Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * kernel/sched/debug.c
4 *
5 * Print the CFS rbtree and other debugging details
6 *
7 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
8 */
9
10/*
11 * This allows printing both to /proc/sched_debug and
12 * to the console
13 */
14#define SEQ_printf(m, x...) \
15 do { \
16 if (m) \
17 seq_printf(m, x); \
18 else \
19 pr_cont(x); \
20 } while (0)
21
22/*
23 * Ease the printing of nsec fields:
24 */
25static long long nsec_high(unsigned long long nsec)
26{
27 if ((long long)nsec < 0) {
28 nsec = -nsec;
29 do_div(nsec, 1000000);
30 return -nsec;
31 }
32 do_div(nsec, 1000000);
33
34 return nsec;
35}
36
37static unsigned long nsec_low(unsigned long long nsec)
38{
39 if ((long long)nsec < 0)
40 nsec = -nsec;
41
42 return do_div(nsec, 1000000);
43}
44
45#define SPLIT_NS(x) nsec_high(x), nsec_low(x)
46
47#define SCHED_FEAT(name, enabled) \
48 #name ,
49
50static const char * const sched_feat_names[] = {
51#include "features.h"
52};
53
54#undef SCHED_FEAT
55
56static int sched_feat_show(struct seq_file *m, void *v)
57{
58 int i;
59
60 for (i = 0; i < __SCHED_FEAT_NR; i++) {
61 if (!(sysctl_sched_features & (1UL << i)))
62 seq_puts(m, "NO_");
63 seq_printf(m, "%s ", sched_feat_names[i]);
64 }
65 seq_puts(m, "\n");
66
67 return 0;
68}
69
70#ifdef CONFIG_JUMP_LABEL
71
72#define jump_label_key__true STATIC_KEY_INIT_TRUE
73#define jump_label_key__false STATIC_KEY_INIT_FALSE
74
75#define SCHED_FEAT(name, enabled) \
76 jump_label_key__##enabled ,
77
78struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
79#include "features.h"
80};
81
82#undef SCHED_FEAT
83
84static void sched_feat_disable(int i)
85{
86 static_key_disable_cpuslocked(&sched_feat_keys[i]);
87}
88
89static void sched_feat_enable(int i)
90{
91 static_key_enable_cpuslocked(&sched_feat_keys[i]);
92}
93#else
94static void sched_feat_disable(int i) { };
95static void sched_feat_enable(int i) { };
96#endif /* CONFIG_JUMP_LABEL */
97
98static int sched_feat_set(char *cmp)
99{
100 int i;
101 int neg = 0;
102
103 if (strncmp(cmp, "NO_", 3) == 0) {
104 neg = 1;
105 cmp += 3;
106 }
107
108 i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
109 if (i < 0)
110 return i;
111
112 if (neg) {
113 sysctl_sched_features &= ~(1UL << i);
114 sched_feat_disable(i);
115 } else {
116 sysctl_sched_features |= (1UL << i);
117 sched_feat_enable(i);
118 }
119
120 return 0;
121}
122
123static ssize_t
124sched_feat_write(struct file *filp, const char __user *ubuf,
125 size_t cnt, loff_t *ppos)
126{
127 char buf[64];
128 char *cmp;
129 int ret;
130 struct inode *inode;
131
132 if (cnt > 63)
133 cnt = 63;
134
135 if (copy_from_user(&buf, ubuf, cnt))
136 return -EFAULT;
137
138 buf[cnt] = 0;
139 cmp = strstrip(buf);
140
141 /* Ensure the static_key remains in a consistent state */
142 inode = file_inode(filp);
143 cpus_read_lock();
144 inode_lock(inode);
145 ret = sched_feat_set(cmp);
146 inode_unlock(inode);
147 cpus_read_unlock();
148 if (ret < 0)
149 return ret;
150
151 *ppos += cnt;
152
153 return cnt;
154}
155
156static int sched_feat_open(struct inode *inode, struct file *filp)
157{
158 return single_open(filp, sched_feat_show, NULL);
159}
160
161static const struct file_operations sched_feat_fops = {
162 .open = sched_feat_open,
163 .write = sched_feat_write,
164 .read = seq_read,
165 .llseek = seq_lseek,
166 .release = single_release,
167};
168
169#ifdef CONFIG_SMP
170
171static ssize_t sched_scaling_write(struct file *filp, const char __user *ubuf,
172 size_t cnt, loff_t *ppos)
173{
174 char buf[16];
175 unsigned int scaling;
176
177 if (cnt > 15)
178 cnt = 15;
179
180 if (copy_from_user(&buf, ubuf, cnt))
181 return -EFAULT;
182 buf[cnt] = '\0';
183
184 if (kstrtouint(buf, 10, &scaling))
185 return -EINVAL;
186
187 if (scaling >= SCHED_TUNABLESCALING_END)
188 return -EINVAL;
189
190 sysctl_sched_tunable_scaling = scaling;
191 if (sched_update_scaling())
192 return -EINVAL;
193
194 *ppos += cnt;
195 return cnt;
196}
197
198static int sched_scaling_show(struct seq_file *m, void *v)
199{
200 seq_printf(m, "%d\n", sysctl_sched_tunable_scaling);
201 return 0;
202}
203
204static int sched_scaling_open(struct inode *inode, struct file *filp)
205{
206 return single_open(filp, sched_scaling_show, NULL);
207}
208
209static const struct file_operations sched_scaling_fops = {
210 .open = sched_scaling_open,
211 .write = sched_scaling_write,
212 .read = seq_read,
213 .llseek = seq_lseek,
214 .release = single_release,
215};
216
217#endif /* SMP */
218
219#ifdef CONFIG_PREEMPT_DYNAMIC
220
221static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf,
222 size_t cnt, loff_t *ppos)
223{
224 char buf[16];
225 int mode;
226
227 if (cnt > 15)
228 cnt = 15;
229
230 if (copy_from_user(&buf, ubuf, cnt))
231 return -EFAULT;
232
233 buf[cnt] = 0;
234 mode = sched_dynamic_mode(strstrip(buf));
235 if (mode < 0)
236 return mode;
237
238 sched_dynamic_update(mode);
239
240 *ppos += cnt;
241
242 return cnt;
243}
244
245static int sched_dynamic_show(struct seq_file *m, void *v)
246{
247 static const char * preempt_modes[] = {
248 "none", "voluntary", "full"
249 };
250 int i;
251
252 for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) {
253 if (preempt_dynamic_mode == i)
254 seq_puts(m, "(");
255 seq_puts(m, preempt_modes[i]);
256 if (preempt_dynamic_mode == i)
257 seq_puts(m, ")");
258
259 seq_puts(m, " ");
260 }
261
262 seq_puts(m, "\n");
263 return 0;
264}
265
266static int sched_dynamic_open(struct inode *inode, struct file *filp)
267{
268 return single_open(filp, sched_dynamic_show, NULL);
269}
270
271static const struct file_operations sched_dynamic_fops = {
272 .open = sched_dynamic_open,
273 .write = sched_dynamic_write,
274 .read = seq_read,
275 .llseek = seq_lseek,
276 .release = single_release,
277};
278
279#endif /* CONFIG_PREEMPT_DYNAMIC */
280
281__read_mostly bool sched_debug_verbose;
282
283static const struct seq_operations sched_debug_sops;
284
285static int sched_debug_open(struct inode *inode, struct file *filp)
286{
287 return seq_open(filp, &sched_debug_sops);
288}
289
290static const struct file_operations sched_debug_fops = {
291 .open = sched_debug_open,
292 .read = seq_read,
293 .llseek = seq_lseek,
294 .release = seq_release,
295};
296
297static struct dentry *debugfs_sched;
298
299static __init int sched_init_debug(void)
300{
301 struct dentry __maybe_unused *numa;
302
303 debugfs_sched = debugfs_create_dir("sched", NULL);
304
