Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* Common capabilities, needed by capability.o.
3 */
4
5#include <linux/capability.h>
6#include <linux/audit.h>
7#include <linux/init.h>
8#include <linux/kernel.h>
9#include <linux/lsm_hooks.h>
10#include <linux/file.h>
11#include <linux/mm.h>
12#include <linux/mman.h>
13#include <linux/pagemap.h>
14#include <linux/swap.h>
15#include <linux/skbuff.h>
16#include <linux/netlink.h>
17#include <linux/ptrace.h>
18#include <linux/xattr.h>
19#include <linux/hugetlb.h>
20#include <linux/mount.h>
21#include <linux/sched.h>
22#include <linux/prctl.h>
23#include <linux/securebits.h>
24#include <linux/user_namespace.h>
25#include <linux/binfmts.h>
26#include <linux/personality.h>
27#include <linux/mnt_idmapping.h>
28
29/*
30 * If a non-root user executes a setuid-root binary in
31 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
32 * However if fE is also set, then the intent is for only
33 * the file capabilities to be applied, and the setuid-root
34 * bit is left on either to change the uid (plausible) or
35 * to get full privilege on a kernel without file capabilities
36 * support. So in that case we do not raise capabilities.
37 *
38 * Warn if that happens, once per boot.
39 */
40static void warn_setuid_and_fcaps_mixed(const char *fname)
41{
42 static int warned;
43 if (!warned) {
44 printk(KERN_INFO "warning: `%s' has both setuid-root and"
45 " effective capabilities. Therefore not raising all"
46 " capabilities.\n", fname);
47 warned = 1;
48 }
49}
50
51/**
52 * cap_capable - Determine whether a task has a particular effective capability
53 * @cred: The credentials to use
54 * @targ_ns: The user namespace in which we need the capability
55 * @cap: The capability to check for
56 * @opts: Bitmask of options defined in include/linux/security.h
57 *
58 * Determine whether the nominated task has the specified capability amongst
59 * its effective set, returning 0 if it does, -ve if it does not.
60 *
61 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
62 * and has_capability() functions. That is, it has the reverse semantics:
63 * cap_has_capability() returns 0 when a task has a capability, but the
64 * kernel's capable() and has_capability() returns 1 for this case.
65 */
66int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
67 int cap, unsigned int opts)
68{
69 struct user_namespace *ns = targ_ns;
70
71 /* See if cred has the capability in the target user namespace
72 * by examining the target user namespace and all of the target
73 * user namespace's parents.
74 */
75 for (;;) {
76 /* Do we have the necessary capabilities? */
77 if (ns == cred->user_ns)
78 return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
79
80 /*
81 * If we're already at a lower level than we're looking for,
82 * we're done searching.
83 */
84 if (ns->level <= cred->user_ns->level)
85 return -EPERM;
86
87 /*
88 * The owner of the user namespace in the parent of the
89 * user namespace has all caps.
90 */
91 if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid))
92 return 0;
93
94 /*
95 * If you have a capability in a parent user ns, then you have
96 * it over all children user namespaces as well.
97 */
98 ns = ns->parent;
99 }
100
101 /* We never get here */
102}
103
104/**
105 * cap_settime - Determine whether the current process may set the system clock
106 * @ts: The time to set
107 * @tz: The timezone to set
108 *
109 * Determine whether the current process may set the system clock and timezone
110 * information, returning 0 if permission granted, -ve if denied.
111 */
112int cap_settime(const struct timespec64 *ts, const struct timezone *tz)
113{
114 if (!capable(CAP_SYS_TIME))
115 return -EPERM;
116 return 0;
117}
118
119/**
120 * cap_ptrace_access_check - Determine whether the current process may access
121 * another
122 * @child: The process to be accessed
123 * @mode: The mode of attachment.
124 *
125 * If we are in the same or an ancestor user_ns and have all the target
126 * task's capabilities, then ptrace access is allowed.
127 * If we have the ptrace capability to the target user_ns, then ptrace
128 * access is allowed.
129 * Else denied.
130 *
131 * Determine whether a process may access another, returning 0 if permission
132 * granted, -ve if denied.
133 */
134int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
135{
136 int ret = 0;
137 const struct cred *cred, *child_cred;
138 const kernel_cap_t *caller_caps;
139
140 rcu_read_lock();
141 cred = current_cred();
142 child_cred = __task_cred(child);
143 if (mode & PTRACE_MODE_FSCREDS)
144 caller_caps = &cred->cap_effective;
145 else
146 caller_caps = &cred->cap_permitted;
147 if (cred->user_ns == child_cred->user_ns &&
148 cap_issubset(child_cred->cap_permitted, *caller_caps))
149 goto out;
150 if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
151 goto out;
152 ret = -EPERM;
153out:
154 rcu_read_unlock();
155 return ret;
156}
157
158/**
159 * cap_ptrace_traceme - Determine whether another process may trace the current
160 * @parent: The task proposed to be the tracer
161 *
162 * If parent is in the same or an ancestor user_ns and has all current's
163 * capabilities, then ptrace access is allowed.
164 * If parent has the ptrace capability to current's user_ns, then ptrace
165 * access is allowed.
166 * Else denied.
167 *
168 * Determine whether the nominated task is permitted to trace the current
169 * process, returning 0 if permission is granted, -ve if denied.
170 */
171int cap_ptrace_traceme(struct task_struct *parent)
172{
173 int ret = 0;
174 const struct cred *cred, *child_cred;
175
176 rcu_read_lock();
177 cred = __task_cred(parent);
178 child_cred = current_cred();
179 if (cred->user_ns == child_cred->user_ns &&
180 cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
181 goto out;
182 if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
183 goto out;
184 ret = -EPERM;
185out:
186 rcu_read_unlock();
187 return ret;
188}
189
190/**
191 * cap_capget - Retrieve a task's capability sets
192 * @target: The task from which to retrieve the capability sets
193 * @effective: The place to record the effective set
194 * @inheritable: The place to record the inheritable set
195 * @permitted: The place to record the permitted set
196 *
197 * This function retrieves the capabilities of the nominated task and returns
198 * them to the caller.
199 */
200int cap_capget(struct task_struct *target, kernel_cap_t *effective,
201 kernel_cap_t *inheritable, kernel_cap_t *permitted)
202{
203 const struct cred *cred;
204
205 /* Derived from kernel/capability.c:sys_capget. */
206 rcu_read_lock();
207 cred = __task_cred(target);
208 *effective = cred->cap_effective;
209 *inheritable = cred->cap_inheritable;
210 *permitted = cred->cap_permitted;
211 rcu_read_unlock();
212 return 0;
213}
214
215/*
216 * Determine whether the inheritable capabilities are limited to the old
217 * permitted set. Returns 1 if they are limited, 0 if they are not.
218 */
219static inline int cap_inh_is_capped(void)
220{
221 /* they are so limited unless the current task has the CAP_SETPCAP
222 * capability
223 */
224 if (cap_capable(current_cred(), current_cred()->user_ns,
225 CAP_SETPCAP, CAP_OPT_NONE) == 0)
226 return 0;
227 return 1;
228}
229
230/**
231 * cap_capset - Validate and apply proposed changes to current's capabilities
232 * @new: The proposed new credentials; alterations should be made here
233 * @old: The current task's current credentials
234 * @effective: A pointer to the proposed new effective capabilities set
235 * @inheritable: A pointer to the proposed new inheritable capabilities set
236 * @permitted: A pointer to the proposed new permitted capabilities set
237 *
238 * This function validates and applies a proposed mass change to the current
239 * process's capability sets. The changes are made to the proposed new
240 * credentials, and assuming no error, will be committed by the caller of LSM.
241 */
242int cap_capset(struct cred *new,
243 const struct cred *old,
244 const kernel_cap_t *effective,
245 const kernel_cap_t *inheritable,
246 const kernel_cap_t *permitted)
247{
248 if (cap_inh_is_capped() &&
249 !cap_issubset(*inheritable,
250 cap_combine(old->cap_inheritable,
251 old->cap_permitted)))
252 /* incapable of using this inheritable set */
253 return -EPERM;
254
255 if (!cap_issubset(*inheritable,
256 cap_combine(old->cap_inheritable,
257 old->cap_bset)))
258 /* no new pI capabilities outside bounding set */
259 return -EPERM;
260
261 /* verify restrictions on target's new Permitted set */
262 if (!cap_issubset(*permitted, old->cap_permitted))
263 return -EPERM;
264
265 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
266 if (!cap_issubset(*effective, *permitted))
267 return -EPERM;
268
269 new->cap_effective = *effective;
270 new->cap_inheritable = *inheritable;
271 new->cap_permitted = *permitted;
272
273 /*
274 * Mask off ambient bits that are no longer both permitted and
275 * inheritable.
276 */
277 new->cap_ambient = cap_intersect(new->cap_ambient,
278 cap_intersect(*permitted,
279 *inheritable));
280 if (WARN_ON(!cap_ambient_invariant_ok(new)))
281 return -EINVAL;
282 return 0;
283}
284
285/**
286 * cap_inode_need_killpriv - Determine if inode change affects privileges
287 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
288 *
289 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
290 * affects the security markings on that inode, and if it is, should
291 * inode_killpriv() be invoked or the change rejected.
292 *
293 * Return: 1 if security.capability has a value, meaning inode_killpriv()
294 * is required, 0 otherwise, meaning inode_killpriv() is not required.
295 */
296int cap_inode_need_killpriv(struct dentry *dentry)
297{
298 struct inode *inode = d_backing_inode(dentry);
299 int error;
300
301 error = __vfs_getxattr(dentry, inode, XATTR_NAME_CAPS, NULL, 0);
302 return error > 0;
303}
304
305/**
306 * cap_inode_killpriv - Erase the security markings on an inode
307 *
308 * @mnt_userns: user namespace of the mount the inode was found from
309 * @dentry: The inode/dentry to alter
310 *
311 * Erase the privilege-enhancing security markings on an inode.
312 *
313 * If the inode has been found through an idmapped mount the user namespace of
314 * the vfsmount must be passed through @mnt_userns. This function will then
315 * take care to map the inode according to @mnt_userns before checking
316 * permissions. On non-idmapped mounts or if permission checking is to be
317 * performed on the raw inode simply passs init_user_ns.
