Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * kernel/sched/debug.c
4 *
5 * Print the CFS rbtree and other debugging details
6 *
7 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
8 */
9
10/*
11 * This allows printing both to /proc/sched_debug and
12 * to the console
13 */
14#define SEQ_printf(m, x...) \
15 do { \
16 if (m) \
17 seq_printf(m, x); \
18 else \
19 pr_cont(x); \
20 } while (0)
21
22/*
23 * Ease the printing of nsec fields:
24 */
25static long long nsec_high(unsigned long long nsec)
26{
27 if ((long long)nsec < 0) {
28 nsec = -nsec;
29 do_div(nsec, 1000000);
30 return -nsec;
31 }
32 do_div(nsec, 1000000);
33
34 return nsec;
35}
36
37static unsigned long nsec_low(unsigned long long nsec)
38{
39 if ((long long)nsec < 0)
40 nsec = -nsec;
41
42 return do_div(nsec, 1000000);
43}
44
45#define SPLIT_NS(x) nsec_high(x), nsec_low(x)
46
47#define SCHED_FEAT(name, enabled) \
48 #name ,
49
50static const char * const sched_feat_names[] = {
51#include "features.h"
52};
53
54#undef SCHED_FEAT
55
56static int sched_feat_show(struct seq_file *m, void *v)
57{
58 int i;
59
60 for (i = 0; i < __SCHED_FEAT_NR; i++) {
61 if (!(sysctl_sched_features & (1UL << i)))
62 seq_puts(m, "NO_");
63 seq_printf(m, "%s ", sched_feat_names[i]);
64 }
65 seq_puts(m, "\n");
66
67 return 0;
68}
69
70#ifdef CONFIG_JUMP_LABEL
71
72#define jump_label_key__true STATIC_KEY_INIT_TRUE
73#define jump_label_key__false STATIC_KEY_INIT_FALSE
74
75#define SCHED_FEAT(name, enabled) \
76 jump_label_key__##enabled ,
77
78struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
79#include "features.h"
80};
81
82#undef SCHED_FEAT
83
84static void sched_feat_disable(int i)
85{
86 static_key_disable_cpuslocked(&sched_feat_keys[i]);
87}
88
89static void sched_feat_enable(int i)
90{
91 static_key_enable_cpuslocked(&sched_feat_keys[i]);
92}
93#else
94static void sched_feat_disable(int i) { };
95static void sched_feat_enable(int i) { };
96#endif /* CONFIG_JUMP_LABEL */
97
98static int sched_feat_set(char *cmp)
99{
100 int i;
101 int neg = 0;
102
103 if (strncmp(cmp, "NO_", 3) == 0) {
104 neg = 1;
105 cmp += 3;
106 }
107
108 i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
109 if (i < 0)
110 return i;
111
112 if (neg) {
113 sysctl_sched_features &= ~(1UL << i);
114 sched_feat_disable(i);
115 } else {
116 sysctl_sched_features |= (1UL << i);
117 sched_feat_enable(i);
118 }
119
120 return 0;
121}
122
123static ssize_t
124sched_feat_write(struct file *filp, const char __user *ubuf,
125 size_t cnt, loff_t *ppos)
126{
127 char buf[64];
128 char *cmp;
129 int ret;
130 struct inode *inode;
131
132 if (cnt > 63)
133 cnt = 63;
134
135 if (copy_from_user(&buf, ubuf, cnt))
136 return -EFAULT;
137
138 buf[cnt] = 0;
139 cmp = strstrip(buf);
140
141 /* Ensure the static_key remains in a consistent state */
142 inode = file_inode(filp);
143 cpus_read_lock();
144 inode_lock(inode);
145 ret = sched_feat_set(cmp);
146 inode_unlock(inode);
147 cpus_read_unlock();
148 if (ret < 0)
149 return ret;
150
151 *ppos += cnt;
152
153 return cnt;
154}
155
156static int sched_feat_open(struct inode *inode, struct file *filp)
157{
158 return single_open(filp, sched_feat_show, NULL);
159}
160
161static const struct file_operations sched_feat_fops = {
162 .open = sched_feat_open,
163 .write = sched_feat_write,
164 .read = seq_read,
165 .llseek = seq_lseek,
166 .release = single_release,
167};
168
169#ifdef CONFIG_SMP
170
171static ssize_t sched_scaling_write(struct file *filp, const char __user *ubuf,
172 size_t cnt, loff_t *ppos)
173{
174 char buf[16];
175 unsigned int scaling;
176
177 if (cnt > 15)
178 cnt = 15;
179
180 if (copy_from_user(&buf, ubuf, cnt))
181 return -EFAULT;
182 buf[cnt] = '\0';
183
184 if (kstrtouint(buf, 10, &scaling))
185 return -EINVAL;
186
187 if (scaling >= SCHED_TUNABLESCALING_END)
188 return -EINVAL;
189
190 sysctl_sched_tunable_scaling = scaling;
191 if (sched_update_scaling())
192 return -EINVAL;
193
194 *ppos += cnt;
195 return cnt;
196}
197
198static int sched_scaling_show(struct seq_file *m, void *v)
199{
200 seq_printf(m, "%d\n", sysctl_sched_tunable_scaling);
201 return 0;
202}
203
204static int sched_scaling_open(struct inode *inode, struct file *filp)
205{
206 return single_open(filp, sched_scaling_show, NULL);
207}
208
209static const struct file_operations sched_scaling_fops = {
210 .open = sched_scaling_open,
211 .write = sched_scaling_write,
212 .read = seq_read,
213 .llseek = seq_lseek,
214 .release = single_release,
215};
216
217#endif /* SMP */
218
219#ifdef CONFIG_PREEMPT_DYNAMIC
220
221static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf,
222 size_t cnt, loff_t *ppos)
223{
224 char buf[16];
225 int mode;
226
227 if (cnt > 15)
228 cnt = 15;
229
230 if (copy_from_user(&buf, ubuf, cnt))
231 return -EFAULT;
232
233 buf[cnt] = 0;
234 mode = sched_dynamic_mode(strstrip(buf));
235 if (mode < 0)
236 return mode;
237
238 sched_dynamic_update(mode);
239
240 *ppos += cnt;
241
242 return cnt;
243}
244
245static int sched_dynamic_show(struct seq_file *m, void *v)
246{
247 static const char * preempt_modes[] = {
248 "none", "voluntary", "full"
249 };
250 int i;
251
252 for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) {
253 if (preempt_dynamic_mode == i)
254 seq_puts(m, "(");
255 seq_puts(m, preempt_modes[i]);
256 if (preempt_dynamic_mode == i)
257 seq_puts(m, ")");
258
259 seq_puts(m, " ");
260 }
261
262 seq_puts(m, "\n");
263 return 0;
264}
265
266static int sched_dynamic_open(struct inode *inode, struct file *filp)
267{
268 return single_open(filp, sched_dynamic_show, NULL);
269}
270
271static const struct file_operations sched_dynamic_fops = {
272 .open = sched_dynamic_open,
273 .write = sched_dynamic_write,
274 .read = seq_read,
275 .llseek = seq_lseek,
276 .release = single_release,
277};
278
279#endif /* CONFIG_PREEMPT_DYNAMIC */
280
281__read_mostly bool sched_debug_verbose;
282
283static const struct seq_operations sched_debug_sops;
284
285static int sched_debug_open(struct inode *inode, struct file *filp)
286{
287 return seq_open(filp, &sched_debug_sops);
288}
289
290static const struct file_operations sched_debug_fops = {
291 .open = sched_debug_open,
292 .read = seq_read,
293 .llseek = seq_lseek,
294 .release = seq_release,
295};
296
297static struct dentry *debugfs_sched;
298
299static __init int sched_init_debug(void)
300{
301 struct dentry __maybe_unused *numa;
302
303 debugfs_sched = debugfs_create_dir("sched", NULL);
304
