Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * kernel/stop_machine.c
  4 *
  5 * Copyright (C) 2008, 2005	IBM Corporation.
  6 * Copyright (C) 2008, 2005	Rusty Russell rusty@rustcorp.com.au
  7 * Copyright (C) 2010		SUSE Linux Products GmbH
  8 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  9 */
 10#include <linux/compiler.h>
 11#include <linux/completion.h>
 12#include <linux/cpu.h>
 13#include <linux/init.h>
 14#include <linux/kthread.h>
 15#include <linux/export.h>
 16#include <linux/percpu.h>
 17#include <linux/sched.h>
 18#include <linux/stop_machine.h>
 19#include <linux/interrupt.h>
 20#include <linux/kallsyms.h>
 21#include <linux/smpboot.h>
 22#include <linux/atomic.h>
 23#include <linux/nmi.h>
 24#include <linux/sched/wake_q.h>
 25
 26/*
 27 * Structure to determine completion condition and record errors.  May
 28 * be shared by works on different cpus.
 29 */
 30struct cpu_stop_done {
 31	atomic_t		nr_todo;	/* nr left to execute */
 32	int			ret;		/* collected return value */
 33	struct completion	completion;	/* fired if nr_todo reaches 0 */
 34};
 35
 36/* the actual stopper, one per every possible cpu, enabled on online cpus */
 37struct cpu_stopper {
 38	struct task_struct	*thread;
 39
 40	raw_spinlock_t		lock;
 41	bool			enabled;	/* is this stopper enabled? */
 42	struct list_head	works;		/* list of pending works */
 43
 44	struct cpu_stop_work	stop_work;	/* for stop_cpus */
 45	unsigned long		caller;
 46	cpu_stop_fn_t		fn;
 47};
 48
 49static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
 50static bool stop_machine_initialized = false;
 51
 52void print_stop_info(const char *log_lvl, struct task_struct *task)
 53{
 54	/*
 55	 * If @task is a stopper task, it cannot migrate and task_cpu() is
 56	 * stable.
 57	 */
 58	struct cpu_stopper *stopper = per_cpu_ptr(&cpu_stopper, task_cpu(task));
 59
 60	if (task != stopper->thread)
 61		return;
 62
 63	printk("%sStopper: %pS <- %pS\n", log_lvl, stopper->fn, (void *)stopper->caller);
 64}
 65
 66/* static data for stop_cpus */
 67static DEFINE_MUTEX(stop_cpus_mutex);
 68static bool stop_cpus_in_progress;
 69
 70static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
 71{
 72	memset(done, 0, sizeof(*done));
 73	atomic_set(&done->nr_todo, nr_todo);
 74	init_completion(&done->completion);
 75}
 76
 77/* signal completion unless @done is NULL */
 78static void cpu_stop_signal_done(struct cpu_stop_done *done)
 79{
 80	if (atomic_dec_and_test(&done->nr_todo))
 81		complete(&done->completion);
 82}
 83
 84static void __cpu_stop_queue_work(struct cpu_stopper *stopper,
 85					struct cpu_stop_work *work,
 86					struct wake_q_head *wakeq)
 87{
 88	list_add_tail(&work->list, &stopper->works);
 89	wake_q_add(wakeq, stopper->thread);
 90}
 91
 92/* queue @work to @stopper.  if offline, @work is completed immediately */
 93static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
 94{
 95	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 96	DEFINE_WAKE_Q(wakeq);
 97	unsigned long flags;
 98	bool enabled;
 99
100	preempt_disable();
101	raw_spin_lock_irqsave(&stopper->lock, flags);
102	enabled = stopper->enabled;
103	if (enabled)
104		__cpu_stop_queue_work(stopper, work, &wakeq);
105	else if (work->done)
106		cpu_stop_signal_done(work->done);
107	raw_spin_unlock_irqrestore(&stopper->lock, flags);
108
109	wake_up_q(&wakeq);
110	preempt_enable();
111
112	return enabled;
113}
114
115/**
116 * stop_one_cpu - stop a cpu
117 * @cpu: cpu to stop
118 * @fn: function to execute
119 * @arg: argument to @fn
120 *
121 * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
122 * the highest priority preempting any task on the cpu and
123 * monopolizing it.  This function returns after the execution is
124 * complete.
125 *
126 * This function doesn't guarantee @cpu stays online till @fn
127 * completes.  If @cpu goes down in the middle, execution may happen
128 * partially or fully on different cpus.  @fn should either be ready
129 * for that or the caller should ensure that @cpu stays online until
130 * this function completes.
131 *
132 * CONTEXT:
133 * Might sleep.
134 *
135 * RETURNS:
136 * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
137 * otherwise, the return value of @fn.