318 *
319 * Return: 0 if successful, -ve on error.
320 */
321int cap_inode_killpriv(struct user_namespace *mnt_userns, struct dentry *dentry)
322{
323 int error;
324
325 error = __vfs_removexattr(mnt_userns, dentry, XATTR_NAME_CAPS);
326 if (error == -EOPNOTSUPP)
327 error = 0;
328 return error;
329}
330
331static bool rootid_owns_currentns(vfsuid_t rootvfsuid)
332{
333 struct user_namespace *ns;
334 kuid_t kroot;
335
336 if (!vfsuid_valid(rootvfsuid))
337 return false;
338
339 kroot = vfsuid_into_kuid(rootvfsuid);
340 for (ns = current_user_ns();; ns = ns->parent) {
341 if (from_kuid(ns, kroot) == 0)
342 return true;
343 if (ns == &init_user_ns)
344 break;
345 }
346
347 return false;
348}
349
350static __u32 sansflags(__u32 m)
351{
352 return m & ~VFS_CAP_FLAGS_EFFECTIVE;
353}
354
355static bool is_v2header(int size, const struct vfs_cap_data *cap)
356{
357 if (size != XATTR_CAPS_SZ_2)
358 return false;
359 return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_2;
360}
361
362static bool is_v3header(int size, const struct vfs_cap_data *cap)
363{
364 if (size != XATTR_CAPS_SZ_3)
365 return false;
366 return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_3;
367}
368
369/*
370 * getsecurity: We are called for security.* before any attempt to read the
371 * xattr from the inode itself.
372 *
373 * This gives us a chance to read the on-disk value and convert it. If we
374 * return -EOPNOTSUPP, then vfs_getxattr() will call the i_op handler.
375 *
376 * Note we are not called by vfs_getxattr_alloc(), but that is only called
377 * by the integrity subsystem, which really wants the unconverted values -
378 * so that's good.
379 */
380int cap_inode_getsecurity(struct user_namespace *mnt_userns,
381 struct inode *inode, const char *name, void **buffer,
382 bool alloc)
383{
384 int size;
385 kuid_t kroot;
386 vfsuid_t vfsroot;
387 u32 nsmagic, magic;
388 uid_t root, mappedroot;
389 char *tmpbuf = NULL;
390 struct vfs_cap_data *cap;
391 struct vfs_ns_cap_data *nscap = NULL;
392 struct dentry *dentry;
393 struct user_namespace *fs_ns;
394
395 if (strcmp(name, "capability") != 0)
396 return -EOPNOTSUPP;
397
398 dentry = d_find_any_alias(inode);
399 if (!dentry)
400 return -EINVAL;
401 size = vfs_getxattr_alloc(mnt_userns, dentry, XATTR_NAME_CAPS, &tmpbuf,
402 sizeof(struct vfs_ns_cap_data), GFP_NOFS);
403 dput(dentry);
404 /* gcc11 complains if we don't check for !tmpbuf */
405 if (size < 0 || !tmpbuf)
406 goto out_free;
407
408 fs_ns = inode->i_sb->s_user_ns;
409 cap = (struct vfs_cap_data *) tmpbuf;
410 if (is_v2header(size, cap)) {
411 root = 0;
412 } else if (is_v3header(size, cap)) {
413 nscap = (struct vfs_ns_cap_data *) tmpbuf;
414 root = le32_to_cpu(nscap->rootid);
415 } else {
416 size = -EINVAL;
417 goto out_free;
418 }
419
420 kroot = make_kuid(fs_ns, root);
421
422 /* If this is an idmapped mount shift the kuid. */
423 vfsroot = make_vfsuid(mnt_userns, fs_ns, kroot);
424
425 /* If the root kuid maps to a valid uid in current ns, then return
426 * this as a nscap. */
427 mappedroot = from_kuid(current_user_ns(), vfsuid_into_kuid(vfsroot));
428 if (mappedroot != (uid_t)-1 && mappedroot != (uid_t)0) {
429 size = sizeof(struct vfs_ns_cap_data);
430 if (alloc) {
431 if (!nscap) {
432 /* v2 -> v3 conversion */
433 nscap = kzalloc(size, GFP_ATOMIC);
434 if (!nscap) {
435 size = -ENOMEM;
436 goto out_free;
437 }
438 nsmagic = VFS_CAP_REVISION_3;
439 magic = le32_to_cpu(cap->magic_etc);
440 if (magic & VFS_CAP_FLAGS_EFFECTIVE)
441 nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
442 memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
443 nscap->magic_etc = cpu_to_le32(nsmagic);
444 } else {
445 /* use allocated v3 buffer */
446 tmpbuf = NULL;
447 }
448 nscap->rootid = cpu_to_le32(mappedroot);
449 *buffer = nscap;
450 }
451 goto out_free;
452 }
453
454 if (!rootid_owns_currentns(vfsroot)) {
455 size = -EOVERFLOW;
456 goto out_free;
457 }
458
459 /* This comes from a parent namespace. Return as a v2 capability */
460 size = sizeof(struct vfs_cap_data);
461 if (alloc) {
462 if (nscap) {
463 /* v3 -> v2 conversion */
464 cap = kzalloc(size, GFP_ATOMIC);
465 if (!cap) {
466 size = -ENOMEM;
467 goto out_free;
468 }
469 magic = VFS_CAP_REVISION_2;
470 nsmagic = le32_to_cpu(nscap->magic_etc);
471 if (nsmagic & VFS_CAP_FLAGS_EFFECTIVE)
472 magic |= VFS_CAP_FLAGS_EFFECTIVE;
473 memcpy(&cap->data, &nscap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
474 cap->magic_etc = cpu_to_le32(magic);
475 } else {
476 /* use unconverted v2 */
477 tmpbuf = NULL;
478 }
479 *buffer = cap;
480 }
481out_free:
482 kfree(tmpbuf);
483 return size;
484}
485
486/**
487 * rootid_from_xattr - translate root uid of vfs caps
488 *
489 * @value: vfs caps value which may be modified by this function
490 * @size: size of @ivalue
491 * @task_ns: user namespace of the caller
492 */
493static vfsuid_t rootid_from_xattr(const void *value, size_t size,
494 struct user_namespace *task_ns)
495{
496 const struct vfs_ns_cap_data *nscap = value;
497 uid_t rootid = 0;
498
499 if (size == XATTR_CAPS_SZ_3)
500 rootid = le32_to_cpu(nscap->rootid);
501
502 return VFSUIDT_INIT(make_kuid(task_ns, rootid));
503}
504
505static bool validheader(size_t size, const struct vfs_cap_data *cap)
506{
507 return is_v2header(size, cap) || is_v3header(size, cap);
508}
509
510/**
511 * cap_convert_nscap - check vfs caps
512 *
513 * @mnt_userns: user namespace of the mount the inode was found from
514 * @dentry: used to retrieve inode to check permissions on
515 * @ivalue: vfs caps value which may be modified by this function
516 * @size: size of @ivalue
517 *
518 * User requested a write of security.capability. If needed, update the
519 * xattr to change from v2 to v3, or to fixup the v3 rootid.
520 *
521 * If the inode has been found through an idmapped mount the user namespace of
522 * the vfsmount must be passed through @mnt_userns. This function will then
523 * take care to map the inode according to @mnt_userns before checking
524 * permissions. On non-idmapped mounts or if permission checking is to be
525 * performed on the raw inode simply passs init_user_ns.
526 *
527 * Return: On success, return the new size; on error, return < 0.
528 */
529int cap_convert_nscap(struct user_namespace *mnt_userns, struct dentry *dentry,
530 const void **ivalue, size_t size)
531{
532 struct vfs_ns_cap_data *nscap;
533 uid_t nsrootid;
534 const struct vfs_cap_data *cap = *ivalue;
535 __u32 magic, nsmagic;
536 struct inode *inode = d_backing_inode(dentry);
537 struct user_namespace *task_ns = current_user_ns(),
538 *fs_ns = inode->i_sb->s_user_ns;
539 kuid_t rootid;
540 vfsuid_t vfsrootid;
541 size_t newsize;
542
543 if (!*ivalue)
544 return -EINVAL;
545 if (!validheader(size, cap))
546 return -EINVAL;
547 if (!capable_wrt_inode_uidgid(mnt_userns, inode, CAP_SETFCAP))
548 return -EPERM;
549 if (size == XATTR_CAPS_SZ_2 && (mnt_userns == fs_ns))
550 if (ns_capable(inode->i_sb->s_user_ns, CAP_SETFCAP))
551 /* user is privileged, just write the v2 */
552 return size;
553
554 vfsrootid = rootid_from_xattr(*ivalue, size, task_ns);
555 if (!vfsuid_valid(vfsrootid))
556 return -EINVAL;
557
558 rootid = from_vfsuid(mnt_userns, fs_ns, vfsrootid);
559 if (!uid_valid(rootid))
560 return -EINVAL;
561
562 nsrootid = from_kuid(fs_ns, rootid);
563 if (nsrootid == -1)
564 return -EINVAL;
565
566 newsize = sizeof(struct vfs_ns_cap_data);
567 nscap = kmalloc(newsize, GFP_ATOMIC);
568 if (!nscap)
569 return -ENOMEM;
570 nscap->rootid = cpu_to_le32(nsrootid);
571 nsmagic = VFS_CAP_REVISION_3;
572 magic = le32_to_cpu(cap->magic_etc);
573 if (magic & VFS_CAP_FLAGS_EFFECTIVE)
574 nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
575 nscap->magic_etc = cpu_to_le32(nsmagic);
576 memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
577
578 *ivalue = nscap;
579 return newsize;
580}
581
582/*
583 * Calculate the new process capability sets from the capability sets attached
584 * to a file.
