_irqrestore(q->queue_lock, flags);
2176		return -ENODEV;
2177	}
2178
2179	/*
2180	 * Submitting request must be dequeued before calling this function
2181	 * because it will be linked to another request_queue
 
 
2182	 */
2183	BUG_ON(blk_queued_rq(rq));
2184
2185	if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA))
2186		where = ELEVATOR_INSERT_FLUSH;
2187
2188	add_acct_request(q, rq, where);
2189	if (where == ELEVATOR_INSERT_FLUSH)
2190		__blk_run_queue(q);
2191	spin_unlock_irqrestore(q->queue_lock, flags);
2192
2193	return 0;
2194}
2195EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2196
2197/**
2198 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2199 * @rq: request to examine
2200 *
2201 * Description:
2202 *     A request could be merge of IOs which require different failure
2203 *     handling.  This function determines the number of bytes which
2204 *     can be failed from the beginning of the request without
2205 *     crossing into area which need to be retried further.
2206 *
2207 * Return:
2208 *     The number of bytes to fail.
2209 *
2210 * Context:
2211 *     queue_lock must be held.
2212 */
2213unsigned int blk_rq_err_bytes(const struct request *rq)
2214{
2215	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2216	unsigned int bytes = 0;
2217	struct bio *bio;
2218
2219	if (!(rq->rq_flags & RQF_MIXED_MERGE))
2220		return blk_rq_bytes(rq);
2221
2222	/*
2223	 * Currently the only 'mixing' which can happen is between
2224	 * different fastfail types.  We can safely fail portions
2225	 * which have all the failfast bits that the first one has -
2226	 * the ones which are at least as eager to fail as the first
2227	 * one.
2228	 */
2229	for (bio = rq->bio; bio; bio = bio->bi_next) {
2230		if ((bio->bi_opf & ff) != ff)
2231			break;
2232		bytes += bio->bi_iter.bi_size;
2233	}
2234
2235	/* this could lead to infinite loop */
2236	BUG_ON(blk_rq_bytes(rq) && !bytes);
2237	return bytes;
2238}
2239EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2240
2241void blk_account_io_completion(struct request *req, unsigned int bytes)
2242{
2243	if (blk_do_io_stat(req)) {
2244		const int rw = rq_data_dir(req);
2245		struct hd_struct *part;
2246		int cpu;
2247
2248		cpu = part_stat_lock();
2249		part = req->part;
2250		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2251		part_stat_unlock();
2252	}
 