305 debugfs_create_file("features", 0644, debugfs_sched, NULL, &sched_feat_fops);
306 debugfs_create_bool("verbose", 0644, debugfs_sched, &sched_debug_verbose);
307#ifdef CONFIG_PREEMPT_DYNAMIC
308 debugfs_create_file("preempt", 0644, debugfs_sched, NULL, &sched_dynamic_fops);
309#endif
310
311 debugfs_create_u32("latency_ns", 0644, debugfs_sched, &sysctl_sched_latency);
312 debugfs_create_u32("min_granularity_ns", 0644, debugfs_sched, &sysctl_sched_min_granularity);
313 debugfs_create_u32("idle_min_granularity_ns", 0644, debugfs_sched, &sysctl_sched_idle_min_granularity);
314 debugfs_create_u32("wakeup_granularity_ns", 0644, debugfs_sched, &sysctl_sched_wakeup_granularity);
315
316 debugfs_create_u32("latency_warn_ms", 0644, debugfs_sched, &sysctl_resched_latency_warn_ms);
317 debugfs_create_u32("latency_warn_once", 0644, debugfs_sched, &sysctl_resched_latency_warn_once);
318
319#ifdef CONFIG_SMP
320 debugfs_create_file("tunable_scaling", 0644, debugfs_sched, NULL, &sched_scaling_fops);
321 debugfs_create_u32("migration_cost_ns", 0644, debugfs_sched, &sysctl_sched_migration_cost);
322 debugfs_create_u32("nr_migrate", 0644, debugfs_sched, &sysctl_sched_nr_migrate);
323
324 mutex_lock(&sched_domains_mutex);
325 update_sched_domain_debugfs();
326 mutex_unlock(&sched_domains_mutex);
327#endif
328
329#ifdef CONFIG_NUMA_BALANCING
330 numa = debugfs_create_dir("numa_balancing", debugfs_sched);
331
332 debugfs_create_u32("scan_delay_ms", 0644, numa, &sysctl_numa_balancing_scan_delay);
333 debugfs_create_u32("scan_period_min_ms", 0644, numa, &sysctl_numa_balancing_scan_period_min);
334 debugfs_create_u32("scan_period_max_ms", 0644, numa, &sysctl_numa_balancing_scan_period_max);
335 debugfs_create_u32("scan_size_mb", 0644, numa, &sysctl_numa_balancing_scan_size);
336 debugfs_create_u32("hot_threshold_ms", 0644, numa, &sysctl_numa_balancing_hot_threshold);
337#endif
338
339 debugfs_create_file("debug", 0444, debugfs_sched, NULL, &sched_debug_fops);
340
341 return 0;
342}
343late_initcall(sched_init_debug);
344
345#ifdef CONFIG_SMP
346
347static cpumask_var_t sd_sysctl_cpus;
348static struct dentry *sd_dentry;
349
350static int sd_flags_show(struct seq_file *m, void *v)
351{
352 unsigned long flags = *(unsigned int *)m->private;
353 int idx;
354
355 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
356 seq_puts(m, sd_flag_debug[idx].name);
357 seq_puts(m, " ");
358 }
359 seq_puts(m, "\n");
360
361 return 0;
362}
363
364static int sd_flags_open(struct inode *inode, struct file *file)
365{
366 return single_open(file, sd_flags_show, inode->i_private);
367}
368
369static const struct file_operations sd_flags_fops = {
370 .open = sd_flags_open,
371 .read = seq_read,
372 .llseek = seq_lseek,
373 .release = single_release,
374};
375
376static void register_sd(struct sched_domain *sd, struct dentry *parent)
377{
378#define SDM(type, mode, member) \
379 debugfs_create_##type(#member, mode, parent, &sd->member)
380
381 SDM(ulong, 0644, min_interval);
382 SDM(ulong, 0644, max_interval);
383 SDM(u64, 0644, max_newidle_lb_cost);
384 SDM(u32, 0644, busy_factor);
385 SDM(u32, 0644, imbalance_pct);
386 SDM(u32, 0644, cache_nice_tries);
387 SDM(str, 0444, name);
388
389#undef SDM
390
391 debugfs_create_file("flags", 0444, parent, &sd->flags, &sd_flags_fops);
392}
393
394void update_sched_domain_debugfs(void)
395{
396 int cpu, i;
397
398 /*
399 * This can unfortunately be invoked before sched_debug_init() creates
400 * the debug directory. Don't touch sd_sysctl_cpus until then.
401 */
402 if (!debugfs_sched)
403 return;
404
405 if (!cpumask_available(sd_sysctl_cpus)) {
406 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
407 return;
408 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
409 }
410
411 if (!sd_dentry)
412 sd_dentry = debugfs_create_dir("domains", debugfs_sched);
413
414 for_each_cpu(cpu, sd_sysctl_cpus) {
415 struct sched_domain *sd;
416 struct dentry *d_cpu;
417 char buf[32];
418
419 snprintf(buf, sizeof(buf), "cpu%d", cpu);
420 debugfs_lookup_and_remove(buf, sd_dentry);
421 d_cpu = debugfs_create_dir(buf, sd_dentry);
422
423 i = 0;
424 for_each_domain(cpu, sd) {
425 struct dentry *d_sd;
426
427 snprintf(buf, sizeof(buf), "domain%d", i);
428 d_sd = debugfs_create_dir(buf, d_cpu);
429
430 register_sd(sd, d_sd);
431 i++;
432 }
433
434 __cpumask_clear_cpu(cpu, sd_sysctl_cpus);
435 }
436}
437
438void dirty_sched_domain_sysctl(int cpu)
439{
440 if (cpumask_available(sd_sysctl_cpus))
441 __cpumask_set_cpu(cpu, sd_sysctl_cpus);
442}
443
444#endif /* CONFIG_SMP */
445
446#ifdef CONFIG_FAIR_GROUP_SCHED
447static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
448{
449 struct sched_entity *se = tg->se[cpu];
450
451#define P(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F)
452#define P_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld\n", \
453 #F, (long long)schedstat_val(stats->F))
454#define PN(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
455#define PN_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", \
456 #F, SPLIT_NS((long long)schedstat_val(stats->F)))
457
458 if (!se)
459 return;
460
461 PN(se->exec_start);
462 PN(se->vruntime);
463 PN(se->sum_exec_runtime);
464
465 if (schedstat_enabled()) {
466 struct sched_statistics *stats;
467 stats = __schedstats_from_se(se);
468
469 PN_SCHEDSTAT(wait_start);
470 PN_SCHEDSTAT(sleep_start);
471 PN_SCHEDSTAT(block_start);
472 PN_SCHEDSTAT(sleep_max);
473 PN_SCHEDSTAT(block_max);
474 PN_SCHEDSTAT(exec_max);
475 PN_SCHEDSTAT(slice_max);
476 PN_SCHEDSTAT(wait_max);
477 PN_SCHEDSTAT(wait_sum);
478 P_SCHEDSTAT(wait_count);
479 }
480
481 P(se->load.weight);
482#ifdef CONFIG_SMP
483 P(se->avg.load_avg);
484 P(se->avg.util_avg);
485 P(se->avg.runnable_avg);
486#endif
487
488#undef PN_SCHEDSTAT
489#undef PN
490#undef P_SCHEDSTAT
491#undef P
492}
493#endif
494
495#ifdef CONFIG_CGROUP_SCHED
496static DEFINE_SPINLOCK(sched_debug_lock);
497static char group_path[PATH_MAX];
498
499static void task_group_path(struct task_group *tg, char *path, int plen)
500{
501 if (autogroup_path(tg, path, plen))
502 return;
503
504 cgroup_path(tg->css.cgroup, path, plen);
505}
506
507/*
508 * Only 1 SEQ_printf_task_group_path() caller can use the full length
509 * group_path[] for cgroup path. Other simultaneous callers will have
510 * to use a shorter stack buffer. A "..." suffix is appended at the end
511 * of the stack buffer so that it will show up in case the output length
512 * matches the given buffer size to indicate possible path name truncation.
