Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/kernel.h>
   7#include <linux/bio.h>
   8#include <linux/file.h>
   9#include <linux/fs.h>
  10#include <linux/pagemap.h>
  11#include <linux/pagevec.h>
  12#include <linux/highmem.h>
  13#include <linux/kthread.h>
  14#include <linux/time.h>
  15#include <linux/init.h>
  16#include <linux/string.h>
  17#include <linux/backing-dev.h>
  18#include <linux/writeback.h>
  19#include <linux/psi.h>
  20#include <linux/slab.h>
  21#include <linux/sched/mm.h>
  22#include <linux/log2.h>
  23#include <crypto/hash.h>
  24#include "misc.h"
  25#include "ctree.h"
  26#include "fs.h"
  27#include "disk-io.h"
  28#include "transaction.h"
  29#include "btrfs_inode.h"
  30#include "bio.h"
  31#include "ordered-data.h"
  32#include "compression.h"
  33#include "extent_io.h"
  34#include "extent_map.h"
  35#include "subpage.h"
  36#include "zoned.h"
  37#include "file-item.h"
  38#include "super.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  39
  40static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
  41
  42const char* btrfs_compress_type2str(enum btrfs_compression_type type)
  43{
  44	switch (type) {
  45	case BTRFS_COMPRESS_ZLIB:
  46	case BTRFS_COMPRESS_LZO:
  47	case BTRFS_COMPRESS_ZSTD:
  48	case BTRFS_COMPRESS_NONE:
  49		return btrfs_compress_types[type];
  50	default:
  51		break;
  52	}
  53
  54	return NULL;
  55}
  56
  57bool btrfs_compress_is_valid_type(const char *str, size_t len)
  58{
  59	int i;
  60
  61	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
  62		size_t comp_len = strlen(btrfs_compress_types[i]);
  63
  64		if (len < comp_len)
  65			continue;
  66
  67		if (!strncmp(btrfs_compress_types[i], str, comp_len))
  68			return true;
  69	}
  70	return false;
  71}
  72
  73static int compression_compress_pages(int type, struct list_head *ws,
  74               struct address_space *mapping, u64 start, struct page **pages,
  75               unsigned long *out_pages, unsigned long *total_in,
  76               unsigned long *total_out)
  77{
  78	switch (type) {
  79	case BTRFS_COMPRESS_ZLIB:
  80		return zlib_compress_pages(ws, mapping, start, pages,
  81				out_pages, total_in, total_out);
  82	case BTRFS_COMPRESS_LZO:
  83		return lzo_compress_pages(ws, mapping, start, pages,
  84				out_pages, total_in, total_out);
  85	case BTRFS_COMPRESS_ZSTD:
  86		return zstd_compress_pages(ws, mapping, start, pages,
  87				out_pages, total_in, total_out);
  88	case BTRFS_COMPRESS_NONE:
  89	default:
  90		/*
  91		 * This can happen when compression races with remount setting
  92		 * it to 'no compress', while caller doesn't call
  93		 * inode_need_compress() to check if we really need to
  94		 * compress.
  95		 *
  96		 * Not a big deal, just need to inform caller that we
  97		 * haven't allocated any pages yet.
  98		 */
  99		*out_pages = 0;
 100		return -E2BIG;
 101	}
 102}
 103
 104static int compression_decompress_bio(struct list_head *ws,
 105				      struct compressed_bio *cb)
 106{
 107	switch (cb->compress_type) {
 108	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
 109	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
 110	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
 111	case BTRFS_COMPRESS_NONE:
 112	default:
 113		/*
 114		 * This can't happen, the type is validated several times
 115		 * before we get here.
 116		 */
 117		BUG();
 118	}
 119}
 120
 121static int compression_decompress(int type, struct list_head *ws,
 122               const u8 *data_in, struct page *dest_page,
 123               unsigned long start_byte, size_t srclen, size_t destlen)
 124{
 125	switch (type) {
 126	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
 127						start_byte, srclen, destlen);
 128	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
 129						start_byte, srclen, destlen);
 130	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
 131						start_byte, srclen, destlen);
 132	case BTRFS_COMPRESS_NONE:
 133	default:
 134		/*
 135		 * This can't happen, the type is validated several times
 136		 * before we get here.
 137		 */
 138		BUG();
 139	}
 140}
 141
 142static int btrfs_decompress_bio(struct compressed_bio *cb);
 143
 144static void finish_compressed_bio_read(struct compressed_bio *cb)
 
 
 
 
 
 
 
 
 
 
 145{
 146	unsigned int index;
 
 
 147	struct page *page;
 
 
 
 
 
 148
 149	if (cb->status == BLK_STS_OK)
 150		cb->status = errno_to_blk_status(btrfs_decompress_bio(cb));
 151
 152	/* Release the compressed pages */
 153	for (index = 0; index < cb->nr_pages; index++) {
 154		page = cb->compressed_pages[index];
 155		page->mapping = NULL;
 156		put_page(page);
 157	}
 158
 159	/* Do io completion on the original bio */
 160	btrfs_bio_end_io(btrfs_bio(cb->orig_bio), cb->status);
 161
 162	/* Finally free the cb struct */
 163	kfree(cb->compressed_pages);
 164	kfree(cb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 165}
 166
 167/*
 168 * Verify the checksums and kick off repair if needed on the uncompressed data
 169 * before decompressing it into the original bio and freeing the uncompressed
 170 * pages.
 
 
 
 
 
 171 */
 172static void end_compressed_bio_read(struct btrfs_bio *bbio)
 173{
 174	struct compressed_bio *cb = bbio->private;
 175	struct inode *inode = cb->inode;
 176	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 177	struct btrfs_inode *bi = BTRFS_I(inode);
 178	bool csum = !(bi->flags & BTRFS_INODE_NODATASUM) &&
 179		    !test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
 180	blk_status_t status = bbio->bio.bi_status;
 181	struct bvec_iter iter;
 182	struct bio_vec bv;
 183	u32 offset;
 184
 185	btrfs_bio_for_each_sector(fs_info, bv, bbio, iter, offset) {
 186		u64 start = bbio->file_offset + offset;
 187
 188		if (!status &&
 189		    (!csum || !btrfs_check_data_csum(bi, bbio, offset,
 190						     bv.bv_page, bv.bv_offset))) {
 191			btrfs_clean_io_failure(bi, start, bv.bv_page,
 192					       bv.bv_offset);
 193		} else {
 194			int ret;
 195
 196			refcount_inc(&cb->pending_ios);
 197			ret = btrfs_repair_one_sector(BTRFS_I(inode), bbio, offset,
 198						      bv.bv_page, bv.bv_offset,
 199						      true);
 200			if (ret) {
 201				refcount_dec(&cb->pending_ios);
 202				status = errno_to_blk_status(ret);
 203			}
 204		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 205	}
 206
 207	if (status)
 208		cb->status = status;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 209
 210	if (refcount_dec_and_test(&cb->pending_ios))
 211		finish_compressed_bio_read(cb);
 212	btrfs_bio_free_csum(bbio);
 213	bio_put(&bbio->bio);
 
 214}
 215
 216/*
 217 * Clear the writeback bits on all of the file
 218 * pages for a compressed write
 219 */
 220static noinline void end_compressed_writeback(struct inode *inode,
 221					      const struct compressed_bio *cb)
 222{
 223	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 224	unsigned long index = cb->start >> PAGE_SHIFT;
 225	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
 226	struct folio_batch fbatch;
 227	const int errno = blk_status_to_errno(cb->status);
 228	int i;
 229	int ret;
 230
 231	if (errno)
 232		mapping_set_error(inode->i_mapping, errno);
 233
 234	folio_batch_init(&fbatch);
 235	while (index <= end_index) {
 236		ret = filemap_get_folios(inode->i_mapping, &index, end_index,
 237				&fbatch);
 238
 239		if (ret == 0)
 240			return;
 241
 
 
 
 
 
 
 
 
 
 242		for (i = 0; i < ret; i++) {
 243			struct folio *folio = fbatch.folios[i];
 244
 245			if (errno)
 246				folio_set_error(folio);
 247			btrfs_page_clamp_clear_writeback(fs_info, &folio->page,
 248							 cb->start, cb->len);
 249		}
 250		folio_batch_release(&fbatch);
 
 251	}
 252	/* the inode may be gone now */
 253}
 254
 255static void finish_compressed_bio_write(struct compressed_bio *cb)
 
 
 
 
 
 
 
 
 256{
 257	struct inode *inode = cb->inode;
 258	unsigned int index;
 
 
 259
 260	/*
 261	 * Ok, we're the last bio for this extent, step one is to call back
 262	 * into the FS and do all the end_io operations.
 
