Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Implement CPU time clocks for the POSIX clock interface.
4 */
5
6#include <linux/sched/signal.h>
7#include <linux/sched/cputime.h>
8#include <linux/posix-timers.h>
9#include <linux/errno.h>
10#include <linux/math64.h>
11#include <linux/uaccess.h>
12#include <linux/kernel_stat.h>
13#include <trace/events/timer.h>
14#include <linux/tick.h>
15#include <linux/workqueue.h>
16#include <linux/compat.h>
17#include <linux/sched/deadline.h>
18#include <linux/task_work.h>
19
20#include "posix-timers.h"
21
22static void posix_cpu_timer_rearm(struct k_itimer *timer);
23
24void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit)
25{
26 posix_cputimers_init(pct);
27 if (cpu_limit != RLIM_INFINITY) {
28 pct->bases[CPUCLOCK_PROF].nextevt = cpu_limit * NSEC_PER_SEC;
29 pct->timers_active = true;
30 }
31}
32
33/*
34 * Called after updating RLIMIT_CPU to run cpu timer and update
35 * tsk->signal->posix_cputimers.bases[clock].nextevt expiration cache if
36 * necessary. Needs siglock protection since other code may update the
37 * expiration cache as well.
38 *
39 * Returns 0 on success, -ESRCH on failure. Can fail if the task is exiting and
40 * we cannot lock_task_sighand. Cannot fail if task is current.
41 */
42int update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
43{
44 u64 nsecs = rlim_new * NSEC_PER_SEC;
45 unsigned long irq_fl;
46
47 if (!lock_task_sighand(task, &irq_fl))
48 return -ESRCH;
49 set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
50 unlock_task_sighand(task, &irq_fl);
51 return 0;
52}
53
54/*
55 * Functions for validating access to tasks.
56 */
57static struct pid *pid_for_clock(const clockid_t clock, bool gettime)
58{
59 const bool thread = !!CPUCLOCK_PERTHREAD(clock);
60 const pid_t upid = CPUCLOCK_PID(clock);
61 struct pid *pid;
62
63 if (CPUCLOCK_WHICH(clock) >= CPUCLOCK_MAX)
64 return NULL;
65
66 /*
67 * If the encoded PID is 0, then the timer is targeted at current
68 * or the process to which current belongs.
69 */
70 if (upid == 0)
71 return thread ? task_pid(current) : task_tgid(current);
72
73 pid = find_vpid(upid);
74 if (!pid)
75 return NULL;
76
77 if (thread) {
78 struct task_struct *tsk = pid_task(pid, PIDTYPE_PID);
79 return (tsk && same_thread_group(tsk, current)) ? pid : NULL;
80 }
81
82 /*
83 * For clock_gettime(PROCESS) allow finding the process by
84 * with the pid of the current task. The code needs the tgid
85 * of the process so that pid_task(pid, PIDTYPE_TGID) can be
86 * used to find the process.
87 */
88 if (gettime && (pid == task_pid(current)))
89 return task_tgid(current);
90
91 /*
92 * For processes require that pid identifies a process.
93 */
94 return pid_has_task(pid, PIDTYPE_TGID) ? pid : NULL;
95}
96
97static inline int validate_clock_permissions(const clockid_t clock)
98{
99 int ret;
100
101 rcu_read_lock();
102 ret = pid_for_clock(clock, false) ? 0 : -EINVAL;
103 rcu_read_unlock();
104
105 return ret;
106}
107
108static inline enum pid_type clock_pid_type(const clockid_t clock)
109{
110 return CPUCLOCK_PERTHREAD(clock) ? PIDTYPE_PID : PIDTYPE_TGID;
111}
112
113static inline struct task_struct *cpu_timer_task_rcu(struct k_itimer *timer)
114{
115 return pid_task(timer->it.cpu.pid, clock_pid_type(timer->it_clock));
116}
117
118/*
119 * Update expiry time from increment, and increase overrun count,
120 * given the current clock sample.
121 */
122static u64 bump_cpu_timer(struct k_itimer *timer, u64 now)
123{
124 u64 delta, incr, expires = timer->it.cpu.node.expires;
125 int i;
126
127 if (!timer->it_interval)
128 return expires;
129
130 if (now < expires)
131 return expires;
132
133 incr = timer->it_interval;
134 delta = now + incr - expires;
135
136 /* Don't use (incr*2 < delta), incr*2 might overflow. */
137 for (i = 0; incr < delta - incr; i++)
138 incr = incr << 1;
139
140 for (; i >= 0; incr >>= 1, i--) {
141 if (delta < incr)
142 continue;
143
144 timer->it.cpu.node.expires += incr;
145 timer->it_overrun += 1LL << i;
146 delta -= incr;
147 }
148 return timer->it.cpu.node.expires;
149}
150
151/* Check whether all cache entries contain U64_MAX, i.e. eternal expiry time */
152static inline bool expiry_cache_is_inactive(const struct posix_cputimers *pct)
153{
154 return !(~pct->bases[CPUCLOCK_PROF].nextevt |
155 ~pct->bases[CPUCLOCK_VIRT].nextevt |
156 ~pct->bases[CPUCLOCK_SCHED].nextevt);
157}
158
159static int
160posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
161{
162 int error = validate_clock_permissions(which_clock);
163
164 if (!error) {
165 tp->tv_sec = 0;
166 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
167 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
168 /*
169 * If sched_clock is using a cycle counter, we
170 * don't have any idea of its true resolution
171 * exported, but it is much more than 1s/HZ.
172 */
173 tp->tv_nsec = 1;
174 }
175 }
176 return error;
177}
178
179static int
180posix_cpu_clock_set(const clockid_t clock, const struct timespec64 *tp)
181{
182 int error = validate_clock_permissions(clock);
183
184 /*
185 * You can never reset a CPU clock, but we check for other errors
186 * in the call before failing with EPERM.
187 */
188 return error ? : -EPERM;
189}
190
191/*
192 * Sample a per-thread clock for the given task. clkid is validated.
193 */
194static u64 cpu_clock_sample(const clockid_t clkid, struct task_struct *p)
195{
196 u64 utime, stime;
197
198 if (clkid == CPUCLOCK_SCHED)
199 return task_sched_runtime(p);
200
201 task_cputime(p, &utime, &stime);
202
203 switch (clkid) {
204 case CPUCLOCK_PROF:
205 return utime + stime;
206 case CPUCLOCK_VIRT:
207 return utime;
208 default:
209 WARN_ON_ONCE(1);
210 }
211 return 0;
212}
213
214static inline void store_samples(u64 *samples, u64 stime, u64 utime, u64 rtime)
215{
216 samples[CPUCLOCK_PROF] = stime + utime;
217 samples[CPUCLOCK_VIRT] = utime;
218 samples[CPUCLOCK_SCHED] = rtime;
219}
220
221static void task_sample_cputime(struct task_struct *p, u64 *samples)
222{
223 u64 stime, utime;
224
225 task_cputime(p, &utime, &stime);
226 store_samples(samples, stime, utime, p->se.sum_exec_runtime);
227}
228
229static void proc_sample_cputime_atomic(struct task_cputime_atomic *at,
230 u64 *samples)
231{
232 u64 stime, utime, rtime;
233
234 utime = atomic64_read(&at->utime);
235 stime = atomic64_read(&at->stime);
236 rtime = atomic64_read(&at->sum_exec_runtime);
237 store_samples(samples, stime, utime, rtime);
238}
239
240/*
241 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
242 * to avoid race conditions with concurrent updates to cputime.
243 */
244static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
245{
246 u64 curr_cputime;
247retry:
248 curr_cputime = atomic64_read(cputime);
249 if (sum_cputime > curr_cputime) {
250 if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
251 goto retry;
252 }
253}
254
255static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic,
256 struct task_cputime *sum)
257{
258 __update_gt_cputime(&cputime_atomic->utime, sum->utime);
259 __update_gt_cputime(&cputime_atomic->stime, sum->stime);
260 __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
261}
262
263/**
264 * thread_group_sample_cputime - Sample cputime for a given task
265 * @tsk: Task for which cputime needs to be started
266 * @samples: Storage for time samples
267 *
268 * Called from sys_getitimer() to calculate the expiry time of an active
269 * timer. That means group cputime accounting is already active. Called
270 * with task sighand lock held.
271 *
272 * Updates @times with an uptodate sample of the thread group cputimes.
273 */
274void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples)
275{
276 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
277 struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
278
279 WARN_ON_ONCE(!pct->timers_active);
280
281 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
282}
283
284/**
285 * thread_group_start_cputime - Start cputime and return a sample
286 * @tsk: Task for which cputime needs to be started
287 * @samples: Storage for time samples
288 *
289 * The thread group cputime accounting is avoided when there are no posix
290 * CPU timers armed. Before starting a timer it's required to check whether
291 * the time accounting is active. If not, a full update of the atomic
292 * accounting store needs to be done and the accounting enabled.
293 *
294 * Updates @times with an uptodate sample of the thread group cputimes.
295 */
296static void thread_group_start_cputime(struct task_struct *tsk, u64 *samples)
297{
298 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
299 struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
300
301 lockdep_assert_task_sighand_held(tsk);
302
303 /* Check if cputimer isn't running. This is accessed without locking. */
304 if (!READ_ONCE(pct->timers_active)) {
305 struct task_cputime sum;
306
307 /*
308 * The POSIX timer interface allows for absolute time expiry
309 * values through the TIMER_ABSTIME flag, therefore we have
310 * to synchronize the timer to the clock every time we start it.
311 */
312 thread_group_cputime(tsk, &sum);
313 update_gt_cputime(&cputimer->cputime_atomic, &sum);
314
315 /*
316 * We're setting timers_active without a lock. Ensure this
317 * only gets written to in one operation. We set it after
318 * update_gt_cputime() as a small optimization, but
319 * barriers are not required because update_gt_cputime()
320 * can handle concurrent updates.
321 */
322 WRITE_ONCE(pct->timers_active, true);
323 }
324 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
325}
326
327static void __thread_group_cputime(struct task_struct *tsk, u64 *samples)
328{
329 struct task_cputime ct;
330
331 thread_group_cputime(tsk, &ct);
332 store_samples(samples, ct.stime, ct.utime, ct.sum_exec_runtime);
333}
334
335/*
336 * Sample a process (thread group) clock for the given task clkid. If the
337 * group's cputime accounting is already enabled, read the atomic
338 * store. Otherwise a full update is required. clkid is already validated.
339 */
340static u64 cpu_clock_sample_group(const clockid_t clkid, struct task_struct *p,
341 bool start)
342{
343 struct thread_group_cputimer *cputimer = &p->signal->cputimer;
344 struct posix_cputimers *pct = &p->signal->posix_cputimers;
345 u64 samples[CPUCLOCK_MAX];
346
347 if (!READ_ONCE(pct->timers_active)) {
348 if (start)
349 thread_group_start_cputime(p, samples);
350 else
351 __thread_group_cputime(p, samples);
352 } else {
353 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
354 }
355
356 return samples[clkid];
357}
358
359static int posix_cpu_clock_get(const clockid_t clock, struct timespec64 *tp)
360{
361 const clockid_t clkid = CPUCLOCK_WHICH(clock);
362 struct task_struct *tsk;
363 u64 t;
364
365 rcu_read_lock();
366 tsk = pid_task(pid_for_clock(clock, true), clock_pid_type(clock));
367 if (!tsk) {
368 rcu_read_unlock();
369 return -EINVAL;
370 }
371
372 if (CPUCLOCK_PERTHREAD(clock))
373 t = cpu_clock_sample(clkid, tsk);
374 else
375 t = cpu_clock_sample_group(clkid, tsk, false);
376 rcu_read_unlock();
377
378 *tp = ns_to_timespec64(t);
379 return 0;
380}
381
382/*
383 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
384 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
385 * new timer already all-zeros initialized.
386 */
387static int posix_cpu_timer_create(struct k_itimer *new_timer)
388{
389 static struct lock_class_key posix_cpu_timers_key;
390 struct pid *pid;
391
392 rcu_read_lock();
393 pid = pid_for_clock(new_timer->it_clock, false);
394 if (!pid) {
395 rcu_read_unlock();
396 return -EINVAL;
397 }
398
399 /*
400 * If posix timer expiry is handled in task work context then
401 * timer::it_lock can be taken without disabling interrupts as all
402 * other locking happens in task context. This requires a separate
403 * lock class key otherwise regular posix timer expiry would record
404 * the lock class being taken in interrupt context and generate a
405 * false positive warning.