513 */
514#define SEQ_printf_task_group_path(m, tg, fmt...) \
515{ \
516 if (spin_trylock(&sched_debug_lock)) { \
517 task_group_path(tg, group_path, sizeof(group_path)); \
518 SEQ_printf(m, fmt, group_path); \
519 spin_unlock(&sched_debug_lock); \
520 } else { \
521 char buf[128]; \
522 char *bufend = buf + sizeof(buf) - 3; \
523 task_group_path(tg, buf, bufend - buf); \
524 strcpy(bufend - 1, "..."); \
525 SEQ_printf(m, fmt, buf); \
526 } \
527}
528#endif
529
530static void
531print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
532{
533 if (task_current(rq, p))
534 SEQ_printf(m, ">R");
535 else
536 SEQ_printf(m, " %c", task_state_to_char(p));
537
538 SEQ_printf(m, " %15s %5d %9Ld.%06ld %9Ld %5d ",
539 p->comm, task_pid_nr(p),
540 SPLIT_NS(p->se.vruntime),
541 (long long)(p->nvcsw + p->nivcsw),
542 p->prio);
543
544 SEQ_printf(m, "%9lld.%06ld %9lld.%06ld %9lld.%06ld %9lld.%06ld",
545 SPLIT_NS(schedstat_val_or_zero(p->stats.wait_sum)),
546 SPLIT_NS(p->se.sum_exec_runtime),
547 SPLIT_NS(schedstat_val_or_zero(p->stats.sum_sleep_runtime)),
548 SPLIT_NS(schedstat_val_or_zero(p->stats.sum_block_runtime)));
549
550#ifdef CONFIG_NUMA_BALANCING
551 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
552#endif
553#ifdef CONFIG_CGROUP_SCHED
554 SEQ_printf_task_group_path(m, task_group(p), " %s")
555#endif
556
557 SEQ_printf(m, "\n");
558}
559
560static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
561{
562 struct task_struct *g, *p;
563
564 SEQ_printf(m, "\n");
565 SEQ_printf(m, "runnable tasks:\n");
566 SEQ_printf(m, " S task PID tree-key switches prio"
567 " wait-time sum-exec sum-sleep\n");
568 SEQ_printf(m, "-------------------------------------------------------"
569 "------------------------------------------------------\n");
570
571 rcu_read_lock();
572 for_each_process_thread(g, p) {
573 if (task_cpu(p) != rq_cpu)
574 continue;
575
576 print_task(m, rq, p);
577 }
578 rcu_read_unlock();
579}
580
581void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
582{
583 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
584 spread, rq0_min_vruntime, spread0;
585 struct rq *rq = cpu_rq(cpu);
586 struct sched_entity *last;
587 unsigned long flags;
588
589#ifdef CONFIG_FAIR_GROUP_SCHED
590 SEQ_printf(m, "\n");
591 SEQ_printf_task_group_path(m, cfs_rq->tg, "cfs_rq[%d]:%s\n", cpu);
592#else
593 SEQ_printf(m, "\n");
594 SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
595#endif
596 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
597 SPLIT_NS(cfs_rq->exec_clock));
598
599 raw_spin_rq_lock_irqsave(rq, flags);
600 if (rb_first_cached(&cfs_rq->tasks_timeline))
601 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
602 last = __pick_last_entity(cfs_rq);
603 if (last)
604 max_vruntime = last->vruntime;
605 min_vruntime = cfs_rq->min_vruntime;
606 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
607 raw_spin_rq_unlock_irqrestore(rq, flags);
608 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime",
609 SPLIT_NS(MIN_vruntime));
610 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
611 SPLIT_NS(min_vruntime));
612 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime",
613 SPLIT_NS(max_vruntime));
614 spread = max_vruntime - MIN_vruntime;
615 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread",
616 SPLIT_NS(spread));
617 spread0 = min_vruntime - rq0_min_vruntime;
618 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0",
619 SPLIT_NS(spread0));
620 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over",
621 cfs_rq->nr_spread_over);
622 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
623 SEQ_printf(m, " .%-30s: %d\n", "h_nr_running", cfs_rq->h_nr_running);
624 SEQ_printf(m, " .%-30s: %d\n", "idle_nr_running",
625 cfs_rq->idle_nr_running);
626 SEQ_printf(m, " .%-30s: %d\n", "idle_h_nr_running",
627 cfs_rq->idle_h_nr_running);
628 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
629#ifdef CONFIG_SMP
630 SEQ_printf(m, " .%-30s: %lu\n", "load_avg",
631 cfs_rq->avg.load_avg);
632 SEQ_printf(m, " .%-30s: %lu\n", "runnable_avg",
633 cfs_rq->avg.runnable_avg);
634 SEQ_printf(m, " .%-30s: %lu\n", "util_avg",
635 cfs_rq->avg.util_avg);
636 SEQ_printf(m, " .%-30s: %u\n", "util_est_enqueued",
637 cfs_rq->avg.util_est.enqueued);
638 SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg",
639 cfs_rq->removed.load_avg);
640 SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg",
641 cfs_rq->removed.util_avg);
642 SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_avg",
643 cfs_rq->removed.runnable_avg);
644#ifdef CONFIG_FAIR_GROUP_SCHED
645 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib",
646 cfs_rq->tg_load_avg_contrib);
647 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg",
648 atomic_long_read(&cfs_rq->tg->load_avg));
649#endif
650#endif
651#ifdef CONFIG_CFS_BANDWIDTH
652 SEQ_printf(m, " .%-30s: %d\n", "throttled",
653 cfs_rq->throttled);
654 SEQ_printf(m, " .%-30s: %d\n", "throttle_count",
655 cfs_rq->throttle_count);
656#endif
657
658#ifdef CONFIG_FAIR_GROUP_SCHED
659 print_cfs_group_stats(m, cpu, cfs_rq->tg);
660#endif
661}
662
663void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
664{
665#ifdef CONFIG_RT_GROUP_SCHED
666 SEQ_printf(m, "\n");
667 SEQ_printf_task_group_path(m, rt_rq->tg, "rt_rq[%d]:%s\n", cpu);
668#else
669 SEQ_printf(m, "\n");
670 SEQ_printf(m, "rt_rq[%d]:\n", cpu);
671#endif
672
673#define P(x) \
674 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
675#define PU(x) \
676 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
677#define PN(x) \
678 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
679
680 PU(rt_nr_running);
681#ifdef CONFIG_SMP
682 PU(rt_nr_migratory);
683#endif
684 P(rt_throttled);
685 PN(rt_time);
686 PN(rt_runtime);
687
688#undef PN
689#undef PU
690#undef P
691}
692
693void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
694{
695 struct dl_bw *dl_bw;
696
697 SEQ_printf(m, "\n");
698 SEQ_printf(m, "dl_rq[%d]:\n", cpu);
699
700#define PU(x) \
701 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
702
703 PU(dl_nr_running);
704#ifdef CONFIG_SMP
705 PU(dl_nr_migratory);
706 dl_bw = &cpu_rq(cpu)->rd->dl_bw;
707#else
708 dl_bw = &dl_rq->dl_bw;
709#endif
710 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
711 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
712
713#undef PU
714}
715
716static void print_cpu(struct seq_file *m, int cpu)
717{
718 struct rq *rq = cpu_rq(cpu);
719
720#ifdef CONFIG_X86
721 {
722 unsigned int freq = cpu_khz ? : 1;
723
724 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
725 cpu, freq / 1000, (freq % 1000));
726 }
727#else
728 SEQ_printf(m, "cpu#%d\n", cpu);
729#endif
730
731#define P(x) \
732do { \
733 if (sizeof(rq->x) == 4) \
734 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \
735 else \
736 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\
737} while (0)
738
739#define PN(x) \
740 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
741
742 P(nr_running);
743 P(nr_switches);
744 P(nr_uninterruptible);
745 PN(next_balance);
746 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
747 PN(clock);
748 PN(clock_task);
749#undef P
750#undef PN
751
752#ifdef CONFIG_SMP
753#define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n);
754 P64(avg_idle);
755 P64(max_idle_balance_cost);
756#undef P64
757#endif
758
759#define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n));
760 if (schedstat_enabled()) {
761 P(yld_count);
762 P(sched_count);
763 P(sched_goidle);
764 P(ttwu_count);
765 P(ttwu_local);
766 }
767#undef P
768
769 print_cfs_stats(m, cpu);
770 print_rt_stats(m, cpu);
771 print_dl_stats(m, cpu);
772
773 print_rq(m, rq, cpu);
774 SEQ_printf(m, "\n");
775}
776
777static const char *sched_tunable_scaling_names[] = {
778 "none",
779 "logarithmic",
780 "linear"
781};
782
783static void sched_debug_header(struct seq_file *m)
784{
785 u64 ktime, sched_clk, cpu_clk;
786 unsigned long flags;
787
788 local_irq_save(flags);
789 ktime = ktime_to_ns(ktime_get());
790 sched_clk = sched_clock();
791 cpu_clk = local_clock();
792 local_irq_restore(flags);
793
794 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
795 init_utsname()->release,
796 (int)strcspn(init_utsname()->version, " "),
797 init_utsname()->version);
798
799#define P(x) \
800 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
801#define PN(x) \
802 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
803 PN(ktime);
804 PN(sched_clk);
805 PN(cpu_clk);
806 P(jiffies);
807#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
808 P(sched_clock_stable());
809#endif
810#undef PN
811#undef P
812
813 SEQ_printf(m, "\n");
814 SEQ_printf(m, "sysctl_sched\n");
815
816#define P(x) \
817 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
818#define PN(x) \
819 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
820 PN(sysctl_sched_latency);
821 PN(sysctl_sched_min_granularity);
822 PN(sysctl_sched_idle_min_granularity);
823 PN(sysctl_sched_wakeup_granularity);
824 P(sysctl_sched_child_runs_first);
825 P(sysctl_sched_features);
826#undef PN
827#undef P
828
829 SEQ_printf(m, " .%-40s: %d (%s)\n",
830 "sysctl_sched_tunable_scaling",
831 sysctl_sched_tunable_scaling,
832 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
833 SEQ_printf(m, "\n");
834}
835
836static int sched_debug_show(struct seq_file *m, void *v)
837{
838 int cpu = (unsigned long)(v - 2);
839
840 if (cpu != -1)
841 print_cpu(m, cpu);
842 else
843 sched_debug_header(m);
844
845 return 0;
846}
847
848void sysrq_sched_debug_show(void)
849{
850 int cpu;
851
852 sched_debug_header(NULL);
853 for_each_online_cpu(cpu) {
854 /*
855 * Need to reset softlockup watchdogs on all CPUs, because
856 * another CPU might be blocked waiting for us to process
857 * an IPI or stop_machine.