 
 
 
 
 
 
 
 263	 */
 264	btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL,
 
 
 265			cb->start, cb->start + cb->len - 1,
 266			cb->status == BLK_STS_OK);
 
 267
 268	if (cb->writeback)
 269		end_compressed_writeback(inode, cb);
 270	/* Note, our inode could be gone now */
 271
 272	/*
 273	 * Release the compressed pages, these came from alloc_page and
 274	 * are not attached to the inode at all
 275	 */
 
 276	for (index = 0; index < cb->nr_pages; index++) {
 277		struct page *page = cb->compressed_pages[index];
 278
 279		page->mapping = NULL;
 280		put_page(page);
 281	}
 282
 283	/* Finally free the cb struct */
 284	kfree(cb->compressed_pages);
 285	kfree(cb);
 286}
 287
 288static void btrfs_finish_compressed_write_work(struct work_struct *work)
 289{
 290	struct compressed_bio *cb =
 291		container_of(work, struct compressed_bio, write_end_work);
 292
 293	finish_compressed_bio_write(cb);
 294}
 295
 296/*
 297 * Do the cleanup once all the compressed pages hit the disk.  This will clear
 298 * writeback on the file pages and free the compressed pages.
 299 *
 300 * This also calls the writeback end hooks for the file pages so that metadata
 301 * and checksums can be updated in the file.
 302 */
 303static void end_compressed_bio_write(struct btrfs_bio *bbio)
 304{
 305	struct compressed_bio *cb = bbio->private;
 306
 307	if (bbio->bio.bi_status)
 308		cb->status = bbio->bio.bi_status;
 309
 310	if (refcount_dec_and_test(&cb->pending_ios)) {
 311		struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
 312
 313		btrfs_record_physical_zoned(cb->inode, cb->start, &bbio->bio);
 314		queue_work(fs_info->compressed_write_workers, &cb->write_end_work);
 315	}
 316	bio_put(&bbio->bio);
 317}
 318
 319/*
 320 * Allocate a compressed_bio, which will be used to read/write on-disk
 321 * (aka, compressed) * data.
 322 *
 323 * @cb:                 The compressed_bio structure, which records all the needed
 324 *                      information to bind the compressed data to the uncompressed
 325 *                      page cache.
 326 * @disk_byten:         The logical bytenr where the compressed data will be read
 327 *                      from or written to.
 328 * @endio_func:         The endio function to call after the IO for compressed data
 329 *                      is finished.
 330 * @next_stripe_start:  Return value of logical bytenr of where next stripe starts.
 331 *                      Let the caller know to only fill the bio up to the stripe
 332 *                      boundary.
 333 */
 334
 335
 336static struct bio *alloc_compressed_bio(struct compressed_bio *cb, u64 disk_bytenr,
 337					blk_opf_t opf,
 338					btrfs_bio_end_io_t endio_func,
 339					u64 *next_stripe_start)
 340{
 341	struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
 342	struct btrfs_io_geometry geom;
 343	struct extent_map *em;
 344	struct bio *bio;
 345	int ret;
 346
 347	bio = btrfs_bio_alloc(BIO_MAX_VECS, opf, endio_func, cb);
 348	bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
 349
 350	em = btrfs_get_chunk_map(fs_info, disk_bytenr, fs_info->sectorsize);
 351	if (IS_ERR(em)) {
 352		bio_put(bio);
 353		return ERR_CAST(em);
 354	}
 355
 356	if (bio_op(bio) == REQ_OP_ZONE_APPEND)
 357		bio_set_dev(bio, em->map_lookup->stripes[0].dev->bdev);
 358
 359	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), disk_bytenr, &geom);
 360	free_extent_map(em);
 361	if (ret < 0) {
 362		bio_put(bio);
 363		return ERR_PTR(ret);
 364	}
 365	*next_stripe_start = disk_bytenr + geom.len;
 366	refcount_inc(&cb->pending_ios);
 367	return bio;
 368}
 369
 370/*
 371 * worker function to build and submit bios for previously compressed pages.
 372 * The corresponding pages in the inode should be marked for writeback
 373 * and the compressed pages should have a reference on them for dropping
 374 * when the IO is complete.
 375 *
 376 * This also checksums the file bytes and gets things ready for
 377 * the end io hooks.
 378 */
 379blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
 380				 unsigned int len, u64 disk_start,
 381				 unsigned int compressed_len,
 382				 struct page **compressed_pages,
 383				 unsigned int nr_pages,
 384				 blk_opf_t write_flags,
 385				 struct cgroup_subsys_state *blkcg_css,
 386				 bool writeback)
 387{
 388	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 389	struct bio *bio = NULL;
 390	struct compressed_bio *cb;
 391	u64 cur_disk_bytenr = disk_start;
 392	u64 next_stripe_start;
 393	blk_status_t ret = BLK_STS_OK;
 
 
 394	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
 395	const bool use_append = btrfs_use_zone_append(inode, disk_start);
 396	const enum req_op bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
 397
 398	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
 399	       IS_ALIGNED(len, fs_info->sectorsize));
 400	cb = kmalloc(sizeof(struct compressed_bio), GFP_NOFS);
 401	if (!cb)
 402		return BLK_STS_RESOURCE;
 403	refcount_set(&cb->pending_ios, 1);
 404	cb->status = BLK_STS_OK;
 405	cb->inode = &inode->vfs_inode;
 406	cb->start = start;
 407	cb->len = len;
 
 408	cb->compressed_pages = compressed_pages;
 409	cb->compressed_len = compressed_len;
 410	cb->writeback = writeback;
 411	INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work);
 412	cb->nr_pages = nr_pages;
 413
 414	if (blkcg_css)
 
 
 
 
 
 
 415		kthread_associate_blkcg(blkcg_css);
 
 
 416
 417	while (cur_disk_bytenr < disk_start + compressed_len) {
 418		u64 offset = cur_disk_bytenr - disk_start;
 419		unsigned int index = offset >> PAGE_SHIFT;
 420		unsigned int real_size;
 421		unsigned int added;
 422		struct page *page = compressed_pages[index];
 423		bool submit = false;
 424
 425		/* Allocate new bio if submitted or not yet allocated */
 426		if (!bio) {
 427			bio = alloc_compressed_bio(cb, cur_disk_bytenr,
 428				bio_op | write_flags, end_compressed_bio_write,
 429				&next_stripe_start);
 430			if (IS_ERR(bio)) {
 431				ret = errno_to_blk_status(PTR_ERR(bio));
 432				break;
 433			}
 434			if (blkcg_css)
 435				bio->bi_opf |= REQ_CGROUP_PUNT;
 436		}
 437		/*
 438		 * We should never reach next_stripe_start start as we will
 439		 * submit comp_bio when reach the boundary immediately.
 440		 */
 441		ASSERT(cur_disk_bytenr != next_stripe_start);
 442
 443		/*
 444		 * We have various limits on the real read size:
 445		 * - stripe boundary
 446		 * - page boundary
 447		 * - compressed length boundary
 448		 */
 449		real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_bytenr);
 450		real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
 451		real_size = min_t(u64, real_size, compressed_len - offset);
 452		ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
 453
 454		if (use_append)
 455			added = bio_add_zone_append_page(bio, page, real_size,
 456					offset_in_page(offset));
 457		else
 458			added = bio_add_page(bio, page, real_size,
 459					offset_in_page(offset));
 460		/* Reached zoned boundary */
 461		if (added == 0)
 462			submit = true;
 463
 464		cur_disk_bytenr += added;
 465		/* Reached stripe boundary */
 466		if (cur_disk_bytenr == next_stripe_start)
 467			submit = true;
 468
 469		/* Finished the range */
 470		if (cur_disk_bytenr == disk_start + compressed_len)
 471			submit = true;
 472
 473		if (submit) {
 474			if (!skip_sum) {
 475				ret = btrfs_csum_one_bio(inode, bio, start, true);
 476				if (ret) {
 477					btrfs_bio_end_io(btrfs_bio(bio), ret);
 478					break;
 479				}
 
 
 
 480			}
 481
 482			ASSERT(bio->bi_iter.bi_size);
 483			btrfs_submit_bio(fs_info, bio, 0);
 484			bio = NULL;
 
 
 
 
 
 
 
 
 