406 */
407 if (IS_ENABLED(CONFIG_POSIX_CPU_TIMERS_TASK_WORK))
408 lockdep_set_class(&new_timer->it_lock, &posix_cpu_timers_key);
409
410 new_timer->kclock = &clock_posix_cpu;
411 timerqueue_init(&new_timer->it.cpu.node);
412 new_timer->it.cpu.pid = get_pid(pid);
413 rcu_read_unlock();
414 return 0;
415}
416
417static struct posix_cputimer_base *timer_base(struct k_itimer *timer,
418 struct task_struct *tsk)
419{
420 int clkidx = CPUCLOCK_WHICH(timer->it_clock);
421
422 if (CPUCLOCK_PERTHREAD(timer->it_clock))
423 return tsk->posix_cputimers.bases + clkidx;
424 else
425 return tsk->signal->posix_cputimers.bases + clkidx;
426}
427
428/*
429 * Force recalculating the base earliest expiration on the next tick.
430 * This will also re-evaluate the need to keep around the process wide
431 * cputime counter and tick dependency and eventually shut these down
432 * if necessary.
433 */
434static void trigger_base_recalc_expires(struct k_itimer *timer,
435 struct task_struct *tsk)
436{
437 struct posix_cputimer_base *base = timer_base(timer, tsk);
438
439 base->nextevt = 0;
440}
441
442/*
443 * Dequeue the timer and reset the base if it was its earliest expiration.
444 * It makes sure the next tick recalculates the base next expiration so we
445 * don't keep the costly process wide cputime counter around for a random
446 * amount of time, along with the tick dependency.
447 *
448 * If another timer gets queued between this and the next tick, its
449 * expiration will update the base next event if necessary on the next
450 * tick.
451 */
452static void disarm_timer(struct k_itimer *timer, struct task_struct *p)
453{
454 struct cpu_timer *ctmr = &timer->it.cpu;
455 struct posix_cputimer_base *base;
456
457 if (!cpu_timer_dequeue(ctmr))
458 return;
459
460 base = timer_base(timer, p);
461 if (cpu_timer_getexpires(ctmr) == base->nextevt)
462 trigger_base_recalc_expires(timer, p);
463}
464
465
466/*
467 * Clean up a CPU-clock timer that is about to be destroyed.
468 * This is called from timer deletion with the timer already locked.
469 * If we return TIMER_RETRY, it's necessary to release the timer's lock
470 * and try again. (This happens when the timer is in the middle of firing.)
471 */
472static int posix_cpu_timer_del(struct k_itimer *timer)
473{
474 struct cpu_timer *ctmr = &timer->it.cpu;
475 struct sighand_struct *sighand;
476 struct task_struct *p;
477 unsigned long flags;
478 int ret = 0;
479
480 rcu_read_lock();
481 p = cpu_timer_task_rcu(timer);
482 if (!p)
483 goto out;
484
485 /*
486 * Protect against sighand release/switch in exit/exec and process/
487 * thread timer list entry concurrent read/writes.
488 */
489 sighand = lock_task_sighand(p, &flags);
490 if (unlikely(sighand == NULL)) {
491 /*
492 * This raced with the reaping of the task. The exit cleanup
493 * should have removed this timer from the timer queue.
494 */
495 WARN_ON_ONCE(ctmr->head || timerqueue_node_queued(&ctmr->node));
496 } else {
497 if (timer->it.cpu.firing)
498 ret = TIMER_RETRY;
499 else
500 disarm_timer(timer, p);
501
502 unlock_task_sighand(p, &flags);
503 }
504
505out:
506 rcu_read_unlock();
507 if (!ret)
508 put_pid(ctmr->pid);
509
510 return ret;
511}
512
513static void cleanup_timerqueue(struct timerqueue_head *head)
514{
515 struct timerqueue_node *node;
516 struct cpu_timer *ctmr;
517
518 while ((node = timerqueue_getnext(head))) {
519 timerqueue_del(head, node);
520 ctmr = container_of(node, struct cpu_timer, node);
521 ctmr->head = NULL;
522 }
523}
524
525/*
526 * Clean out CPU timers which are still armed when a thread exits. The
527 * timers are only removed from the list. No other updates are done. The
528 * corresponding posix timers are still accessible, but cannot be rearmed.
529 *
530 * This must be called with the siglock held.
531 */
532static void cleanup_timers(struct posix_cputimers *pct)
533{
534 cleanup_timerqueue(&pct->bases[CPUCLOCK_PROF].tqhead);
535 cleanup_timerqueue(&pct->bases[CPUCLOCK_VIRT].tqhead);
536 cleanup_timerqueue(&pct->bases[CPUCLOCK_SCHED].tqhead);
537}
538
539/*
540 * These are both called with the siglock held, when the current thread
541 * is being reaped. When the final (leader) thread in the group is reaped,
542 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
543 */
544void posix_cpu_timers_exit(struct task_struct *tsk)
545{
546 cleanup_timers(&tsk->posix_cputimers);
547}
548void posix_cpu_timers_exit_group(struct task_struct *tsk)
549{
550 cleanup_timers(&tsk->signal->posix_cputimers);
551}
552
553/*
554 * Insert the timer on the appropriate list before any timers that
555 * expire later. This must be called with the sighand lock held.
556 */
557static void arm_timer(struct k_itimer *timer, struct task_struct *p)
558{
559 struct posix_cputimer_base *base = timer_base(timer, p);
560 struct cpu_timer *ctmr = &timer->it.cpu;
561 u64 newexp = cpu_timer_getexpires(ctmr);
562
563 if (!cpu_timer_enqueue(&base->tqhead, ctmr))
564 return;
565
566 /*
567 * We are the new earliest-expiring POSIX 1.b timer, hence
568 * need to update expiration cache. Take into account that
569 * for process timers we share expiration cache with itimers
570 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
571 */
572 if (newexp < base->nextevt)
573 base->nextevt = newexp;
574
575 if (CPUCLOCK_PERTHREAD(timer->it_clock))
576 tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
577 else
578 tick_dep_set_signal(p, TICK_DEP_BIT_POSIX_TIMER);
579}
580
581/*
582 * The timer is locked, fire it and arrange for its reload.
583 */
584static void cpu_timer_fire(struct k_itimer *timer)
585{
586 struct cpu_timer *ctmr = &timer->it.cpu;
587
588 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
589 /*
590 * User don't want any signal.
591 */
592 cpu_timer_setexpires(ctmr, 0);
593 } else if (unlikely(timer->sigq == NULL)) {
594 /*
595 * This a special case for clock_nanosleep,
596 * not a normal timer from sys_timer_create.
597 */
598 wake_up_process(timer->it_process);
599 cpu_timer_setexpires(ctmr, 0);
600 } else if (!timer->it_interval) {
601 /*
602 * One-shot timer. Clear it as soon as it's fired.
603 */
604 posix_timer_event(timer, 0);
605 cpu_timer_setexpires(ctmr, 0);
606 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
607 /*
608 * The signal did not get queued because the signal
609 * was ignored, so we won't get any callback to
610 * reload the timer. But we need to keep it
611 * ticking in case the signal is deliverable next time.
612 */
613 posix_cpu_timer_rearm(timer);
614 ++timer->it_requeue_pending;
615 }
616}
617
618/*
619 * Guts of sys_timer_settime for CPU timers.
620 * This is called with the timer locked and interrupts disabled.
621 * If we return TIMER_RETRY, it's necessary to release the timer's lock
622 * and try again. (This happens when the timer is in the middle of firing.)
623 */
624static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
625 struct itimerspec64 *new, struct itimerspec64 *old)
626{
627 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
628 u64 old_expires, new_expires, old_incr, val;
629 struct cpu_timer *ctmr = &timer->it.cpu;
630 struct sighand_struct *sighand;
631 struct task_struct *p;
632 unsigned long flags;
633 int ret = 0;
634
635 rcu_read_lock();
636 p = cpu_timer_task_rcu(timer);
637 if (!p) {
638 /*
639 * If p has just been reaped, we can no
640 * longer get any information about it at all.
641 */
642 rcu_read_unlock();
643 return -ESRCH;
644 }
645
646 /*
647 * Use the to_ktime conversion because that clamps the maximum
648 * value to KTIME_MAX and avoid multiplication overflows.
649 */
650 new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
651
652 /*
653 * Protect against sighand release/switch in exit/exec and p->cpu_timers
654 * and p->signal->cpu_timers read/write in arm_timer()
655 */
656 sighand = lock_task_sighand(p, &flags);
657 /*
658 * If p has just been reaped, we can no
659 * longer get any information about it at all.
660 */
661 if (unlikely(sighand == NULL)) {
662 rcu_read_unlock();
663 return -ESRCH;
664 }
665
666 /*
667 * Disarm any old timer after extracting its expiry time.
668 */
669 old_incr = timer->it_interval;
670 old_expires = cpu_timer_getexpires(ctmr);
671
672 if (unlikely(timer->it.cpu.firing)) {
673 timer->it.cpu.firing = -1;
674 ret = TIMER_RETRY;
675 } else {
676 cpu_timer_dequeue(ctmr);
677 }
678
679 /*
680 * We need to sample the current value to convert the new
681 * value from to relative and absolute, and to convert the
682 * old value from absolute to relative. To set a process
683 * timer, we need a sample to balance the thread expiry
684 * times (in arm_timer). With an absolute time, we must
685 * check if it's already passed. In short, we need a sample.
686 */
687 if (CPUCLOCK_PERTHREAD(timer->it_clock))
688 val = cpu_clock_sample(clkid, p);
689 else
690 val = cpu_clock_sample_group(clkid, p, true);
691
692 if (old) {
693 if (old_expires == 0) {
694 old->it_value.tv_sec = 0;
695 old->it_value.tv_nsec = 0;
696 } else {
697 /*
698 * Update the timer in case it has overrun already.
699 * If it has, we'll report it as having overrun and
700 * with the next reloaded timer already ticking,
701 * though we are swallowing that pending
702 * notification here to install the new setting.
703 */
704 u64 exp = bump_cpu_timer(timer, val);
705
706 if (val < exp) {
707 old_expires = exp - val;
708 old->it_value = ns_to_timespec64(old_expires);
709 } else {
710 old->it_value.tv_nsec = 1;
711 old->it_value.tv_sec = 0;
712 }
713 }
714 }
715
716 if (unlikely(ret)) {
717 /*
718 * We are colliding with the timer actually firing.
719 * Punt after filling in the timer's old value, and
720 * disable this firing since we are already reporting
721 * it as an overrun (thanks to bump_cpu_timer above).
722 */
723 unlock_task_sighand(p, &flags);
724 goto out;
725 }
726
727 if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
728 new_expires += val;
729 }
730
731 /*
732 * Install the new expiry time (or zero).
733 * For a timer with no notification action, we don't actually
734 * arm the timer (we'll just fake it for timer_gettime).
735 */
736 cpu_timer_setexpires(ctmr, new_expires);
737 if (new_expires != 0 && val < new_expires) {
738 arm_timer(timer, p);
739 }
740
741 unlock_task_sighand(p, &flags);
742 /*
743 * Install the new reload setting, and
744 * set up the signal and overrun bookkeeping.
745 */
746 timer->it_interval = timespec64_to_ktime(new->it_interval);
747
748 /*
749 * This acts as a modification timestamp for the timer,
750 * so any automatic reload attempt will punt on seeing
751 * that we have reset the timer manually.
752 */
753 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
754 ~REQUEUE_PENDING;
755 timer->it_overrun_last = 0;
756 timer->it_overrun = -1;
757
758 if (val >= new_expires) {
759 if (new_expires != 0) {
760 /*
761 * The designated time already passed, so we notify
762 * immediately, even if the thread never runs to
763 * accumulate more time on this clock.
764 */
765 cpu_timer_fire(timer);
766 }
767
768 /*
769 * Make sure we don't keep around the process wide cputime
770 * counter or the tick dependency if they are not necessary.
771 */
772 sighand = lock_task_sighand(p, &flags);
773 if (!sighand)
774 goto out;
775
776 if (!cpu_timer_queued(ctmr))
777 trigger_base_recalc_expires(timer, p);
778
779 unlock_task_sighand(p, &flags);
780 }
781 out:
782 rcu_read_unlock();
783 if (old)
784 old->it_interval = ns_to_timespec64(old_incr);
785
786 return ret;
787}
788
789static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
790{
791 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
792 struct cpu_timer *ctmr = &timer->it.cpu;
793 u64 now, expires = cpu_timer_getexpires(ctmr);
794 struct task_struct *p;
795
796 rcu_read_lock();
797 p = cpu_timer_task_rcu(timer);
798 if (!p)
799 goto out;
800
801 /*
802 * Easy part: convert the reload time.
803 */
804 itp->it_interval = ktime_to_timespec64(timer->it_interval);
805
806 if (!expires)
807 goto out;
808
809 /*
810 * Sample the clock to take the difference with the expiry time.
811 */
812 if (CPUCLOCK_PERTHREAD(timer->it_clock))
813 now = cpu_clock_sample(clkid, p);
814 else
815 now = cpu_clock_sample_group(clkid, p, false);
816
817 if (now < expires) {
818 itp->it_value = ns_to_timespec64(expires - now);
819 } else {
820 /*
821 * The timer should have expired already, but the firing
822 * hasn't taken place yet. Say it's just about to expire.