 
2253}
 
2254
2255void blk_account_io_done(struct request *req)
2256{
2257	/*
2258	 * Account IO completion.  flush_rq isn't accounted as a
2259	 * normal IO on queueing nor completion.  Accounting the
2260	 * containing request is enough.
2261	 */
2262	if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2263		unsigned long duration = jiffies - req->start_time;
2264		const int rw = rq_data_dir(req);
2265		struct hd_struct *part;
2266		int cpu;
2267
2268		cpu = part_stat_lock();
2269		part = req->part;
2270
2271		part_stat_inc(cpu, part, ios[rw]);
2272		part_stat_add(cpu, part, ticks[rw], duration);
2273		part_round_stats(cpu, part);
2274		part_dec_in_flight(part, rw);
2275
2276		hd_struct_put(part);
2277		part_stat_unlock();
2278	}
2279}
2280
2281#ifdef CONFIG_PM
2282/*
2283 * Don't process normal requests when queue is suspended
2284 * or in the process of suspending/resuming
2285 */
2286static struct request *blk_pm_peek_request(struct request_queue *q,
2287					   struct request *rq)
2288{
2289	if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2290	    (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
2291		return NULL;
2292	else
2293		return rq;
2294}
2295#else
2296static inline struct request *blk_pm_peek_request(struct request_queue *q,
2297						  struct request *rq)
2298{
2299	return rq;
2300}
2301#endif
2302
2303void blk_account_io_start(struct request *rq, bool new_io)
2304{
2305	struct hd_struct *part;
2306	int rw = rq_data_dir(rq);
2307	int cpu;
2308
2309	if (!blk_do_io_stat(rq))
2310		return;
2311
2312	cpu = part_stat_lock();
2313
2314	if (!new_io) {
2315		part = rq->part;
2316		part_stat_inc(cpu, part, merges[rw]);
2317	} else {
2318		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2319		if (!hd_struct_try_get(part)) {
2320			/*
2321			 * The partition is already being removed,
2322			 * the request will be accounted on the disk only
2323			 *
2324			 * We take a reference on disk->part0 although that
2325			 * partition will never be deleted, so we can treat
2326			 * it as any other partition.
2327			 */
2328			part = &rq->rq_disk->part0;
2329			hd_struct_get(part);
2330		}
2331		part_round_stats(cpu, part);
2332		part_inc_in_flight(part, rw);
2333		rq->part = part;
2334	}
2335
2336	part_stat_unlock();
2337}
2338
2339/**
2340 * blk_peek_request - peek at the top of a request queue
2341 * @q: request queue to peek at
2342 *
2343 * Description:
2344 *     Return the request at the top of @q.  The returned request
2345 *     should be started using blk_start_request() before LLD starts
2346 *     processing it.
2347 *
2348 * Return:
2349 *     Pointer to the request at the top of @q if available.  Null
2350 *     otherwise.
2351 *
2352 * Context:
2353 *     queue_lock must be held.
2354 */
2355struct request *blk_peek_request(struct request_queue *q)
2356{
2357	struct request *rq;
2358	int ret;
2359
2360	while ((rq = __elv_next_request(q)) != NULL) {
2361
2362		rq = blk_pm_peek_request(q, rq);
2363		if (!rq)
2364			break;
2365
2366		if (!(rq->rq_flags & RQF_STARTED)) {
2367			/*
2368			 * This is the first time the device driver
2369			 * sees this request (possibly after
2370			 * requeueing).  Notify IO scheduler.
2371			 */
2372			if (rq->rq_flags & RQF_SORTED)
2373				elv_activate_rq(q, rq);
2374
2375			/*
2376			 * just mark as started even if we don't start
2377			 * it, a request that has been delayed should
2378			 * not be passed by new incoming requests
2379			 */
2380			rq->rq_flags |= RQF_STARTED;
2381			trace_block_rq_issue(q, rq);
2382		}
2383
2384		if (!q->boundary_rq || q->boundary_rq == rq) {
2385			q->end_sector = rq_end_sector(rq);
2386			q->boundary_rq = NULL;
2387		}
2388
2389		if (rq->rq_flags & RQF_DONTPREP)
2390			break;
2391
2392		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2393			/*
2394			 * make sure space for the drain appears we
2395			 * know we can do this because max_hw_segments
2396			 * has been adjusted to be one fewer than the
2397			 * device can handle
2398			 */
2399			rq->nr_phys_segments++;
2400		}
2401
2402		if (!q->prep_rq_fn)
2403			break;
2404
2405		ret = q->prep_rq_fn(q, rq);
2406		if (ret == BLKPREP_OK) {
2407			break;
2408		} else if (ret == BLKPREP_DEFER) {
2409			/*
2410			 * the request may have been (partially) prepped.
2411			 * we need to keep this request in the front to
2412			 * avoid resource deadlock.  RQF_STARTED will
2413			 * prevent other fs requests from passing this one.
2414			 */
2415			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2416			    !(rq->rq_flags & RQF_DONTPREP)) {
2417				/*
2418				 * remove the space for the drain we added
2419				 * so that we don't add it again
2420				 */
2421				--rq->nr_phys_segments;
2422			}
2423
2424			rq = NULL;
2425			break;
2426		} else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2427			int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2428
2429			rq->rq_flags |= RQF_QUIET;
2430			/*
2431			 * Mark this request as started so we don't trigger
2432			 * any debug logic in the end I/O path.
2433			 */
2434			blk_start_request(rq);
2435			__blk_end_request_all(rq, err);
2436		} else {
2437			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2438			break;
2439		}
2440	}
2441
2442	return rq;
2443}
2444EXPORT_SYMBOL(blk_peek_request);
2445
2446void blk_dequeue_request(struct request *rq)
2447{
2448	struct request_queue *q = rq->q;
2449
2450	BUG_ON(list_empty(&rq->queuelist));
2451	BUG_ON(ELV_ON_HASH(rq));
2452
2453	list_del_init(&rq->queuelist);
2454
2455	/*
2456	 * the time frame between a request being removed from the lists
2457	 * and to it is freed is accounted as io that is in progress at
2458	 * the driver side.
2459	 */
2460	if (blk_account_rq(rq)) {
2461		q->in_flight[rq_is_sync(rq)]++;
2462		set_io_start_time_ns(rq);
2463	}
2464}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2465
2466/**
2467 * blk_start_request - start request processing on the driver
2468 * @req: request to dequeue
2469 *
2470 * Description:
2471 *     Dequeue @req and start timeout timer on it.  This hands off the
2472 *     request to the driver.
2473 *
2474 *     Block internal functions which don't want to start timer should