858 */
859 touch_nmi_watchdog();
860 touch_all_softlockup_watchdogs();
861 print_cpu(NULL, cpu);
862 }
863}
864
865/*
866 * This iterator needs some explanation.
867 * It returns 1 for the header position.
868 * This means 2 is CPU 0.
869 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
870 * to use cpumask_* to iterate over the CPUs.
871 */
872static void *sched_debug_start(struct seq_file *file, loff_t *offset)
873{
874 unsigned long n = *offset;
875
876 if (n == 0)
877 return (void *) 1;
878
879 n--;
880
881 if (n > 0)
882 n = cpumask_next(n - 1, cpu_online_mask);
883 else
884 n = cpumask_first(cpu_online_mask);
885
886 *offset = n + 1;
887
888 if (n < nr_cpu_ids)
889 return (void *)(unsigned long)(n + 2);
890
891 return NULL;
892}
893
894static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
895{
896 (*offset)++;
897 return sched_debug_start(file, offset);
898}
899
900static void sched_debug_stop(struct seq_file *file, void *data)
901{
902}
903
904static const struct seq_operations sched_debug_sops = {
905 .start = sched_debug_start,
906 .next = sched_debug_next,
907 .stop = sched_debug_stop,
908 .show = sched_debug_show,
909};
910
911#define __PS(S, F) SEQ_printf(m, "%-45s:%21Ld\n", S, (long long)(F))
912#define __P(F) __PS(#F, F)
913#define P(F) __PS(#F, p->F)
914#define PM(F, M) __PS(#F, p->F & (M))
915#define __PSN(S, F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", S, SPLIT_NS((long long)(F)))
916#define __PN(F) __PSN(#F, F)
917#define PN(F) __PSN(#F, p->F)
918
919
920#ifdef CONFIG_NUMA_BALANCING
921void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
922 unsigned long tpf, unsigned long gsf, unsigned long gpf)
923{
924 SEQ_printf(m, "numa_faults node=%d ", node);
925 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
926 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
927}
928#endif
929
930
931static void sched_show_numa(struct task_struct *p, struct seq_file *m)
932{
933#ifdef CONFIG_NUMA_BALANCING
934 if (p->mm)
935 P(mm->numa_scan_seq);
936
937 P(numa_pages_migrated);
938 P(numa_preferred_nid);
939 P(total_numa_faults);
940 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
941 task_node(p), task_numa_group_id(p));
942 show_numa_stats(p, m);
943#endif
944}
945
946void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
947 struct seq_file *m)
948{
949 unsigned long nr_switches;
950
951 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
952 get_nr_threads(p));
953 SEQ_printf(m,
954 "---------------------------------------------------------"
955 "----------\n");
956
957#define P_SCHEDSTAT(F) __PS(#F, schedstat_val(p->stats.F))
958#define PN_SCHEDSTAT(F) __PSN(#F, schedstat_val(p->stats.F))
959
960 PN(se.exec_start);
961 PN(se.vruntime);
962 PN(se.sum_exec_runtime);
963
964 nr_switches = p->nvcsw + p->nivcsw;
965
966 P(se.nr_migrations);
967
968 if (schedstat_enabled()) {
969 u64 avg_atom, avg_per_cpu;
970
971 PN_SCHEDSTAT(sum_sleep_runtime);
972 PN_SCHEDSTAT(sum_block_runtime);
973 PN_SCHEDSTAT(wait_start);
974 PN_SCHEDSTAT(sleep_start);
975 PN_SCHEDSTAT(block_start);
976 PN_SCHEDSTAT(sleep_max);
977 PN_SCHEDSTAT(block_max);
978 PN_SCHEDSTAT(exec_max);
979 PN_SCHEDSTAT(slice_max);
980 PN_SCHEDSTAT(wait_max);
981 PN_SCHEDSTAT(wait_sum);
982 P_SCHEDSTAT(wait_count);
983 PN_SCHEDSTAT(iowait_sum);
984 P_SCHEDSTAT(iowait_count);
985 P_SCHEDSTAT(nr_migrations_cold);
986 P_SCHEDSTAT(nr_failed_migrations_affine);
987 P_SCHEDSTAT(nr_failed_migrations_running);
988 P_SCHEDSTAT(nr_failed_migrations_hot);
989 P_SCHEDSTAT(nr_forced_migrations);
990 P_SCHEDSTAT(nr_wakeups);
991 P_SCHEDSTAT(nr_wakeups_sync);
992 P_SCHEDSTAT(nr_wakeups_migrate);
993 P_SCHEDSTAT(nr_wakeups_local);
994 P_SCHEDSTAT(nr_wakeups_remote);
995 P_SCHEDSTAT(nr_wakeups_affine);
996 P_SCHEDSTAT(nr_wakeups_affine_attempts);
997 P_SCHEDSTAT(nr_wakeups_passive);
998 P_SCHEDSTAT(nr_wakeups_idle);
999
1000 avg_atom = p->se.sum_exec_runtime;
1001 if (nr_switches)
1002 avg_atom = div64_ul(avg_atom, nr_switches);
1003 else
1004 avg_atom = -1LL;
1005
1006 avg_per_cpu = p->se.sum_exec_runtime;
1007 if (p->se.nr_migrations) {
1008 avg_per_cpu = div64_u64(avg_per_cpu,
1009 p->se.nr_migrations);
1010 } else {
1011 avg_per_cpu = -1LL;
1012 }
1013
1014 __PN(avg_atom);
1015 __PN(avg_per_cpu);
1016
1017#ifdef CONFIG_SCHED_CORE
1018 PN_SCHEDSTAT(core_forceidle_sum);
1019#endif
1020 }
1021
1022 __P(nr_switches);
1023 __PS("nr_voluntary_switches", p->nvcsw);
1024 __PS("nr_involuntary_switches", p->nivcsw);
1025
1026 P(se.load.weight);
1027#ifdef CONFIG_SMP
1028 P(se.avg.load_sum);
1029 P(se.avg.runnable_sum);
1030 P(se.avg.util_sum);
1031 P(se.avg.load_avg);
1032 P(se.avg.runnable_avg);
1033 P(se.avg.util_avg);
1034 P(se.avg.last_update_time);
1035 P(se.avg.util_est.ewma);
1036 PM(se.avg.util_est.enqueued, ~UTIL_AVG_UNCHANGED);
1037#endif
1038#ifdef CONFIG_UCLAMP_TASK
1039 __PS("uclamp.min", p->uclamp_req[UCLAMP_MIN].value);
1040 __PS("uclamp.max", p->uclamp_req[UCLAMP_MAX].value);
1041 __PS("effective uclamp.min", uclamp_eff_value(p, UCLAMP_MIN));
1042 __PS("effective uclamp.max", uclamp_eff_value(p, UCLAMP_MAX));
1043#endif
1044 P(policy);
1045 P(prio);
1046 if (task_has_dl_policy(p)) {
1047 P(dl.runtime);
1048 P(dl.deadline);
1049 }
1050#undef PN_SCHEDSTAT
1051#undef P_SCHEDSTAT
1052
1053 {