823 */
824 itp->it_value.tv_nsec = 1;
825 itp->it_value.tv_sec = 0;
826 }
827out:
828 rcu_read_unlock();
829}
830
831#define MAX_COLLECTED 20
832
833static u64 collect_timerqueue(struct timerqueue_head *head,
834 struct list_head *firing, u64 now)
835{
836 struct timerqueue_node *next;
837 int i = 0;
838
839 while ((next = timerqueue_getnext(head))) {
840 struct cpu_timer *ctmr;
841 u64 expires;
842
843 ctmr = container_of(next, struct cpu_timer, node);
844 expires = cpu_timer_getexpires(ctmr);
845 /* Limit the number of timers to expire at once */
846 if (++i == MAX_COLLECTED || now < expires)
847 return expires;
848
849 ctmr->firing = 1;
850 cpu_timer_dequeue(ctmr);
851 list_add_tail(&ctmr->elist, firing);
852 }
853
854 return U64_MAX;
855}
856
857static void collect_posix_cputimers(struct posix_cputimers *pct, u64 *samples,
858 struct list_head *firing)
859{
860 struct posix_cputimer_base *base = pct->bases;
861 int i;
862
863 for (i = 0; i < CPUCLOCK_MAX; i++, base++) {
864 base->nextevt = collect_timerqueue(&base->tqhead, firing,
865 samples[i]);
866 }
867}
868
869static inline void check_dl_overrun(struct task_struct *tsk)
870{
871 if (tsk->dl.dl_overrun) {
872 tsk->dl.dl_overrun = 0;
873 send_signal_locked(SIGXCPU, SEND_SIG_PRIV, tsk, PIDTYPE_TGID);
874 }
875}
876
877static bool check_rlimit(u64 time, u64 limit, int signo, bool rt, bool hard)
878{
879 if (time < limit)
880 return false;
881
882 if (print_fatal_signals) {
883 pr_info("%s Watchdog Timeout (%s): %s[%d]\n",
884 rt ? "RT" : "CPU", hard ? "hard" : "soft",
885 current->comm, task_pid_nr(current));
886 }
887 send_signal_locked(signo, SEND_SIG_PRIV, current, PIDTYPE_TGID);
888 return true;
889}
890
891/*
892 * Check for any per-thread CPU timers that have fired and move them off
893 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
894 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
895 */
896static void check_thread_timers(struct task_struct *tsk,
897 struct list_head *firing)
898{
899 struct posix_cputimers *pct = &tsk->posix_cputimers;
900 u64 samples[CPUCLOCK_MAX];
901 unsigned long soft;
902
903 if (dl_task(tsk))
904 check_dl_overrun(tsk);
905
906 if (expiry_cache_is_inactive(pct))
907 return;
908
909 task_sample_cputime(tsk, samples);
910 collect_posix_cputimers(pct, samples, firing);
911
912 /*
913 * Check for the special case thread timers.
914 */
915 soft = task_rlimit(tsk, RLIMIT_RTTIME);
916 if (soft != RLIM_INFINITY) {
917 /* Task RT timeout is accounted in jiffies. RTTIME is usec */
918 unsigned long rttime = tsk->rt.timeout * (USEC_PER_SEC / HZ);
919 unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
920
921 /* At the hard limit, send SIGKILL. No further action. */
922 if (hard != RLIM_INFINITY &&
923 check_rlimit(rttime, hard, SIGKILL, true, true))
924 return;
925
926 /* At the soft limit, send a SIGXCPU every second */
927 if (check_rlimit(rttime, soft, SIGXCPU, true, false)) {
928 soft += USEC_PER_SEC;
929 tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur = soft;
930 }
931 }
932
933 if (expiry_cache_is_inactive(pct))
934 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
935}
936
937static inline void stop_process_timers(struct signal_struct *sig)
938{
939 struct posix_cputimers *pct = &sig->posix_cputimers;
940
941 /* Turn off the active flag. This is done without locking. */
942 WRITE_ONCE(pct->timers_active, false);
943 tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
944}
945
946static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
947 u64 *expires, u64 cur_time, int signo)
948{
949 if (!it->expires)
950 return;
951
952 if (cur_time >= it->expires) {
953 if (it->incr)
954 it->expires += it->incr;
955 else
956 it->expires = 0;
957
958 trace_itimer_expire(signo == SIGPROF ?
959 ITIMER_PROF : ITIMER_VIRTUAL,
960 task_tgid(tsk), cur_time);
961 send_signal_locked(signo, SEND_SIG_PRIV, tsk, PIDTYPE_TGID);
962 }
963
964 if (it->expires && it->expires < *expires)
965 *expires = it->expires;
966}
967
968/*
969 * Check for any per-thread CPU timers that have fired and move them
970 * off the tsk->*_timers list onto the firing list. Per-thread timers
971 * have already been taken off.
972 */
973static void check_process_timers(struct task_struct *tsk,
974 struct list_head *firing)
975{
976 struct signal_struct *const sig = tsk->signal;
977 struct posix_cputimers *pct = &sig->posix_cputimers;
978 u64 samples[CPUCLOCK_MAX];
979 unsigned long soft;
980
981 /*
982 * If there are no active process wide timers (POSIX 1.b, itimers,
983 * RLIMIT_CPU) nothing to check. Also skip the process wide timer
984 * processing when there is already another task handling them.
985 */
986 if (!READ_ONCE(pct->timers_active) || pct->expiry_active)
987 return;
988
989 /*
990 * Signify that a thread is checking for process timers.
991 * Write access to this field is protected by the sighand lock.
992 */
993 pct->expiry_active = true;
994
995 /*
996 * Collect the current process totals. Group accounting is active
997 * so the sample can be taken directly.
998 */
999 proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, samples);
1000 collect_posix_cputimers(pct, samples, firing);
1001
1002 /*
1003 * Check for the special case process timers.
1004 */
1005 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF],
1006 &pct->bases[CPUCLOCK_PROF].nextevt,
1007 samples[CPUCLOCK_PROF], SIGPROF);
1008 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT],
1009 &pct->bases[CPUCLOCK_VIRT].nextevt,
1010 samples[CPUCLOCK_VIRT], SIGVTALRM);
1011
1012 soft = task_rlimit(tsk, RLIMIT_CPU);
1013 if (soft != RLIM_INFINITY) {
1014 /* RLIMIT_CPU is in seconds. Samples are nanoseconds */
1015 unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU);
1016 u64 ptime = samples[CPUCLOCK_PROF];
1017 u64 softns = (u64)soft * NSEC_PER_SEC;
1018 u64 hardns = (u64)hard * NSEC_PER_SEC;
1019
1020 /* At the hard limit, send SIGKILL. No further action. */
1021 if (hard != RLIM_INFINITY &&
1022 check_rlimit(ptime, hardns, SIGKILL, false, true))
1023 return;
1024
1025 /* At the soft limit, send a SIGXCPU every second */
1026 if (check_rlimit(ptime, softns, SIGXCPU, false, false)) {
1027 sig->rlim[RLIMIT_CPU].rlim_cur = soft + 1;
1028 softns += NSEC_PER_SEC;
1029 }
1030
1031 /* Update the expiry cache */
1032 if (softns < pct->bases[CPUCLOCK_PROF].nextevt)
1033 pct->bases[CPUCLOCK_PROF].nextevt = softns;
1034 }
1035
1036 if (expiry_cache_is_inactive(pct))
1037 stop_process_timers(sig);
1038
1039 pct->expiry_active = false;
1040}
1041
1042/*
1043 * This is called from the signal code (via posixtimer_rearm)
1044 * when the last timer signal was delivered and we have to reload the timer.
1045 */
1046static void posix_cpu_timer_rearm(struct k_itimer *timer)
1047{
1048 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
1049 struct task_struct *p;
1050 struct sighand_struct *sighand;
1051 unsigned long flags;
1052 u64 now;
1053
1054 rcu_read_lock();
1055 p = cpu_timer_task_rcu(timer);
1056 if (!p)
1057 goto out;
1058
1059 /* Protect timer list r/w in arm_timer() */
1060 sighand = lock_task_sighand(p, &flags);
1061 if (unlikely(sighand == NULL))
1062 goto out;
1063
1064 /*
1065 * Fetch the current sample and update the timer's expiry time.
1066 */
1067 if (CPUCLOCK_PERTHREAD(timer->it_clock))
1068 now = cpu_clock_sample(clkid, p);
1069 else
1070 now = cpu_clock_sample_group(clkid, p, true);
1071
1072 bump_cpu_timer(timer, now);
1073
1074 /*
1075 * Now re-arm for the new expiry time.
1076 */
1077 arm_timer(timer, p);
1078 unlock_task_sighand(p, &flags);
1079out:
1080 rcu_read_unlock();
1081}
1082
1083/**
1084 * task_cputimers_expired - Check whether posix CPU timers are expired
1085 *
1086 * @samples: Array of current samples for the CPUCLOCK clocks
1087 * @pct: Pointer to a posix_cputimers container
1088 *
1089 * Returns true if any member of @samples is greater than the corresponding
1090 * member of @pct->bases[CLK].nextevt. False otherwise
1091 */
1092static inline bool
1093task_cputimers_expired(const u64 *samples, struct posix_cputimers *pct)
1094{
1095 int i;
1096
1097 for (i = 0; i < CPUCLOCK_MAX; i++) {
1098 if (samples[i] >= pct->bases[i].nextevt)
1099 return true;
1100 }
1101 return false;
1102}
1103
1104/**
1105 * fastpath_timer_check - POSIX CPU timers fast path.
1106 *
1107 * @tsk: The task (thread) being checked.
1108 *
1109 * Check the task and thread group timers. If both are zero (there are no
1110 * timers set) return false. Otherwise snapshot the task and thread group
1111 * timers and compare them with the corresponding expiration times. Return
1112 * true if a timer has expired, else return false.
1113 */
1114static inline bool fastpath_timer_check(struct task_struct *tsk)
1115{
1116 struct posix_cputimers *pct = &tsk->posix_cputimers;
1117 struct signal_struct *sig;
1118
1119 if (!expiry_cache_is_inactive(pct)) {
1120 u64 samples[CPUCLOCK_MAX];
1121
1122 task_sample_cputime(tsk, samples);
1123 if (task_cputimers_expired(samples, pct))
1124 return true;
1125 }
1126
1127 sig = tsk->signal;
1128 pct = &sig->posix_cputimers;
1129 /*
1130 * Check if thread group timers expired when timers are active and
1131 * no other thread in the group is already handling expiry for
1132 * thread group cputimers. These fields are read without the
1133 * sighand lock. However, this is fine because this is meant to be
1134 * a fastpath heuristic to determine whether we should try to
1135 * acquire the sighand lock to handle timer expiry.
1136 *
1137 * In the worst case scenario, if concurrently timers_active is set
1138 * or expiry_active is cleared, but the current thread doesn't see
1139 * the change yet, the timer checks are delayed until the next
1140 * thread in the group gets a scheduler interrupt to handle the
1141 * timer. This isn't an issue in practice because these types of
1142 * delays with signals actually getting sent are expected.
1143 */
1144 if (READ_ONCE(pct->timers_active) && !READ_ONCE(pct->expiry_active)) {
1145 u64 samples[CPUCLOCK_MAX];
1146
1147 proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic,
1148 samples);
1149
1150 if (task_cputimers_expired(samples, pct))
1151 return true;
1152 }
1153
1154 if (dl_task(tsk) && tsk->dl.dl_overrun)
1155 return true;
1156
1157 return false;
1158}
1159
1160static void handle_posix_cpu_timers(struct task_struct *tsk);
1161
1162#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1163static void posix_cpu_timers_work(struct callback_head *work)
1164{
1165 handle_posix_cpu_timers(current);
1166}
1167
1168/*
1169 * Clear existing posix CPU timers task work.
1170 */
1171void clear_posix_cputimers_work(struct task_struct *p)
1172{
1173 /*
1174 * A copied work entry from the old task is not meaningful, clear it.
1175 * N.B. init_task_work will not do this.
1176 */
1177 memset(&p->posix_cputimers_work.work, 0,
1178 sizeof(p->posix_cputimers_work.work));
1179 init_task_work(&p->posix_cputimers_work.work,
1180 posix_cpu_timers_work);
1181 p->posix_cputimers_work.scheduled = false;
1182}
1183
1184/*
1185 * Initialize posix CPU timers task work in init task. Out of line to
1186 * keep the callback static and to avoid header recursion hell.
1187 */
1188void __init posix_cputimers_init_work(void)
1189{
1190 clear_posix_cputimers_work(current);
1191}
1192
1193/*
1194 * Note: All operations on tsk->posix_cputimer_work.scheduled happen either
1195 * in hard interrupt context or in task context with interrupts
1196 * disabled. Aside of that the writer/reader interaction is always in the
1197 * context of the current task, which means they are strict per CPU.
