Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * kernel/stop_machine.c
  4 *
  5 * Copyright (C) 2008, 2005	IBM Corporation.
  6 * Copyright (C) 2008, 2005	Rusty Russell rusty@rustcorp.com.au
  7 * Copyright (C) 2010		SUSE Linux Products GmbH
  8 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
 
 
  9 */
 10#include <linux/compiler.h>
 11#include <linux/completion.h>
 12#include <linux/cpu.h>
 13#include <linux/init.h>
 14#include <linux/kthread.h>
 15#include <linux/export.h>
 16#include <linux/percpu.h>
 17#include <linux/sched.h>
 18#include <linux/stop_machine.h>
 19#include <linux/interrupt.h>
 20#include <linux/kallsyms.h>
 21#include <linux/smpboot.h>
 22#include <linux/atomic.h>
 23#include <linux/nmi.h>
 24#include <linux/sched/wake_q.h>
 25
 26/*
 27 * Structure to determine completion condition and record errors.  May
 28 * be shared by works on different cpus.
 29 */
 30struct cpu_stop_done {
 31	atomic_t		nr_todo;	/* nr left to execute */
 
 32	int			ret;		/* collected return value */
 33	struct completion	completion;	/* fired if nr_todo reaches 0 */
 34};
 35
 36/* the actual stopper, one per every possible cpu, enabled on online cpus */
 37struct cpu_stopper {
 38	struct task_struct	*thread;
 39
 40	raw_spinlock_t		lock;
 41	bool			enabled;	/* is this stopper enabled? */
 42	struct list_head	works;		/* list of pending works */
 43
 44	struct cpu_stop_work	stop_work;	/* for stop_cpus */
 45	unsigned long		caller;
 46	cpu_stop_fn_t		fn;
 47};
 48
 49static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
 50static bool stop_machine_initialized = false;
 51
 52void print_stop_info(const char *log_lvl, struct task_struct *task)
 53{
 54	/*
 55	 * If @task is a stopper task, it cannot migrate and task_cpu() is
 56	 * stable.
 57	 */
 58	struct cpu_stopper *stopper = per_cpu_ptr(&cpu_stopper, task_cpu(task));
 59
 60	if (task != stopper->thread)
 61		return;
 62
 63	printk("%sStopper: %pS <- %pS\n", log_lvl, stopper->fn, (void *)stopper->caller);
 64}
 65
 66/* static data for stop_cpus */
 67static DEFINE_MUTEX(stop_cpus_mutex);
 68static bool stop_cpus_in_progress;
 69
 70static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
 71{
 72	memset(done, 0, sizeof(*done));
 73	atomic_set(&done->nr_todo, nr_todo);
 74	init_completion(&done->completion);
 75}
 76
 77/* signal completion unless @done is NULL */
 78static void cpu_stop_signal_done(struct cpu_stop_done *done)
 79{
 80	if (atomic_dec_and_test(&done->nr_todo))
 81		complete(&done->completion);
 82}
 83
 84static void __cpu_stop_queue_work(struct cpu_stopper *stopper,
 85					struct cpu_stop_work *work,
 86					struct wake_q_head *wakeq)
 87{
 88	list_add_tail(&work->list, &stopper->works);
 89	wake_q_add(wakeq, stopper->thread);
 
 
 
 
 90}
 91
 92/* queue @work to @stopper.  if offline, @work is completed immediately */
 93static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
 
 94{
 95	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 96	DEFINE_WAKE_Q(wakeq);
 97	unsigned long flags;
 98	bool enabled;
 99
100	preempt_disable();
101	raw_spin_lock_irqsave(&stopper->lock, flags);
102	enabled = stopper->enabled;
103	if (enabled)
104		__cpu_stop_queue_work(stopper, work, &wakeq);
105	else if (work->done)
106		cpu_stop_signal_done(work->done);
107	raw_spin_unlock_irqrestore(&stopper->lock, flags);
108
109	wake_up_q(&wakeq);
110	preempt_enable();
 
 
 
