Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* Common capabilities, needed by capability.o.
3 */
4
5#include <linux/capability.h>
6#include <linux/audit.h>
7#include <linux/init.h>
8#include <linux/kernel.h>
9#include <linux/lsm_hooks.h>
10#include <linux/file.h>
11#include <linux/mm.h>
12#include <linux/mman.h>
13#include <linux/pagemap.h>
14#include <linux/swap.h>
15#include <linux/skbuff.h>
16#include <linux/netlink.h>
17#include <linux/ptrace.h>
18#include <linux/xattr.h>
19#include <linux/hugetlb.h>
20#include <linux/mount.h>
21#include <linux/sched.h>
22#include <linux/prctl.h>
23#include <linux/securebits.h>
24#include <linux/user_namespace.h>
25#include <linux/binfmts.h>
26#include <linux/personality.h>
27#include <linux/mnt_idmapping.h>
28
29/*
30 * If a non-root user executes a setuid-root binary in
31 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
32 * However if fE is also set, then the intent is for only
33 * the file capabilities to be applied, and the setuid-root
34 * bit is left on either to change the uid (plausible) or
35 * to get full privilege on a kernel without file capabilities
36 * support. So in that case we do not raise capabilities.
37 *
38 * Warn if that happens, once per boot.
39 */
40static void warn_setuid_and_fcaps_mixed(const char *fname)
41{
42 static int warned;
43 if (!warned) {
44 printk(KERN_INFO "warning: `%s' has both setuid-root and"
45 " effective capabilities. Therefore not raising all"
46 " capabilities.\n", fname);
47 warned = 1;
48 }
49}
50
51/**
52 * cap_capable - Determine whether a task has a particular effective capability
53 * @cred: The credentials to use
54 * @targ_ns: The user namespace in which we need the capability
55 * @cap: The capability to check for
56 * @opts: Bitmask of options defined in include/linux/security.h
57 *
58 * Determine whether the nominated task has the specified capability amongst
59 * its effective set, returning 0 if it does, -ve if it does not.
60 *
61 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
62 * and has_capability() functions. That is, it has the reverse semantics:
63 * cap_has_capability() returns 0 when a task has a capability, but the
64 * kernel's capable() and has_capability() returns 1 for this case.
65 */
66int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
67 int cap, unsigned int opts)
68{
69 struct user_namespace *ns = targ_ns;
70
71 /* See if cred has the capability in the target user namespace
72 * by examining the target user namespace and all of the target
73 * user namespace's parents.
74 */
75 for (;;) {
76 /* Do we have the necessary capabilities? */
77 if (ns == cred->user_ns)
78 return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
79
80 /*
81 * If we're already at a lower level than we're looking for,
82 * we're done searching.
83 */
84 if (ns->level <= cred->user_ns->level)
85 return -EPERM;
86
87 /*
88 * The owner of the user namespace in the parent of the
89 * user namespace has all caps.
90 */
91 if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid))
92 return 0;
93
94 /*
95 * If you have a capability in a parent user ns, then you have
96 * it over all children user namespaces as well.
97 */
98 ns = ns->parent;
99 }
100
101 /* We never get here */
102}
103
104/**
105 * cap_settime - Determine whether the current process may set the system clock
106 * @ts: The time to set
107 * @tz: The timezone to set
108 *
109 * Determine whether the current process may set the system clock and timezone
110 * information, returning 0 if permission granted, -ve if denied.
111 */
112int cap_settime(const struct timespec64 *ts, const struct timezone *tz)
113{
114 if (!capable(CAP_SYS_TIME))
115 return -EPERM;
116 return 0;
117}
118
119/**
120 * cap_ptrace_access_check - Determine whether the current process may access
121 * another
122 * @child: The process to be accessed
123 * @mode: The mode of attachment.
124 *
125 * If we are in the same or an ancestor user_ns and have all the target
126 * task's capabilities, then ptrace access is allowed.
127 * If we have the ptrace capability to the target user_ns, then ptrace
128 * access is allowed.
129 * Else denied.
130 *
131 * Determine whether a process may access another, returning 0 if permission
132 * granted, -ve if denied.
133 */
134int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
135{
136 int ret = 0;
137 const struct cred *cred, *child_cred;
138 const kernel_cap_t *caller_caps;
139
140 rcu_read_lock();
141 cred = current_cred();
142 child_cred = __task_cred(child);
143 if (mode & PTRACE_MODE_FSCREDS)
144 caller_caps = &cred->cap_effective;
145 else
146 caller_caps = &cred->cap_permitted;
147 if (cred->user_ns == child_cred->user_ns &&
148 cap_issubset(child_cred->cap_permitted, *caller_caps))
149 goto out;
150 if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
151 goto out;
152 ret = -EPERM;
153out:
154 rcu_read_unlock();
155 return ret;
156}
157
158/**
159 * cap_ptrace_traceme - Determine whether another process may trace the current
160 * @parent: The task proposed to be the tracer
161 *
162 * If parent is in the same or an ancestor user_ns and has all current's
163 * capabilities, then ptrace access is allowed.
164 * If parent has the ptrace capability to current's user_ns, then ptrace
165 * access is allowed.
166 * Else denied.
167 *
168 * Determine whether the nominated task is permitted to trace the current
169 * process, returning 0 if permission is granted, -ve if denied.
170 */
171int cap_ptrace_traceme(struct task_struct *parent)
172{
173 int ret = 0;
174 const struct cred *cred, *child_cred;
175
176 rcu_read_lock();
177 cred = __task_cred(parent);
178 child_cred = current_cred();
179 if (cred->user_ns == child_cred->user_ns &&
180 cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
181 goto out;
182 if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
183 goto out;
184 ret = -EPERM;
185out:
186 rcu_read_unlock();
187 return ret;
188}
189
190/**
191 * cap_capget - Retrieve a task's capability sets
192 * @target: The task from which to retrieve the capability sets
193 * @effective: The place to record the effective set
194 * @inheritable: The place to record the inheritable set
195 * @permitted: The place to record the permitted set
196 *
197 * This function retrieves the capabilities of the nominated task and returns
198 * them to the caller.
199 */
200int cap_capget(struct task_struct *target, kernel_cap_t *effective,
201 kernel_cap_t *inheritable, kernel_cap_t *permitted)
202{
203 const struct cred *cred;
204
205 /* Derived from kernel/capability.c:sys_capget. */
206 rcu_read_lock();
207 cred = __task_cred(target);
208 *effective = cred->cap_effective;
209 *inheritable = cred->cap_inheritable;
210 *permitted = cred->cap_permitted;
211 rcu_read_unlock();
212 return 0;
213}
214
215/*
216 * Determine whether the inheritable capabilities are limited to the old
217 * permitted set. Returns 1 if they are limited, 0 if they are not.
218 */
219static inline int cap_inh_is_capped(void)
220{
221 /* they are so limited unless the current task has the CAP_SETPCAP
222 * capability
223 */
224 if (cap_capable(current_cred(), current_cred()->user_ns,
225 CAP_SETPCAP, CAP_OPT_NONE) == 0)
226 return 0;
227 return 1;
228}
229
230/**
231 * cap_capset - Validate and apply proposed changes to current's capabilities
232 * @new: The proposed new credentials; alterations should be made here
233 * @old: The current task's current credentials
234 * @effective: A pointer to the proposed new effective capabilities set
235 * @inheritable: A pointer to the proposed new inheritable capabilities set
236 * @permitted: A pointer to the proposed new permitted capabilities set
237 *
238 * This function validates and applies a proposed mass change to the current
239 * process's capability sets. The changes are made to the proposed new
240 * credentials, and assuming no error, will be committed by the caller of LSM.
241 */
242int cap_capset(struct cred *new,
243 const struct cred *old,
244 const kernel_cap_t *effective,
245 const kernel_cap_t *inheritable,
246 const kernel_cap_t *permitted)
247{
248 if (cap_inh_is_capped() &&
249 !cap_issubset(*inheritable,
250 cap_combine(old->cap_inheritable,
251 old->cap_permitted)))
252 /* incapable of using this inheritable set */
253 return -EPERM;
254
255 if (!cap_issubset(*inheritable,
256 cap_combine(old->cap_inheritable,
257 old->cap_bset)))
258 /* no new pI capabilities outside bounding set */
259 return -EPERM;
260
261 /* verify restrictions on target's new Permitted set */
262 if (!cap_issubset(*permitted, old->cap_permitted))
263 return -EPERM;
264
265 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
266 if (!cap_issubset(*effective, *permitted))
267 return -EPERM;
268
269 new->cap_effective = *effective;
270 new->cap_inheritable = *inheritable;
271 new->cap_permitted = *permitted;
272
273 /*
274 * Mask off ambient bits that are no longer both permitted and
275 * inheritable.
276 */
277 new->cap_ambient = cap_intersect(new->cap_ambient,
278 cap_intersect(*permitted,
279 *inheritable));
280 if (WARN_ON(!cap_ambient_invariant_ok(new)))
281 return -EINVAL;
282 return 0;
283}
284
285/**
286 * cap_inode_need_killpriv - Determine if inode change affects privileges
287 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
288 *
289 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
290 * affects the security markings on that inode, and if it is, should
291 * inode_killpriv() be invoked or the change rejected.
292 *
293 * Return: 1 if security.capability has a value, meaning inode_killpriv()
294 * is required, 0 otherwise, meaning inode_killpriv() is not required.
295 */
296int cap_inode_need_killpriv(struct dentry *dentry)
297{
298 struct inode *inode = d_backing_inode(dentry);
299 int error;
300
301 error = __vfs_getxattr(dentry, inode, XATTR_NAME_CAPS, NULL, 0);
302 return error > 0;
303}
304
305/**
306 * cap_inode_killpriv - Erase the security markings on an inode
307 *
308 * @mnt_userns: user namespace of the mount the inode was found from
309 * @dentry: The inode/dentry to alter
310 *
311 * Erase the privilege-enhancing security markings on an inode.
312 *
313 * If the inode has been found through an idmapped mount the user namespace of
314 * the vfsmount must be passed through @mnt_userns. This function will then
315 * take care to map the inode according to @mnt_userns before checking
316 * permissions. On non-idmapped mounts or if permission checking is to be
317 * performed on the raw inode simply passs init_user_ns.
318 *
319 * Return: 0 if successful, -ve on error.
320 */
321int cap_inode_killpriv(struct user_namespace *mnt_userns, struct dentry *dentry)
322{
323 int error;
324
325 error = __vfs_removexattr(mnt_userns, dentry, XATTR_NAME_CAPS);
326 if (error == -EOPNOTSUPP)
327 error = 0;
328 return error;
329}
330
331static bool rootid_owns_currentns(vfsuid_t rootvfsuid)
332{
333 struct user_namespace *ns;
334 kuid_t kroot;
335
336 if (!vfsuid_valid(rootvfsuid))
337 return false;
338
339 kroot = vfsuid_into_kuid(rootvfsuid);
340 for (ns = current_user_ns();; ns = ns->parent) {
341 if (from_kuid(ns, kroot) == 0)
342 return true;
343 if (ns == &init_user_ns)
344 break;
345 }
346
347 return false;
348}
349
350static __u32 sansflags(__u32 m)
351{
352 return m & ~VFS_CAP_FLAGS_EFFECTIVE;
353}
354
355static bool is_v2header(int size, const struct vfs_cap_data *cap)
356{
357 if (size != XATTR_CAPS_SZ_2)
358 return false;
359 return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_2;
360}
361
362static bool is_v3header(int size, const struct vfs_cap_data *cap)
363{
364 if (size != XATTR_CAPS_SZ_3)
365 return false;
366 return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_3;
367}
368
369/*
370 * getsecurity: We are called for security.* before any attempt to read the
371 * xattr from the inode itself.
372 *
373 * This gives us a chance to read the on-disk value and convert it. If we
374 * return -EOPNOTSUPP, then vfs_getxattr() will call the i_op handler.
375 *
376 * Note we are not called by vfs_getxattr_alloc(), but that is only called
377 * by the integrity subsystem, which really wants the unconverted values -
378 * so that's good.