 485		}
 
 
 486		cond_resched();
 487	}
 488
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 489	if (blkcg_css)
 490		kthread_associate_blkcg(NULL);
 491
 492	if (refcount_dec_and_test(&cb->pending_ios))
 493		finish_compressed_bio_write(cb);
 494	return ret;
 495}
 496
 497static u64 bio_end_offset(struct bio *bio)
 498{
 499	struct bio_vec *last = bio_last_bvec_all(bio);
 500
 501	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
 502}
 503
 504/*
 505 * Add extra pages in the same compressed file extent so that we don't need to
 506 * re-read the same extent again and again.
 507 *
 508 * NOTE: this won't work well for subpage, as for subpage read, we lock the
 509 * full page then submit bio for each compressed/regular extents.
 510 *
 511 * This means, if we have several sectors in the same page points to the same
 512 * on-disk compressed data, we will re-read the same extent many times and
 513 * this function can only help for the next page.
 514 */
 515static noinline int add_ra_bio_pages(struct inode *inode,
 516				     u64 compressed_end,
 517				     struct compressed_bio *cb,
 518				     int *memstall, unsigned long *pflags)
 519{
 520	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 521	unsigned long end_index;
 522	u64 cur = bio_end_offset(cb->orig_bio);
 
 523	u64 isize = i_size_read(inode);
 524	int ret;
 525	struct page *page;
 
 526	struct extent_map *em;
 527	struct address_space *mapping = inode->i_mapping;
 528	struct extent_map_tree *em_tree;
 529	struct extent_io_tree *tree;
 530	int sectors_missed = 0;
 
 531
 
 532	em_tree = &BTRFS_I(inode)->extent_tree;
 533	tree = &BTRFS_I(inode)->io_tree;
 534
 535	if (isize == 0)
 536		return 0;
 537
 538	/*
 539	 * For current subpage support, we only support 64K page size,
 540	 * which means maximum compressed extent size (128K) is just 2x page
 541	 * size.
 542	 * This makes readahead less effective, so here disable readahead for
 543	 * subpage for now, until full compressed write is supported.
 544	 */
 545	if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
 546		return 0;
 547
 548	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 549
 550	while (cur < compressed_end) {
 551		u64 page_end;
 552		u64 pg_index = cur >> PAGE_SHIFT;
 553		u32 add_size;
 554
 555		if (pg_index > end_index)
 556			break;
 557
 558		page = xa_load(&mapping->i_pages, pg_index);
 559		if (page && !xa_is_value(page)) {
 560			sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
 561					  fs_info->sectorsize_bits;
 562
 563			/* Beyond threshold, no need to continue */
 564			if (sectors_missed > 4)
 565				break;
 566
 567			/*
 568			 * Jump to next page start as we already have page for
 569			 * current offset.
 570			 */
 571			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
 572			continue;
 573		}
 574
 575		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
 576								 ~__GFP_FS));
 577		if (!page)
 578			break;
 579
 580		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
 581			put_page(page);
 582			/* There is already a page, skip to page end */
 583			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
 584			continue;
 585		}
 586
 587		if (!*memstall && PageWorkingset(page)) {
 588			psi_memstall_enter(pflags);
 589			*memstall = 1;
 590		}
 591
 592		ret = set_page_extent_mapped(page);
 593		if (ret < 0) {
 594			unlock_page(page);
 595			put_page(page);
 596			break;
 597		}
 598
 599		page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
 600		lock_extent(tree, cur, page_end, NULL);
 
 
 
 
 
 
 601		read_lock(&em_tree->lock);
 602		em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
 
 603		read_unlock(&em_tree->lock);
 604
 605		/*
 606		 * At this point, we have a locked page in the page cache for
 607		 * these bytes in the file.  But, we have to make sure they map
 608		 * to this compressed extent on disk.
 609		 */
 610		if (!em || cur < em->start ||
 611		    (cur + fs_info->sectorsize > extent_map_end(em)) ||
 612		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
 613			free_extent_map(em);
 614			unlock_extent(tree, cur, page_end, NULL);
 615			unlock_page(page);
 616			put_page(page);
 617			break;
 618		}
 619		free_extent_map(em);
 620
 621		if (page->index == end_index) {
 
 622			size_t zero_offset = offset_in_page(isize);
 623
 624			if (zero_offset) {
 625				int zeros;
 626				zeros = PAGE_SIZE - zero_offset;
 627				memzero_page(page, zero_offset, zeros);
 
 
 
 628			}
 629		}
 630
 631		add_size = min(em->start + em->len, page_end + 1) - cur;
 632		ret = bio_add_page(cb->orig_bio, page, add_size, offset_in_page(cur));
 633		if (ret != add_size) {
 634			unlock_extent(tree, cur, page_end, NULL);
 
 
 
 
 635			unlock_page(page);
 636			put_page(page);
 637			break;
 638		}
 639		/*
 640		 * If it's subpage, we also need to increase its
 641		 * subpage::readers number, as at endio we will decrease
 642		 * subpage::readers and to unlock the page.
 643		 */
 644		if (fs_info->sectorsize < PAGE_SIZE)
 645			btrfs_subpage_start_reader(fs_info, page, cur, add_size);
 646		put_page(page);
 647		cur += add_size;
 648	}
 649	return 0;
 650}
 651
 652/*
 653 * for a compressed read, the bio we get passed has all the inode pages
 654 * in it.  We don't actually do IO on those pages but allocate new ones
 655 * to hold the compressed pages on disk.
 656 *
 657 * bio->bi_iter.bi_sector points to the compressed extent on disk
 658 * bio->bi_io_vec points to all of the inode pages
 659 *
 660 * After the compressed pages are read, we copy the bytes into the
 661 * bio we were passed and then call the bio end_io calls
 662 */
 663void btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
 664				  int mirror_num)
 665{
 666	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 667	struct extent_map_tree *em_tree;
 668	struct compressed_bio *cb;
 669	unsigned int compressed_len;
 670	struct bio *comp_bio = NULL;
 671	const u64 disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
 672	u64 cur_disk_byte = disk_bytenr;
 673	u64 next_stripe_start;
 674	u64 file_offset;
 675	u64 em_len;
 676	u64 em_start;
 677	struct extent_map *em;
 678	unsigned long pflags;
 679	int memstall = 0;
 680	blk_status_t ret;
 681	int ret2;
 682	int i;
 683
 684	em_tree = &BTRFS_I(inode)->extent_tree;
 685
 686	file_offset = bio_first_bvec_all(bio)->bv_offset +
 687		      page_offset(bio_first_page_all(bio));
 688
 689	/* we need the actual starting offset of this extent in the file */
 690	read_lock(&em_tree->lock);
 691	em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
 
 
 692	read_unlock(&em_tree->lock);
 693	if (!em) {
 694		ret = BLK_STS_IOERR;
 695		goto out;
 696	}
 697
 698	ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
 699	compressed_len = em->block_len;
 700	cb = kmalloc(sizeof(struct compressed_bio), GFP_NOFS);
 701	if (!cb) {
 702		ret = BLK_STS_RESOURCE;
 703		goto out;
 704	}
 705
 706	refcount_set(&cb->pending_ios, 1);
 707	cb->status = BLK_STS_OK;
 708	cb->inode = inode;
 
 
 709
 710	cb->start = em->orig_start;
 711	em_len = em->len;
 712	em_start = em->start;
 713
 714	cb->len = bio->bi_iter.bi_size;
 715	cb->compressed_len = compressed_len;
 716	cb->compress_type = em->compress_type;
 717	cb->orig_bio = bio;
 718
 719	free_extent_map(em);
 720	em = NULL;
 721
 722	cb->nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
 723	cb->compressed_pages = kcalloc(cb->nr_pages, sizeof(struct page *), GFP_NOFS);
 724	if (!cb->compressed_pages) {
 725		ret = BLK_STS_RESOURCE;
 726		goto fail;
 727	}
 728
 729	ret2 = btrfs_alloc_page_array(cb->nr_pages, cb->compressed_pages);
 730	if (ret2) {
 731		ret = BLK_STS_RESOURCE;
 732		goto fail;
 
 
 
 
 
 
 
 
 