111
112	return enabled;
113}
114
115/**
116 * stop_one_cpu - stop a cpu
117 * @cpu: cpu to stop
118 * @fn: function to execute
119 * @arg: argument to @fn
120 *
121 * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
122 * the highest priority preempting any task on the cpu and
123 * monopolizing it.  This function returns after the execution is
124 * complete.
125 *
126 * This function doesn't guarantee @cpu stays online till @fn
127 * completes.  If @cpu goes down in the middle, execution may happen
128 * partially or fully on different cpus.  @fn should either be ready
129 * for that or the caller should ensure that @cpu stays online until
130 * this function completes.
131 *
132 * CONTEXT:
133 * Might sleep.
134 *
135 * RETURNS:
136 * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
137 * otherwise, the return value of @fn.
138 */
139int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
140{
141	struct cpu_stop_done done;
142	struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done, .caller = _RET_IP_ };
143
144	cpu_stop_init_done(&done, 1);
145	if (!cpu_stop_queue_work(cpu, &work))
146		return -ENOENT;
147	/*
148	 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup
149	 * cycle by doing a preemption:
150	 */
151	cond_resched();
152	wait_for_completion(&done.completion);
153	return done.ret;
154}
155
156/* This controls the threads on each CPU. */
157enum multi_stop_state {
158	/* Dummy starting state for thread. */
159	MULTI_STOP_NONE,
160	/* Awaiting everyone to be scheduled. */
161	MULTI_STOP_PREPARE,
162	/* Disable interrupts. */
163	MULTI_STOP_DISABLE_IRQ,
164	/* Run the function */
165	MULTI_STOP_RUN,
166	/* Exit */
167	MULTI_STOP_EXIT,
168};
169
170struct multi_stop_data {
171	cpu_stop_fn_t		fn;
172	void			*data;
173	/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
174	unsigned int		num_threads;
175	const struct cpumask	*active_cpus;
176
177	enum multi_stop_state	state;
178	atomic_t		thread_ack;
179};
180
181static void set_state(struct multi_stop_data *msdata,
182		      enum multi_stop_state newstate)
183{
184	/* Reset ack counter. */
185	atomic_set(&msdata->thread_ack, msdata->num_threads);
186	smp_wmb();
187	WRITE_ONCE(msdata->state, newstate);
188}
189
190/* Last one to ack a state moves to the next state. */
191static void ack_state(struct multi_stop_data *msdata)
192{
193	if (atomic_dec_and_test(&msdata->thread_ack))
194		set_state(msdata, msdata->state + 1);
195}
196
197notrace void __weak stop_machine_yield(const struct cpumask *cpumask)
198{
199	cpu_relax();
200}
201
202/* This is the cpu_stop function which stops the CPU. */
203static int multi_cpu_stop(void *data)
204{
205	struct multi_stop_data *msdata = data;
206	enum multi_stop_state newstate, curstate = MULTI_STOP_NONE;
207	int cpu = smp_processor_id(), err = 0;
208	const struct cpumask *cpumask;
209	unsigned long flags;
210	bool is_active;
211
212	/*
213	 * When called from stop_machine_from_inactive_cpu(), irq might
214	 * already be disabled.  Save the state and restore it on exit.
215	 */
216	local_save_flags(flags);
217
218	if (!msdata->active_cpus) {
219		cpumask = cpu_online_mask;
220		is_active = cpu == cpumask_first(cpumask);
221	} else {
222		cpumask = msdata->active_cpus;
223		is_active = cpumask_test_cpu(cpu, cpumask);
224	}
225
226	/* Simple state machine */
227	do {
228		/* Chill out and ensure we re-read multi_stop_state. */
229		stop_machine_yield(cpumask);
230		newstate = READ_ONCE(msdata->state);
231		if (newstate != curstate) {
232			curstate = newstate;
233			switch (curstate) {
234			case MULTI_STOP_DISABLE_IRQ:
235				local_irq_disable();
236				hard_irq_disable();
237				break;
238			case MULTI_STOP_RUN:
239				if (is_active)
240					err = msdata->fn(msdata->data);
241				break;
242			default:
243				break;
244			}
245			ack_state(msdata);
246		} else if (curstate > MULTI_STOP_PREPARE) {
247			/*
248			 * At this stage all other CPUs we depend on must spin
249			 * in the same loop. Any reason for hard-lockup should
250			 * be detected and reported on their side.
251			 */
252			touch_nmi_watchdog();
253		}
254		rcu_momentary_dyntick_idle();
255	} while (curstate != MULTI_STOP_EXIT);
256
257	local_irq_restore(flags);
258	return err;
259}
260
261static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1,
262				    int cpu2, struct cpu_stop_work *work2)
263{
264	struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1);
265	struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2);
266	DEFINE_WAKE_Q(wakeq);
267	int err;
268
269retry:
270	/*
271	 * The waking up of stopper threads has to happen in the same
272	 * scheduling context as the queueing.  Otherwise, there is a
273	 * possibility of one of the above stoppers being woken up by another
274	 * CPU, and preempting us. This will cause us to not wake up the other
275	 * stopper forever.
276	 */
277	preempt_disable();
278	raw_spin_lock_irq(&stopper1->lock);
279	raw_spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING);
280
281	if (!stopper1->enabled || !stopper2->enabled) {
282		err = -ENOENT;
283		goto unlock;
284	}
285
286	/*
287	 * Ensure that if we race with __stop_cpus() the stoppers won't get
288	 * queued up in reverse order leading to system deadlock.
289	 *
290	 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has
291	 * queued a work on cpu1 but not on cpu2, we hold both locks.
292	 *
293	 * It can be falsely true but it is safe to spin until it is cleared,
294	 * queue_stop_cpus_work() does everything under preempt_disable().
295	 */
296	if (unlikely(stop_cpus_in_progress)) {
297		err = -EDEADLK;
298		goto unlock;
299	}
300
301	err = 0;
302	__cpu_stop_queue_work(stopper1, work1, &wakeq);
303	__cpu_stop_queue_work(stopper2, work2, &wakeq);
304
305unlock:
306	raw_spin_unlock(&stopper2->lock);
307	raw_spin_unlock_irq(&stopper1->lock);
308
309	if (unlikely(err == -EDEADLK)) {
310		preempt_enable();
311
312		while (stop_cpus_in_progress)
313			cpu_relax();
314
315		goto retry;
316	}
317
318	wake_up_q(&wakeq);
319	preempt_enable();
320
321	return err;
322}
323/**
324 * stop_two_cpus - stops two cpus
325 * @cpu1: the cpu to stop
326 * @cpu2: the other cpu to stop
327 * @fn: function to execute
328 * @arg: argument to @fn
329 *
330 * Stops both the current and specified CPU and runs @fn on one of them.
331 *
332 * returns when both are completed.
333 */
334int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
335{
336	struct cpu_stop_done done;
337	struct cpu_stop_work work1, work2;
338	struct multi_stop_data msdata;
339
340	msdata = (struct multi_stop_data){
341		.fn = fn,
342		.data = arg,
343		.num_threads = 2,
344		.active_cpus = cpumask_of(cpu1),
345	};
346
347	work1 = work2 = (struct cpu_stop_work){
348		.fn = multi_cpu_stop,
349		.arg = &msdata,
350		.done = &done,
351		.caller = _RET_IP_,
352	};
353
354	cpu_stop_init_done(&done, 2);
355	set_state(&msdata, MULTI_STOP_PREPARE);
356
357	if (cpu1 > cpu2)
358		swap(cpu1, cpu2);
359	if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2))
360		return -ENOENT;
361
362	wait_for_completion(&done.completion);
363	return done.ret;
364}
365
366/**
367 * stop_one_cpu_nowait - stop a cpu but don't wait for completion
368 * @cpu: cpu to stop
369 * @fn: function to execute
370 * @arg: argument to @fn
371 * @work_buf: pointer to cpu_stop_work structure
372 *
373 * Similar to stop_one_cpu() but doesn't wait for completion.  The
374 * caller is responsible for ensuring @work_buf is currently unused
375 * and will remain untouched until stopper starts executing @fn.
376 *
377 * CONTEXT:
378 * Don't care.
379 *
380 * RETURNS:
381 * true if cpu_stop_work was queued successfully and @fn will be called,
382 * false otherwise.
383 */
384bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
385			struct cpu_stop_work *work_buf)
386{
387	*work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, .caller = _RET_IP_, };
388	return cpu_stop_queue_work(cpu, work_buf);
389}
390
391static bool queue_stop_cpus_work(const struct cpumask *cpumask,
 
