Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Implement CPU time clocks for the POSIX clock interface.
   4 */
   5
   6#include <linux/sched/signal.h>
   7#include <linux/sched/cputime.h>
   8#include <linux/posix-timers.h>
   9#include <linux/errno.h>
  10#include <linux/math64.h>
  11#include <linux/uaccess.h>
  12#include <linux/kernel_stat.h>
  13#include <trace/events/timer.h>
  14#include <linux/tick.h>
  15#include <linux/workqueue.h>
  16#include <linux/compat.h>
  17#include <linux/sched/deadline.h>
  18#include <linux/task_work.h>
  19
  20#include "posix-timers.h"
  21
  22static void posix_cpu_timer_rearm(struct k_itimer *timer);
  23
  24void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit)
  25{
  26	posix_cputimers_init(pct);
  27	if (cpu_limit != RLIM_INFINITY) {
  28		pct->bases[CPUCLOCK_PROF].nextevt = cpu_limit * NSEC_PER_SEC;
  29		pct->timers_active = true;
  30	}
  31}
  32
  33/*
  34 * Called after updating RLIMIT_CPU to run cpu timer and update
  35 * tsk->signal->posix_cputimers.bases[clock].nextevt expiration cache if
  36 * necessary. Needs siglock protection since other code may update the
  37 * expiration cache as well.
  38 *
  39 * Returns 0 on success, -ESRCH on failure.  Can fail if the task is exiting and
  40 * we cannot lock_task_sighand.  Cannot fail if task is current.
  41 */
  42int update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
  43{
  44	u64 nsecs = rlim_new * NSEC_PER_SEC;
  45	unsigned long irq_fl;
  46
  47	if (!lock_task_sighand(task, &irq_fl))
  48		return -ESRCH;
  49	set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
  50	unlock_task_sighand(task, &irq_fl);
  51	return 0;
  52}
  53
  54/*
  55 * Functions for validating access to tasks.
  56 */
  57static struct pid *pid_for_clock(const clockid_t clock, bool gettime)
  58{
  59	const bool thread = !!CPUCLOCK_PERTHREAD(clock);
  60	const pid_t upid = CPUCLOCK_PID(clock);
  61	struct pid *pid;
  62
  63	if (CPUCLOCK_WHICH(clock) >= CPUCLOCK_MAX)
  64		return NULL;
  65
  66	/*
  67	 * If the encoded PID is 0, then the timer is targeted at current
  68	 * or the process to which current belongs.
  69	 */
  70	if (upid == 0)
  71		return thread ? task_pid(current) : task_tgid(current);
  72
  73	pid = find_vpid(upid);
  74	if (!pid)
  75		return NULL;
  76
  77	if (thread) {
  78		struct task_struct *tsk = pid_task(pid, PIDTYPE_PID);
  79		return (tsk && same_thread_group(tsk, current)) ? pid : NULL;
  80	}
  81
  82	/*
  83	 * For clock_gettime(PROCESS) allow finding the process by
  84	 * with the pid of the current task.  The code needs the tgid
  85	 * of the process so that pid_task(pid, PIDTYPE_TGID) can be
  86	 * used to find the process.
  87	 */
  88	if (gettime && (pid == task_pid(current)))
  89		return task_tgid(current);
  90
  91	/*
  92	 * For processes require that pid identifies a process.
  93	 */
  94	return pid_has_task(pid, PIDTYPE_TGID) ? pid : NULL;
  95}
  96
  97static inline int validate_clock_permissions(const clockid_t clock)
  98{
  99	int ret;
 100
 101	rcu_read_lock();
 102	ret = pid_for_clock(clock, false) ? 0 : -EINVAL;
 
 
 
 
 103	rcu_read_unlock();
 104
 105	return ret;
 106}
 107
 108static inline enum pid_type clock_pid_type(const clockid_t clock)
 109{
 110	return CPUCLOCK_PERTHREAD(clock) ? PIDTYPE_PID : PIDTYPE_TGID;
 111}
 112
 113static inline struct task_struct *cpu_timer_task_rcu(struct k_itimer *timer)
 114{
 115	return pid_task(timer->it.cpu.pid, clock_pid_type(timer->it_clock));
 116}
 117
 118/*
 119 * Update expiry time from increment, and increase overrun count,
 120 * given the current clock sample.
 121 */
 122static u64 bump_cpu_timer(struct k_itimer *timer, u64 now)
 123{
 124	u64 delta, incr, expires = timer->it.cpu.node.expires;
 125	int i;
 
 126
 127	if (!timer->it_interval)
 128		return expires;
 129
 130	if (now < expires)
 131		return expires;
 132
 133	incr = timer->it_interval;
 134	delta = now + incr - expires;
 135
 136	/* Don't use (incr*2 < delta), incr*2 might overflow. */
 137	for (i = 0; incr < delta - incr; i++)
 138		incr = incr << 1;
 139
 140	for (; i >= 0; incr >>= 1, i--) {
 141		if (delta < incr)
 142			continue;
 143
 144		timer->it.cpu.node.expires += incr;
 145		timer->it_overrun += 1LL << i;
 146		delta -= incr;
 147	}
 148	return timer->it.cpu.node.expires;
 149}
 150
 151/* Check whether all cache entries contain U64_MAX, i.e. eternal expiry time */
 152static inline bool expiry_cache_is_inactive(const struct posix_cputimers *pct)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 153{
 154	return !(~pct->bases[CPUCLOCK_PROF].nextevt |
 155		 ~pct->bases[CPUCLOCK_VIRT].nextevt |
 156		 ~pct->bases[CPUCLOCK_SCHED].nextevt);
 
 
 
 
 
 
 
 
 
 
 157}
 158
 159static int
 160posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
 161{
 162	int error = validate_clock_permissions(which_clock);
 163
 164	if (!error) {
 165		tp->tv_sec = 0;
 166		tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
 167		if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
 168			/*
 169			 * If sched_clock is using a cycle counter, we
 170			 * don't have any idea of its true resolution
 171			 * exported, but it is much more than 1s/HZ.
 172			 */
 173			tp->tv_nsec = 1;
 174		}
 175	}
 176	return error;
 177}
 178
 179static int
 180posix_cpu_clock_set(const clockid_t clock, const struct timespec64 *tp)
 181{
 182	int error = validate_clock_permissions(clock);
 183
 184	/*
 185	 * You can never reset a CPU clock, but we check for other errors
 186	 * in the call before failing with EPERM.
 187	 */
 188	return error ? : -EPERM;
 
 
 
 
 189}
 190
 
 191/*
 192 * Sample a per-thread clock for the given task. clkid is validated.
 193 */
 194static u64 cpu_clock_sample(const clockid_t clkid, struct task_struct *p)
 
 195{
 196	u64 utime, stime;
 197
 198	if (clkid == CPUCLOCK_SCHED)
 199		return task_sched_runtime(p);
 200
 201	task_cputime(p, &utime, &stime);
 202
 203	switch (clkid) {
 204	case CPUCLOCK_PROF:
 205		return utime + stime;
 
 206	case CPUCLOCK_VIRT:
 207		return utime;
 208	default:
 209		WARN_ON_ONCE(1);
 
 
 210	}
 211	return 0;
 212}
 213
 214static inline void store_samples(u64 *samples, u64 stime, u64 utime, u64 rtime)
 215{
 216	samples[CPUCLOCK_PROF] = stime + utime;
 217	samples[CPUCLOCK_VIRT] = utime;
 218	samples[CPUCLOCK_SCHED] = rtime;
 219}
 220
 221static void task_sample_cputime(struct task_struct *p, u64 *samples)
 222{
 223	u64 stime, utime;
 224
 225	task_cputime(p, &utime, &stime);
 226	store_samples(samples, stime, utime, p->se.sum_exec_runtime);
 227}
 228
 229static void proc_sample_cputime_atomic(struct task_cputime_atomic *at,
 230				       u64 *samples)
 231{
 232	u64 stime, utime, rtime;
 233
 234	utime = atomic64_read(&at->utime);
 235	stime = atomic64_read(&at->stime);
 236	rtime = atomic64_read(&at->sum_exec_runtime);
 237	store_samples(samples, stime, utime, rtime);
 238}
 239
 240/*
 241 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
 242 * to avoid race conditions with concurrent updates to cputime.
 243 */
 244static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
 245{
 246	u64 curr_cputime;
 247retry:
 248	curr_cputime = atomic64_read(cputime);
 249	if (sum_cputime > curr_cputime) {
 250		if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
 251			goto retry;
 252	}
 253}
 254
 255static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic,
 256			      struct task_cputime *sum)
 257{
 258	__update_gt_cputime(&cputime_atomic->utime, sum->utime);
 259	__update_gt_cputime(&cputime_atomic->stime, sum->stime);
 260	__update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
 261}
 262
 263/**
 264 * thread_group_sample_cputime - Sample cputime for a given task
 265 * @tsk:	Task for which cputime needs to be started
 266 * @samples:	Storage for time samples
 267 *
 268 * Called from sys_getitimer() to calculate the expiry time of an active
 269 * timer. That means group cputime accounting is already active. Called
 270 * with task sighand lock held.
 271 *
 272 * Updates @times with an uptodate sample of the thread group cputimes.
 273 */
 274void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples)
 275{
 276	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
 277	struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
 278
 279	WARN_ON_ONCE(!pct->timers_active);
 280
 281	proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
 282}
 283
 284/**
 285 * thread_group_start_cputime - Start cputime and return a sample
 286 * @tsk:	Task for which cputime needs to be started
 287 * @samples:	Storage for time samples
 288 *
 289 * The thread group cputime accounting is avoided when there are no posix
 290 * CPU timers armed. Before starting a timer it's required to check whether
 291 * the time accounting is active. If not, a full update of the atomic
 292 * accounting store needs to be done and the accounting enabled.
 293 *
 294 * Updates @times with an uptodate sample of the thread group cputimes.
 295 */
 296static void thread_group_start_cputime(struct task_struct *tsk, u64 *samples)
 297{
 298	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
 299	struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
 300
 301	lockdep_assert_task_sighand_held(tsk);
 302
 303	/* Check if cputimer isn't running. This is accessed without locking. */
 304	if (!READ_ONCE(pct->timers_active)) {
 305		struct task_cputime sum;
 306
 307		/*
 308		 * The POSIX timer interface allows for absolute time expiry
 309		 * values through the TIMER_ABSTIME flag, therefore we have
 310		 * to synchronize the timer to the clock every time we start it.
 311		 */
 312		thread_group_cputime(tsk, &sum);
 313		update_gt_cputime(&cputimer->cputime_atomic, &sum);
 314
 315		/*
 316		 * We're setting timers_active without a lock. Ensure this
 317		 * only gets written to in one operation. We set it after
 318		 * update_gt_cputime() as a small optimization, but
 319		 * barriers are not required because update_gt_cputime()
 320		 * can handle concurrent updates.
 321		 */
 322		WRITE_ONCE(pct->timers_active, true);
 323	}
 324	proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
 325}
 326
 327static void __thread_group_cputime(struct task_struct *tsk, u64 *samples)
 
 
 
 
 
 
 
 328{
 329	struct task_cputime ct;
 330
 331	thread_group_cputime(tsk, &ct);
 332	store_samples(samples, ct.stime, ct.utime, ct.sum_exec_runtime);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 333}
 334
 335/*
 336 * Sample a process (thread group) clock for the given task clkid. If the
 337 * group's cputime accounting is already enabled, read the atomic
 338 * store. Otherwise a full update is required.  clkid is already validated.
 339 */
 340static u64 cpu_clock_sample_group(const clockid_t clkid, struct task_struct *p,
 341				  bool start)
 342{
 343	struct thread_group_cputimer *cputimer = &p->signal->cputimer;
 344	struct posix_cputimers *pct = &p->signal->posix_cputimers;
 345	u64 samples[CPUCLOCK_MAX];
 346
 347	if (!READ_ONCE(pct->timers_active)) {
 348		if (start)
 349			thread_group_start_cputime(p, samples);
 350		else
 351			__thread_group_cputime(p, samples);
 352	} else {
 353		proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
 
 354	}
 355
 356	return samples[clkid];
 
 
 
 357}
 358
 359static int posix_cpu_clock_get(const clockid_t clock, struct timespec64 *tp)
 
 360{
 361	const clockid_t clkid = CPUCLOCK_WHICH(clock);
 362	struct task_struct *tsk;
 363	u64 t;
 364
 365	rcu_read_lock();
 366	tsk = pid_task(pid_for_clock(clock, true), clock_pid_type(clock));
 367	if (!tsk) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 368		rcu_read_unlock();
 369		return -EINVAL;
 370	}
 371
 372	if (CPUCLOCK_PERTHREAD(clock))
 373		t = cpu_clock_sample(clkid, tsk);
 374	else
 375		t = cpu_clock_sample_group(clkid, tsk, false);
 376	rcu_read_unlock();
 377
 378	*tp = ns_to_timespec64(t);
 379	return 0;
 380}
 381
 382/*
 383 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
 384 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
 385 * new timer already all-zeros initialized.
 386 */
 387static int posix_cpu_timer_create(struct k_itimer *new_timer)
 388{
 389	static struct lock_class_key posix_cpu_timers_key;
 390	struct pid *pid;
 