 
 733	}
 
 
 734
 735	add_ra_bio_pages(inode, em_start + em_len, cb, &memstall, &pflags);
 736
 737	/* include any pages we added in add_ra-bio_pages */
 738	cb->len = bio->bi_iter.bi_size;
 739
 740	while (cur_disk_byte < disk_bytenr + compressed_len) {
 741		u64 offset = cur_disk_byte - disk_bytenr;
 742		unsigned int index = offset >> PAGE_SHIFT;
 743		unsigned int real_size;
 744		unsigned int added;
 745		struct page *page = cb->compressed_pages[index];
 746		bool submit = false;
 747
 748		/* Allocate new bio if submitted or not yet allocated */
 749		if (!comp_bio) {
 750			comp_bio = alloc_compressed_bio(cb, cur_disk_byte,
 751					REQ_OP_READ, end_compressed_bio_read,
 752					&next_stripe_start);
 753			if (IS_ERR(comp_bio)) {
 754				cb->status = errno_to_blk_status(PTR_ERR(comp_bio));
 755				break;
 756			}
 757		}
 758		/*
 759		 * We should never reach next_stripe_start start as we will
 760		 * submit comp_bio when reach the boundary immediately.
 761		 */
 762		ASSERT(cur_disk_byte != next_stripe_start);
 763		/*
 764		 * We have various limit on the real read size:
 765		 * - stripe boundary
 766		 * - page boundary
 767		 * - compressed length boundary
 768		 */
 769		real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_byte);
 770		real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
 771		real_size = min_t(u64, real_size, compressed_len - offset);
 772		ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
 773
 774		added = bio_add_page(comp_bio, page, real_size, offset_in_page(offset));
 775		/*
 776		 * Maximum compressed extent is smaller than bio size limit,
 777		 * thus bio_add_page() should always success.
 778		 */
 779		ASSERT(added == real_size);
 780		cur_disk_byte += added;
 781
 782		/* Reached stripe boundary, need to submit */
 783		if (cur_disk_byte == next_stripe_start)
 784			submit = true;
 785
 786		/* Has finished the range, need to submit */
 787		if (cur_disk_byte == disk_bytenr + compressed_len)
 788			submit = true;
 789
 790		if (submit) {
 791			/* Save the original iter for read repair */
 792			if (bio_op(comp_bio) == REQ_OP_READ)
 793				btrfs_bio(comp_bio)->iter = comp_bio->bi_iter;
 794
 795			/*
 796			 * Save the initial offset of this chunk, as there
 797			 * is no direct correlation between compressed pages and
 798			 * the original file offset.  The field is only used for
 799			 * priting error messages.
 800			 */
 801			btrfs_bio(comp_bio)->file_offset = file_offset;
 
 
 
 
 
 
 
 
 
 
 802
 803			ret = btrfs_lookup_bio_sums(inode, comp_bio, NULL);
 804			if (ret) {
 805				btrfs_bio_end_io(btrfs_bio(comp_bio), ret);
 806				break;
 807			}
 808
 809			ASSERT(comp_bio->bi_iter.bi_size);
 810			btrfs_submit_bio(fs_info, comp_bio, mirror_num);
 811			comp_bio = NULL;
 
 
 
 812		}
 
 813	}
 814
 815	if (memstall)
 816		psi_memstall_leave(&pflags);
 817
 818	if (refcount_dec_and_test(&cb->pending_ios))
 819		finish_compressed_bio_read(cb);
 820	return;
 
 821
 822fail:
 823	if (cb->compressed_pages) {
 824		for (i = 0; i < cb->nr_pages; i++) {
 825			if (cb->compressed_pages[i])
 826				__free_page(cb->compressed_pages[i]);
 827		}
 
 
 
 
 
 
 828	}
 829
 830	kfree(cb->compressed_pages);
 