 
 
 
392				 cpu_stop_fn_t fn, void *arg,
393				 struct cpu_stop_done *done)
394{
395	struct cpu_stop_work *work;
396	unsigned int cpu;
397	bool queued = false;
 
 
 
 
 
 
 
398
399	/*
400	 * Disable preemption while queueing to avoid getting
401	 * preempted by a stopper which might wait for other stoppers
402	 * to enter @fn which can lead to deadlock.
403	 */
404	preempt_disable();
405	stop_cpus_in_progress = true;
406	barrier();
407	for_each_cpu(cpu, cpumask) {
408		work = &per_cpu(cpu_stopper.stop_work, cpu);
409		work->fn = fn;
410		work->arg = arg;
411		work->done = done;
412		work->caller = _RET_IP_;
413		if (cpu_stop_queue_work(cpu, work))
414			queued = true;
415	}
416	barrier();
417	stop_cpus_in_progress = false;
418	preempt_enable();
419
420	return queued;
421}
422
423static int __stop_cpus(const struct cpumask *cpumask,
424		       cpu_stop_fn_t fn, void *arg)
425{
426	struct cpu_stop_done done;
427
428	cpu_stop_init_done(&done, cpumask_weight(cpumask));
429	if (!queue_stop_cpus_work(cpumask, fn, arg, &done))
430		return -ENOENT;
431	wait_for_completion(&done.completion);
432	return done.ret;
433}
434
435/**
436 * stop_cpus - stop multiple cpus
437 * @cpumask: cpus to stop
438 * @fn: function to execute
439 * @arg: argument to @fn
440 *
441 * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
442 * @fn is run in a process context with the highest priority
443 * preempting any task on the cpu and monopolizing it.  This function
444 * returns after all executions are complete.
445 *
446 * This function doesn't guarantee the cpus in @cpumask stay online
447 * till @fn completes.  If some cpus go down in the middle, execution
448 * on the cpu may happen partially or fully on different cpus.  @fn
449 * should either be ready for that or the caller should ensure that
450 * the cpus stay online until this function completes.
451 *
452 * All stop_cpus() calls are serialized making it safe for @fn to wait
453 * for all cpus to start executing it.
454 *
455 * CONTEXT:
456 * Might sleep.
457 *
458 * RETURNS:
459 * -ENOENT if @fn(@arg) was not executed at all because all cpus in
460 * @cpumask were offline; otherwise, 0 if all executions of @fn
461 * returned 0, any non zero return value if any returned non zero.
462 */
463static int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
464{
465	int ret;
466
467	/* static works are used, process one request at a time */
468	mutex_lock(&stop_cpus_mutex);
469	ret = __stop_cpus(cpumask, fn, arg);
470	mutex_unlock(&stop_cpus_mutex);
471	return ret;
472}
473
474static int cpu_stop_should_run(unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
475{
476	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
477	unsigned long flags;
478	int run;
479
480	raw_spin_lock_irqsave(&stopper->lock, flags);
481	run = !list_empty(&stopper->works);
482	raw_spin_unlock_irqrestore(&stopper->lock, flags);
483	return run;
 
 
484}
485
486static void cpu_stopper_thread(unsigned int cpu)
487{
488	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
489	struct cpu_stop_work *work;
 
490
491repeat:
 
 
 