379 */
380int cap_inode_getsecurity(struct user_namespace *mnt_userns,
381 struct inode *inode, const char *name, void **buffer,
382 bool alloc)
383{
384 int size;
385 kuid_t kroot;
386 vfsuid_t vfsroot;
387 u32 nsmagic, magic;
388 uid_t root, mappedroot;
389 char *tmpbuf = NULL;
390 struct vfs_cap_data *cap;
391 struct vfs_ns_cap_data *nscap = NULL;
392 struct dentry *dentry;
393 struct user_namespace *fs_ns;
394
395 if (strcmp(name, "capability") != 0)
396 return -EOPNOTSUPP;
397
398 dentry = d_find_any_alias(inode);
399 if (!dentry)
400 return -EINVAL;
401 size = vfs_getxattr_alloc(mnt_userns, dentry, XATTR_NAME_CAPS, &tmpbuf,
402 sizeof(struct vfs_ns_cap_data), GFP_NOFS);
403 dput(dentry);
404 /* gcc11 complains if we don't check for !tmpbuf */
405 if (size < 0 || !tmpbuf)
406 goto out_free;
407
408 fs_ns = inode->i_sb->s_user_ns;
409 cap = (struct vfs_cap_data *) tmpbuf;
410 if (is_v2header(size, cap)) {
411 root = 0;
412 } else if (is_v3header(size, cap)) {
413 nscap = (struct vfs_ns_cap_data *) tmpbuf;
414 root = le32_to_cpu(nscap->rootid);
415 } else {
416 size = -EINVAL;
417 goto out_free;
418 }
419
420 kroot = make_kuid(fs_ns, root);
421
422 /* If this is an idmapped mount shift the kuid. */
423 vfsroot = make_vfsuid(mnt_userns, fs_ns, kroot);
424
425 /* If the root kuid maps to a valid uid in current ns, then return
426 * this as a nscap. */
427 mappedroot = from_kuid(current_user_ns(), vfsuid_into_kuid(vfsroot));
428 if (mappedroot != (uid_t)-1 && mappedroot != (uid_t)0) {
429 size = sizeof(struct vfs_ns_cap_data);
430 if (alloc) {
431 if (!nscap) {
432 /* v2 -> v3 conversion */
433 nscap = kzalloc(size, GFP_ATOMIC);
434 if (!nscap) {
435 size = -ENOMEM;
436 goto out_free;
437 }
438 nsmagic = VFS_CAP_REVISION_3;
439 magic = le32_to_cpu(cap->magic_etc);
440 if (magic & VFS_CAP_FLAGS_EFFECTIVE)
441 nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
442 memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
443 nscap->magic_etc = cpu_to_le32(nsmagic);
444 } else {
445 /* use allocated v3 buffer */
446 tmpbuf = NULL;
447 }
448 nscap->rootid = cpu_to_le32(mappedroot);
449 *buffer = nscap;
450 }
451 goto out_free;
452 }
453
454 if (!rootid_owns_currentns(vfsroot)) {
455 size = -EOVERFLOW;
456 goto out_free;
457 }
458
459 /* This comes from a parent namespace. Return as a v2 capability */
460 size = sizeof(struct vfs_cap_data);
461 if (alloc) {
462 if (nscap) {
463 /* v3 -> v2 conversion */
464 cap = kzalloc(size, GFP_ATOMIC);
465 if (!cap) {
466 size = -ENOMEM;
467 goto out_free;
468 }
469 magic = VFS_CAP_REVISION_2;
470 nsmagic = le32_to_cpu(nscap->magic_etc);
471 if (nsmagic & VFS_CAP_FLAGS_EFFECTIVE)
472 magic |= VFS_CAP_FLAGS_EFFECTIVE;
473 memcpy(&cap->data, &nscap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
474 cap->magic_etc = cpu_to_le32(magic);
475 } else {
476 /* use unconverted v2 */
477 tmpbuf = NULL;
478 }
479 *buffer = cap;
480 }
481out_free:
482 kfree(tmpbuf);
483 return size;
484}
485
486/**
487 * rootid_from_xattr - translate root uid of vfs caps
488 *
489 * @value: vfs caps value which may be modified by this function
490 * @size: size of @ivalue
491 * @task_ns: user namespace of the caller
492 */
493static vfsuid_t rootid_from_xattr(const void *value, size_t size,
494 struct user_namespace *task_ns)
495{
496 const struct vfs_ns_cap_data *nscap = value;
497 uid_t rootid = 0;
498
499 if (size == XATTR_CAPS_SZ_3)
500 rootid = le32_to_cpu(nscap->rootid);
501
502 return VFSUIDT_INIT(make_kuid(task_ns, rootid));
503}
504
505static bool validheader(size_t size, const struct vfs_cap_data *cap)
506{
507 return is_v2header(size, cap) || is_v3header(size, cap);
508}
509
510/**
511 * cap_convert_nscap - check vfs caps
512 *
513 * @mnt_userns: user namespace of the mount the inode was found from
514 * @dentry: used to retrieve inode to check permissions on
515 * @ivalue: vfs caps value which may be modified by this function
516 * @size: size of @ivalue
517 *
518 * User requested a write of security.capability. If needed, update the
519 * xattr to change from v2 to v3, or to fixup the v3 rootid.
520 *
521 * If the inode has been found through an idmapped mount the user namespace of
522 * the vfsmount must be passed through @mnt_userns. This function will then
523 * take care to map the inode according to @mnt_userns before checking
524 * permissions. On non-idmapped mounts or if permission checking is to be
525 * performed on the raw inode simply passs init_user_ns.
526 *
527 * Return: On success, return the new size; on error, return < 0.
528 */
529int cap_convert_nscap(struct user_namespace *mnt_userns, struct dentry *dentry,
530 const void **ivalue, size_t size)
531{
532 struct vfs_ns_cap_data *nscap;
533 uid_t nsrootid;
534 const struct vfs_cap_data *cap = *ivalue;
535 __u32 magic, nsmagic;
536 struct inode *inode = d_backing_inode(dentry);
537 struct user_namespace *task_ns = current_user_ns(),
538 *fs_ns = inode->i_sb->s_user_ns;
539 kuid_t rootid;
540 vfsuid_t vfsrootid;
541 size_t newsize;
542
543 if (!*ivalue)
544 return -EINVAL;
545 if (!validheader(size, cap))
546 return -EINVAL;
547 if (!capable_wrt_inode_uidgid(mnt_userns, inode, CAP_SETFCAP))
548 return -EPERM;
549 if (size == XATTR_CAPS_SZ_2 && (mnt_userns == fs_ns))
550 if (ns_capable(inode->i_sb->s_user_ns, CAP_SETFCAP))
551 /* user is privileged, just write the v2 */
552 return size;
553
554 vfsrootid = rootid_from_xattr(*ivalue, size, task_ns);
555 if (!vfsuid_valid(vfsrootid))
556 return -EINVAL;
557
558 rootid = from_vfsuid(mnt_userns, fs_ns, vfsrootid);
559 if (!uid_valid(rootid))
560 return -EINVAL;
561
562 nsrootid = from_kuid(fs_ns, rootid);
563 if (nsrootid == -1)
564 return -EINVAL;
565
566 newsize = sizeof(struct vfs_ns_cap_data);
567 nscap = kmalloc(newsize, GFP_ATOMIC);
568 if (!nscap)
569 return -ENOMEM;
570 nscap->rootid = cpu_to_le32(nsrootid);
571 nsmagic = VFS_CAP_REVISION_3;
572 magic = le32_to_cpu(cap->magic_etc);
573 if (magic & VFS_CAP_FLAGS_EFFECTIVE)
574 nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
575 nscap->magic_etc = cpu_to_le32(nsmagic);
576 memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
577
578 *ivalue = nscap;
579 return newsize;
580}
581
582/*
583 * Calculate the new process capability sets from the capability sets attached
584 * to a file.
585 */
586static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
587 struct linux_binprm *bprm,
588 bool *effective,
589 bool *has_fcap)
590{
591 struct cred *new = bprm->cred;
592 unsigned i;
593 int ret = 0;
594
595 if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
596 *effective = true;
597
598 if (caps->magic_etc & VFS_CAP_REVISION_MASK)
599 *has_fcap = true;
600
601 CAP_FOR_EACH_U32(i) {
602 __u32 permitted = caps->permitted.cap[i];
603 __u32 inheritable = caps->inheritable.cap[i];
604
605 /*
606 * pP' = (X & fP) | (pI & fI)
607 * The addition of pA' is handled later.
608 */
609 new->cap_permitted.cap[i] =
610 (new->cap_bset.cap[i] & permitted) |
611 (new->cap_inheritable.cap[i] & inheritable);
612
613 if (permitted & ~new->cap_permitted.cap[i])
614 /* insufficient to execute correctly */
615 ret = -EPERM;
616 }
617
618 /*
619 * For legacy apps, with no internal support for recognizing they
620 * do not have enough capabilities, we return an error if they are
621 * missing some "forced" (aka file-permitted) capabilities.
622 */
623 return *effective ? ret : 0;
624}
625
626/**
627 * get_vfs_caps_from_disk - retrieve vfs caps from disk
628 *
629 * @mnt_userns: user namespace of the mount the inode was found from
630 * @dentry: dentry from which @inode is retrieved
631 * @cpu_caps: vfs capabilities
632 *
633 * Extract the on-exec-apply capability sets for an executable file.
634 *
635 * If the inode has been found through an idmapped mount the user namespace of
636 * the vfsmount must be passed through @mnt_userns. This function will then
637 * take care to map the inode according to @mnt_userns before checking
638 * permissions. On non-idmapped mounts or if permission checking is to be
639 * performed on the raw inode simply passs init_user_ns.
640 */
641int get_vfs_caps_from_disk(struct user_namespace *mnt_userns,
642 const struct dentry *dentry,
643 struct cpu_vfs_cap_data *cpu_caps)
644{
645 struct inode *inode = d_backing_inode(dentry);
646 __u32 magic_etc;
647 unsigned tocopy, i;
648 int size;
649 struct vfs_ns_cap_data data, *nscaps = &data;
650 struct vfs_cap_data *caps = (struct vfs_cap_data *) &data;
651 kuid_t rootkuid;
652 vfsuid_t rootvfsuid;
653 struct user_namespace *fs_ns;
654
655 memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
656
657 if (!inode)
658 return -ENODATA;
659
660 fs_ns = inode->i_sb->s_user_ns;
661 size = __vfs_getxattr((struct dentry *)dentry, inode,
662 XATTR_NAME_CAPS, &data, XATTR_CAPS_SZ);
663 if (size == -ENODATA || size == -EOPNOTSUPP)
664 /* no data, that's ok */
665 return -ENODATA;
666
667 if (size < 0)
668 return size;
669
670 if (size < sizeof(magic_etc))
671 return -EINVAL;
672
673 cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps->magic_etc);
674
675 rootkuid = make_kuid(fs_ns, 0);
676 switch (magic_etc & VFS_CAP_REVISION_MASK) {
677 case VFS_CAP_REVISION_1:
678 if (size != XATTR_CAPS_SZ_1)
679 return -EINVAL;
680 tocopy = VFS_CAP_U32_1;
681 break;
682 case VFS_CAP_REVISION_2:
683 if (size != XATTR_CAPS_SZ_2)
684 return -EINVAL;
685 tocopy = VFS_CAP_U32_2;
686 break;
687 case VFS_CAP_REVISION_3:
688 if (size != XATTR_CAPS_SZ_3)
689 return -EINVAL;
690 tocopy = VFS_CAP_U32_3;
691 rootkuid = make_kuid(fs_ns, le32_to_cpu(nscaps->rootid));
692 break;
693
694 default:
695 return -EINVAL;
696 }
697
698 rootvfsuid = make_vfsuid(mnt_userns, fs_ns, rootkuid);
699 if (!vfsuid_valid(rootvfsuid))
700 return -ENODATA;
701
702 /* Limit the caps to the mounter of the filesystem
703 * or the more limited uid specified in the xattr.