2475 *     call blk_dequeue_request().
2476 *
2477 * Context:
2478 *     queue_lock must be held.
2479 */
2480void blk_start_request(struct request *req)
2481{
2482	blk_dequeue_request(req);
2483
2484	if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2485		blk_stat_set_issue_time(&req->issue_stat);
2486		req->rq_flags |= RQF_STATS;
2487		wbt_issue(req->q->rq_wb, &req->issue_stat);
2488	}
2489
2490	/*
2491	 * We are now handing the request to the hardware, initialize
2492	 * resid_len to full count and add the timeout handler.
2493	 */
2494	req->resid_len = blk_rq_bytes(req);
2495	if (unlikely(blk_bidi_rq(req)))
2496		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2497
2498	BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2499	blk_add_timer(req);
2500}
2501EXPORT_SYMBOL(blk_start_request);
2502
2503/**
2504 * blk_fetch_request - fetch a request from a request queue
2505 * @q: request queue to fetch a request from
2506 *
2507 * Description:
2508 *     Return the request at the top of @q.  The request is started on
2509 *     return and LLD can start processing it immediately.
2510 *
2511 * Return:
2512 *     Pointer to the request at the top of @q if available.  Null
2513 *     otherwise.
2514 *
2515 * Context:
2516 *     queue_lock must be held.
2517 */
2518struct request *blk_fetch_request(struct request_queue *q)
2519{
2520	struct request *rq;
2521
2522	rq = blk_peek_request(q);
2523	if (rq)
2524		blk_start_request(rq);
2525	return rq;
2526}
2527EXPORT_SYMBOL(blk_fetch_request);
2528
2529/**
2530 * blk_update_request - Special helper function for request stacking drivers
2531 * @req:      the request being processed
2532 * @error:    %0 for success, < %0 for error
2533 * @nr_bytes: number of bytes to complete @req
2534 *
2535 * Description:
2536 *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2537 *     the request structure even if @req doesn't have leftover.
2538 *     If @req has leftover, sets it up for the next range of segments.
2539 *
2540 *     This special helper function is only for request stacking drivers
2541 *     (e.g. request-based dm) so that they can handle partial completion.
2542 *     Actual device drivers should use blk_end_request instead.
2543 *
2544 *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2545 *     %false return from this function.
2546 *
2547 * Return:
2548 *     %false - this request doesn't have any more data
2549 *     %true  - this request has more data
2550 **/
2551bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2552{
2553	int total_bytes;
2554
2555	trace_block_rq_complete(req->q, req, nr_bytes);
2556
2557	if (!req->bio)
2558		return false;
2559
2560	/*
2561	 * For fs requests, rq is just carrier of independent bio's
2562	 * and each partial completion should be handled separately.
2563	 * Reset per-request error on each partial completion.
2564	 *
2565	 * TODO: tj: This is too subtle.  It would be better to let
2566	 * low level drivers do what they see fit.
2567	 */
2568	if (req->cmd_type == REQ_TYPE_FS)
2569		req->errors = 0;
2570
2571	if (error && req->cmd_type == REQ_TYPE_FS &&
2572	    !(req->rq_flags & RQF_QUIET)) {
2573		char *error_type;
2574
2575		switch (error) {
2576		case -ENOLINK:
2577			error_type = "recoverable transport";
2578			break;
2579		case -EREMOTEIO:
2580			error_type = "critical target";
2581			break;
2582		case -EBADE:
2583			error_type = "critical nexus";
2584			break;
2585		case -ETIMEDOUT:
2586			error_type = "timeout";
2587			break;
2588		case -ENOSPC:
2589			error_type = "critical space allocation";
2590			break;
2591		case -ENODATA:
2592			error_type = "critical medium";
2593			break;
2594		case -EIO:
2595		default:
2596			error_type = "I/O";
2597			break;
2598		}
2599		printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2600				   __func__, error_type, req->rq_disk ?
2601				   req->rq_disk->disk_name : "?",
2602				   (unsigned long long)blk_rq_pos(req));
2603
2604	}
2605
2606	blk_account_io_completion(req, nr_bytes);
2607
2608	total_bytes = 0;
2609	while (req->bio) {
2610		struct bio *bio = req->bio;
2611		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2612
2613		if (bio_bytes == bio->bi_iter.bi_size)
2614			req->bio = bio->bi_next;
2615
2616		req_bio_endio(req, bio, bio_bytes, error);
2617
2618		total_bytes += bio_bytes;
2619		nr_bytes -= bio_bytes;
2620
2621		if (!nr_bytes)
2622			break;
2623	}
2624
2625	/*
2626	 * completely done
2627	 */
2628	if (!req->bio) {
2629		/*
2630		 * Reset counters so that the request stacking driver
2631		 * can find how many bytes remain in the request
2632		 * later.
2633		 */
2634		req->__data_len = 0;
2635		return false;
2636	}
2637
2638	WARN_ON_ONCE(req->rq_flags & RQF_SPECIAL_PAYLOAD);
2639
2640	req->__data_len -= total_bytes;
2641
2642	/* update sector only for requests with clear definition of sector */
2643	if (req->cmd_type == REQ_TYPE_FS)
2644		req->__sector += total_bytes >> 9;
2645
2646	/* mixed attributes always follow the first bio */
2647	if (req->rq_flags & RQF_MIXED_MERGE) {
2648		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2649		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2650	}
2651
2652	/*
2653	 * If total number of sectors is less than the first segment
2654	 * size, something has gone terribly wrong.
2655	 */
2656	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2657		blk_dump_rq_flags(req, "request botched");
2658		req->__data_len = blk_rq_cur_bytes(req);
2659	}
2660
2661	/* recalculate the number of segments */
2662	blk_recalc_rq_segments(req);
2663
2664	return true;
2665}
2666EXPORT_SYMBOL_GPL(blk_update_request);
2667
2668static bool blk_update_bidi_request(struct request *rq, int error,
2669				    unsigned int nr_bytes,
2670				    unsigned int bidi_bytes)
2671{
2672	if (blk_update_request(rq, error, nr_bytes))
2673		return true;
2674
2675	/* Bidi request must be completed as a whole */
2676	if (unlikely(blk_bidi_rq(rq)) &&
2677	    blk_update_request(rq->next_rq, error, bidi_bytes))
2678		return true;
2679
2680	if (blk_queue_add_random(rq->q))
2681		add_disk_randomness(rq->rq_disk);
2682
2683	return false;
2684}
 