 831	kfree(cb);
 832out:
 833	free_extent_map(em);
 834	btrfs_bio_end_io(btrfs_bio(bio), ret);
 835	return;
 836}
 837
 838/*
 839 * Heuristic uses systematic sampling to collect data from the input data
 840 * range, the logic can be tuned by the following constants:
 841 *
 842 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 843 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 844 */
 845#define SAMPLING_READ_SIZE	(16)
 846#define SAMPLING_INTERVAL	(256)
 847
 848/*
 849 * For statistical analysis of the input data we consider bytes that form a
 850 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 851 * many times the object appeared in the sample.
 852 */
 853#define BUCKET_SIZE		(256)
 854
 855/*
 856 * The size of the sample is based on a statistical sampling rule of thumb.
 857 * The common way is to perform sampling tests as long as the number of
 858 * elements in each cell is at least 5.
 859 *
 860 * Instead of 5, we choose 32 to obtain more accurate results.
 861 * If the data contain the maximum number of symbols, which is 256, we obtain a
 862 * sample size bound by 8192.
 863 *
 864 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 865 * from up to 512 locations.
 866 */
 867#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
 868				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
 869
 870struct bucket_item {
 871	u32 count;
 872};
 873
 874struct heuristic_ws {
 875	/* Partial copy of input data */
 876	u8 *sample;
 877	u32 sample_size;
 878	/* Buckets store counters for each byte value */
 879	struct bucket_item *bucket;
 880	/* Sorting buffer */
 881	struct bucket_item *bucket_b;
 882	struct list_head list;
 883};
 884
 885static struct workspace_manager heuristic_wsm;
 886
 887static void free_heuristic_ws(struct list_head *ws)
 888{
 889	struct heuristic_ws *workspace;
 890
 891	workspace = list_entry(ws, struct heuristic_ws, list);
 892
 893	kvfree(workspace->sample);
 894	kfree(workspace->bucket);
 895	kfree(workspace->bucket_b);
 896	kfree(workspace);
 897}
 898
 899static struct list_head *alloc_heuristic_ws(unsigned int level)
 900{
 901	struct heuristic_ws *ws;
 902
 903	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
 904	if (!ws)
 905		return ERR_PTR(-ENOMEM);
 906
 907	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
 908	if (!ws->sample)
 909		goto fail;
 910
 911	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
 912	if (!ws->bucket)
 913		goto fail;
 914
 915	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
 916	if (!ws->bucket_b)
 917		goto fail;
 918
 919	INIT_LIST_HEAD(&ws->list);
 920	return &ws->list;
 921fail:
 922	free_heuristic_ws(&ws->list);
 923	return ERR_PTR(-ENOMEM);
 924}
 925
 926const struct btrfs_compress_op btrfs_heuristic_compress = {
 927	.workspace_manager = &heuristic_wsm,
 928};
 929
 930static const struct btrfs_compress_op * const btrfs_compress_op[] = {
 931	/* The heuristic is represented as compression type 0 */
 932	&btrfs_heuristic_compress,
 933	&btrfs_zlib_compress,
 934	&btrfs_lzo_compress,
 935	&btrfs_zstd_compress,
 936};
 937
 938static struct list_head *alloc_workspace(int type, unsigned int level)
 939{
 940	switch (type) {
 941	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
 942	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
 943	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
 944	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
 945	default:
 946		/*
 947		 * This can't happen, the type is validated several times
 948		 * before we get here.
 949		 */
 950		BUG();
 951	}
 952}
 953
 954static void free_workspace(int type, struct list_head *ws)
 955{
 956	switch (type) {
 957	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
 958	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
 959	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
 960	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
 961	default:
 962		/*
 963		 * This can't happen, the type is validated several times
 964		 * before we get here.
 965		 */
 966		BUG();
 967	}
 968}
 969
 970static void btrfs_init_workspace_manager(int type)
 971{
 972	struct workspace_manager *wsm;
 973	struct list_head *workspace;
 974
 975	wsm = btrfs_compress_op[type]->workspace_manager;
 976	INIT_LIST_HEAD(&wsm->idle_ws);
 977	spin_lock_init(&wsm->ws_lock);
 978	atomic_set(&wsm->total_ws, 0);
 979	init_waitqueue_head(&wsm->ws_wait);
 980
 981	/*
 982	 * Preallocate one workspace for each compression type so we can
 983	 * guarantee forward progress in the worst case
 984	 */
 985	workspace = alloc_workspace(type, 0);
 986	if (IS_ERR(workspace)) {
 987		pr_warn(
 988	"BTRFS: cannot preallocate compression workspace, will try later\n");
 989	} else {
 990		atomic_set(&wsm->total_ws, 1);
 991		wsm->free_ws = 1;
 992		list_add(workspace, &wsm->idle_ws);
 993	}
 994}
 995
 996static void btrfs_cleanup_workspace_manager(int type)
 997{
 998	struct workspace_manager *wsman;
 999	struct list_head *ws;
1000
1001	wsman = btrfs_compress_op[type]->workspace_manager;
1002	while (!list_empty(&wsman->idle_ws)) {
1003		ws = wsman->idle_ws.next;
1004		list_del(ws);
1005		free_workspace(type, ws);
1006		atomic_dec(&wsman->total_ws);
1007	}
1008}
1009
1010/*
1011 * This finds an available workspace or allocates a new one.
1012 * If it's not possible to allocate a new one, waits until there's one.
1013 * Preallocation makes a forward progress guarantees and we do not return
1014 * errors.
1015 */
1016struct list_head *btrfs_get_workspace(int type, unsigned int level)
1017{
1018	struct workspace_manager *wsm;
1019	struct list_head *workspace;
1020	int cpus = num_online_cpus();
1021	unsigned nofs_flag;
1022	struct list_head *idle_ws;
1023	spinlock_t *ws_lock;
1024	atomic_t *total_ws;
1025	wait_queue_head_t *ws_wait;
1026	int *free_ws;
1027
1028	wsm = btrfs_compress_op[type]->workspace_manager;
1029	idle_ws	 = &wsm->idle_ws;
1030	ws_lock	 = &wsm->ws_lock;
1031	total_ws = &wsm->total_ws;
1032	ws_wait	 = &wsm->ws_wait;
1033	free_ws	 = &wsm->free_ws;
1034
1035again:
1036	spin_lock(ws_lock);
1037	if (!list_empty(idle_ws)) {
1038		workspace = idle_ws->next;
1039		list_del(workspace);
1040		(*free_ws)--;
1041		spin_unlock(ws_lock);
1042		return workspace;
1043
1044	}
1045	if (atomic_read(total_ws) > cpus) {
1046		DEFINE_WAIT(wait);
1047
1048		spin_unlock(ws_lock);
1049		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1050		if (atomic_read(total_ws) > cpus && !*free_ws)
1051			schedule();
1052		finish_wait(ws_wait, &wait);
1053		goto again;
1054	}
1055	atomic_inc(total_ws);
1056	spin_unlock(ws_lock);
1057
1058	/*
1059	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1060	 * to turn it off here because we might get called from the restricted
1061	 * context of btrfs_compress_bio/btrfs_compress_pages
1062	 */
1063	nofs_flag = memalloc_nofs_save();
1064	workspace = alloc_workspace(type, level);
1065	memalloc_nofs_restore(nofs_flag);
1066
1067	if (IS_ERR(workspace)) {
1068		atomic_dec(total_ws);
1069		wake_up(ws_wait);
1070
1071		/*
1072		 * Do not return the error but go back to waiting. There's a
1073		 * workspace preallocated for each type and the compression
1074		 * time is bounded so we get to a workspace eventually. This
1075		 * makes our caller's life easier.
1076		 *
1077		 * To prevent silent and low-probability deadlocks (when the
1078		 * initial preallocation fails), check if there are any
1079		 * workspaces at all.
1080		 */
1081		if (atomic_read(total_ws) == 0) {
1082			static DEFINE_RATELIMIT_STATE(_rs,
1083					/* once per minute */ 60 * HZ,
1084					/* no burst */ 1);
1085
1086			if (__ratelimit(&_rs)) {
1087				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1088			}
1089		}
1090		goto again;
1091	}
1092	return workspace;
1093}
1094
1095static struct list_head *get_workspace(int type, int level)
1096{
1097	switch (type) {
1098	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1099	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1100	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1101	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1102	default:
1103		/*
1104		 * This can't happen, the type is validated several times
1105		 * before we get here.
1106		 */
1107		BUG();
1108	}
1109}
1110
1111/*
1112 * put a workspace struct back on the list or free it if we have enough
1113 * idle ones sitting around
1114 */
1115void btrfs_put_workspace(int type, struct list_head *ws)
1116{
1117	struct workspace_manager *wsm;
1118	struct list_head *idle_ws;
1119	spinlock_t *ws_lock;
1120	atomic_t *total_ws;
1121	wait_queue_head_t *ws_wait;
1122	int *free_ws;
1123
1124	wsm = btrfs_compress_op[type]->workspace_manager;
1125	idle_ws	 = &wsm->idle_ws;
1126	ws_lock	 = &wsm->ws_lock;
1127	total_ws = &wsm->total_ws;
1128	ws_wait	 = &wsm->ws_wait;
1129	free_ws	 = &wsm->free_ws;
1130
1131	spin_lock(ws_lock);
1132	if (*free_ws <= num_online_cpus()) {
1133		list_add(ws, idle_ws);
1134		(*free_ws)++;
1135		spin_unlock(ws_lock);
1136		goto wake;
1137	}
1138	spin_unlock(ws_lock);
1139
1140	free_workspace(type, ws);
1141	atomic_dec(total_ws);
1142wake:
1143	cond_wake_up(ws_wait);
1144}
1145
1146static void put_workspace(int type, struct list_head *ws)
1147{
1148	switch (type) {
1149	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1150	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1151	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1152	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1153	default:
1154		/*
1155		 * This can't happen, the type is validated several times
1156		 * before we get here.
1157		 */
1158		BUG();
1159	}
1160}
1161
1162/*
1163 * Adjust @level according to the limits of the compression algorithm or
1164 * fallback to default
1165 */
1166static unsigned int btrfs_compress_set_level(int type, unsigned level)
1167{
1168	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1169
1170	if (level == 0)
1171		level = ops->default_level;
1172	else
1173		level = min(level, ops->max_level);
1174
1175	return level;
1176}
1177
1178/*
1179 * Given an address space and start and length, compress the bytes into @pages
1180 * that are allocated on demand.
1181 *
1182 * @type_level is encoded algorithm and level, where level 0 means whatever
1183 * default the algorithm chooses and is opaque here;
1184 * - compression algo are 0-3
1185 * - the level are bits 4-7
1186 *
1187 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1188 * and returns number of actually allocated pages
1189 *
1190 * @total_in is used to return the number of bytes actually read.  It
1191 * may be smaller than the input length if we had to exit early because we
1192 * ran out of room in the pages array or because we cross the
1193 * max_out threshold.
1194 *
1195 * @total_out is an in/out parameter, must be set to the input length and will
1196 * be also used to return the total number of compressed bytes
 
 
 
1197 */
1198int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1199			 u64 start, struct page **pages,
1200			 unsigned long *out_pages,
1201			 unsigned long *total_in,
1202			 unsigned long *total_out)
1203{
1204	int type = btrfs_compress_type(type_level);
1205	int level = btrfs_compress_level(type_level);
1206	struct list_head *workspace;
1207	int ret;
1208
1209	level = btrfs_compress_set_level(type, level);
1210	workspace = get_workspace(type, level);
1211	ret = compression_compress_pages(type, workspace, mapping, start, pages,
1212					 out_pages, total_in, total_out);
1213	put_workspace(type, workspace);
1214	return ret;
1215}
1216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1217static int btrfs_decompress_bio(struct compressed_bio *cb)
1218{
1219	struct list_head *workspace;
1220	int ret;
1221	int type = cb->compress_type;
1222
1223	workspace = get_workspace(type, 0);
1224	ret = compression_decompress_bio(workspace, cb);
1225	put_workspace(type, workspace);
1226
1227	return ret;
1228}
1229
1230/*
1231 * a less complex decompression routine.  Our compressed data fits in a
1232 * single page, and we want to read a single page out of it.
1233 * start_byte tells us the offset into the compressed data we're interested in
1234 */
1235int btrfs_decompress(int type, const u8 *data_in, struct page *dest_page,
1236		     unsigned long start_byte, size_t srclen, size_t destlen)
1237{
1238	struct list_head *workspace;
1239	int ret;
1240
1241	workspace = get_workspace(type, 0);
1242	ret = compression_decompress(type, workspace, data_in, dest_page,
1243				     start_byte, srclen, destlen);
1244	put_workspace(type, workspace);
1245
1246	return ret;
1247}
1248
1249int __init btrfs_init_compress(void)
1250{
1251	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1252	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1253	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1254	zstd_init_workspace_manager();
1255	return 0;
1256}
1257
1258void __cold btrfs_exit_compress(void)
1259{
1260	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1261	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1262	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1263	zstd_cleanup_workspace_manager();
1264}
1265
1266/*
1267 * Copy decompressed data from working buffer to pages.
1268 *
1269 * @buf:		The decompressed data buffer
1270 * @buf_len:		The decompressed data length
1271 * @decompressed:	Number of bytes that are already decompressed inside the
1272 * 			compressed extent
1273 * @cb:			The compressed extent descriptor
1274 * @orig_bio:		The original bio that the caller wants to read for
1275 *
1276 * An easier to understand graph is like below:
1277 *
1278 * 		|<- orig_bio ->|     |<- orig_bio->|
1279 * 	|<-------      full decompressed extent      ----->|
1280 * 	|<-----------    @cb range   ---->|
1281 * 	|			|<-- @buf_len -->|
1282 * 	|<--- @decompressed --->|
1283 *
1284 * Note that, @cb can be a subpage of the full decompressed extent, but
1285 * @cb->start always has the same as the orig_file_offset value of the full
1286 * decompressed extent.
1287 *
1288 * When reading compressed extent, we have to read the full compressed extent,
1289 * while @orig_bio may only want part of the range.
1290 * Thus this function will ensure only data covered by @orig_bio will be copied
1291 * to.
1292 *
1293 * Return 0 if we have copied all needed contents for @orig_bio.
1294 * Return >0 if we need continue decompress.
1295 */
1296int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1297			      struct compressed_bio *cb, u32 decompressed)
1298{
1299	struct bio *orig_bio = cb->orig_bio;
1300	/* Offset inside the full decompressed extent */
1301	u32 cur_offset;
1302
1303	cur_offset = decompressed;
1304	/* The main loop to do the copy */
1305	while (cur_offset < decompressed + buf_len) {
1306		struct bio_vec bvec;
1307		size_t copy_len;
1308		u32 copy_start;
1309		/* Offset inside the full decompressed extent */
1310		u32 bvec_offset;
1311
1312		bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1313		/*
1314		 * cb->start may underflow, but subtracting that value can still
1315		 * give us correct offset inside the full decompressed extent.
1316		 */
1317		bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
 