138 */
139int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
140{
141	struct cpu_stop_done done;
142	struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done, .caller = _RET_IP_ };
143
144	cpu_stop_init_done(&done, 1);
145	if (!cpu_stop_queue_work(cpu, &work))
146		return -ENOENT;
147	/*
148	 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup
149	 * cycle by doing a preemption:
150	 */
151	cond_resched();
152	wait_for_completion(&done.completion);
153	return done.ret;
154}
155
156/* This controls the threads on each CPU. */
157enum multi_stop_state {
158	/* Dummy starting state for thread. */
159	MULTI_STOP_NONE,
160	/* Awaiting everyone to be scheduled. */
161	MULTI_STOP_PREPARE,
162	/* Disable interrupts. */
163	MULTI_STOP_DISABLE_IRQ,
164	/* Run the function */
165	MULTI_STOP_RUN,
166	/* Exit */
167	MULTI_STOP_EXIT,
168};
169
170struct multi_stop_data {
171	cpu_stop_fn_t		fn;
172	void			*data;
173	/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
174	unsigned int		num_threads;
175	const struct cpumask	*active_cpus;
176
177	enum multi_stop_state	state;
178	atomic_t		thread_ack;
179};
180
181static void set_state(struct multi_stop_data *msdata,
182		      enum multi_stop_state newstate)
183{
184	/* Reset ack counter. */
185	atomic_set(&msdata->thread_ack, msdata->num_threads);
186	smp_wmb();
187	WRITE_ONCE(msdata->state, newstate);
188}
189
190/* Last one to ack a state moves to the next state. */
191static void ack_state(struct multi_stop_data *msdata)
192{
193	if (atomic_dec_and_test(&msdata->thread_ack))
194		set_state(msdata, msdata->state + 1);
195}
196
197notrace void __weak stop_machine_yield(const struct cpumask *cpumask)
198{
199	cpu_relax();
200}
201
202/* This is the cpu_stop function which stops the CPU. */
203static int multi_cpu_stop(void *data)
204{
205	struct multi_stop_data *msdata = data;
206	enum multi_stop_state newstate, curstate = MULTI_STOP_NONE;
207	int cpu = smp_processor_id(), err = 0;
208	const struct cpumask *cpumask;
209	unsigned long flags;
210	bool is_active;
211
212	/*
213	 * When called from stop_machine_from_inactive_cpu(), irq might
214	 * already be disabled.  Save the state and restore it on exit.
215	 */
216	local_save_flags(flags);
217
218	if (!msdata->active_cpus) {
219		cpumask = cpu_online_mask;
220		is_active = cpu == cpumask_first(cpumask);
221	} else {
222		cpumask = msdata->active_cpus;
223		is_active = cpumask_test_cpu(cpu, cpumask);
224	}
225
226	/* Simple state machine */
227	do {
228		/* Chill out and ensure we re-read multi_stop_state. */
229		stop_machine_yield(cpumask);
230		newstate = READ_ONCE(msdata->state);
231		if (newstate != curstate) {
232			curstate = newstate;
233			switch (curstate) {
234			case MULTI_STOP_DISABLE_IRQ:
235				local_irq_disable();
236				hard_irq_disable();
237				break;
238			case MULTI_STOP_RUN:
239				if (is_active)
240					err = msdata->fn(msdata->data);
241				break;
242			default:
243				break;
244			}
245			ack_state(msdata);
246		} else if (curstate > MULTI_STOP_PREPARE) {
247			/*
248			 * At this stage all other CPUs we depend on must spin
249			 * in the same loop. Any reason for hard-lockup should
250			 * be detected and reported on their side.
251			 */
252			touch_nmi_watchdog();
253		}
254		rcu_momentary_dyntick_idle();
255	} while (curstate != MULTI_STOP_EXIT);
256
257	local_irq_restore(flags);
258	return err;
259}
260
261static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1,
262				    int cpu2, struct cpu_stop_work *work2)
263{
264	struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1);
265	struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2);
266	DEFINE_WAKE_Q(wakeq);
267	int err;
268
269retry:
270	/*
271	 * The waking up of stopper threads has to happen in the same
272	 * scheduling context as the queueing.  Otherwise, there is a
273	 * possibility of one of the above stoppers being woken up by another
274	 * CPU, and preempting us. This will cause us to not wake up the other
275	 * stopper forever.
276	 */
277	preempt_disable();
278	raw_spin_lock_irq(&stopper1->lock);
279	raw_spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING);
280
281	if (!stopper1->enabled || !stopper2->enabled) {
282		err = -ENOENT;
283		goto unlock;
284	}
285
286	/*
287	 * Ensure that if we race with __stop_cpus() the stoppers won't get
288	 * queued up in reverse order leading to system deadlock.
289	 *
290	 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has
291	 * queued a work on cpu1 but not on cpu2, we hold both locks.
292	 *
293	 * It can be falsely true but it is safe to spin until it is cleared,
294	 * queue_stop_cpus_work() does everything under preempt_disable().
295	 */
296	if (unlikely(stop_cpus_in_progress)) {
297		err = -EDEADLK;
298		goto unlock;
299	}
300
301	err = 0;
302	__cpu_stop_queue_work(stopper1, work1, &wakeq);
303	__cpu_stop_queue_work(stopper2, work2, &wakeq);
304
305unlock:
306	raw_spin_unlock(&stopper2->lock);
307	raw_spin_unlock_irq(&stopper1->lock);
308
309	if (unlikely(err == -EDEADLK)) {
310		preempt_enable();
311
312		while (stop_cpus_in_progress)
313			cpu_relax();
314
315		goto retry;
316	}
317
318	wake_up_q(&wakeq);
319	preempt_enable();
320
321	return err;
322}
323/**
324 * stop_two_cpus - stops two cpus
325 * @cpu1: the cpu to stop
326 * @cpu2: the other cpu to stop
327 * @fn: function to execute
328 * @arg: argument to @fn
329 *
330 * Stops both the current and specified CPU and runs @fn on one of them.
331 *
332 * returns when both are completed.