 
 
 
 
492	work = NULL;
493	raw_spin_lock_irq(&stopper->lock);
494	if (!list_empty(&stopper->works)) {
495		work = list_first_entry(&stopper->works,
496					struct cpu_stop_work, list);
497		list_del_init(&work->list);
498	}
499	raw_spin_unlock_irq(&stopper->lock);
500
501	if (work) {
502		cpu_stop_fn_t fn = work->fn;
503		void *arg = work->arg;
504		struct cpu_stop_done *done = work->done;
505		int ret;
 
 
 
 
 
506
507		/* cpu stop callbacks must not sleep, make in_atomic() == T */
508		stopper->caller = work->caller;
509		stopper->fn = fn;
510		preempt_count_inc();
511		ret = fn(arg);
512		if (done) {
513			if (ret)
514				done->ret = ret;
515			cpu_stop_signal_done(done);
516		}
517		preempt_count_dec();
518		stopper->fn = NULL;
519		stopper->caller = 0;
520		WARN_ONCE(preempt_count(),
521			  "cpu_stop: %ps(%p) leaked preempt count\n", fn, arg);
522		goto repeat;
523	}
524}
525
526void stop_machine_park(int cpu)
527{
528	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
529	/*
530	 * Lockless. cpu_stopper_thread() will take stopper->lock and flush
531	 * the pending works before it parks, until then it is fine to queue
532	 * the new works.
533	 */
534	stopper->enabled = false;
535	kthread_park(stopper->thread);
536}
537
538static void cpu_stop_create(unsigned int cpu)
539{
540	sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu));
541}
542
543static void cpu_stop_park(unsigned int cpu)
544{
545	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
546
547	WARN_ON(!list_empty(&stopper->works));
548}
549
550void stop_machine_unpark(int cpu)
551{
 
552	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
553
554	stopper->enabled = true;
555	kthread_unpark(stopper->thread);
556}
557
558static struct smp_hotplug_thread cpu_stop_threads = {
559	.store			= &cpu_stopper.thread,
560	.thread_should_run	= cpu_stop_should_run,
561	.thread_fn		= cpu_stopper_thread,
562	.thread_comm		= "migration/%u",
563	.create			= cpu_stop_create,
564	.park			= cpu_stop_park,
565	.selfparking		= true,
566};
567
568static int __init cpu_stop_init(void)
569{
 
570	unsigned int cpu;
 
571
572	for_each_possible_cpu(cpu) {
573		struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
574
575		raw_spin_lock_init(&stopper->lock);
576		INIT_LIST_HEAD(&stopper->works);
577	}
578
579	BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
580	stop_machine_unpark(raw_smp_processor_id());
 
 
 
 
 
581	stop_machine_initialized = true;
 
582	return 0;
583}
584early_initcall(cpu_stop_init);
585
586int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data,
587			    const struct cpumask *cpus)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
588{
589	struct multi_stop_data msdata = {
590		.fn = fn,
591		.data = data,
592		.num_threads = num_online_cpus(),
593		.active_cpus = cpus,
594	};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
595
596	lockdep_assert_cpus_held();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
597
598	if (!stop_machine_initialized) {
599		/*
600		 * Handle the case where stop_machine() is called
601		 * early in boot before stop_machine() has been
602		 * initialized.
603		 */
604		unsigned long flags;
605		int ret;
606
607		WARN_ON_ONCE(msdata.num_threads != 1);
608
609		local_irq_save(flags);
610		hard_irq_disable();
611		ret = (*fn)(data);
612		local_irq_restore(flags);
613
614		return ret;
615	}
616
617	/* Set the initial state and stop all online cpus. */
618	set_state(&msdata, MULTI_STOP_PREPARE);
619	return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
620}
621
622int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
623{
624	int ret;
625
626	/* No CPUs can come up or down during this. */
627	cpus_read_lock();
628	ret = stop_machine_cpuslocked(fn, data, cpus);
629	cpus_read_unlock();
630	return ret;
631}
632EXPORT_SYMBOL_GPL(stop_machine);
633
634#ifdef CONFIG_SCHED_SMT
635int stop_core_cpuslocked(unsigned int cpu, cpu_stop_fn_t fn, void *data)
636{
637	const struct cpumask *smt_mask = cpu_smt_mask(cpu);
638
639	struct multi_stop_data msdata = {
640		.fn = fn,
641		.data = data,
642		.num_threads = cpumask_weight(smt_mask),
643		.active_cpus = smt_mask,
644	};
645
646	lockdep_assert_cpus_held();
647
648	/* Set the initial state and stop all online cpus. */
649	set_state(&msdata, MULTI_STOP_PREPARE);
650	return stop_cpus(smt_mask, multi_cpu_stop, &msdata);
651}
652EXPORT_SYMBOL_GPL(stop_core_cpuslocked);
653#endif
654
655/**
656 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
657 * @fn: the function to run
658 * @data: the data ptr for the @fn()
659 * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
660 *
661 * This is identical to stop_machine() but can be called from a CPU which
662 * is not active.  The local CPU is in the process of hotplug (so no other
663 * CPU hotplug can start) and not marked active and doesn't have enough
664 * context to sleep.
665 *
666 * This function provides stop_machine() functionality for such state by
667 * using busy-wait for synchronization and executing @fn directly for local
668 * CPU.
669 *
670 * CONTEXT:
671 * Local CPU is inactive.  Temporarily stops all active CPUs.
672 *
673 * RETURNS:
674 * 0 if all executions of @fn returned 0, any non zero return value if any
675 * returned non zero.
676 */
677int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
678				  const struct cpumask *cpus)
679{
680	struct multi_stop_data msdata = { .fn = fn, .data = data,
681					    .active_cpus = cpus };
682	struct cpu_stop_done done;
683	int ret;
684
685	/* Local CPU must be inactive and CPU hotplug in progress. */
686	BUG_ON(cpu_active(raw_smp_processor_id()));
687	msdata.num_threads = num_active_cpus() + 1;	/* +1 for local */
688
689	/* No proper task established and can't sleep - busy wait for lock. */
690	while (!mutex_trylock(&stop_cpus_mutex))
691		cpu_relax();
692
693	/* Schedule work on other CPUs and execute directly for local CPU */
694	set_state(&msdata, MULTI_STOP_PREPARE);
695	cpu_stop_init_done(&done, num_active_cpus());
696	queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
697			     &done);
698	ret = multi_cpu_stop(&msdata);
699
700	/* Busy wait for completion. */
701	while (!completion_done(&done.completion))
702		cpu_relax();
703
704	mutex_unlock(&stop_cpus_mutex);
705	return ret ?: done.ret;
706}
v3.5.6
 