 391
 392	rcu_read_lock();
 393	pid = pid_for_clock(new_timer->it_clock, false);
 394	if (!pid) {
 395		rcu_read_unlock();
 396		return -EINVAL;
 397	}
 398
 399	/*
 400	 * If posix timer expiry is handled in task work context then
 401	 * timer::it_lock can be taken without disabling interrupts as all
 402	 * other locking happens in task context. This requires a separate
 403	 * lock class key otherwise regular posix timer expiry would record
 404	 * the lock class being taken in interrupt context and generate a
 405	 * false positive warning.
 406	 */
 407	if (IS_ENABLED(CONFIG_POSIX_CPU_TIMERS_TASK_WORK))
 408		lockdep_set_class(&new_timer->it_lock, &posix_cpu_timers_key);
 409
 410	new_timer->kclock = &clock_posix_cpu;
 411	timerqueue_init(&new_timer->it.cpu.node);
 412	new_timer->it.cpu.pid = get_pid(pid);
 413	rcu_read_unlock();
 414	return 0;
 415}
 416
 417static struct posix_cputimer_base *timer_base(struct k_itimer *timer,
 418					      struct task_struct *tsk)
 419{
 420	int clkidx = CPUCLOCK_WHICH(timer->it_clock);
 421
 422	if (CPUCLOCK_PERTHREAD(timer->it_clock))
 423		return tsk->posix_cputimers.bases + clkidx;
 424	else
 425		return tsk->signal->posix_cputimers.bases + clkidx;
 426}
 427
 428/*
 429 * Force recalculating the base earliest expiration on the next tick.
 430 * This will also re-evaluate the need to keep around the process wide
 431 * cputime counter and tick dependency and eventually shut these down
 432 * if necessary.
 433 */
 434static void trigger_base_recalc_expires(struct k_itimer *timer,
 435					struct task_struct *tsk)
 436{
 437	struct posix_cputimer_base *base = timer_base(timer, tsk);
 438
 439	base->nextevt = 0;
 440}
 441
 442/*
 443 * Dequeue the timer and reset the base if it was its earliest expiration.
 444 * It makes sure the next tick recalculates the base next expiration so we
 445 * don't keep the costly process wide cputime counter around for a random
 446 * amount of time, along with the tick dependency.
 447 *
 448 * If another timer gets queued between this and the next tick, its
 449 * expiration will update the base next event if necessary on the next
 450 * tick.
 451 */
 452static void disarm_timer(struct k_itimer *timer, struct task_struct *p)
 453{
 454	struct cpu_timer *ctmr = &timer->it.cpu;
 455	struct posix_cputimer_base *base;
 456
 457	if (!cpu_timer_dequeue(ctmr))
 458		return;
 
 
 
 
 
 
 
 
 459
 460	base = timer_base(timer, p);
 461	if (cpu_timer_getexpires(ctmr) == base->nextevt)
 462		trigger_base_recalc_expires(timer, p);
 463}
 464
 465
 466/*
 467 * Clean up a CPU-clock timer that is about to be destroyed.
 468 * This is called from timer deletion with the timer already locked.
 469 * If we return TIMER_RETRY, it's necessary to release the timer's lock
 470 * and try again.  (This happens when the timer is in the middle of firing.)
 471 */
 472static int posix_cpu_timer_del(struct k_itimer *timer)
 473{
 474	struct cpu_timer *ctmr = &timer->it.cpu;
 475	struct sighand_struct *sighand;
 476	struct task_struct *p;
 477	unsigned long flags;
 478	int ret = 0;
 
 
 
 479
 480	rcu_read_lock();
 481	p = cpu_timer_task_rcu(timer);
 482	if (!p)
 483		goto out;
 484
 485	/*
 486	 * Protect against sighand release/switch in exit/exec and process/
 487	 * thread timer list entry concurrent read/writes.
 488	 */
 489	sighand = lock_task_sighand(p, &flags);
 490	if (unlikely(sighand == NULL)) {
 491		/*
 492		 * This raced with the reaping of the task. The exit cleanup
 493		 * should have removed this timer from the timer queue.
 494		 */
 495		WARN_ON_ONCE(ctmr->head || timerqueue_node_queued(&ctmr->node));
 496	} else {
 497		if (timer->it.cpu.firing)
 498			ret = TIMER_RETRY;
 499		else
 500			disarm_timer(timer, p);
 501
 502		unlock_task_sighand(p, &flags);
 503	}
 504
 505out:
 506	rcu_read_unlock();
 507	if (!ret)
 508		put_pid(ctmr->pid);
 509
 510	return ret;
 511}
 512
 513static void cleanup_timerqueue(struct timerqueue_head *head)
 514{
 515	struct timerqueue_node *node;
 516	struct cpu_timer *ctmr;
 517
 518	while ((node = timerqueue_getnext(head))) {
 519		timerqueue_del(head, node);
 520		ctmr = container_of(node, struct cpu_timer, node);
 521		ctmr->head = NULL;
 522	}
 523}
 524
 525/*
 526 * Clean out CPU timers which are still armed when a thread exits. The
 527 * timers are only removed from the list. No other updates are done. The
 528 * corresponding posix timers are still accessible, but cannot be rearmed.
 529 *
 530 * This must be called with the siglock held.
 531 */
 532static void cleanup_timers(struct posix_cputimers *pct)
 533{
 534	cleanup_timerqueue(&pct->bases[CPUCLOCK_PROF].tqhead);
 535	cleanup_timerqueue(&pct->bases[CPUCLOCK_VIRT].tqhead);
 536	cleanup_timerqueue(&pct->bases[CPUCLOCK_SCHED].tqhead);
 537}
 538
 539/*
 540 * These are both called with the siglock held, when the current thread
 541 * is being reaped.  When the final (leader) thread in the group is reaped,
 542 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
 543 */
 544void posix_cpu_timers_exit(struct task_struct *tsk)
 545{
 546	cleanup_timers(&tsk->posix_cputimers);
 547}
 548void posix_cpu_timers_exit_group(struct task_struct *tsk)
 549{
 550	cleanup_timers(&tsk->signal->posix_cputimers);
 
 
 
 
 
 551}
 552
 553/*
 554 * Insert the timer on the appropriate list before any timers that
 555 * expire later.  This must be called with the sighand lock held.
 556 */
 557static void arm_timer(struct k_itimer *timer, struct task_struct *p)
 558{
 559	struct posix_cputimer_base *base = timer_base(timer, p);
 560	struct cpu_timer *ctmr = &timer->it.cpu;
 561	u64 newexp = cpu_timer_getexpires(ctmr);
 
 
 
 
 
 
 
 
 
 
 
 562
 563	if (!cpu_timer_enqueue(&base->tqhead, ctmr))
 564		return;
 
 
 
 
 
 565
 566	/*
 567	 * We are the new earliest-expiring POSIX 1.b timer, hence
 568	 * need to update expiration cache. Take into account that
 569	 * for process timers we share expiration cache with itimers
 570	 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
 571	 */
 572	if (newexp < base->nextevt)
 573		base->nextevt = newexp;
 574
 575	if (CPUCLOCK_PERTHREAD(timer->it_clock))
 576		tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
 577	else
 578		tick_dep_set_signal(p, TICK_DEP_BIT_POSIX_TIMER);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 579}
 580
 581/*
 582 * The timer is locked, fire it and arrange for its reload.
 583 */
 584static void cpu_timer_fire(struct k_itimer *timer)
 585{
 586	struct cpu_timer *ctmr = &timer->it.cpu;
 587
 588	if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
 589		/*
 590		 * User don't want any signal.
 591		 */
 592		cpu_timer_setexpires(ctmr, 0);
 593	} else if (unlikely(timer->sigq == NULL)) {
 594		/*
 595		 * This a special case for clock_nanosleep,
 596		 * not a normal timer from sys_timer_create.
 597		 */
 598		wake_up_process(timer->it_process);
 599		cpu_timer_setexpires(ctmr, 0);
 600	} else if (!timer->it_interval) {
 601		/*
 602		 * One-shot timer.  Clear it as soon as it's fired.
 603		 */
 604		posix_timer_event(timer, 0);
 605		cpu_timer_setexpires(ctmr, 0);
 606	} else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
 607		/*
 608		 * The signal did not get queued because the signal
 609		 * was ignored, so we won't get any callback to
 610		 * reload the timer.  But we need to keep it
 611		 * ticking in case the signal is deliverable next time.
 612		 */
 613		posix_cpu_timer_rearm(timer);
 614		++timer->it_requeue_pending;
 615	}
 616}
 617
 618/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 619 * Guts of sys_timer_settime for CPU timers.
 620 * This is called with the timer locked and interrupts disabled.
 621 * If we return TIMER_RETRY, it's necessary to release the timer's lock
 622 * and try again.  (This happens when the timer is in the middle of firing.)
 623 */
 624static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
 625			       struct itimerspec64 *new, struct itimerspec64 *old)
 626{
 627	clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
 628	u64 old_expires, new_expires, old_incr, val;
 629	struct cpu_timer *ctmr = &timer->it.cpu;
 630	struct sighand_struct *sighand;
 631	struct task_struct *p;
 632	unsigned long flags;
 633	int ret = 0;
 
 
 
 634
 635	rcu_read_lock();
 636	p = cpu_timer_task_rcu(timer);
 637	if (!p) {
 638		/*
 639		 * If p has just been reaped, we can no
 640		 * longer get any information about it at all.
 641		 */
 642		rcu_read_unlock();
 643		return -ESRCH;
 644	}
 645
 646	/*
 647	 * Use the to_ktime conversion because that clamps the maximum
 648	 * value to KTIME_MAX and avoid multiplication overflows.
 649	 */
 650	new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
 651
 652	/*
 653	 * Protect against sighand release/switch in exit/exec and p->cpu_timers
 654	 * and p->signal->cpu_timers read/write in arm_timer()
 655	 */
 656	sighand = lock_task_sighand(p, &flags);
 657	/*
 658	 * If p has just been reaped, we can no
 659	 * longer get any information about it at all.
 660	 */
 661	if (unlikely(sighand == NULL)) {
 662		rcu_read_unlock();
 663		return -ESRCH;
 664	}
 665
 666	/*
 667	 * Disarm any old timer after extracting its expiry time.
 668	 */
 669	old_incr = timer->it_interval;
 670	old_expires = cpu_timer_getexpires(ctmr);
 671
 
 
 
 672	if (unlikely(timer->it.cpu.firing)) {
 673		timer->it.cpu.firing = -1;
 674		ret = TIMER_RETRY;
 675	} else {
 676		cpu_timer_dequeue(ctmr);
 677	}
 678
 679	/*
 680	 * We need to sample the current value to convert the new
 681	 * value from to relative and absolute, and to convert the
 682	 * old value from absolute to relative.  To set a process
 683	 * timer, we need a sample to balance the thread expiry
 684	 * times (in arm_timer).  With an absolute time, we must
 685	 * check if it's already passed.  In short, we need a sample.
 686	 */
 687	if (CPUCLOCK_PERTHREAD(timer->it_clock))
 688		val = cpu_clock_sample(clkid, p);
 689	else
 690		val = cpu_clock_sample_group(clkid, p, true);
 
 691
 692	if (old) {
 693		if (old_expires == 0) {
 694			old->it_value.tv_sec = 0;
 695			old->it_value.tv_nsec = 0;
 696		} else {
 697			/*
 698			 * Update the timer in case it has overrun already.
 699			 * If it has, we'll report it as having overrun and
 700			 * with the next reloaded timer already ticking,
 701			 * though we are swallowing that pending
 702			 * notification here to install the new setting.
 
 
 
 703			 */
 704			u64 exp = bump_cpu_timer(timer, val);
 705
 706			if (val < exp) {
 707				old_expires = exp - val;
 708				old->it_value = ns_to_timespec64(old_expires);
 709			} else {
 710				old->it_value.tv_nsec = 1;
 711				old->it_value.tv_sec = 0;
 712			}
 713		}
 714	}
 715
 716	if (unlikely(ret)) {
 717		/*
 718		 * We are colliding with the timer actually firing.
 719		 * Punt after filling in the timer's old value, and
 720		 * disable this firing since we are already reporting
 721		 * it as an overrun (thanks to bump_cpu_timer above).
 722		 */
 723		unlock_task_sighand(p, &flags);
 724		goto out;
 725	}
 726
 727	if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
 728		new_expires += val;
 729	}
 730
 731	/*
 732	 * Install the new expiry time (or zero).
 733	 * For a timer with no notification action, we don't actually
 734	 * arm the timer (we'll just fake it for timer_gettime).
 735	 */
 736	cpu_timer_setexpires(ctmr, new_expires);
 737	if (new_expires != 0 && val < new_expires) {
 738		arm_timer(timer, p);
 739	}
 740
 741	unlock_task_sighand(p, &flags);
 742	/*
 743	 * Install the new reload setting, and
 744	 * set up the signal and overrun bookkeeping.
 745	 */
 746	timer->it_interval = timespec64_to_ktime(new->it_interval);
 747
 748	/*
 749	 * This acts as a modification timestamp for the timer,
 750	 * so any automatic reload attempt will punt on seeing
 751	 * that we have reset the timer manually.
 752	 */
 753	timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
 754		~REQUEUE_PENDING;
 755	timer->it_overrun_last = 0;
 756	timer->it_overrun = -1;
 757
 758	if (val >= new_expires) {
 759		if (new_expires != 0) {
 760			/*
 761			 * The designated time already passed, so we notify
 762			 * immediately, even if the thread never runs to
 763			 * accumulate more time on this clock.
 764			 */
 765			cpu_timer_fire(timer);
 766		}
 767
 768		/*
 769		 * Make sure we don't keep around the process wide cputime
 770		 * counter or the tick dependency if they are not necessary.
 