333 */
334int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
335{
336	struct cpu_stop_done done;
337	struct cpu_stop_work work1, work2;
338	struct multi_stop_data msdata;
339
340	msdata = (struct multi_stop_data){
341		.fn = fn,
342		.data = arg,
343		.num_threads = 2,
344		.active_cpus = cpumask_of(cpu1),
345	};
346
347	work1 = work2 = (struct cpu_stop_work){
348		.fn = multi_cpu_stop,
349		.arg = &msdata,
350		.done = &done,
351		.caller = _RET_IP_,
352	};
353
354	cpu_stop_init_done(&done, 2);
355	set_state(&msdata, MULTI_STOP_PREPARE);
356
357	if (cpu1 > cpu2)
358		swap(cpu1, cpu2);
359	if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2))
360		return -ENOENT;
361
362	wait_for_completion(&done.completion);
363	return done.ret;
364}
365
366/**
367 * stop_one_cpu_nowait - stop a cpu but don't wait for completion
368 * @cpu: cpu to stop
369 * @fn: function to execute
370 * @arg: argument to @fn
371 * @work_buf: pointer to cpu_stop_work structure
372 *
373 * Similar to stop_one_cpu() but doesn't wait for completion.  The
374 * caller is responsible for ensuring @work_buf is currently unused
375 * and will remain untouched until stopper starts executing @fn.
376 *
377 * CONTEXT:
378 * Don't care.
379 *
380 * RETURNS:
381 * true if cpu_stop_work was queued successfully and @fn will be called,
382 * false otherwise.
383 */
384bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
385			struct cpu_stop_work *work_buf)
386{
387	*work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, .caller = _RET_IP_, };
388	return cpu_stop_queue_work(cpu, work_buf);
389}
390
391static bool queue_stop_cpus_work(const struct cpumask *cpumask,
392				 cpu_stop_fn_t fn, void *arg,
393				 struct cpu_stop_done *done)
394{
395	struct cpu_stop_work *work;
396	unsigned int cpu;
397	bool queued = false;
398
399	/*
400	 * Disable preemption while queueing to avoid getting
401	 * preempted by a stopper which might wait for other stoppers
402	 * to enter @fn which can lead to deadlock.
403	 */
404	preempt_disable();
405	stop_cpus_in_progress = true;
406	barrier();
407	for_each_cpu(cpu, cpumask) {
408		work = &per_cpu(cpu_stopper.stop_work, cpu);
409		work->fn = fn;
410		work->arg = arg;
411		work->done = done;
412		work->caller = _RET_IP_;
413		if (cpu_stop_queue_work(cpu, work))
414			queued = true;
415	}
416	barrier();
417	stop_cpus_in_progress = false;
418	preempt_enable();
419
420	return queued;
421}
422
423static int __stop_cpus(const struct cpumask *cpumask,
424		       cpu_stop_fn_t fn, void *arg)
425{
426	struct cpu_stop_done done;
427
428	cpu_stop_init_done(&done, cpumask_weight(cpumask));
429	if (!queue_stop_cpus_work(cpumask, fn, arg, &done))
430		return -ENOENT;
431	wait_for_completion(&done.completion);
432	return done.ret;
433}
434
435/**
436 * stop_cpus - stop multiple cpus
437 * @cpumask: cpus to stop
438 * @fn: function to execute
439 * @arg: argument to @fn
440 *
441 * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
442 * @fn is run in a process context with the highest priority
443 * preempting any task on the cpu and monopolizing it.  This function
444 * returns after all executions are complete.
445 *
446 * This function doesn't guarantee the cpus in @cpumask stay online
447 * till @fn completes.  If some cpus go down in the middle, execution
448 * on the cpu may happen partially or fully on different cpus.  @fn
449 * should either be ready for that or the caller should ensure that
450 * the cpus stay online until this function completes.
451 *
452 * All stop_cpus() calls are serialized making it safe for @fn to wait
453 * for all cpus to start executing it.
454 *
455 * CONTEXT:
456 * Might sleep.
457 *
458 * RETURNS:
459 * -ENOENT if @fn(@arg) was not executed at all because all cpus in
460 * @cpumask were offline; otherwise, 0 if all executions of @fn
461 * returned 0, any non zero return value if any returned non zero.
462 */
463static int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
464{
465	int ret;
466
467	/* static works are used, process one request at a time */
468	mutex_lock(&stop_cpus_mutex);
469	ret = __stop_cpus(cpumask, fn, arg);
470	mutex_unlock(&stop_cpus_mutex);
471	return ret;
472}
473
474static int cpu_stop_should_run(unsigned int cpu)
475{
476	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
477	unsigned long flags;
478	int run;
479
480	raw_spin_lock_irqsave(&stopper->lock, flags);
481	run = !list_empty(&stopper->works);
482	raw_spin_unlock_irqrestore(&stopper->lock, flags);
483	return run;
484}
485
486static void cpu_stopper_thread(unsigned int cpu)
487{
488	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
489	struct cpu_stop_work *work;
490
491repeat:
492	work = NULL;
493	raw_spin_lock_irq(&stopper->lock);
494	if (!list_empty(&stopper->works)) {
495		work = list_first_entry(&stopper->works,
496					struct cpu_stop_work, list);
497		list_del_init(&work->list);
498	}
499	raw_spin_unlock_irq(&stopper->lock);
500
501	if (work) {
502		cpu_stop_fn_t fn = work->fn;
503		void *arg = work->arg;
504		struct cpu_stop_done *done = work->done;
505		int ret;
506
507		/* cpu stop callbacks must not sleep, make in_atomic() == T */
508		stopper->caller = work->caller;
509		stopper->fn = fn;
510		preempt_count_inc();
511		ret = fn(arg);
512		if (done) {
513			if (ret)
514				done->ret = ret;
515			cpu_stop_signal_done(done);
516		}
517		preempt_count_dec();
518		stopper->fn = NULL;
519		stopper->caller = 0;
520		WARN_ONCE(preempt_count(),
521			  "cpu_stop: %ps(%p) leaked preempt count\n", fn, arg);
522		goto repeat;
523	}
524}
525
526void stop_machine_park(int cpu)
527{
528	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
529	/*
530	 * Lockless. cpu_stopper_thread() will take stopper->lock and flush
531	 * the pending works before it parks, until then it is fine to queue
532	 * the new works.