  1/*
  2 * kernel/stop_machine.c
  3 *
  4 * Copyright (C) 2008, 2005	IBM Corporation.
  5 * Copyright (C) 2008, 2005	Rusty Russell rusty@rustcorp.com.au
  6 * Copyright (C) 2010		SUSE Linux Products GmbH
  7 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  8 *
  9 * This file is released under the GPLv2 and any later version.
 10 */
 
 11#include <linux/completion.h>
 12#include <linux/cpu.h>
 13#include <linux/init.h>
 14#include <linux/kthread.h>
 15#include <linux/export.h>
 16#include <linux/percpu.h>
 17#include <linux/sched.h>
 18#include <linux/stop_machine.h>
 19#include <linux/interrupt.h>
 20#include <linux/kallsyms.h>
 21
 22#include <linux/atomic.h>
 
 
 23
 24/*
 25 * Structure to determine completion condition and record errors.  May
 26 * be shared by works on different cpus.
 27 */
 28struct cpu_stop_done {
 29	atomic_t		nr_todo;	/* nr left to execute */
 30	bool			executed;	/* actually executed? */
 31	int			ret;		/* collected return value */
 32	struct completion	completion;	/* fired if nr_todo reaches 0 */
 33};
 34
 35/* the actual stopper, one per every possible cpu, enabled on online cpus */
 36struct cpu_stopper {
 37	spinlock_t		lock;
 
 
 38	bool			enabled;	/* is this stopper enabled? */
 39	struct list_head	works;		/* list of pending works */
 40	struct task_struct	*thread;	/* stopper thread */
 
 
 
 41};
 42
 43static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
 44static bool stop_machine_initialized = false;
 45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 46static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
 47{
 48	memset(done, 0, sizeof(*done));
 49	atomic_set(&done->nr_todo, nr_todo);
 50	init_completion(&done->completion);
 51}
 52
 53/* signal completion unless @done is NULL */
 54static void cpu_stop_signal_done(struct cpu_stop_done *done, bool executed)
 
 
 
 
 
 
 
 
 55{
 56	if (done) {
 57		if (executed)
 58			done->executed = true;
 59		if (atomic_dec_and_test(&done->nr_todo))
 60			complete(&done->completion);
 61	}
 62}
 63
 64/* queue @work to @stopper.  if offline, @work is completed immediately */
 65static void cpu_stop_queue_work(struct cpu_stopper *stopper,
 66				struct cpu_stop_work *work)
 67{
 
 
 68	unsigned long flags;
 
 69
 70	spin_lock_irqsave(&stopper->lock, flags);
 
 
 
 
 
 
 
 71
 72	if (stopper->enabled) {
 73		list_add_tail(&work->list, &stopper->works);
 74		wake_up_process(stopper->thread);
 75	} else
 76		cpu_stop_signal_done(work->done, false);
 77
 78	spin_unlock_irqrestore(&stopper->lock, flags);
 79}
 80
 81/**
 82 * stop_one_cpu - stop a cpu
 83 * @cpu: cpu to stop
 84 * @fn: function to execute
 85 * @arg: argument to @fn
 86 *
 87 * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
 88 * the highest priority preempting any task on the cpu and
 89 * monopolizing it.  This function returns after the execution is
 90 * complete.
 91 *
 92 * This function doesn't guarantee @cpu stays online till @fn
 93 * completes.  If @cpu goes down in the middle, execution may happen
 94 * partially or fully on different cpus.  @fn should either be ready
 95 * for that or the caller should ensure that @cpu stays online until
 96 * this function completes.
 97 *
 98 * CONTEXT:
 99 * Might sleep.
100 *
101 * RETURNS:
102 * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
103 * otherwise, the return value of @fn.
104 */
105int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
106{
107	struct cpu_stop_done done;
108	struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
109
110	cpu_stop_init_done(&done, 1);
111	cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu), &work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112	wait_for_completion(&done.completion);
113	return done.executed ? done.ret : -ENOENT;
114}
115
116/**
117 * stop_one_cpu_nowait - stop a cpu but don't wait for completion
118 * @cpu: cpu to stop
119 * @fn: function to execute
120 * @arg: argument to @fn
 
121 *
122 * Similar to stop_one_cpu() but doesn't wait for completion.  The
123 * caller is responsible for ensuring @work_buf is currently unused
124 * and will remain untouched until stopper starts executing @fn.
125 *
126 * CONTEXT:
127 * Don't care.
 