 
 
1318
1319		/* Haven't reached the bvec range, exit */
1320		if (decompressed + buf_len <= bvec_offset)
1321			return 1;
1322
1323		copy_start = max(cur_offset, bvec_offset);
1324		copy_len = min(bvec_offset + bvec.bv_len,
1325			       decompressed + buf_len) - copy_start;
1326		ASSERT(copy_len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1327
1328		/*
1329		 * Extra range check to ensure we didn't go beyond
1330		 * @buf + @buf_len.
 
 
1331		 */
1332		ASSERT(copy_start - decompressed < buf_len);
1333		memcpy_to_page(bvec.bv_page, bvec.bv_offset,
1334			       buf + copy_start - decompressed, copy_len);
1335		cur_offset += copy_len;
1336
1337		bio_advance(orig_bio, copy_len);
1338		/* Finished the bio */
1339		if (!orig_bio->bi_iter.bi_size)
1340			return 0;
 
 
 
 
 
 
 
 
 
 
 
1341	}
 
1342	return 1;
1343}
1344
1345/*
1346 * Shannon Entropy calculation
1347 *
1348 * Pure byte distribution analysis fails to determine compressibility of data.
1349 * Try calculating entropy to estimate the average minimum number of bits
1350 * needed to encode the sampled data.
1351 *
1352 * For convenience, return the percentage of needed bits, instead of amount of
1353 * bits directly.
1354 *
1355 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1356 *			    and can be compressible with high probability
1357 *
1358 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1359 *
1360 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1361 */
1362#define ENTROPY_LVL_ACEPTABLE		(65)
1363#define ENTROPY_LVL_HIGH		(80)
1364
1365/*
1366 * For increasead precision in shannon_entropy calculation,
1367 * let's do pow(n, M) to save more digits after comma:
1368 *
1369 * - maximum int bit length is 64
1370 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1371 * - 13 * 4 = 52 < 64		-> M = 4
1372 *
1373 * So use pow(n, 4).
1374 */
1375static inline u32 ilog2_w(u64 n)
1376{
1377	return ilog2(n * n * n * n);
1378}
1379
1380static u32 shannon_entropy(struct heuristic_ws *ws)
1381{
1382	const u32 entropy_max = 8 * ilog2_w(2);
1383	u32 entropy_sum = 0;
1384	u32 p, p_base, sz_base;
1385	u32 i;
1386
1387	sz_base = ilog2_w(ws->sample_size);
1388	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1389		p = ws->bucket[i].count;
1390		p_base = ilog2_w(p);
1391		entropy_sum += p * (sz_base - p_base);
1392	}
1393
1394	entropy_sum /= ws->sample_size;
1395	return entropy_sum * 100 / entropy_max;
1396}
1397
1398#define RADIX_BASE		4U
1399#define COUNTERS_SIZE		(1U << RADIX_BASE)
1400
1401static u8 get4bits(u64 num, int shift) {
1402	u8 low4bits;
1403
1404	num >>= shift;
1405	/* Reverse order */
1406	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1407	return low4bits;
1408}
1409
1410/*
1411 * Use 4 bits as radix base
1412 * Use 16 u32 counters for calculating new position in buf array
1413 *
1414 * @array     - array that will be sorted
1415 * @array_buf - buffer array to store sorting results
1416 *              must be equal in size to @array
1417 * @num       - array size
1418 */
1419static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1420		       int num)
1421{
1422	u64 max_num;
1423	u64 buf_num;
1424	u32 counters[COUNTERS_SIZE];
1425	u32 new_addr;
1426	u32 addr;
1427	int bitlen;
1428	int shift;
1429	int i;
1430
1431	/*
1432	 * Try avoid useless loop iterations for small numbers stored in big
1433	 * counters.  Example: 48 33 4 ... in 64bit array
1434	 */
1435	max_num = array[0].count;
1436	for (i = 1; i < num; i++) {
1437		buf_num = array[i].count;
1438		if (buf_num > max_num)
1439			max_num = buf_num;
1440	}
1441
1442	buf_num = ilog2(max_num);
1443	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1444
1445	shift = 0;
1446	while (shift < bitlen) {
1447		memset(counters, 0, sizeof(counters));
1448
1449		for (i = 0; i < num; i++) {
1450			buf_num = array[i].count;
1451			addr = get4bits(buf_num, shift);
1452			counters[addr]++;
1453		}
1454
1455		for (i = 1; i < COUNTERS_SIZE; i++)
1456			counters[i] += counters[i - 1];
1457
1458		for (i = num - 1; i >= 0; i--) {
1459			buf_num = array[i].count;
1460			addr = get4bits(buf_num, shift);
1461			counters[addr]--;
1462			new_addr = counters[addr];
1463			array_buf[new_addr] = array[i];
1464		}
1465
1466		shift += RADIX_BASE;
1467
1468		/*
1469		 * Normal radix expects to move data from a temporary array, to
1470		 * the main one.  But that requires some CPU time. Avoid that
1471		 * by doing another sort iteration to original array instead of
1472		 * memcpy()
1473		 */
1474		memset(counters, 0, sizeof(counters));
1475
1476		for (i = 0; i < num; i ++) {
1477			buf_num = array_buf[i].count;
1478			addr = get4bits(buf_num, shift);
1479			counters[addr]++;
1480		}
1481
1482		for (i = 1; i < COUNTERS_SIZE; i++)
1483			counters[i] += counters[i - 1];
1484
1485		for (i = num - 1; i >= 0; i--) {
1486			buf_num = array_buf[i].count;
1487			addr = get4bits(buf_num, shift);
1488			counters[addr]--;
1489			new_addr = counters[addr];
1490			array[new_addr] = array_buf[i];
1491		}
1492
1493		shift += RADIX_BASE;
1494	}
1495}
1496
1497/*
1498 * Size of the core byte set - how many bytes cover 90% of the sample
1499 *
1500 * There are several types of structured binary data that use nearly all byte
1501 * values. The distribution can be uniform and counts in all buckets will be
1502 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1503 *
1504 * Other possibility is normal (Gaussian) distribution, where the data could
1505 * be potentially compressible, but we have to take a few more steps to decide
1506 * how much.
1507 *
1508 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1509 *                       compression algo can easy fix that
1510 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1511 *                       probability is not compressible
1512 */
1513#define BYTE_CORE_SET_LOW		(64)
1514#define BYTE_CORE_SET_HIGH		(200)
1515
1516static int byte_core_set_size(struct heuristic_ws *ws)
1517{
1518	u32 i;
1519	u32 coreset_sum = 0;
1520	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1521	struct bucket_item *bucket = ws->bucket;
1522
1523	/* Sort in reverse order */
1524	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1525
1526	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1527		coreset_sum += bucket[i].count;
1528
1529	if (coreset_sum > core_set_threshold)
1530		return i;
1531
1532	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1533		coreset_sum += bucket[i].count;
1534		if (coreset_sum > core_set_threshold)
1535			break;
1536	}
1537
1538	return i;
1539}
1540
1541/*
1542 * Count byte values in buckets.
1543 * This heuristic can detect textual data (configs, xml, json, html, etc).
1544 * Because in most text-like data byte set is restricted to limited number of
1545 * possible characters, and that restriction in most cases makes data easy to
1546 * compress.
1547 *
1548 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1549 *	less - compressible
1550 *	more - need additional analysis
1551 */
1552#define BYTE_SET_THRESHOLD		(64)
1553
1554static u32 byte_set_size(const struct heuristic_ws *ws)
1555{
1556	u32 i;
1557	u32 byte_set_size = 0;
1558
1559	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1560		if (ws->bucket[i].count > 0)
1561			byte_set_size++;
1562	}
1563
1564	/*
1565	 * Continue collecting count of byte values in buckets.  If the byte
1566	 * set size is bigger then the threshold, it's pointless to continue,
1567	 * the detection technique would fail for this type of data.
1568	 */
1569	for (; i < BUCKET_SIZE; i++) {
1570		if (ws->bucket[i].count > 0) {
1571			byte_set_size++;
1572			if (byte_set_size > BYTE_SET_THRESHOLD)
1573				return byte_set_size;
1574		}
1575	}
1576
1577	return byte_set_size;
1578}
1579
1580static bool sample_repeated_patterns(struct heuristic_ws *ws)
1581{
1582	const u32 half_of_sample = ws->sample_size / 2;
1583	const u8 *data = ws->sample;
1584
1585	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1586}
1587
1588static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1589				     struct heuristic_ws *ws)
1590{
1591	struct page *page;
1592	u64 index, index_end;
1593	u32 i, curr_sample_pos;
1594	u8 *in_data;
1595
1596	/*
1597	 * Compression handles the input data by chunks of 128KiB
1598	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1599	 *
1600	 * We do the same for the heuristic and loop over the whole range.
1601	 *
1602	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1603	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1604	 */
1605	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1606		end = start + BTRFS_MAX_UNCOMPRESSED;
1607
1608	index = start >> PAGE_SHIFT;
1609	index_end = end >> PAGE_SHIFT;
1610
1611	/* Don't miss unaligned end */
1612	if (!IS_ALIGNED(end, PAGE_SIZE))
1613		index_end++;
1614
1615	curr_sample_pos = 0;
1616	while (index < index_end) {
1617		page = find_get_page(inode->i_mapping, index);
1618		in_data = kmap_local_page(page);
1619		/* Handle case where the start is not aligned to PAGE_SIZE */
1620		i = start % PAGE_SIZE;
1621		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1622			/* Don't sample any garbage from the last page */
1623			if (start > end - SAMPLING_READ_SIZE)
1624				break;
1625			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1626					SAMPLING_READ_SIZE);
1627			i += SAMPLING_INTERVAL;
1628			start += SAMPLING_INTERVAL;
1629			curr_sample_pos += SAMPLING_READ_SIZE;
1630		}
1631		kunmap_local(in_data);
1632		put_page(page);
1633
1634		index++;
1635	}
1636
1637	ws->sample_size = curr_sample_pos;
1638}
1639
1640/*
1641 * Compression heuristic.
1642 *
1643 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1644 * quickly (compared to direct compression) detect data characteristics
1645 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1646 * data.
1647 *
1648 * The following types of analysis can be performed:
1649 * - detect mostly zero data
1650 * - detect data with low "byte set" size (text, etc)
1651 * - detect data with low/high "core byte" set
1652 *
1653 * Return non-zero if the compression should be done, 0 otherwise.
1654 */
1655int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1656{
1657	struct list_head *ws_list = get_workspace(0, 0);
1658	struct heuristic_ws *ws;
1659	u32 i;
1660	u8 byte;
1661	int ret = 0;
1662
1663	ws = list_entry(ws_list, struct heuristic_ws, list);
1664
1665	heuristic_collect_sample(inode, start, end, ws);
1666
1667	if (sample_repeated_patterns(ws)) {
1668		ret = 1;
1669		goto out;
1670	}
1671
1672	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1673
1674	for (i = 0; i < ws->sample_size; i++) {
1675		byte = ws->sample[i];
1676		ws->bucket[byte].count++;
1677	}
1678
1679	i = byte_set_size(ws);
1680	if (i < BYTE_SET_THRESHOLD) {
1681		ret = 2;
1682		goto out;
1683	}
1684
1685	i = byte_core_set_size(ws);
1686	if (i <= BYTE_CORE_SET_LOW) {
1687		ret = 3;
1688		goto out;
1689	}
1690
1691	if (i >= BYTE_CORE_SET_HIGH) {
1692		ret = 0;
1693		goto out;
1694	}
1695
1696	i = shannon_entropy(ws);
1697	if (i <= ENTROPY_LVL_ACEPTABLE) {
1698		ret = 4;
1699		goto out;
1700	}
1701
1702	/*
1703	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1704	 * needed to give green light to compression.
1705	 *
1706	 * For now just assume that compression at that level is not worth the
1707	 * resources because:
1708	 *
1709	 * 1. it is possible to defrag the data later
1710	 *
1711	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1712	 * values, every bucket has counter at level ~54. The heuristic would
1713	 * be confused. This can happen when data have some internal repeated
1714	 * patterns like "abbacbbc...". This can be detected by analyzing
1715	 * pairs of bytes, which is too costly.
1716	 */
1717	if (i < ENTROPY_LVL_HIGH) {
1718		ret = 5;
1719		goto out;
1720	} else {
1721		ret = 0;
1722		goto out;
1723	}
1724
1725out:
1726	put_workspace(0, ws_list);
1727	return ret;
1728}
1729
1730/*
1731 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1732 * level, unrecognized string will set the default level
1733 */
1734unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1735{
1736	unsigned int level = 0;
1737	int ret;
1738
1739	if (!type)
1740		return 0;
1741
1742	if (str[0] == ':') {
1743		ret = kstrtouint(str + 1, 10, &level);
1744		if (ret)
1745			level = 0;
1746	}
1747
1748	level = btrfs_compress_set_level(type, level);
1749
1750	return level;
1751}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/kernel.h>
   7#include <linux/bio.h>
   8#include <linux/file.h>
   9#include <linux/fs.h>
  10#include <linux/pagemap.h>
 