704 */
705 if (!rootid_owns_currentns(rootvfsuid))
706 return -ENODATA;
707
708 CAP_FOR_EACH_U32(i) {
709 if (i >= tocopy)
710 break;
711 cpu_caps->permitted.cap[i] = le32_to_cpu(caps->data[i].permitted);
712 cpu_caps->inheritable.cap[i] = le32_to_cpu(caps->data[i].inheritable);
713 }
714
715 cpu_caps->permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
716 cpu_caps->inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
717
718 cpu_caps->rootid = vfsuid_into_kuid(rootvfsuid);
719
720 return 0;
721}
722
723/*
724 * Attempt to get the on-exec apply capability sets for an executable file from
725 * its xattrs and, if present, apply them to the proposed credentials being
726 * constructed by execve().
727 */
728static int get_file_caps(struct linux_binprm *bprm, struct file *file,
729 bool *effective, bool *has_fcap)
730{
731 int rc = 0;
732 struct cpu_vfs_cap_data vcaps;
733
734 cap_clear(bprm->cred->cap_permitted);
735
736 if (!file_caps_enabled)
737 return 0;
738
739 if (!mnt_may_suid(file->f_path.mnt))
740 return 0;
741
742 /*
743 * This check is redundant with mnt_may_suid() but is kept to make
744 * explicit that capability bits are limited to s_user_ns and its
745 * descendants.
746 */
747 if (!current_in_userns(file->f_path.mnt->mnt_sb->s_user_ns))
748 return 0;
749
750 rc = get_vfs_caps_from_disk(file_mnt_user_ns(file),
751 file->f_path.dentry, &vcaps);
752 if (rc < 0) {
753 if (rc == -EINVAL)
754 printk(KERN_NOTICE "Invalid argument reading file caps for %s\n",
755 bprm->filename);
756 else if (rc == -ENODATA)
757 rc = 0;
758 goto out;
759 }
760
761 rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_fcap);
762
763out:
764 if (rc)
765 cap_clear(bprm->cred->cap_permitted);
766
767 return rc;
768}
769
770static inline bool root_privileged(void) { return !issecure(SECURE_NOROOT); }
771
772static inline bool __is_real(kuid_t uid, struct cred *cred)
773{ return uid_eq(cred->uid, uid); }
774
775static inline bool __is_eff(kuid_t uid, struct cred *cred)
776{ return uid_eq(cred->euid, uid); }
777
778static inline bool __is_suid(kuid_t uid, struct cred *cred)
779{ return !__is_real(uid, cred) && __is_eff(uid, cred); }
780
781/*
782 * handle_privileged_root - Handle case of privileged root
783 * @bprm: The execution parameters, including the proposed creds
784 * @has_fcap: Are any file capabilities set?
785 * @effective: Do we have effective root privilege?
786 * @root_uid: This namespace' root UID WRT initial USER namespace
787 *
788 * Handle the case where root is privileged and hasn't been neutered by
789 * SECURE_NOROOT. If file capabilities are set, they won't be combined with
790 * set UID root and nothing is changed. If we are root, cap_permitted is
791 * updated. If we have become set UID root, the effective bit is set.
792 */
793static void handle_privileged_root(struct linux_binprm *bprm, bool has_fcap,
794 bool *effective, kuid_t root_uid)
795{
796 const struct cred *old = current_cred();
797 struct cred *new = bprm->cred;
798
799 if (!root_privileged())
800 return;
801 /*
802 * If the legacy file capability is set, then don't set privs
803 * for a setuid root binary run by a non-root user. Do set it
804 * for a root user just to cause least surprise to an admin.
805 */
806 if (has_fcap && __is_suid(root_uid, new)) {
807 warn_setuid_and_fcaps_mixed(bprm->filename);
808 return;
809 }
810 /*
811 * To support inheritance of root-permissions and suid-root
812 * executables under compatibility mode, we override the
813 * capability sets for the file.
814 */
815 if (__is_eff(root_uid, new) || __is_real(root_uid, new)) {
816 /* pP' = (cap_bset & ~0) | (pI & ~0) */
817 new->cap_permitted = cap_combine(old->cap_bset,
818 old->cap_inheritable);
819 }
820 /*
821 * If only the real uid is 0, we do not set the effective bit.
822 */
823 if (__is_eff(root_uid, new))
824 *effective = true;
825}
826
827#define __cap_gained(field, target, source) \
828 !cap_issubset(target->cap_##field, source->cap_##field)
829#define __cap_grew(target, source, cred) \
830 !cap_issubset(cred->cap_##target, cred->cap_##source)
831#define __cap_full(field, cred) \
832 cap_issubset(CAP_FULL_SET, cred->cap_##field)
833
834static inline bool __is_setuid(struct cred *new, const struct cred *old)
835{ return !uid_eq(new->euid, old->uid); }
836
837static inline bool __is_setgid(struct cred *new, const struct cred *old)
838{ return !gid_eq(new->egid, old->gid); }
839
840/*
841 * 1) Audit candidate if current->cap_effective is set
842 *
843 * We do not bother to audit if 3 things are true:
844 * 1) cap_effective has all caps
845 * 2) we became root *OR* are were already root
846 * 3) root is supposed to have all caps (SECURE_NOROOT)
847 * Since this is just a normal root execing a process.
848 *
849 * Number 1 above might fail if you don't have a full bset, but I think
850 * that is interesting information to audit.
851 *
852 * A number of other conditions require logging:
853 * 2) something prevented setuid root getting all caps
854 * 3) non-setuid root gets fcaps
855 * 4) non-setuid root gets ambient
856 */
857static inline bool nonroot_raised_pE(struct cred *new, const struct cred *old,
858 kuid_t root, bool has_fcap)
859{
860 bool ret = false;
861
862 if ((__cap_grew(effective, ambient, new) &&
863 !(__cap_full(effective, new) &&
864 (__is_eff(root, new) || __is_real(root, new)) &&
865 root_privileged())) ||
866 (root_privileged() &&
867 __is_suid(root, new) &&
868 !__cap_full(effective, new)) ||
869 (!__is_setuid(new, old) &&
870 ((has_fcap &&
871 __cap_gained(permitted, new, old)) ||
872 __cap_gained(ambient, new, old))))
873
874 ret = true;
875
876 return ret;
877}
878
879/**
880 * cap_bprm_creds_from_file - Set up the proposed credentials for execve().
881 * @bprm: The execution parameters, including the proposed creds
882 * @file: The file to pull the credentials from
883 *
884 * Set up the proposed credentials for a new execution context being
885 * constructed by execve(). The proposed creds in @bprm->cred is altered,
886 * which won't take effect immediately.
887 *
888 * Return: 0 if successful, -ve on error.
889 */
890int cap_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
891{
892 /* Process setpcap binaries and capabilities for uid 0 */
893 const struct cred *old = current_cred();
894 struct cred *new = bprm->cred;
895 bool effective = false, has_fcap = false, is_setid;
896 int ret;
897 kuid_t root_uid;
898
899 if (WARN_ON(!cap_ambient_invariant_ok(old)))
900 return -EPERM;
901
902 ret = get_file_caps(bprm, file, &effective, &has_fcap);
903 if (ret < 0)
904 return ret;
905
906 root_uid = make_kuid(new->user_ns, 0);
907
908 handle_privileged_root(bprm, has_fcap, &effective, root_uid);
909
910 /* if we have fs caps, clear dangerous personality flags */
911 if (__cap_gained(permitted, new, old))
912 bprm->per_clear |= PER_CLEAR_ON_SETID;
913
914 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
915 * credentials unless they have the appropriate permit.
916 *
917 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
918 */
919 is_setid = __is_setuid(new, old) || __is_setgid(new, old);
920
921 if ((is_setid || __cap_gained(permitted, new, old)) &&
922 ((bprm->unsafe & ~LSM_UNSAFE_PTRACE) ||
923 !ptracer_capable(current, new->user_ns))) {
924 /* downgrade; they get no more than they had, and maybe less */
925 if (!ns_capable(new->user_ns, CAP_SETUID) ||
926 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
927 new->euid = new->uid;
928 new->egid = new->gid;
929 }
930 new->cap_permitted = cap_intersect(new->cap_permitted,
931 old->cap_permitted);
932 }
933
934 new->suid = new->fsuid = new->euid;
935 new->sgid = new->fsgid = new->egid;
936
937 /* File caps or setid cancels ambient. */
938 if (has_fcap || is_setid)
939 cap_clear(new->cap_ambient);
940
941 /*
942 * Now that we've computed pA', update pP' to give:
943 * pP' = (X & fP) | (pI & fI) | pA'
944 */
945 new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient);
946
947 /*
948 * Set pE' = (fE ? pP' : pA'). Because pA' is zero if fE is set,
949 * this is the same as pE' = (fE ? pP' : 0) | pA'.
950 */
951 if (effective)
952 new->cap_effective = new->cap_permitted;
953 else
954 new->cap_effective = new->cap_ambient;
955
956 if (WARN_ON(!cap_ambient_invariant_ok(new)))
957 return -EPERM;
958
959 if (nonroot_raised_pE(new, old, root_uid, has_fcap)) {
960 ret = audit_log_bprm_fcaps(bprm, new, old);
961 if (ret < 0)
962 return ret;
963 }
964
965 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
966
967 if (WARN_ON(!cap_ambient_invariant_ok(new)))
968 return -EPERM;
969
970 /* Check for privilege-elevated exec. */
971 if (is_setid ||
972 (!__is_real(root_uid, new) &&
973 (effective ||
974 __cap_grew(permitted, ambient, new))))
975 bprm->secureexec = 1;
976
977 return 0;
978}
979
980/**
981 * cap_inode_setxattr - Determine whether an xattr may be altered
982 * @dentry: The inode/dentry being altered
983 * @name: The name of the xattr to be changed
984 * @value: The value that the xattr will be changed to
985 * @size: The size of value
986 * @flags: The replacement flag
987 *
988 * Determine whether an xattr may be altered or set on an inode, returning 0 if
989 * permission is granted, -ve if denied.
990 *
991 * This is used to make sure security xattrs don't get updated or set by those
992 * who aren't privileged to do so.
993 */
994int cap_inode_setxattr(struct dentry *dentry, const char *name,
995 const void *value, size_t size, int flags)
996{
997 struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
998
999 /* Ignore non-security xattrs */
1000 if (strncmp(name, XATTR_SECURITY_PREFIX,
1001 XATTR_SECURITY_PREFIX_LEN) != 0)
1002 return 0;
1003
1004 /*
1005 * For XATTR_NAME_CAPS the check will be done in
1006 * cap_convert_nscap(), called by setxattr()
1007 */
1008 if (strcmp(name, XATTR_NAME_CAPS) == 0)
1009 return 0;
1010
1011 if (!ns_capable(user_ns, CAP_SYS_ADMIN))
1012 return -EPERM;
1013 return 0;
1014}
1015
1016/**
1017 * cap_inode_removexattr - Determine whether an xattr may be removed
1018 *
1019 * @mnt_userns: User namespace of the mount the inode was found from
1020 * @dentry: The inode/dentry being altered
1021 * @name: The name of the xattr to be changed
1022 *
1023 * Determine whether an xattr may be removed from an inode, returning 0 if
1024 * permission is granted, -ve if denied.
1025 *
1026 * If the inode has been found through an idmapped mount the user namespace of
1027 * the vfsmount must be passed through @mnt_userns. This function will then
1028 * take care to map the inode according to @mnt_userns before checking
1029 * permissions. On non-idmapped mounts or if permission checking is to be
1030 * performed on the raw inode simply passs init_user_ns.
1031 *
1032 * This is used to make sure security xattrs don't get removed by those who
1033 * aren't privileged to remove them.