 
 
 
128 */
129void stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
130			struct cpu_stop_work *work_buf)
131{
132	*work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
133	cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu), work_buf);
134}
135
136/* static data for stop_cpus */
137static DEFINE_MUTEX(stop_cpus_mutex);
138static DEFINE_PER_CPU(struct cpu_stop_work, stop_cpus_work);
139
140static void queue_stop_cpus_work(const struct cpumask *cpumask,
141				 cpu_stop_fn_t fn, void *arg,
142				 struct cpu_stop_done *done)
143{
144	struct cpu_stop_work *work;
145	unsigned int cpu;
146
147	/* initialize works and done */
148	for_each_cpu(cpu, cpumask) {
149		work = &per_cpu(stop_cpus_work, cpu);
150		work->fn = fn;
151		work->arg = arg;
152		work->done = done;
153	}
154
155	/*
156	 * Disable preemption while queueing to avoid getting
157	 * preempted by a stopper which might wait for other stoppers
158	 * to enter @fn which can lead to deadlock.
159	 */
160	preempt_disable();
161	for_each_cpu(cpu, cpumask)
162		cpu_stop_queue_work(&per_cpu(cpu_stopper, cpu),
163				    &per_cpu(stop_cpus_work, cpu));
 
 
 
 
 
 
 
 
 
 
164	preempt_enable();
 
 
165}
166
167static int __stop_cpus(const struct cpumask *cpumask,
168		       cpu_stop_fn_t fn, void *arg)
169{
170	struct cpu_stop_done done;
171
172	cpu_stop_init_done(&done, cpumask_weight(cpumask));
173	queue_stop_cpus_work(cpumask, fn, arg, &done);
 
174	wait_for_completion(&done.completion);
175	return done.executed ? done.ret : -ENOENT;
176}
177
178/**
179 * stop_cpus - stop multiple cpus
180 * @cpumask: cpus to stop
181 * @fn: function to execute
182 * @arg: argument to @fn
183 *
184 * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
185 * @fn is run in a process context with the highest priority
186 * preempting any task on the cpu and monopolizing it.  This function
187 * returns after all executions are complete.
188 *
189 * This function doesn't guarantee the cpus in @cpumask stay online
190 * till @fn completes.  If some cpus go down in the middle, execution
191 * on the cpu may happen partially or fully on different cpus.  @fn
192 * should either be ready for that or the caller should ensure that
193 * the cpus stay online until this function completes.
194 *
195 * All stop_cpus() calls are serialized making it safe for @fn to wait
196 * for all cpus to start executing it.
197 *
198 * CONTEXT:
199 * Might sleep.
200 *
201 * RETURNS:
202 * -ENOENT if @fn(@arg) was not executed at all because all cpus in
203 * @cpumask were offline; otherwise, 0 if all executions of @fn
204 * returned 0, any non zero return value if any returned non zero.
205 */
206int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
207{
208	int ret;
209
210	/* static works are used, process one request at a time */
211	mutex_lock(&stop_cpus_mutex);
212	ret = __stop_cpus(cpumask, fn, arg);
213	mutex_unlock(&stop_cpus_mutex);
214	return ret;
215}
216
217/**
218 * try_stop_cpus - try to stop multiple cpus
219 * @cpumask: cpus to stop
220 * @fn: function to execute
221 * @arg: argument to @fn
222 *
223 * Identical to stop_cpus() except that it fails with -EAGAIN if
224 * someone else is already using the facility.
225 *
226 * CONTEXT:
227 * Might sleep.
228 *
229 * RETURNS:
230 * -EAGAIN if someone else is already stopping cpus, -ENOENT if
231 * @fn(@arg) was not executed at all because all cpus in @cpumask were
232 * offline; otherwise, 0 if all executions of @fn returned 0, any non
233 * zero return value if any returned non zero.
234 */
235int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
236{
237	int ret;
 
 
238
239	/* static works are used, process one request at a time */
240	if (!mutex_trylock(&stop_cpus_mutex))
241		return -EAGAIN;
242	ret = __stop_cpus(cpumask, fn, arg);
243	mutex_unlock(&stop_cpus_mutex);
244	return ret;
245}
246
247static int cpu_stopper_thread(void *data)
248{
249	struct cpu_stopper *stopper = data;
250	struct cpu_stop_work *work;
251	int ret;
252
253repeat:
254	set_current_state(TASK_INTERRUPTIBLE);	/* mb paired w/ kthread_stop */
255
256	if (kthread_should_stop()) {
257		__set_current_state(TASK_RUNNING);
258		return 0;
259	}
260
261	work = NULL;
262	spin_lock_irq(&stopper->lock);
263	if (!list_empty(&stopper->works)) {
264		work = list_first_entry(&stopper->works,
265					struct cpu_stop_work, list);
266		list_del_init(&work->list);
267	}
268	spin_unlock_irq(&stopper->lock);
269
270	if (work) {
271		cpu_stop_fn_t fn = work->fn;
272		void *arg = work->arg;
273		struct cpu_stop_done *done = work->done;
274		char ksym_buf[KSYM_NAME_LEN] __maybe_unused;
275
276		__set_current_state(TASK_RUNNING);
277
278		/* cpu stop callbacks are not allowed to sleep */
279		preempt_disable();
280
 