305 debugfs_create_file("features", 0644, debugfs_sched, NULL, &sched_feat_fops);
306 debugfs_create_bool("verbose", 0644, debugfs_sched, &sched_debug_verbose);
307#ifdef CONFIG_PREEMPT_DYNAMIC
308 debugfs_create_file("preempt", 0644, debugfs_sched, NULL, &sched_dynamic_fops);
309#endif
310
311 debugfs_create_u32("latency_ns", 0644, debugfs_sched, &sysctl_sched_latency);
312 debugfs_create_u32("min_granularity_ns", 0644, debugfs_sched, &sysctl_sched_min_granularity);
313 debugfs_create_u32("idle_min_granularity_ns", 0644, debugfs_sched, &sysctl_sched_idle_min_granularity);
314 debugfs_create_u32("wakeup_granularity_ns", 0644, debugfs_sched, &sysctl_sched_wakeup_granularity);
315
316 debugfs_create_u32("latency_warn_ms", 0644, debugfs_sched, &sysctl_resched_latency_warn_ms);
317 debugfs_create_u32("latency_warn_once", 0644, debugfs_sched, &sysctl_resched_latency_warn_once);
318
319#ifdef CONFIG_SMP
320 debugfs_create_file("tunable_scaling", 0644, debugfs_sched, NULL, &sched_scaling_fops);
321 debugfs_create_u32("migration_cost_ns", 0644, debugfs_sched, &sysctl_sched_migration_cost);
322 debugfs_create_u32("nr_migrate", 0644, debugfs_sched, &sysctl_sched_nr_migrate);
323
324 mutex_lock(&sched_domains_mutex);
325 update_sched_domain_debugfs();
326 mutex_unlock(&sched_domains_mutex);
327#endif
328
329#ifdef CONFIG_NUMA_BALANCING
330 numa = debugfs_create_dir("numa_balancing", debugfs_sched);
331
332 debugfs_create_u32("scan_delay_ms", 0644, numa, &sysctl_numa_balancing_scan_delay);
333 debugfs_create_u32("scan_period_min_ms", 0644, numa, &sysctl_numa_balancing_scan_period_min);
334 debugfs_create_u32("scan_period_max_ms", 0644, numa, &sysctl_numa_balancing_scan_period_max);
335 debugfs_create_u32("scan_size_mb", 0644, numa, &sysctl_numa_balancing_scan_size);
336 debugfs_create_u32("hot_threshold_ms", 0644, numa, &sysctl_numa_balancing_hot_threshold);
337#endif
338
339 debugfs_create_file("debug", 0444, debugfs_sched, NULL, &sched_debug_fops);
340
341 return 0;
342}
343late_initcall(sched_init_debug);
344
345#ifdef CONFIG_SMP
346
347static cpumask_var_t sd_sysctl_cpus;
348static struct dentry *sd_dentry;
349
350static int sd_flags_show(struct seq_file *m, void *v)
351{
352 unsigned long flags = *(unsigned int *)m->private;
353 int idx;
354
355 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
356 seq_puts(m, sd_flag_debug[idx].name);
357 seq_puts(m, " ");
358 }
359 seq_puts(m, "\n");
360
361 return 0;
362}
363
364static int sd_flags_open(struct inode *inode, struct file *file)
365{
366 return single_open(file, sd_flags_show, inode->i_private);
367}
368
369static const struct file_operations sd_flags_fops = {
370 .open = sd_flags_open,
371 .read = seq_read,
372 .llseek = seq_lseek,
373 .release = single_release,
374};
375
376static void register_sd(struct sched_domain *sd, struct dentry *parent)
377{
378#define SDM(type, mode, member) \
379 debugfs_create_##type(#member, mode, parent, &sd->member)
380
381 SDM(ulong, 0644, min_interval);
382 SDM(ulong, 0644, max_interval);
383 SDM(u64, 0644, max_newidle_lb_cost);
384 SDM(u32, 0644, busy_factor);
385 SDM(u32, 0644, imbalance_pct);
386 SDM(u32, 0644, cache_nice_tries);
387 SDM(str, 0444, name);
388
389#undef SDM
390
391 debugfs_create_file("flags", 0444, parent, &sd->flags, &sd_flags_fops);
392}
393
394void update_sched_domain_debugfs(void)
395{
396 int cpu, i;
397
398 /*
399 * This can unfortunately be invoked before sched_debug_init() creates
400 * the debug directory. Don't touch sd_sysctl_cpus until then.
401 */
402 if (!debugfs_sched)
403 return;
404
405 if (!cpumask_available(sd_sysctl_cpus)) {
406 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
407 return;
408 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
409 }
410
411 if (!sd_dentry)
412 sd_dentry = debugfs_create_dir("domains", debugfs_sched);
413
414 for_each_cpu(cpu, sd_sysctl_cpus) {
415 struct sched_domain *sd;
416 struct dentry *d_cpu;
417 char buf[32];
418
419 snprintf(buf, sizeof(buf), "cpu%d", cpu);
420 debugfs_lookup_and_remove(buf, sd_dentry);
421 d_cpu = debugfs_create_dir(buf, sd_dentry);
422
423 i = 0;
424 for_each_domain(cpu, sd) {
425 struct dentry *d_sd;
426
427 snprintf(buf, sizeof(buf), "domain%d", i);
428 d_sd = debugfs_create_dir(buf, d_cpu);
429
430 register_sd(sd, d_sd);
431 i++;
432 }
433
434 __cpumask_clear_cpu(cpu, sd_sysctl_cpus);
435 }
436}
437
438void dirty_sched_domain_sysctl(int cpu)
439{
440 if (cpumask_available(sd_sysctl_cpus))
441 __cpumask_set_cpu(cpu, sd_sysctl_cpus);
442}
443
444#endif /* CONFIG_SMP */
445
446#ifdef CONFIG_FAIR_GROUP_SCHED
447static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
448{
449 struct sched_entity *se = tg->se[cpu];
450
451#define P(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F)
452#define P_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld\n", \
453 #F, (long long)schedstat_val(stats->F))
454#define PN(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
455#define PN_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", \
456 #F, SPLIT_NS((long long)schedstat_val(stats->F)))
457
458 if (!se)
459 return;
460
461 PN(se->exec_start);
462 PN(se->vruntime);
463 PN(se->sum_exec_runtime);
464
465 if (schedstat_enabled()) {
466 struct sched_statistics *stats;
467 stats = __schedstats_from_se(se);
468
469 PN_SCHEDSTAT(wait_start);
470 PN_SCHEDSTAT(sleep_start);
471 PN_SCHEDSTAT(block_start);
472 PN_SCHEDSTAT(sleep_max);
473 PN_SCHEDSTAT(block_max);
474 PN_SCHEDSTAT(exec_max);
475 PN_SCHEDSTAT(slice_max);
476 PN_SCHEDSTAT(wait_max);
477 PN_SCHEDSTAT(wait_sum);
478 P_SCHEDSTAT(wait_count);
479 }
480
481 P(se->load.weight);
482#ifdef CONFIG_SMP
483 P(se->avg.load_avg);
484 P(se->avg.util_avg);
485 P(se->avg.runnable_avg);
486#endif
487
488#undef PN_SCHEDSTAT
489#undef PN
490#undef P_SCHEDSTAT
491#undef P
492}
493#endif
494
495#ifdef CONFIG_CGROUP_SCHED
496static DEFINE_SPINLOCK(sched_debug_lock);
497static char group_path[PATH_MAX];
498
499static void task_group_path(struct task_group *tg, char *path, int plen)
500{
501 if (autogroup_path(tg, path, plen))
502 return;
503
504 cgroup_path(tg->css.cgroup, path, plen);
505}
506
507/*
508 * Only 1 SEQ_printf_task_group_path() caller can use the full length
509 * group_path[] for cgroup path. Other simultaneous callers will have
510 * to use a shorter stack buffer. A "..." suffix is appended at the end
511 * of the stack buffer so that it will show up in case the output length
512 * matches the given buffer size to indicate possible path name truncation.