1198 */
1199static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk)
1200{
1201 return tsk->posix_cputimers_work.scheduled;
1202}
1203
1204static inline void __run_posix_cpu_timers(struct task_struct *tsk)
1205{
1206 if (WARN_ON_ONCE(tsk->posix_cputimers_work.scheduled))
1207 return;
1208
1209 /* Schedule task work to actually expire the timers */
1210 tsk->posix_cputimers_work.scheduled = true;
1211 task_work_add(tsk, &tsk->posix_cputimers_work.work, TWA_RESUME);
1212}
1213
1214static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk,
1215 unsigned long start)
1216{
1217 bool ret = true;
1218
1219 /*
1220 * On !RT kernels interrupts are disabled while collecting expired
1221 * timers, so no tick can happen and the fast path check can be
1222 * reenabled without further checks.
1223 */
1224 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
1225 tsk->posix_cputimers_work.scheduled = false;
1226 return true;
1227 }
1228
1229 /*
1230 * On RT enabled kernels ticks can happen while the expired timers
1231 * are collected under sighand lock. But any tick which observes
1232 * the CPUTIMERS_WORK_SCHEDULED bit set, does not run the fastpath
1233 * checks. So reenabling the tick work has do be done carefully:
1234 *
1235 * Disable interrupts and run the fast path check if jiffies have
1236 * advanced since the collecting of expired timers started. If
1237 * jiffies have not advanced or the fast path check did not find
1238 * newly expired timers, reenable the fast path check in the timer
1239 * interrupt. If there are newly expired timers, return false and
1240 * let the collection loop repeat.
1241 */
1242 local_irq_disable();
1243 if (start != jiffies && fastpath_timer_check(tsk))
1244 ret = false;
1245 else
1246 tsk->posix_cputimers_work.scheduled = false;
1247 local_irq_enable();
1248
1249 return ret;
1250}
1251#else /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */
1252static inline void __run_posix_cpu_timers(struct task_struct *tsk)
1253{
1254 lockdep_posixtimer_enter();
1255 handle_posix_cpu_timers(tsk);
1256 lockdep_posixtimer_exit();
1257}
1258
1259static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk)
1260{
1261 return false;
1262}
1263
1264static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk,
1265 unsigned long start)
1266{
1267 return true;
1268}
1269#endif /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */
1270
1271static void handle_posix_cpu_timers(struct task_struct *tsk)
1272{
1273 struct k_itimer *timer, *next;
1274 unsigned long flags, start;
1275 LIST_HEAD(firing);
1276
1277 if (!lock_task_sighand(tsk, &flags))
1278 return;
1279
1280 do {
1281 /*
1282 * On RT locking sighand lock does not disable interrupts,
1283 * so this needs to be careful vs. ticks. Store the current
1284 * jiffies value.
1285 */
1286 start = READ_ONCE(jiffies);
1287 barrier();
1288
1289 /*
1290 * Here we take off tsk->signal->cpu_timers[N] and
1291 * tsk->cpu_timers[N] all the timers that are firing, and
1292 * put them on the firing list.
1293 */
1294 check_thread_timers(tsk, &firing);
1295
1296 check_process_timers(tsk, &firing);
1297
1298 /*
1299 * The above timer checks have updated the expiry cache and
1300 * because nothing can have queued or modified timers after
1301 * sighand lock was taken above it is guaranteed to be
1302 * consistent. So the next timer interrupt fastpath check
1303 * will find valid data.
1304 *
1305 * If timer expiry runs in the timer interrupt context then
1306 * the loop is not relevant as timers will be directly
1307 * expired in interrupt context. The stub function below
1308 * returns always true which allows the compiler to
1309 * optimize the loop out.
1310 *
1311 * If timer expiry is deferred to task work context then
1312 * the following rules apply:
1313 *
1314 * - On !RT kernels no tick can have happened on this CPU
1315 * after sighand lock was acquired because interrupts are
1316 * disabled. So reenabling task work before dropping
1317 * sighand lock and reenabling interrupts is race free.
1318 *
1319 * - On RT kernels ticks might have happened but the tick
1320 * work ignored posix CPU timer handling because the
1321 * CPUTIMERS_WORK_SCHEDULED bit is set. Reenabling work
1322 * must be done very carefully including a check whether
1323 * ticks have happened since the start of the timer
1324 * expiry checks. posix_cpu_timers_enable_work() takes
1325 * care of that and eventually lets the expiry checks
1326 * run again.
1327 */
1328 } while (!posix_cpu_timers_enable_work(tsk, start));
1329
1330 /*
1331 * We must release sighand lock before taking any timer's lock.
1332 * There is a potential race with timer deletion here, as the
1333 * siglock now protects our private firing list. We have set
1334 * the firing flag in each timer, so that a deletion attempt
1335 * that gets the timer lock before we do will give it up and
1336 * spin until we've taken care of that timer below.
1337 */
1338 unlock_task_sighand(tsk, &flags);
1339
1340 /*
1341 * Now that all the timers on our list have the firing flag,
1342 * no one will touch their list entries but us. We'll take
1343 * each timer's lock before clearing its firing flag, so no
1344 * timer call will interfere.
1345 */
1346 list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) {
1347 int cpu_firing;
1348
1349 /*
1350 * spin_lock() is sufficient here even independent of the
1351 * expiry context. If expiry happens in hard interrupt
1352 * context it's obvious. For task work context it's safe
1353 * because all other operations on timer::it_lock happen in
1354 * task context (syscall or exit).
1355 */
1356 spin_lock(&timer->it_lock);
1357 list_del_init(&timer->it.cpu.elist);
1358 cpu_firing = timer->it.cpu.firing;
1359 timer->it.cpu.firing = 0;
1360 /*
1361 * The firing flag is -1 if we collided with a reset
1362 * of the timer, which already reported this
1363 * almost-firing as an overrun. So don't generate an event.
1364 */
1365 if (likely(cpu_firing >= 0))
1366 cpu_timer_fire(timer);
1367 spin_unlock(&timer->it_lock);
1368 }
1369}
1370
1371/*
1372 * This is called from the timer interrupt handler. The irq handler has
1373 * already updated our counts. We need to check if any timers fire now.
1374 * Interrupts are disabled.
1375 */
1376void run_posix_cpu_timers(void)
1377{
1378 struct task_struct *tsk = current;
1379
1380 lockdep_assert_irqs_disabled();
1381
1382 /*
1383 * If the actual expiry is deferred to task work context and the
1384 * work is already scheduled there is no point to do anything here.
1385 */
1386 if (posix_cpu_timers_work_scheduled(tsk))
1387 return;
1388
1389 /*
1390 * The fast path checks that there are no expired thread or thread
1391 * group timers. If that's so, just return.
1392 */
1393 if (!fastpath_timer_check(tsk))
1394 return;
1395
1396 __run_posix_cpu_timers(tsk);
1397}
1398
1399/*
1400 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1401 * The tsk->sighand->siglock must be held by the caller.
1402 */
1403void set_process_cpu_timer(struct task_struct *tsk, unsigned int clkid,
1404 u64 *newval, u64 *oldval)
1405{
1406 u64 now, *nextevt;
1407
1408 if (WARN_ON_ONCE(clkid >= CPUCLOCK_SCHED))
1409 return;
1410
1411 nextevt = &tsk->signal->posix_cputimers.bases[clkid].nextevt;
1412 now = cpu_clock_sample_group(clkid, tsk, true);
1413
1414 if (oldval) {
1415 /*
1416 * We are setting itimer. The *oldval is absolute and we update
1417 * it to be relative, *newval argument is relative and we update
1418 * it to be absolute.
1419 */
1420 if (*oldval) {
1421 if (*oldval <= now) {
1422 /* Just about to fire. */
1423 *oldval = TICK_NSEC;
1424 } else {
1425 *oldval -= now;
1426 }
1427 }
1428
1429 if (*newval)
1430 *newval += now;
1431 }
1432
1433 /*
1434 * Update expiration cache if this is the earliest timer. CPUCLOCK_PROF
1435 * expiry cache is also used by RLIMIT_CPU!.
1436 */
1437 if (*newval < *nextevt)
1438 *nextevt = *newval;
1439
1440 tick_dep_set_signal(tsk, TICK_DEP_BIT_POSIX_TIMER);
1441}
1442
1443static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1444 const struct timespec64 *rqtp)
1445{
1446 struct itimerspec64 it;
1447 struct k_itimer timer;
1448 u64 expires;
1449 int error;
1450
1451 /*
1452 * Set up a temporary timer and then wait for it to go off.
1453 */
1454 memset(&timer, 0, sizeof timer);
1455 spin_lock_init(&timer.it_lock);
1456 timer.it_clock = which_clock;
1457 timer.it_overrun = -1;
1458 error = posix_cpu_timer_create(&timer);
1459 timer.it_process = current;
1460
1461 if (!error) {
1462 static struct itimerspec64 zero_it;
1463 struct restart_block *restart;
1464
1465 memset(&it, 0, sizeof(it));
1466 it.it_value = *rqtp;
1467
1468 spin_lock_irq(&timer.it_lock);
1469 error = posix_cpu_timer_set(&timer, flags, &it, NULL);
1470 if (error) {
1471 spin_unlock_irq(&timer.it_lock);
1472 return error;
1473 }
1474
1475 while (!signal_pending(current)) {
1476 if (!cpu_timer_getexpires(&timer.it.cpu)) {
1477 /*
1478 * Our timer fired and was reset, below
1479 * deletion can not fail.
1480 */
1481 posix_cpu_timer_del(&timer);
1482 spin_unlock_irq(&timer.it_lock);
1483 return 0;
1484 }
1485
1486 /*
1487 * Block until cpu_timer_fire (or a signal) wakes us.
1488 */
1489 __set_current_state(TASK_INTERRUPTIBLE);
1490 spin_unlock_irq(&timer.it_lock);
1491 schedule();
1492 spin_lock_irq(&timer.it_lock);
1493 }
1494
1495 /*
1496 * We were interrupted by a signal.
1497 */
1498 expires = cpu_timer_getexpires(&timer.it.cpu);
1499 error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
1500 if (!error) {
1501 /*
1502 * Timer is now unarmed, deletion can not fail.
1503 */
1504 posix_cpu_timer_del(&timer);
1505 }
1506 spin_unlock_irq(&timer.it_lock);
1507
1508 while (error == TIMER_RETRY) {
1509 /*
1510 * We need to handle case when timer was or is in the
1511 * middle of firing. In other cases we already freed
1512 * resources.
1513 */
1514 spin_lock_irq(&timer.it_lock);
1515 error = posix_cpu_timer_del(&timer);
1516 spin_unlock_irq(&timer.it_lock);
1517 }
1518
1519 if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
1520 /*
1521 * It actually did fire already.
1522 */
1523 return 0;
1524 }
1525
1526 error = -ERESTART_RESTARTBLOCK;
1527 /*
1528 * Report back to the user the time still remaining.
1529 */
1530 restart = ¤t->restart_block;
1531 restart->nanosleep.expires = expires;
1532 if (restart->nanosleep.type != TT_NONE)
1533 error = nanosleep_copyout(restart, &it.it_value);
1534 }
1535
1536 return error;
1537}
1538
1539static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1540
1541static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1542 const struct timespec64 *rqtp)
1543{
1544 struct restart_block *restart_block = ¤t->restart_block;
1545 int error;
1546
1547 /*
1548 * Diagnose required errors first.