1034 */
1035int cap_inode_removexattr(struct user_namespace *mnt_userns,
1036 struct dentry *dentry, const char *name)
1037{
1038 struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
1039
1040 /* Ignore non-security xattrs */
1041 if (strncmp(name, XATTR_SECURITY_PREFIX,
1042 XATTR_SECURITY_PREFIX_LEN) != 0)
1043 return 0;
1044
1045 if (strcmp(name, XATTR_NAME_CAPS) == 0) {
1046 /* security.capability gets namespaced */
1047 struct inode *inode = d_backing_inode(dentry);
1048 if (!inode)
1049 return -EINVAL;
1050 if (!capable_wrt_inode_uidgid(mnt_userns, inode, CAP_SETFCAP))
1051 return -EPERM;
1052 return 0;
1053 }
1054
1055 if (!ns_capable(user_ns, CAP_SYS_ADMIN))
1056 return -EPERM;
1057 return 0;
1058}
1059
1060/*
1061 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
1062 * a process after a call to setuid, setreuid, or setresuid.
1063 *
1064 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
1065 * {r,e,s}uid != 0, the permitted and effective capabilities are
1066 * cleared.
1067 *
1068 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
1069 * capabilities of the process are cleared.
1070 *
1071 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
1072 * capabilities are set to the permitted capabilities.
1073 *
1074 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
1075 * never happen.
1076 *
1077 * -astor
1078 *
1079 * cevans - New behaviour, Oct '99
1080 * A process may, via prctl(), elect to keep its capabilities when it
1081 * calls setuid() and switches away from uid==0. Both permitted and
1082 * effective sets will be retained.
1083 * Without this change, it was impossible for a daemon to drop only some
1084 * of its privilege. The call to setuid(!=0) would drop all privileges!
1085 * Keeping uid 0 is not an option because uid 0 owns too many vital
1086 * files..
1087 * Thanks to Olaf Kirch and Peter Benie for spotting this.
1088 */
1089static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
1090{
1091 kuid_t root_uid = make_kuid(old->user_ns, 0);
1092
1093 if ((uid_eq(old->uid, root_uid) ||
1094 uid_eq(old->euid, root_uid) ||
1095 uid_eq(old->suid, root_uid)) &&
1096 (!uid_eq(new->uid, root_uid) &&
1097 !uid_eq(new->euid, root_uid) &&
1098 !uid_eq(new->suid, root_uid))) {
1099 if (!issecure(SECURE_KEEP_CAPS)) {
1100 cap_clear(new->cap_permitted);
1101 cap_clear(new->cap_effective);
1102 }
1103
1104 /*
1105 * Pre-ambient programs expect setresuid to nonroot followed
1106 * by exec to drop capabilities. We should make sure that
1107 * this remains the case.
1108 */
1109 cap_clear(new->cap_ambient);
1110 }
1111 if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
1112 cap_clear(new->cap_effective);
1113 if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
1114 new->cap_effective = new->cap_permitted;
1115}
1116
1117/**
1118 * cap_task_fix_setuid - Fix up the results of setuid() call
1119 * @new: The proposed credentials
1120 * @old: The current task's current credentials
1121 * @flags: Indications of what has changed
1122 *
1123 * Fix up the results of setuid() call before the credential changes are
1124 * actually applied.
1125 *
1126 * Return: 0 to grant the changes, -ve to deny them.
1127 */
1128int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
1129{
1130 switch (flags) {
1131 case LSM_SETID_RE:
1132 case LSM_SETID_ID:
1133 case LSM_SETID_RES:
1134 /* juggle the capabilities to follow [RES]UID changes unless
1135 * otherwise suppressed */
1136 if (!issecure(SECURE_NO_SETUID_FIXUP))
1137 cap_emulate_setxuid(new, old);
1138 break;
1139
1140 case LSM_SETID_FS:
1141 /* juggle the capabilties to follow FSUID changes, unless
1142 * otherwise suppressed
1143 *
1144 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
1145 * if not, we might be a bit too harsh here.
1146 */
1147 if (!issecure(SECURE_NO_SETUID_FIXUP)) {
1148 kuid_t root_uid = make_kuid(old->user_ns, 0);
1149 if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
1150 new->cap_effective =
1151 cap_drop_fs_set(new->cap_effective);
1152
1153 if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
1154 new->cap_effective =
1155 cap_raise_fs_set(new->cap_effective,
1156 new->cap_permitted);
1157 }
1158 break;
1159
1160 default:
1161 return -EINVAL;
1162 }
1163
1164 return 0;
1165}
1166
1167/*
1168 * Rationale: code calling task_setscheduler, task_setioprio, and
1169 * task_setnice, assumes that
1170 * . if capable(cap_sys_nice), then those actions should be allowed
1171 * . if not capable(cap_sys_nice), but acting on your own processes,
1172 * then those actions should be allowed
1173 * This is insufficient now since you can call code without suid, but
1174 * yet with increased caps.
1175 * So we check for increased caps on the target process.
1176 */
1177static int cap_safe_nice(struct task_struct *p)
1178{
1179 int is_subset, ret = 0;
1180
1181 rcu_read_lock();
1182 is_subset = cap_issubset(__task_cred(p)->cap_permitted,
1183 current_cred()->cap_permitted);
1184 if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
1185 ret = -EPERM;
1186 rcu_read_unlock();
1187
1188 return ret;
1189}
1190
1191/**
1192 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
1193 * @p: The task to affect
1194 *
1195 * Detemine if the requested scheduler policy change is permitted for the
1196 * specified task.
1197 *
1198 * Return: 0 if permission is granted, -ve if denied.
1199 */
1200int cap_task_setscheduler(struct task_struct *p)
1201{
1202 return cap_safe_nice(p);
1203}
1204
1205/**
1206 * cap_task_setioprio - Detemine if I/O priority change is permitted
1207 * @p: The task to affect
1208 * @ioprio: The I/O priority to set
1209 *
1210 * Detemine if the requested I/O priority change is permitted for the specified
1211 * task.
1212 *
1213 * Return: 0 if permission is granted, -ve if denied.
1214 */
1215int cap_task_setioprio(struct task_struct *p, int ioprio)
1216{
1217 return cap_safe_nice(p);
1218}
1219
1220/**
1221 * cap_task_setnice - Detemine if task priority change is permitted
1222 * @p: The task to affect
1223 * @nice: The nice value to set
1224 *
1225 * Detemine if the requested task priority change is permitted for the
1226 * specified task.
1227 *
1228 * Return: 0 if permission is granted, -ve if denied.
1229 */
1230int cap_task_setnice(struct task_struct *p, int nice)
1231{
1232 return cap_safe_nice(p);
1233}
1234
1235/*
1236 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
1237 * the current task's bounding set. Returns 0 on success, -ve on error.
1238 */
1239static int cap_prctl_drop(unsigned long cap)
1240{
1241 struct cred *new;
1242
1243 if (!ns_capable(current_user_ns(), CAP_SETPCAP))
1244 return -EPERM;
1245 if (!cap_valid(cap))
1246 return -EINVAL;
1247
1248 new = prepare_creds();
1249 if (!new)
1250 return -ENOMEM;
1251 cap_lower(new->cap_bset, cap);
1252 return commit_creds(new);
1253}
1254
1255/**
1256 * cap_task_prctl - Implement process control functions for this security module
1257 * @option: The process control function requested
1258 * @arg2: The argument data for this function
1259 * @arg3: The argument data for this function
1260 * @arg4: The argument data for this function
1261 * @arg5: The argument data for this function
1262 *
1263 * Allow process control functions (sys_prctl()) to alter capabilities; may
1264 * also deny access to other functions not otherwise implemented here.
1265 *
1266 * Return: 0 or +ve on success, -ENOSYS if this function is not implemented
1267 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
1268 * modules will consider performing the function.
1269 */
1270int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1271 unsigned long arg4, unsigned long arg5)
1272{
1273 const struct cred *old = current_cred();
1274 struct cred *new;
1275
1276 switch (option) {
1277 case PR_CAPBSET_READ:
1278 if (!cap_valid(arg2))
1279 return -EINVAL;
1280 return !!cap_raised(old->cap_bset, arg2);
1281
1282 case PR_CAPBSET_DROP:
1283 return cap_prctl_drop(arg2);
1284
1285 /*
1286 * The next four prctl's remain to assist with transitioning a
1287 * system from legacy UID=0 based privilege (when filesystem
1288 * capabilities are not in use) to a system using filesystem
1289 * capabilities only - as the POSIX.1e draft intended.
1290 *
1291 * Note:
1292 *
1293 * PR_SET_SECUREBITS =
1294 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
1295 * | issecure_mask(SECURE_NOROOT)
1296 * | issecure_mask(SECURE_NOROOT_LOCKED)
1297 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
1298 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
1299 *
1300 * will ensure that the current process and all of its
1301 * children will be locked into a pure
1302 * capability-based-privilege environment.
1303 */
1304 case PR_SET_SECUREBITS:
1305 if ((((old->securebits & SECURE_ALL_LOCKS) >> 1)
1306 & (old->securebits ^ arg2)) /*[1]*/
1307 || ((old->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/
1308 || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
1309 || (cap_capable(current_cred(),
1310 current_cred()->user_ns,
1311 CAP_SETPCAP,
1312 CAP_OPT_NONE) != 0) /*[4]*/
1313 /*
1314 * [1] no changing of bits that are locked
1315 * [2] no unlocking of locks
1316 * [3] no setting of unsupported bits
1317 * [4] doing anything requires privilege (go read about
1318 * the "sendmail capabilities bug")
1319 */
1320 )
1321 /* cannot change a locked bit */
1322 return -EPERM;
1323
1324 new = prepare_creds();
1325 if (!new)
1326 return -ENOMEM;
1327 new->securebits = arg2;
1328 return commit_creds(new);
1329
1330 case PR_GET_SECUREBITS:
1331 return old->securebits;
1332
1333 case PR_GET_KEEPCAPS:
1334 return !!issecure(SECURE_KEEP_CAPS);
1335
1336 case PR_SET_KEEPCAPS:
1337 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
1338 return -EINVAL;
1339 if (issecure(SECURE_KEEP_CAPS_LOCKED))
1340 return -EPERM;
1341
1342 new = prepare_creds();
1343 if (!new)
1344 return -ENOMEM;
1345 if (arg2)
1346 new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
1347 else
1348 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
1349 return commit_creds(new);
1350
1351 case PR_CAP_AMBIENT:
1352 if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) {
1353 if (arg3 | arg4 | arg5)
1354 return -EINVAL;
1355
1356 new = prepare_creds();
1357 if (!new)
1358 return -ENOMEM;
1359 cap_clear(new->cap_ambient);
1360 return commit_creds(new);
1361 }
1362
1363 if (((!cap_valid(arg3)) | arg4 | arg5))
1364 return -EINVAL;
1365
1366 if (arg2 == PR_CAP_AMBIENT_IS_SET) {
1367 return !!cap_raised(current_cred()->cap_ambient, arg3);
1368 } else if (arg2 != PR_CAP_AMBIENT_RAISE &&
1369 arg2 != PR_CAP_AMBIENT_LOWER) {
1370 return -EINVAL;
1371 } else {
1372 if (arg2 == PR_CAP_AMBIENT_RAISE &&
1373 (!cap_raised(current_cred()->cap_permitted, arg3) ||
1374 !cap_raised(current_cred()->cap_inheritable,
1375 arg3) ||
1376 issecure(SECURE_NO_CAP_AMBIENT_RAISE)))
1377 return -EPERM;
1378
1379 new = prepare_creds();
1380 if (!new)
1381 return -ENOMEM;
1382 if (arg2 == PR_CAP_AMBIENT_RAISE)
1383 cap_raise(new->cap_ambient, arg3);
1384 else
1385 cap_lower(new->cap_ambient, arg3);
1386 return commit_creds(new);
1387 }
1388
1389 default:
1390 /* No functionality available - continue with default */
1391 return -ENOSYS;
1392 }
1393}
1394
1395/**
1396 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
1397 * @mm: The VM space in which the new mapping is to be made
1398 * @pages: The size of the mapping
1399 *
1400 * Determine whether the allocation of a new virtual mapping by the current
1401 * task is permitted.
1402 *
1403 * Return: 1 if permission is granted, 0 if not.