 771		 */
 772		sighand = lock_task_sighand(p, &flags);
 773		if (!sighand)
 774			goto out;
 775
 776		if (!cpu_timer_queued(ctmr))
 777			trigger_base_recalc_expires(timer, p);
 778
 779		unlock_task_sighand(p, &flags);
 780	}
 
 
 781 out:
 782	rcu_read_unlock();
 783	if (old)
 784		old->it_interval = ns_to_timespec64(old_incr);
 785
 786	return ret;
 787}
 788
 789static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
 790{
 791	clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
 792	struct cpu_timer *ctmr = &timer->it.cpu;
 793	u64 now, expires = cpu_timer_getexpires(ctmr);
 794	struct task_struct *p;
 795
 796	rcu_read_lock();
 797	p = cpu_timer_task_rcu(timer);
 798	if (!p)
 799		goto out;
 800
 801	/*
 802	 * Easy part: convert the reload time.
 803	 */
 804	itp->it_interval = ktime_to_timespec64(timer->it_interval);
 805
 806	if (!expires)
 807		goto out;
 808
 809	/*
 810	 * Sample the clock to take the difference with the expiry time.
 811	 */
 812	if (CPUCLOCK_PERTHREAD(timer->it_clock))
 813		now = cpu_clock_sample(clkid, p);
 814	else
 815		now = cpu_clock_sample_group(clkid, p, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 816
 817	if (now < expires) {
 818		itp->it_value = ns_to_timespec64(expires - now);
 819	} else {
 820		/*
 821		 * The timer should have expired already, but the firing
 822		 * hasn't taken place yet.  Say it's just about to expire.
 823		 */
 824		itp->it_value.tv_nsec = 1;
 825		itp->it_value.tv_sec = 0;
 826	}
 827out:
 828	rcu_read_unlock();
 829}
 830
 831#define MAX_COLLECTED	20
 832
 833static u64 collect_timerqueue(struct timerqueue_head *head,
 834			      struct list_head *firing, u64 now)
 835{
 836	struct timerqueue_node *next;
 837	int i = 0;
 838
 839	while ((next = timerqueue_getnext(head))) {
 840		struct cpu_timer *ctmr;
 841		u64 expires;
 842
 843		ctmr = container_of(next, struct cpu_timer, node);
 844		expires = cpu_timer_getexpires(ctmr);
 845		/* Limit the number of timers to expire at once */
 846		if (++i == MAX_COLLECTED || now < expires)
 847			return expires;
 848
 849		ctmr->firing = 1;
 850		cpu_timer_dequeue(ctmr);
 851		list_add_tail(&ctmr->elist, firing);
 852	}
 853
 854	return U64_MAX;
 855}
 856
 857static void collect_posix_cputimers(struct posix_cputimers *pct, u64 *samples,
 858				    struct list_head *firing)
 859{
 860	struct posix_cputimer_base *base = pct->bases;
 861	int i;
 862
 863	for (i = 0; i < CPUCLOCK_MAX; i++, base++) {
 864		base->nextevt = collect_timerqueue(&base->tqhead, firing,
 865						    samples[i]);
 866	}
 
 
 867}
 868
 869static inline void check_dl_overrun(struct task_struct *tsk)
 870{
 871	if (tsk->dl.dl_overrun) {
 872		tsk->dl.dl_overrun = 0;
 873		send_signal_locked(SIGXCPU, SEND_SIG_PRIV, tsk, PIDTYPE_TGID);
 874	}
 875}
 876
 877static bool check_rlimit(u64 time, u64 limit, int signo, bool rt, bool hard)
 878{
 879	if (time < limit)
 880		return false;
 881
 882	if (print_fatal_signals) {
 883		pr_info("%s Watchdog Timeout (%s): %s[%d]\n",
 884			rt ? "RT" : "CPU", hard ? "hard" : "soft",
 885			current->comm, task_pid_nr(current));
 886	}
 887	send_signal_locked(signo, SEND_SIG_PRIV, current, PIDTYPE_TGID);
 888	return true;
 889}
 890
 891/*
 892 * Check for any per-thread CPU timers that have fired and move them off
 893 * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
 894 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
 895 */
 896static void check_thread_timers(struct task_struct *tsk,
 897				struct list_head *firing)
 898{
 899	struct posix_cputimers *pct = &tsk->posix_cputimers;
 900	u64 samples[CPUCLOCK_MAX];
 
 901	unsigned long soft;
 902
 903	if (dl_task(tsk))
 904		check_dl_overrun(tsk);
 905
 906	if (expiry_cache_is_inactive(pct))
 
 
 
 
 907		return;
 908
 909	task_sample_cputime(tsk, samples);
 910	collect_posix_cputimers(pct, samples, firing);
 
 
 
 
 
 
 911
 912	/*
 913	 * Check for the special case thread timers.
 914	 */
 915	soft = task_rlimit(tsk, RLIMIT_RTTIME);
 916	if (soft != RLIM_INFINITY) {
 917		/* Task RT timeout is accounted in jiffies. RTTIME is usec */
 918		unsigned long rttime = tsk->rt.timeout * (USEC_PER_SEC / HZ);
 919		unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
 920
 921		/* At the hard limit, send SIGKILL. No further action. */
 922		if (hard != RLIM_INFINITY &&
 923		    check_rlimit(rttime, hard, SIGKILL, true, true))
 
 
 
 
 
 
 
 
 
 924			return;
 925
 926		/* At the soft limit, send a SIGXCPU every second */
 927		if (check_rlimit(rttime, soft, SIGXCPU, true, false)) {
 928			soft += USEC_PER_SEC;
 929			tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur = soft;
 
 
 
 
 
 
 
 
 
 
 930		}
 931	}
 932
 933	if (expiry_cache_is_inactive(pct))
 934		tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
 935}
 936
 937static inline void stop_process_timers(struct signal_struct *sig)
 938{
 939	struct posix_cputimers *pct = &sig->posix_cputimers;
 940
 941	/* Turn off the active flag. This is done without locking. */
 942	WRITE_ONCE(pct->timers_active, false);
 943	tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
 944}
 945
 946static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
 947			     u64 *expires, u64 cur_time, int signo)
 948{
 949	if (!it->expires)
 950		return;
 951
 952	if (cur_time >= it->expires) {
 953		if (it->incr)
 954			it->expires += it->incr;
 955		else
 956			it->expires = 0;
 957
 958		trace_itimer_expire(signo == SIGPROF ?
 959				    ITIMER_PROF : ITIMER_VIRTUAL,
 960				    task_tgid(tsk), cur_time);
 961		send_signal_locked(signo, SEND_SIG_PRIV, tsk, PIDTYPE_TGID);
 962	}
 963
 964	if (it->expires && it->expires < *expires)
 965		*expires = it->expires;
 966}
 967
 968/*
 969 * Check for any per-thread CPU timers that have fired and move them
 970 * off the tsk->*_timers list onto the firing list.  Per-thread timers
 971 * have already been taken off.
 972 */
 973static void check_process_timers(struct task_struct *tsk,
 974				 struct list_head *firing)
 975{
 976	struct signal_struct *const sig = tsk->signal;
 977	struct posix_cputimers *pct = &sig->posix_cputimers;
 978	u64 samples[CPUCLOCK_MAX];
 
 
 979	unsigned long soft;
 980
 
 
 
 981	/*
 982	 * If there are no active process wide timers (POSIX 1.b, itimers,
 983	 * RLIMIT_CPU) nothing to check. Also skip the process wide timer
 984	 * processing when there is already another task handling them.
 985	 */
 986	if (!READ_ONCE(pct->timers_active) || pct->expiry_active)
 987		return;
 988
 989	/*
 990	 * Signify that a thread is checking for process timers.
 991	 * Write access to this field is protected by the sighand lock.
 992	 */
 993	pct->expiry_active = true;
 994
 995	/*
 996	 * Collect the current process totals. Group accounting is active
 997	 * so the sample can be taken directly.
 998	 */
 999	proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, samples);
1000	collect_posix_cputimers(pct, samples, firing);
 
 
 
 
 
 
1001
1002	/*
1003	 * Check for the special case process timers.
1004	 */
1005	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF],
1006			 &pct->bases[CPUCLOCK_PROF].nextevt,
1007			 samples[CPUCLOCK_PROF], SIGPROF);
1008	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT],
1009			 &pct->bases[CPUCLOCK_VIRT].nextevt,
1010			 samples[CPUCLOCK_VIRT], SIGVTALRM);
1011
1012	soft = task_rlimit(tsk, RLIMIT_CPU);
1013	if (soft != RLIM_INFINITY) {
1014		/* RLIMIT_CPU is in seconds. Samples are nanoseconds */
1015		unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU);
1016		u64 ptime = samples[CPUCLOCK_PROF];
1017		u64 softns = (u64)soft * NSEC_PER_SEC;
1018		u64 hardns = (u64)hard * NSEC_PER_SEC;
1019
1020		/* At the hard limit, send SIGKILL. No further action. */
1021		if (hard != RLIM_INFINITY &&
1022		    check_rlimit(ptime, hardns, SIGKILL, false, true))
 
 
 
 
1023			return;
1024
1025		/* At the soft limit, send a SIGXCPU every second */
1026		if (check_rlimit(ptime, softns, SIGXCPU, false, false)) {
1027			sig->rlim[RLIMIT_CPU].rlim_cur = soft + 1;
1028			softns += NSEC_PER_SEC;
1029		}
1030
1031		/* Update the expiry cache */
1032		if (softns < pct->bases[CPUCLOCK_PROF].nextevt)
1033			pct->bases[CPUCLOCK_PROF].nextevt = softns;
 
 
 
 
 
 
 
 
 
 
 
 
 
1034	}
1035
1036	if (expiry_cache_is_inactive(pct))
 
 
 
1037		stop_process_timers(sig);
1038
1039	pct->expiry_active = false;
1040}
1041
1042/*
1043 * This is called from the signal code (via posixtimer_rearm)
1044 * when the last timer signal was delivered and we have to reload the timer.
1045 */
1046static void posix_cpu_timer_rearm(struct k_itimer *timer)
1047{
1048	clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
1049	struct task_struct *p;
1050	struct sighand_struct *sighand;
1051	unsigned long flags;
 
1052	u64 now;
1053
1054	rcu_read_lock();
1055	p = cpu_timer_task_rcu(timer);
1056	if (!p)
1057		goto out;
1058
1059	/* Protect timer list r/w in arm_timer() */
1060	sighand = lock_task_sighand(p, &flags);
1061	if (unlikely(sighand == NULL))
1062		goto out;
1063
1064	/*
1065	 * Fetch the current sample and update the timer's expiry time.
1066	 */
1067	if (CPUCLOCK_PERTHREAD(timer->it_clock))
1068		now = cpu_clock_sample(clkid, p);
1069	else
1070		now = cpu_clock_sample_group(clkid, p, true);
 
1071
1072	bump_cpu_timer(timer, now);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1073
1074	/*
1075	 * Now re-arm for the new expiry time.
1076	 */
1077	arm_timer(timer, p);
 
 
1078	unlock_task_sighand(p, &flags);
1079out:
1080	rcu_read_unlock();
1081}
1082
1083/**
1084 * task_cputimers_expired - Check whether posix CPU timers are expired
1085 *
1086 * @samples:	Array of current samples for the CPUCLOCK clocks
1087 * @pct:	Pointer to a posix_cputimers container
1088 *
1089 * Returns true if any member of @samples is greater than the corresponding
1090 * member of @pct->bases[CLK].nextevt. False otherwise
1091 */
1092static inline bool
1093task_cputimers_expired(const u64 *samples, struct posix_cputimers *pct)
1094{
1095	int i;
1096
1097	for (i = 0; i < CPUCLOCK_MAX; i++) {
1098		if (samples[i] >= pct->bases[i].nextevt)
1099			return true;
1100	}
1101	return false;
 
 
1102}
1103
1104/**
1105 * fastpath_timer_check - POSIX CPU timers fast path.
1106 *
1107 * @tsk:	The task (thread) being checked.
1108 *
1109 * Check the task and thread group timers.  If both are zero (there are no
1110 * timers set) return false.  Otherwise snapshot the task and thread group
1111 * timers and compare them with the corresponding expiration times.  Return
1112 * true if a timer has expired, else return false.
1113 */
1114static inline bool fastpath_timer_check(struct task_struct *tsk)
1115{
1116	struct posix_cputimers *pct = &tsk->posix_cputimers;
1117	struct signal_struct *sig;
1118
1119	if (!expiry_cache_is_inactive(pct)) {
1120		u64 samples[CPUCLOCK_MAX];
1121
1122		task_sample_cputime(tsk, samples);
1123		if (task_cputimers_expired(samples, pct))
1124			return true;
 