 
 
 
281		ret = fn(arg);
282		if (ret)
283			done->ret = ret;
284
285		/* restore preemption and check it's still balanced */
286		preempt_enable();
 
 
 
287		WARN_ONCE(preempt_count(),
288			  "cpu_stop: %s(%p) leaked preempt count\n",
289			  kallsyms_lookup((unsigned long)fn, NULL, NULL, NULL,
290					  ksym_buf), arg);
 
291
292		cpu_stop_signal_done(done, true);
293	} else
294		schedule();
 
 
 
 
 
 
 
 
295
296	goto repeat;
 
 
297}
298
299extern void sched_set_stop_task(int cpu, struct task_struct *stop);
 
 
300
301/* manage stopper for a cpu, mostly lifted from sched migration thread mgmt */
302static int __cpuinit cpu_stop_cpu_callback(struct notifier_block *nfb,
303					   unsigned long action, void *hcpu)
 
304{
305	unsigned int cpu = (unsigned long)hcpu;
306	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
307	struct task_struct *p;
308
309	switch (action & ~CPU_TASKS_FROZEN) {
310	case CPU_UP_PREPARE:
311		BUG_ON(stopper->thread || stopper->enabled ||
312		       !list_empty(&stopper->works));
313		p = kthread_create_on_node(cpu_stopper_thread,
314					   stopper,
315					   cpu_to_node(cpu),
316					   "migration/%d", cpu);
317		if (IS_ERR(p))
318			return notifier_from_errno(PTR_ERR(p));
319		get_task_struct(p);
320		kthread_bind(p, cpu);
321		sched_set_stop_task(cpu, p);
322		stopper->thread = p;
323		break;
324
325	case CPU_ONLINE:
326		/* strictly unnecessary, as first user will wake it */
327		wake_up_process(stopper->thread);
328		/* mark enabled */
329		spin_lock_irq(&stopper->lock);
330		stopper->enabled = true;
331		spin_unlock_irq(&stopper->lock);
332		break;
333
334#ifdef CONFIG_HOTPLUG_CPU
335	case CPU_UP_CANCELED:
336	case CPU_POST_DEAD:
337	{
338		struct cpu_stop_work *work;
339
340		sched_set_stop_task(cpu, NULL);
341		/* kill the stopper */
342		kthread_stop(stopper->thread);
343		/* drain remaining works */
344		spin_lock_irq(&stopper->lock);
345		list_for_each_entry(work, &stopper->works, list)
346			cpu_stop_signal_done(work->done, false);
347		stopper->enabled = false;
348		spin_unlock_irq(&stopper->lock);
349		/* release the stopper */
350		put_task_struct(stopper->thread);
351		stopper->thread = NULL;
352		break;
353	}
354#endif
355	}
356
357	return NOTIFY_OK;
 