2685
2686/**
2687 * blk_unprep_request - unprepare a request
2688 * @req:	the request
2689 *
2690 * This function makes a request ready for complete resubmission (or
2691 * completion).  It happens only after all error handling is complete,
2692 * so represents the appropriate moment to deallocate any resources
2693 * that were allocated to the request in the prep_rq_fn.  The queue
2694 * lock is held when calling this.
2695 */
2696void blk_unprep_request(struct request *req)
2697{
2698	struct request_queue *q = req->q;
2699
2700	req->rq_flags &= ~RQF_DONTPREP;
2701	if (q->unprep_rq_fn)
2702		q->unprep_rq_fn(q, req);
2703}
2704EXPORT_SYMBOL_GPL(blk_unprep_request);
2705
2706/*
2707 * queue lock must be held
2708 */
2709void blk_finish_request(struct request *req, int error)
2710{
2711	struct request_queue *q = req->q;
 
 
2712
2713	if (req->rq_flags & RQF_STATS)
2714		blk_stat_add(&q->rq_stats[rq_data_dir(req)], req);
2715
2716	if (req->rq_flags & RQF_QUEUED)
2717		blk_queue_end_tag(q, req);
2718
2719	BUG_ON(blk_queued_rq(req));
2720
2721	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2722		laptop_io_completion(&req->q->backing_dev_info);
2723
2724	blk_delete_timer(req);
2725
2726	if (req->rq_flags & RQF_DONTPREP)
2727		blk_unprep_request(req);
2728
2729	blk_account_io_done(req);
2730
2731	if (req->end_io) {
2732		wbt_done(req->q->rq_wb, &req->issue_stat);
2733		req->end_io(req, error);
2734	} else {
2735		if (blk_bidi_rq(req))
2736			__blk_put_request(req->next_rq->q, req->next_rq);
2737
2738		__blk_put_request(q, req);
2739	}
2740}
2741EXPORT_SYMBOL(blk_finish_request);
2742
2743/**
2744 * blk_end_bidi_request - Complete a bidi request
2745 * @rq:         the request to complete
2746 * @error:      %0 for success, < %0 for error
2747 * @nr_bytes:   number of bytes to complete @rq
2748 * @bidi_bytes: number of bytes to complete @rq->next_rq
2749 *
2750 * Description:
2751 *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2752 *     Drivers that supports bidi can safely call this member for any
2753 *     type of request, bidi or uni.  In the later case @bidi_bytes is
2754 *     just ignored.
2755 *
2756 * Return:
2757 *     %false - we are done with this request
2758 *     %true  - still buffers pending for this request
2759 **/
2760static bool blk_end_bidi_request(struct request *rq, int error,
2761				 unsigned int nr_bytes, unsigned int bidi_bytes)
2762{
2763	struct request_queue *q = rq->q;
2764	unsigned long flags;
2765
2766	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2767		return true;
2768
2769	spin_lock_irqsave(q->queue_lock, flags);
2770	blk_finish_request(rq, error);
2771	spin_unlock_irqrestore(q->queue_lock, flags);
2772
2773	return false;
2774}
2775
2776/**
2777 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2778 * @rq:         the request to complete
2779 * @error:      %0 for success, < %0 for error
2780 * @nr_bytes:   number of bytes to complete @rq
2781 * @bidi_bytes: number of bytes to complete @rq->next_rq
2782 *
2783 * Description:
2784 *     Identical to blk_end_bidi_request() except that queue lock is
2785 *     assumed to be locked on entry and remains so on return.
2786 *
2787 * Return:
2788 *     %false - we are done with this request
2789 *     %true  - still buffers pending for this request
2790 **/
2791bool __blk_end_bidi_request(struct request *rq, int error,
2792				   unsigned int nr_bytes, unsigned int bidi_bytes)
2793{
2794	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2795		return true;
2796
2797	blk_finish_request(rq, error);
2798
2799	return false;
2800}
2801
2802/**
2803 * blk_end_request - Helper function for drivers to complete the request.
2804 * @rq:       the request being processed
2805 * @error:    %0 for success, < %0 for error
2806 * @nr_bytes: number of bytes to complete
2807 *
2808 * Description:
2809 *     Ends I/O on a number of bytes attached to @rq.
2810 *     If @rq has leftover, sets it up for the next range of segments.
2811 *
2812 * Return:
2813 *     %false - we are done with this request
2814 *     %true  - still buffers pending for this request
2815 **/
2816bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2817{
2818	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2819}
2820EXPORT_SYMBOL(blk_end_request);
2821
2822/**
2823 * blk_end_request_all - Helper function for drives to finish the request.
2824 * @rq: the request to finish
2825 * @error: %0 for success, < %0 for error
2826 *
2827 * Description:
2828 *     Completely finish @rq.
2829 */