1125	}
1126
1127	sig = tsk->signal;
1128	pct = &sig->posix_cputimers;
1129	/*
1130	 * Check if thread group timers expired when timers are active and
1131	 * no other thread in the group is already handling expiry for
1132	 * thread group cputimers. These fields are read without the
1133	 * sighand lock. However, this is fine because this is meant to be
1134	 * a fastpath heuristic to determine whether we should try to
1135	 * acquire the sighand lock to handle timer expiry.
1136	 *
1137	 * In the worst case scenario, if concurrently timers_active is set
1138	 * or expiry_active is cleared, but the current thread doesn't see
1139	 * the change yet, the timer checks are delayed until the next
1140	 * thread in the group gets a scheduler interrupt to handle the
1141	 * timer. This isn't an issue in practice because these types of
1142	 * delays with signals actually getting sent are expected.
1143	 */
1144	if (READ_ONCE(pct->timers_active) && !READ_ONCE(pct->expiry_active)) {
1145		u64 samples[CPUCLOCK_MAX];
1146
1147		proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic,
1148					   samples);
1149
1150		if (task_cputimers_expired(samples, pct))
1151			return true;
1152	}
1153
1154	if (dl_task(tsk) && tsk->dl.dl_overrun)
1155		return true;
1156
1157	return false;
1158}
1159
1160static void handle_posix_cpu_timers(struct task_struct *tsk);
1161
1162#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1163static void posix_cpu_timers_work(struct callback_head *work)
1164{
1165	handle_posix_cpu_timers(current);
1166}
1167
1168/*
1169 * Clear existing posix CPU timers task work.
1170 */
1171void clear_posix_cputimers_work(struct task_struct *p)
1172{
1173	/*
1174	 * A copied work entry from the old task is not meaningful, clear it.
1175	 * N.B. init_task_work will not do this.
1176	 */
1177	memset(&p->posix_cputimers_work.work, 0,
1178	       sizeof(p->posix_cputimers_work.work));
1179	init_task_work(&p->posix_cputimers_work.work,
1180		       posix_cpu_timers_work);
1181	p->posix_cputimers_work.scheduled = false;
1182}
1183
1184/*
1185 * Initialize posix CPU timers task work in init task. Out of line to
1186 * keep the callback static and to avoid header recursion hell.
1187 */
1188void __init posix_cputimers_init_work(void)
1189{
1190	clear_posix_cputimers_work(current);
1191}
1192
1193/*
1194 * Note: All operations on tsk->posix_cputimer_work.scheduled happen either
1195 * in hard interrupt context or in task context with interrupts
1196 * disabled. Aside of that the writer/reader interaction is always in the
1197 * context of the current task, which means they are strict per CPU.
1198 */
1199static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk)
1200{
1201	return tsk->posix_cputimers_work.scheduled;
1202}
1203
1204static inline void __run_posix_cpu_timers(struct task_struct *tsk)
1205{
1206	if (WARN_ON_ONCE(tsk->posix_cputimers_work.scheduled))
1207		return;
1208
1209	/* Schedule task work to actually expire the timers */
1210	tsk->posix_cputimers_work.scheduled = true;
1211	task_work_add(tsk, &tsk->posix_cputimers_work.work, TWA_RESUME);
1212}
1213
1214static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk,
1215						unsigned long start)
1216{
1217	bool ret = true;
1218
1219	/*
1220	 * On !RT kernels interrupts are disabled while collecting expired
1221	 * timers, so no tick can happen and the fast path check can be
1222	 * reenabled without further checks.
1223	 */
1224	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
1225		tsk->posix_cputimers_work.scheduled = false;
1226		return true;
1227	}
1228
1229	/*
1230	 * On RT enabled kernels ticks can happen while the expired timers
1231	 * are collected under sighand lock. But any tick which observes
1232	 * the CPUTIMERS_WORK_SCHEDULED bit set, does not run the fastpath
1233	 * checks. So reenabling the tick work has do be done carefully:
1234	 *
1235	 * Disable interrupts and run the fast path check if jiffies have
1236	 * advanced since the collecting of expired timers started. If
1237	 * jiffies have not advanced or the fast path check did not find
1238	 * newly expired timers, reenable the fast path check in the timer
1239	 * interrupt. If there are newly expired timers, return false and
1240	 * let the collection loop repeat.
1241	 */
1242	local_irq_disable();
1243	if (start != jiffies && fastpath_timer_check(tsk))
1244		ret = false;
1245	else
1246		tsk->posix_cputimers_work.scheduled = false;
1247	local_irq_enable();
1248
1249	return ret;
1250}
1251#else /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */
1252static inline void __run_posix_cpu_timers(struct task_struct *tsk)
1253{
1254	lockdep_posixtimer_enter();
1255	handle_posix_cpu_timers(tsk);
1256	lockdep_posixtimer_exit();
1257}
1258
1259static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk)
1260{
1261	return false;
1262}
1263
1264static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk,
1265						unsigned long start)
1266{
1267	return true;
1268}
1269#endif /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */
1270
1271static void handle_posix_cpu_timers(struct task_struct *tsk)
1272{
1273	struct k_itimer *timer, *next;
1274	unsigned long flags, start;
1275	LIST_HEAD(firing);
1276
1277	if (!lock_task_sighand(tsk, &flags))
1278		return;
 
 
 
 
 
 
1279
1280	do {
1281		/*
1282		 * On RT locking sighand lock does not disable interrupts,
1283		 * so this needs to be careful vs. ticks. Store the current
1284		 * jiffies value.
1285		 */
1286		start = READ_ONCE(jiffies);
1287		barrier();
1288
1289		/*
1290		 * Here we take off tsk->signal->cpu_timers[N] and
1291		 * tsk->cpu_timers[N] all the timers that are firing, and
1292		 * put them on the firing list.
1293		 */
1294		check_thread_timers(tsk, &firing);
1295
1296		check_process_timers(tsk, &firing);
1297
1298		/*
1299		 * The above timer checks have updated the expiry cache and
1300		 * because nothing can have queued or modified timers after
1301		 * sighand lock was taken above it is guaranteed to be
1302		 * consistent. So the next timer interrupt fastpath check
1303		 * will find valid data.
1304		 *
1305		 * If timer expiry runs in the timer interrupt context then
1306		 * the loop is not relevant as timers will be directly
1307		 * expired in interrupt context. The stub function below
1308		 * returns always true which allows the compiler to
1309		 * optimize the loop out.
1310		 *
1311		 * If timer expiry is deferred to task work context then
1312		 * the following rules apply:
1313		 *
1314		 * - On !RT kernels no tick can have happened on this CPU
1315		 *   after sighand lock was acquired because interrupts are
1316		 *   disabled. So reenabling task work before dropping
1317		 *   sighand lock and reenabling interrupts is race free.
1318		 *
1319		 * - On RT kernels ticks might have happened but the tick
1320		 *   work ignored posix CPU timer handling because the
1321		 *   CPUTIMERS_WORK_SCHEDULED bit is set. Reenabling work
1322		 *   must be done very carefully including a check whether
1323		 *   ticks have happened since the start of the timer
1324		 *   expiry checks. posix_cpu_timers_enable_work() takes
1325		 *   care of that and eventually lets the expiry checks
1326		 *   run again.
1327		 */
1328	} while (!posix_cpu_timers_enable_work(tsk, start));
1329
1330	/*
1331	 * We must release sighand lock before taking any timer's lock.
1332	 * There is a potential race with timer deletion here, as the
1333	 * siglock now protects our private firing list.  We have set
1334	 * the firing flag in each timer, so that a deletion attempt
1335	 * that gets the timer lock before we do will give it up and
1336	 * spin until we've taken care of that timer below.
1337	 */
1338	unlock_task_sighand(tsk, &flags);
1339
1340	/*
1341	 * Now that all the timers on our list have the firing flag,
1342	 * no one will touch their list entries but us.  We'll take
1343	 * each timer's lock before clearing its firing flag, so no
1344	 * timer call will interfere.
1345	 */
1346	list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) {
1347		int cpu_firing;
1348
1349		/*
1350		 * spin_lock() is sufficient here even independent of the
1351		 * expiry context. If expiry happens in hard interrupt
1352		 * context it's obvious. For task work context it's safe
1353		 * because all other operations on timer::it_lock happen in
1354		 * task context (syscall or exit).
1355		 */
1356		spin_lock(&timer->it_lock);
1357		list_del_init(&timer->it.cpu.elist);
1358		cpu_firing = timer->it.cpu.firing;
1359		timer->it.cpu.firing = 0;
1360		/*
1361		 * The firing flag is -1 if we collided with a reset
1362		 * of the timer, which already reported this
1363		 * almost-firing as an overrun.  So don't generate an event.
1364		 */
1365		if (likely(cpu_firing >= 0))
1366			cpu_timer_fire(timer);
1367		spin_unlock(&timer->it_lock);
1368	}
1369}
1370
1371/*
1372 * This is called from the timer interrupt handler.  The irq handler has
1373 * already updated our counts.  We need to check if any timers fire now.
1374 * Interrupts are disabled.
1375 */
1376void run_posix_cpu_timers(void)
1377{
1378	struct task_struct *tsk = current;
1379
1380	lockdep_assert_irqs_disabled();
1381
1382	/*
1383	 * If the actual expiry is deferred to task work context and the
1384	 * work is already scheduled there is no point to do anything here.
1385	 */
1386	if (posix_cpu_timers_work_scheduled(tsk))
1387		return;
1388
1389	/*
1390	 * The fast path checks that there are no expired thread or thread
1391	 * group timers.  If that's so, just return.
1392	 */
1393	if (!fastpath_timer_check(tsk))
1394		return;
1395
1396	__run_posix_cpu_timers(tsk);
1397}
1398
1399/*
1400 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1401 * The tsk->sighand->siglock must be held by the caller.
1402 */
1403void set_process_cpu_timer(struct task_struct *tsk, unsigned int clkid,
1404			   u64 *newval, u64 *oldval)
1405{
1406	u64 now, *nextevt;
1407
1408	if (WARN_ON_ONCE(clkid >= CPUCLOCK_SCHED))
1409		return;
1410
1411	nextevt = &tsk->signal->posix_cputimers.bases[clkid].nextevt;
1412	now = cpu_clock_sample_group(clkid, tsk, true);
1413
1414	if (oldval) {
1415		/*
1416		 * We are setting itimer. The *oldval is absolute and we update
1417		 * it to be relative, *newval argument is relative and we update
1418		 * it to be absolute.
1419		 */
1420		if (*oldval) {
1421			if (*oldval <= now) {
1422				/* Just about to fire. */
1423				*oldval = TICK_NSEC;
1424			} else {
1425				*oldval -= now;
1426			}
1427		}
1428
1429		if (*newval)
1430			*newval += now;
 
1431	}
1432
1433	/*
1434	 * Update expiration cache if this is the earliest timer. CPUCLOCK_PROF
1435	 * expiry cache is also used by RLIMIT_CPU!.
1436	 */
1437	if (*newval < *nextevt)
1438		*nextevt = *newval;
 
 
 
 
 
 
 