585 */
586static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
587 struct linux_binprm *bprm,
588 bool *effective,
589 bool *has_fcap)
590{
591 struct cred *new = bprm->cred;
592 unsigned i;
593 int ret = 0;
594
595 if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
596 *effective = true;
597
598 if (caps->magic_etc & VFS_CAP_REVISION_MASK)
599 *has_fcap = true;
600
601 CAP_FOR_EACH_U32(i) {
602 __u32 permitted = caps->permitted.cap[i];
603 __u32 inheritable = caps->inheritable.cap[i];
604
605 /*
606 * pP' = (X & fP) | (pI & fI)
607 * The addition of pA' is handled later.
608 */
609 new->cap_permitted.cap[i] =
610 (new->cap_bset.cap[i] & permitted) |
611 (new->cap_inheritable.cap[i] & inheritable);
612
613 if (permitted & ~new->cap_permitted.cap[i])
614 /* insufficient to execute correctly */
615 ret = -EPERM;
616 }
617
618 /*
619 * For legacy apps, with no internal support for recognizing they
620 * do not have enough capabilities, we return an error if they are
621 * missing some "forced" (aka file-permitted) capabilities.
622 */
623 return *effective ? ret : 0;
624}
625
626/**
627 * get_vfs_caps_from_disk - retrieve vfs caps from disk
628 *
629 * @mnt_userns: user namespace of the mount the inode was found from
630 * @dentry: dentry from which @inode is retrieved
631 * @cpu_caps: vfs capabilities
632 *
633 * Extract the on-exec-apply capability sets for an executable file.
634 *
635 * If the inode has been found through an idmapped mount the user namespace of
636 * the vfsmount must be passed through @mnt_userns. This function will then
637 * take care to map the inode according to @mnt_userns before checking
638 * permissions. On non-idmapped mounts or if permission checking is to be
639 * performed on the raw inode simply passs init_user_ns.
640 */
641int get_vfs_caps_from_disk(struct user_namespace *mnt_userns,
642 const struct dentry *dentry,
643 struct cpu_vfs_cap_data *cpu_caps)
644{
645 struct inode *inode = d_backing_inode(dentry);
646 __u32 magic_etc;
647 unsigned tocopy, i;
648 int size;
649 struct vfs_ns_cap_data data, *nscaps = &data;
650 struct vfs_cap_data *caps = (struct vfs_cap_data *) &data;
651 kuid_t rootkuid;
652 vfsuid_t rootvfsuid;
653 struct user_namespace *fs_ns;
654
655 memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
656
657 if (!inode)
658 return -ENODATA;
659
660 fs_ns = inode->i_sb->s_user_ns;
661 size = __vfs_getxattr((struct dentry *)dentry, inode,
662 XATTR_NAME_CAPS, &data, XATTR_CAPS_SZ);
663 if (size == -ENODATA || size == -EOPNOTSUPP)
664 /* no data, that's ok */
665 return -ENODATA;
666
667 if (size < 0)
668 return size;
669
670 if (size < sizeof(magic_etc))
671 return -EINVAL;
672
673 cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps->magic_etc);
674
675 rootkuid = make_kuid(fs_ns, 0);
676 switch (magic_etc & VFS_CAP_REVISION_MASK) {
677 case VFS_CAP_REVISION_1:
678 if (size != XATTR_CAPS_SZ_1)
679 return -EINVAL;
680 tocopy = VFS_CAP_U32_1;
681 break;
682 case VFS_CAP_REVISION_2:
683 if (size != XATTR_CAPS_SZ_2)
684 return -EINVAL;
685 tocopy = VFS_CAP_U32_2;
686 break;
687 case VFS_CAP_REVISION_3:
688 if (size != XATTR_CAPS_SZ_3)
689 return -EINVAL;
690 tocopy = VFS_CAP_U32_3;
691 rootkuid = make_kuid(fs_ns, le32_to_cpu(nscaps->rootid));
692 break;
693
694 default:
695 return -EINVAL;
696 }
697
698 rootvfsuid = make_vfsuid(mnt_userns, fs_ns, rootkuid);
699 if (!vfsuid_valid(rootvfsuid))
700 return -ENODATA;
701
702 /* Limit the caps to the mounter of the filesystem
703 * or the more limited uid specified in the xattr.
704 */
705 if (!rootid_owns_currentns(rootvfsuid))
706 return -ENODATA;
707
708 CAP_FOR_EACH_U32(i) {
709 if (i >= tocopy)
710 break;
711 cpu_caps->permitted.cap[i] = le32_to_cpu(caps->data[i].permitted);
712 cpu_caps->inheritable.cap[i] = le32_to_cpu(caps->data[i].inheritable);
713 }
714
715 cpu_caps->permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
716 cpu_caps->inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
717
718 cpu_caps->rootid = vfsuid_into_kuid(rootvfsuid);
719
720 return 0;
721}
722
723/*
724 * Attempt to get the on-exec apply capability sets for an executable file from
725 * its xattrs and, if present, apply them to the proposed credentials being
726 * constructed by execve().
727 */
728static int get_file_caps(struct linux_binprm *bprm, struct file *file,
729 bool *effective, bool *has_fcap)
730{
731 int rc = 0;
732 struct cpu_vfs_cap_data vcaps;
733
734 cap_clear(bprm->cred->cap_permitted);
735
736 if (!file_caps_enabled)
737 return 0;
738
739 if (!mnt_may_suid(file->f_path.mnt))
740 return 0;
741
742 /*
743 * This check is redundant with mnt_may_suid() but is kept to make
744 * explicit that capability bits are limited to s_user_ns and its
745 * descendants.
746 */
747 if (!current_in_userns(file->f_path.mnt->mnt_sb->s_user_ns))
748 return 0;
749
750 rc = get_vfs_caps_from_disk(file_mnt_user_ns(file),
751 file->f_path.dentry, &vcaps);
752 if (rc < 0) {
753 if (rc == -EINVAL)
754 printk(KERN_NOTICE "Invalid argument reading file caps for %s\n",
755 bprm->filename);
756 else if (rc == -ENODATA)
757 rc = 0;
758 goto out;
759 }
760
761 rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_fcap);
762
763out:
764 if (rc)
765 cap_clear(bprm->cred->cap_permitted);
766
767 return rc;
768}
769
770static inline bool root_privileged(void) { return !issecure(SECURE_NOROOT); }
771
772static inline bool __is_real(kuid_t uid, struct cred *cred)
773{ return uid_eq(cred->uid, uid); }
774
775static inline bool __is_eff(kuid_t uid, struct cred *cred)
776{ return uid_eq(cred->euid, uid); }
777
778static inline bool __is_suid(kuid_t uid, struct cred *cred)
779{ return !__is_real(uid, cred) && __is_eff(uid, cred); }
780
781/*
782 * handle_privileged_root - Handle case of privileged root
783 * @bprm: The execution parameters, including the proposed creds
784 * @has_fcap: Are any file capabilities set?
785 * @effective: Do we have effective root privilege?
786 * @root_uid: This namespace' root UID WRT initial USER namespace
787 *
788 * Handle the case where root is privileged and hasn't been neutered by
789 * SECURE_NOROOT. If file capabilities are set, they won't be combined with
790 * set UID root and nothing is changed. If we are root, cap_permitted is
791 * updated. If we have become set UID root, the effective bit is set.
792 */
793static void handle_privileged_root(struct linux_binprm *bprm, bool has_fcap,
794 bool *effective, kuid_t root_uid)
795{
796 const struct cred *old = current_cred();
797 struct cred *new = bprm->cred;
798
799 if (!root_privileged())
800 return;
801 /*
802 * If the legacy file capability is set, then don't set privs
803 * for a setuid root binary run by a non-root user. Do set it
804 * for a root user just to cause least surprise to an admin.
805 */
806 if (has_fcap && __is_suid(root_uid, new)) {
807 warn_setuid_and_fcaps_mixed(bprm->filename);
808 return;
809 }
810 /*
811 * To support inheritance of root-permissions and suid-root
812 * executables under compatibility mode, we override the
813 * capability sets for the file.
814 */
815 if (__is_eff(root_uid, new) || __is_real(root_uid, new)) {
816 /* pP' = (cap_bset & ~0) | (pI & ~0) */
817 new->cap_permitted = cap_combine(old->cap_bset,
818 old->cap_inheritable);
819 }
820 /*
821 * If only the real uid is 0, we do not set the effective bit.
822 */
823 if (__is_eff(root_uid, new))
824 *effective = true;
825}
826
827#define __cap_gained(field, target, source) \
828 !cap_issubset(target->cap_##field, source->cap_##field)
829#define __cap_grew(target, source, cred) \
830 !cap_issubset(cred->cap_##target, cred->cap_##source)
831#define __cap_full(field, cred) \
832 cap_issubset(CAP_FULL_SET, cred->cap_##field)
833
834static inline bool __is_setuid(struct cred *new, const struct cred *old)
835{ return !uid_eq(new->euid, old->uid); }
836
837static inline bool __is_setgid(struct cred *new, const struct cred *old)
838{ return !gid_eq(new->egid, old->gid); }
839
840/*
841 * 1) Audit candidate if current->cap_effective is set
842 *
843 * We do not bother to audit if 3 things are true:
844 * 1) cap_effective has all caps
845 * 2) we became root *OR* are were already root
846 * 3) root is supposed to have all caps (SECURE_NOROOT)
847 * Since this is just a normal root execing a process.
848 *
849 * Number 1 above might fail if you don't have a full bset, but I think
850 * that is interesting information to audit.
851 *
852 * A number of other conditions require logging:
853 * 2) something prevented setuid root getting all caps
854 * 3) non-setuid root gets fcaps
855 * 4) non-setuid root gets ambient
856 */
857static inline bool nonroot_raised_pE(struct cred *new, const struct cred *old,
858 kuid_t root, bool has_fcap)
859{
860 bool ret = false;
861
862 if ((__cap_grew(effective, ambient, new) &&
863 !(__cap_full(effective, new) &&
864 (__is_eff(root, new) || __is_real(root, new)) &&
865 root_privileged())) ||
866 (root_privileged() &&
867 __is_suid(root, new) &&
868 !__cap_full(effective, new)) ||
869 (!__is_setuid(new, old) &&
870 ((has_fcap &&
871 __cap_gained(permitted, new, old)) ||
872 __cap_gained(ambient, new, old))))
873
874 ret = true;
875
876 return ret;
877}
878
879/**
880 * cap_bprm_creds_from_file - Set up the proposed credentials for execve().