513 */
514#define SEQ_printf_task_group_path(m, tg, fmt...) \
515{ \
516 if (spin_trylock(&sched_debug_lock)) { \
517 task_group_path(tg, group_path, sizeof(group_path)); \
518 SEQ_printf(m, fmt, group_path); \
519 spin_unlock(&sched_debug_lock); \
520 } else { \
521 char buf[128]; \
522 char *bufend = buf + sizeof(buf) - 3; \
523 task_group_path(tg, buf, bufend - buf); \
524 strcpy(bufend - 1, "..."); \
525 SEQ_printf(m, fmt, buf); \
526 } \
527}
528#endif
529
530static void
531print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
532{
533 if (task_current(rq, p))
534 SEQ_printf(m, ">R");
535 else
536 SEQ_printf(m, " %c", task_state_to_char(p));
537
538 SEQ_printf(m, " %15s %5d %9Ld.%06ld %9Ld %5d ",
539 p->comm, task_pid_nr(p),
540 SPLIT_NS(p->se.vruntime),
541 (long long)(p->nvcsw + p->nivcsw),
542 p->prio);
543
544 SEQ_printf(m, "%9lld.%06ld %9lld.%06ld %9lld.%06ld %9lld.%06ld",
545 SPLIT_NS(schedstat_val_or_zero(p->stats.wait_sum)),
546 SPLIT_NS(p->se.sum_exec_runtime),
547 SPLIT_NS(schedstat_val_or_zero(p->stats.sum_sleep_runtime)),
548 SPLIT_NS(schedstat_val_or_zero(p->stats.sum_block_runtime)));
549
550#ifdef CONFIG_NUMA_BALANCING
551 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
552#endif
553#ifdef CONFIG_CGROUP_SCHED
554 SEQ_printf_task_group_path(m, task_group(p), " %s")
555#endif
556
557 SEQ_printf(m, "\n");
558}
559
560static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
561{
562 struct task_struct *g, *p;
563
564 SEQ_printf(m, "\n");
565 SEQ_printf(m, "runnable tasks:\n");
566 SEQ_printf(m, " S task PID tree-key switches prio"
567 " wait-time sum-exec sum-sleep\n");
568 SEQ_printf(m, "-------------------------------------------------------"
569 "------------------------------------------------------\n");
570
571 rcu_read_lock();
572 for_each_process_thread(g, p) {
573 if (task_cpu(p) != rq_cpu)
574 continue;
575
576 print_task(m, rq, p);
577 }
578 rcu_read_unlock();
579}
580
581void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
582{
583 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
584 spread, rq0_min_vruntime, spread0;
585 struct rq *rq = cpu_rq(cpu);
586 struct sched_entity *last;
587 unsigned long flags;
588
589#ifdef CONFIG_FAIR_GROUP_SCHED
590 SEQ_printf(m, "\n");
591 SEQ_printf_task_group_path(m, cfs_rq->tg, "cfs_rq[%d]:%s\n", cpu);
592#else
593 SEQ_printf(m, "\n");
594 SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
595#endif
596 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
597 SPLIT_NS(cfs_rq->exec_clock));
598
599 raw_spin_rq_lock_irqsave(rq, flags);
600 if (rb_first_cached(&cfs_rq->tasks_timeline))
601 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
602 last = __pick_last_entity(cfs_rq);
603 if (last)
604 max_vruntime = last->vruntime;
605 min_vruntime = cfs_rq->min_vruntime;
606 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
607 raw_spin_rq_unlock_irqrestore(rq, flags);
608 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime",
609 SPLIT_NS(MIN_vruntime));
610 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
611 SPLIT_NS(min_vruntime));
612 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime",
613 SPLIT_NS(max_vruntime));
614 spread = max_vruntime - MIN_vruntime;
615 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread",
616 SPLIT_NS(spread));
617 spread0 = min_vruntime - rq0_min_vruntime;
618 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0",
619 SPLIT_NS(spread0));
620 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over",
621 cfs_rq->nr_spread_over);
622 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
623 SEQ_printf(m, " .%-30s: %d\n", "h_nr_running", cfs_rq->h_nr_running);
624 SEQ_printf(m, " .%-30s: %d\n", "idle_nr_running",
625 cfs_rq->idle_nr_running);
626 SEQ_printf(m, " .%-30s: %d\n", "idle_h_nr_running",
627 cfs_rq->idle_h_nr_running);
628 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
629#ifdef CONFIG_SMP
630 SEQ_printf(m, " .%-30s: %lu\n", "load_avg",
631 cfs_rq->avg.load_avg);
632 SEQ_printf(m, " .%-30s: %lu\n", "runnable_avg",
633 cfs_rq->avg.runnable_avg);
634 SEQ_printf(m, " .%-30s: %lu\n", "util_avg",
635 cfs_rq->avg.util_avg);
636 SEQ_printf(m, " .%-30s: %u\n", "util_est_enqueued",
637 cfs_rq->avg.util_est.enqueued);
638 SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg",
639 cfs_rq->removed.load_avg);
640 SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg",
641 cfs_rq->removed.util_avg);
642 SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_avg",
643 cfs_rq->removed.runnable_avg);
644#ifdef CONFIG_FAIR_GROUP_SCHED
645 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib",
646 cfs_rq->tg_load_avg_contrib);
647 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg",
648 atomic_long_read(&cfs_rq->tg->load_avg));
649#endif
650#endif
651#ifdef CONFIG_CFS_BANDWIDTH
652 SEQ_printf(m, " .%-30s: %d\n", "throttled",
653 cfs_rq->throttled);
654 SEQ_printf(m, " .%-30s: %d\n", "throttle_count",
655 cfs_rq->throttle_count);
656#endif
657
658#ifdef CONFIG_FAIR_GROUP_SCHED
659 print_cfs_group_stats(m, cpu, cfs_rq->tg);
660#endif
661}
662
663void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
664{
665#ifdef CONFIG_RT_GROUP_SCHED
666 SEQ_printf(m, "\n");
667 SEQ_printf_task_group_path(m, rt_rq->tg, "rt_rq[%d]:%s\n", cpu);
668#else
669 SEQ_printf(m, "\n");
670 SEQ_printf(m, "rt_rq[%d]:\n", cpu);
671#endif
672
673#define P(x) \
674 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
675#define PU(x) \
676 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
677#define PN(x) \
678 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
679
680 PU(rt_nr_running);
681#ifdef CONFIG_SMP
682 PU(rt_nr_migratory);
683#endif
684 P(rt_throttled);
685 PN(rt_time);
686 PN(rt_runtime);
687
688#undef PN
689#undef PU
690#undef P
691}
692
693void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
694{
695 struct dl_bw *dl_bw;
696
697 SEQ_printf(m, "\n");
698 SEQ_printf(m, "dl_rq[%d]:\n", cpu);
699
700#define PU(x) \
701 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
702
703 PU(dl_nr_running);
704#ifdef CONFIG_SMP
705 PU(dl_nr_migratory);
706 dl_bw = &cpu_rq(cpu)->rd->dl_bw;
707#else
708 dl_bw = &dl_rq->dl_bw;
709#endif
710 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
711 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
712
713#undef PU
714}
715
716static void print_cpu(struct seq_file *m, int cpu)
717{
718 struct rq *rq = cpu_rq(cpu);
719
720#ifdef CONFIG_X86
721 {
722 unsigned int freq = cpu_khz ? : 1;
723
724 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
725 cpu, freq / 1000, (freq % 1000));
726 }
727#else
728 SEQ_printf(m, "cpu#%d\n", cpu);
729#endif
730
731#define P(x) \
732do { \
733 if (sizeof(rq->x) == 4) \
734 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \
735 else \