 
1439
1440	tick_dep_set_signal(tsk, TICK_DEP_BIT_POSIX_TIMER);
1441}
1442
1443static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1444			    const struct timespec64 *rqtp)
1445{
1446	struct itimerspec64 it;
1447	struct k_itimer timer;
1448	u64 expires;
1449	int error;
1450
1451	/*
1452	 * Set up a temporary timer and then wait for it to go off.
1453	 */
1454	memset(&timer, 0, sizeof timer);
1455	spin_lock_init(&timer.it_lock);
1456	timer.it_clock = which_clock;
1457	timer.it_overrun = -1;
1458	error = posix_cpu_timer_create(&timer);
1459	timer.it_process = current;
1460
1461	if (!error) {
1462		static struct itimerspec64 zero_it;
1463		struct restart_block *restart;
1464
1465		memset(&it, 0, sizeof(it));
1466		it.it_value = *rqtp;
1467
1468		spin_lock_irq(&timer.it_lock);
1469		error = posix_cpu_timer_set(&timer, flags, &it, NULL);
1470		if (error) {
1471			spin_unlock_irq(&timer.it_lock);
1472			return error;
1473		}
1474
1475		while (!signal_pending(current)) {
1476			if (!cpu_timer_getexpires(&timer.it.cpu)) {
1477				/*
1478				 * Our timer fired and was reset, below
1479				 * deletion can not fail.
1480				 */
1481				posix_cpu_timer_del(&timer);
1482				spin_unlock_irq(&timer.it_lock);
1483				return 0;
1484			}
1485
1486			/*
1487			 * Block until cpu_timer_fire (or a signal) wakes us.
1488			 */
1489			__set_current_state(TASK_INTERRUPTIBLE);
1490			spin_unlock_irq(&timer.it_lock);
1491			schedule();
1492			spin_lock_irq(&timer.it_lock);
1493		}
1494
1495		/*
1496		 * We were interrupted by a signal.
1497		 */
1498		expires = cpu_timer_getexpires(&timer.it.cpu);
1499		error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
1500		if (!error) {
1501			/*
1502			 * Timer is now unarmed, deletion can not fail.
1503			 */
1504			posix_cpu_timer_del(&timer);
1505		}
1506		spin_unlock_irq(&timer.it_lock);
1507
1508		while (error == TIMER_RETRY) {
1509			/*
1510			 * We need to handle case when timer was or is in the
1511			 * middle of firing. In other cases we already freed
1512			 * resources.
1513			 */
1514			spin_lock_irq(&timer.it_lock);
1515			error = posix_cpu_timer_del(&timer);
1516			spin_unlock_irq(&timer.it_lock);
1517		}
1518
1519		if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
1520			/*
1521			 * It actually did fire already.
1522			 */
1523			return 0;
1524		}
1525
1526		error = -ERESTART_RESTARTBLOCK;
1527		/*
1528		 * Report back to the user the time still remaining.
1529		 */
1530		restart = &current->restart_block;
1531		restart->nanosleep.expires = expires;
1532		if (restart->nanosleep.type != TT_NONE)
1533			error = nanosleep_copyout(restart, &it.it_value);
1534	}
1535
1536	return error;
1537}
1538
1539static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1540
1541static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1542			    const struct timespec64 *rqtp)
1543{
1544	struct restart_block *restart_block = &current->restart_block;
1545	int error;
1546
1547	/*
1548	 * Diagnose required errors first.
1549	 */
1550	if (CPUCLOCK_PERTHREAD(which_clock) &&
1551	    (CPUCLOCK_PID(which_clock) == 0 ||
1552	     CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
1553		return -EINVAL;
1554
1555	error = do_cpu_nanosleep(which_clock, flags, rqtp);
1556
1557	if (error == -ERESTART_RESTARTBLOCK) {
1558
1559		if (flags & TIMER_ABSTIME)
1560			return -ERESTARTNOHAND;
1561
 
1562		restart_block->nanosleep.clockid = which_clock;
1563		set_restart_fn(restart_block, posix_cpu_nsleep_restart);
1564	}
1565	return error;
1566}
1567
1568static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1569{
1570	clockid_t which_clock = restart_block->nanosleep.clockid;
1571	struct timespec64 t;
1572
1573	t = ns_to_timespec64(restart_block->nanosleep.expires);
1574
1575	return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
1576}
1577
1578#define PROCESS_CLOCK	make_process_cpuclock(0, CPUCLOCK_SCHED)
1579#define THREAD_CLOCK	make_thread_cpuclock(0, CPUCLOCK_SCHED)
1580
1581static int process_cpu_clock_getres(const clockid_t which_clock,
1582				    struct timespec64 *tp)
1583{
1584	return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1585}
1586static int process_cpu_clock_get(const clockid_t which_clock,
1587				 struct timespec64 *tp)
1588{
1589	return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1590}
1591static int process_cpu_timer_create(struct k_itimer *timer)
1592{
1593	timer->it_clock = PROCESS_CLOCK;
1594	return posix_cpu_timer_create(timer);
1595}
1596static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1597			      const struct timespec64 *rqtp)
1598{
1599	return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
1600}
1601static int thread_cpu_clock_getres(const clockid_t which_clock,
1602				   struct timespec64 *tp)
1603{
1604	return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1605}
1606static int thread_cpu_clock_get(const clockid_t which_clock,
1607				struct timespec64 *tp)
1608{
1609	return posix_cpu_clock_get(THREAD_CLOCK, tp);
1610}
1611static int thread_cpu_timer_create(struct k_itimer *timer)
1612{
1613	timer->it_clock = THREAD_CLOCK;
1614	return posix_cpu_timer_create(timer);
1615}
1616
1617const struct k_clock clock_posix_cpu = {
1618	.clock_getres		= posix_cpu_clock_getres,
1619	.clock_set		= posix_cpu_clock_set,
1620	.clock_get_timespec	= posix_cpu_clock_get,
1621	.timer_create		= posix_cpu_timer_create,
1622	.nsleep			= posix_cpu_nsleep,
1623	.timer_set		= posix_cpu_timer_set,
1624	.timer_del		= posix_cpu_timer_del,
1625	.timer_get		= posix_cpu_timer_get,
1626	.timer_rearm		= posix_cpu_timer_rearm,
1627};
1628
1629const struct k_clock clock_process = {
1630	.clock_getres		= process_cpu_clock_getres,
1631	.clock_get_timespec	= process_cpu_clock_get,
1632	.timer_create		= process_cpu_timer_create,
1633	.nsleep			= process_cpu_nsleep,
1634};
1635
1636const struct k_clock clock_thread = {
1637	.clock_getres		= thread_cpu_clock_getres,
1638	.clock_get_timespec	= thread_cpu_clock_get,
1639	.timer_create		= thread_cpu_timer_create,
1640};
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Implement CPU time clocks for the POSIX clock interface.
   4 */
   5
   6#include <linux/sched/signal.h>
   7#include <linux/sched/cputime.h>
   8#include <linux/posix-timers.h>
   9#include <linux/errno.h>
  10#include <linux/math64.h>
  11#include <linux/uaccess.h>
  12#include <linux/kernel_stat.h>
  13#include <trace/events/timer.h>
  14#include <linux/tick.h>
  15#include <linux/workqueue.h>
  16#include <linux/compat.h>
  17#include <linux/sched/deadline.h>
 
  18
  19#include "posix-timers.h"
  20
  21static void posix_cpu_timer_rearm(struct k_itimer *timer);
  22
 
 
 
 
 
 
 
 
 
  23/*
  24 * Called after updating RLIMIT_CPU to run cpu timer and update
  25 * tsk->signal->cputime_expires expiration cache if necessary. Needs
  26 * siglock protection since other code may update expiration cache as
  27 * well.
 
 
 
  28 */
  29void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
  30{
  31	u64 nsecs = rlim_new * NSEC_PER_SEC;
 
  32
  33	spin_lock_irq(&task->sighand->siglock);
 
  34	set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
  35	spin_unlock_irq(&task->sighand->siglock);
 
  36}
  37
  38static int check_clock(const clockid_t which_clock)
 
 
 
  39{
  40	int error = 0;
  41	struct task_struct *p;
  42	const pid_t pid = CPUCLOCK_PID(which_clock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  43
  44	if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
  45		return -EINVAL;
 
 
 
  46
  47	if (pid == 0)
  48		return 0;
 
  49
  50	rcu_read_lock();
  51	p = find_task_by_vpid(pid);
  52	if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
  53		   same_thread_group(p, current) : has_group_leader_pid(p))) {
  54		error = -EINVAL;
  55	}
  56	rcu_read_unlock();
  57
  58	return error;
 
 
 
 
 
 
 
 
 
 
  59}
  60
  61/*
  62 * Update expiry time from increment, and increase overrun count,
  63 * given the current clock sample.
  64 */
  65static void bump_cpu_timer(struct k_itimer *timer, u64 now)
  66{
 
  67	int i;
  68	u64 delta, incr;
  69
  70	if (timer->it.cpu.incr == 0)
  71		return;
  72
  73	if (now < timer->it.cpu.expires)
  74		return;
  75
  76	incr = timer->it.cpu.incr;
  77	delta = now + incr - timer->it.cpu.expires;
  78
  79	/* Don't use (incr*2 < delta), incr*2 might overflow. */
  80	for (i = 0; incr < delta - incr; i++)
  81		incr = incr << 1;
  82
  83	for (; i >= 0; incr >>= 1, i--) {
  84		if (delta < incr)
  85			continue;
  86
  87		timer->it.cpu.expires += incr;
  88		timer->it_overrun += 1 << i;
  89		delta -= incr;
  90	}
 
  91}
  92
  93/**
  94 * task_cputime_zero - Check a task_cputime struct for all zero fields.
  95 *
  96 * @cputime:	The struct to compare.
  97 *
  98 * Checks @cputime to see if all fields are zero.  Returns true if all fields
  99 * are zero, false if any field is nonzero.
 100 */
 101static inline int task_cputime_zero(const struct task_cputime *cputime)
 102{
 103	if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
 104		return 1;
 105	return 0;
 106}
 107
 108static inline u64 prof_ticks(struct task_struct *p)
 109{
 110	u64 utime, stime;
 111
 112	task_cputime(p, &utime, &stime);
 113
 114	return utime + stime;
 115}
 116static inline u64 virt_ticks(struct task_struct *p)
 117{
 118	u64 utime, stime;
 119
 120	task_cputime(p, &utime, &stime);
 121
 122	return utime;
 123}
 124
 125static int
 126posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
 127{
 128	int error = check_clock(which_clock);
 
 129	if (!error) {
 130		tp->tv_sec = 0;
 131		tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
 132		if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
 133			/*
 134			 * If sched_clock is using a cycle counter, we
 135			 * don't have any idea of its true resolution
 136			 * exported, but it is much more than 1s/HZ.
 137			 */
 138			tp->tv_nsec = 1;
 139		}
 140	}
 141	return error;
 142}
 143
 144static int
 145posix_cpu_clock_set(const clockid_t which_clock, const struct timespec64 *tp)
 146{
 
 
 147	/*
 148	 * You can never reset a CPU clock, but we check for other errors
 149	 * in the call before failing with EPERM.
 150	 */
 151	int error = check_clock(which_clock);
 152	if (error == 0) {
 153		error = -EPERM;
 154	}
 155	return error;
 156}
 157
 158
 159/*
 160 * Sample a per-thread clock for the given task.
 161 */
 162static int cpu_clock_sample(const clockid_t which_clock,
 163			    struct task_struct *p, u64 *sample)
 164{
 165	switch (CPUCLOCK_WHICH(which_clock)) {
 166	default:
 167		return -EINVAL;
 
 
 
 
 
 168	case CPUCLOCK_PROF:
 169		*sample = prof_ticks(p);
 170		break;
 171	case CPUCLOCK_VIRT:
 172		*sample = virt_ticks(p);
 173		break;
 174	case CPUCLOCK_SCHED:
 175		*sample = task_sched_runtime(p);
 176		break;
 177	}
 178	return 0;
 179}
 180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 181/*
 182 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
 183 * to avoid race conditions with concurrent updates to cputime.
 184 */
 185static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
 186{
 187	u64 curr_cputime;
 188retry:
 189	curr_cputime = atomic64_read(cputime);
 190	if (sum_cputime > curr_cputime) {
 191		if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
 192			goto retry;
 193	}
 194}
 195
 196static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum)
 
 197{
 198	__update_gt_cputime(&cputime_atomic->utime, sum->utime);
 199	__update_gt_cputime(&cputime_atomic->stime, sum->stime);
 200	__update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
 201}
 202
 203/* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
 204static inline void sample_cputime_atomic(struct task_cputime *times,
 205					 struct task_cputime_atomic *atomic_times)
 
 
 
 
 
 
 
 
 
 206{
 207	times->utime = atomic64_read(&atomic_times->utime);
 208	times->stime = atomic64_read(&atomic_times->stime);
 209	times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime);
 
 
 
 210}
 211
 212void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
 
 
 
 
 
 
 
 
 
 
 
 
 213{
 214	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
 215	struct task_cputime sum;
 
 
 216
 217	/* Check if cputimer isn't running. This is accessed without locking. */
 218	if (!READ_ONCE(cputimer->running)) {
 
 
 219		/*
 220		 * The POSIX timer interface allows for absolute time expiry
 221		 * values through the TIMER_ABSTIME flag, therefore we have
 222		 * to synchronize the timer to the clock every time we start it.
 223		 */
 224		thread_group_cputime(tsk, &sum);
 225		update_gt_cputime(&cputimer->cputime_atomic, &sum);
 226
 227		/*
 228		 * We're setting cputimer->running without a lock. Ensure
 229		 * this only gets written to in one operation. We set
 230		 * running after update_gt_cputime() as a small optimization,
 231		 * but barriers are not required because update_gt_cputime()
 232		 * can handle concurrent updates.
 233		 */
 234		WRITE_ONCE(cputimer->running, true);
 235	}
 236	sample_cputime_atomic(times, &cputimer->cputime_atomic);
 237}
 238
 239/*
 240 * Sample a process (thread group) clock for the given group_leader task.
 241 * Must be called with task sighand lock held for safe while_each_thread()
 242 * traversal.
 243 */
 244static int cpu_clock_sample_group(const clockid_t which_clock,
 245				  struct task_struct *p,
 246				  u64 *sample)
 247{
 248	struct task_cputime cputime;
 249
 250	switch (CPUCLOCK_WHICH(which_clock)) {
 251	default:
 252		return -EINVAL;
 253	case CPUCLOCK_PROF:
 254		thread_group_cputime(p, &cputime);
 255		*sample = cputime.utime + cputime.stime;
 256		break;
 257	case CPUCLOCK_VIRT:
 258		thread_group_cputime(p, &cputime);
 259		*sample = cputime.utime;
 260		break;
 261	case CPUCLOCK_SCHED:
 262		thread_group_cputime(p, &cputime);
 263		*sample = cputime.sum_exec_runtime;
 264		break;
 265	}
 266	return 0;
 267}
 268
 269static int posix_cpu_clock_get_task(struct task_struct *tsk,
 270				    const clockid_t which_clock,
 271				    struct timespec64 *tp)
 272{
 273	int err = -EINVAL;
 274	u64 rtn;
 275
 276	if (CPUCLOCK_PERTHREAD(which_clock)) {
 277		if (same_thread_group(tsk, current))
 278			err = cpu_clock_sample(which_clock, tsk, &rtn);
 