2830void blk_end_request_all(struct request *rq, int error)
2831{
2832	bool pending;
2833	unsigned int bidi_bytes = 0;
2834
2835	if (unlikely(blk_bidi_rq(rq)))
2836		bidi_bytes = blk_rq_bytes(rq->next_rq);
2837
2838	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2839	BUG_ON(pending);
2840}
2841EXPORT_SYMBOL(blk_end_request_all);
2842
2843/**
2844 * blk_end_request_cur - Helper function to finish the current request chunk.
2845 * @rq: the request to finish the current chunk for
2846 * @error: %0 for success, < %0 for error
2847 *
2848 * Description:
2849 *     Complete the current consecutively mapped chunk from @rq.
2850 *
2851 * Return:
2852 *     %false - we are done with this request
2853 *     %true  - still buffers pending for this request
2854 */
2855bool blk_end_request_cur(struct request *rq, int error)
2856{
2857	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2858}
2859EXPORT_SYMBOL(blk_end_request_cur);
2860
2861/**
2862 * blk_end_request_err - Finish a request till the next failure boundary.
2863 * @rq: the request to finish till the next failure boundary for
2864 * @error: must be negative errno
2865 *
2866 * Description:
2867 *     Complete @rq till the next failure boundary.
2868 *
2869 * Return:
2870 *     %false - we are done with this request
2871 *     %true  - still buffers pending for this request
2872 */
2873bool blk_end_request_err(struct request *rq, int error)
2874{
2875	WARN_ON(error >= 0);
2876	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2877}
2878EXPORT_SYMBOL_GPL(blk_end_request_err);
2879
2880/**
2881 * __blk_end_request - Helper function for drivers to complete the request.
2882 * @rq:       the request being processed
2883 * @error:    %0 for success, < %0 for error
2884 * @nr_bytes: number of bytes to complete
2885 *
2886 * Description:
2887 *     Must be called with queue lock held unlike blk_end_request().
2888 *
2889 * Return:
2890 *     %false - we are done with this request
2891 *     %true  - still buffers pending for this request
2892 **/
2893bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2894{
2895	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2896}
2897EXPORT_SYMBOL(__blk_end_request);
2898
2899/**
2900 * __blk_end_request_all - Helper function for drives to finish the request.
2901 * @rq: the request to finish
2902 * @error: %0 for success, < %0 for error
2903 *
2904 * Description:
2905 *     Completely finish @rq.  Must be called with queue lock held.
2906 */
2907void __blk_end_request_all(struct request *rq, int error)
2908{
2909	bool pending;
2910	unsigned int bidi_bytes = 0;
2911
2912	if (unlikely(blk_bidi_rq(rq)))
2913		bidi_bytes = blk_rq_bytes(rq->next_rq);
2914
2915	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2916	BUG_ON(pending);
2917}
2918EXPORT_SYMBOL(__blk_end_request_all);
2919
2920/**
2921 * __blk_end_request_cur - Helper function to finish the current request chunk.
2922 * @rq: the request to finish the current chunk for
2923 * @error: %0 for success, < %0 for error
2924 *
2925 * Description:
2926 *     Complete the current consecutively mapped chunk from @rq.  Must
2927 *     be called with queue lock held.
2928 *
2929 * Return:
2930 *     %false - we are done with this request
2931 *     %true  - still buffers pending for this request
2932 */
2933bool __blk_end_request_cur(struct request *rq, int error)
2934{
2935	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2936}
2937EXPORT_SYMBOL(__blk_end_request_cur);
2938
2939/**
2940 * __blk_end_request_err - Finish a request till the next failure boundary.
2941 * @rq: the request to finish till the next failure boundary for
2942 * @error: must be negative errno
2943 *
2944 * Description:
2945 *     Complete @rq till the next failure boundary.  Must be called
2946 *     with queue lock held.
2947 *
2948 * Return:
2949 *     %false - we are done with this request
2950 *     %true  - still buffers pending for this request
2951 */
2952bool __blk_end_request_err(struct request *rq, int error)
2953{
2954	WARN_ON(error >= 0);
2955	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2956}
2957EXPORT_SYMBOL_GPL(__blk_end_request_err);
2958
2959void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2960		     struct bio *bio)
2961{
2962	if (bio_has_data(bio))
2963		rq->nr_phys_segments = bio_phys_segments(q, bio);
2964
2965	rq->__data_len = bio->bi_iter.bi_size;
2966	rq->bio = rq->biotail = bio;
2967
2968	if (bio->bi_bdev)
2969		rq->rq_disk = bio->bi_bdev->bd_disk;
2970}
2971
2972#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2973/**