1404 */
1405int cap_vm_enough_memory(struct mm_struct *mm, long pages)
1406{
1407 int cap_sys_admin = 0;
1408
1409 if (cap_capable(current_cred(), &init_user_ns,
1410 CAP_SYS_ADMIN, CAP_OPT_NOAUDIT) == 0)
1411 cap_sys_admin = 1;
1412
1413 return cap_sys_admin;
1414}
1415
1416/**
1417 * cap_mmap_addr - check if able to map given addr
1418 * @addr: address attempting to be mapped
1419 *
1420 * If the process is attempting to map memory below dac_mmap_min_addr they need
1421 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
1422 * capability security module.
1423 *
1424 * Return: 0 if this mapping should be allowed or -EPERM if not.
1425 */
1426int cap_mmap_addr(unsigned long addr)
1427{
1428 int ret = 0;
1429
1430 if (addr < dac_mmap_min_addr) {
1431 ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
1432 CAP_OPT_NONE);
1433 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
1434 if (ret == 0)
1435 current->flags |= PF_SUPERPRIV;
1436 }
1437 return ret;
1438}
1439
1440int cap_mmap_file(struct file *file, unsigned long reqprot,
1441 unsigned long prot, unsigned long flags)
1442{
1443 return 0;
1444}
1445
1446#ifdef CONFIG_SECURITY
1447
1448static struct security_hook_list capability_hooks[] __lsm_ro_after_init = {
1449 LSM_HOOK_INIT(capable, cap_capable),
1450 LSM_HOOK_INIT(settime, cap_settime),
1451 LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check),
1452 LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme),
1453 LSM_HOOK_INIT(capget, cap_capget),
1454 LSM_HOOK_INIT(capset, cap_capset),
1455 LSM_HOOK_INIT(bprm_creds_from_file, cap_bprm_creds_from_file),
1456 LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv),
1457 LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv),
1458 LSM_HOOK_INIT(inode_getsecurity, cap_inode_getsecurity),
1459 LSM_HOOK_INIT(mmap_addr, cap_mmap_addr),
1460 LSM_HOOK_INIT(mmap_file, cap_mmap_file),
1461 LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid),
1462 LSM_HOOK_INIT(task_prctl, cap_task_prctl),
1463 LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler),
1464 LSM_HOOK_INIT(task_setioprio, cap_task_setioprio),
1465 LSM_HOOK_INIT(task_setnice, cap_task_setnice),
1466 LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory),
1467};
1468
1469static int __init capability_init(void)
1470{
1471 security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks),
1472 "capability");
1473 return 0;
1474}
1475
1476DEFINE_LSM(capability) = {
1477 .name = "capability",
1478 .order = LSM_ORDER_FIRST,
1479 .init = capability_init,
1480};
1481
1482#endif /* CONFIG_SECURITY */
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* Common capabilities, needed by capability.o.
3 */
4
5#include <linux/capability.h>
6#include <linux/audit.h>
7#include <linux/init.h>
8#include <linux/kernel.h>
9#include <linux/lsm_hooks.h>
10#include <linux/file.h>
11#include <linux/mm.h>
12#include <linux/mman.h>
13#include <linux/pagemap.h>
14#include <linux/swap.h>
15#include <linux/skbuff.h>
16#include <linux/netlink.h>
17#include <linux/ptrace.h>
18#include <linux/xattr.h>
19#include <linux/hugetlb.h>
20#include <linux/mount.h>
21#include <linux/sched.h>
22#include <linux/prctl.h>
23#include <linux/securebits.h>
24#include <linux/user_namespace.h>
25#include <linux/binfmts.h>
26#include <linux/personality.h>
27
28/*
29 * If a non-root user executes a setuid-root binary in
30 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
31 * However if fE is also set, then the intent is for only
32 * the file capabilities to be applied, and the setuid-root
33 * bit is left on either to change the uid (plausible) or
34 * to get full privilege on a kernel without file capabilities
35 * support. So in that case we do not raise capabilities.
36 *
37 * Warn if that happens, once per boot.
38 */
39static void warn_setuid_and_fcaps_mixed(const char *fname)
40{
41 static int warned;
42 if (!warned) {
43 printk(KERN_INFO "warning: `%s' has both setuid-root and"
44 " effective capabilities. Therefore not raising all"
45 " capabilities.\n", fname);
46 warned = 1;
47 }
48}
49
50/**
51 * cap_capable - Determine whether a task has a particular effective capability
52 * @cred: The credentials to use
53 * @ns: The user namespace in which we need the capability
54 * @cap: The capability to check for
55 * @opts: Bitmask of options defined in include/linux/security.h
56 *
57 * Determine whether the nominated task has the specified capability amongst
58 * its effective set, returning 0 if it does, -ve if it does not.
59 *
60 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
61 * and has_capability() functions. That is, it has the reverse semantics:
62 * cap_has_capability() returns 0 when a task has a capability, but the
63 * kernel's capable() and has_capability() returns 1 for this case.
64 */
65int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
66 int cap, unsigned int opts)
67{
68 struct user_namespace *ns = targ_ns;
69
70 /* See if cred has the capability in the target user namespace
71 * by examining the target user namespace and all of the target
72 * user namespace's parents.
73 */
74 for (;;) {
75 /* Do we have the necessary capabilities? */
76 if (ns == cred->user_ns)
77 return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
78
79 /*
80 * If we're already at a lower level than we're looking for,
81 * we're done searching.
82 */
83 if (ns->level <= cred->user_ns->level)
84 return -EPERM;
85
86 /*
87 * The owner of the user namespace in the parent of the
88 * user namespace has all caps.
89 */
90 if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid))
91 return 0;
92
93 /*
94 * If you have a capability in a parent user ns, then you have
95 * it over all children user namespaces as well.
96 */
97 ns = ns->parent;
98 }
99
100 /* We never get here */
101}
102
103/**
104 * cap_settime - Determine whether the current process may set the system clock
105 * @ts: The time to set
106 * @tz: The timezone to set
107 *
108 * Determine whether the current process may set the system clock and timezone
109 * information, returning 0 if permission granted, -ve if denied.
110 */
111int cap_settime(const struct timespec64 *ts, const struct timezone *tz)
112{
113 if (!capable(CAP_SYS_TIME))
114 return -EPERM;
115 return 0;
116}
117
118/**
119 * cap_ptrace_access_check - Determine whether the current process may access
120 * another
121 * @child: The process to be accessed
122 * @mode: The mode of attachment.
123 *
124 * If we are in the same or an ancestor user_ns and have all the target
125 * task's capabilities, then ptrace access is allowed.
126 * If we have the ptrace capability to the target user_ns, then ptrace
127 * access is allowed.
128 * Else denied.
129 *
130 * Determine whether a process may access another, returning 0 if permission
131 * granted, -ve if denied.
132 */
133int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
134{
135 int ret = 0;
136 const struct cred *cred, *child_cred;
137 const kernel_cap_t *caller_caps;
138
139 rcu_read_lock();
140 cred = current_cred();
141 child_cred = __task_cred(child);
142 if (mode & PTRACE_MODE_FSCREDS)
143 caller_caps = &cred->cap_effective;
144 else
145 caller_caps = &cred->cap_permitted;
146 if (cred->user_ns == child_cred->user_ns &&
147 cap_issubset(child_cred->cap_permitted, *caller_caps))
148 goto out;
149 if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
150 goto out;
151 ret = -EPERM;
152out:
153 rcu_read_unlock();
154 return ret;
155}
156
157/**
158 * cap_ptrace_traceme - Determine whether another process may trace the current
159 * @parent: The task proposed to be the tracer
160 *
161 * If parent is in the same or an ancestor user_ns and has all current's
162 * capabilities, then ptrace access is allowed.
163 * If parent has the ptrace capability to current's user_ns, then ptrace
164 * access is allowed.
165 * Else denied.
166 *
167 * Determine whether the nominated task is permitted to trace the current
168 * process, returning 0 if permission is granted, -ve if denied.
169 */
170int cap_ptrace_traceme(struct task_struct *parent)
171{
172 int ret = 0;
173 const struct cred *cred, *child_cred;
174
175 rcu_read_lock();
176 cred = __task_cred(parent);
177 child_cred = current_cred();
178 if (cred->user_ns == child_cred->user_ns &&
179 cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
180 goto out;
181 if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
182 goto out;
183 ret = -EPERM;
184out:
185 rcu_read_unlock();
186 return ret;
187}
188
189/**
190 * cap_capget - Retrieve a task's capability sets
191 * @target: The task from which to retrieve the capability sets
192 * @effective: The place to record the effective set
193 * @inheritable: The place to record the inheritable set
194 * @permitted: The place to record the permitted set
195 *
196 * This function retrieves the capabilities of the nominated task and returns
197 * them to the caller.
198 */
199int cap_capget(struct task_struct *target, kernel_cap_t *effective,
200 kernel_cap_t *inheritable, kernel_cap_t *permitted)
201{
202 const struct cred *cred;
203
204 /* Derived from kernel/capability.c:sys_capget. */
205 rcu_read_lock();
206 cred = __task_cred(target);
207 *effective = cred->cap_effective;
208 *inheritable = cred->cap_inheritable;
209 *permitted = cred->cap_permitted;
210 rcu_read_unlock();
211 return 0;
212}
213
214/*
215 * Determine whether the inheritable capabilities are limited to the old
216 * permitted set. Returns 1 if they are limited, 0 if they are not.
217 */
218static inline int cap_inh_is_capped(void)
219{
220 /* they are so limited unless the current task has the CAP_SETPCAP
221 * capability
222 */
223 if (cap_capable(current_cred(), current_cred()->user_ns,
224 CAP_SETPCAP, CAP_OPT_NONE) == 0)
225 return 0;
226 return 1;
227}
228
229/**
230 * cap_capset - Validate and apply proposed changes to current's capabilities
231 * @new: The proposed new credentials; alterations should be made here
232 * @old: The current task's current credentials
233 * @effective: A pointer to the proposed new effective capabilities set
234 * @inheritable: A pointer to the proposed new inheritable capabilities set
235 * @permitted: A pointer to the proposed new permitted capabilities set
236 *
237 * This function validates and applies a proposed mass change to the current
238 * process's capability sets. The changes are made to the proposed new
239 * credentials, and assuming no error, will be committed by the caller of LSM.
240 */
241int cap_capset(struct cred *new,
242 const struct cred *old,
243 const kernel_cap_t *effective,
244 const kernel_cap_t *inheritable,
245 const kernel_cap_t *permitted)
246{
247 if (cap_inh_is_capped() &&
248 !cap_issubset(*inheritable,
249 cap_combine(old->cap_inheritable,
250 old->cap_permitted)))
251 /* incapable of using this inheritable set */
252 return -EPERM;
253
254 if (!cap_issubset(*inheritable,
255 cap_combine(old->cap_inheritable,
256 old->cap_bset)))
257 /* no new pI capabilities outside bounding set */
258 return -EPERM;
259
260 /* verify restrictions on target's new Permitted set */
261 if (!cap_issubset(*permitted, old->cap_permitted))
262 return -EPERM;
263
264 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
265 if (!cap_issubset(*effective, *permitted))
266 return -EPERM;
267
268 new->cap_effective = *effective;
269 new->cap_inheritable = *inheritable;
270 new->cap_permitted = *permitted;
271
272 /*
273 * Mask off ambient bits that are no longer both permitted and
274 * inheritable.
275 */
276 new->cap_ambient = cap_intersect(new->cap_ambient,
277 cap_intersect(*permitted,
278 *inheritable));
279 if (WARN_ON(!cap_ambient_invariant_ok(new)))
280 return -EINVAL;
281 return 0;
282}
283
284/**
285 * cap_inode_need_killpriv - Determine if inode change affects privileges
286 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
287 *
288 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
289 * affects the security markings on that inode, and if it is, should
290 * inode_killpriv() be invoked or the change rejected.
291 *
292 * Returns 1 if security.capability has a value, meaning inode_killpriv()
293 * is required, 0 otherwise, meaning inode_killpriv() is not required.
294 */
295int cap_inode_need_killpriv(struct dentry *dentry)
296{
297 struct inode *inode = d_backing_inode(dentry);
298 int error;
299
300 error = __vfs_getxattr(dentry, inode, XATTR_NAME_CAPS, NULL, 0);
301 return error > 0;
302}
303
304/**
305 * cap_inode_killpriv - Erase the security markings on an inode
306 * @dentry: The inode/dentry to alter
307 *
308 * Erase the privilege-enhancing security markings on an inode.