  11#include <linux/highmem.h>
 
  12#include <linux/time.h>
  13#include <linux/init.h>
  14#include <linux/string.h>
  15#include <linux/backing-dev.h>
  16#include <linux/writeback.h>
 
  17#include <linux/slab.h>
  18#include <linux/sched/mm.h>
  19#include <linux/log2.h>
  20#include <crypto/hash.h>
  21#include "misc.h"
  22#include "ctree.h"
 
  23#include "disk-io.h"
  24#include "transaction.h"
  25#include "btrfs_inode.h"
  26#include "volumes.h"
  27#include "ordered-data.h"
  28#include "compression.h"
  29#include "extent_io.h"
  30#include "extent_map.h"
  31
  32int zlib_compress_pages(struct list_head *ws, struct address_space *mapping,
  33		u64 start, struct page **pages, unsigned long *out_pages,
  34		unsigned long *total_in, unsigned long *total_out);
  35int zlib_decompress_bio(struct list_head *ws, struct compressed_bio *cb);
  36int zlib_decompress(struct list_head *ws, unsigned char *data_in,
  37		struct page *dest_page, unsigned long start_byte, size_t srclen,
  38		size_t destlen);
  39struct list_head *zlib_alloc_workspace(unsigned int level);
  40void zlib_free_workspace(struct list_head *ws);
  41struct list_head *zlib_get_workspace(unsigned int level);
  42
  43int lzo_compress_pages(struct list_head *ws, struct address_space *mapping,
  44		u64 start, struct page **pages, unsigned long *out_pages,
  45		unsigned long *total_in, unsigned long *total_out);
  46int lzo_decompress_bio(struct list_head *ws, struct compressed_bio *cb);
  47int lzo_decompress(struct list_head *ws, unsigned char *data_in,
  48		struct page *dest_page, unsigned long start_byte, size_t srclen,
  49		size_t destlen);
  50struct list_head *lzo_alloc_workspace(unsigned int level);
  51void lzo_free_workspace(struct list_head *ws);
  52
  53int zstd_compress_pages(struct list_head *ws, struct address_space *mapping,
  54		u64 start, struct page **pages, unsigned long *out_pages,
  55		unsigned long *total_in, unsigned long *total_out);
  56int zstd_decompress_bio(struct list_head *ws, struct compressed_bio *cb);
  57int zstd_decompress(struct list_head *ws, unsigned char *data_in,
  58		struct page *dest_page, unsigned long start_byte, size_t srclen,
  59		size_t destlen);
  60void zstd_init_workspace_manager(void);
  61void zstd_cleanup_workspace_manager(void);
  62struct list_head *zstd_alloc_workspace(unsigned int level);
  63void zstd_free_workspace(struct list_head *ws);
  64struct list_head *zstd_get_workspace(unsigned int level);
  65void zstd_put_workspace(struct list_head *ws);
  66
  67static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
  68
  69const char* btrfs_compress_type2str(enum btrfs_compression_type type)
  70{
  71	switch (type) {
  72	case BTRFS_COMPRESS_ZLIB:
  73	case BTRFS_COMPRESS_LZO:
  74	case BTRFS_COMPRESS_ZSTD:
  75	case BTRFS_COMPRESS_NONE:
  76		return btrfs_compress_types[type];
  77	default:
  78		break;
  79	}
  80
  81	return NULL;
  82}
  83
  84bool btrfs_compress_is_valid_type(const char *str, size_t len)
  85{
  86	int i;
  87
  88	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
  89		size_t comp_len = strlen(btrfs_compress_types[i]);
  90
  91		if (len < comp_len)
  92			continue;
  93
  94		if (!strncmp(btrfs_compress_types[i], str, comp_len))
  95			return true;
  96	}
  97	return false;
  98}
  99
 100static int compression_compress_pages(int type, struct list_head *ws,
 101               struct address_space *mapping, u64 start, struct page **pages,
 102               unsigned long *out_pages, unsigned long *total_in,
 103               unsigned long *total_out)
 104{
 105	switch (type) {
 106	case BTRFS_COMPRESS_ZLIB:
 107		return zlib_compress_pages(ws, mapping, start, pages,
 108				out_pages, total_in, total_out);
 109	case BTRFS_COMPRESS_LZO:
 110		return lzo_compress_pages(ws, mapping, start, pages,
 111				out_pages, total_in, total_out);
 112	case BTRFS_COMPRESS_ZSTD:
 113		return zstd_compress_pages(ws, mapping, start, pages,
 114				out_pages, total_in, total_out);
 115	case BTRFS_COMPRESS_NONE:
 116	default:
 117		/*
 118		 * This can't happen, the type is validated several times
 119		 * before we get here. As a sane fallback, return what the
 120		 * callers will understand as 'no compression happened'.
 