1054 unsigned int this_cpu = raw_smp_processor_id();
1055 u64 t0, t1;
1056
1057 t0 = cpu_clock(this_cpu);
1058 t1 = cpu_clock(this_cpu);
1059 __PS("clock-delta", t1-t0);
1060 }
1061
1062 sched_show_numa(p, m);
1063}
1064
1065void proc_sched_set_task(struct task_struct *p)
1066{
1067#ifdef CONFIG_SCHEDSTATS
1068 memset(&p->stats, 0, sizeof(p->stats));
1069#endif
1070}
1071
1072void resched_latency_warn(int cpu, u64 latency)
1073{
1074 static DEFINE_RATELIMIT_STATE(latency_check_ratelimit, 60 * 60 * HZ, 1);
1075
1076 WARN(__ratelimit(&latency_check_ratelimit),
1077 "sched: CPU %d need_resched set for > %llu ns (%d ticks) "
1078 "without schedule\n",
1079 cpu, latency, cpu_rq(cpu)->ticks_without_resched);
1080}
1/*
2 * kernel/sched/debug.c
3 *
4 * Print the CFS rbtree and other debugging details
5 *
6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12#include "sched.h"
13
14static DEFINE_SPINLOCK(sched_debug_lock);
15
16/*
17 * This allows printing both to /proc/sched_debug and
18 * to the console
19 */
20#define SEQ_printf(m, x...) \
21 do { \
22 if (m) \
23 seq_printf(m, x); \
24 else \
25 pr_cont(x); \
26 } while (0)
27
28/*
29 * Ease the printing of nsec fields:
30 */
31static long long nsec_high(unsigned long long nsec)
32{
33 if ((long long)nsec < 0) {
34 nsec = -nsec;
35 do_div(nsec, 1000000);
36 return -nsec;
37 }
38 do_div(nsec, 1000000);
39
40 return nsec;
41}
42
43static unsigned long nsec_low(unsigned long long nsec)
44{
45 if ((long long)nsec < 0)
46 nsec = -nsec;
47
48 return do_div(nsec, 1000000);
49}
50
51#define SPLIT_NS(x) nsec_high(x), nsec_low(x)
52
53#define SCHED_FEAT(name, enabled) \
54 #name ,
55
56static const char * const sched_feat_names[] = {
57#include "features.h"
58};
59
60#undef SCHED_FEAT
61
62static int sched_feat_show(struct seq_file *m, void *v)
63{
64 int i;
65
66 for (i = 0; i < __SCHED_FEAT_NR; i++) {
67 if (!(sysctl_sched_features & (1UL << i)))
68 seq_puts(m, "NO_");
69 seq_printf(m, "%s ", sched_feat_names[i]);
70 }
71 seq_puts(m, "\n");
72
73 return 0;
74}
75
76#ifdef HAVE_JUMP_LABEL
77
78#define jump_label_key__true STATIC_KEY_INIT_TRUE
79#define jump_label_key__false STATIC_KEY_INIT_FALSE
80
81#define SCHED_FEAT(name, enabled) \
82 jump_label_key__##enabled ,
83
84struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
85#include "features.h"
86};
87
88#undef SCHED_FEAT
89
90static void sched_feat_disable(int i)
91{
92 static_key_disable(&sched_feat_keys[i]);
93}
94
95static void sched_feat_enable(int i)
96{
97 static_key_enable(&sched_feat_keys[i]);
98}
99#else
100static void sched_feat_disable(int i) { };
101static void sched_feat_enable(int i) { };
102#endif /* HAVE_JUMP_LABEL */
103
104static int sched_feat_set(char *cmp)
105{
106 int i;
107 int neg = 0;
108
109 if (strncmp(cmp, "NO_", 3) == 0) {
110 neg = 1;
111 cmp += 3;
112 }
113
114 for (i = 0; i < __SCHED_FEAT_NR; i++) {
115 if (strcmp(cmp, sched_feat_names[i]) == 0) {
116 if (neg) {
117 sysctl_sched_features &= ~(1UL << i);
118 sched_feat_disable(i);
119 } else {
120 sysctl_sched_features |= (1UL << i);
121 sched_feat_enable(i);
122 }
123 break;
124 }
125 }
126
127 return i;
128}
129
130static ssize_t
131sched_feat_write(struct file *filp, const char __user *ubuf,
132 size_t cnt, loff_t *ppos)
133{
134 char buf[64];
135 char *cmp;
136 int i;
137 struct inode *inode;
138
139 if (cnt > 63)
140 cnt = 63;
141
142 if (copy_from_user(&buf, ubuf, cnt))
143 return -EFAULT;
144
145 buf[cnt] = 0;
146 cmp = strstrip(buf);
147
148 /* Ensure the static_key remains in a consistent state */
149 inode = file_inode(filp);
150 inode_lock(inode);
151 i = sched_feat_set(cmp);
152 inode_unlock(inode);
153 if (i == __SCHED_FEAT_NR)
154 return -EINVAL;
155
156 *ppos += cnt;
157
158 return cnt;
159}
160
161static int sched_feat_open(struct inode *inode, struct file *filp)
162{
163 return single_open(filp, sched_feat_show, NULL);
164}
165
166static const struct file_operations sched_feat_fops = {
167 .open = sched_feat_open,
168 .write = sched_feat_write,
169 .read = seq_read,
170 .llseek = seq_lseek,
171 .release = single_release,
172};
173
174__read_mostly bool sched_debug_enabled;
175
176static __init int sched_init_debug(void)
177{
178 debugfs_create_file("sched_features", 0644, NULL, NULL,
179 &sched_feat_fops);
180
181 debugfs_create_bool("sched_debug", 0644, NULL,
182 &sched_debug_enabled);
183
184 return 0;
185}
186late_initcall(sched_init_debug);
187
188#ifdef CONFIG_SMP
189
190#ifdef CONFIG_SYSCTL
191
192static struct ctl_table sd_ctl_dir[] = {
193 {
194 .procname = "sched_domain",
195 .mode = 0555,
196 },
197 {}
198};
199
200static struct ctl_table sd_ctl_root[] = {
201 {
202 .procname = "kernel",
203 .mode = 0555,
204 .child = sd_ctl_dir,
205 },
206 {}
207};
208
209static struct ctl_table *sd_alloc_ctl_entry(int n)
210{
211 struct ctl_table *entry =
212 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
213
214 return entry;
215}
216
217static void sd_free_ctl_entry(struct ctl_table **tablep)
218{
219 struct ctl_table *entry;
220
221 /*
222 * In the intermediate directories, both the child directory and
223 * procname are dynamically allocated and could fail but the mode
224 * will always be set. In the lowest directory the names are
225 * static strings and all have proc handlers.