533	 */
534	stopper->enabled = false;
535	kthread_park(stopper->thread);
536}
537
 
 
538static void cpu_stop_create(unsigned int cpu)
539{
540	sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu));
541}
542
543static void cpu_stop_park(unsigned int cpu)
544{
545	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
546
547	WARN_ON(!list_empty(&stopper->works));
548}
549
550void stop_machine_unpark(int cpu)
551{
552	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
553
554	stopper->enabled = true;
555	kthread_unpark(stopper->thread);
556}
557
558static struct smp_hotplug_thread cpu_stop_threads = {
559	.store			= &cpu_stopper.thread,
560	.thread_should_run	= cpu_stop_should_run,
561	.thread_fn		= cpu_stopper_thread,
562	.thread_comm		= "migration/%u",
563	.create			= cpu_stop_create,
564	.park			= cpu_stop_park,
565	.selfparking		= true,
566};
567
568static int __init cpu_stop_init(void)
569{
570	unsigned int cpu;
571
572	for_each_possible_cpu(cpu) {
573		struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
574
575		raw_spin_lock_init(&stopper->lock);
576		INIT_LIST_HEAD(&stopper->works);
577	}
578
579	BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
580	stop_machine_unpark(raw_smp_processor_id());
581	stop_machine_initialized = true;
582	return 0;
583}
584early_initcall(cpu_stop_init);
585
586int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data,
587			    const struct cpumask *cpus)
588{
589	struct multi_stop_data msdata = {
590		.fn = fn,
591		.data = data,
592		.num_threads = num_online_cpus(),
593		.active_cpus = cpus,
594	};
595
596	lockdep_assert_cpus_held();
597
598	if (!stop_machine_initialized) {
599		/*
600		 * Handle the case where stop_machine() is called
601		 * early in boot before stop_machine() has been
602		 * initialized.
603		 */
604		unsigned long flags;
605		int ret;
606
607		WARN_ON_ONCE(msdata.num_threads != 1);
608
609		local_irq_save(flags);
610		hard_irq_disable();
611		ret = (*fn)(data);
612		local_irq_restore(flags);
613
614		return ret;
615	}
616
617	/* Set the initial state and stop all online cpus. */
618	set_state(&msdata, MULTI_STOP_PREPARE);
619	return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
620}
621
622int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
623{
624	int ret;
625
626	/* No CPUs can come up or down during this. */
627	cpus_read_lock();
628	ret = stop_machine_cpuslocked(fn, data, cpus);
629	cpus_read_unlock();
630	return ret;
631}
632EXPORT_SYMBOL_GPL(stop_machine);
633
634#ifdef CONFIG_SCHED_SMT
635int stop_core_cpuslocked(unsigned int cpu, cpu_stop_fn_t fn, void *data)
636{
637	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
638
639	struct multi_stop_data msdata = {
640		.fn = fn,
641		.data = data,
642		.num_threads = cpumask_weight(smt_mask),
643		.active_cpus = smt_mask,
644	};
645
646	lockdep_assert_cpus_held();
647
648	/* Set the initial state and stop all online cpus. */
649	set_state(&msdata, MULTI_STOP_PREPARE);
650	return stop_cpus(smt_mask, multi_cpu_stop, &msdata);
651}
652EXPORT_SYMBOL_GPL(stop_core_cpuslocked);
653#endif
654
655/**
656 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
657 * @fn: the function to run
658 * @data: the data ptr for the @fn()
659 * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
660 *
661 * This is identical to stop_machine() but can be called from a CPU which
662 * is not active.  The local CPU is in the process of hotplug (so no other
663 * CPU hotplug can start) and not marked active and doesn't have enough
664 * context to sleep.
665 *
666 * This function provides stop_machine() functionality for such state by
667 * using busy-wait for synchronization and executing @fn directly for local
668 * CPU.
669 *
670 * CONTEXT:
671 * Local CPU is inactive.  Temporarily stops all active CPUs.
672 *
673 * RETURNS:
674 * 0 if all executions of @fn returned 0, any non zero return value if any
675 * returned non zero.