309 *
310 * Returns 0 if successful, -ve on error.
311 */
312int cap_inode_killpriv(struct dentry *dentry)
313{
314 int error;
315
316 error = __vfs_removexattr(dentry, XATTR_NAME_CAPS);
317 if (error == -EOPNOTSUPP)
318 error = 0;
319 return error;
320}
321
322static bool rootid_owns_currentns(kuid_t kroot)
323{
324 struct user_namespace *ns;
325
326 if (!uid_valid(kroot))
327 return false;
328
329 for (ns = current_user_ns(); ; ns = ns->parent) {
330 if (from_kuid(ns, kroot) == 0)
331 return true;
332 if (ns == &init_user_ns)
333 break;
334 }
335
336 return false;
337}
338
339static __u32 sansflags(__u32 m)
340{
341 return m & ~VFS_CAP_FLAGS_EFFECTIVE;
342}
343
344static bool is_v2header(size_t size, const struct vfs_cap_data *cap)
345{
346 if (size != XATTR_CAPS_SZ_2)
347 return false;
348 return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_2;
349}
350
351static bool is_v3header(size_t size, const struct vfs_cap_data *cap)
352{
353 if (size != XATTR_CAPS_SZ_3)
354 return false;
355 return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_3;
356}
357
358/*
359 * getsecurity: We are called for security.* before any attempt to read the
360 * xattr from the inode itself.
361 *
362 * This gives us a chance to read the on-disk value and convert it. If we
363 * return -EOPNOTSUPP, then vfs_getxattr() will call the i_op handler.
364 *
365 * Note we are not called by vfs_getxattr_alloc(), but that is only called
366 * by the integrity subsystem, which really wants the unconverted values -
367 * so that's good.
368 */
369int cap_inode_getsecurity(struct inode *inode, const char *name, void **buffer,
370 bool alloc)
371{
372 int size, ret;
373 kuid_t kroot;
374 uid_t root, mappedroot;
375 char *tmpbuf = NULL;
376 struct vfs_cap_data *cap;
377 struct vfs_ns_cap_data *nscap;
378 struct dentry *dentry;
379 struct user_namespace *fs_ns;
380
381 if (strcmp(name, "capability") != 0)
382 return -EOPNOTSUPP;
383
384 dentry = d_find_any_alias(inode);
385 if (!dentry)
386 return -EINVAL;
387
388 size = sizeof(struct vfs_ns_cap_data);
389 ret = (int) vfs_getxattr_alloc(dentry, XATTR_NAME_CAPS,
390 &tmpbuf, size, GFP_NOFS);
391 dput(dentry);
392
393 if (ret < 0)
394 return ret;
395
396 fs_ns = inode->i_sb->s_user_ns;
397 cap = (struct vfs_cap_data *) tmpbuf;
398 if (is_v2header((size_t) ret, cap)) {
399 /* If this is sizeof(vfs_cap_data) then we're ok with the
400 * on-disk value, so return that. */
401 if (alloc)
402 *buffer = tmpbuf;
403 else
404 kfree(tmpbuf);
405 return ret;
406 } else if (!is_v3header((size_t) ret, cap)) {
407 kfree(tmpbuf);
408 return -EINVAL;
409 }
410
411 nscap = (struct vfs_ns_cap_data *) tmpbuf;
412 root = le32_to_cpu(nscap->rootid);
413 kroot = make_kuid(fs_ns, root);
414
415 /* If the root kuid maps to a valid uid in current ns, then return
416 * this as a nscap. */
417 mappedroot = from_kuid(current_user_ns(), kroot);
418 if (mappedroot != (uid_t)-1 && mappedroot != (uid_t)0) {
419 if (alloc) {
420 *buffer = tmpbuf;
421 nscap->rootid = cpu_to_le32(mappedroot);
422 } else
423 kfree(tmpbuf);
424 return size;
425 }
426
427 if (!rootid_owns_currentns(kroot)) {
428 kfree(tmpbuf);
429 return -EOPNOTSUPP;
430 }
431
432 /* This comes from a parent namespace. Return as a v2 capability */
433 size = sizeof(struct vfs_cap_data);
434 if (alloc) {
435 *buffer = kmalloc(size, GFP_ATOMIC);
436 if (*buffer) {
437 struct vfs_cap_data *cap = *buffer;
438 __le32 nsmagic, magic;
439 magic = VFS_CAP_REVISION_2;
440 nsmagic = le32_to_cpu(nscap->magic_etc);
441 if (nsmagic & VFS_CAP_FLAGS_EFFECTIVE)
442 magic |= VFS_CAP_FLAGS_EFFECTIVE;
443 memcpy(&cap->data, &nscap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
444 cap->magic_etc = cpu_to_le32(magic);
445 } else {
446 size = -ENOMEM;
447 }
448 }
449 kfree(tmpbuf);
450 return size;
451}
452
453static kuid_t rootid_from_xattr(const void *value, size_t size,
454 struct user_namespace *task_ns)
455{
456 const struct vfs_ns_cap_data *nscap = value;
457 uid_t rootid = 0;
458
459 if (size == XATTR_CAPS_SZ_3)
460 rootid = le32_to_cpu(nscap->rootid);
461
462 return make_kuid(task_ns, rootid);
463}
464
465static bool validheader(size_t size, const struct vfs_cap_data *cap)
466{
467 return is_v2header(size, cap) || is_v3header(size, cap);
468}
469
470/*
471 * User requested a write of security.capability. If needed, update the
472 * xattr to change from v2 to v3, or to fixup the v3 rootid.
473 *
474 * If all is ok, we return the new size, on error return < 0.
475 */
476int cap_convert_nscap(struct dentry *dentry, void **ivalue, size_t size)
477{
478 struct vfs_ns_cap_data *nscap;
479 uid_t nsrootid;
480 const struct vfs_cap_data *cap = *ivalue;
481 __u32 magic, nsmagic;
482 struct inode *inode = d_backing_inode(dentry);
483 struct user_namespace *task_ns = current_user_ns(),
484 *fs_ns = inode->i_sb->s_user_ns;
485 kuid_t rootid;
486 size_t newsize;
487
488 if (!*ivalue)
489 return -EINVAL;
490 if (!validheader(size, cap))
491 return -EINVAL;
492 if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP))
493 return -EPERM;
494 if (size == XATTR_CAPS_SZ_2)
495 if (ns_capable(inode->i_sb->s_user_ns, CAP_SETFCAP))
496 /* user is privileged, just write the v2 */
497 return size;
498
499 rootid = rootid_from_xattr(*ivalue, size, task_ns);
500 if (!uid_valid(rootid))
501 return -EINVAL;
502
503 nsrootid = from_kuid(fs_ns, rootid);
504 if (nsrootid == -1)
505 return -EINVAL;
506
507 newsize = sizeof(struct vfs_ns_cap_data);
508 nscap = kmalloc(newsize, GFP_ATOMIC);
509 if (!nscap)
510 return -ENOMEM;
511 nscap->rootid = cpu_to_le32(nsrootid);
512 nsmagic = VFS_CAP_REVISION_3;
513 magic = le32_to_cpu(cap->magic_etc);
514 if (magic & VFS_CAP_FLAGS_EFFECTIVE)
515 nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
516 nscap->magic_etc = cpu_to_le32(nsmagic);
517 memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
518
519 kvfree(*ivalue);
520 *ivalue = nscap;
521 return newsize;
522}
523
524/*
525 * Calculate the new process capability sets from the capability sets attached
526 * to a file.
527 */
528static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
529 struct linux_binprm *bprm,
530 bool *effective,
531 bool *has_fcap)
532{
533 struct cred *new = bprm->cred;
534 unsigned i;
535 int ret = 0;
536
537 if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
538 *effective = true;
539
540 if (caps->magic_etc & VFS_CAP_REVISION_MASK)
541 *has_fcap = true;
542
543 CAP_FOR_EACH_U32(i) {
544 __u32 permitted = caps->permitted.cap[i];
545 __u32 inheritable = caps->inheritable.cap[i];
546
547 /*
548 * pP' = (X & fP) | (pI & fI)
549 * The addition of pA' is handled later.
550 */
551 new->cap_permitted.cap[i] =
552 (new->cap_bset.cap[i] & permitted) |
553 (new->cap_inheritable.cap[i] & inheritable);
554
555 if (permitted & ~new->cap_permitted.cap[i])
556 /* insufficient to execute correctly */
557 ret = -EPERM;
558 }
559
560 /*
561 * For legacy apps, with no internal support for recognizing they
562 * do not have enough capabilities, we return an error if they are
563 * missing some "forced" (aka file-permitted) capabilities.
564 */
565 return *effective ? ret : 0;
566}
567
568/*
569 * Extract the on-exec-apply capability sets for an executable file.
570 */
571int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
572{
573 struct inode *inode = d_backing_inode(dentry);
574 __u32 magic_etc;
575 unsigned tocopy, i;
576 int size;
577 struct vfs_ns_cap_data data, *nscaps = &data;
578 struct vfs_cap_data *caps = (struct vfs_cap_data *) &data;
579 kuid_t rootkuid;
580 struct user_namespace *fs_ns;
581
582 memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
583
584 if (!inode)
585 return -ENODATA;
586
587 fs_ns = inode->i_sb->s_user_ns;
588 size = __vfs_getxattr((struct dentry *)dentry, inode,
589 XATTR_NAME_CAPS, &data, XATTR_CAPS_SZ);
590 if (size == -ENODATA || size == -EOPNOTSUPP)
591 /* no data, that's ok */
592 return -ENODATA;
593
594 if (size < 0)
595 return size;
596
597 if (size < sizeof(magic_etc))
598 return -EINVAL;
599
600 cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps->magic_etc);
601
602 rootkuid = make_kuid(fs_ns, 0);
603 switch (magic_etc & VFS_CAP_REVISION_MASK) {
604 case VFS_CAP_REVISION_1:
605 if (size != XATTR_CAPS_SZ_1)
606 return -EINVAL;
607 tocopy = VFS_CAP_U32_1;
608 break;
609 case VFS_CAP_REVISION_2:
610 if (size != XATTR_CAPS_SZ_2)
611 return -EINVAL;
612 tocopy = VFS_CAP_U32_2;
613 break;
614 case VFS_CAP_REVISION_3:
615 if (size != XATTR_CAPS_SZ_3)
616 return -EINVAL;
617 tocopy = VFS_CAP_U32_3;
618 rootkuid = make_kuid(fs_ns, le32_to_cpu(nscaps->rootid));
619 break;
620
621 default:
622 return -EINVAL;
623 }
624 /* Limit the caps to the mounter of the filesystem
625 * or the more limited uid specified in the xattr.
626 */
627 if (!rootid_owns_currentns(rootkuid))
628 return -ENODATA;
629
630 CAP_FOR_EACH_U32(i) {
631 if (i >= tocopy)
632 break;
633 cpu_caps->permitted.cap[i] = le32_to_cpu(caps->data[i].permitted);
634 cpu_caps->inheritable.cap[i] = le32_to_cpu(caps->data[i].inheritable);
635 }
636
637 cpu_caps->permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
638 cpu_caps->inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
639
640 cpu_caps->rootid = rootkuid;
641
642 return 0;
643}
644
645/*
646 * Attempt to get the on-exec apply capability sets for an executable file from
647 * its xattrs and, if present, apply them to the proposed credentials being
648 * constructed by execve().
649 */
650static int get_file_caps(struct linux_binprm *bprm, struct file *file,
651 bool *effective, bool *has_fcap)
652{
653 int rc = 0;
654 struct cpu_vfs_cap_data vcaps;
655
656 cap_clear(bprm->cred->cap_permitted);
657
658 if (!file_caps_enabled)
659 return 0;
660
661 if (!mnt_may_suid(file->f_path.mnt))
662 return 0;
663
664 /*
665 * This check is redundant with mnt_may_suid() but is kept to make
666 * explicit that capability bits are limited to s_user_ns and its
667 * descendants.