226 */
227 for (entry = *tablep; entry->mode; entry++) {
228 if (entry->child)
229 sd_free_ctl_entry(&entry->child);
230 if (entry->proc_handler == NULL)
231 kfree(entry->procname);
232 }
233
234 kfree(*tablep);
235 *tablep = NULL;
236}
237
238static int min_load_idx = 0;
239static int max_load_idx = CPU_LOAD_IDX_MAX-1;
240
241static void
242set_table_entry(struct ctl_table *entry,
243 const char *procname, void *data, int maxlen,
244 umode_t mode, proc_handler *proc_handler,
245 bool load_idx)
246{
247 entry->procname = procname;
248 entry->data = data;
249 entry->maxlen = maxlen;
250 entry->mode = mode;
251 entry->proc_handler = proc_handler;
252
253 if (load_idx) {
254 entry->extra1 = &min_load_idx;
255 entry->extra2 = &max_load_idx;
256 }
257}
258
259static struct ctl_table *
260sd_alloc_ctl_domain_table(struct sched_domain *sd)
261{
262 struct ctl_table *table = sd_alloc_ctl_entry(14);
263
264 if (table == NULL)
265 return NULL;
266
267 set_table_entry(&table[0] , "min_interval", &sd->min_interval, sizeof(long), 0644, proc_doulongvec_minmax, false);
268 set_table_entry(&table[1] , "max_interval", &sd->max_interval, sizeof(long), 0644, proc_doulongvec_minmax, false);
269 set_table_entry(&table[2] , "busy_idx", &sd->busy_idx, sizeof(int) , 0644, proc_dointvec_minmax, true );
270 set_table_entry(&table[3] , "idle_idx", &sd->idle_idx, sizeof(int) , 0644, proc_dointvec_minmax, true );
271 set_table_entry(&table[4] , "newidle_idx", &sd->newidle_idx, sizeof(int) , 0644, proc_dointvec_minmax, true );
272 set_table_entry(&table[5] , "wake_idx", &sd->wake_idx, sizeof(int) , 0644, proc_dointvec_minmax, true );
273 set_table_entry(&table[6] , "forkexec_idx", &sd->forkexec_idx, sizeof(int) , 0644, proc_dointvec_minmax, true );
274 set_table_entry(&table[7] , "busy_factor", &sd->busy_factor, sizeof(int) , 0644, proc_dointvec_minmax, false);
275 set_table_entry(&table[8] , "imbalance_pct", &sd->imbalance_pct, sizeof(int) , 0644, proc_dointvec_minmax, false);
276 set_table_entry(&table[9] , "cache_nice_tries", &sd->cache_nice_tries, sizeof(int) , 0644, proc_dointvec_minmax, false);
277 set_table_entry(&table[10], "flags", &sd->flags, sizeof(int) , 0644, proc_dointvec_minmax, false);
278 set_table_entry(&table[11], "max_newidle_lb_cost", &sd->max_newidle_lb_cost, sizeof(long), 0644, proc_doulongvec_minmax, false);
279 set_table_entry(&table[12], "name", sd->name, CORENAME_MAX_SIZE, 0444, proc_dostring, false);
280 /* &table[13] is terminator */
281
282 return table;
283}
284
285static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
286{
287 struct ctl_table *entry, *table;
288 struct sched_domain *sd;
289 int domain_num = 0, i;
290 char buf[32];
291
292 for_each_domain(cpu, sd)
293 domain_num++;
294 entry = table = sd_alloc_ctl_entry(domain_num + 1);
295 if (table == NULL)
296 return NULL;
297
298 i = 0;
299 for_each_domain(cpu, sd) {
300 snprintf(buf, 32, "domain%d", i);
301 entry->procname = kstrdup(buf, GFP_KERNEL);
302 entry->mode = 0555;
303 entry->child = sd_alloc_ctl_domain_table(sd);
304 entry++;
305 i++;
306 }
307 return table;
308}
309
310static cpumask_var_t sd_sysctl_cpus;
311static struct ctl_table_header *sd_sysctl_header;
312
313void register_sched_domain_sysctl(void)
314{
315 static struct ctl_table *cpu_entries;
316 static struct ctl_table **cpu_idx;
317 char buf[32];
318 int i;
319
320 if (!cpu_entries) {
321 cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1);
322 if (!cpu_entries)
323 return;
324
325 WARN_ON(sd_ctl_dir[0].child);
326 sd_ctl_dir[0].child = cpu_entries;
327 }
328
329 if (!cpu_idx) {
330 struct ctl_table *e = cpu_entries;
331
332 cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL);
333 if (!cpu_idx)
334 return;
335
336 /* deal with sparse possible map */
337 for_each_possible_cpu(i) {
338 cpu_idx[i] = e;
339 e++;
340 }
341 }
342
343 if (!cpumask_available(sd_sysctl_cpus)) {
344 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
345 return;
346
347 /* init to possible to not have holes in @cpu_entries */
348 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
349 }
350
351 for_each_cpu(i, sd_sysctl_cpus) {
352 struct ctl_table *e = cpu_idx[i];
353
354 if (e->child)
355 sd_free_ctl_entry(&e->child);
356
357 if (!e->procname) {
358 snprintf(buf, 32, "cpu%d", i);
359 e->procname = kstrdup(buf, GFP_KERNEL);
360 }
361 e->mode = 0555;
362 e->child = sd_alloc_ctl_cpu_table(i);
363
364 __cpumask_clear_cpu(i, sd_sysctl_cpus);
365 }
366
367 WARN_ON(sd_sysctl_header);
368 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
369}
370
371void dirty_sched_domain_sysctl(int cpu)
372{
373 if (cpumask_available(sd_sysctl_cpus))
374 __cpumask_set_cpu(cpu, sd_sysctl_cpus);
375}
376
377/* may be called multiple times per register */
378void unregister_sched_domain_sysctl(void)
379{
380 unregister_sysctl_table(sd_sysctl_header);
381 sd_sysctl_header = NULL;
382}
383#endif /* CONFIG_SYSCTL */
384#endif /* CONFIG_SMP */
385
386#ifdef CONFIG_FAIR_GROUP_SCHED
387static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
388{
389 struct sched_entity *se = tg->se[cpu];
390
391#define P(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F)
392#define P_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)schedstat_val(F))
393#define PN(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
394#define PN_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
395
396 if (!se)
397 return;
398
399 PN(se->exec_start);
400 PN(se->vruntime);
401 PN(se->sum_exec_runtime);
402
403 if (schedstat_enabled()) {
404 PN_SCHEDSTAT(se->statistics.wait_start);
405 PN_SCHEDSTAT(se->statistics.sleep_start);
406 PN_SCHEDSTAT(se->statistics.block_start);
407 PN_SCHEDSTAT(se->statistics.sleep_max);
408 PN_SCHEDSTAT(se->statistics.block_max);
409 PN_SCHEDSTAT(se->statistics.exec_max);
410 PN_SCHEDSTAT(se->statistics.slice_max);
411 PN_SCHEDSTAT(se->statistics.wait_max);
412 PN_SCHEDSTAT(se->statistics.wait_sum);
413 P_SCHEDSTAT(se->statistics.wait_count);
414 }
415
416 P(se->load.weight);
417 P(se->runnable_weight);
418#ifdef CONFIG_SMP
419 P(se->avg.load_avg);
420 P(se->avg.util_avg);
421 P(se->avg.runnable_load_avg);
422#endif
423
424#undef PN_SCHEDSTAT
425#undef PN
426#undef P_SCHEDSTAT
427#undef P
428}
429#endif
430
431#ifdef CONFIG_CGROUP_SCHED
432static char group_path[PATH_MAX];
433
434static char *task_group_path(struct task_group *tg)
435{
436 if (autogroup_path(tg, group_path, PATH_MAX))
437 return group_path;
438
439 cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
440
441 return group_path;
442}
443#endif
444
445static void
446print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
447{
448 if (rq->curr == p)
449 SEQ_printf(m, ">R");
450 else
451 SEQ_printf(m, " %c", task_state_to_char(p));
452
453 SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
454 p->comm, task_pid_nr(p),
455 SPLIT_NS(p->se.vruntime),
456 (long long)(p->nvcsw + p->nivcsw),
457 p->prio);
458
459 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
460 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
461 SPLIT_NS(p->se.sum_exec_runtime),
462 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
463
464#ifdef CONFIG_NUMA_BALANCING
465 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
466#endif
467#ifdef CONFIG_CGROUP_SCHED
468 SEQ_printf(m, " %s", task_group_path(task_group(p)));
469#endif
470
471 SEQ_printf(m, "\n");
472}
473
474static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
475{
476 struct task_struct *g, *p;
477
478 SEQ_printf(m, "\n");
479 SEQ_printf(m, "runnable tasks:\n");
480 SEQ_printf(m, " S task PID tree-key switches prio"
481 " wait-time sum-exec sum-sleep\n");
482 SEQ_printf(m, "-------------------------------------------------------"
483 "----------------------------------------------------\n");
484
485 rcu_read_lock();
486 for_each_process_thread(g, p) {
487 if (task_cpu(p) != rq_cpu)
488 continue;
489
490 print_task(m, rq, p);
491 }
492 rcu_read_unlock();
493}