2974 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2975 * @rq: the request to be flushed
2976 *
2977 * Description:
2978 *     Flush all pages in @rq.
2979 */
2980void rq_flush_dcache_pages(struct request *rq)
2981{
2982	struct req_iterator iter;
2983	struct bio_vec bvec;
2984
2985	rq_for_each_segment(bvec, rq, iter)
2986		flush_dcache_page(bvec.bv_page);
2987}
2988EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2989#endif
2990
2991/**
2992 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2993 * @q : the queue of the device being checked
2994 *
2995 * Description:
2996 *    Check if underlying low-level drivers of a device are busy.
2997 *    If the drivers want to export their busy state, they must set own
2998 *    exporting function using blk_queue_lld_busy() first.
2999 *
3000 *    Basically, this function is used only by request stacking drivers
3001 *    to stop dispatching requests to underlying devices when underlying
3002 *    devices are busy.  This behavior helps more I/O merging on the queue
3003 *    of the request stacking driver and prevents I/O throughput regression
3004 *    on burst I/O load.
3005 *
3006 * Return:
3007 *    0 - Not busy (The request stacking driver should dispatch request)
3008 *    1 - Busy (The request stacking driver should stop dispatching request)
3009 */
3010int blk_lld_busy(struct request_queue *q)
3011{
3012	if (q->lld_busy_fn)
3013		return q->lld_busy_fn(q);
3014
3015	return 0;
3016}
3017EXPORT_SYMBOL_GPL(blk_lld_busy);
3018
3019/**
3020 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3021 * @rq: the clone request to be cleaned up
3022 *
3023 * Description:
3024 *     Free all bios in @rq for a cloned request.
3025 */
3026void blk_rq_unprep_clone(struct request *rq)
3027{
3028	struct bio *bio;
3029
3030	while ((bio = rq->bio) != NULL) {
3031		rq->bio = bio->bi_next;
3032
3033		bio_put(bio);
3034	}
3035}
3036EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3037
3038/*
3039 * Copy attributes of the original request to the clone request.
3040 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3041 */
3042static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3043{
3044	dst->cpu = src->cpu;
3045	dst->cmd_flags = src->cmd_flags | REQ_NOMERGE;
3046	dst->cmd_type = src->cmd_type;
3047	dst->__sector = blk_rq_pos(src);
3048	dst->__data_len = blk_rq_bytes(src);
3049	dst->nr_phys_segments = src->nr_phys_segments;
3050	dst->ioprio = src->ioprio;
3051	dst->extra_len = src->extra_len;
3052}
3053
3054/**
3055 * blk_rq_prep_clone - Helper function to setup clone request
3056 * @rq: the request to be setup
3057 * @rq_src: original request to be cloned
3058 * @bs: bio_set that bios for clone are allocated from
3059 * @gfp_mask: memory allocation mask for bio
3060 * @bio_ctr: setup function to be called for each clone bio.
3061 *           Returns %0 for success, non %0 for failure.
3062 * @data: private data to be passed to @bio_ctr
3063 *
3064 * Description:
3065 *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3066 *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3067 *     are not copied, and copying such parts is the caller's responsibility.
3068 *     Also, pages which the original bios are pointing to are not copied
3069 *     and the cloned bios just point same pages.
3070 *     So cloned bios must be completed before original bios, which means
3071 *     the caller must complete @rq before @rq_src.
3072 */
3073int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3074		      struct bio_set *bs, gfp_t gfp_mask,
3075		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3076		      void *data)
3077{
3078	struct bio *bio, *bio_src;
3079
3080	if (!bs)
3081		bs = fs_bio_set;
3082
3083	__rq_for_each_bio(bio_src, rq_src) {
3084		bio = bio_clone_fast(bio_src, gfp_mask, bs);
3085		if (!bio)
3086			goto free_and_out;
3087
3088		if (bio_ctr && bio_ctr(bio, bio_src, data))
3089			goto free_and_out;
3090
3091		if (rq->bio) {
3092			rq->biotail->bi_next = bio;
3093			rq->biotail = bio;
3094		} else
3095			rq->bio = rq->biotail = bio;
3096	}
3097
3098	__blk_rq_prep_clone(rq, rq_src);
3099
3100	return 0;
3101
3102free_and_out:
3103	if (bio)
3104		bio_put(bio);
3105	blk_rq_unprep_clone(rq);
3106
3107	return -ENOMEM;
3108}
3109EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3110
3111int kblockd_schedule_work(struct work_struct *work)
3112{
3113	return queue_work(kblockd_workqueue, work);
3114}
3115EXPORT_SYMBOL(kblockd_schedule_work);
3116
3117int kblockd_schedule_work_on(int cpu, struct work_struct *work)
 