736 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\
737} while (0)
738
739#define PN(x) \
740 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
741
742 P(nr_running);
743 P(nr_switches);
744 P(nr_uninterruptible);
745 PN(next_balance);
746 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
747 PN(clock);
748 PN(clock_task);
749#undef P
750#undef PN
751
752#ifdef CONFIG_SMP
753#define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n);
754 P64(avg_idle);
755 P64(max_idle_balance_cost);
756#undef P64
757#endif
758
759#define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n));
760 if (schedstat_enabled()) {
761 P(yld_count);
762 P(sched_count);
763 P(sched_goidle);
764 P(ttwu_count);
765 P(ttwu_local);
766 }
767#undef P
768
769 print_cfs_stats(m, cpu);
770 print_rt_stats(m, cpu);
771 print_dl_stats(m, cpu);
772
773 print_rq(m, rq, cpu);
774 SEQ_printf(m, "\n");
775}
776
777static const char *sched_tunable_scaling_names[] = {
778 "none",
779 "logarithmic",
780 "linear"
781};
782
783static void sched_debug_header(struct seq_file *m)
784{
785 u64 ktime, sched_clk, cpu_clk;
786 unsigned long flags;
787
788 local_irq_save(flags);
789 ktime = ktime_to_ns(ktime_get());
790 sched_clk = sched_clock();
791 cpu_clk = local_clock();
792 local_irq_restore(flags);
793
794 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
795 init_utsname()->release,
796 (int)strcspn(init_utsname()->version, " "),
797 init_utsname()->version);
798
799#define P(x) \
800 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
801#define PN(x) \
802 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
803 PN(ktime);
804 PN(sched_clk);
805 PN(cpu_clk);
806 P(jiffies);
807#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
808 P(sched_clock_stable());
809#endif
810#undef PN
811#undef P
812
813 SEQ_printf(m, "\n");
814 SEQ_printf(m, "sysctl_sched\n");
815
816#define P(x) \
817 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
818#define PN(x) \
819 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
820 PN(sysctl_sched_latency);
821 PN(sysctl_sched_min_granularity);
822 PN(sysctl_sched_idle_min_granularity);
823 PN(sysctl_sched_wakeup_granularity);
824 P(sysctl_sched_child_runs_first);
825 P(sysctl_sched_features);
826#undef PN
827#undef P
828
829 SEQ_printf(m, " .%-40s: %d (%s)\n",
830 "sysctl_sched_tunable_scaling",
831 sysctl_sched_tunable_scaling,
832 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
833 SEQ_printf(m, "\n");
834}
835
836static int sched_debug_show(struct seq_file *m, void *v)
837{
838 int cpu = (unsigned long)(v - 2);
839
840 if (cpu != -1)
841 print_cpu(m, cpu);
842 else
843 sched_debug_header(m);
844
845 return 0;
846}
847
848void sysrq_sched_debug_show(void)
849{
850 int cpu;
851
852 sched_debug_header(NULL);
853 for_each_online_cpu(cpu) {
854 /*
855 * Need to reset softlockup watchdogs on all CPUs, because
856 * another CPU might be blocked waiting for us to process
857 * an IPI or stop_machine.
858 */
859 touch_nmi_watchdog();
860 touch_all_softlockup_watchdogs();
861 print_cpu(NULL, cpu);
862 }
863}
864
865/*
866 * This iterator needs some explanation.
867 * It returns 1 for the header position.
868 * This means 2 is CPU 0.
869 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
870 * to use cpumask_* to iterate over the CPUs.
871 */
872static void *sched_debug_start(struct seq_file *file, loff_t *offset)
873{
874 unsigned long n = *offset;
875
876 if (n == 0)
877 return (void *) 1;
878
879 n--;
880
881 if (n > 0)
882 n = cpumask_next(n - 1, cpu_online_mask);
883 else
884 n = cpumask_first(cpu_online_mask);
885
886 *offset = n + 1;
887
888 if (n < nr_cpu_ids)
889 return (void *)(unsigned long)(n + 2);
890
891 return NULL;
892}
893
894static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
895{
896 (*offset)++;
897 return sched_debug_start(file, offset);
898}
899
900static void sched_debug_stop(struct seq_file *file, void *data)
901{
902}
903
904static const struct seq_operations sched_debug_sops = {
905 .start = sched_debug_start,
906 .next = sched_debug_next,
907 .stop = sched_debug_stop,
908 .show = sched_debug_show,
909};
910
911#define __PS(S, F) SEQ_printf(m, "%-45s:%21Ld\n", S, (long long)(F))
912#define __P(F) __PS(#F, F)
913#define P(F) __PS(#F, p->F)
914#define PM(F, M) __PS(#F, p->F & (M))
915#define __PSN(S, F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", S, SPLIT_NS((long long)(F)))
916#define __PN(F) __PSN(#F, F)
917#define PN(F) __PSN(#F, p->F)
918
919
920#ifdef CONFIG_NUMA_BALANCING
921void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
922 unsigned long tpf, unsigned long gsf, unsigned long gpf)
923{
924 SEQ_printf(m, "numa_faults node=%d ", node);
925 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
926 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
927}
928#endif
929
930
931static void sched_show_numa(struct task_struct *p, struct seq_file *m)
932{
933#ifdef CONFIG_NUMA_BALANCING
934 if (p->mm)
935 P(mm->numa_scan_seq);
936
937 P(numa_pages_migrated);
938 P(numa_preferred_nid);
939 P(total_numa_faults);
940 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
941 task_node(p), task_numa_group_id(p));
942 show_numa_stats(p, m);
943#endif
944}
945
946void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
947 struct seq_file *m)
948{
949 unsigned long nr_switches;
950
951 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
952 get_nr_threads(p));
953 SEQ_printf(m,
954 "---------------------------------------------------------"
955 "----------\n");
956
957#define P_SCHEDSTAT(F) __PS(#F, schedstat_val(p->stats.F))
958#define PN_SCHEDSTAT(F) __PSN(#F, schedstat_val(p->stats.F))
959
960 PN(se.exec_start);
961 PN(se.vruntime);
962 PN(se.sum_exec_runtime);
963
964 nr_switches = p->nvcsw + p->nivcsw;
965
966 P(se.nr_migrations);
967
968 if (schedstat_enabled()) {
969 u64 avg_atom, avg_per_cpu;
970
971 PN_SCHEDSTAT(sum_sleep_runtime);
972 PN_SCHEDSTAT(sum_block_runtime);
973 PN_SCHEDSTAT(wait_start);
974 PN_SCHEDSTAT(sleep_start);
975 PN_SCHEDSTAT(block_start);
976 PN_SCHEDSTAT(sleep_max);
977 PN_SCHEDSTAT(block_max);
978 PN_SCHEDSTAT(exec_max);
979 PN_SCHEDSTAT(slice_max);
980 PN_SCHEDSTAT(wait_max);
981 PN_SCHEDSTAT(wait_sum);
982 P_SCHEDSTAT(wait_count);
983 PN_SCHEDSTAT(iowait_sum);
984 P_SCHEDSTAT(iowait_count);
985 P_SCHEDSTAT(nr_migrations_cold);
986 P_SCHEDSTAT(nr_failed_migrations_affine);
987 P_SCHEDSTAT(nr_failed_migrations_running);
988 P_SCHEDSTAT(nr_failed_migrations_hot);
989 P_SCHEDSTAT(nr_forced_migrations);
990 P_SCHEDSTAT(nr_wakeups);
991 P_SCHEDSTAT(nr_wakeups_sync);
992 P_SCHEDSTAT(nr_wakeups_migrate);
993 P_SCHEDSTAT(nr_wakeups_local);
994 P_SCHEDSTAT(nr_wakeups_remote);
995 P_SCHEDSTAT(nr_wakeups_affine);
996 P_SCHEDSTAT(nr_wakeups_affine_attempts);
997 P_SCHEDSTAT(nr_wakeups_passive);