668 */
669 if (!current_in_userns(file->f_path.mnt->mnt_sb->s_user_ns))
670 return 0;
671
672 rc = get_vfs_caps_from_disk(file->f_path.dentry, &vcaps);
673 if (rc < 0) {
674 if (rc == -EINVAL)
675 printk(KERN_NOTICE "Invalid argument reading file caps for %s\n",
676 bprm->filename);
677 else if (rc == -ENODATA)
678 rc = 0;
679 goto out;
680 }
681
682 rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_fcap);
683
684out:
685 if (rc)
686 cap_clear(bprm->cred->cap_permitted);
687
688 return rc;
689}
690
691static inline bool root_privileged(void) { return !issecure(SECURE_NOROOT); }
692
693static inline bool __is_real(kuid_t uid, struct cred *cred)
694{ return uid_eq(cred->uid, uid); }
695
696static inline bool __is_eff(kuid_t uid, struct cred *cred)
697{ return uid_eq(cred->euid, uid); }
698
699static inline bool __is_suid(kuid_t uid, struct cred *cred)
700{ return !__is_real(uid, cred) && __is_eff(uid, cred); }
701
702/*
703 * handle_privileged_root - Handle case of privileged root
704 * @bprm: The execution parameters, including the proposed creds
705 * @has_fcap: Are any file capabilities set?
706 * @effective: Do we have effective root privilege?
707 * @root_uid: This namespace' root UID WRT initial USER namespace
708 *
709 * Handle the case where root is privileged and hasn't been neutered by
710 * SECURE_NOROOT. If file capabilities are set, they won't be combined with
711 * set UID root and nothing is changed. If we are root, cap_permitted is
712 * updated. If we have become set UID root, the effective bit is set.
713 */
714static void handle_privileged_root(struct linux_binprm *bprm, bool has_fcap,
715 bool *effective, kuid_t root_uid)
716{
717 const struct cred *old = current_cred();
718 struct cred *new = bprm->cred;
719
720 if (!root_privileged())
721 return;
722 /*
723 * If the legacy file capability is set, then don't set privs
724 * for a setuid root binary run by a non-root user. Do set it
725 * for a root user just to cause least surprise to an admin.
726 */
727 if (has_fcap && __is_suid(root_uid, new)) {
728 warn_setuid_and_fcaps_mixed(bprm->filename);
729 return;
730 }
731 /*
732 * To support inheritance of root-permissions and suid-root
733 * executables under compatibility mode, we override the
734 * capability sets for the file.
735 */
736 if (__is_eff(root_uid, new) || __is_real(root_uid, new)) {
737 /* pP' = (cap_bset & ~0) | (pI & ~0) */
738 new->cap_permitted = cap_combine(old->cap_bset,
739 old->cap_inheritable);
740 }
741 /*
742 * If only the real uid is 0, we do not set the effective bit.
743 */
744 if (__is_eff(root_uid, new))
745 *effective = true;
746}
747
748#define __cap_gained(field, target, source) \
749 !cap_issubset(target->cap_##field, source->cap_##field)
750#define __cap_grew(target, source, cred) \
751 !cap_issubset(cred->cap_##target, cred->cap_##source)
752#define __cap_full(field, cred) \
753 cap_issubset(CAP_FULL_SET, cred->cap_##field)
754
755static inline bool __is_setuid(struct cred *new, const struct cred *old)
756{ return !uid_eq(new->euid, old->uid); }
757
758static inline bool __is_setgid(struct cred *new, const struct cred *old)
759{ return !gid_eq(new->egid, old->gid); }
760
761/*
762 * 1) Audit candidate if current->cap_effective is set
763 *
764 * We do not bother to audit if 3 things are true:
765 * 1) cap_effective has all caps
766 * 2) we became root *OR* are were already root
767 * 3) root is supposed to have all caps (SECURE_NOROOT)
768 * Since this is just a normal root execing a process.
769 *
770 * Number 1 above might fail if you don't have a full bset, but I think
771 * that is interesting information to audit.
772 *
773 * A number of other conditions require logging:
774 * 2) something prevented setuid root getting all caps
775 * 3) non-setuid root gets fcaps
776 * 4) non-setuid root gets ambient
777 */
778static inline bool nonroot_raised_pE(struct cred *new, const struct cred *old,
779 kuid_t root, bool has_fcap)
780{
781 bool ret = false;
782
783 if ((__cap_grew(effective, ambient, new) &&
784 !(__cap_full(effective, new) &&
785 (__is_eff(root, new) || __is_real(root, new)) &&
786 root_privileged())) ||
787 (root_privileged() &&
788 __is_suid(root, new) &&
789 !__cap_full(effective, new)) ||
790 (!__is_setuid(new, old) &&
791 ((has_fcap &&
792 __cap_gained(permitted, new, old)) ||
793 __cap_gained(ambient, new, old))))
794
795 ret = true;
796
797 return ret;
798}
799
800/**
801 * cap_bprm_creds_from_file - Set up the proposed credentials for execve().
802 * @bprm: The execution parameters, including the proposed creds
803 * @file: The file to pull the credentials from
804 *
805 * Set up the proposed credentials for a new execution context being
806 * constructed by execve(). The proposed creds in @bprm->cred is altered,
807 * which won't take effect immediately. Returns 0 if successful, -ve on error.
808 */
809int cap_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
810{
811 /* Process setpcap binaries and capabilities for uid 0 */
812 const struct cred *old = current_cred();
813 struct cred *new = bprm->cred;
814 bool effective = false, has_fcap = false, is_setid;
815 int ret;
816 kuid_t root_uid;
817
818 if (WARN_ON(!cap_ambient_invariant_ok(old)))
819 return -EPERM;
820
821 ret = get_file_caps(bprm, file, &effective, &has_fcap);
822 if (ret < 0)
823 return ret;
824
825 root_uid = make_kuid(new->user_ns, 0);
826
827 handle_privileged_root(bprm, has_fcap, &effective, root_uid);
828
829 /* if we have fs caps, clear dangerous personality flags */
830 if (__cap_gained(permitted, new, old))
831 bprm->per_clear |= PER_CLEAR_ON_SETID;
832
833 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
834 * credentials unless they have the appropriate permit.
835 *
836 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
837 */
838 is_setid = __is_setuid(new, old) || __is_setgid(new, old);
839
840 if ((is_setid || __cap_gained(permitted, new, old)) &&
841 ((bprm->unsafe & ~LSM_UNSAFE_PTRACE) ||
842 !ptracer_capable(current, new->user_ns))) {
843 /* downgrade; they get no more than they had, and maybe less */
844 if (!ns_capable(new->user_ns, CAP_SETUID) ||
845 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
846 new->euid = new->uid;
847 new->egid = new->gid;
848 }
849 new->cap_permitted = cap_intersect(new->cap_permitted,
850 old->cap_permitted);
851 }
852
853 new->suid = new->fsuid = new->euid;
854 new->sgid = new->fsgid = new->egid;
855
856 /* File caps or setid cancels ambient. */
857 if (has_fcap || is_setid)
858 cap_clear(new->cap_ambient);
859
860 /*
861 * Now that we've computed pA', update pP' to give:
862 * pP' = (X & fP) | (pI & fI) | pA'
863 */
864 new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient);
865
866 /*
867 * Set pE' = (fE ? pP' : pA'). Because pA' is zero if fE is set,
868 * this is the same as pE' = (fE ? pP' : 0) | pA'.
869 */
870 if (effective)
871 new->cap_effective = new->cap_permitted;
872 else
873 new->cap_effective = new->cap_ambient;
874
875 if (WARN_ON(!cap_ambient_invariant_ok(new)))
876 return -EPERM;
877
878 if (nonroot_raised_pE(new, old, root_uid, has_fcap)) {
879 ret = audit_log_bprm_fcaps(bprm, new, old);
880 if (ret < 0)
881 return ret;
882 }
883
884 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
885
886 if (WARN_ON(!cap_ambient_invariant_ok(new)))
887 return -EPERM;
888
889 /* Check for privilege-elevated exec. */
890 if (is_setid ||
891 (!__is_real(root_uid, new) &&
892 (effective ||
893 __cap_grew(permitted, ambient, new))))
894 bprm->secureexec = 1;
895
896 return 0;
897}
898
899/**
900 * cap_inode_setxattr - Determine whether an xattr may be altered
901 * @dentry: The inode/dentry being altered
902 * @name: The name of the xattr to be changed
903 * @value: The value that the xattr will be changed to
904 * @size: The size of value
905 * @flags: The replacement flag
906 *
907 * Determine whether an xattr may be altered or set on an inode, returning 0 if
908 * permission is granted, -ve if denied.
909 *
910 * This is used to make sure security xattrs don't get updated or set by those
911 * who aren't privileged to do so.
912 */
913int cap_inode_setxattr(struct dentry *dentry, const char *name,
914 const void *value, size_t size, int flags)
915{
916 struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
917
918 /* Ignore non-security xattrs */
919 if (strncmp(name, XATTR_SECURITY_PREFIX,
920 XATTR_SECURITY_PREFIX_LEN) != 0)
921 return 0;
922
923 /*
924 * For XATTR_NAME_CAPS the check will be done in
925 * cap_convert_nscap(), called by setxattr()
926 */
927 if (strcmp(name, XATTR_NAME_CAPS) == 0)
928 return 0;
929
930 if (!ns_capable(user_ns, CAP_SYS_ADMIN))
931 return -EPERM;
932 return 0;
933}
934
935/**
936 * cap_inode_removexattr - Determine whether an xattr may be removed
937 * @dentry: The inode/dentry being altered
938 * @name: The name of the xattr to be changed
939 *
940 * Determine whether an xattr may be removed from an inode, returning 0 if
941 * permission is granted, -ve if denied.
942 *
943 * This is used to make sure security xattrs don't get removed by those who
944 * aren't privileged to remove them.
945 */
946int cap_inode_removexattr(struct dentry *dentry, const char *name)
947{
948 struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
949
950 /* Ignore non-security xattrs */
951 if (strncmp(name, XATTR_SECURITY_PREFIX,
952 XATTR_SECURITY_PREFIX_LEN) != 0)
953 return 0;
954
955 if (strcmp(name, XATTR_NAME_CAPS) == 0) {
956 /* security.capability gets namespaced */
957 struct inode *inode = d_backing_inode(dentry);
958 if (!inode)
959 return -EINVAL;
960 if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP))
961 return -EPERM;
962 return 0;
963 }
964
965 if (!ns_capable(user_ns, CAP_SYS_ADMIN))
966 return -EPERM;
967 return 0;
968}
969
970/*
971 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
972 * a process after a call to setuid, setreuid, or setresuid.
973 *
974 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
975 * {r,e,s}uid != 0, the permitted and effective capabilities are
976 * cleared.
977 *
978 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
979 * capabilities of the process are cleared.
980 *
981 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
982 * capabilities are set to the permitted capabilities.
983 *
984 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
985 * never happen.
986 *
987 * -astor
988 *
989 * cevans - New behaviour, Oct '99
990 * A process may, via prctl(), elect to keep its capabilities when it
991 * calls setuid() and switches away from uid==0. Both permitted and
992 * effective sets will be retained.
993 * Without this change, it was impossible for a daemon to drop only some
994 * of its privilege. The call to setuid(!=0) would drop all privileges!
995 * Keeping uid 0 is not an option because uid 0 owns too many vital
996 * files..
997 * Thanks to Olaf Kirch and Peter Benie for spotting this.
998 */
999static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
1000{
1001 kuid_t root_uid = make_kuid(old->user_ns, 0);
1002
1003 if ((uid_eq(old->uid, root_uid) ||
1004 uid_eq(old->euid, root_uid) ||
1005 uid_eq(old->suid, root_uid)) &&
1006 (!uid_eq(new->uid, root_uid) &&
1007 !uid_eq(new->euid, root_uid) &&
1008 !uid_eq(new->suid, root_uid))) {
1009 if (!issecure(SECURE_KEEP_CAPS)) {
1010 cap_clear(new->cap_permitted);
1011 cap_clear(new->cap_effective);
1012 }
1013
1014 /*
1015 * Pre-ambient programs expect setresuid to nonroot followed
1016 * by exec to drop capabilities. We should make sure that
1017 * this remains the case.