676 */
677int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
678				  const struct cpumask *cpus)
679{
680	struct multi_stop_data msdata = { .fn = fn, .data = data,
681					    .active_cpus = cpus };
682	struct cpu_stop_done done;
683	int ret;
684
685	/* Local CPU must be inactive and CPU hotplug in progress. */
686	BUG_ON(cpu_active(raw_smp_processor_id()));
687	msdata.num_threads = num_active_cpus() + 1;	/* +1 for local */
688
689	/* No proper task established and can't sleep - busy wait for lock. */
690	while (!mutex_trylock(&stop_cpus_mutex))
691		cpu_relax();
692
693	/* Schedule work on other CPUs and execute directly for local CPU */
694	set_state(&msdata, MULTI_STOP_PREPARE);
695	cpu_stop_init_done(&done, num_active_cpus());
696	queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
697			     &done);
698	ret = multi_cpu_stop(&msdata);
699
700	/* Busy wait for completion. */
701	while (!completion_done(&done.completion))
702		cpu_relax();
703
704	mutex_unlock(&stop_cpus_mutex);
705	return ret ?: done.ret;
706}
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * kernel/stop_machine.c
  4 *
  5 * Copyright (C) 2008, 2005	IBM Corporation.
  6 * Copyright (C) 2008, 2005	Rusty Russell rusty@rustcorp.com.au
  7 * Copyright (C) 2010		SUSE Linux Products GmbH
  8 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  9 */
 10#include <linux/compiler.h>
 11#include <linux/completion.h>
 12#include <linux/cpu.h>
 13#include <linux/init.h>
 14#include <linux/kthread.h>
 15#include <linux/export.h>
 16#include <linux/percpu.h>
 17#include <linux/sched.h>
 18#include <linux/stop_machine.h>
 19#include <linux/interrupt.h>
 20#include <linux/kallsyms.h>
 21#include <linux/smpboot.h>
 22#include <linux/atomic.h>
 23#include <linux/nmi.h>
 24#include <linux/sched/wake_q.h>
 25
 26/*
 27 * Structure to determine completion condition and record errors.  May
 28 * be shared by works on different cpus.
 29 */
 30struct cpu_stop_done {
 31	atomic_t		nr_todo;	/* nr left to execute */
 32	int			ret;		/* collected return value */
 33	struct completion	completion;	/* fired if nr_todo reaches 0 */
 34};
 35
 36/* the actual stopper, one per every possible cpu, enabled on online cpus */
 37struct cpu_stopper {
 38	struct task_struct	*thread;
 39
 40	raw_spinlock_t		lock;
 41	bool			enabled;	/* is this stopper enabled? */
 42	struct list_head	works;		/* list of pending works */
 43
 44	struct cpu_stop_work	stop_work;	/* for stop_cpus */
 
 
 45};
 46
 47static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
 48static bool stop_machine_initialized = false;
 49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 50/* static data for stop_cpus */
 51static DEFINE_MUTEX(stop_cpus_mutex);
 52static bool stop_cpus_in_progress;
 53
 54static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
 55{
 56	memset(done, 0, sizeof(*done));
 57	atomic_set(&done->nr_todo, nr_todo);
 58	init_completion(&done->completion);
 59}
 60
 61/* signal completion unless @done is NULL */
 62static void cpu_stop_signal_done(struct cpu_stop_done *done)
 63{
 64	if (atomic_dec_and_test(&done->nr_todo))
 65		complete(&done->completion);
 66}
 67
 68static void __cpu_stop_queue_work(struct cpu_stopper *stopper,
 69					struct cpu_stop_work *work,
 70					struct wake_q_head *wakeq)
 71{
 72	list_add_tail(&work->list, &stopper->works);
 73	wake_q_add(wakeq, stopper->thread);
 74}
 75
 76/* queue @work to @stopper.  if offline, @work is completed immediately */
 77static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
 78{
 79	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 80	DEFINE_WAKE_Q(wakeq);
 81	unsigned long flags;
 82	bool enabled;
 83
 84	preempt_disable();
 85	raw_spin_lock_irqsave(&stopper->lock, flags);
 86	enabled = stopper->enabled;
 87	if (enabled)
 88		__cpu_stop_queue_work(stopper, work, &wakeq);
 89	else if (work->done)
 90		cpu_stop_signal_done(work->done);
 91	raw_spin_unlock_irqrestore(&stopper->lock, flags);
 92
 93	wake_up_q(&wakeq);
 94	preempt_enable();
 95
 96	return enabled;
 97}
 98
 99/**
100 * stop_one_cpu - stop a cpu
101 * @cpu: cpu to stop
102 * @fn: function to execute
103 * @arg: argument to @fn
104 *
105 * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
106 * the highest priority preempting any task on the cpu and
107 * monopolizing it.  This function returns after the execution is
108 * complete.
109 *
110 * This function doesn't guarantee @cpu stays online till @fn
111 * completes.  If @cpu goes down in the middle, execution may happen
112 * partially or fully on different cpus.  @fn should either be ready
113 * for that or the caller should ensure that @cpu stays online until
114 * this function completes.
115 *
116 * CONTEXT:
117 * Might sleep.
118 *
119 * RETURNS:
120 * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
121 * otherwise, the return value of @fn.