1549 */
1550 if (CPUCLOCK_PERTHREAD(which_clock) &&
1551 (CPUCLOCK_PID(which_clock) == 0 ||
1552 CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
1553 return -EINVAL;
1554
1555 error = do_cpu_nanosleep(which_clock, flags, rqtp);
1556
1557 if (error == -ERESTART_RESTARTBLOCK) {
1558
1559 if (flags & TIMER_ABSTIME)
1560 return -ERESTARTNOHAND;
1561
1562 restart_block->nanosleep.clockid = which_clock;
1563 set_restart_fn(restart_block, posix_cpu_nsleep_restart);
1564 }
1565 return error;
1566}
1567
1568static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1569{
1570 clockid_t which_clock = restart_block->nanosleep.clockid;
1571 struct timespec64 t;
1572
1573 t = ns_to_timespec64(restart_block->nanosleep.expires);
1574
1575 return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
1576}
1577
1578#define PROCESS_CLOCK make_process_cpuclock(0, CPUCLOCK_SCHED)
1579#define THREAD_CLOCK make_thread_cpuclock(0, CPUCLOCK_SCHED)
1580
1581static int process_cpu_clock_getres(const clockid_t which_clock,
1582 struct timespec64 *tp)
1583{
1584 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1585}
1586static int process_cpu_clock_get(const clockid_t which_clock,
1587 struct timespec64 *tp)
1588{
1589 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1590}
1591static int process_cpu_timer_create(struct k_itimer *timer)
1592{
1593 timer->it_clock = PROCESS_CLOCK;
1594 return posix_cpu_timer_create(timer);
1595}
1596static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1597 const struct timespec64 *rqtp)
1598{
1599 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
1600}
1601static int thread_cpu_clock_getres(const clockid_t which_clock,
1602 struct timespec64 *tp)
1603{
1604 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1605}
1606static int thread_cpu_clock_get(const clockid_t which_clock,
1607 struct timespec64 *tp)
1608{
1609 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1610}
1611static int thread_cpu_timer_create(struct k_itimer *timer)
1612{
1613 timer->it_clock = THREAD_CLOCK;
1614 return posix_cpu_timer_create(timer);
1615}
1616
1617const struct k_clock clock_posix_cpu = {
1618 .clock_getres = posix_cpu_clock_getres,
1619 .clock_set = posix_cpu_clock_set,
1620 .clock_get_timespec = posix_cpu_clock_get,
1621 .timer_create = posix_cpu_timer_create,
1622 .nsleep = posix_cpu_nsleep,
1623 .timer_set = posix_cpu_timer_set,
1624 .timer_del = posix_cpu_timer_del,
1625 .timer_get = posix_cpu_timer_get,
1626 .timer_rearm = posix_cpu_timer_rearm,
1627};
1628
1629const struct k_clock clock_process = {
1630 .clock_getres = process_cpu_clock_getres,
1631 .clock_get_timespec = process_cpu_clock_get,
1632 .timer_create = process_cpu_timer_create,
1633 .nsleep = process_cpu_nsleep,
1634};
1635
1636const struct k_clock clock_thread = {
1637 .clock_getres = thread_cpu_clock_getres,
1638 .clock_get_timespec = thread_cpu_clock_get,
1639 .timer_create = thread_cpu_timer_create,
1640};
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Implement CPU time clocks for the POSIX clock interface.
4 */
5
6#include <linux/sched/signal.h>
7#include <linux/sched/cputime.h>
8#include <linux/posix-timers.h>
9#include <linux/errno.h>
10#include <linux/math64.h>
11#include <linux/uaccess.h>
12#include <linux/kernel_stat.h>
13#include <trace/events/timer.h>
14#include <linux/tick.h>
15#include <linux/workqueue.h>
16#include <linux/compat.h>
17#include <linux/sched/deadline.h>
18
19#include "posix-timers.h"
20
21static void posix_cpu_timer_rearm(struct k_itimer *timer);
22
23void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit)
24{
25 posix_cputimers_init(pct);
26 if (cpu_limit != RLIM_INFINITY) {
27 pct->bases[CPUCLOCK_PROF].nextevt = cpu_limit * NSEC_PER_SEC;
28 pct->timers_active = true;
29 }
30}
31
32/*
33 * Called after updating RLIMIT_CPU to run cpu timer and update
34 * tsk->signal->posix_cputimers.bases[clock].nextevt expiration cache if
35 * necessary. Needs siglock protection since other code may update the
36 * expiration cache as well.
37 */
38void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
39{
40 u64 nsecs = rlim_new * NSEC_PER_SEC;
41
42 spin_lock_irq(&task->sighand->siglock);
43 set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
44 spin_unlock_irq(&task->sighand->siglock);
45}
46
47/*
48 * Functions for validating access to tasks.
49 */
50static struct pid *pid_for_clock(const clockid_t clock, bool gettime)
51{
52 const bool thread = !!CPUCLOCK_PERTHREAD(clock);
53 const pid_t upid = CPUCLOCK_PID(clock);
54 struct pid *pid;
55
56 if (CPUCLOCK_WHICH(clock) >= CPUCLOCK_MAX)
57 return NULL;
58
59 /*
60 * If the encoded PID is 0, then the timer is targeted at current
61 * or the process to which current belongs.
62 */
63 if (upid == 0)
64 return thread ? task_pid(current) : task_tgid(current);
65
66 pid = find_vpid(upid);
67 if (!pid)
68 return NULL;
69
70 if (thread) {
71 struct task_struct *tsk = pid_task(pid, PIDTYPE_PID);
72 return (tsk && same_thread_group(tsk, current)) ? pid : NULL;
73 }
74
75 /*
76 * For clock_gettime(PROCESS) allow finding the process by
77 * with the pid of the current task. The code needs the tgid
78 * of the process so that pid_task(pid, PIDTYPE_TGID) can be
79 * used to find the process.
80 */
81 if (gettime && (pid == task_pid(current)))
82 return task_tgid(current);
83
84 /*
85 * For processes require that pid identifies a process.
86 */
87 return pid_has_task(pid, PIDTYPE_TGID) ? pid : NULL;
88}
89
90static inline int validate_clock_permissions(const clockid_t clock)
91{
92 int ret;
93
94 rcu_read_lock();
95 ret = pid_for_clock(clock, false) ? 0 : -EINVAL;
96 rcu_read_unlock();
97
98 return ret;
99}
100
101static inline enum pid_type clock_pid_type(const clockid_t clock)
102{
103 return CPUCLOCK_PERTHREAD(clock) ? PIDTYPE_PID : PIDTYPE_TGID;
104}
105
106static inline struct task_struct *cpu_timer_task_rcu(struct k_itimer *timer)
107{
108 return pid_task(timer->it.cpu.pid, clock_pid_type(timer->it_clock));
109}
110
111/*
112 * Update expiry time from increment, and increase overrun count,
113 * given the current clock sample.
114 */
115static u64 bump_cpu_timer(struct k_itimer *timer, u64 now)
116{
117 u64 delta, incr, expires = timer->it.cpu.node.expires;
118 int i;
119
120 if (!timer->it_interval)
121 return expires;
122
123 if (now < expires)
124 return expires;
125
126 incr = timer->it_interval;
127 delta = now + incr - expires;
128
129 /* Don't use (incr*2 < delta), incr*2 might overflow. */
130 for (i = 0; incr < delta - incr; i++)
131 incr = incr << 1;
132
133 for (; i >= 0; incr >>= 1, i--) {
134 if (delta < incr)
135 continue;
136
137 timer->it.cpu.node.expires += incr;
138 timer->it_overrun += 1LL << i;
139 delta -= incr;
140 }
141 return timer->it.cpu.node.expires;
142}
143
144/* Check whether all cache entries contain U64_MAX, i.e. eternal expiry time */
145static inline bool expiry_cache_is_inactive(const struct posix_cputimers *pct)
146{
147 return !(~pct->bases[CPUCLOCK_PROF].nextevt |
148 ~pct->bases[CPUCLOCK_VIRT].nextevt |
149 ~pct->bases[CPUCLOCK_SCHED].nextevt);
150}
151
152static int
153posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
154{
155 int error = validate_clock_permissions(which_clock);
156
157 if (!error) {
158 tp->tv_sec = 0;
159 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
160 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
161 /*
162 * If sched_clock is using a cycle counter, we
163 * don't have any idea of its true resolution
164 * exported, but it is much more than 1s/HZ.
165 */
166 tp->tv_nsec = 1;
167 }
168 }
169 return error;
170}
171
172static int
173posix_cpu_clock_set(const clockid_t clock, const struct timespec64 *tp)
174{
175 int error = validate_clock_permissions(clock);
176
177 /*
178 * You can never reset a CPU clock, but we check for other errors
179 * in the call before failing with EPERM.
180 */
181 return error ? : -EPERM;
182}
183
184/*
185 * Sample a per-thread clock for the given task. clkid is validated.
186 */
187static u64 cpu_clock_sample(const clockid_t clkid, struct task_struct *p)
188{
189 u64 utime, stime;
190
191 if (clkid == CPUCLOCK_SCHED)
192 return task_sched_runtime(p);
193
194 task_cputime(p, &utime, &stime);
195
196 switch (clkid) {
197 case CPUCLOCK_PROF:
198 return utime + stime;
199 case CPUCLOCK_VIRT:
200 return utime;
201 default:
202 WARN_ON_ONCE(1);
203 }
204 return 0;
205}
206
207static inline void store_samples(u64 *samples, u64 stime, u64 utime, u64 rtime)
208{
209 samples[CPUCLOCK_PROF] = stime + utime;
210 samples[CPUCLOCK_VIRT] = utime;
211 samples[CPUCLOCK_SCHED] = rtime;
212}
213
214static void task_sample_cputime(struct task_struct *p, u64 *samples)
215{
216 u64 stime, utime;
217
218 task_cputime(p, &utime, &stime);
219 store_samples(samples, stime, utime, p->se.sum_exec_runtime);
220}
221
222static void proc_sample_cputime_atomic(struct task_cputime_atomic *at,
223 u64 *samples)
224{
225 u64 stime, utime, rtime;
226
227 utime = atomic64_read(&at->utime);
228 stime = atomic64_read(&at->stime);
229 rtime = atomic64_read(&at->sum_exec_runtime);
230 store_samples(samples, stime, utime, rtime);
231}
232
233/*
234 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
235 * to avoid race conditions with concurrent updates to cputime.
236 */
237static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
238{
239 u64 curr_cputime;
240retry:
241 curr_cputime = atomic64_read(cputime);
242 if (sum_cputime > curr_cputime) {
243 if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
244 goto retry;
245 }
246}
247
248static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic,
249 struct task_cputime *sum)
250{
251 __update_gt_cputime(&cputime_atomic->utime, sum->utime);
252 __update_gt_cputime(&cputime_atomic->stime, sum->stime);
253 __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
254}
255
256/**
257 * thread_group_sample_cputime - Sample cputime for a given task
258 * @tsk: Task for which cputime needs to be started
259 * @samples: Storage for time samples
260 *
261 * Called from sys_getitimer() to calculate the expiry time of an active
262 * timer. That means group cputime accounting is already active. Called
263 * with task sighand lock held.
264 *
265 * Updates @times with an uptodate sample of the thread group cputimes.
266 */
267void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples)
268{
269 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
270 struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
271
272 WARN_ON_ONCE(!pct->timers_active);
273
274 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
275}
276
277/**
278 * thread_group_start_cputime - Start cputime and return a sample
279 * @tsk: Task for which cputime needs to be started
280 * @samples: Storage for time samples
281 *
282 * The thread group cputime accouting is avoided when there are no posix
283 * CPU timers armed. Before starting a timer it's required to check whether
284 * the time accounting is active. If not, a full update of the atomic
285 * accounting store needs to be done and the accounting enabled.
286 *
287 * Updates @times with an uptodate sample of the thread group cputimes.
288 */
289static void thread_group_start_cputime(struct task_struct *tsk, u64 *samples)
290{
291 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
292 struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
293
294 /* Check if cputimer isn't running. This is accessed without locking. */
295 if (!READ_ONCE(pct->timers_active)) {
296 struct task_cputime sum;
297
298 /*
299 * The POSIX timer interface allows for absolute time expiry
300 * values through the TIMER_ABSTIME flag, therefore we have
301 * to synchronize the timer to the clock every time we start it.
302 */
303 thread_group_cputime(tsk, &sum);
304 update_gt_cputime(&cputimer->cputime_atomic, &sum);
305
306 /*
307 * We're setting timers_active without a lock. Ensure this
308 * only gets written to in one operation. We set it after
309 * update_gt_cputime() as a small optimization, but
310 * barriers are not required because update_gt_cputime()
311 * can handle concurrent updates.
312 */
313 WRITE_ONCE(pct->timers_active, true);
314 }
315 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
316}
317
318static void __thread_group_cputime(struct task_struct *tsk, u64 *samples)
319{
320 struct task_cputime ct;
321
322 thread_group_cputime(tsk, &ct);
323 store_samples(samples, ct.stime, ct.utime, ct.sum_exec_runtime);
324}
325
326/*
327 * Sample a process (thread group) clock for the given task clkid. If the
328 * group's cputime accounting is already enabled, read the atomic
329 * store. Otherwise a full update is required. clkid is already validated.
330 */
331static u64 cpu_clock_sample_group(const clockid_t clkid, struct task_struct *p,
332 bool start)
333{
334 struct thread_group_cputimer *cputimer = &p->signal->cputimer;
335 struct posix_cputimers *pct = &p->signal->posix_cputimers;
336 u64 samples[CPUCLOCK_MAX];
337
338 if (!READ_ONCE(pct->timers_active)) {
339 if (start)
340 thread_group_start_cputime(p, samples);
341 else
342 __thread_group_cputime(p, samples);
343 } else {
344 proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
345 }
346
347 return samples[clkid];
348}
349
350static int posix_cpu_clock_get(const clockid_t clock, struct timespec64 *tp)
351{
352 const clockid_t clkid = CPUCLOCK_WHICH(clock);
353 struct task_struct *tsk;
354 u64 t;
355
356 rcu_read_lock();
357 tsk = pid_task(pid_for_clock(clock, true), clock_pid_type(clock));
358 if (!tsk) {
359 rcu_read_unlock();
360 return -EINVAL;
361 }
362
363 if (CPUCLOCK_PERTHREAD(clock))
364 t = cpu_clock_sample(clkid, tsk);
365 else
366 t = cpu_clock_sample_group(clkid, tsk, false);
367 rcu_read_unlock();
368
369 *tp = ns_to_timespec64(t);
370 return 0;
371}
372
373/*
374 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
375 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
376 * new timer already all-zeros initialized.