 
 
 
 
 
 
 279	} else {
 280		if (tsk == current || thread_group_leader(tsk))
 281			err = cpu_clock_sample_group(which_clock, tsk, &rtn);
 282	}
 283
 284	if (!err)
 285		*tp = ns_to_timespec64(rtn);
 286
 287	return err;
 288}
 289
 290
 291static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec64 *tp)
 292{
 293	const pid_t pid = CPUCLOCK_PID(which_clock);
 294	int err = -EINVAL;
 
 295
 296	if (pid == 0) {
 297		/*
 298		 * Special case constant value for our own clocks.
 299		 * We don't have to do any lookup to find ourselves.
 300		 */
 301		err = posix_cpu_clock_get_task(current, which_clock, tp);
 302	} else {
 303		/*
 304		 * Find the given PID, and validate that the caller
 305		 * should be able to see it.
 306		 */
 307		struct task_struct *p;
 308		rcu_read_lock();
 309		p = find_task_by_vpid(pid);
 310		if (p)
 311			err = posix_cpu_clock_get_task(p, which_clock, tp);
 312		rcu_read_unlock();
 
 313	}
 314
 315	return err;
 
 
 
 
 
 
 
 316}
 317
 318/*
 319 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
 320 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
 321 * new timer already all-zeros initialized.
 322 */
 323static int posix_cpu_timer_create(struct k_itimer *new_timer)
 324{
 325	int ret = 0;
 326	const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
 327	struct task_struct *p;
 328
 329	if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
 
 
 
 330		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 331
 332	new_timer->kclock = &clock_posix_cpu;
 
 
 
 
 
 
 
 
 
 
 333
 334	INIT_LIST_HEAD(&new_timer->it.cpu.entry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 335
 336	rcu_read_lock();
 337	if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
 338		if (pid == 0) {
 339			p = current;
 340		} else {
 341			p = find_task_by_vpid(pid);
 342			if (p && !same_thread_group(p, current))
 343				p = NULL;
 344		}
 345	} else {
 346		if (pid == 0) {
 347			p = current->group_leader;
 348		} else {
 349			p = find_task_by_vpid(pid);
 350			if (p && !has_group_leader_pid(p))
 351				p = NULL;
 352		}
 353	}
 354	new_timer->it.cpu.task = p;
 355	if (p) {
 356		get_task_struct(p);
 357	} else {
 358		ret = -EINVAL;
 359	}
 360	rcu_read_unlock();
 361
 362	return ret;
 
 
 363}
 364
 
 365/*
 366 * Clean up a CPU-clock timer that is about to be destroyed.
 367 * This is called from timer deletion with the timer already locked.
 368 * If we return TIMER_RETRY, it's necessary to release the timer's lock
 369 * and try again.  (This happens when the timer is in the middle of firing.)
 370 */
 371static int posix_cpu_timer_del(struct k_itimer *timer)
 372{
 
 
 
 
 373	int ret = 0;
 374	unsigned long flags;
 375	struct sighand_struct *sighand;
 376	struct task_struct *p = timer->it.cpu.task;
 377
 378	WARN_ON_ONCE(p == NULL);
 
 
 
 379
 380	/*
 381	 * Protect against sighand release/switch in exit/exec and process/
 382	 * thread timer list entry concurrent read/writes.
 383	 */
 384	sighand = lock_task_sighand(p, &flags);
 385	if (unlikely(sighand == NULL)) {
 386		/*
 387		 * We raced with the reaping of the task.
 388		 * The deletion should have cleared us off the list.
 389		 */
 390		WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
 391	} else {
 392		if (timer->it.cpu.firing)
 393			ret = TIMER_RETRY;
 394		else
 395			list_del(&timer->it.cpu.entry);
 396
 397		unlock_task_sighand(p, &flags);
 398	}
 399
 
 
 400	if (!ret)
 401		put_task_struct(p);
 402
 403	return ret;
 404}
 405
 406static void cleanup_timers_list(struct list_head *head)
 407{
 408	struct cpu_timer_list *timer, *next;
 
 409
 410	list_for_each_entry_safe(timer, next, head, entry)
 411		list_del_init(&timer->entry);
 
 
 
 412}
 413
 414/*
 415 * Clean out CPU timers still ticking when a thread exited.  The task
 416 * pointer is cleared, and the expiry time is replaced with the residual
 417 * time for later timer_gettime calls to return.
 
 418 * This must be called with the siglock held.
 419 */
 420static void cleanup_timers(struct list_head *head)
 421{
 422	cleanup_timers_list(head);
 423	cleanup_timers_list(++head);
 424	cleanup_timers_list(++head);
 425}
 426
 427/*
 428 * These are both called with the siglock held, when the current thread
 429 * is being reaped.  When the final (leader) thread in the group is reaped,
 430 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
 431 */
 432void posix_cpu_timers_exit(struct task_struct *tsk)
 433{
 434	cleanup_timers(tsk->cpu_timers);
 435}
 436void posix_cpu_timers_exit_group(struct task_struct *tsk)
 437{
 438	cleanup_timers(tsk->signal->cpu_timers);
 439}
 440
 441static inline int expires_gt(u64 expires, u64 new_exp)
 442{
 443	return expires == 0 || expires > new_exp;
 444}
 445
 446/*
 447 * Insert the timer on the appropriate list before any timers that
 448 * expire later.  This must be called with the sighand lock held.
 449 */
 450static void arm_timer(struct k_itimer *timer)
 451{
 452	struct task_struct *p = timer->it.cpu.task;
 453	struct list_head *head, *listpos;
 454	struct task_cputime *cputime_expires;
 455	struct cpu_timer_list *const nt = &timer->it.cpu;
 456	struct cpu_timer_list *next;
 457
 458	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 459		head = p->cpu_timers;
 460		cputime_expires = &p->cputime_expires;
 461	} else {
 462		head = p->signal->cpu_timers;
 463		cputime_expires = &p->signal->cputime_expires;
 464	}
 465	head += CPUCLOCK_WHICH(timer->it_clock);
 466
 467	listpos = head;
 468	list_for_each_entry(next, head, entry) {
 469		if (nt->expires < next->expires)
 470			break;
 471		listpos = &next->entry;
 472	}
 473	list_add(&nt->entry, listpos);
 474
 475	if (listpos == head) {
 476		u64 exp = nt->expires;
 477
 478		/*
 479		 * We are the new earliest-expiring POSIX 1.b timer, hence
 480		 * need to update expiration cache. Take into account that
 481		 * for process timers we share expiration cache with itimers
 482		 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
 483		 */
 484
 485		switch (CPUCLOCK_WHICH(timer->it_clock)) {
 486		case CPUCLOCK_PROF:
 487			if (expires_gt(cputime_expires->prof_exp, exp))
 488				cputime_expires->prof_exp = exp;
 489			break;
 490		case CPUCLOCK_VIRT:
 491			if (expires_gt(cputime_expires->virt_exp, exp))
 492				cputime_expires->virt_exp = exp;
 493			break;
 494		case CPUCLOCK_SCHED:
 495			if (expires_gt(cputime_expires->sched_exp, exp))
 496				cputime_expires->sched_exp = exp;
 497			break;
 498		}
 499		if (CPUCLOCK_PERTHREAD(timer->it_clock))
 500			tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
 501		else
 502			tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
 503	}
 504}
 505
 506/*
 507 * The timer is locked, fire it and arrange for its reload.
 508 */
 509static void cpu_timer_fire(struct k_itimer *timer)
 510{
 
 
 511	if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
 512		/*
 513		 * User don't want any signal.
 514		 */
 515		timer->it.cpu.expires = 0;
 516	} else if (unlikely(timer->sigq == NULL)) {
 517		/*
 518		 * This a special case for clock_nanosleep,
 519		 * not a normal timer from sys_timer_create.
 520		 */
 521		wake_up_process(timer->it_process);
 522		timer->it.cpu.expires = 0;
 523	} else if (timer->it.cpu.incr == 0) {
 524		/*
 525		 * One-shot timer.  Clear it as soon as it's fired.
 526		 */
 527		posix_timer_event(timer, 0);
 528		timer->it.cpu.expires = 0;
 529	} else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
 530		/*
 531		 * The signal did not get queued because the signal
 532		 * was ignored, so we won't get any callback to
 533		 * reload the timer.  But we need to keep it
 534		 * ticking in case the signal is deliverable next time.
 535		 */
 536		posix_cpu_timer_rearm(timer);
 537		++timer->it_requeue_pending;
 538	}
 539}
 540
 541/*
 542 * Sample a process (thread group) timer for the given group_leader task.
 543 * Must be called with task sighand lock held for safe while_each_thread()
 544 * traversal.
 545 */
 546static int cpu_timer_sample_group(const clockid_t which_clock,
 547				  struct task_struct *p, u64 *sample)
 548{
 549	struct task_cputime cputime;
 550
 551	thread_group_cputimer(p, &cputime);
 552	switch (CPUCLOCK_WHICH(which_clock)) {
 553	default:
 554		return -EINVAL;
 555	case CPUCLOCK_PROF:
 556		*sample = cputime.utime + cputime.stime;
 557		break;
 558	case CPUCLOCK_VIRT:
 559		*sample = cputime.utime;
 560		break;
 561	case CPUCLOCK_SCHED:
 562		*sample = cputime.sum_exec_runtime;
 563		break;
 564	}
 565	return 0;
 566}
 567
 568/*
 569 * Guts of sys_timer_settime for CPU timers.
 570 * This is called with the timer locked and interrupts disabled.
 571 * If we return TIMER_RETRY, it's necessary to release the timer's lock
 572 * and try again.  (This happens when the timer is in the middle of firing.)
 573 */
 574static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
 575			       struct itimerspec64 *new, struct itimerspec64 *old)
 576{
 
 
 
 
 
 577	unsigned long flags;
 578	struct sighand_struct *sighand;
 579	struct task_struct *p = timer->it.cpu.task;
 580	u64 old_expires, new_expires, old_incr, val;
 581	int ret;
 582
 583	WARN_ON_ONCE(p == NULL);
 
 
 
 
 
 
 
 
 
 584
 585	/*
 586	 * Use the to_ktime conversion because that clamps the maximum
 587	 * value to KTIME_MAX and avoid multiplication overflows.
 588	 */
 589	new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
 590
 591	/*
 592	 * Protect against sighand release/switch in exit/exec and p->cpu_timers
 593	 * and p->signal->cpu_timers read/write in arm_timer()
 594	 */
 595	sighand = lock_task_sighand(p, &flags);
 596	/*
 597	 * If p has just been reaped, we can no
 598	 * longer get any information about it at all.
 599	 */
 600	if (unlikely(sighand == NULL)) {
 
 601		return -ESRCH;
 602	}
 603
 604	/*
 605	 * Disarm any old timer after extracting its expiry time.
 606	 */
 607	lockdep_assert_irqs_disabled();
 
 608
 609	ret = 0;
 610	old_incr = timer->it.cpu.incr;
 611	old_expires = timer->it.cpu.expires;
 612	if (unlikely(timer->it.cpu.firing)) {
 613		timer->it.cpu.firing = -1;
 614		ret = TIMER_RETRY;
 615	} else
 616		list_del_init(&timer->it.cpu.entry);
 
 617
 618	/*
 619	 * We need to sample the current value to convert the new
 620	 * value from to relative and absolute, and to convert the
 621	 * old value from absolute to relative.  To set a process
 622	 * timer, we need a sample to balance the thread expiry
 623	 * times (in arm_timer).  With an absolute time, we must
 624	 * check if it's already passed.  In short, we need a sample.
 625	 */
 626	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 627		cpu_clock_sample(timer->it_clock, p, &val);
 628	} else {
 629		cpu_timer_sample_group(timer->it_clock, p, &val);
 630	}
 631
 632	if (old) {
 633		if (old_expires == 0) {
 634			old->it_value.tv_sec = 0;
 635			old->it_value.tv_nsec = 0;
 636		} else {
 637			/*
 638			 * Update the timer in case it has
 639			 * overrun already.  If it has,
 640			 * we'll report it as having overrun
 641			 * and with the next reloaded timer
 642			 * already ticking, though we are
 643			 * swallowing that pending
 644			 * notification here to install the
 645			 * new setting.
 646			 */
 647			bump_cpu_timer(timer, val);
 648			if (val < timer->it.cpu.expires) {
 649				old_expires = timer->it.cpu.expires - val;
 