122 */
123int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
124{
125	struct cpu_stop_done done;
126	struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
127
128	cpu_stop_init_done(&done, 1);
129	if (!cpu_stop_queue_work(cpu, &work))
130		return -ENOENT;
131	/*
132	 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup
133	 * cycle by doing a preemption:
134	 */
135	cond_resched();
136	wait_for_completion(&done.completion);
137	return done.ret;
138}
139
140/* This controls the threads on each CPU. */
141enum multi_stop_state {
142	/* Dummy starting state for thread. */
143	MULTI_STOP_NONE,
144	/* Awaiting everyone to be scheduled. */
145	MULTI_STOP_PREPARE,
146	/* Disable interrupts. */
147	MULTI_STOP_DISABLE_IRQ,
148	/* Run the function */
149	MULTI_STOP_RUN,
150	/* Exit */
151	MULTI_STOP_EXIT,
152};
153
154struct multi_stop_data {
155	cpu_stop_fn_t		fn;
156	void			*data;
157	/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
158	unsigned int		num_threads;
159	const struct cpumask	*active_cpus;
160
161	enum multi_stop_state	state;
162	atomic_t		thread_ack;
163};
164
165static void set_state(struct multi_stop_data *msdata,
166		      enum multi_stop_state newstate)
167{
168	/* Reset ack counter. */
169	atomic_set(&msdata->thread_ack, msdata->num_threads);
170	smp_wmb();
171	WRITE_ONCE(msdata->state, newstate);
172}
173
174/* Last one to ack a state moves to the next state. */
175static void ack_state(struct multi_stop_data *msdata)
176{
177	if (atomic_dec_and_test(&msdata->thread_ack))
178		set_state(msdata, msdata->state + 1);
179}
180
181void __weak stop_machine_yield(const struct cpumask *cpumask)
182{
183	cpu_relax();
184}
185
186/* This is the cpu_stop function which stops the CPU. */
187static int multi_cpu_stop(void *data)
188{
189	struct multi_stop_data *msdata = data;
190	enum multi_stop_state newstate, curstate = MULTI_STOP_NONE;
191	int cpu = smp_processor_id(), err = 0;
192	const struct cpumask *cpumask;
193	unsigned long flags;
194	bool is_active;
195
196	/*
197	 * When called from stop_machine_from_inactive_cpu(), irq might
198	 * already be disabled.  Save the state and restore it on exit.
199	 */
200	local_save_flags(flags);
201
202	if (!msdata->active_cpus) {
203		cpumask = cpu_online_mask;
204		is_active = cpu == cpumask_first(cpumask);
205	} else {
206		cpumask = msdata->active_cpus;
207		is_active = cpumask_test_cpu(cpu, cpumask);
208	}
209
210	/* Simple state machine */
211	do {
212		/* Chill out and ensure we re-read multi_stop_state. */
213		stop_machine_yield(cpumask);
214		newstate = READ_ONCE(msdata->state);
215		if (newstate != curstate) {
216			curstate = newstate;
217			switch (curstate) {
218			case MULTI_STOP_DISABLE_IRQ:
219				local_irq_disable();
220				hard_irq_disable();
221				break;
222			case MULTI_STOP_RUN:
223				if (is_active)
224					err = msdata->fn(msdata->data);
225				break;
226			default:
227				break;
228			}
229			ack_state(msdata);
230		} else if (curstate > MULTI_STOP_PREPARE) {
231			/*
232			 * At this stage all other CPUs we depend on must spin
233			 * in the same loop. Any reason for hard-lockup should
234			 * be detected and reported on their side.
235			 */
236			touch_nmi_watchdog();
237		}
238		rcu_momentary_dyntick_idle();
239	} while (curstate != MULTI_STOP_EXIT);
240
241	local_irq_restore(flags);
242	return err;
243}
244
245static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1,
246				    int cpu2, struct cpu_stop_work *work2)
247{
248	struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1);
249	struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2);
250	DEFINE_WAKE_Q(wakeq);
251	int err;
252
253retry:
254	/*
255	 * The waking up of stopper threads has to happen in the same
256	 * scheduling context as the queueing.  Otherwise, there is a
257	 * possibility of one of the above stoppers being woken up by another
258	 * CPU, and preempting us. This will cause us to not wake up the other
259	 * stopper forever.
260	 */
261	preempt_disable();
262	raw_spin_lock_irq(&stopper1->lock);
263	raw_spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING);
264
265	if (!stopper1->enabled || !stopper2->enabled) {
266		err = -ENOENT;
267		goto unlock;
268	}
269
270	/*
271	 * Ensure that if we race with __stop_cpus() the stoppers won't get
272	 * queued up in reverse order leading to system deadlock.
273	 *
274	 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has
275	 * queued a work on cpu1 but not on cpu2, we hold both locks.
276	 *
277	 * It can be falsely true but it is safe to spin until it is cleared,
278	 * queue_stop_cpus_work() does everything under preempt_disable().
279	 */
280	if (unlikely(stop_cpus_in_progress)) {
281		err = -EDEADLK;
282		goto unlock;
283	}
284
285	err = 0;
286	__cpu_stop_queue_work(stopper1, work1, &wakeq);
287	__cpu_stop_queue_work(stopper2, work2, &wakeq);
288
289unlock:
290	raw_spin_unlock(&stopper2->lock);
291	raw_spin_unlock_irq(&stopper1->lock);
292
293	if (unlikely(err == -EDEADLK)) {
294		preempt_enable();
295
296		while (stop_cpus_in_progress)
297			cpu_relax();
298
299		goto retry;
300	}
301
302	wake_up_q(&wakeq);
303	preempt_enable();
304
305	return err;
306}
307/**
308 * stop_two_cpus - stops two cpus
309 * @cpu1: the cpu to stop
310 * @cpu2: the other cpu to stop
311 * @fn: function to execute
312 * @arg: argument to @fn
313 *
314 * Stops both the current and specified CPU and runs @fn on one of them.