998 P_SCHEDSTAT(nr_wakeups_idle);
999
1000 avg_atom = p->se.sum_exec_runtime;
1001 if (nr_switches)
1002 avg_atom = div64_ul(avg_atom, nr_switches);
1003 else
1004 avg_atom = -1LL;
1005
1006 avg_per_cpu = p->se.sum_exec_runtime;
1007 if (p->se.nr_migrations) {
1008 avg_per_cpu = div64_u64(avg_per_cpu,
1009 p->se.nr_migrations);
1010 } else {
1011 avg_per_cpu = -1LL;
1012 }
1013
1014 __PN(avg_atom);
1015 __PN(avg_per_cpu);
1016
1017#ifdef CONFIG_SCHED_CORE
1018 PN_SCHEDSTAT(core_forceidle_sum);
1019#endif
1020 }
1021
1022 __P(nr_switches);
1023 __PS("nr_voluntary_switches", p->nvcsw);
1024 __PS("nr_involuntary_switches", p->nivcsw);
1025
1026 P(se.load.weight);
1027#ifdef CONFIG_SMP
1028 P(se.avg.load_sum);
1029 P(se.avg.runnable_sum);
1030 P(se.avg.util_sum);
1031 P(se.avg.load_avg);
1032 P(se.avg.runnable_avg);
1033 P(se.avg.util_avg);
1034 P(se.avg.last_update_time);
1035 P(se.avg.util_est.ewma);
1036 PM(se.avg.util_est.enqueued, ~UTIL_AVG_UNCHANGED);
1037#endif
1038#ifdef CONFIG_UCLAMP_TASK
1039 __PS("uclamp.min", p->uclamp_req[UCLAMP_MIN].value);
1040 __PS("uclamp.max", p->uclamp_req[UCLAMP_MAX].value);
1041 __PS("effective uclamp.min", uclamp_eff_value(p, UCLAMP_MIN));
1042 __PS("effective uclamp.max", uclamp_eff_value(p, UCLAMP_MAX));
1043#endif
1044 P(policy);
1045 P(prio);
1046 if (task_has_dl_policy(p)) {
1047 P(dl.runtime);
1048 P(dl.deadline);
1049 }
1050#undef PN_SCHEDSTAT
1051#undef P_SCHEDSTAT
1052
1053 {
1054 unsigned int this_cpu = raw_smp_processor_id();
1055 u64 t0, t1;
1056
1057 t0 = cpu_clock(this_cpu);
1058 t1 = cpu_clock(this_cpu);
1059 __PS("clock-delta", t1-t0);
1060 }
1061
1062 sched_show_numa(p, m);
1063}
1064
1065void proc_sched_set_task(struct task_struct *p)
1066{
1067#ifdef CONFIG_SCHEDSTATS
1068 memset(&p->stats, 0, sizeof(p->stats));
1069#endif
1070}
1071
1072void resched_latency_warn(int cpu, u64 latency)
1073{
1074 static DEFINE_RATELIMIT_STATE(latency_check_ratelimit, 60 * 60 * HZ, 1);
1075
1076 WARN(__ratelimit(&latency_check_ratelimit),
1077 "sched: CPU %d need_resched set for > %llu ns (%d ticks) "
1078 "without schedule\n",
1079 cpu, latency, cpu_rq(cpu)->ticks_without_resched);
1080}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * kernel/sched/debug.c
4 *
5 * Print the CFS rbtree and other debugging details
6 *
7 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
8 */
9#include "sched.h"
10
11static DEFINE_SPINLOCK(sched_debug_lock);
12
13/*
14 * This allows printing both to /proc/sched_debug and
15 * to the console
16 */
17#define SEQ_printf(m, x...) \
18 do { \
19 if (m) \
20 seq_printf(m, x); \
21 else \
22 pr_cont(x); \
23 } while (0)
24
25/*
26 * Ease the printing of nsec fields:
27 */
28static long long nsec_high(unsigned long long nsec)
29{
30 if ((long long)nsec < 0) {
31 nsec = -nsec;
32 do_div(nsec, 1000000);
33 return -nsec;
34 }
35 do_div(nsec, 1000000);
36
37 return nsec;
38}
39
40static unsigned long nsec_low(unsigned long long nsec)
41{
42 if ((long long)nsec < 0)
43 nsec = -nsec;
44
45 return do_div(nsec, 1000000);
46}
47
48#define SPLIT_NS(x) nsec_high(x), nsec_low(x)
49
50#define SCHED_FEAT(name, enabled) \
51 #name ,
52
53static const char * const sched_feat_names[] = {
54#include "features.h"
55};
56
57#undef SCHED_FEAT
58
59static int sched_feat_show(struct seq_file *m, void *v)
60{
61 int i;
62
63 for (i = 0; i < __SCHED_FEAT_NR; i++) {
64 if (!(sysctl_sched_features & (1UL << i)))
65 seq_puts(m, "NO_");
66 seq_printf(m, "%s ", sched_feat_names[i]);
67 }
68 seq_puts(m, "\n");
69
70 return 0;
71}
72
73#ifdef CONFIG_JUMP_LABEL
74
75#define jump_label_key__true STATIC_KEY_INIT_TRUE
76#define jump_label_key__false STATIC_KEY_INIT_FALSE
77
78#define SCHED_FEAT(name, enabled) \
79 jump_label_key__##enabled ,
80
81struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
82#include "features.h"
83};
84
85#undef SCHED_FEAT
86
87static void sched_feat_disable(int i)
88{
89 static_key_disable_cpuslocked(&sched_feat_keys[i]);
90}
91
92static void sched_feat_enable(int i)
93{
94 static_key_enable_cpuslocked(&sched_feat_keys[i]);
95}
96#else
97static void sched_feat_disable(int i) { };
98static void sched_feat_enable(int i) { };
99#endif /* CONFIG_JUMP_LABEL */
100
101static int sched_feat_set(char *cmp)
102{
103 int i;
104 int neg = 0;
105
106 if (strncmp(cmp, "NO_", 3) == 0) {
107 neg = 1;
108 cmp += 3;
109 }
110
111 i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
112 if (i < 0)
113 return i;
114
115 if (neg) {
116 sysctl_sched_features &= ~(1UL << i);
117 sched_feat_disable(i);
118 } else {
119 sysctl_sched_features |= (1UL << i);
120 sched_feat_enable(i);
121 }
122
123 return 0;
124}
125
126static ssize_t
127sched_feat_write(struct file *filp, const char __user *ubuf,
128 size_t cnt, loff_t *ppos)
129{
130 char buf[64];
131 char *cmp;
132 int ret;
133 struct inode *inode;
134
135 if (cnt > 63)
136 cnt = 63;
137
138 if (copy_from_user(&buf, ubuf, cnt))
139 return -EFAULT;
140
141 buf[cnt] = 0;
142 cmp = strstrip(buf);
143
144 /* Ensure the static_key remains in a consistent state */
145 inode = file_inode(filp);
146 cpus_read_lock();
147 inode_lock(inode);
148 ret = sched_feat_set(cmp);
149 inode_unlock(inode);
150 cpus_read_unlock();
151 if (ret < 0)
152 return ret;
153
154 *ppos += cnt;
155
156 return cnt;
157}
158
159static int sched_feat_open(struct inode *inode, struct file *filp)
160{
161 return single_open(filp, sched_feat_show, NULL);
162}
163
164static const struct file_operations sched_feat_fops = {
165 .open = sched_feat_open,
166 .write = sched_feat_write,
167 .read = seq_read,
168 .llseek = seq_lseek,
169 .release = single_release,
170};
171
172__read_mostly bool sched_debug_enabled;
173
174static __init int sched_init_debug(void)
175{
176 debugfs_create_file("sched_features", 0644, NULL, NULL,
177 &sched_feat_fops);
178
179 debugfs_create_bool("sched_debug", 0644, NULL,
180 &sched_debug_enabled);
181
182 return 0;
183}
184late_initcall(sched_init_debug);
185
186#ifdef CONFIG_SMP
187
188#ifdef CONFIG_SYSCTL
189
190static struct ctl_table sd_ctl_dir[] = {
191 {
192 .procname = "sched_domain",
193 .mode = 0555,
194 },
195 {}
196};
197
198static struct ctl_table sd_ctl_root[] = {
199 {
200 .procname = "kernel",
201 .mode = 0555,
202 .child = sd_ctl_dir,
203 },
204 {}
205};
206
207static struct ctl_table *sd_alloc_ctl_entry(int n)
208{
209 struct ctl_table *entry =
210 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
211
212 return entry;
213}
214
215static void sd_free_ctl_entry(struct ctl_table **tablep)
216{
217 struct ctl_table *entry;
218
219 /*
220 * In the intermediate directories, both the child directory and
221 * procname are dynamically allocated and could fail but the mode
222 * will always be set. In the lowest directory the names are
223 * static strings and all have proc handlers.