358}
359
360/*
361 * Give it a higher priority so that cpu stopper is available to other
362 * cpu notifiers.  It currently shares the same priority as sched
363 * migration_notifier.
364 */
365static struct notifier_block __cpuinitdata cpu_stop_cpu_notifier = {
366	.notifier_call	= cpu_stop_cpu_callback,
367	.priority	= 10,
368};
369
370static int __init cpu_stop_init(void)
371{
372	void *bcpu = (void *)(long)smp_processor_id();
373	unsigned int cpu;
374	int err;
375
376	for_each_possible_cpu(cpu) {
377		struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
378
379		spin_lock_init(&stopper->lock);
380		INIT_LIST_HEAD(&stopper->works);
381	}
382
383	/* start one for the boot cpu */
384	err = cpu_stop_cpu_callback(&cpu_stop_cpu_notifier, CPU_UP_PREPARE,
385				    bcpu);
386	BUG_ON(err != NOTIFY_OK);
387	cpu_stop_cpu_callback(&cpu_stop_cpu_notifier, CPU_ONLINE, bcpu);
388	register_cpu_notifier(&cpu_stop_cpu_notifier);
389
390	stop_machine_initialized = true;
391
392	return 0;
393}
394early_initcall(cpu_stop_init);
395
396#ifdef CONFIG_STOP_MACHINE
397
398/* This controls the threads on each CPU. */
399enum stopmachine_state {
400	/* Dummy starting state for thread. */
401	STOPMACHINE_NONE,
402	/* Awaiting everyone to be scheduled. */
403	STOPMACHINE_PREPARE,
404	/* Disable interrupts. */
405	STOPMACHINE_DISABLE_IRQ,
406	/* Run the function */
407	STOPMACHINE_RUN,
408	/* Exit */
409	STOPMACHINE_EXIT,
410};
411
412struct stop_machine_data {
413	int			(*fn)(void *);
414	void			*data;
415	/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
416	unsigned int		num_threads;
417	const struct cpumask	*active_cpus;
418
419	enum stopmachine_state	state;
420	atomic_t		thread_ack;
421};
422
423static void set_state(struct stop_machine_data *smdata,
424		      enum stopmachine_state newstate)
425{
426	/* Reset ack counter. */
427	atomic_set(&smdata->thread_ack, smdata->num_threads);
428	smp_wmb();
429	smdata->state = newstate;
430}
431
432/* Last one to ack a state moves to the next state. */
433static void ack_state(struct stop_machine_data *smdata)
434{
435	if (atomic_dec_and_test(&smdata->thread_ack))
436		set_state(smdata, smdata->state + 1);
437}
438
439/* This is the cpu_stop function which stops the CPU. */
440static int stop_machine_cpu_stop(void *data)
441{
442	struct stop_machine_data *smdata = data;
443	enum stopmachine_state curstate = STOPMACHINE_NONE;
444	int cpu = smp_processor_id(), err = 0;
445	unsigned long flags;
446	bool is_active;
447
448	/*
449	 * When called from stop_machine_from_inactive_cpu(), irq might
450	 * already be disabled.  Save the state and restore it on exit.
451	 */
452	local_save_flags(flags);
453
454	if (!smdata->active_cpus)
455		is_active = cpu == cpumask_first(cpu_online_mask);
456	else
457		is_active = cpumask_test_cpu(cpu, smdata->active_cpus);
458
459	/* Simple state machine */
460	do {
461		/* Chill out and ensure we re-read stopmachine_state. */
462		cpu_relax();
463		if (smdata->state != curstate) {
464			curstate = smdata->state;
465			switch (curstate) {
466			case STOPMACHINE_DISABLE_IRQ:
467				local_irq_disable();
468				hard_irq_disable();
469				break;
470			case STOPMACHINE_RUN:
471				if (is_active)
472					err = smdata->fn(smdata->data);
473				break;
474			default:
475				break;
476			}
477			ack_state(smdata);
478		}
479	} while (curstate != STOPMACHINE_EXIT);
480
481	local_irq_restore(flags);
482	return err;
483}
484
485int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
486{
487	struct stop_machine_data smdata = { .fn = fn, .data = data,
488					    .num_threads = num_online_cpus(),
489					    .active_cpus = cpus };
490
491	if (!stop_machine_initialized) {
492		/*
493		 * Handle the case where stop_machine() is called
494		 * early in boot before stop_machine() has been
495		 * initialized.
496		 */
497		unsigned long flags;
498		int ret;
499
500		WARN_ON_ONCE(smdata.num_threads != 1);
501
502		local_irq_save(flags);
503		hard_irq_disable();
504		ret = (*fn)(data);
505		local_irq_restore(flags);
506
507		return ret;
508	}
509
510	/* Set the initial state and stop all online cpus. */
511	set_state(&smdata, STOPMACHINE_PREPARE);
512	return stop_cpus(cpu_online_mask, stop_machine_cpu_stop, &smdata);
513}
514
515int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
516{
517	int ret;
518
519	/* No CPUs can come up or down during this. */
520	get_online_cpus();
521	ret = __stop_machine(fn, data, cpus);
522	put_online_cpus();
523	return ret;
524}
525EXPORT_SYMBOL_GPL(stop_machine);
526
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
527/**
528 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
529 * @fn: the function to run
530 * @data: the data ptr for the @fn()
531 * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
532 *
533 * This is identical to stop_machine() but can be called from a CPU which
534 * is not active.  The local CPU is in the process of hotplug (so no other
535 * CPU hotplug can start) and not marked active and doesn't have enough
536 * context to sleep.
537 *
538 * This function provides stop_machine() functionality for such state by
539 * using busy-wait for synchronization and executing @fn directly for local
540 * CPU.
541 *
542 * CONTEXT:
543 * Local CPU is inactive.  Temporarily stops all active CPUs.
544 *
545 * RETURNS:
546 * 0 if all executions of @fn returned 0, any non zero return value if any
547 * returned non zero.
548 */
549int stop_machine_from_inactive_cpu(int (*fn)(void *), void *data,
550				  const struct cpumask *cpus)
551{
552	struct stop_machine_data smdata = { .fn = fn, .data = data,
553					    .active_cpus = cpus };
554	struct cpu_stop_done done;
555	int ret;
556
557	/* Local CPU must be inactive and CPU hotplug in progress. */
558	BUG_ON(cpu_active(raw_smp_processor_id()));
559	smdata.num_threads = num_active_cpus() + 1;	/* +1 for local */
560
561	/* No proper task established and can't sleep - busy wait for lock. */
562	while (!mutex_trylock(&stop_cpus_mutex))
563		cpu_relax();
564
565	/* Schedule work on other CPUs and execute directly for local CPU */
566	set_state(&smdata, STOPMACHINE_PREPARE);
567	cpu_stop_init_done(&done, num_active_cpus());
568	queue_stop_cpus_work(cpu_active_mask, stop_machine_cpu_stop, &smdata,
569			     &done);
570	ret = stop_machine_cpu_stop(&smdata);
571
572	/* Busy wait for completion. */
573	while (!completion_done(&done.completion))
574		cpu_relax();
575
576	mutex_unlock(&stop_cpus_mutex);
577	return ret ?: done.ret;
578}
579
580#endif	/* CONFIG_STOP_MACHINE */