881 * @bprm: The execution parameters, including the proposed creds
882 * @file: The file to pull the credentials from
883 *
884 * Set up the proposed credentials for a new execution context being
885 * constructed by execve(). The proposed creds in @bprm->cred is altered,
886 * which won't take effect immediately.
887 *
888 * Return: 0 if successful, -ve on error.
889 */
890int cap_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
891{
892 /* Process setpcap binaries and capabilities for uid 0 */
893 const struct cred *old = current_cred();
894 struct cred *new = bprm->cred;
895 bool effective = false, has_fcap = false, is_setid;
896 int ret;
897 kuid_t root_uid;
898
899 if (WARN_ON(!cap_ambient_invariant_ok(old)))
900 return -EPERM;
901
902 ret = get_file_caps(bprm, file, &effective, &has_fcap);
903 if (ret < 0)
904 return ret;
905
906 root_uid = make_kuid(new->user_ns, 0);
907
908 handle_privileged_root(bprm, has_fcap, &effective, root_uid);
909
910 /* if we have fs caps, clear dangerous personality flags */
911 if (__cap_gained(permitted, new, old))
912 bprm->per_clear |= PER_CLEAR_ON_SETID;
913
914 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
915 * credentials unless they have the appropriate permit.
916 *
917 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
918 */
919 is_setid = __is_setuid(new, old) || __is_setgid(new, old);
920
921 if ((is_setid || __cap_gained(permitted, new, old)) &&
922 ((bprm->unsafe & ~LSM_UNSAFE_PTRACE) ||
923 !ptracer_capable(current, new->user_ns))) {
924 /* downgrade; they get no more than they had, and maybe less */
925 if (!ns_capable(new->user_ns, CAP_SETUID) ||
926 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
927 new->euid = new->uid;
928 new->egid = new->gid;
929 }
930 new->cap_permitted = cap_intersect(new->cap_permitted,
931 old->cap_permitted);
932 }
933
934 new->suid = new->fsuid = new->euid;
935 new->sgid = new->fsgid = new->egid;
936
937 /* File caps or setid cancels ambient. */
938 if (has_fcap || is_setid)
939 cap_clear(new->cap_ambient);
940
941 /*
942 * Now that we've computed pA', update pP' to give:
943 * pP' = (X & fP) | (pI & fI) | pA'
944 */
945 new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient);
946
947 /*
948 * Set pE' = (fE ? pP' : pA'). Because pA' is zero if fE is set,
949 * this is the same as pE' = (fE ? pP' : 0) | pA'.
950 */
951 if (effective)
952 new->cap_effective = new->cap_permitted;
953 else
954 new->cap_effective = new->cap_ambient;
955
956 if (WARN_ON(!cap_ambient_invariant_ok(new)))
957 return -EPERM;
958
959 if (nonroot_raised_pE(new, old, root_uid, has_fcap)) {
960 ret = audit_log_bprm_fcaps(bprm, new, old);
961 if (ret < 0)
962 return ret;
963 }
964
965 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
966
967 if (WARN_ON(!cap_ambient_invariant_ok(new)))
968 return -EPERM;
969
970 /* Check for privilege-elevated exec. */
971 if (is_setid ||
972 (!__is_real(root_uid, new) &&
973 (effective ||
974 __cap_grew(permitted, ambient, new))))
975 bprm->secureexec = 1;
976
977 return 0;
978}
979
980/**
981 * cap_inode_setxattr - Determine whether an xattr may be altered
982 * @dentry: The inode/dentry being altered
983 * @name: The name of the xattr to be changed
984 * @value: The value that the xattr will be changed to
985 * @size: The size of value
986 * @flags: The replacement flag
987 *
988 * Determine whether an xattr may be altered or set on an inode, returning 0 if
989 * permission is granted, -ve if denied.
990 *
991 * This is used to make sure security xattrs don't get updated or set by those
992 * who aren't privileged to do so.
993 */
994int cap_inode_setxattr(struct dentry *dentry, const char *name,
995 const void *value, size_t size, int flags)
996{
997 struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
998
999 /* Ignore non-security xattrs */
1000 if (strncmp(name, XATTR_SECURITY_PREFIX,
1001 XATTR_SECURITY_PREFIX_LEN) != 0)
1002 return 0;
1003
1004 /*
1005 * For XATTR_NAME_CAPS the check will be done in
1006 * cap_convert_nscap(), called by setxattr()
1007 */
1008 if (strcmp(name, XATTR_NAME_CAPS) == 0)
1009 return 0;
1010
1011 if (!ns_capable(user_ns, CAP_SYS_ADMIN))
1012 return -EPERM;
1013 return 0;
1014}
1015
1016/**
1017 * cap_inode_removexattr - Determine whether an xattr may be removed
1018 *
1019 * @mnt_userns: User namespace of the mount the inode was found from
1020 * @dentry: The inode/dentry being altered
1021 * @name: The name of the xattr to be changed
1022 *
1023 * Determine whether an xattr may be removed from an inode, returning 0 if
1024 * permission is granted, -ve if denied.
1025 *
1026 * If the inode has been found through an idmapped mount the user namespace of
1027 * the vfsmount must be passed through @mnt_userns. This function will then
1028 * take care to map the inode according to @mnt_userns before checking
1029 * permissions. On non-idmapped mounts or if permission checking is to be
1030 * performed on the raw inode simply passs init_user_ns.
1031 *
1032 * This is used to make sure security xattrs don't get removed by those who
1033 * aren't privileged to remove them.
1034 */
1035int cap_inode_removexattr(struct user_namespace *mnt_userns,
1036 struct dentry *dentry, const char *name)
1037{
1038 struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
1039
1040 /* Ignore non-security xattrs */
1041 if (strncmp(name, XATTR_SECURITY_PREFIX,
1042 XATTR_SECURITY_PREFIX_LEN) != 0)
1043 return 0;
1044
1045 if (strcmp(name, XATTR_NAME_CAPS) == 0) {
1046 /* security.capability gets namespaced */
1047 struct inode *inode = d_backing_inode(dentry);
1048 if (!inode)
1049 return -EINVAL;
1050 if (!capable_wrt_inode_uidgid(mnt_userns, inode, CAP_SETFCAP))
1051 return -EPERM;
1052 return 0;
1053 }
1054
1055 if (!ns_capable(user_ns, CAP_SYS_ADMIN))
1056 return -EPERM;
1057 return 0;
1058}
1059
1060/*
1061 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
1062 * a process after a call to setuid, setreuid, or setresuid.
1063 *
1064 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
1065 * {r,e,s}uid != 0, the permitted and effective capabilities are
1066 * cleared.
1067 *
1068 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
1069 * capabilities of the process are cleared.
1070 *
1071 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
1072 * capabilities are set to the permitted capabilities.
1073 *
1074 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
1075 * never happen.
1076 *
1077 * -astor
1078 *
1079 * cevans - New behaviour, Oct '99
1080 * A process may, via prctl(), elect to keep its capabilities when it
1081 * calls setuid() and switches away from uid==0. Both permitted and
1082 * effective sets will be retained.
1083 * Without this change, it was impossible for a daemon to drop only some
1084 * of its privilege. The call to setuid(!=0) would drop all privileges!
1085 * Keeping uid 0 is not an option because uid 0 owns too many vital
1086 * files..
1087 * Thanks to Olaf Kirch and Peter Benie for spotting this.
1088 */
1089static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
1090{
1091 kuid_t root_uid = make_kuid(old->user_ns, 0);
1092
1093 if ((uid_eq(old->uid, root_uid) ||
1094 uid_eq(old->euid, root_uid) ||
1095 uid_eq(old->suid, root_uid)) &&
1096 (!uid_eq(new->uid, root_uid) &&
1097 !uid_eq(new->euid, root_uid) &&
1098 !uid_eq(new->suid, root_uid))) {
1099 if (!issecure(SECURE_KEEP_CAPS)) {
1100 cap_clear(new->cap_permitted);
1101 cap_clear(new->cap_effective);
1102 }
1103
1104 /*
1105 * Pre-ambient programs expect setresuid to nonroot followed
1106 * by exec to drop capabilities. We should make sure that
1107 * this remains the case.
1108 */
1109 cap_clear(new->cap_ambient);
1110 }
1111 if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
1112 cap_clear(new->cap_effective);
1113 if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
1114 new->cap_effective = new->cap_permitted;
1115}
1116
1117/**
1118 * cap_task_fix_setuid - Fix up the results of setuid() call
1119 * @new: The proposed credentials
1120 * @old: The current task's current credentials
1121 * @flags: Indications of what has changed
1122 *
1123 * Fix up the results of setuid() call before the credential changes are
1124 * actually applied.
1125 *
1126 * Return: 0 to grant the changes, -ve to deny them.
1127 */
1128int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
1129{
1130 switch (flags) {
1131 case LSM_SETID_RE:
1132 case LSM_SETID_ID:
1133 case LSM_SETID_RES:
1134 /* juggle the capabilities to follow [RES]UID changes unless
1135 * otherwise suppressed */
1136 if (!issecure(SECURE_NO_SETUID_FIXUP))
1137 cap_emulate_setxuid(new, old);
1138 break;
1139
1140 case LSM_SETID_FS:
1141 /* juggle the capabilties to follow FSUID changes, unless
1142 * otherwise suppressed
1143 *
1144 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
1145 * if not, we might be a bit too harsh here.
1146 */
1147 if (!issecure(SECURE_NO_SETUID_FIXUP)) {
1148 kuid_t root_uid = make_kuid(old->user_ns, 0);
1149 if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
1150 new->cap_effective =
1151 cap_drop_fs_set(new->cap_effective);
1152
1153 if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
1154 new->cap_effective =
1155 cap_raise_fs_set(new->cap_effective,
1156 new->cap_permitted);
1157 }
1158 break;
1159
1160 default:
1161 return -EINVAL;
1162 }
1163
1164 return 0;
1165}
1166
1167/*
1168 * Rationale: code calling task_setscheduler, task_setioprio, and
1169 * task_setnice, assumes that
1170 * . if capable(cap_sys_nice), then those actions should be allowed
1171 * . if not capable(cap_sys_nice), but acting on your own processes,
1172 * then those actions should be allowed
1173 * This is insufficient now since you can call code without suid, but
1174 * yet with increased caps.