315 *
316 * returns when both are completed.
317 */
318int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
319{
320	struct cpu_stop_done done;
321	struct cpu_stop_work work1, work2;
322	struct multi_stop_data msdata;
323
324	msdata = (struct multi_stop_data){
325		.fn = fn,
326		.data = arg,
327		.num_threads = 2,
328		.active_cpus = cpumask_of(cpu1),
329	};
330
331	work1 = work2 = (struct cpu_stop_work){
332		.fn = multi_cpu_stop,
333		.arg = &msdata,
334		.done = &done
 
335	};
336
337	cpu_stop_init_done(&done, 2);
338	set_state(&msdata, MULTI_STOP_PREPARE);
339
340	if (cpu1 > cpu2)
341		swap(cpu1, cpu2);
342	if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2))
343		return -ENOENT;
344
345	wait_for_completion(&done.completion);
346	return done.ret;
347}
348
349/**
350 * stop_one_cpu_nowait - stop a cpu but don't wait for completion
351 * @cpu: cpu to stop
352 * @fn: function to execute
353 * @arg: argument to @fn
354 * @work_buf: pointer to cpu_stop_work structure
355 *
356 * Similar to stop_one_cpu() but doesn't wait for completion.  The
357 * caller is responsible for ensuring @work_buf is currently unused
358 * and will remain untouched until stopper starts executing @fn.
359 *
360 * CONTEXT:
361 * Don't care.
362 *
363 * RETURNS:
364 * true if cpu_stop_work was queued successfully and @fn will be called,
365 * false otherwise.
366 */
367bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
368			struct cpu_stop_work *work_buf)
369{
370	*work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
371	return cpu_stop_queue_work(cpu, work_buf);
372}
373
374static bool queue_stop_cpus_work(const struct cpumask *cpumask,
375				 cpu_stop_fn_t fn, void *arg,
376				 struct cpu_stop_done *done)
377{
378	struct cpu_stop_work *work;
379	unsigned int cpu;
380	bool queued = false;
381
382	/*
383	 * Disable preemption while queueing to avoid getting
384	 * preempted by a stopper which might wait for other stoppers
385	 * to enter @fn which can lead to deadlock.
386	 */
387	preempt_disable();
388	stop_cpus_in_progress = true;
389	barrier();
390	for_each_cpu(cpu, cpumask) {
391		work = &per_cpu(cpu_stopper.stop_work, cpu);
392		work->fn = fn;
393		work->arg = arg;
394		work->done = done;
 
395		if (cpu_stop_queue_work(cpu, work))
396			queued = true;
397	}
398	barrier();
399	stop_cpus_in_progress = false;
400	preempt_enable();
401
402	return queued;
403}
404
405static int __stop_cpus(const struct cpumask *cpumask,
406		       cpu_stop_fn_t fn, void *arg)
407{
408	struct cpu_stop_done done;
409
410	cpu_stop_init_done(&done, cpumask_weight(cpumask));
411	if (!queue_stop_cpus_work(cpumask, fn, arg, &done))
412		return -ENOENT;
413	wait_for_completion(&done.completion);
414	return done.ret;
415}
416
417/**
418 * stop_cpus - stop multiple cpus
419 * @cpumask: cpus to stop
420 * @fn: function to execute
421 * @arg: argument to @fn
422 *
423 * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
424 * @fn is run in a process context with the highest priority
425 * preempting any task on the cpu and monopolizing it.  This function
426 * returns after all executions are complete.
427 *
428 * This function doesn't guarantee the cpus in @cpumask stay online
429 * till @fn completes.  If some cpus go down in the middle, execution
430 * on the cpu may happen partially or fully on different cpus.  @fn
431 * should either be ready for that or the caller should ensure that
432 * the cpus stay online until this function completes.
433 *
434 * All stop_cpus() calls are serialized making it safe for @fn to wait
435 * for all cpus to start executing it.
436 *
437 * CONTEXT:
438 * Might sleep.
439 *
440 * RETURNS:
441 * -ENOENT if @fn(@arg) was not executed at all because all cpus in
442 * @cpumask were offline; otherwise, 0 if all executions of @fn
443 * returned 0, any non zero return value if any returned non zero.
444 */
445static int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
446{
447	int ret;
448
449	/* static works are used, process one request at a time */
450	mutex_lock(&stop_cpus_mutex);
451	ret = __stop_cpus(cpumask, fn, arg);
452	mutex_unlock(&stop_cpus_mutex);
453	return ret;
454}
455
456static int cpu_stop_should_run(unsigned int cpu)
457{
458	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
459	unsigned long flags;
460	int run;
461
462	raw_spin_lock_irqsave(&stopper->lock, flags);
463	run = !list_empty(&stopper->works);
464	raw_spin_unlock_irqrestore(&stopper->lock, flags);
465	return run;
466}
467
468static void cpu_stopper_thread(unsigned int cpu)
469{
470	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
471	struct cpu_stop_work *work;
472
473repeat:
474	work = NULL;
475	raw_spin_lock_irq(&stopper->lock);
476	if (!list_empty(&stopper->works)) {
477		work = list_first_entry(&stopper->works,
478					struct cpu_stop_work, list);
479		list_del_init(&work->list);
480	}
481	raw_spin_unlock_irq(&stopper->lock);
482
483	if (work) {
484		cpu_stop_fn_t fn = work->fn;
485		void *arg = work->arg;
486		struct cpu_stop_done *done = work->done;
487		int ret;
488
489		/* cpu stop callbacks must not sleep, make in_atomic() == T */
 
 
490		preempt_count_inc();
491		ret = fn(arg);
492		if (done) {
493			if (ret)
494				done->ret = ret;
495			cpu_stop_signal_done(done);
496		}
497		preempt_count_dec();
 
 
498		WARN_ONCE(preempt_count(),
499			  "cpu_stop: %ps(%p) leaked preempt count\n", fn, arg);
500		goto repeat;
501	}
502}
503
504void stop_machine_park(int cpu)
505{
506	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
507	/*
508	 * Lockless. cpu_stopper_thread() will take stopper->lock and flush
509	 * the pending works before it parks, until then it is fine to queue
510	 * the new works.