 650				old->it_value = ns_to_timespec64(old_expires);
 651			} else {
 652				old->it_value.tv_nsec = 1;
 653				old->it_value.tv_sec = 0;
 654			}
 655		}
 656	}
 657
 658	if (unlikely(ret)) {
 659		/*
 660		 * We are colliding with the timer actually firing.
 661		 * Punt after filling in the timer's old value, and
 662		 * disable this firing since we are already reporting
 663		 * it as an overrun (thanks to bump_cpu_timer above).
 664		 */
 665		unlock_task_sighand(p, &flags);
 666		goto out;
 667	}
 668
 669	if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
 670		new_expires += val;
 671	}
 672
 673	/*
 674	 * Install the new expiry time (or zero).
 675	 * For a timer with no notification action, we don't actually
 676	 * arm the timer (we'll just fake it for timer_gettime).
 677	 */
 678	timer->it.cpu.expires = new_expires;
 679	if (new_expires != 0 && val < new_expires) {
 680		arm_timer(timer);
 681	}
 682
 683	unlock_task_sighand(p, &flags);
 684	/*
 685	 * Install the new reload setting, and
 686	 * set up the signal and overrun bookkeeping.
 687	 */
 688	timer->it.cpu.incr = timespec64_to_ns(&new->it_interval);
 689
 690	/*
 691	 * This acts as a modification timestamp for the timer,
 692	 * so any automatic reload attempt will punt on seeing
 693	 * that we have reset the timer manually.
 694	 */
 695	timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
 696		~REQUEUE_PENDING;
 697	timer->it_overrun_last = 0;
 698	timer->it_overrun = -1;
 699
 700	if (new_expires != 0 && !(val < new_expires)) {
 
 
 
 
 
 
 
 
 
 701		/*
 702		 * The designated time already passed, so we notify
 703		 * immediately, even if the thread never runs to
 704		 * accumulate more time on this clock.
 705		 */
 706		cpu_timer_fire(timer);
 
 
 
 
 
 
 
 707	}
 708
 709	ret = 0;
 710 out:
 
 711	if (old)
 712		old->it_interval = ns_to_timespec64(old_incr);
 713
 714	return ret;
 715}
 716
 717static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
 718{
 719	u64 now;
 720	struct task_struct *p = timer->it.cpu.task;
 
 
 721
 722	WARN_ON_ONCE(p == NULL);
 
 
 
 723
 724	/*
 725	 * Easy part: convert the reload time.
 726	 */
 727	itp->it_interval = ns_to_timespec64(timer->it.cpu.incr);
 728
 729	if (!timer->it.cpu.expires)
 730		return;
 731
 732	/*
 733	 * Sample the clock to take the difference with the expiry time.
 734	 */
 735	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 736		cpu_clock_sample(timer->it_clock, p, &now);
 737	} else {
 738		struct sighand_struct *sighand;
 739		unsigned long flags;
 740
 741		/*
 742		 * Protect against sighand release/switch in exit/exec and
 743		 * also make timer sampling safe if it ends up calling
 744		 * thread_group_cputime().
 745		 */
 746		sighand = lock_task_sighand(p, &flags);
 747		if (unlikely(sighand == NULL)) {
 748			/*
 749			 * The process has been reaped.
 750			 * We can't even collect a sample any more.
 751			 * Call the timer disarmed, nothing else to do.
 752			 */
 753			timer->it.cpu.expires = 0;
 754			return;
 755		} else {
 756			cpu_timer_sample_group(timer->it_clock, p, &now);
 757			unlock_task_sighand(p, &flags);
 758		}
 759	}
 760
 761	if (now < timer->it.cpu.expires) {
 762		itp->it_value = ns_to_timespec64(timer->it.cpu.expires - now);
 763	} else {
 764		/*
 765		 * The timer should have expired already, but the firing
 766		 * hasn't taken place yet.  Say it's just about to expire.
 767		 */
 768		itp->it_value.tv_nsec = 1;
 769		itp->it_value.tv_sec = 0;
 770	}
 
 
 771}
 772
 773static unsigned long long
 774check_timers_list(struct list_head *timers,
 775		  struct list_head *firing,
 776		  unsigned long long curr)
 777{
 778	int maxfire = 20;
 
 779
 780	while (!list_empty(timers)) {
 781		struct cpu_timer_list *t;
 
 
 
 
 
 
 
 
 
 
 
 
 782
 783		t = list_first_entry(timers, struct cpu_timer_list, entry);
 
 784
 785		if (!--maxfire || curr < t->expires)
 786			return t->expires;
 
 
 
 787
 788		t->firing = 1;
 789		list_move_tail(&t->entry, firing);
 
 790	}
 791
 792	return 0;
 793}
 794
 795static inline void check_dl_overrun(struct task_struct *tsk)
 796{
 797	if (tsk->dl.dl_overrun) {
 798		tsk->dl.dl_overrun = 0;
 799		__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
 800	}
 801}
 802
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 803/*
 804 * Check for any per-thread CPU timers that have fired and move them off
 805 * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
 806 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
 807 */
 808static void check_thread_timers(struct task_struct *tsk,
 809				struct list_head *firing)
 810{
 811	struct list_head *timers = tsk->cpu_timers;
 812	struct task_cputime *tsk_expires = &tsk->cputime_expires;
 813	u64 expires;
 814	unsigned long soft;
 815
 816	if (dl_task(tsk))
 817		check_dl_overrun(tsk);
 818
 819	/*
 820	 * If cputime_expires is zero, then there are no active
 821	 * per thread CPU timers.
 822	 */
 823	if (task_cputime_zero(&tsk->cputime_expires))
 824		return;
 825
 826	expires = check_timers_list(timers, firing, prof_ticks(tsk));
 827	tsk_expires->prof_exp = expires;
 828
 829	expires = check_timers_list(++timers, firing, virt_ticks(tsk));
 830	tsk_expires->virt_exp = expires;
 831
 832	tsk_expires->sched_exp = check_timers_list(++timers, firing,
 833						   tsk->se.sum_exec_runtime);
 834
 835	/*
 836	 * Check for the special case thread timers.
 837	 */
 838	soft = task_rlimit(tsk, RLIMIT_RTTIME);
 839	if (soft != RLIM_INFINITY) {
 
 
 840		unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
 841
 
 842		if (hard != RLIM_INFINITY &&
 843		    tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
 844			/*
 845			 * At the hard limit, we just die.
 846			 * No need to calculate anything else now.
 847			 */
 848			if (print_fatal_signals) {
 849				pr_info("CPU Watchdog Timeout (hard): %s[%d]\n",
 850					tsk->comm, task_pid_nr(tsk));
 851			}
 852			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
 853			return;
 854		}
 855		if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
 856			/*
 857			 * At the soft limit, send a SIGXCPU every second.
 858			 */
 859			if (soft < hard) {
 860				soft += USEC_PER_SEC;
 861				tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur =
 862					soft;
 863			}
 864			if (print_fatal_signals) {
 865				pr_info("RT Watchdog Timeout (soft): %s[%d]\n",
 866					tsk->comm, task_pid_nr(tsk));
 867			}
 868			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
 869		}
 870	}
 871	if (task_cputime_zero(tsk_expires))
 
 872		tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
 873}
 874
 875static inline void stop_process_timers(struct signal_struct *sig)
 876{
 877	struct thread_group_cputimer *cputimer = &sig->cputimer;
 878
 879	/* Turn off cputimer->running. This is done without locking. */
 880	WRITE_ONCE(cputimer->running, false);
 881	tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
 882}
 883
 884static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
 885			     u64 *expires, u64 cur_time, int signo)
 886{
 887	if (!it->expires)
 888		return;
 889
 890	if (cur_time >= it->expires) {
 891		if (it->incr)
 892			it->expires += it->incr;
 893		else
 894			it->expires = 0;
 895
 896		trace_itimer_expire(signo == SIGPROF ?
 897				    ITIMER_PROF : ITIMER_VIRTUAL,
 898				    tsk->signal->leader_pid, cur_time);
 899		__group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
 900	}
 901
 902	if (it->expires && (!*expires || it->expires < *expires))
 903		*expires = it->expires;
 904}
 905
 906/*
 907 * Check for any per-thread CPU timers that have fired and move them
 908 * off the tsk->*_timers list onto the firing list.  Per-thread timers
 909 * have already been taken off.
 910 */
 911static void check_process_timers(struct task_struct *tsk,
 912				 struct list_head *firing)
 913{
 914	struct signal_struct *const sig = tsk->signal;
 915	u64 utime, ptime, virt_expires, prof_expires;
 916	u64 sum_sched_runtime, sched_expires;
 917	struct list_head *timers = sig->cpu_timers;
 918	struct task_cputime cputime;
 919	unsigned long soft;
 920
 921	if (dl_task(tsk))
 922		check_dl_overrun(tsk);
 923
 924	/*
 925	 * If cputimer is not running, then there are no active
 926	 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
 
 927	 */
 928	if (!READ_ONCE(tsk->signal->cputimer.running))
 929		return;
 930
 931        /*
 932	 * Signify that a thread is checking for process timers.
 933	 * Write access to this field is protected by the sighand lock.
 934	 */
 935	sig->cputimer.checking_timer = true;
 936
 937	/*
 938	 * Collect the current process totals.
 
 939	 */
 940	thread_group_cputimer(tsk, &cputime);
 941	utime = cputime.utime;
 942	ptime = utime + cputime.stime;
 943	sum_sched_runtime = cputime.sum_exec_runtime;
 944
 945	prof_expires = check_timers_list(timers, firing, ptime);
 946	virt_expires = check_timers_list(++timers, firing, utime);
 947	sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
 948
 949	/*
 950	 * Check for the special case process timers.
 951	 */
 952	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
 953			 SIGPROF);
 954	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
 955			 SIGVTALRM);
 
 
 
 956	soft = task_rlimit(tsk, RLIMIT_CPU);
 957	if (soft != RLIM_INFINITY) {
 958		unsigned long psecs = div_u64(ptime, NSEC_PER_SEC);
 959		unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU);
 960		u64 x;
 961		if (psecs >= hard) {
 962			/*
 963			 * At the hard limit, we just die.
 964			 * No need to calculate anything else now.
 965			 */
 966			if (print_fatal_signals) {
 967				pr_info("RT Watchdog Timeout (hard): %s[%d]\n",
 968					tsk->comm, task_pid_nr(tsk));
 969			}
 970			__group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
 971			return;
 
 
 
 
 
 972		}
 973		if (psecs >= soft) {
 974			/*
 975			 * At the soft limit, send a SIGXCPU every second.
 976			 */
 977			if (print_fatal_signals) {
 978				pr_info("CPU Watchdog Timeout (soft): %s[%d]\n",
 979					tsk->comm, task_pid_nr(tsk));
 980			}
 981			__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
 982			if (soft < hard) {
 983				soft++;
 984				sig->rlim[RLIMIT_CPU].rlim_cur = soft;
 985			}
 986		}
 987		x = soft * NSEC_PER_SEC;
 988		if (!prof_expires || x < prof_expires)
 989			prof_expires = x;
 990	}
 991
 992	sig->cputime_expires.prof_exp = prof_expires;
 993	sig->cputime_expires.virt_exp = virt_expires;
 994	sig->cputime_expires.sched_exp = sched_expires;
 995	if (task_cputime_zero(&sig->cputime_expires))
 996		stop_process_timers(sig);
 997
 998	sig->cputimer.checking_timer = false;
 999}
1000
1001/*
1002 * This is called from the signal code (via posixtimer_rearm)
1003 * when the last timer signal was delivered and we have to reload the timer.
1004 */
1005static void posix_cpu_timer_rearm(struct k_itimer *timer)
1006{
 
 
1007	struct sighand_struct *sighand;
1008	unsigned long flags;
1009	struct task_struct *p = timer->it.cpu.task;
1010	u64 now;
1011
1012	WARN_ON_ONCE(p == NULL);
 
 
 
 
 
 
 
 
1013
1014	/*
1015	 * Fetch the current sample and update the timer's expiry time.
1016	 */
1017	if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1018		cpu_clock_sample(timer->it_clock, p, &now);
1019		bump_cpu_timer(timer, now);
1020		if (unlikely(p->exit_state))
1021			return;
1022
1023		/* Protect timer list r/w in arm_timer() */
1024		sighand = lock_task_sighand(p, &flags);
1025		if (!sighand)
1026			return;
1027	} else {
1028		/*
1029		 * Protect arm_timer() and timer sampling in case of call to
1030		 * thread_group_cputime().
1031		 */
1032		sighand = lock_task_sighand(p, &flags);
1033		if (unlikely(sighand == NULL)) {
1034			/*
1035			 * The process has been reaped.
1036			 * We can't even collect a sample any more.
1037			 */
1038			timer->it.cpu.expires = 0;
1039			return;
1040		} else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1041			/* If the process is dying, no need to rearm */
1042			goto unlock;
1043		}
1044		cpu_timer_sample_group(timer->it_clock, p, &now);
1045		bump_cpu_timer(timer, now);
1046		/* Leave the sighand locked for the call below.  */
1047	}
1048
1049	/*
1050	 * Now re-arm for the new expiry time.
1051	 */
1052	lockdep_assert_irqs_disabled();
1053	arm_timer(timer);
1054unlock:
1055	unlock_task_sighand(p, &flags);
 