3118{
3119	return queue_work_on(cpu, kblockd_workqueue, work);
3120}
3121EXPORT_SYMBOL(kblockd_schedule_work_on);
3122
3123int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3124				  unsigned long delay)
3125{
3126	return queue_delayed_work(kblockd_workqueue, dwork, delay);
3127}
3128EXPORT_SYMBOL(kblockd_schedule_delayed_work);
 
 
 
 
 
 
 
 
 
 
 
 
 
3129
3130int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3131				     unsigned long delay)
3132{
3133	return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
 
3134}
3135EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3136
3137/**
3138 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3139 * @plug:	The &struct blk_plug that needs to be initialized
3140 *
3141 * Description:
 
 
 
 
 
 
 
 
 
3142 *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3143 *   pending I/O should the task end up blocking between blk_start_plug() and
3144 *   blk_finish_plug(). This is important from a performance perspective, but
3145 *   also ensures that we don't deadlock. For instance, if the task is blocking
3146 *   for a memory allocation, memory reclaim could end up wanting to free a
3147 *   page belonging to that request that is currently residing in our private
3148 *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3149 *   this kind of deadlock.
3150 */
3151void blk_start_plug(struct blk_plug *plug)
3152{
3153	struct task_struct *tsk = current;
3154
3155	/*
3156	 * If this is a nested plug, don't actually assign it.
3157	 */
3158	if (tsk->plug)
3159		return;
3160
3161	INIT_LIST_HEAD(&plug->list);
3162	INIT_LIST_HEAD(&plug->mq_list);
3163	INIT_LIST_HEAD(&plug->cb_list);
3164	/*
3165	 * Store ordering should not be needed here, since a potential
3166	 * preempt will imply a full memory barrier
3167	 */
3168	tsk->plug = plug;
3169}
3170EXPORT_SYMBOL(blk_start_plug);
3171
3172static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3173{
3174	struct request *rqa = container_of(a, struct request, queuelist);
3175	struct request *rqb = container_of(b, struct request, queuelist);
3176
3177	return !(rqa->q < rqb->q ||
3178		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3179}
3180
3181/*
3182 * If 'from_schedule' is true, then postpone the dispatch of requests
3183 * until a safe kblockd context. We due this to avoid accidental big
3184 * additional stack usage in driver dispatch, in places where the originally
3185 * plugger did not intend it.
3186 */
3187static void queue_unplugged(struct request_queue *q, unsigned int depth,
3188			    bool from_schedule)
3189	__releases(q->queue_lock)
3190{
3191	trace_block_unplug(q, depth, !from_schedule);
3192
3193	if (from_schedule)
3194		blk_run_queue_async(q);
3195	else
3196		__blk_run_queue(q);
3197	spin_unlock(q->queue_lock);
3198}
3199
3200static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3201{
3202	LIST_HEAD(callbacks);
3203
3204	while (!list_empty(&plug->cb_list)) {
3205		list_splice_init(&plug->cb_list, &callbacks);
3206
3207		while (!list_empty(&callbacks)) {
3208			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3209							  struct blk_plug_cb,
3210							  list);
3211			list_del(&cb->list);
3212			cb->callback(cb, from_schedule);
3213		}
3214	}
3215}
3216
3217struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3218				      int size)
3219{
3220	struct blk_plug *plug = current->plug;
3221	struct blk_plug_cb *cb;
3222
3223	if (!plug)
3224		return NULL;
3225
3226	list_for_each_entry(cb, &plug->cb_list, list)
3227		if (cb->callback == unplug && cb->data == data)
3228			return cb;
3229
3230	/* Not currently on the callback list */
3231	BUG_ON(size < sizeof(*cb));
3232	cb = kzalloc(size, GFP_ATOMIC);
3233	if (cb) {
3234		cb->data = data;
3235		cb->callback = unplug;
3236		list_add(&cb->list, &plug->cb_list);
3237	}
3238	return cb;
3239}
3240EXPORT_SYMBOL(blk_check_plugged);
3241
3242void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3243{
3244	struct request_queue *q;
3245	unsigned long flags;
3246	struct request *rq;
3247	LIST_HEAD(list);
3248	unsigned int depth;
3249
3250	flush_plug_callbacks(plug, from_schedule);
3251
3252	if (!list_empty(&plug->mq_list))
3253		blk_mq_flush_plug_list(plug, from_schedule);
3254
3255	if (list_empty(&plug->list))
3256		return;
3257
3258	list_splice_init(&plug->list, &list);
3259
3260	list_sort(NULL, &list, plug_rq_cmp);
3261
3262	q = NULL;
3263	depth = 0;
3264
3265	/*
3266	 * Save and disable interrupts here, to avoid doing it for every
3267	 * queue lock we have to take.
3268	 */
3269	local_irq_save(flags);
3270	while (!list_empty(&list)) {
3271		rq = list_entry_rq(list.next);
3272		list_del_init(&rq->queuelist);
3273		BUG_ON(!rq->q);
3274		if (rq->q != q) {
3275			/*
3276			 * This drops the queue lock
3277			 */
3278			if (q)
3279				queue_unplugged(q, depth, from_schedule);
3280			q = rq->q;
3281			depth = 0;
3282			spin_lock(q->queue_lock);
3283		}
3284
3285		/*
3286		 * Short-circuit if @q is dead
3287		 */
3288		if (unlikely(blk_queue_dying(q))) {
3289			__blk_end_request_all(rq, -ENODEV);
3290			continue;
3291		}
3292
3293		/*
3294		 * rq is already accounted, so use raw insert
3295		 */
3296		if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA))
3297			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3298		else
3299			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3300
3301		depth++;
3302	}
3303
3304	/*
3305	 * This drops the queue lock
 
 
 