1018 */
1019 cap_clear(new->cap_ambient);
1020 }
1021 if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
1022 cap_clear(new->cap_effective);
1023 if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
1024 new->cap_effective = new->cap_permitted;
1025}
1026
1027/**
1028 * cap_task_fix_setuid - Fix up the results of setuid() call
1029 * @new: The proposed credentials
1030 * @old: The current task's current credentials
1031 * @flags: Indications of what has changed
1032 *
1033 * Fix up the results of setuid() call before the credential changes are
1034 * actually applied, returning 0 to grant the changes, -ve to deny them.
1035 */
1036int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
1037{
1038 switch (flags) {
1039 case LSM_SETID_RE:
1040 case LSM_SETID_ID:
1041 case LSM_SETID_RES:
1042 /* juggle the capabilities to follow [RES]UID changes unless
1043 * otherwise suppressed */
1044 if (!issecure(SECURE_NO_SETUID_FIXUP))
1045 cap_emulate_setxuid(new, old);
1046 break;
1047
1048 case LSM_SETID_FS:
1049 /* juggle the capabilties to follow FSUID changes, unless
1050 * otherwise suppressed
1051 *
1052 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
1053 * if not, we might be a bit too harsh here.
1054 */
1055 if (!issecure(SECURE_NO_SETUID_FIXUP)) {
1056 kuid_t root_uid = make_kuid(old->user_ns, 0);
1057 if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
1058 new->cap_effective =
1059 cap_drop_fs_set(new->cap_effective);
1060
1061 if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
1062 new->cap_effective =
1063 cap_raise_fs_set(new->cap_effective,
1064 new->cap_permitted);
1065 }
1066 break;
1067
1068 default:
1069 return -EINVAL;
1070 }
1071
1072 return 0;
1073}
1074
1075/*
1076 * Rationale: code calling task_setscheduler, task_setioprio, and
1077 * task_setnice, assumes that
1078 * . if capable(cap_sys_nice), then those actions should be allowed
1079 * . if not capable(cap_sys_nice), but acting on your own processes,
1080 * then those actions should be allowed
1081 * This is insufficient now since you can call code without suid, but
1082 * yet with increased caps.
1083 * So we check for increased caps on the target process.
1084 */
1085static int cap_safe_nice(struct task_struct *p)
1086{
1087 int is_subset, ret = 0;
1088
1089 rcu_read_lock();
1090 is_subset = cap_issubset(__task_cred(p)->cap_permitted,
1091 current_cred()->cap_permitted);
1092 if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
1093 ret = -EPERM;
1094 rcu_read_unlock();
1095
1096 return ret;
1097}
1098
1099/**
1100 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
1101 * @p: The task to affect
1102 *
1103 * Detemine if the requested scheduler policy change is permitted for the
1104 * specified task, returning 0 if permission is granted, -ve if denied.
1105 */
1106int cap_task_setscheduler(struct task_struct *p)
1107{
1108 return cap_safe_nice(p);
1109}
1110
1111/**
1112 * cap_task_ioprio - Detemine if I/O priority change is permitted
1113 * @p: The task to affect
1114 * @ioprio: The I/O priority to set
1115 *
1116 * Detemine if the requested I/O priority change is permitted for the specified
1117 * task, returning 0 if permission is granted, -ve if denied.
1118 */
1119int cap_task_setioprio(struct task_struct *p, int ioprio)
1120{
1121 return cap_safe_nice(p);
1122}
1123
1124/**
1125 * cap_task_ioprio - Detemine if task priority change is permitted
1126 * @p: The task to affect
1127 * @nice: The nice value to set
1128 *
1129 * Detemine if the requested task priority change is permitted for the
1130 * specified task, returning 0 if permission is granted, -ve if denied.
1131 */
1132int cap_task_setnice(struct task_struct *p, int nice)
1133{
1134 return cap_safe_nice(p);
1135}
1136
1137/*
1138 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
1139 * the current task's bounding set. Returns 0 on success, -ve on error.
1140 */
1141static int cap_prctl_drop(unsigned long cap)
1142{
1143 struct cred *new;
1144
1145 if (!ns_capable(current_user_ns(), CAP_SETPCAP))
1146 return -EPERM;
1147 if (!cap_valid(cap))
1148 return -EINVAL;
1149
1150 new = prepare_creds();
1151 if (!new)
1152 return -ENOMEM;
1153 cap_lower(new->cap_bset, cap);
1154 return commit_creds(new);
1155}
1156
1157/**
1158 * cap_task_prctl - Implement process control functions for this security module
1159 * @option: The process control function requested
1160 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
1161 *
1162 * Allow process control functions (sys_prctl()) to alter capabilities; may
1163 * also deny access to other functions not otherwise implemented here.
1164 *
1165 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
1166 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
1167 * modules will consider performing the function.
1168 */
1169int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1170 unsigned long arg4, unsigned long arg5)
1171{
1172 const struct cred *old = current_cred();
1173 struct cred *new;
1174
1175 switch (option) {
1176 case PR_CAPBSET_READ:
1177 if (!cap_valid(arg2))
1178 return -EINVAL;
1179 return !!cap_raised(old->cap_bset, arg2);
1180
1181 case PR_CAPBSET_DROP:
1182 return cap_prctl_drop(arg2);
1183
1184 /*
1185 * The next four prctl's remain to assist with transitioning a
1186 * system from legacy UID=0 based privilege (when filesystem
1187 * capabilities are not in use) to a system using filesystem
1188 * capabilities only - as the POSIX.1e draft intended.
1189 *
1190 * Note:
1191 *
1192 * PR_SET_SECUREBITS =
1193 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
1194 * | issecure_mask(SECURE_NOROOT)
1195 * | issecure_mask(SECURE_NOROOT_LOCKED)
1196 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
1197 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
1198 *
1199 * will ensure that the current process and all of its
1200 * children will be locked into a pure
1201 * capability-based-privilege environment.
1202 */
1203 case PR_SET_SECUREBITS:
1204 if ((((old->securebits & SECURE_ALL_LOCKS) >> 1)
1205 & (old->securebits ^ arg2)) /*[1]*/
1206 || ((old->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/
1207 || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
1208 || (cap_capable(current_cred(),
1209 current_cred()->user_ns,
1210 CAP_SETPCAP,
1211 CAP_OPT_NONE) != 0) /*[4]*/
1212 /*
1213 * [1] no changing of bits that are locked
1214 * [2] no unlocking of locks
1215 * [3] no setting of unsupported bits
1216 * [4] doing anything requires privilege (go read about
1217 * the "sendmail capabilities bug")
1218 */
1219 )
1220 /* cannot change a locked bit */
1221 return -EPERM;
1222
1223 new = prepare_creds();
1224 if (!new)
1225 return -ENOMEM;
1226 new->securebits = arg2;
1227 return commit_creds(new);
1228
1229 case PR_GET_SECUREBITS:
1230 return old->securebits;
1231
1232 case PR_GET_KEEPCAPS:
1233 return !!issecure(SECURE_KEEP_CAPS);
1234
1235 case PR_SET_KEEPCAPS:
1236 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
1237 return -EINVAL;
1238 if (issecure(SECURE_KEEP_CAPS_LOCKED))
1239 return -EPERM;
1240
1241 new = prepare_creds();
1242 if (!new)
1243 return -ENOMEM;
1244 if (arg2)
1245 new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
1246 else
1247 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
1248 return commit_creds(new);
1249
1250 case PR_CAP_AMBIENT:
1251 if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) {
1252 if (arg3 | arg4 | arg5)
1253 return -EINVAL;
1254
1255 new = prepare_creds();
1256 if (!new)
1257 return -ENOMEM;
1258 cap_clear(new->cap_ambient);
1259 return commit_creds(new);
1260 }
1261
1262 if (((!cap_valid(arg3)) | arg4 | arg5))
1263 return -EINVAL;
1264
1265 if (arg2 == PR_CAP_AMBIENT_IS_SET) {
1266 return !!cap_raised(current_cred()->cap_ambient, arg3);
1267 } else if (arg2 != PR_CAP_AMBIENT_RAISE &&
1268 arg2 != PR_CAP_AMBIENT_LOWER) {
1269 return -EINVAL;
1270 } else {
1271 if (arg2 == PR_CAP_AMBIENT_RAISE &&
1272 (!cap_raised(current_cred()->cap_permitted, arg3) ||
1273 !cap_raised(current_cred()->cap_inheritable,
1274 arg3) ||
1275 issecure(SECURE_NO_CAP_AMBIENT_RAISE)))
1276 return -EPERM;
1277
1278 new = prepare_creds();
1279 if (!new)
1280 return -ENOMEM;
1281 if (arg2 == PR_CAP_AMBIENT_RAISE)
1282 cap_raise(new->cap_ambient, arg3);
1283 else
1284 cap_lower(new->cap_ambient, arg3);
1285 return commit_creds(new);
1286 }
1287
1288 default:
1289 /* No functionality available - continue with default */
1290 return -ENOSYS;
1291 }
1292}
1293
1294/**
1295 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
1296 * @mm: The VM space in which the new mapping is to be made
1297 * @pages: The size of the mapping
1298 *
1299 * Determine whether the allocation of a new virtual mapping by the current
1300 * task is permitted, returning 1 if permission is granted, 0 if not.
1301 */
1302int cap_vm_enough_memory(struct mm_struct *mm, long pages)
1303{
1304 int cap_sys_admin = 0;
1305
1306 if (cap_capable(current_cred(), &init_user_ns,
1307 CAP_SYS_ADMIN, CAP_OPT_NOAUDIT) == 0)
1308 cap_sys_admin = 1;
1309
1310 return cap_sys_admin;
1311}
1312
1313/*
1314 * cap_mmap_addr - check if able to map given addr
1315 * @addr: address attempting to be mapped
1316 *
1317 * If the process is attempting to map memory below dac_mmap_min_addr they need
1318 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
1319 * capability security module. Returns 0 if this mapping should be allowed
1320 * -EPERM if not.
1321 */
1322int cap_mmap_addr(unsigned long addr)
1323{
1324 int ret = 0;
1325
1326 if (addr < dac_mmap_min_addr) {
1327 ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
1328 CAP_OPT_NONE);
1329 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
1330 if (ret == 0)
1331 current->flags |= PF_SUPERPRIV;
1332 }
1333 return ret;
1334}
1335
1336int cap_mmap_file(struct file *file, unsigned long reqprot,
1337 unsigned long prot, unsigned long flags)
1338{
1339 return 0;
1340}
1341
1342#ifdef CONFIG_SECURITY
1343
1344static struct security_hook_list capability_hooks[] __lsm_ro_after_init = {
1345 LSM_HOOK_INIT(capable, cap_capable),
1346 LSM_HOOK_INIT(settime, cap_settime),
1347 LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check),
1348 LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme),
1349 LSM_HOOK_INIT(capget, cap_capget),
1350 LSM_HOOK_INIT(capset, cap_capset),
1351 LSM_HOOK_INIT(bprm_creds_from_file, cap_bprm_creds_from_file),
1352 LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv),
1353 LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv),
1354 LSM_HOOK_INIT(inode_getsecurity, cap_inode_getsecurity),
1355 LSM_HOOK_INIT(mmap_addr, cap_mmap_addr),
1356 LSM_HOOK_INIT(mmap_file, cap_mmap_file),
1357 LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid),
1358 LSM_HOOK_INIT(task_prctl, cap_task_prctl),
1359 LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler),
1360 LSM_HOOK_INIT(task_setioprio, cap_task_setioprio),
1361 LSM_HOOK_INIT(task_setnice, cap_task_setnice),
1362 LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory),
1363};
1364
1365static int __init capability_init(void)
1366{
1367 security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks),
1368 "capability");
1369 return 0;
1370}
1371
1372DEFINE_LSM(capability) = {
1373 .name = "capability",
1374 .order = LSM_ORDER_FIRST,
1375 .init = capability_init,
1376};
1377
1378#endif /* CONFIG_SECURITY */