377 */
378static int posix_cpu_timer_create(struct k_itimer *new_timer)
379{
380 static struct lock_class_key posix_cpu_timers_key;
381 struct pid *pid;
382
383 rcu_read_lock();
384 pid = pid_for_clock(new_timer->it_clock, false);
385 if (!pid) {
386 rcu_read_unlock();
387 return -EINVAL;
388 }
389
390 /*
391 * If posix timer expiry is handled in task work context then
392 * timer::it_lock can be taken without disabling interrupts as all
393 * other locking happens in task context. This requires a seperate
394 * lock class key otherwise regular posix timer expiry would record
395 * the lock class being taken in interrupt context and generate a
396 * false positive warning.
397 */
398 if (IS_ENABLED(CONFIG_POSIX_CPU_TIMERS_TASK_WORK))
399 lockdep_set_class(&new_timer->it_lock, &posix_cpu_timers_key);
400
401 new_timer->kclock = &clock_posix_cpu;
402 timerqueue_init(&new_timer->it.cpu.node);
403 new_timer->it.cpu.pid = get_pid(pid);
404 rcu_read_unlock();
405 return 0;
406}
407
408/*
409 * Clean up a CPU-clock timer that is about to be destroyed.
410 * This is called from timer deletion with the timer already locked.
411 * If we return TIMER_RETRY, it's necessary to release the timer's lock
412 * and try again. (This happens when the timer is in the middle of firing.)
413 */
414static int posix_cpu_timer_del(struct k_itimer *timer)
415{
416 struct cpu_timer *ctmr = &timer->it.cpu;
417 struct sighand_struct *sighand;
418 struct task_struct *p;
419 unsigned long flags;
420 int ret = 0;
421
422 rcu_read_lock();
423 p = cpu_timer_task_rcu(timer);
424 if (!p)
425 goto out;
426
427 /*
428 * Protect against sighand release/switch in exit/exec and process/
429 * thread timer list entry concurrent read/writes.
430 */
431 sighand = lock_task_sighand(p, &flags);
432 if (unlikely(sighand == NULL)) {
433 /*
434 * This raced with the reaping of the task. The exit cleanup
435 * should have removed this timer from the timer queue.
436 */
437 WARN_ON_ONCE(ctmr->head || timerqueue_node_queued(&ctmr->node));
438 } else {
439 if (timer->it.cpu.firing)
440 ret = TIMER_RETRY;
441 else
442 cpu_timer_dequeue(ctmr);
443
444 unlock_task_sighand(p, &flags);
445 }
446
447out:
448 rcu_read_unlock();
449 if (!ret)
450 put_pid(ctmr->pid);
451
452 return ret;
453}
454
455static void cleanup_timerqueue(struct timerqueue_head *head)
456{
457 struct timerqueue_node *node;
458 struct cpu_timer *ctmr;
459
460 while ((node = timerqueue_getnext(head))) {
461 timerqueue_del(head, node);
462 ctmr = container_of(node, struct cpu_timer, node);
463 ctmr->head = NULL;
464 }
465}
466
467/*
468 * Clean out CPU timers which are still armed when a thread exits. The
469 * timers are only removed from the list. No other updates are done. The
470 * corresponding posix timers are still accessible, but cannot be rearmed.
471 *
472 * This must be called with the siglock held.
473 */
474static void cleanup_timers(struct posix_cputimers *pct)
475{
476 cleanup_timerqueue(&pct->bases[CPUCLOCK_PROF].tqhead);
477 cleanup_timerqueue(&pct->bases[CPUCLOCK_VIRT].tqhead);
478 cleanup_timerqueue(&pct->bases[CPUCLOCK_SCHED].tqhead);
479}
480
481/*
482 * These are both called with the siglock held, when the current thread
483 * is being reaped. When the final (leader) thread in the group is reaped,
484 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
485 */
486void posix_cpu_timers_exit(struct task_struct *tsk)
487{
488 cleanup_timers(&tsk->posix_cputimers);
489}
490void posix_cpu_timers_exit_group(struct task_struct *tsk)
491{
492 cleanup_timers(&tsk->signal->posix_cputimers);
493}
494
495/*
496 * Insert the timer on the appropriate list before any timers that
497 * expire later. This must be called with the sighand lock held.
498 */
499static void arm_timer(struct k_itimer *timer, struct task_struct *p)
500{
501 int clkidx = CPUCLOCK_WHICH(timer->it_clock);
502 struct cpu_timer *ctmr = &timer->it.cpu;
503 u64 newexp = cpu_timer_getexpires(ctmr);
504 struct posix_cputimer_base *base;
505
506 if (CPUCLOCK_PERTHREAD(timer->it_clock))
507 base = p->posix_cputimers.bases + clkidx;
508 else
509 base = p->signal->posix_cputimers.bases + clkidx;
510
511 if (!cpu_timer_enqueue(&base->tqhead, ctmr))
512 return;
513
514 /*
515 * We are the new earliest-expiring POSIX 1.b timer, hence
516 * need to update expiration cache. Take into account that
517 * for process timers we share expiration cache with itimers
518 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
519 */
520 if (newexp < base->nextevt)
521 base->nextevt = newexp;
522
523 if (CPUCLOCK_PERTHREAD(timer->it_clock))
524 tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
525 else
526 tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
527}
528
529/*
530 * The timer is locked, fire it and arrange for its reload.
531 */
532static void cpu_timer_fire(struct k_itimer *timer)
533{
534 struct cpu_timer *ctmr = &timer->it.cpu;
535
536 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
537 /*
538 * User don't want any signal.
539 */
540 cpu_timer_setexpires(ctmr, 0);
541 } else if (unlikely(timer->sigq == NULL)) {
542 /*
543 * This a special case for clock_nanosleep,
544 * not a normal timer from sys_timer_create.
545 */
546 wake_up_process(timer->it_process);
547 cpu_timer_setexpires(ctmr, 0);
548 } else if (!timer->it_interval) {
549 /*
550 * One-shot timer. Clear it as soon as it's fired.
551 */
552 posix_timer_event(timer, 0);
553 cpu_timer_setexpires(ctmr, 0);
554 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
555 /*
556 * The signal did not get queued because the signal
557 * was ignored, so we won't get any callback to
558 * reload the timer. But we need to keep it
559 * ticking in case the signal is deliverable next time.
560 */
561 posix_cpu_timer_rearm(timer);
562 ++timer->it_requeue_pending;
563 }
564}
565
566/*
567 * Guts of sys_timer_settime for CPU timers.
568 * This is called with the timer locked and interrupts disabled.
569 * If we return TIMER_RETRY, it's necessary to release the timer's lock
570 * and try again. (This happens when the timer is in the middle of firing.)
571 */
572static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
573 struct itimerspec64 *new, struct itimerspec64 *old)
574{
575 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
576 u64 old_expires, new_expires, old_incr, val;
577 struct cpu_timer *ctmr = &timer->it.cpu;
578 struct sighand_struct *sighand;
579 struct task_struct *p;
580 unsigned long flags;
581 int ret = 0;
582
583 rcu_read_lock();
584 p = cpu_timer_task_rcu(timer);
585 if (!p) {
586 /*
587 * If p has just been reaped, we can no
588 * longer get any information about it at all.
589 */
590 rcu_read_unlock();
591 return -ESRCH;
592 }
593
594 /*
595 * Use the to_ktime conversion because that clamps the maximum
596 * value to KTIME_MAX and avoid multiplication overflows.
597 */
598 new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
599
600 /*
601 * Protect against sighand release/switch in exit/exec and p->cpu_timers
602 * and p->signal->cpu_timers read/write in arm_timer()
603 */
604 sighand = lock_task_sighand(p, &flags);
605 /*
606 * If p has just been reaped, we can no
607 * longer get any information about it at all.
608 */
609 if (unlikely(sighand == NULL)) {
610 rcu_read_unlock();
611 return -ESRCH;
612 }
613
614 /*
615 * Disarm any old timer after extracting its expiry time.
616 */
617 old_incr = timer->it_interval;
618 old_expires = cpu_timer_getexpires(ctmr);
619
620 if (unlikely(timer->it.cpu.firing)) {
621 timer->it.cpu.firing = -1;
622 ret = TIMER_RETRY;
623 } else {
624 cpu_timer_dequeue(ctmr);
625 }
626
627 /*
628 * We need to sample the current value to convert the new
629 * value from to relative and absolute, and to convert the
630 * old value from absolute to relative. To set a process
631 * timer, we need a sample to balance the thread expiry
632 * times (in arm_timer). With an absolute time, we must
633 * check if it's already passed. In short, we need a sample.
634 */
635 if (CPUCLOCK_PERTHREAD(timer->it_clock))
636 val = cpu_clock_sample(clkid, p);
637 else
638 val = cpu_clock_sample_group(clkid, p, true);
639
640 if (old) {
641 if (old_expires == 0) {
642 old->it_value.tv_sec = 0;
643 old->it_value.tv_nsec = 0;
644 } else {
645 /*
646 * Update the timer in case it has overrun already.
647 * If it has, we'll report it as having overrun and
648 * with the next reloaded timer already ticking,
649 * though we are swallowing that pending
650 * notification here to install the new setting.
651 */
652 u64 exp = bump_cpu_timer(timer, val);
653
654 if (val < exp) {
655 old_expires = exp - val;
656 old->it_value = ns_to_timespec64(old_expires);
657 } else {
658 old->it_value.tv_nsec = 1;
659 old->it_value.tv_sec = 0;
660 }
661 }
662 }
663
664 if (unlikely(ret)) {
665 /*
666 * We are colliding with the timer actually firing.
667 * Punt after filling in the timer's old value, and
668 * disable this firing since we are already reporting
669 * it as an overrun (thanks to bump_cpu_timer above).
670 */
671 unlock_task_sighand(p, &flags);
672 goto out;
673 }
674
675 if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
676 new_expires += val;
677 }
678
679 /*
680 * Install the new expiry time (or zero).
681 * For a timer with no notification action, we don't actually
682 * arm the timer (we'll just fake it for timer_gettime).
683 */
684 cpu_timer_setexpires(ctmr, new_expires);
685 if (new_expires != 0 && val < new_expires) {
686 arm_timer(timer, p);
687 }
688
689 unlock_task_sighand(p, &flags);
690 /*
691 * Install the new reload setting, and
692 * set up the signal and overrun bookkeeping.
693 */
694 timer->it_interval = timespec64_to_ktime(new->it_interval);
695
696 /*
697 * This acts as a modification timestamp for the timer,
698 * so any automatic reload attempt will punt on seeing
699 * that we have reset the timer manually.
700 */
701 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
702 ~REQUEUE_PENDING;
703 timer->it_overrun_last = 0;
704 timer->it_overrun = -1;
705
706 if (new_expires != 0 && !(val < new_expires)) {
707 /*
708 * The designated time already passed, so we notify
709 * immediately, even if the thread never runs to
710 * accumulate more time on this clock.
711 */
712 cpu_timer_fire(timer);
713 }
714
715 ret = 0;
716 out:
717 rcu_read_unlock();
718 if (old)
719 old->it_interval = ns_to_timespec64(old_incr);
720
721 return ret;
722}
723
724static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
725{
726 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
727 struct cpu_timer *ctmr = &timer->it.cpu;
728 u64 now, expires = cpu_timer_getexpires(ctmr);
729 struct task_struct *p;
730
731 rcu_read_lock();
732 p = cpu_timer_task_rcu(timer);
733 if (!p)
734 goto out;
735
736 /*
737 * Easy part: convert the reload time.
738 */
739 itp->it_interval = ktime_to_timespec64(timer->it_interval);
740
741 if (!expires)
742 goto out;
743
744 /*
745 * Sample the clock to take the difference with the expiry time.
746 */
747 if (CPUCLOCK_PERTHREAD(timer->it_clock))
748 now = cpu_clock_sample(clkid, p);
749 else
750 now = cpu_clock_sample_group(clkid, p, false);
751
752 if (now < expires) {
753 itp->it_value = ns_to_timespec64(expires - now);
754 } else {
755 /*
756 * The timer should have expired already, but the firing
757 * hasn't taken place yet. Say it's just about to expire.