3306	 */
3307	if (q)
3308		queue_unplugged(q, depth, from_schedule);
3309
3310	local_irq_restore(flags);
3311}
3312
3313void blk_finish_plug(struct blk_plug *plug)
3314{
3315	if (plug != current->plug)
3316		return;
3317	blk_flush_plug_list(plug, false);
3318
3319	current->plug = NULL;
3320}
3321EXPORT_SYMBOL(blk_finish_plug);
3322
3323#ifdef CONFIG_PM
3324/**
3325 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3326 * @q: the queue of the device
3327 * @dev: the device the queue belongs to
3328 *
3329 * Description:
3330 *    Initialize runtime-PM-related fields for @q and start auto suspend for
3331 *    @dev. Drivers that want to take advantage of request-based runtime PM
3332 *    should call this function after @dev has been initialized, and its
3333 *    request queue @q has been allocated, and runtime PM for it can not happen
3334 *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3335 *    cases, driver should call this function before any I/O has taken place.
3336 *
3337 *    This function takes care of setting up using auto suspend for the device,
3338 *    the autosuspend delay is set to -1 to make runtime suspend impossible
3339 *    until an updated value is either set by user or by driver. Drivers do
3340 *    not need to touch other autosuspend settings.
3341 *
3342 *    The block layer runtime PM is request based, so only works for drivers
3343 *    that use request as their IO unit instead of those directly use bio's.
3344 */
3345void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3346{
3347	q->dev = dev;
3348	q->rpm_status = RPM_ACTIVE;
3349	pm_runtime_set_autosuspend_delay(q->dev, -1);
3350	pm_runtime_use_autosuspend(q->dev);
3351}
3352EXPORT_SYMBOL(blk_pm_runtime_init);
3353
3354/**
3355 * blk_pre_runtime_suspend - Pre runtime suspend check
3356 * @q: the queue of the device
3357 *
3358 * Description:
3359 *    This function will check if runtime suspend is allowed for the device
3360 *    by examining if there are any requests pending in the queue. If there
3361 *    are requests pending, the device can not be runtime suspended; otherwise,
3362 *    the queue's status will be updated to SUSPENDING and the driver can
3363 *    proceed to suspend the device.
3364 *
3365 *    For the not allowed case, we mark last busy for the device so that
3366 *    runtime PM core will try to autosuspend it some time later.
3367 *
3368 *    This function should be called near the start of the device's
3369 *    runtime_suspend callback.
3370 *
3371 * Return:
3372 *    0		- OK to runtime suspend the device
3373 *    -EBUSY	- Device should not be runtime suspended
3374 */
3375int blk_pre_runtime_suspend(struct request_queue *q)
3376{
3377	int ret = 0;
3378
3379	if (!q->dev)
3380		return ret;
3381
3382	spin_lock_irq(q->queue_lock);
3383	if (q->nr_pending) {
3384		ret = -EBUSY;
3385		pm_runtime_mark_last_busy(q->dev);
3386	} else {
3387		q->rpm_status = RPM_SUSPENDING;
3388	}
3389	spin_unlock_irq(q->queue_lock);
3390	return ret;
3391}
3392EXPORT_SYMBOL(blk_pre_runtime_suspend);
3393
3394/**
3395 * blk_post_runtime_suspend - Post runtime suspend processing
3396 * @q: the queue of the device
3397 * @err: return value of the device's runtime_suspend function
3398 *
3399 * Description:
3400 *    Update the queue's runtime status according to the return value of the
3401 *    device's runtime suspend function and mark last busy for the device so
3402 *    that PM core will try to auto suspend the device at a later time.
3403 *
3404 *    This function should be called near the end of the device's
3405 *    runtime_suspend callback.
3406 */
3407void blk_post_runtime_suspend(struct request_queue *q, int err)
3408{
3409	if (!q->dev)
3410		return;
3411
3412	spin_lock_irq(q->queue_lock);
3413	if (!err) {
3414		q->rpm_status = RPM_SUSPENDED;
3415	} else {
3416		q->rpm_status = RPM_ACTIVE;
3417		pm_runtime_mark_last_busy(q->dev);
3418	}
3419	spin_unlock_irq(q->queue_lock);
3420}
3421EXPORT_SYMBOL(blk_post_runtime_suspend);
3422
3423/**
3424 * blk_pre_runtime_resume - Pre runtime resume processing
3425 * @q: the queue of the device
3426 *
3427 * Description:
3428 *    Update the queue's runtime status to RESUMING in preparation for the
3429 *    runtime resume of the device.
3430 *
3431 *    This function should be called near the start of the device's
3432 *    runtime_resume callback.
3433 */
3434void blk_pre_runtime_resume(struct request_queue *q)
3435{
3436	if (!q->dev)
3437		return;
3438
3439	spin_lock_irq(q->queue_lock);
3440	q->rpm_status = RPM_RESUMING;
3441	spin_unlock_irq(q->queue_lock);
3442}
3443EXPORT_SYMBOL(blk_pre_runtime_resume);
3444
3445/**
3446 * blk_post_runtime_resume - Post runtime resume processing
3447 * @q: the queue of the device
3448 * @err: return value of the device's runtime_resume function
3449 *
3450 * Description:
3451 *    Update the queue's runtime status according to the return value of the
3452 *    device's runtime_resume function. If it is successfully resumed, process
3453 *    the requests that are queued into the device's queue when it is resuming
3454 *    and then mark last busy and initiate autosuspend for it.
3455 *
3456 *    This function should be called near the end of the device's
3457 *    runtime_resume callback.
3458 */
3459void blk_post_runtime_resume(struct request_queue *q, int err)
3460{
3461	if (!q->dev)
3462		return;
3463
3464	spin_lock_irq(q->queue_lock);
3465	if (!err) {
3466		q->rpm_status = RPM_ACTIVE;
3467		__blk_run_queue(q);
3468		pm_runtime_mark_last_busy(q->dev);
3469		pm_request_autosuspend(q->dev);
3470	} else {
3471		q->rpm_status = RPM_SUSPENDED;
3472	}
3473	spin_unlock_irq(q->queue_lock);
3474}
3475EXPORT_SYMBOL(blk_post_runtime_resume);
3476
3477/**
3478 * blk_set_runtime_active - Force runtime status of the queue to be active
3479 * @q: the queue of the device
3480 *
3481 * If the device is left runtime suspended during system suspend the resume
3482 * hook typically resumes the device and corrects runtime status
3483 * accordingly. However, that does not affect the queue runtime PM status
3484 * which is still "suspended". This prevents processing requests from the
3485 * queue.
3486 *
3487 * This function can be used in driver's resume hook to correct queue
3488 * runtime PM status and re-enable peeking requests from the queue. It
3489 * should be called before first request is added to the queue.
3490 */
3491void blk_set_runtime_active(struct request_queue *q)
3492{
3493	spin_lock_irq(q->queue_lock);
3494	q->rpm_status = RPM_ACTIVE;
3495	pm_runtime_mark_last_busy(q->dev);
3496	pm_request_autosuspend(q->dev);
3497	spin_unlock_irq(q->queue_lock);
3498}
3499EXPORT_SYMBOL(blk_set_runtime_active);
3500#endif
3501
3502int __init blk_dev_init(void)
3503{
3504	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3505	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3506			FIELD_SIZEOF(struct request, cmd_flags));
3507	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3508			FIELD_SIZEOF(struct bio, bi_opf));
3509
3510	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3511	kblockd_workqueue = alloc_workqueue("kblockd",
3512					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3513	if (!kblockd_workqueue)
3514		panic("Failed to create kblockd\n");
3515
3516	request_cachep = kmem_cache_create("blkdev_requests",
3517			sizeof(struct request), 0, SLAB_PANIC, NULL);
3518
3519	blk_requestq_cachep = kmem_cache_create("request_queue",
3520			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
 
 
3521
3522	return 0;
3523}