1175 * So we check for increased caps on the target process.
1176 */
1177static int cap_safe_nice(struct task_struct *p)
1178{
1179 int is_subset, ret = 0;
1180
1181 rcu_read_lock();
1182 is_subset = cap_issubset(__task_cred(p)->cap_permitted,
1183 current_cred()->cap_permitted);
1184 if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
1185 ret = -EPERM;
1186 rcu_read_unlock();
1187
1188 return ret;
1189}
1190
1191/**
1192 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
1193 * @p: The task to affect
1194 *
1195 * Detemine if the requested scheduler policy change is permitted for the
1196 * specified task.
1197 *
1198 * Return: 0 if permission is granted, -ve if denied.
1199 */
1200int cap_task_setscheduler(struct task_struct *p)
1201{
1202 return cap_safe_nice(p);
1203}
1204
1205/**
1206 * cap_task_setioprio - Detemine if I/O priority change is permitted
1207 * @p: The task to affect
1208 * @ioprio: The I/O priority to set
1209 *
1210 * Detemine if the requested I/O priority change is permitted for the specified
1211 * task.
1212 *
1213 * Return: 0 if permission is granted, -ve if denied.
1214 */
1215int cap_task_setioprio(struct task_struct *p, int ioprio)
1216{
1217 return cap_safe_nice(p);
1218}
1219
1220/**
1221 * cap_task_setnice - Detemine if task priority change is permitted
1222 * @p: The task to affect
1223 * @nice: The nice value to set
1224 *
1225 * Detemine if the requested task priority change is permitted for the
1226 * specified task.
1227 *
1228 * Return: 0 if permission is granted, -ve if denied.
1229 */
1230int cap_task_setnice(struct task_struct *p, int nice)
1231{
1232 return cap_safe_nice(p);
1233}
1234
1235/*
1236 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
1237 * the current task's bounding set. Returns 0 on success, -ve on error.
1238 */
1239static int cap_prctl_drop(unsigned long cap)
1240{
1241 struct cred *new;
1242
1243 if (!ns_capable(current_user_ns(), CAP_SETPCAP))
1244 return -EPERM;
1245 if (!cap_valid(cap))
1246 return -EINVAL;
1247
1248 new = prepare_creds();
1249 if (!new)
1250 return -ENOMEM;
1251 cap_lower(new->cap_bset, cap);
1252 return commit_creds(new);
1253}
1254
1255/**
1256 * cap_task_prctl - Implement process control functions for this security module
1257 * @option: The process control function requested
1258 * @arg2: The argument data for this function
1259 * @arg3: The argument data for this function
1260 * @arg4: The argument data for this function
1261 * @arg5: The argument data for this function
1262 *
1263 * Allow process control functions (sys_prctl()) to alter capabilities; may
1264 * also deny access to other functions not otherwise implemented here.
1265 *
1266 * Return: 0 or +ve on success, -ENOSYS if this function is not implemented
1267 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
1268 * modules will consider performing the function.
1269 */
1270int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1271 unsigned long arg4, unsigned long arg5)
1272{
1273 const struct cred *old = current_cred();
1274 struct cred *new;
1275
1276 switch (option) {
1277 case PR_CAPBSET_READ:
1278 if (!cap_valid(arg2))
1279 return -EINVAL;
1280 return !!cap_raised(old->cap_bset, arg2);
1281
1282 case PR_CAPBSET_DROP:
1283 return cap_prctl_drop(arg2);
1284
1285 /*
1286 * The next four prctl's remain to assist with transitioning a
1287 * system from legacy UID=0 based privilege (when filesystem
1288 * capabilities are not in use) to a system using filesystem
1289 * capabilities only - as the POSIX.1e draft intended.
1290 *
1291 * Note:
1292 *
1293 * PR_SET_SECUREBITS =
1294 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
1295 * | issecure_mask(SECURE_NOROOT)
1296 * | issecure_mask(SECURE_NOROOT_LOCKED)
1297 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
1298 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
1299 *
1300 * will ensure that the current process and all of its
1301 * children will be locked into a pure
1302 * capability-based-privilege environment.
1303 */
1304 case PR_SET_SECUREBITS:
1305 if ((((old->securebits & SECURE_ALL_LOCKS) >> 1)
1306 & (old->securebits ^ arg2)) /*[1]*/
1307 || ((old->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/
1308 || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
1309 || (cap_capable(current_cred(),
1310 current_cred()->user_ns,
1311 CAP_SETPCAP,
1312 CAP_OPT_NONE) != 0) /*[4]*/
1313 /*
1314 * [1] no changing of bits that are locked
1315 * [2] no unlocking of locks
1316 * [3] no setting of unsupported bits
1317 * [4] doing anything requires privilege (go read about
1318 * the "sendmail capabilities bug")
1319 */
1320 )
1321 /* cannot change a locked bit */
1322 return -EPERM;
1323
1324 new = prepare_creds();
1325 if (!new)
1326 return -ENOMEM;
1327 new->securebits = arg2;
1328 return commit_creds(new);
1329
1330 case PR_GET_SECUREBITS:
1331 return old->securebits;
1332
1333 case PR_GET_KEEPCAPS:
1334 return !!issecure(SECURE_KEEP_CAPS);
1335
1336 case PR_SET_KEEPCAPS:
1337 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
1338 return -EINVAL;
1339 if (issecure(SECURE_KEEP_CAPS_LOCKED))
1340 return -EPERM;
1341
1342 new = prepare_creds();
1343 if (!new)
1344 return -ENOMEM;
1345 if (arg2)
1346 new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
1347 else
1348 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
1349 return commit_creds(new);
1350
1351 case PR_CAP_AMBIENT:
1352 if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) {
1353 if (arg3 | arg4 | arg5)
1354 return -EINVAL;
1355
1356 new = prepare_creds();
1357 if (!new)
1358 return -ENOMEM;
1359 cap_clear(new->cap_ambient);
1360 return commit_creds(new);
1361 }
1362
1363 if (((!cap_valid(arg3)) | arg4 | arg5))
1364 return -EINVAL;
1365
1366 if (arg2 == PR_CAP_AMBIENT_IS_SET) {
1367 return !!cap_raised(current_cred()->cap_ambient, arg3);
1368 } else if (arg2 != PR_CAP_AMBIENT_RAISE &&
1369 arg2 != PR_CAP_AMBIENT_LOWER) {
1370 return -EINVAL;
1371 } else {
1372 if (arg2 == PR_CAP_AMBIENT_RAISE &&
1373 (!cap_raised(current_cred()->cap_permitted, arg3) ||
1374 !cap_raised(current_cred()->cap_inheritable,
1375 arg3) ||
1376 issecure(SECURE_NO_CAP_AMBIENT_RAISE)))
1377 return -EPERM;
1378
1379 new = prepare_creds();
1380 if (!new)
1381 return -ENOMEM;
1382 if (arg2 == PR_CAP_AMBIENT_RAISE)
1383 cap_raise(new->cap_ambient, arg3);
1384 else
1385 cap_lower(new->cap_ambient, arg3);
1386 return commit_creds(new);
1387 }
1388
1389 default:
1390 /* No functionality available - continue with default */
1391 return -ENOSYS;
1392 }
1393}
1394
1395/**
1396 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
1397 * @mm: The VM space in which the new mapping is to be made
1398 * @pages: The size of the mapping
1399 *
1400 * Determine whether the allocation of a new virtual mapping by the current
1401 * task is permitted.
1402 *
1403 * Return: 1 if permission is granted, 0 if not.
1404 */
1405int cap_vm_enough_memory(struct mm_struct *mm, long pages)
1406{
1407 int cap_sys_admin = 0;
1408
1409 if (cap_capable(current_cred(), &init_user_ns,
1410 CAP_SYS_ADMIN, CAP_OPT_NOAUDIT) == 0)
1411 cap_sys_admin = 1;
1412
1413 return cap_sys_admin;
1414}
1415
1416/**
1417 * cap_mmap_addr - check if able to map given addr
1418 * @addr: address attempting to be mapped
1419 *
1420 * If the process is attempting to map memory below dac_mmap_min_addr they need
1421 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
1422 * capability security module.
1423 *
1424 * Return: 0 if this mapping should be allowed or -EPERM if not.
1425 */
1426int cap_mmap_addr(unsigned long addr)
1427{
1428 int ret = 0;
1429
1430 if (addr < dac_mmap_min_addr) {
1431 ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
1432 CAP_OPT_NONE);
1433 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
1434 if (ret == 0)
1435 current->flags |= PF_SUPERPRIV;
1436 }
1437 return ret;
1438}
1439
1440int cap_mmap_file(struct file *file, unsigned long reqprot,
1441 unsigned long prot, unsigned long flags)
1442{
1443 return 0;
1444}
1445
1446#ifdef CONFIG_SECURITY
1447
1448static struct security_hook_list capability_hooks[] __lsm_ro_after_init = {
1449 LSM_HOOK_INIT(capable, cap_capable),
1450 LSM_HOOK_INIT(settime, cap_settime),
1451 LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check),
1452 LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme),
1453 LSM_HOOK_INIT(capget, cap_capget),
1454 LSM_HOOK_INIT(capset, cap_capset),
1455 LSM_HOOK_INIT(bprm_creds_from_file, cap_bprm_creds_from_file),
1456 LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv),
1457 LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv),
1458 LSM_HOOK_INIT(inode_getsecurity, cap_inode_getsecurity),
1459 LSM_HOOK_INIT(mmap_addr, cap_mmap_addr),
1460 LSM_HOOK_INIT(mmap_file, cap_mmap_file),
1461 LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid),
1462 LSM_HOOK_INIT(task_prctl, cap_task_prctl),
1463 LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler),
1464 LSM_HOOK_INIT(task_setioprio, cap_task_setioprio),
1465 LSM_HOOK_INIT(task_setnice, cap_task_setnice),
1466 LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory),
1467};
1468
1469static int __init capability_init(void)
1470{
1471 security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks),
1472 "capability");
1473 return 0;
1474}
1475
1476DEFINE_LSM(capability) = {
1477 .name = "capability",
1478 .order = LSM_ORDER_FIRST,
1479 .init = capability_init,
1480};
1481
1482#endif /* CONFIG_SECURITY */
1/* Common capabilities, needed by capability.o.