511	 */
512	stopper->enabled = false;
513	kthread_park(stopper->thread);
514}
515
516extern void sched_set_stop_task(int cpu, struct task_struct *stop);
517
518static void cpu_stop_create(unsigned int cpu)
519{
520	sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu));
521}
522
523static void cpu_stop_park(unsigned int cpu)
524{
525	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
526
527	WARN_ON(!list_empty(&stopper->works));
528}
529
530void stop_machine_unpark(int cpu)
531{
532	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
533
534	stopper->enabled = true;
535	kthread_unpark(stopper->thread);
536}
537
538static struct smp_hotplug_thread cpu_stop_threads = {
539	.store			= &cpu_stopper.thread,
540	.thread_should_run	= cpu_stop_should_run,
541	.thread_fn		= cpu_stopper_thread,
542	.thread_comm		= "migration/%u",
543	.create			= cpu_stop_create,
544	.park			= cpu_stop_park,
545	.selfparking		= true,
546};
547
548static int __init cpu_stop_init(void)
549{
550	unsigned int cpu;
551
552	for_each_possible_cpu(cpu) {
553		struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
554
555		raw_spin_lock_init(&stopper->lock);
556		INIT_LIST_HEAD(&stopper->works);
557	}
558
559	BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
560	stop_machine_unpark(raw_smp_processor_id());
561	stop_machine_initialized = true;
562	return 0;
563}
564early_initcall(cpu_stop_init);
565
566int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data,
567			    const struct cpumask *cpus)
568{
569	struct multi_stop_data msdata = {
570		.fn = fn,
571		.data = data,
572		.num_threads = num_online_cpus(),
573		.active_cpus = cpus,
574	};
575
576	lockdep_assert_cpus_held();
577
578	if (!stop_machine_initialized) {
579		/*
580		 * Handle the case where stop_machine() is called
581		 * early in boot before stop_machine() has been
582		 * initialized.
583		 */
584		unsigned long flags;
585		int ret;
586
587		WARN_ON_ONCE(msdata.num_threads != 1);
588
589		local_irq_save(flags);
590		hard_irq_disable();
591		ret = (*fn)(data);
592		local_irq_restore(flags);
593
594		return ret;
595	}
596
597	/* Set the initial state and stop all online cpus. */
598	set_state(&msdata, MULTI_STOP_PREPARE);
599	return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
600}
601
602int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
603{
604	int ret;
605
606	/* No CPUs can come up or down during this. */
607	cpus_read_lock();
608	ret = stop_machine_cpuslocked(fn, data, cpus);
609	cpus_read_unlock();
610	return ret;
611}
612EXPORT_SYMBOL_GPL(stop_machine);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
613
614/**
615 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
616 * @fn: the function to run
617 * @data: the data ptr for the @fn()
618 * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
619 *
620 * This is identical to stop_machine() but can be called from a CPU which
621 * is not active.  The local CPU is in the process of hotplug (so no other
622 * CPU hotplug can start) and not marked active and doesn't have enough
623 * context to sleep.
624 *
625 * This function provides stop_machine() functionality for such state by
626 * using busy-wait for synchronization and executing @fn directly for local
627 * CPU.
628 *
629 * CONTEXT:
630 * Local CPU is inactive.  Temporarily stops all active CPUs.
631 *
632 * RETURNS:
633 * 0 if all executions of @fn returned 0, any non zero return value if any
634 * returned non zero.
635 */
636int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
637				  const struct cpumask *cpus)
638{
639	struct multi_stop_data msdata = { .fn = fn, .data = data,
640					    .active_cpus = cpus };
641	struct cpu_stop_done done;
642	int ret;
643
644	/* Local CPU must be inactive and CPU hotplug in progress. */
645	BUG_ON(cpu_active(raw_smp_processor_id()));
646	msdata.num_threads = num_active_cpus() + 1;	/* +1 for local */
647
648	/* No proper task established and can't sleep - busy wait for lock. */
649	while (!mutex_trylock(&stop_cpus_mutex))
650		cpu_relax();
651
652	/* Schedule work on other CPUs and execute directly for local CPU */
653	set_state(&msdata, MULTI_STOP_PREPARE);
654	cpu_stop_init_done(&done, num_active_cpus());
655	queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
656			     &done);
657	ret = multi_cpu_stop(&msdata);
658
659	/* Busy wait for completion. */
660	while (!completion_done(&done.completion))
661		cpu_relax();
662
663	mutex_unlock(&stop_cpus_mutex);
664	return ret ?: done.ret;
665}