224 */
225 for (entry = *tablep; entry->mode; entry++) {
226 if (entry->child)
227 sd_free_ctl_entry(&entry->child);
228 if (entry->proc_handler == NULL)
229 kfree(entry->procname);
230 }
231
232 kfree(*tablep);
233 *tablep = NULL;
234}
235
236static void
237set_table_entry(struct ctl_table *entry,
238 const char *procname, void *data, int maxlen,
239 umode_t mode, proc_handler *proc_handler)
240{
241 entry->procname = procname;
242 entry->data = data;
243 entry->maxlen = maxlen;
244 entry->mode = mode;
245 entry->proc_handler = proc_handler;
246}
247
248static struct ctl_table *
249sd_alloc_ctl_domain_table(struct sched_domain *sd)
250{
251 struct ctl_table *table = sd_alloc_ctl_entry(9);
252
253 if (table == NULL)
254 return NULL;
255
256 set_table_entry(&table[0], "min_interval", &sd->min_interval, sizeof(long), 0644, proc_doulongvec_minmax);
257 set_table_entry(&table[1], "max_interval", &sd->max_interval, sizeof(long), 0644, proc_doulongvec_minmax);
258 set_table_entry(&table[2], "busy_factor", &sd->busy_factor, sizeof(int), 0644, proc_dointvec_minmax);
259 set_table_entry(&table[3], "imbalance_pct", &sd->imbalance_pct, sizeof(int), 0644, proc_dointvec_minmax);
260 set_table_entry(&table[4], "cache_nice_tries", &sd->cache_nice_tries, sizeof(int), 0644, proc_dointvec_minmax);
261 set_table_entry(&table[5], "flags", &sd->flags, sizeof(int), 0444, proc_dointvec_minmax);
262 set_table_entry(&table[6], "max_newidle_lb_cost", &sd->max_newidle_lb_cost, sizeof(long), 0644, proc_doulongvec_minmax);
263 set_table_entry(&table[7], "name", sd->name, CORENAME_MAX_SIZE, 0444, proc_dostring);
264 /* &table[8] is terminator */
265
266 return table;
267}
268
269static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
270{
271 struct ctl_table *entry, *table;
272 struct sched_domain *sd;
273 int domain_num = 0, i;
274 char buf[32];
275
276 for_each_domain(cpu, sd)
277 domain_num++;
278 entry = table = sd_alloc_ctl_entry(domain_num + 1);
279 if (table == NULL)
280 return NULL;
281
282 i = 0;
283 for_each_domain(cpu, sd) {
284 snprintf(buf, 32, "domain%d", i);
285 entry->procname = kstrdup(buf, GFP_KERNEL);
286 entry->mode = 0555;
287 entry->child = sd_alloc_ctl_domain_table(sd);
288 entry++;
289 i++;
290 }
291 return table;
292}
293
294static cpumask_var_t sd_sysctl_cpus;
295static struct ctl_table_header *sd_sysctl_header;
296
297void register_sched_domain_sysctl(void)
298{
299 static struct ctl_table *cpu_entries;
300 static struct ctl_table **cpu_idx;
301 static bool init_done = false;
302 char buf[32];
303 int i;
304
305 if (!cpu_entries) {
306 cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1);
307 if (!cpu_entries)
308 return;
309
310 WARN_ON(sd_ctl_dir[0].child);
311 sd_ctl_dir[0].child = cpu_entries;
312 }
313
314 if (!cpu_idx) {
315 struct ctl_table *e = cpu_entries;
316
317 cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL);
318 if (!cpu_idx)
319 return;
320
321 /* deal with sparse possible map */
322 for_each_possible_cpu(i) {
323 cpu_idx[i] = e;
324 e++;
325 }
326 }
327
328 if (!cpumask_available(sd_sysctl_cpus)) {
329 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
330 return;
331 }
332
333 if (!init_done) {
334 init_done = true;
335 /* init to possible to not have holes in @cpu_entries */
336 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
337 }
338
339 for_each_cpu(i, sd_sysctl_cpus) {
340 struct ctl_table *e = cpu_idx[i];
341
342 if (e->child)
343 sd_free_ctl_entry(&e->child);
344
345 if (!e->procname) {
346 snprintf(buf, 32, "cpu%d", i);
347 e->procname = kstrdup(buf, GFP_KERNEL);
348 }
349 e->mode = 0555;
350 e->child = sd_alloc_ctl_cpu_table(i);
351
352 __cpumask_clear_cpu(i, sd_sysctl_cpus);
353 }
354
355 WARN_ON(sd_sysctl_header);
356 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
357}
358
359void dirty_sched_domain_sysctl(int cpu)
360{
361 if (cpumask_available(sd_sysctl_cpus))
362 __cpumask_set_cpu(cpu, sd_sysctl_cpus);
363}
364
365/* may be called multiple times per register */
366void unregister_sched_domain_sysctl(void)
367{
368 unregister_sysctl_table(sd_sysctl_header);
369 sd_sysctl_header = NULL;
370}
371#endif /* CONFIG_SYSCTL */
372#endif /* CONFIG_SMP */
373
374#ifdef CONFIG_FAIR_GROUP_SCHED
375static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
376{
377 struct sched_entity *se = tg->se[cpu];
378
379#define P(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F)
380#define P_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)schedstat_val(F))
381#define PN(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
382#define PN_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
383
384 if (!se)
385 return;
386
387 PN(se->exec_start);
388 PN(se->vruntime);
389 PN(se->sum_exec_runtime);
390
391 if (schedstat_enabled()) {
392 PN_SCHEDSTAT(se->statistics.wait_start);
393 PN_SCHEDSTAT(se->statistics.sleep_start);
394 PN_SCHEDSTAT(se->statistics.block_start);
395 PN_SCHEDSTAT(se->statistics.sleep_max);
396 PN_SCHEDSTAT(se->statistics.block_max);
397 PN_SCHEDSTAT(se->statistics.exec_max);
398 PN_SCHEDSTAT(se->statistics.slice_max);
399 PN_SCHEDSTAT(se->statistics.wait_max);
400 PN_SCHEDSTAT(se->statistics.wait_sum);
401 P_SCHEDSTAT(se->statistics.wait_count);
402 }
403
404 P(se->load.weight);
405#ifdef CONFIG_SMP
406 P(se->avg.load_avg);
407 P(se->avg.util_avg);
408 P(se->avg.runnable_avg);
409#endif
410
411#undef PN_SCHEDSTAT
412#undef PN
413#undef P_SCHEDSTAT
414#undef P
415}
416#endif
417
418#ifdef CONFIG_CGROUP_SCHED
419static char group_path[PATH_MAX];
420
421static char *task_group_path(struct task_group *tg)
422{
423 if (autogroup_path(tg, group_path, PATH_MAX))
424 return group_path;
425
426 cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
427
428 return group_path;
429}
430#endif
431
432static void
433print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
434{
435 if (rq->curr == p)
436 SEQ_printf(m, ">R");
437 else
438 SEQ_printf(m, " %c", task_state_to_char(p));
439
440 SEQ_printf(m, " %15s %5d %9Ld.%06ld %9Ld %5d ",
441 p->comm, task_pid_nr(p),
442 SPLIT_NS(p->se.vruntime),
443 (long long)(p->nvcsw + p->nivcsw),
444 p->prio);
445
446 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
447 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
448 SPLIT_NS(p->se.sum_exec_runtime),
449 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
450
451#ifdef CONFIG_NUMA_BALANCING
452 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
453#endif
454#ifdef CONFIG_CGROUP_SCHED
455 SEQ_printf(m, " %s", task_group_path(task_group(p)));
456#endif
457
458 SEQ_printf(m, "\n");
459}
460
461static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
462{
463 struct task_struct *g, *p;
464
465 SEQ_printf(m, "\n");
466 SEQ_printf(m, "runnable tasks:\n");
467 SEQ_printf(m, " S task PID tree-key switches prio"
468 " wait-time sum-exec sum-sleep\n");
469 SEQ_printf(m, "-------------------------------------------------------"
470 "------------------------------------------------------\n");
471
472 rcu_read_lock();
473 for_each_process_thread(g, p) {
474 if (task_cpu(p) != rq_cpu)
475 continue;
476
477 print_task(m, rq, p);
478 }
479 rcu_read_unlock();
480}
481
482void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
483{
484 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
485 spread, rq0_min_vruntime, spread0;
486 struct rq *rq = cpu_rq(cpu);
487 struct sched_entity *last;
488 unsigned long flags;
489