2 *
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
7 *
8 */
9
10#include <linux/capability.h>
11#include <linux/audit.h>
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/kernel.h>
15#include <linux/security.h>
16#include <linux/file.h>
17#include <linux/mm.h>
18#include <linux/mman.h>
19#include <linux/pagemap.h>
20#include <linux/swap.h>
21#include <linux/skbuff.h>
22#include <linux/netlink.h>
23#include <linux/ptrace.h>
24#include <linux/xattr.h>
25#include <linux/hugetlb.h>
26#include <linux/mount.h>
27#include <linux/sched.h>
28#include <linux/prctl.h>
29#include <linux/securebits.h>
30#include <linux/user_namespace.h>
31#include <linux/binfmts.h>
32#include <linux/personality.h>
33
34/*
35 * If a non-root user executes a setuid-root binary in
36 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
37 * However if fE is also set, then the intent is for only
38 * the file capabilities to be applied, and the setuid-root
39 * bit is left on either to change the uid (plausible) or
40 * to get full privilege on a kernel without file capabilities
41 * support. So in that case we do not raise capabilities.
42 *
43 * Warn if that happens, once per boot.
44 */
45static void warn_setuid_and_fcaps_mixed(const char *fname)
46{
47 static int warned;
48 if (!warned) {
49 printk(KERN_INFO "warning: `%s' has both setuid-root and"
50 " effective capabilities. Therefore not raising all"
51 " capabilities.\n", fname);
52 warned = 1;
53 }
54}
55
56int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
57{
58 return 0;
59}
60
61/**
62 * cap_capable - Determine whether a task has a particular effective capability
63 * @cred: The credentials to use
64 * @ns: The user namespace in which we need the capability
65 * @cap: The capability to check for
66 * @audit: Whether to write an audit message or not
67 *
68 * Determine whether the nominated task has the specified capability amongst
69 * its effective set, returning 0 if it does, -ve if it does not.
70 *
71 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
72 * and has_capability() functions. That is, it has the reverse semantics:
73 * cap_has_capability() returns 0 when a task has a capability, but the
74 * kernel's capable() and has_capability() returns 1 for this case.
75 */
76int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
77 int cap, int audit)
78{
79 for (;;) {
80 /* The owner of the user namespace has all caps. */
81 if (targ_ns != &init_user_ns && uid_eq(targ_ns->owner, cred->euid))
82 return 0;
83
84 /* Do we have the necessary capabilities? */
85 if (targ_ns == cred->user_ns)
86 return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
87
88 /* Have we tried all of the parent namespaces? */
89 if (targ_ns == &init_user_ns)
90 return -EPERM;
91
92 /*
93 *If you have a capability in a parent user ns, then you have
94 * it over all children user namespaces as well.
95 */
96 targ_ns = targ_ns->parent;
97 }
98
99 /* We never get here */
100}
101
102/**
103 * cap_settime - Determine whether the current process may set the system clock
104 * @ts: The time to set
105 * @tz: The timezone to set
106 *
107 * Determine whether the current process may set the system clock and timezone
108 * information, returning 0 if permission granted, -ve if denied.
109 */
110int cap_settime(const struct timespec *ts, const struct timezone *tz)
111{
112 if (!capable(CAP_SYS_TIME))
113 return -EPERM;
114 return 0;
115}
116
117/**
118 * cap_ptrace_access_check - Determine whether the current process may access
119 * another
120 * @child: The process to be accessed
121 * @mode: The mode of attachment.
122 *
123 * If we are in the same or an ancestor user_ns and have all the target
124 * task's capabilities, then ptrace access is allowed.
125 * If we have the ptrace capability to the target user_ns, then ptrace
126 * access is allowed.
127 * Else denied.
128 *
129 * Determine whether a process may access another, returning 0 if permission
130 * granted, -ve if denied.
131 */
132int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
133{
134 int ret = 0;
135 const struct cred *cred, *child_cred;
136
137 rcu_read_lock();
138 cred = current_cred();
139 child_cred = __task_cred(child);
140 if (cred->user_ns == child_cred->user_ns &&
141 cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
142 goto out;
143 if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
144 goto out;
145 ret = -EPERM;
146out:
147 rcu_read_unlock();
148 return ret;
149}
150
151/**
152 * cap_ptrace_traceme - Determine whether another process may trace the current
153 * @parent: The task proposed to be the tracer
154 *
155 * If parent is in the same or an ancestor user_ns and has all current's
156 * capabilities, then ptrace access is allowed.
157 * If parent has the ptrace capability to current's user_ns, then ptrace
158 * access is allowed.
159 * Else denied.
160 *
161 * Determine whether the nominated task is permitted to trace the current
162 * process, returning 0 if permission is granted, -ve if denied.
163 */
164int cap_ptrace_traceme(struct task_struct *parent)
165{
166 int ret = 0;
167 const struct cred *cred, *child_cred;
168
169 rcu_read_lock();
170 cred = __task_cred(parent);
171 child_cred = current_cred();
172 if (cred->user_ns == child_cred->user_ns &&
173 cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
174 goto out;
175 if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
176 goto out;
177 ret = -EPERM;
178out:
179 rcu_read_unlock();
180 return ret;
181}
182
183/**
184 * cap_capget - Retrieve a task's capability sets
185 * @target: The task from which to retrieve the capability sets
186 * @effective: The place to record the effective set
187 * @inheritable: The place to record the inheritable set
188 * @permitted: The place to record the permitted set
189 *
190 * This function retrieves the capabilities of the nominated task and returns
191 * them to the caller.
192 */
193int cap_capget(struct task_struct *target, kernel_cap_t *effective,
194 kernel_cap_t *inheritable, kernel_cap_t *permitted)
195{
196 const struct cred *cred;
197
198 /* Derived from kernel/capability.c:sys_capget. */
199 rcu_read_lock();
200 cred = __task_cred(target);
201 *effective = cred->cap_effective;
202 *inheritable = cred->cap_inheritable;
203 *permitted = cred->cap_permitted;
204 rcu_read_unlock();
205 return 0;
206}
207
208/*
209 * Determine whether the inheritable capabilities are limited to the old
210 * permitted set. Returns 1 if they are limited, 0 if they are not.
211 */
212static inline int cap_inh_is_capped(void)
213{
214
215 /* they are so limited unless the current task has the CAP_SETPCAP
216 * capability
217 */
218 if (cap_capable(current_cred(), current_cred()->user_ns,
219 CAP_SETPCAP, SECURITY_CAP_AUDIT) == 0)
220 return 0;
221 return 1;
222}
223
224/**
225 * cap_capset - Validate and apply proposed changes to current's capabilities
226 * @new: The proposed new credentials; alterations should be made here
227 * @old: The current task's current credentials
228 * @effective: A pointer to the proposed new effective capabilities set
229 * @inheritable: A pointer to the proposed new inheritable capabilities set
230 * @permitted: A pointer to the proposed new permitted capabilities set
231 *
232 * This function validates and applies a proposed mass change to the current
233 * process's capability sets. The changes are made to the proposed new
234 * credentials, and assuming no error, will be committed by the caller of LSM.
235 */
236int cap_capset(struct cred *new,
237 const struct cred *old,
238 const kernel_cap_t *effective,
239 const kernel_cap_t *inheritable,
240 const kernel_cap_t *permitted)
241{
242 if (cap_inh_is_capped() &&
243 !cap_issubset(*inheritable,
244 cap_combine(old->cap_inheritable,
245 old->cap_permitted)))
246 /* incapable of using this inheritable set */
247 return -EPERM;
248
249 if (!cap_issubset(*inheritable,
250 cap_combine(old->cap_inheritable,
251 old->cap_bset)))
252 /* no new pI capabilities outside bounding set */
253 return -EPERM;
254
255 /* verify restrictions on target's new Permitted set */
256 if (!cap_issubset(*permitted, old->cap_permitted))
257 return -EPERM;
258
259 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
260 if (!cap_issubset(*effective, *permitted))
261 return -EPERM;
262
263 new->cap_effective = *effective;
264 new->cap_inheritable = *inheritable;
265 new->cap_permitted = *permitted;
266 return 0;
267}
268
269/*
270 * Clear proposed capability sets for execve().
271 */
272static inline void bprm_clear_caps(struct linux_binprm *bprm)
273{
274 cap_clear(bprm->cred->cap_permitted);
275 bprm->cap_effective = false;
276}
277
278/**
279 * cap_inode_need_killpriv - Determine if inode change affects privileges
280 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
281 *
282 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
283 * affects the security markings on that inode, and if it is, should
284 * inode_killpriv() be invoked or the change rejected?
285 *
286 * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
287 * -ve to deny the change.
288 */
289int cap_inode_need_killpriv(struct dentry *dentry)
290{
291 struct inode *inode = dentry->d_inode;
292 int error;
293
294 if (!inode->i_op->getxattr)
295 return 0;
296
297 error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
298 if (error <= 0)
299 return 0;
300 return 1;
301}
302
303/**
304 * cap_inode_killpriv - Erase the security markings on an inode
305 * @dentry: The inode/dentry to alter
306 *
307 * Erase the privilege-enhancing security markings on an inode.
308 *
309 * Returns 0 if successful, -ve on error.
310 */
311int cap_inode_killpriv(struct dentry *dentry)
312{
313 struct inode *inode = dentry->d_inode;
314
315 if (!inode->i_op->removexattr)
316 return 0;
317
318 return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS);
319}
320
321/*
322 * Calculate the new process capability sets from the capability sets attached
323 * to a file.