 
1056}
1057
1058/**
1059 * task_cputime_expired - Compare two task_cputime entities.
1060 *
1061 * @sample:	The task_cputime structure to be checked for expiration.
1062 * @expires:	Expiration times, against which @sample will be checked.
1063 *
1064 * Checks @sample against @expires to see if any field of @sample has expired.
1065 * Returns true if any field of the former is greater than the corresponding
1066 * field of the latter if the latter field is set.  Otherwise returns false.
1067 */
1068static inline int task_cputime_expired(const struct task_cputime *sample,
1069					const struct task_cputime *expires)
1070{
1071	if (expires->utime && sample->utime >= expires->utime)
1072		return 1;
1073	if (expires->stime && sample->utime + sample->stime >= expires->stime)
1074		return 1;
1075	if (expires->sum_exec_runtime != 0 &&
1076	    sample->sum_exec_runtime >= expires->sum_exec_runtime)
1077		return 1;
1078	return 0;
1079}
1080
1081/**
1082 * fastpath_timer_check - POSIX CPU timers fast path.
1083 *
1084 * @tsk:	The task (thread) being checked.
1085 *
1086 * Check the task and thread group timers.  If both are zero (there are no
1087 * timers set) return false.  Otherwise snapshot the task and thread group
1088 * timers and compare them with the corresponding expiration times.  Return
1089 * true if a timer has expired, else return false.
1090 */
1091static inline int fastpath_timer_check(struct task_struct *tsk)
1092{
 
1093	struct signal_struct *sig;
1094
1095	if (!task_cputime_zero(&tsk->cputime_expires)) {
1096		struct task_cputime task_sample;
1097
1098		task_cputime(tsk, &task_sample.utime, &task_sample.stime);
1099		task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
1100		if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1101			return 1;
1102	}
1103
1104	sig = tsk->signal;
 
1105	/*
1106	 * Check if thread group timers expired when the cputimer is
1107	 * running and no other thread in the group is already checking
1108	 * for thread group cputimers. These fields are read without the
1109	 * sighand lock. However, this is fine because this is meant to
1110	 * be a fastpath heuristic to determine whether we should try to
1111	 * acquire the sighand lock to check/handle timers.
1112	 *
1113	 * In the worst case scenario, if 'running' or 'checking_timer' gets
1114	 * set but the current thread doesn't see the change yet, we'll wait
1115	 * until the next thread in the group gets a scheduler interrupt to
1116	 * handle the timer. This isn't an issue in practice because these
1117	 * types of delays with signals actually getting sent are expected.
1118	 */
1119	if (READ_ONCE(sig->cputimer.running) &&
1120	    !READ_ONCE(sig->cputimer.checking_timer)) {
1121		struct task_cputime group_sample;
1122
1123		sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic);
 
1124
1125		if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1126			return 1;
1127	}
1128
1129	if (dl_task(tsk) && tsk->dl.dl_overrun)
1130		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1131
1132	return 0;
 
 
 
 
 
 
1133}
1134
1135/*
1136 * This is called from the timer interrupt handler.  The irq handler has
1137 * already updated our counts.  We need to check if any timers fire now.
1138 * Interrupts are disabled.
 
1139 */
1140void run_posix_cpu_timers(struct task_struct *tsk)
1141{
1142	LIST_HEAD(firing);
1143	struct k_itimer *timer, *next;
1144	unsigned long flags;
 
 
 
 
 
 
 
 
 
1145
1146	lockdep_assert_irqs_disabled();
 
 
 
1147
1148	/*
1149	 * The fast path checks that there are no expired thread or thread
1150	 * group timers.  If that's so, just return.
 
1151	 */
1152	if (!fastpath_timer_check(tsk))
1153		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1154
1155	if (!lock_task_sighand(tsk, &flags))
1156		return;
1157	/*
1158	 * Here we take off tsk->signal->cpu_timers[N] and
1159	 * tsk->cpu_timers[N] all the timers that are firing, and
1160	 * put them on the firing list.
1161	 */
1162	check_thread_timers(tsk, &firing);
1163
1164	check_process_timers(tsk, &firing);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1165
1166	/*
1167	 * We must release these locks before taking any timer's lock.
1168	 * There is a potential race with timer deletion here, as the
1169	 * siglock now protects our private firing list.  We have set
1170	 * the firing flag in each timer, so that a deletion attempt
1171	 * that gets the timer lock before we do will give it up and
1172	 * spin until we've taken care of that timer below.
1173	 */
1174	unlock_task_sighand(tsk, &flags);
1175
1176	/*
1177	 * Now that all the timers on our list have the firing flag,
1178	 * no one will touch their list entries but us.  We'll take
1179	 * each timer's lock before clearing its firing flag, so no
1180	 * timer call will interfere.
1181	 */
1182	list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1183		int cpu_firing;
1184
 
 
 
 
 
 
 
1185		spin_lock(&timer->it_lock);
1186		list_del_init(&timer->it.cpu.entry);
1187		cpu_firing = timer->it.cpu.firing;
1188		timer->it.cpu.firing = 0;
1189		/*
1190		 * The firing flag is -1 if we collided with a reset
1191		 * of the timer, which already reported this
1192		 * almost-firing as an overrun.  So don't generate an event.
1193		 */
1194		if (likely(cpu_firing >= 0))
1195			cpu_timer_fire(timer);
1196		spin_unlock(&timer->it_lock);
1197	}
1198}
1199
1200/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1201 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1202 * The tsk->sighand->siglock must be held by the caller.
1203 */
1204void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1205			   u64 *newval, u64 *oldval)
1206{
1207	u64 now;
1208	int ret;
 
 
1209
1210	WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
1211	ret = cpu_timer_sample_group(clock_idx, tsk, &now);
1212
1213	if (oldval && ret != -EINVAL) {
1214		/*
1215		 * We are setting itimer. The *oldval is absolute and we update
1216		 * it to be relative, *newval argument is relative and we update
1217		 * it to be absolute.
1218		 */
1219		if (*oldval) {
1220			if (*oldval <= now) {
1221				/* Just about to fire. */
1222				*oldval = TICK_NSEC;
1223			} else {
1224				*oldval -= now;
1225			}
1226		}
1227
1228		if (!*newval)
1229			return;
1230		*newval += now;
1231	}
1232
1233	/*
1234	 * Update expiration cache if we are the earliest timer, or eventually
1235	 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1236	 */
1237	switch (clock_idx) {
1238	case CPUCLOCK_PROF:
1239		if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1240			tsk->signal->cputime_expires.prof_exp = *newval;
1241		break;
1242	case CPUCLOCK_VIRT:
1243		if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1244			tsk->signal->cputime_expires.virt_exp = *newval;
1245		break;
1246	}
1247
1248	tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
1249}
1250
1251static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1252			    const struct timespec64 *rqtp)
1253{
1254	struct itimerspec64 it;
1255	struct k_itimer timer;
1256	u64 expires;
1257	int error;
1258
1259	/*
1260	 * Set up a temporary timer and then wait for it to go off.
1261	 */
1262	memset(&timer, 0, sizeof timer);
1263	spin_lock_init(&timer.it_lock);
1264	timer.it_clock = which_clock;
1265	timer.it_overrun = -1;
1266	error = posix_cpu_timer_create(&timer);
1267	timer.it_process = current;
 
1268	if (!error) {
1269		static struct itimerspec64 zero_it;
1270		struct restart_block *restart;
1271
1272		memset(&it, 0, sizeof(it));
1273		it.it_value = *rqtp;
1274
1275		spin_lock_irq(&timer.it_lock);
1276		error = posix_cpu_timer_set(&timer, flags, &it, NULL);
1277		if (error) {
1278			spin_unlock_irq(&timer.it_lock);
1279			return error;
1280		}
1281
1282		while (!signal_pending(current)) {
1283			if (timer.it.cpu.expires == 0) {
1284				/*
1285				 * Our timer fired and was reset, below
1286				 * deletion can not fail.
1287				 */
1288				posix_cpu_timer_del(&timer);
1289				spin_unlock_irq(&timer.it_lock);
1290				return 0;
1291			}
1292
1293			/*
1294			 * Block until cpu_timer_fire (or a signal) wakes us.
1295			 */
1296			__set_current_state(TASK_INTERRUPTIBLE);
1297			spin_unlock_irq(&timer.it_lock);
1298			schedule();
1299			spin_lock_irq(&timer.it_lock);
1300		}
1301
1302		/*
1303		 * We were interrupted by a signal.
1304		 */
1305		expires = timer.it.cpu.expires;
1306		error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
1307		if (!error) {
1308			/*
1309			 * Timer is now unarmed, deletion can not fail.
1310			 */
1311			posix_cpu_timer_del(&timer);
1312		}
1313		spin_unlock_irq(&timer.it_lock);
1314
1315		while (error == TIMER_RETRY) {
1316			/*
1317			 * We need to handle case when timer was or is in the
1318			 * middle of firing. In other cases we already freed
1319			 * resources.
1320			 */
1321			spin_lock_irq(&timer.it_lock);
1322			error = posix_cpu_timer_del(&timer);
1323			spin_unlock_irq(&timer.it_lock);
1324		}
1325
1326		if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
1327			/*
1328			 * It actually did fire already.
1329			 */
1330			return 0;
1331		}
1332
1333		error = -ERESTART_RESTARTBLOCK;
1334		/*
1335		 * Report back to the user the time still remaining.
1336		 */
1337		restart = &current->restart_block;
1338		restart->nanosleep.expires = expires;
1339		if (restart->nanosleep.type != TT_NONE)
1340			error = nanosleep_copyout(restart, &it.it_value);
1341	}
1342
1343	return error;
1344}
1345
1346static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1347
1348static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1349			    const struct timespec64 *rqtp)
1350{
1351	struct restart_block *restart_block = &current->restart_block;
1352	int error;
1353
1354	/*
1355	 * Diagnose required errors first.
1356	 */
1357	if (CPUCLOCK_PERTHREAD(which_clock) &&
1358	    (CPUCLOCK_PID(which_clock) == 0 ||
1359	     CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
1360		return -EINVAL;
1361
1362	error = do_cpu_nanosleep(which_clock, flags, rqtp);
1363
1364	if (error == -ERESTART_RESTARTBLOCK) {
1365
1366		if (flags & TIMER_ABSTIME)
1367			return -ERESTARTNOHAND;
1368
1369		restart_block->fn = posix_cpu_nsleep_restart;
1370		restart_block->nanosleep.clockid = which_clock;
 
1371	}
1372	return error;
1373}
1374
1375static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1376{
1377	clockid_t which_clock = restart_block->nanosleep.clockid;
1378	struct timespec64 t;
1379
1380	t = ns_to_timespec64(restart_block->nanosleep.expires);
1381
1382	return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
1383}
1384
1385#define PROCESS_CLOCK	make_process_cpuclock(0, CPUCLOCK_SCHED)
1386#define THREAD_CLOCK	make_thread_cpuclock(0, CPUCLOCK_SCHED)
1387
1388static int process_cpu_clock_getres(const clockid_t which_clock,
1389				    struct timespec64 *tp)
1390{
1391	return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1392}
1393static int process_cpu_clock_get(const clockid_t which_clock,
1394				 struct timespec64 *tp)
1395{
1396	return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1397}
1398static int process_cpu_timer_create(struct k_itimer *timer)
1399{
1400	timer->it_clock = PROCESS_CLOCK;
1401	return posix_cpu_timer_create(timer);
1402}
1403static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1404			      const struct timespec64 *rqtp)
1405{
1406	return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
1407}
1408static int thread_cpu_clock_getres(const clockid_t which_clock,
1409				   struct timespec64 *tp)
1410{
1411	return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1412}
1413static int thread_cpu_clock_get(const clockid_t which_clock,
1414				struct timespec64 *tp)
1415{
1416	return posix_cpu_clock_get(THREAD_CLOCK, tp);
1417}
1418static int thread_cpu_timer_create(struct k_itimer *timer)
1419{
1420	timer->it_clock = THREAD_CLOCK;
1421	return posix_cpu_timer_create(timer);
1422}
1423
1424const struct k_clock clock_posix_cpu = {
1425	.clock_getres	= posix_cpu_clock_getres,
1426	.clock_set	= posix_cpu_clock_set,
1427	.clock_get	= posix_cpu_clock_get,
1428	.timer_create	= posix_cpu_timer_create,
1429	.nsleep		= posix_cpu_nsleep,
1430	.timer_set	= posix_cpu_timer_set,
1431	.timer_del	= posix_cpu_timer_del,
1432	.timer_get	= posix_cpu_timer_get,
1433	.timer_rearm	= posix_cpu_timer_rearm,
1434};
1435
1436const struct k_clock clock_process = {
1437	.clock_getres	= process_cpu_clock_getres,
1438	.clock_get	= process_cpu_clock_get,
1439	.timer_create	= process_cpu_timer_create,
1440	.nsleep		= process_cpu_nsleep,
1441};
1442
1443const struct k_clock clock_thread = {
1444	.clock_getres	= thread_cpu_clock_getres,
1445	.clock_get	= thread_cpu_clock_get,
1446	.timer_create	= thread_cpu_timer_create,
1447};