490#ifdef CONFIG_FAIR_GROUP_SCHED
491 SEQ_printf(m, "\n");
492 SEQ_printf(m, "cfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
493#else
494 SEQ_printf(m, "\n");
495 SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
496#endif
497 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
498 SPLIT_NS(cfs_rq->exec_clock));
499
500 raw_spin_lock_irqsave(&rq->lock, flags);
501 if (rb_first_cached(&cfs_rq->tasks_timeline))
502 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
503 last = __pick_last_entity(cfs_rq);
504 if (last)
505 max_vruntime = last->vruntime;
506 min_vruntime = cfs_rq->min_vruntime;
507 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
508 raw_spin_unlock_irqrestore(&rq->lock, flags);
509 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime",
510 SPLIT_NS(MIN_vruntime));
511 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
512 SPLIT_NS(min_vruntime));
513 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime",
514 SPLIT_NS(max_vruntime));
515 spread = max_vruntime - MIN_vruntime;
516 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread",
517 SPLIT_NS(spread));
518 spread0 = min_vruntime - rq0_min_vruntime;
519 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0",
520 SPLIT_NS(spread0));
521 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over",
522 cfs_rq->nr_spread_over);
523 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
524 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
525#ifdef CONFIG_SMP
526 SEQ_printf(m, " .%-30s: %lu\n", "load_avg",
527 cfs_rq->avg.load_avg);
528 SEQ_printf(m, " .%-30s: %lu\n", "runnable_avg",
529 cfs_rq->avg.runnable_avg);
530 SEQ_printf(m, " .%-30s: %lu\n", "util_avg",
531 cfs_rq->avg.util_avg);
532 SEQ_printf(m, " .%-30s: %u\n", "util_est_enqueued",
533 cfs_rq->avg.util_est.enqueued);
534 SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg",
535 cfs_rq->removed.load_avg);
536 SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg",
537 cfs_rq->removed.util_avg);
538 SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_avg",
539 cfs_rq->removed.runnable_avg);
540#ifdef CONFIG_FAIR_GROUP_SCHED
541 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib",
542 cfs_rq->tg_load_avg_contrib);
543 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg",
544 atomic_long_read(&cfs_rq->tg->load_avg));
545#endif
546#endif
547#ifdef CONFIG_CFS_BANDWIDTH
548 SEQ_printf(m, " .%-30s: %d\n", "throttled",
549 cfs_rq->throttled);
550 SEQ_printf(m, " .%-30s: %d\n", "throttle_count",
551 cfs_rq->throttle_count);
552#endif
553
554#ifdef CONFIG_FAIR_GROUP_SCHED
555 print_cfs_group_stats(m, cpu, cfs_rq->tg);
556#endif
557}
558
559void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
560{
561#ifdef CONFIG_RT_GROUP_SCHED
562 SEQ_printf(m, "\n");
563 SEQ_printf(m, "rt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
564#else
565 SEQ_printf(m, "\n");
566 SEQ_printf(m, "rt_rq[%d]:\n", cpu);
567#endif
568
569#define P(x) \
570 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
571#define PU(x) \
572 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
573#define PN(x) \
574 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
575
576 PU(rt_nr_running);
577#ifdef CONFIG_SMP
578 PU(rt_nr_migratory);
579#endif
580 P(rt_throttled);
581 PN(rt_time);
582 PN(rt_runtime);
583
584#undef PN
585#undef PU
586#undef P
587}
588
589void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
590{
591 struct dl_bw *dl_bw;
592
593 SEQ_printf(m, "\n");
594 SEQ_printf(m, "dl_rq[%d]:\n", cpu);
595
596#define PU(x) \
597 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
598
599 PU(dl_nr_running);
600#ifdef CONFIG_SMP
601 PU(dl_nr_migratory);
602 dl_bw = &cpu_rq(cpu)->rd->dl_bw;
603#else
604 dl_bw = &dl_rq->dl_bw;
605#endif
606 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
607 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
608
609#undef PU
610}
611
612static void print_cpu(struct seq_file *m, int cpu)
613{
614 struct rq *rq = cpu_rq(cpu);
615 unsigned long flags;
616
617#ifdef CONFIG_X86
618 {
619 unsigned int freq = cpu_khz ? : 1;
620
621 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
622 cpu, freq / 1000, (freq % 1000));
623 }
624#else
625 SEQ_printf(m, "cpu#%d\n", cpu);
626#endif
627
628#define P(x) \
629do { \
630 if (sizeof(rq->x) == 4) \
631 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \
632 else \
633 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\
634} while (0)
635
636#define PN(x) \
637 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
638
639 P(nr_running);
640 P(nr_switches);
641 P(nr_uninterruptible);
642 PN(next_balance);
643 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
644 PN(clock);
645 PN(clock_task);
646#undef P
647#undef PN
648
649#ifdef CONFIG_SMP
650#define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n);
651 P64(avg_idle);
652 P64(max_idle_balance_cost);
653#undef P64
654#endif
655
656#define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n));
657 if (schedstat_enabled()) {
658 P(yld_count);
659 P(sched_count);
660 P(sched_goidle);
661 P(ttwu_count);
662 P(ttwu_local);
663 }
664#undef P
665
666 spin_lock_irqsave(&sched_debug_lock, flags);
667 print_cfs_stats(m, cpu);
668 print_rt_stats(m, cpu);
669 print_dl_stats(m, cpu);
670
671 print_rq(m, rq, cpu);
672 spin_unlock_irqrestore(&sched_debug_lock, flags);
673 SEQ_printf(m, "\n");
674}
675
676static const char *sched_tunable_scaling_names[] = {
677 "none",
678 "logarithmic",
679 "linear"
680};
681
682static void sched_debug_header(struct seq_file *m)
683{
684 u64 ktime, sched_clk, cpu_clk;
685 unsigned long flags;
686
687 local_irq_save(flags);
688 ktime = ktime_to_ns(ktime_get());
689 sched_clk = sched_clock();
690 cpu_clk = local_clock();
691 local_irq_restore(flags);
692
693 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
694 init_utsname()->release,
695 (int)strcspn(init_utsname()->version, " "),
696 init_utsname()->version);
697
698#define P(x) \
699 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
700#define PN(x) \
701 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
702 PN(ktime);
703 PN(sched_clk);
704 PN(cpu_clk);
705 P(jiffies);
706#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
707 P(sched_clock_stable());
708#endif
709#undef PN
710#undef P
711
712 SEQ_printf(m, "\n");
713 SEQ_printf(m, "sysctl_sched\n");
714
715#define P(x) \
716 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
717#define PN(x) \
718 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
719 PN(sysctl_sched_latency);
720 PN(sysctl_sched_min_granularity);
721 PN(sysctl_sched_wakeup_granularity);
722 P(sysctl_sched_child_runs_first);
723 P(sysctl_sched_features);
724#undef PN
725#undef P
726
727 SEQ_printf(m, " .%-40s: %d (%s)\n",
728 "sysctl_sched_tunable_scaling",
729 sysctl_sched_tunable_scaling,
730 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
731 SEQ_printf(m, "\n");
732}
733
734static int sched_debug_show(struct seq_file *m, void *v)
735{
736 int cpu = (unsigned long)(v - 2);
737
738 if (cpu != -1)
739 print_cpu(m, cpu);
740 else
741 sched_debug_header(m);
742
743 return 0;
744}
745
746void sysrq_sched_debug_show(void)
747{
748 int cpu;
749
750 sched_debug_header(NULL);
751 for_each_online_cpu(cpu) {
752 /*
753 * Need to reset softlockup watchdogs on all CPUs, because
754 * another CPU might be blocked waiting for us to process
755 * an IPI or stop_machine.