324 */
325static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
326 struct linux_binprm *bprm,
327 bool *effective,
328 bool *has_cap)
329{
330 struct cred *new = bprm->cred;
331 unsigned i;
332 int ret = 0;
333
334 if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
335 *effective = true;
336
337 if (caps->magic_etc & VFS_CAP_REVISION_MASK)
338 *has_cap = true;
339
340 CAP_FOR_EACH_U32(i) {
341 __u32 permitted = caps->permitted.cap[i];
342 __u32 inheritable = caps->inheritable.cap[i];
343
344 /*
345 * pP' = (X & fP) | (pI & fI)
346 */
347 new->cap_permitted.cap[i] =
348 (new->cap_bset.cap[i] & permitted) |
349 (new->cap_inheritable.cap[i] & inheritable);
350
351 if (permitted & ~new->cap_permitted.cap[i])
352 /* insufficient to execute correctly */
353 ret = -EPERM;
354 }
355
356 /*
357 * For legacy apps, with no internal support for recognizing they
358 * do not have enough capabilities, we return an error if they are
359 * missing some "forced" (aka file-permitted) capabilities.
360 */
361 return *effective ? ret : 0;
362}
363
364/*
365 * Extract the on-exec-apply capability sets for an executable file.
366 */
367int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
368{
369 struct inode *inode = dentry->d_inode;
370 __u32 magic_etc;
371 unsigned tocopy, i;
372 int size;
373 struct vfs_cap_data caps;
374
375 memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
376
377 if (!inode || !inode->i_op->getxattr)
378 return -ENODATA;
379
380 size = inode->i_op->getxattr((struct dentry *)dentry, XATTR_NAME_CAPS, &caps,
381 XATTR_CAPS_SZ);
382 if (size == -ENODATA || size == -EOPNOTSUPP)
383 /* no data, that's ok */
384 return -ENODATA;
385 if (size < 0)
386 return size;
387
388 if (size < sizeof(magic_etc))
389 return -EINVAL;
390
391 cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps.magic_etc);
392
393 switch (magic_etc & VFS_CAP_REVISION_MASK) {
394 case VFS_CAP_REVISION_1:
395 if (size != XATTR_CAPS_SZ_1)
396 return -EINVAL;
397 tocopy = VFS_CAP_U32_1;
398 break;
399 case VFS_CAP_REVISION_2:
400 if (size != XATTR_CAPS_SZ_2)
401 return -EINVAL;
402 tocopy = VFS_CAP_U32_2;
403 break;
404 default:
405 return -EINVAL;
406 }
407
408 CAP_FOR_EACH_U32(i) {
409 if (i >= tocopy)
410 break;
411 cpu_caps->permitted.cap[i] = le32_to_cpu(caps.data[i].permitted);
412 cpu_caps->inheritable.cap[i] = le32_to_cpu(caps.data[i].inheritable);
413 }
414
415 return 0;
416}
417
418/*
419 * Attempt to get the on-exec apply capability sets for an executable file from
420 * its xattrs and, if present, apply them to the proposed credentials being
421 * constructed by execve().
422 */
423static int get_file_caps(struct linux_binprm *bprm, bool *effective, bool *has_cap)
424{
425 struct dentry *dentry;
426 int rc = 0;
427 struct cpu_vfs_cap_data vcaps;
428
429 bprm_clear_caps(bprm);
430
431 if (!file_caps_enabled)
432 return 0;
433
434 if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)
435 return 0;
436
437 dentry = dget(bprm->file->f_dentry);
438
439 rc = get_vfs_caps_from_disk(dentry, &vcaps);
440 if (rc < 0) {
441 if (rc == -EINVAL)
442 printk(KERN_NOTICE "%s: get_vfs_caps_from_disk returned %d for %s\n",
443 __func__, rc, bprm->filename);
444 else if (rc == -ENODATA)
445 rc = 0;
446 goto out;
447 }
448
449 rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_cap);
450 if (rc == -EINVAL)
451 printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
452 __func__, rc, bprm->filename);
453
454out:
455 dput(dentry);
456 if (rc)
457 bprm_clear_caps(bprm);
458
459 return rc;
460}
461
462/**
463 * cap_bprm_set_creds - Set up the proposed credentials for execve().
464 * @bprm: The execution parameters, including the proposed creds
465 *
466 * Set up the proposed credentials for a new execution context being
467 * constructed by execve(). The proposed creds in @bprm->cred is altered,
468 * which won't take effect immediately. Returns 0 if successful, -ve on error.
469 */
470int cap_bprm_set_creds(struct linux_binprm *bprm)
471{
472 const struct cred *old = current_cred();
473 struct cred *new = bprm->cred;
474 bool effective, has_cap = false;
475 int ret;
476 kuid_t root_uid;
477
478 effective = false;
479 ret = get_file_caps(bprm, &effective, &has_cap);
480 if (ret < 0)
481 return ret;
482
483 root_uid = make_kuid(new->user_ns, 0);
484
485 if (!issecure(SECURE_NOROOT)) {
486 /*
487 * If the legacy file capability is set, then don't set privs
488 * for a setuid root binary run by a non-root user. Do set it
489 * for a root user just to cause least surprise to an admin.
490 */
491 if (has_cap && !uid_eq(new->uid, root_uid) && uid_eq(new->euid, root_uid)) {
492 warn_setuid_and_fcaps_mixed(bprm->filename);
493 goto skip;
494 }
495 /*
496 * To support inheritance of root-permissions and suid-root
497 * executables under compatibility mode, we override the
498 * capability sets for the file.
499 *
500 * If only the real uid is 0, we do not set the effective bit.
501 */
502 if (uid_eq(new->euid, root_uid) || uid_eq(new->uid, root_uid)) {
503 /* pP' = (cap_bset & ~0) | (pI & ~0) */
504 new->cap_permitted = cap_combine(old->cap_bset,
505 old->cap_inheritable);
506 }
507 if (uid_eq(new->euid, root_uid))
508 effective = true;
509 }
510skip:
511
512 /* if we have fs caps, clear dangerous personality flags */
513 if (!cap_issubset(new->cap_permitted, old->cap_permitted))
514 bprm->per_clear |= PER_CLEAR_ON_SETID;
515
516
517 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
518 * credentials unless they have the appropriate permit.
519 *
520 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
521 */
522 if ((!uid_eq(new->euid, old->uid) ||
523 !gid_eq(new->egid, old->gid) ||
524 !cap_issubset(new->cap_permitted, old->cap_permitted)) &&
525 bprm->unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
526 /* downgrade; they get no more than they had, and maybe less */
527 if (!capable(CAP_SETUID) ||
528 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
529 new->euid = new->uid;
530 new->egid = new->gid;
531 }
532 new->cap_permitted = cap_intersect(new->cap_permitted,
533 old->cap_permitted);
534 }
535
536 new->suid = new->fsuid = new->euid;
537 new->sgid = new->fsgid = new->egid;
538
539 if (effective)
540 new->cap_effective = new->cap_permitted;
541 else
542 cap_clear(new->cap_effective);
543 bprm->cap_effective = effective;
544
545 /*
546 * Audit candidate if current->cap_effective is set
547 *
548 * We do not bother to audit if 3 things are true:
549 * 1) cap_effective has all caps
550 * 2) we are root
551 * 3) root is supposed to have all caps (SECURE_NOROOT)
552 * Since this is just a normal root execing a process.
553 *
554 * Number 1 above might fail if you don't have a full bset, but I think
555 * that is interesting information to audit.
556 */
557 if (!cap_isclear(new->cap_effective)) {
558 if (!cap_issubset(CAP_FULL_SET, new->cap_effective) ||
559 !uid_eq(new->euid, root_uid) || !uid_eq(new->uid, root_uid) ||
560 issecure(SECURE_NOROOT)) {
561 ret = audit_log_bprm_fcaps(bprm, new, old);
562 if (ret < 0)
563 return ret;
564 }
565 }
566
567 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
568 return 0;
569}
570
571/**
572 * cap_bprm_secureexec - Determine whether a secure execution is required
573 * @bprm: The execution parameters
574 *
575 * Determine whether a secure execution is required, return 1 if it is, and 0
576 * if it is not.
577 *
578 * The credentials have been committed by this point, and so are no longer
579 * available through @bprm->cred.
580 */
581int cap_bprm_secureexec(struct linux_binprm *bprm)
582{
583 const struct cred *cred = current_cred();
584 kuid_t root_uid = make_kuid(cred->user_ns, 0);
585
586 if (!uid_eq(cred->uid, root_uid)) {
587 if (bprm->cap_effective)
588 return 1;
589 if (!cap_isclear(cred->cap_permitted))
590 return 1;
591 }
592
593 return (!uid_eq(cred->euid, cred->uid) ||
594 !gid_eq(cred->egid, cred->gid));
595}
596
597/**
598 * cap_inode_setxattr - Determine whether an xattr may be altered
599 * @dentry: The inode/dentry being altered
600 * @name: The name of the xattr to be changed
601 * @value: The value that the xattr will be changed to
602 * @size: The size of value
603 * @flags: The replacement flag
604 *
605 * Determine whether an xattr may be altered or set on an inode, returning 0 if
606 * permission is granted, -ve if denied.
607 *
608 * This is used to make sure security xattrs don't get updated or set by those
609 * who aren't privileged to do so.
610 */
611int cap_inode_setxattr(struct dentry *dentry, const char *name,
612 const void *value, size_t size, int flags)
613{
614 if (!strcmp(name, XATTR_NAME_CAPS)) {
615 if (!capable(CAP_SETFCAP))
616 return -EPERM;
617 return 0;
618 }
619
620 if (!strncmp(name, XATTR_SECURITY_PREFIX,
621 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
622 !capable(CAP_SYS_ADMIN))
623 return -EPERM;
624 return 0;
625}
626
627/**
628 * cap_inode_removexattr - Determine whether an xattr may be removed
629 * @dentry: The inode/dentry being altered
630 * @name: The name of the xattr to be changed
631 *
632 * Determine whether an xattr may be removed from an inode, returning 0 if
633 * permission is granted, -ve if denied.
634 *
635 * This is used to make sure security xattrs don't get removed by those who
636 * aren't privileged to remove them.