494
495void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
496{
497 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
498 spread, rq0_min_vruntime, spread0;
499 struct rq *rq = cpu_rq(cpu);
500 struct sched_entity *last;
501 unsigned long flags;
502
503#ifdef CONFIG_FAIR_GROUP_SCHED
504 SEQ_printf(m, "\n");
505 SEQ_printf(m, "cfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
506#else
507 SEQ_printf(m, "\n");
508 SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
509#endif
510 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
511 SPLIT_NS(cfs_rq->exec_clock));
512
513 raw_spin_lock_irqsave(&rq->lock, flags);
514 if (rb_first_cached(&cfs_rq->tasks_timeline))
515 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
516 last = __pick_last_entity(cfs_rq);
517 if (last)
518 max_vruntime = last->vruntime;
519 min_vruntime = cfs_rq->min_vruntime;
520 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
521 raw_spin_unlock_irqrestore(&rq->lock, flags);
522 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime",
523 SPLIT_NS(MIN_vruntime));
524 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
525 SPLIT_NS(min_vruntime));
526 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime",
527 SPLIT_NS(max_vruntime));
528 spread = max_vruntime - MIN_vruntime;
529 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread",
530 SPLIT_NS(spread));
531 spread0 = min_vruntime - rq0_min_vruntime;
532 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0",
533 SPLIT_NS(spread0));
534 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over",
535 cfs_rq->nr_spread_over);
536 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
537 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
538#ifdef CONFIG_SMP
539 SEQ_printf(m, " .%-30s: %ld\n", "runnable_weight", cfs_rq->runnable_weight);
540 SEQ_printf(m, " .%-30s: %lu\n", "load_avg",
541 cfs_rq->avg.load_avg);
542 SEQ_printf(m, " .%-30s: %lu\n", "runnable_load_avg",
543 cfs_rq->avg.runnable_load_avg);
544 SEQ_printf(m, " .%-30s: %lu\n", "util_avg",
545 cfs_rq->avg.util_avg);
546 SEQ_printf(m, " .%-30s: %u\n", "util_est_enqueued",
547 cfs_rq->avg.util_est.enqueued);
548 SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg",
549 cfs_rq->removed.load_avg);
550 SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg",
551 cfs_rq->removed.util_avg);
552 SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_sum",
553 cfs_rq->removed.runnable_sum);
554#ifdef CONFIG_FAIR_GROUP_SCHED
555 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib",
556 cfs_rq->tg_load_avg_contrib);
557 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg",
558 atomic_long_read(&cfs_rq->tg->load_avg));
559#endif
560#endif
561#ifdef CONFIG_CFS_BANDWIDTH
562 SEQ_printf(m, " .%-30s: %d\n", "throttled",
563 cfs_rq->throttled);
564 SEQ_printf(m, " .%-30s: %d\n", "throttle_count",
565 cfs_rq->throttle_count);
566#endif
567
568#ifdef CONFIG_FAIR_GROUP_SCHED
569 print_cfs_group_stats(m, cpu, cfs_rq->tg);
570#endif
571}
572
573void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
574{
575#ifdef CONFIG_RT_GROUP_SCHED
576 SEQ_printf(m, "\n");
577 SEQ_printf(m, "rt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
578#else
579 SEQ_printf(m, "\n");
580 SEQ_printf(m, "rt_rq[%d]:\n", cpu);
581#endif
582
583#define P(x) \
584 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
585#define PU(x) \
586 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
587#define PN(x) \
588 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
589
590 PU(rt_nr_running);
591#ifdef CONFIG_SMP
592 PU(rt_nr_migratory);
593#endif
594 P(rt_throttled);
595 PN(rt_time);
596 PN(rt_runtime);
597
598#undef PN
599#undef PU
600#undef P
601}
602
603void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
604{
605 struct dl_bw *dl_bw;
606
607 SEQ_printf(m, "\n");
608 SEQ_printf(m, "dl_rq[%d]:\n", cpu);
609
610#define PU(x) \
611 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
612
613 PU(dl_nr_running);
614#ifdef CONFIG_SMP
615 PU(dl_nr_migratory);
616 dl_bw = &cpu_rq(cpu)->rd->dl_bw;
617#else
618 dl_bw = &dl_rq->dl_bw;
619#endif
620 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
621 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
622
623#undef PU
624}
625
626extern __read_mostly int sched_clock_running;
627
628static void print_cpu(struct seq_file *m, int cpu)
629{
630 struct rq *rq = cpu_rq(cpu);
631 unsigned long flags;
632
633#ifdef CONFIG_X86
634 {
635 unsigned int freq = cpu_khz ? : 1;
636
637 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
638 cpu, freq / 1000, (freq % 1000));
639 }
640#else
641 SEQ_printf(m, "cpu#%d\n", cpu);
642#endif
643
644#define P(x) \
645do { \
646 if (sizeof(rq->x) == 4) \
647 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \
648 else \
649 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\
650} while (0)
651
652#define PN(x) \
653 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
654
655 P(nr_running);
656 SEQ_printf(m, " .%-30s: %lu\n", "load",
657 rq->load.weight);
658 P(nr_switches);
659 P(nr_load_updates);
660 P(nr_uninterruptible);
661 PN(next_balance);
662 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
663 PN(clock);
664 PN(clock_task);
665 P(cpu_load[0]);
666 P(cpu_load[1]);
667 P(cpu_load[2]);
668 P(cpu_load[3]);
669 P(cpu_load[4]);
670#undef P
671#undef PN
672
673#ifdef CONFIG_SMP
674#define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n);
675 P64(avg_idle);
676 P64(max_idle_balance_cost);
677#undef P64
678#endif
679
680#define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n));
681 if (schedstat_enabled()) {
682 P(yld_count);
683 P(sched_count);
684 P(sched_goidle);
685 P(ttwu_count);
686 P(ttwu_local);
687 }
688#undef P
689
690 spin_lock_irqsave(&sched_debug_lock, flags);
691 print_cfs_stats(m, cpu);
692 print_rt_stats(m, cpu);
693 print_dl_stats(m, cpu);
694
695 print_rq(m, rq, cpu);
696 spin_unlock_irqrestore(&sched_debug_lock, flags);
697 SEQ_printf(m, "\n");
698}
699
700static const char *sched_tunable_scaling_names[] = {
701 "none",
702 "logaritmic",
703 "linear"
704};
705
706static void sched_debug_header(struct seq_file *m)
707{
708 u64 ktime, sched_clk, cpu_clk;
709 unsigned long flags;
710
711 local_irq_save(flags);
712 ktime = ktime_to_ns(ktime_get());
713 sched_clk = sched_clock();
714 cpu_clk = local_clock();
715 local_irq_restore(flags);
716
717 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
718 init_utsname()->release,
719 (int)strcspn(init_utsname()->version, " "),
720 init_utsname()->version);
721
722#define P(x) \
723 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
724#define PN(x) \
725 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
726 PN(ktime);
727 PN(sched_clk);
728 PN(cpu_clk);
729 P(jiffies);
730#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
731 P(sched_clock_stable());
732#endif
733#undef PN
734#undef P
735
736 SEQ_printf(m, "\n");
737 SEQ_printf(m, "sysctl_sched\n");
738
739#define P(x) \
740 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
741#define PN(x) \
742 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
743 PN(sysctl_sched_latency);
744 PN(sysctl_sched_min_granularity);
745 PN(sysctl_sched_wakeup_granularity);
746 P(sysctl_sched_child_runs_first);
747 P(sysctl_sched_features);
748#undef PN
749#undef P
750
751 SEQ_printf(m, " .%-40s: %d (%s)\n",
752 "sysctl_sched_tunable_scaling",
753 sysctl_sched_tunable_scaling,
754 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
755 SEQ_printf(m, "\n");
756}
757
758static int sched_debug_show(struct seq_file *m, void *v)
759{
760 int cpu = (unsigned long)(v - 2);
761
762 if (cpu != -1)
763 print_cpu(m, cpu);
764 else
765 sched_debug_header(m);
766
767 return 0;
768}
769
770void sysrq_sched_debug_show(void)
771{
772 int cpu;
773
774 sched_debug_header(NULL);
775 for_each_online_cpu(cpu)
776 print_cpu(NULL, cpu);
777
778}
779
780/*
781 * This itererator needs some explanation.