758 */
759 itp->it_value.tv_nsec = 1;
760 itp->it_value.tv_sec = 0;
761 }
762out:
763 rcu_read_unlock();
764}
765
766#define MAX_COLLECTED 20
767
768static u64 collect_timerqueue(struct timerqueue_head *head,
769 struct list_head *firing, u64 now)
770{
771 struct timerqueue_node *next;
772 int i = 0;
773
774 while ((next = timerqueue_getnext(head))) {
775 struct cpu_timer *ctmr;
776 u64 expires;
777
778 ctmr = container_of(next, struct cpu_timer, node);
779 expires = cpu_timer_getexpires(ctmr);
780 /* Limit the number of timers to expire at once */
781 if (++i == MAX_COLLECTED || now < expires)
782 return expires;
783
784 ctmr->firing = 1;
785 cpu_timer_dequeue(ctmr);
786 list_add_tail(&ctmr->elist, firing);
787 }
788
789 return U64_MAX;
790}
791
792static void collect_posix_cputimers(struct posix_cputimers *pct, u64 *samples,
793 struct list_head *firing)
794{
795 struct posix_cputimer_base *base = pct->bases;
796 int i;
797
798 for (i = 0; i < CPUCLOCK_MAX; i++, base++) {
799 base->nextevt = collect_timerqueue(&base->tqhead, firing,
800 samples[i]);
801 }
802}
803
804static inline void check_dl_overrun(struct task_struct *tsk)
805{
806 if (tsk->dl.dl_overrun) {
807 tsk->dl.dl_overrun = 0;
808 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
809 }
810}
811
812static bool check_rlimit(u64 time, u64 limit, int signo, bool rt, bool hard)
813{
814 if (time < limit)
815 return false;
816
817 if (print_fatal_signals) {
818 pr_info("%s Watchdog Timeout (%s): %s[%d]\n",
819 rt ? "RT" : "CPU", hard ? "hard" : "soft",
820 current->comm, task_pid_nr(current));
821 }
822 __group_send_sig_info(signo, SEND_SIG_PRIV, current);
823 return true;
824}
825
826/*
827 * Check for any per-thread CPU timers that have fired and move them off
828 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
829 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
830 */
831static void check_thread_timers(struct task_struct *tsk,
832 struct list_head *firing)
833{
834 struct posix_cputimers *pct = &tsk->posix_cputimers;
835 u64 samples[CPUCLOCK_MAX];
836 unsigned long soft;
837
838 if (dl_task(tsk))
839 check_dl_overrun(tsk);
840
841 if (expiry_cache_is_inactive(pct))
842 return;
843
844 task_sample_cputime(tsk, samples);
845 collect_posix_cputimers(pct, samples, firing);
846
847 /*
848 * Check for the special case thread timers.
849 */
850 soft = task_rlimit(tsk, RLIMIT_RTTIME);
851 if (soft != RLIM_INFINITY) {
852 /* Task RT timeout is accounted in jiffies. RTTIME is usec */
853 unsigned long rttime = tsk->rt.timeout * (USEC_PER_SEC / HZ);
854 unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
855
856 /* At the hard limit, send SIGKILL. No further action. */
857 if (hard != RLIM_INFINITY &&
858 check_rlimit(rttime, hard, SIGKILL, true, true))
859 return;
860
861 /* At the soft limit, send a SIGXCPU every second */
862 if (check_rlimit(rttime, soft, SIGXCPU, true, false)) {
863 soft += USEC_PER_SEC;
864 tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur = soft;
865 }
866 }
867
868 if (expiry_cache_is_inactive(pct))
869 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
870}
871
872static inline void stop_process_timers(struct signal_struct *sig)
873{
874 struct posix_cputimers *pct = &sig->posix_cputimers;
875
876 /* Turn off the active flag. This is done without locking. */
877 WRITE_ONCE(pct->timers_active, false);
878 tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
879}
880
881static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
882 u64 *expires, u64 cur_time, int signo)
883{
884 if (!it->expires)
885 return;
886
887 if (cur_time >= it->expires) {
888 if (it->incr)
889 it->expires += it->incr;
890 else
891 it->expires = 0;
892
893 trace_itimer_expire(signo == SIGPROF ?
894 ITIMER_PROF : ITIMER_VIRTUAL,
895 task_tgid(tsk), cur_time);
896 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
897 }
898
899 if (it->expires && it->expires < *expires)
900 *expires = it->expires;
901}
902
903/*
904 * Check for any per-thread CPU timers that have fired and move them
905 * off the tsk->*_timers list onto the firing list. Per-thread timers
906 * have already been taken off.
907 */
908static void check_process_timers(struct task_struct *tsk,
909 struct list_head *firing)
910{
911 struct signal_struct *const sig = tsk->signal;
912 struct posix_cputimers *pct = &sig->posix_cputimers;
913 u64 samples[CPUCLOCK_MAX];
914 unsigned long soft;
915
916 /*
917 * If there are no active process wide timers (POSIX 1.b, itimers,
918 * RLIMIT_CPU) nothing to check. Also skip the process wide timer
919 * processing when there is already another task handling them.
920 */
921 if (!READ_ONCE(pct->timers_active) || pct->expiry_active)
922 return;
923
924 /*
925 * Signify that a thread is checking for process timers.
926 * Write access to this field is protected by the sighand lock.
927 */
928 pct->expiry_active = true;
929
930 /*
931 * Collect the current process totals. Group accounting is active
932 * so the sample can be taken directly.
933 */
934 proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, samples);
935 collect_posix_cputimers(pct, samples, firing);
936
937 /*
938 * Check for the special case process timers.
939 */
940 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF],
941 &pct->bases[CPUCLOCK_PROF].nextevt,
942 samples[CPUCLOCK_PROF], SIGPROF);
943 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT],
944 &pct->bases[CPUCLOCK_VIRT].nextevt,
945 samples[CPUCLOCK_VIRT], SIGVTALRM);
946
947 soft = task_rlimit(tsk, RLIMIT_CPU);
948 if (soft != RLIM_INFINITY) {
949 /* RLIMIT_CPU is in seconds. Samples are nanoseconds */
950 unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU);
951 u64 ptime = samples[CPUCLOCK_PROF];
952 u64 softns = (u64)soft * NSEC_PER_SEC;
953 u64 hardns = (u64)hard * NSEC_PER_SEC;
954
955 /* At the hard limit, send SIGKILL. No further action. */
956 if (hard != RLIM_INFINITY &&
957 check_rlimit(ptime, hardns, SIGKILL, false, true))
958 return;
959
960 /* At the soft limit, send a SIGXCPU every second */
961 if (check_rlimit(ptime, softns, SIGXCPU, false, false)) {
962 sig->rlim[RLIMIT_CPU].rlim_cur = soft + 1;
963 softns += NSEC_PER_SEC;
964 }
965
966 /* Update the expiry cache */
967 if (softns < pct->bases[CPUCLOCK_PROF].nextevt)
968 pct->bases[CPUCLOCK_PROF].nextevt = softns;
969 }
970
971 if (expiry_cache_is_inactive(pct))
972 stop_process_timers(sig);
973
974 pct->expiry_active = false;
975}
976
977/*
978 * This is called from the signal code (via posixtimer_rearm)
979 * when the last timer signal was delivered and we have to reload the timer.
980 */
981static void posix_cpu_timer_rearm(struct k_itimer *timer)
982{
983 clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
984 struct task_struct *p;
985 struct sighand_struct *sighand;
986 unsigned long flags;
987 u64 now;
988
989 rcu_read_lock();
990 p = cpu_timer_task_rcu(timer);
991 if (!p)
992 goto out;
993
994 /*
995 * Fetch the current sample and update the timer's expiry time.
996 */
997 if (CPUCLOCK_PERTHREAD(timer->it_clock))
998 now = cpu_clock_sample(clkid, p);
999 else
1000 now = cpu_clock_sample_group(clkid, p, true);
1001
1002 bump_cpu_timer(timer, now);
1003
1004 /* Protect timer list r/w in arm_timer() */
1005 sighand = lock_task_sighand(p, &flags);
1006 if (unlikely(sighand == NULL))
1007 goto out;
1008
1009 /*
1010 * Now re-arm for the new expiry time.
1011 */
1012 arm_timer(timer, p);
1013 unlock_task_sighand(p, &flags);
1014out:
1015 rcu_read_unlock();
1016}
1017
1018/**
1019 * task_cputimers_expired - Check whether posix CPU timers are expired
1020 *
1021 * @samples: Array of current samples for the CPUCLOCK clocks
1022 * @pct: Pointer to a posix_cputimers container
1023 *
1024 * Returns true if any member of @samples is greater than the corresponding
1025 * member of @pct->bases[CLK].nextevt. False otherwise
1026 */
1027static inline bool
1028task_cputimers_expired(const u64 *samples, struct posix_cputimers *pct)
1029{
1030 int i;
1031
1032 for (i = 0; i < CPUCLOCK_MAX; i++) {
1033 if (samples[i] >= pct->bases[i].nextevt)
1034 return true;
1035 }
1036 return false;
1037}
1038
1039/**
1040 * fastpath_timer_check - POSIX CPU timers fast path.
1041 *
1042 * @tsk: The task (thread) being checked.
1043 *
1044 * Check the task and thread group timers. If both are zero (there are no
1045 * timers set) return false. Otherwise snapshot the task and thread group
1046 * timers and compare them with the corresponding expiration times. Return
1047 * true if a timer has expired, else return false.
1048 */
1049static inline bool fastpath_timer_check(struct task_struct *tsk)
1050{
1051 struct posix_cputimers *pct = &tsk->posix_cputimers;
1052 struct signal_struct *sig;
1053
1054 if (!expiry_cache_is_inactive(pct)) {
1055 u64 samples[CPUCLOCK_MAX];
1056
1057 task_sample_cputime(tsk, samples);
1058 if (task_cputimers_expired(samples, pct))
1059 return true;
1060 }
1061
1062 sig = tsk->signal;
1063 pct = &sig->posix_cputimers;
1064 /*
1065 * Check if thread group timers expired when timers are active and
1066 * no other thread in the group is already handling expiry for
1067 * thread group cputimers. These fields are read without the
1068 * sighand lock. However, this is fine because this is meant to be
1069 * a fastpath heuristic to determine whether we should try to
1070 * acquire the sighand lock to handle timer expiry.
1071 *
1072 * In the worst case scenario, if concurrently timers_active is set
1073 * or expiry_active is cleared, but the current thread doesn't see
1074 * the change yet, the timer checks are delayed until the next
1075 * thread in the group gets a scheduler interrupt to handle the
1076 * timer. This isn't an issue in practice because these types of
1077 * delays with signals actually getting sent are expected.
1078 */
1079 if (READ_ONCE(pct->timers_active) && !READ_ONCE(pct->expiry_active)) {
1080 u64 samples[CPUCLOCK_MAX];
1081
1082 proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic,
1083 samples);
1084
1085 if (task_cputimers_expired(samples, pct))
1086 return true;
1087 }
1088
1089 if (dl_task(tsk) && tsk->dl.dl_overrun)
1090 return true;
1091
1092 return false;
1093}
1094
1095static void handle_posix_cpu_timers(struct task_struct *tsk);
1096
1097#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1098static void posix_cpu_timers_work(struct callback_head *work)
1099{
1100 handle_posix_cpu_timers(current);
1101}
1102
1103/*
1104 * Initialize posix CPU timers task work in init task. Out of line to
1105 * keep the callback static and to avoid header recursion hell.
1106 */
1107void __init posix_cputimers_init_work(void)
1108{
1109 init_task_work(¤t->posix_cputimers_work.work,
1110 posix_cpu_timers_work);
1111}
1112
1113/*
1114 * Note: All operations on tsk->posix_cputimer_work.scheduled happen either
1115 * in hard interrupt context or in task context with interrupts
1116 * disabled. Aside of that the writer/reader interaction is always in the
1117 * context of the current task, which means they are strict per CPU.
1118 */
1119static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk)
1120{
1121 return tsk->posix_cputimers_work.scheduled;
1122}
1123
1124static inline void __run_posix_cpu_timers(struct task_struct *tsk)
1125{
1126 if (WARN_ON_ONCE(tsk->posix_cputimers_work.scheduled))
1127 return;
1128
1129 /* Schedule task work to actually expire the timers */
1130 tsk->posix_cputimers_work.scheduled = true;
1131 task_work_add(tsk, &tsk->posix_cputimers_work.work, TWA_RESUME);
1132}
1133
1134static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk,
1135 unsigned long start)
1136{
1137 bool ret = true;
1138
1139 /*
1140 * On !RT kernels interrupts are disabled while collecting expired
1141 * timers, so no tick can happen and the fast path check can be
1142 * reenabled without further checks.
1143 */
1144 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
1145 tsk->posix_cputimers_work.scheduled = false;
1146 return true;
1147 }
1148
1149 /*
1150 * On RT enabled kernels ticks can happen while the expired timers
1151 * are collected under sighand lock. But any tick which observes
1152 * the CPUTIMERS_WORK_SCHEDULED bit set, does not run the fastpath
1153 * checks. So reenabling the tick work has do be done carefully:
1154 *
1155 * Disable interrupts and run the fast path check if jiffies have
1156 * advanced since the collecting of expired timers started. If
1157 * jiffies have not advanced or the fast path check did not find
1158 * newly expired timers, reenable the fast path check in the timer
1159 * interrupt. If there are newly expired timers, return false and
1160 * let the collection loop repeat.