637 */
638int cap_inode_removexattr(struct dentry *dentry, const char *name)
639{
640 if (!strcmp(name, XATTR_NAME_CAPS)) {
641 if (!capable(CAP_SETFCAP))
642 return -EPERM;
643 return 0;
644 }
645
646 if (!strncmp(name, XATTR_SECURITY_PREFIX,
647 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
648 !capable(CAP_SYS_ADMIN))
649 return -EPERM;
650 return 0;
651}
652
653/*
654 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
655 * a process after a call to setuid, setreuid, or setresuid.
656 *
657 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
658 * {r,e,s}uid != 0, the permitted and effective capabilities are
659 * cleared.
660 *
661 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
662 * capabilities of the process are cleared.
663 *
664 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
665 * capabilities are set to the permitted capabilities.
666 *
667 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
668 * never happen.
669 *
670 * -astor
671 *
672 * cevans - New behaviour, Oct '99
673 * A process may, via prctl(), elect to keep its capabilities when it
674 * calls setuid() and switches away from uid==0. Both permitted and
675 * effective sets will be retained.
676 * Without this change, it was impossible for a daemon to drop only some
677 * of its privilege. The call to setuid(!=0) would drop all privileges!
678 * Keeping uid 0 is not an option because uid 0 owns too many vital
679 * files..
680 * Thanks to Olaf Kirch and Peter Benie for spotting this.
681 */
682static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
683{
684 kuid_t root_uid = make_kuid(old->user_ns, 0);
685
686 if ((uid_eq(old->uid, root_uid) ||
687 uid_eq(old->euid, root_uid) ||
688 uid_eq(old->suid, root_uid)) &&
689 (!uid_eq(new->uid, root_uid) &&
690 !uid_eq(new->euid, root_uid) &&
691 !uid_eq(new->suid, root_uid)) &&
692 !issecure(SECURE_KEEP_CAPS)) {
693 cap_clear(new->cap_permitted);
694 cap_clear(new->cap_effective);
695 }
696 if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
697 cap_clear(new->cap_effective);
698 if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
699 new->cap_effective = new->cap_permitted;
700}
701
702/**
703 * cap_task_fix_setuid - Fix up the results of setuid() call
704 * @new: The proposed credentials
705 * @old: The current task's current credentials
706 * @flags: Indications of what has changed
707 *
708 * Fix up the results of setuid() call before the credential changes are
709 * actually applied, returning 0 to grant the changes, -ve to deny them.
710 */
711int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
712{
713 switch (flags) {
714 case LSM_SETID_RE:
715 case LSM_SETID_ID:
716 case LSM_SETID_RES:
717 /* juggle the capabilities to follow [RES]UID changes unless
718 * otherwise suppressed */
719 if (!issecure(SECURE_NO_SETUID_FIXUP))
720 cap_emulate_setxuid(new, old);
721 break;
722
723 case LSM_SETID_FS:
724 /* juggle the capabilties to follow FSUID changes, unless
725 * otherwise suppressed
726 *
727 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
728 * if not, we might be a bit too harsh here.
729 */
730 if (!issecure(SECURE_NO_SETUID_FIXUP)) {
731 kuid_t root_uid = make_kuid(old->user_ns, 0);
732 if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
733 new->cap_effective =
734 cap_drop_fs_set(new->cap_effective);
735
736 if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
737 new->cap_effective =
738 cap_raise_fs_set(new->cap_effective,
739 new->cap_permitted);
740 }
741 break;
742
743 default:
744 return -EINVAL;
745 }
746
747 return 0;
748}
749
750/*
751 * Rationale: code calling task_setscheduler, task_setioprio, and
752 * task_setnice, assumes that
753 * . if capable(cap_sys_nice), then those actions should be allowed
754 * . if not capable(cap_sys_nice), but acting on your own processes,
755 * then those actions should be allowed
756 * This is insufficient now since you can call code without suid, but
757 * yet with increased caps.
758 * So we check for increased caps on the target process.
759 */
760static int cap_safe_nice(struct task_struct *p)
761{
762 int is_subset;
763
764 rcu_read_lock();
765 is_subset = cap_issubset(__task_cred(p)->cap_permitted,
766 current_cred()->cap_permitted);
767 rcu_read_unlock();
768
769 if (!is_subset && !capable(CAP_SYS_NICE))
770 return -EPERM;
771 return 0;
772}
773
774/**
775 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
776 * @p: The task to affect
777 *
778 * Detemine if the requested scheduler policy change is permitted for the
779 * specified task, returning 0 if permission is granted, -ve if denied.
780 */
781int cap_task_setscheduler(struct task_struct *p)
782{
783 return cap_safe_nice(p);
784}
785
786/**
787 * cap_task_ioprio - Detemine if I/O priority change is permitted
788 * @p: The task to affect
789 * @ioprio: The I/O priority to set
790 *
791 * Detemine if the requested I/O priority change is permitted for the specified
792 * task, returning 0 if permission is granted, -ve if denied.
793 */
794int cap_task_setioprio(struct task_struct *p, int ioprio)
795{
796 return cap_safe_nice(p);
797}
798
799/**
800 * cap_task_ioprio - Detemine if task priority change is permitted
801 * @p: The task to affect
802 * @nice: The nice value to set
803 *
804 * Detemine if the requested task priority change is permitted for the
805 * specified task, returning 0 if permission is granted, -ve if denied.
806 */
807int cap_task_setnice(struct task_struct *p, int nice)
808{
809 return cap_safe_nice(p);
810}
811
812/*
813 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
814 * the current task's bounding set. Returns 0 on success, -ve on error.
815 */
816static long cap_prctl_drop(struct cred *new, unsigned long cap)
817{
818 if (!capable(CAP_SETPCAP))
819 return -EPERM;
820 if (!cap_valid(cap))
821 return -EINVAL;
822
823 cap_lower(new->cap_bset, cap);
824 return 0;
825}
826
827/**
828 * cap_task_prctl - Implement process control functions for this security module
829 * @option: The process control function requested
830 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
831 *
832 * Allow process control functions (sys_prctl()) to alter capabilities; may
833 * also deny access to other functions not otherwise implemented here.
834 *
835 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
836 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
837 * modules will consider performing the function.
838 */
839int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
840 unsigned long arg4, unsigned long arg5)
841{
842 struct cred *new;
843 long error = 0;
844
845 new = prepare_creds();
846 if (!new)
847 return -ENOMEM;
848
849 switch (option) {
850 case PR_CAPBSET_READ:
851 error = -EINVAL;
852 if (!cap_valid(arg2))
853 goto error;
854 error = !!cap_raised(new->cap_bset, arg2);
855 goto no_change;
856
857 case PR_CAPBSET_DROP:
858 error = cap_prctl_drop(new, arg2);
859 if (error < 0)
860 goto error;
861 goto changed;
862
863 /*
864 * The next four prctl's remain to assist with transitioning a
865 * system from legacy UID=0 based privilege (when filesystem
866 * capabilities are not in use) to a system using filesystem
867 * capabilities only - as the POSIX.1e draft intended.
868 *
869 * Note:
870 *
871 * PR_SET_SECUREBITS =
872 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
873 * | issecure_mask(SECURE_NOROOT)
874 * | issecure_mask(SECURE_NOROOT_LOCKED)
875 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
876 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
877 *
878 * will ensure that the current process and all of its
879 * children will be locked into a pure
880 * capability-based-privilege environment.
881 */
882 case PR_SET_SECUREBITS:
883 error = -EPERM;
884 if ((((new->securebits & SECURE_ALL_LOCKS) >> 1)
885 & (new->securebits ^ arg2)) /*[1]*/
886 || ((new->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/
887 || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
888 || (cap_capable(current_cred(),
889 current_cred()->user_ns, CAP_SETPCAP,
890 SECURITY_CAP_AUDIT) != 0) /*[4]*/
891 /*
892 * [1] no changing of bits that are locked
893 * [2] no unlocking of locks
894 * [3] no setting of unsupported bits
895 * [4] doing anything requires privilege (go read about
896 * the "sendmail capabilities bug")
897 */
898 )
899 /* cannot change a locked bit */
900 goto error;
901 new->securebits = arg2;
902 goto changed;
903
904 case PR_GET_SECUREBITS:
905 error = new->securebits;
906 goto no_change;
907
908 case PR_GET_KEEPCAPS:
909 if (issecure(SECURE_KEEP_CAPS))
910 error = 1;
911 goto no_change;
912
913 case PR_SET_KEEPCAPS:
914 error = -EINVAL;
915 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
916 goto error;
917 error = -EPERM;
918 if (issecure(SECURE_KEEP_CAPS_LOCKED))
919 goto error;
920 if (arg2)
921 new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
922 else
923 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
924 goto changed;
925
926 default:
927 /* No functionality available - continue with default */
928 error = -ENOSYS;
929 goto error;
930 }
931
932 /* Functionality provided */
933changed:
934 return commit_creds(new);
935
936no_change:
937error:
938 abort_creds(new);
939 return error;
940}
941
942/**
943 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
944 * @mm: The VM space in which the new mapping is to be made
945 * @pages: The size of the mapping
946 *
947 * Determine whether the allocation of a new virtual mapping by the current
948 * task is permitted, returning 0 if permission is granted, -ve if not.
949 */
950int cap_vm_enough_memory(struct mm_struct *mm, long pages)
951{
952 int cap_sys_admin = 0;
953
954 if (cap_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
955 SECURITY_CAP_NOAUDIT) == 0)
956 cap_sys_admin = 1;
957 return __vm_enough_memory(mm, pages, cap_sys_admin);
958}
959
960/*
961 * cap_mmap_addr - check if able to map given addr
962 * @addr: address attempting to be mapped
963 *
964 * If the process is attempting to map memory below dac_mmap_min_addr they need
965 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
966 * capability security module. Returns 0 if this mapping should be allowed
967 * -EPERM if not.
968 */
969int cap_mmap_addr(unsigned long addr)
970{
971 int ret = 0;
972
973 if (addr < dac_mmap_min_addr) {
974 ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
975 SECURITY_CAP_AUDIT);
976 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
977 if (ret == 0)
978 current->flags |= PF_SUPERPRIV;
979 }
980 return ret;
981}
982
983int cap_mmap_file(struct file *file, unsigned long reqprot,
984 unsigned long prot, unsigned long flags)
985{
986 return 0;
987}