756 */
757 touch_nmi_watchdog();
758 touch_all_softlockup_watchdogs();
759 print_cpu(NULL, cpu);
760 }
761}
762
763/*
764 * This itererator needs some explanation.
765 * It returns 1 for the header position.
766 * This means 2 is CPU 0.
767 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
768 * to use cpumask_* to iterate over the CPUs.
769 */
770static void *sched_debug_start(struct seq_file *file, loff_t *offset)
771{
772 unsigned long n = *offset;
773
774 if (n == 0)
775 return (void *) 1;
776
777 n--;
778
779 if (n > 0)
780 n = cpumask_next(n - 1, cpu_online_mask);
781 else
782 n = cpumask_first(cpu_online_mask);
783
784 *offset = n + 1;
785
786 if (n < nr_cpu_ids)
787 return (void *)(unsigned long)(n + 2);
788
789 return NULL;
790}
791
792static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
793{
794 (*offset)++;
795 return sched_debug_start(file, offset);
796}
797
798static void sched_debug_stop(struct seq_file *file, void *data)
799{
800}
801
802static const struct seq_operations sched_debug_sops = {
803 .start = sched_debug_start,
804 .next = sched_debug_next,
805 .stop = sched_debug_stop,
806 .show = sched_debug_show,
807};
808
809static int __init init_sched_debug_procfs(void)
810{
811 if (!proc_create_seq("sched_debug", 0444, NULL, &sched_debug_sops))
812 return -ENOMEM;
813 return 0;
814}
815
816__initcall(init_sched_debug_procfs);
817
818#define __PS(S, F) SEQ_printf(m, "%-45s:%21Ld\n", S, (long long)(F))
819#define __P(F) __PS(#F, F)
820#define P(F) __PS(#F, p->F)
821#define __PSN(S, F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", S, SPLIT_NS((long long)(F)))
822#define __PN(F) __PSN(#F, F)
823#define PN(F) __PSN(#F, p->F)
824
825
826#ifdef CONFIG_NUMA_BALANCING
827void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
828 unsigned long tpf, unsigned long gsf, unsigned long gpf)
829{
830 SEQ_printf(m, "numa_faults node=%d ", node);
831 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
832 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
833}
834#endif
835
836
837static void sched_show_numa(struct task_struct *p, struct seq_file *m)
838{
839#ifdef CONFIG_NUMA_BALANCING
840 struct mempolicy *pol;
841
842 if (p->mm)
843 P(mm->numa_scan_seq);
844
845 task_lock(p);
846 pol = p->mempolicy;
847 if (pol && !(pol->flags & MPOL_F_MORON))
848 pol = NULL;
849 mpol_get(pol);
850 task_unlock(p);
851
852 P(numa_pages_migrated);
853 P(numa_preferred_nid);
854 P(total_numa_faults);
855 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
856 task_node(p), task_numa_group_id(p));
857 show_numa_stats(p, m);
858 mpol_put(pol);
859#endif
860}
861
862void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
863 struct seq_file *m)
864{
865 unsigned long nr_switches;
866
867 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
868 get_nr_threads(p));
869 SEQ_printf(m,
870 "---------------------------------------------------------"
871 "----------\n");
872
873#define P_SCHEDSTAT(F) __PS(#F, schedstat_val(p->F))
874#define PN_SCHEDSTAT(F) __PSN(#F, schedstat_val(p->F))
875
876 PN(se.exec_start);
877 PN(se.vruntime);
878 PN(se.sum_exec_runtime);
879
880 nr_switches = p->nvcsw + p->nivcsw;
881
882 P(se.nr_migrations);
883
884 if (schedstat_enabled()) {
885 u64 avg_atom, avg_per_cpu;
886
887 PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
888 PN_SCHEDSTAT(se.statistics.wait_start);
889 PN_SCHEDSTAT(se.statistics.sleep_start);
890 PN_SCHEDSTAT(se.statistics.block_start);
891 PN_SCHEDSTAT(se.statistics.sleep_max);
892 PN_SCHEDSTAT(se.statistics.block_max);
893 PN_SCHEDSTAT(se.statistics.exec_max);
894 PN_SCHEDSTAT(se.statistics.slice_max);
895 PN_SCHEDSTAT(se.statistics.wait_max);
896 PN_SCHEDSTAT(se.statistics.wait_sum);
897 P_SCHEDSTAT(se.statistics.wait_count);
898 PN_SCHEDSTAT(se.statistics.iowait_sum);
899 P_SCHEDSTAT(se.statistics.iowait_count);
900 P_SCHEDSTAT(se.statistics.nr_migrations_cold);
901 P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
902 P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
903 P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
904 P_SCHEDSTAT(se.statistics.nr_forced_migrations);
905 P_SCHEDSTAT(se.statistics.nr_wakeups);
906 P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
907 P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
908 P_SCHEDSTAT(se.statistics.nr_wakeups_local);
909 P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
910 P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
911 P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
912 P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
913 P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
914
915 avg_atom = p->se.sum_exec_runtime;
916 if (nr_switches)
917 avg_atom = div64_ul(avg_atom, nr_switches);
918 else
919 avg_atom = -1LL;
920
921 avg_per_cpu = p->se.sum_exec_runtime;
922 if (p->se.nr_migrations) {
923 avg_per_cpu = div64_u64(avg_per_cpu,
924 p->se.nr_migrations);
925 } else {
926 avg_per_cpu = -1LL;
927 }
928
929 __PN(avg_atom);
930 __PN(avg_per_cpu);
931 }
932
933 __P(nr_switches);
934 __PS("nr_voluntary_switches", p->nvcsw);
935 __PS("nr_involuntary_switches", p->nivcsw);
936
937 P(se.load.weight);
938#ifdef CONFIG_SMP
939 P(se.avg.load_sum);
940 P(se.avg.runnable_sum);
941 P(se.avg.util_sum);
942 P(se.avg.load_avg);
943 P(se.avg.runnable_avg);
944 P(se.avg.util_avg);
945 P(se.avg.last_update_time);
946 P(se.avg.util_est.ewma);
947 P(se.avg.util_est.enqueued);
948#endif
949#ifdef CONFIG_UCLAMP_TASK
950 __PS("uclamp.min", p->uclamp_req[UCLAMP_MIN].value);
951 __PS("uclamp.max", p->uclamp_req[UCLAMP_MAX].value);
952 __PS("effective uclamp.min", uclamp_eff_value(p, UCLAMP_MIN));
953 __PS("effective uclamp.max", uclamp_eff_value(p, UCLAMP_MAX));
954#endif
955 P(policy);
956 P(prio);
957 if (task_has_dl_policy(p)) {
958 P(dl.runtime);
959 P(dl.deadline);
960 }
961#undef PN_SCHEDSTAT
962#undef P_SCHEDSTAT
963
964 {
965 unsigned int this_cpu = raw_smp_processor_id();
966 u64 t0, t1;
967
968 t0 = cpu_clock(this_cpu);
969 t1 = cpu_clock(this_cpu);
970 __PS("clock-delta", t1-t0);
971 }
972
973 sched_show_numa(p, m);
974}
975
976void proc_sched_set_task(struct task_struct *p)
977{
978#ifdef CONFIG_SCHEDSTATS
979 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
980#endif
981}