782 * It returns 1 for the header position.
783 * This means 2 is CPU 0.
784 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
785 * to use cpumask_* to iterate over the CPUs.
786 */
787static void *sched_debug_start(struct seq_file *file, loff_t *offset)
788{
789 unsigned long n = *offset;
790
791 if (n == 0)
792 return (void *) 1;
793
794 n--;
795
796 if (n > 0)
797 n = cpumask_next(n - 1, cpu_online_mask);
798 else
799 n = cpumask_first(cpu_online_mask);
800
801 *offset = n + 1;
802
803 if (n < nr_cpu_ids)
804 return (void *)(unsigned long)(n + 2);
805
806 return NULL;
807}
808
809static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
810{
811 (*offset)++;
812 return sched_debug_start(file, offset);
813}
814
815static void sched_debug_stop(struct seq_file *file, void *data)
816{
817}
818
819static const struct seq_operations sched_debug_sops = {
820 .start = sched_debug_start,
821 .next = sched_debug_next,
822 .stop = sched_debug_stop,
823 .show = sched_debug_show,
824};
825
826static int sched_debug_release(struct inode *inode, struct file *file)
827{
828 seq_release(inode, file);
829
830 return 0;
831}
832
833static int sched_debug_open(struct inode *inode, struct file *filp)
834{
835 int ret = 0;
836
837 ret = seq_open(filp, &sched_debug_sops);
838
839 return ret;
840}
841
842static const struct file_operations sched_debug_fops = {
843 .open = sched_debug_open,
844 .read = seq_read,
845 .llseek = seq_lseek,
846 .release = sched_debug_release,
847};
848
849static int __init init_sched_debug_procfs(void)
850{
851 struct proc_dir_entry *pe;
852
853 pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops);
854 if (!pe)
855 return -ENOMEM;
856 return 0;
857}
858
859__initcall(init_sched_debug_procfs);
860
861#define __P(F) SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
862#define P(F) SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
863#define __PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
864#define PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
865
866
867#ifdef CONFIG_NUMA_BALANCING
868void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
869 unsigned long tpf, unsigned long gsf, unsigned long gpf)
870{
871 SEQ_printf(m, "numa_faults node=%d ", node);
872 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tsf, tpf);
873 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gsf, gpf);
874}
875#endif
876
877
878static void sched_show_numa(struct task_struct *p, struct seq_file *m)
879{
880#ifdef CONFIG_NUMA_BALANCING
881 struct mempolicy *pol;
882
883 if (p->mm)
884 P(mm->numa_scan_seq);
885
886 task_lock(p);
887 pol = p->mempolicy;
888 if (pol && !(pol->flags & MPOL_F_MORON))
889 pol = NULL;
890 mpol_get(pol);
891 task_unlock(p);
892
893 P(numa_pages_migrated);
894 P(numa_preferred_nid);
895 P(total_numa_faults);
896 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
897 task_node(p), task_numa_group_id(p));
898 show_numa_stats(p, m);
899 mpol_put(pol);
900#endif
901}
902
903void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
904 struct seq_file *m)
905{
906 unsigned long nr_switches;
907
908 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
909 get_nr_threads(p));
910 SEQ_printf(m,
911 "---------------------------------------------------------"
912 "----------\n");
913#define __P(F) \
914 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
915#define P(F) \
916 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
917#define P_SCHEDSTAT(F) \
918 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)schedstat_val(p->F))
919#define __PN(F) \
920 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
921#define PN(F) \
922 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
923#define PN_SCHEDSTAT(F) \
924 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(p->F)))
925
926 PN(se.exec_start);
927 PN(se.vruntime);
928 PN(se.sum_exec_runtime);
929
930 nr_switches = p->nvcsw + p->nivcsw;
931
932 P(se.nr_migrations);
933
934 if (schedstat_enabled()) {
935 u64 avg_atom, avg_per_cpu;
936
937 PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
938 PN_SCHEDSTAT(se.statistics.wait_start);
939 PN_SCHEDSTAT(se.statistics.sleep_start);
940 PN_SCHEDSTAT(se.statistics.block_start);
941 PN_SCHEDSTAT(se.statistics.sleep_max);
942 PN_SCHEDSTAT(se.statistics.block_max);
943 PN_SCHEDSTAT(se.statistics.exec_max);
944 PN_SCHEDSTAT(se.statistics.slice_max);
945 PN_SCHEDSTAT(se.statistics.wait_max);
946 PN_SCHEDSTAT(se.statistics.wait_sum);
947 P_SCHEDSTAT(se.statistics.wait_count);
948 PN_SCHEDSTAT(se.statistics.iowait_sum);
949 P_SCHEDSTAT(se.statistics.iowait_count);
950 P_SCHEDSTAT(se.statistics.nr_migrations_cold);
951 P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
952 P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
953 P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
954 P_SCHEDSTAT(se.statistics.nr_forced_migrations);
955 P_SCHEDSTAT(se.statistics.nr_wakeups);
956 P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
957 P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
958 P_SCHEDSTAT(se.statistics.nr_wakeups_local);
959 P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
960 P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
961 P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
962 P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
963 P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
964
965 avg_atom = p->se.sum_exec_runtime;
966 if (nr_switches)
967 avg_atom = div64_ul(avg_atom, nr_switches);
968 else
969 avg_atom = -1LL;
970
971 avg_per_cpu = p->se.sum_exec_runtime;
972 if (p->se.nr_migrations) {
973 avg_per_cpu = div64_u64(avg_per_cpu,
974 p->se.nr_migrations);
975 } else {
976 avg_per_cpu = -1LL;
977 }
978
979 __PN(avg_atom);
980 __PN(avg_per_cpu);
981 }
982
983 __P(nr_switches);
984 SEQ_printf(m, "%-45s:%21Ld\n",
985 "nr_voluntary_switches", (long long)p->nvcsw);
986 SEQ_printf(m, "%-45s:%21Ld\n",
987 "nr_involuntary_switches", (long long)p->nivcsw);
988
989 P(se.load.weight);
990 P(se.runnable_weight);
991#ifdef CONFIG_SMP
992 P(se.avg.load_sum);
993 P(se.avg.runnable_load_sum);
994 P(se.avg.util_sum);
995 P(se.avg.load_avg);
996 P(se.avg.runnable_load_avg);
997 P(se.avg.util_avg);
998 P(se.avg.last_update_time);
999 P(se.avg.util_est.ewma);
1000 P(se.avg.util_est.enqueued);
1001#endif
1002 P(policy);
1003 P(prio);
1004 if (p->policy == SCHED_DEADLINE) {
1005 P(dl.runtime);
1006 P(dl.deadline);
1007 }
1008#undef PN_SCHEDSTAT
1009#undef PN
1010#undef __PN
1011#undef P_SCHEDSTAT
1012#undef P
1013#undef __P
1014
1015 {
1016 unsigned int this_cpu = raw_smp_processor_id();
1017 u64 t0, t1;
1018
1019 t0 = cpu_clock(this_cpu);
1020 t1 = cpu_clock(this_cpu);
1021 SEQ_printf(m, "%-45s:%21Ld\n",
1022 "clock-delta", (long long)(t1-t0));
1023 }
1024
1025 sched_show_numa(p, m);
1026}
1027
1028void proc_sched_set_task(struct task_struct *p)
1029{
1030#ifdef CONFIG_SCHEDSTATS
1031 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1032#endif
1033}