1161 */
1162 local_irq_disable();
1163 if (start != jiffies && fastpath_timer_check(tsk))
1164 ret = false;
1165 else
1166 tsk->posix_cputimers_work.scheduled = false;
1167 local_irq_enable();
1168
1169 return ret;
1170}
1171#else /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */
1172static inline void __run_posix_cpu_timers(struct task_struct *tsk)
1173{
1174 lockdep_posixtimer_enter();
1175 handle_posix_cpu_timers(tsk);
1176 lockdep_posixtimer_exit();
1177}
1178
1179static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk)
1180{
1181 return false;
1182}
1183
1184static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk,
1185 unsigned long start)
1186{
1187 return true;
1188}
1189#endif /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */
1190
1191static void handle_posix_cpu_timers(struct task_struct *tsk)
1192{
1193 struct k_itimer *timer, *next;
1194 unsigned long flags, start;
1195 LIST_HEAD(firing);
1196
1197 if (!lock_task_sighand(tsk, &flags))
1198 return;
1199
1200 do {
1201 /*
1202 * On RT locking sighand lock does not disable interrupts,
1203 * so this needs to be careful vs. ticks. Store the current
1204 * jiffies value.
1205 */
1206 start = READ_ONCE(jiffies);
1207 barrier();
1208
1209 /*
1210 * Here we take off tsk->signal->cpu_timers[N] and
1211 * tsk->cpu_timers[N] all the timers that are firing, and
1212 * put them on the firing list.
1213 */
1214 check_thread_timers(tsk, &firing);
1215
1216 check_process_timers(tsk, &firing);
1217
1218 /*
1219 * The above timer checks have updated the exipry cache and
1220 * because nothing can have queued or modified timers after
1221 * sighand lock was taken above it is guaranteed to be
1222 * consistent. So the next timer interrupt fastpath check
1223 * will find valid data.
1224 *
1225 * If timer expiry runs in the timer interrupt context then
1226 * the loop is not relevant as timers will be directly
1227 * expired in interrupt context. The stub function below
1228 * returns always true which allows the compiler to
1229 * optimize the loop out.
1230 *
1231 * If timer expiry is deferred to task work context then
1232 * the following rules apply:
1233 *
1234 * - On !RT kernels no tick can have happened on this CPU
1235 * after sighand lock was acquired because interrupts are
1236 * disabled. So reenabling task work before dropping
1237 * sighand lock and reenabling interrupts is race free.
1238 *
1239 * - On RT kernels ticks might have happened but the tick
1240 * work ignored posix CPU timer handling because the
1241 * CPUTIMERS_WORK_SCHEDULED bit is set. Reenabling work
1242 * must be done very carefully including a check whether
1243 * ticks have happened since the start of the timer
1244 * expiry checks. posix_cpu_timers_enable_work() takes
1245 * care of that and eventually lets the expiry checks
1246 * run again.
1247 */
1248 } while (!posix_cpu_timers_enable_work(tsk, start));
1249
1250 /*
1251 * We must release sighand lock before taking any timer's lock.
1252 * There is a potential race with timer deletion here, as the
1253 * siglock now protects our private firing list. We have set
1254 * the firing flag in each timer, so that a deletion attempt
1255 * that gets the timer lock before we do will give it up and
1256 * spin until we've taken care of that timer below.
1257 */
1258 unlock_task_sighand(tsk, &flags);
1259
1260 /*
1261 * Now that all the timers on our list have the firing flag,
1262 * no one will touch their list entries but us. We'll take
1263 * each timer's lock before clearing its firing flag, so no
1264 * timer call will interfere.
1265 */
1266 list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) {
1267 int cpu_firing;
1268
1269 /*
1270 * spin_lock() is sufficient here even independent of the
1271 * expiry context. If expiry happens in hard interrupt
1272 * context it's obvious. For task work context it's safe
1273 * because all other operations on timer::it_lock happen in
1274 * task context (syscall or exit).
1275 */
1276 spin_lock(&timer->it_lock);
1277 list_del_init(&timer->it.cpu.elist);
1278 cpu_firing = timer->it.cpu.firing;
1279 timer->it.cpu.firing = 0;
1280 /*
1281 * The firing flag is -1 if we collided with a reset
1282 * of the timer, which already reported this
1283 * almost-firing as an overrun. So don't generate an event.
1284 */
1285 if (likely(cpu_firing >= 0))
1286 cpu_timer_fire(timer);
1287 spin_unlock(&timer->it_lock);
1288 }
1289}
1290
1291/*
1292 * This is called from the timer interrupt handler. The irq handler has
1293 * already updated our counts. We need to check if any timers fire now.
1294 * Interrupts are disabled.
1295 */
1296void run_posix_cpu_timers(void)
1297{
1298 struct task_struct *tsk = current;
1299
1300 lockdep_assert_irqs_disabled();
1301
1302 /*
1303 * If the actual expiry is deferred to task work context and the
1304 * work is already scheduled there is no point to do anything here.
1305 */
1306 if (posix_cpu_timers_work_scheduled(tsk))
1307 return;
1308
1309 /*
1310 * The fast path checks that there are no expired thread or thread
1311 * group timers. If that's so, just return.
1312 */
1313 if (!fastpath_timer_check(tsk))
1314 return;
1315
1316 __run_posix_cpu_timers(tsk);
1317}
1318
1319/*
1320 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1321 * The tsk->sighand->siglock must be held by the caller.
1322 */
1323void set_process_cpu_timer(struct task_struct *tsk, unsigned int clkid,
1324 u64 *newval, u64 *oldval)
1325{
1326 u64 now, *nextevt;
1327
1328 if (WARN_ON_ONCE(clkid >= CPUCLOCK_SCHED))
1329 return;
1330
1331 nextevt = &tsk->signal->posix_cputimers.bases[clkid].nextevt;
1332 now = cpu_clock_sample_group(clkid, tsk, true);
1333
1334 if (oldval) {
1335 /*
1336 * We are setting itimer. The *oldval is absolute and we update
1337 * it to be relative, *newval argument is relative and we update
1338 * it to be absolute.
1339 */
1340 if (*oldval) {
1341 if (*oldval <= now) {
1342 /* Just about to fire. */
1343 *oldval = TICK_NSEC;
1344 } else {
1345 *oldval -= now;
1346 }
1347 }
1348
1349 if (!*newval)
1350 return;
1351 *newval += now;
1352 }
1353
1354 /*
1355 * Update expiration cache if this is the earliest timer. CPUCLOCK_PROF
1356 * expiry cache is also used by RLIMIT_CPU!.
1357 */
1358 if (*newval < *nextevt)
1359 *nextevt = *newval;
1360
1361 tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
1362}
1363
1364static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1365 const struct timespec64 *rqtp)
1366{
1367 struct itimerspec64 it;
1368 struct k_itimer timer;
1369 u64 expires;
1370 int error;
1371
1372 /*
1373 * Set up a temporary timer and then wait for it to go off.
1374 */
1375 memset(&timer, 0, sizeof timer);
1376 spin_lock_init(&timer.it_lock);
1377 timer.it_clock = which_clock;
1378 timer.it_overrun = -1;
1379 error = posix_cpu_timer_create(&timer);
1380 timer.it_process = current;
1381
1382 if (!error) {
1383 static struct itimerspec64 zero_it;
1384 struct restart_block *restart;
1385
1386 memset(&it, 0, sizeof(it));
1387 it.it_value = *rqtp;
1388
1389 spin_lock_irq(&timer.it_lock);
1390 error = posix_cpu_timer_set(&timer, flags, &it, NULL);
1391 if (error) {
1392 spin_unlock_irq(&timer.it_lock);
1393 return error;
1394 }
1395
1396 while (!signal_pending(current)) {
1397 if (!cpu_timer_getexpires(&timer.it.cpu)) {
1398 /*
1399 * Our timer fired and was reset, below
1400 * deletion can not fail.
1401 */
1402 posix_cpu_timer_del(&timer);
1403 spin_unlock_irq(&timer.it_lock);
1404 return 0;
1405 }
1406
1407 /*
1408 * Block until cpu_timer_fire (or a signal) wakes us.
1409 */
1410 __set_current_state(TASK_INTERRUPTIBLE);
1411 spin_unlock_irq(&timer.it_lock);
1412 schedule();
1413 spin_lock_irq(&timer.it_lock);
1414 }
1415
1416 /*
1417 * We were interrupted by a signal.
1418 */
1419 expires = cpu_timer_getexpires(&timer.it.cpu);
1420 error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
1421 if (!error) {
1422 /*
1423 * Timer is now unarmed, deletion can not fail.
1424 */
1425 posix_cpu_timer_del(&timer);
1426 }
1427 spin_unlock_irq(&timer.it_lock);
1428
1429 while (error == TIMER_RETRY) {
1430 /*
1431 * We need to handle case when timer was or is in the
1432 * middle of firing. In other cases we already freed
1433 * resources.
1434 */
1435 spin_lock_irq(&timer.it_lock);
1436 error = posix_cpu_timer_del(&timer);
1437 spin_unlock_irq(&timer.it_lock);
1438 }
1439
1440 if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
1441 /*
1442 * It actually did fire already.
1443 */
1444 return 0;
1445 }
1446
1447 error = -ERESTART_RESTARTBLOCK;
1448 /*
1449 * Report back to the user the time still remaining.
1450 */
1451 restart = ¤t->restart_block;
1452 restart->nanosleep.expires = expires;
1453 if (restart->nanosleep.type != TT_NONE)
1454 error = nanosleep_copyout(restart, &it.it_value);
1455 }
1456
1457 return error;
1458}
1459
1460static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1461
1462static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1463 const struct timespec64 *rqtp)
1464{
1465 struct restart_block *restart_block = ¤t->restart_block;
1466 int error;
1467
1468 /*
1469 * Diagnose required errors first.
1470 */
1471 if (CPUCLOCK_PERTHREAD(which_clock) &&
1472 (CPUCLOCK_PID(which_clock) == 0 ||
1473 CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
1474 return -EINVAL;
1475
1476 error = do_cpu_nanosleep(which_clock, flags, rqtp);
1477
1478 if (error == -ERESTART_RESTARTBLOCK) {
1479
1480 if (flags & TIMER_ABSTIME)
1481 return -ERESTARTNOHAND;
1482
1483 restart_block->fn = posix_cpu_nsleep_restart;
1484 restart_block->nanosleep.clockid = which_clock;
1485 }
1486 return error;
1487}
1488
1489static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1490{
1491 clockid_t which_clock = restart_block->nanosleep.clockid;
1492 struct timespec64 t;
1493
1494 t = ns_to_timespec64(restart_block->nanosleep.expires);
1495
1496 return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
1497}
1498
1499#define PROCESS_CLOCK make_process_cpuclock(0, CPUCLOCK_SCHED)
1500#define THREAD_CLOCK make_thread_cpuclock(0, CPUCLOCK_SCHED)
1501
1502static int process_cpu_clock_getres(const clockid_t which_clock,
1503 struct timespec64 *tp)
1504{
1505 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1506}
1507static int process_cpu_clock_get(const clockid_t which_clock,
1508 struct timespec64 *tp)
1509{
1510 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1511}
1512static int process_cpu_timer_create(struct k_itimer *timer)
1513{
1514 timer->it_clock = PROCESS_CLOCK;
1515 return posix_cpu_timer_create(timer);
1516}
1517static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1518 const struct timespec64 *rqtp)
1519{
1520 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
1521}
1522static int thread_cpu_clock_getres(const clockid_t which_clock,
1523 struct timespec64 *tp)
1524{
1525 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1526}
1527static int thread_cpu_clock_get(const clockid_t which_clock,
1528 struct timespec64 *tp)
1529{
1530 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1531}
1532static int thread_cpu_timer_create(struct k_itimer *timer)
1533{
1534 timer->it_clock = THREAD_CLOCK;
1535 return posix_cpu_timer_create(timer);
1536}
1537
1538const struct k_clock clock_posix_cpu = {
1539 .clock_getres = posix_cpu_clock_getres,
1540 .clock_set = posix_cpu_clock_set,
1541 .clock_get_timespec = posix_cpu_clock_get,
1542 .timer_create = posix_cpu_timer_create,
1543 .nsleep = posix_cpu_nsleep,
1544 .timer_set = posix_cpu_timer_set,
1545 .timer_del = posix_cpu_timer_del,
1546 .timer_get = posix_cpu_timer_get,
1547 .timer_rearm = posix_cpu_timer_rearm,
1548};
1549
1550const struct k_clock clock_process = {
1551 .clock_getres = process_cpu_clock_getres,
1552 .clock_get_timespec = process_cpu_clock_get,
1553 .timer_create = process_cpu_timer_create,
1554 .nsleep = process_cpu_nsleep,
1555};
1556
1557const struct k_clock clock_thread = {
1558 .clock_getres = thread_cpu_clock_getres,
1559 .clock_get_timespec = thread_cpu_clock_get,
1560 .timer_create = thread_cpu_timer_create,
1561};