 
 
 
 121		 */
 
 122		return -E2BIG;
 123	}
 124}
 125
 126static int compression_decompress_bio(int type, struct list_head *ws,
 127		struct compressed_bio *cb)
 128{
 129	switch (type) {
 130	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
 131	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
 132	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
 133	case BTRFS_COMPRESS_NONE:
 134	default:
 135		/*
 136		 * This can't happen, the type is validated several times
 137		 * before we get here.
 138		 */
 139		BUG();
 140	}
 141}
 142
 143static int compression_decompress(int type, struct list_head *ws,
 144               unsigned char *data_in, struct page *dest_page,
 145               unsigned long start_byte, size_t srclen, size_t destlen)
 146{
 147	switch (type) {
 148	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
 149						start_byte, srclen, destlen);
 150	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
 151						start_byte, srclen, destlen);
 152	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
 153						start_byte, srclen, destlen);
 154	case BTRFS_COMPRESS_NONE:
 155	default:
 156		/*
 157		 * This can't happen, the type is validated several times
 158		 * before we get here.
 159		 */
 160		BUG();
 161	}
 162}
 163
 164static int btrfs_decompress_bio(struct compressed_bio *cb);
 165
 166static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
 167				      unsigned long disk_size)
 168{
 169	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 170
 171	return sizeof(struct compressed_bio) +
 172		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
 173}
 174
 175static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
 176				 u64 disk_start)
 177{
 178	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 179	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 180	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 181	struct page *page;
 182	unsigned long i;
 183	char *kaddr;
 184	u8 csum[BTRFS_CSUM_SIZE];
 185	struct compressed_bio *cb = bio->bi_private;
 186	u8 *cb_sum = cb->sums;
 187
 188	if (inode->flags & BTRFS_INODE_NODATASUM)
 189		return 0;
 190
 191	shash->tfm = fs_info->csum_shash;
 
 
 
 
 
 192
 193	for (i = 0; i < cb->nr_pages; i++) {
 194		page = cb->compressed_pages[i];
 195
 196		kaddr = kmap_atomic(page);
 197		crypto_shash_digest(shash, kaddr, PAGE_SIZE, csum);
 198		kunmap_atomic(kaddr);
 199
 200		if (memcmp(&csum, cb_sum, csum_size)) {
 201			btrfs_print_data_csum_error(inode, disk_start,
 202					csum, cb_sum, cb->mirror_num);
 203			if (btrfs_io_bio(bio)->device)
 204				btrfs_dev_stat_inc_and_print(
 205					btrfs_io_bio(bio)->device,
 206					BTRFS_DEV_STAT_CORRUPTION_ERRS);
 207			return -EIO;
 208		}
 209		cb_sum += csum_size;
 210	}
 211	return 0;
 212}
 213
 214/* when we finish reading compressed pages from the disk, we
 215 * decompress them and then run the bio end_io routines on the
 216 * decompressed pages (in the inode address space).
 217 *
 218 * This allows the checksumming and other IO error handling routines
 219 * to work normally
 220 *
 221 * The compressed pages are freed here, and it must be run
 222 * in process context
 223 */
 224static void end_compressed_bio_read(struct bio *bio)
 225{
 226	struct compressed_bio *cb = bio->bi_private;
 227	struct inode *inode;
 228	struct page *page;
 229	unsigned long index;
 230	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
 231	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 232
 233	if (bio->bi_status)
 234		cb->errors = 1;
 235
 236	/* if there are more bios still pending for this compressed
 237	 * extent, just exit
 238	 */
 239	if (!refcount_dec_and_test(&cb->pending_bios))
 240		goto out;
 241
 242	/*
 243	 * Record the correct mirror_num in cb->orig_bio so that
 244	 * read-repair can work properly.
 245	 */
 246	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
 247	cb->mirror_num = mirror;
 248
 249	/*
 250	 * Some IO in this cb have failed, just skip checksum as there
 251	 * is no way it could be correct.
 252	 */
 253	if (cb->errors == 1)
 254		goto csum_failed;
 255
 256	inode = cb->inode;
 257	ret = check_compressed_csum(BTRFS_I(inode), bio,
 258				    (u64)bio->bi_iter.bi_sector << 9);
 259	if (ret)
 260		goto csum_failed;
 261
 262	/* ok, we're the last bio for this extent, lets start
 263	 * the decompression.
 264	 */
 265	ret = btrfs_decompress_bio(cb);
 266
 267csum_failed:
 268	if (ret)
 269		cb->errors = 1;
 270
 271	/* release the compressed pages */
 272	index = 0;
 273	for (index = 0; index < cb->nr_pages; index++) {
 274		page = cb->compressed_pages[index];
 275		page->mapping = NULL;
 276		put_page(page);
 277	}
 278
 279	/* do io completion on the original bio */
 280	if (cb->errors) {
 281		bio_io_error(cb->orig_bio);
 282	} else {
 283		struct bio_vec *bvec;
 284		struct bvec_iter_all iter_all;
 285
 286		/*
 287		 * we have verified the checksum already, set page
 288		 * checked so the end_io handlers know about it
 289		 */
 290		ASSERT(!bio_flagged(bio, BIO_CLONED));
 291		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
 292			SetPageChecked(bvec->bv_page);
 293
 294		bio_endio(cb->orig_bio);
 295	}
 296
 297	/* finally free the cb struct */
 298	kfree(cb->compressed_pages);
 299	kfree(cb);
 300out:
 301	bio_put(bio);
 302}
 303
 304/*
 305 * Clear the writeback bits on all of the file
 306 * pages for a compressed write
 307 */
 308static noinline void end_compressed_writeback(struct inode *inode,
 309					      const struct compressed_bio *cb)
 310{
 
 311	unsigned long index = cb->start >> PAGE_SHIFT;
 312	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
 313	struct page *pages[16];
 314	unsigned long nr_pages = end_index - index + 1;
 315	int i;
 316	int ret;
 317
 318	if (cb->errors)
 319		mapping_set_error(inode->i_mapping, -EIO);
 
 
 
 
 
 
 
 
 320
 321	while (nr_pages > 0) {
 322		ret = find_get_pages_contig(inode->i_mapping, index,
 323				     min_t(unsigned long,
 324				     nr_pages, ARRAY_SIZE(pages)), pages);
 325		if (ret == 0) {
 326			nr_pages -= 1;
 327			index += 1;
 328			continue;
 329		}
 330		for (i = 0; i < ret; i++) {
 331			if (cb->errors)
 332				SetPageError(pages[i]);
 333			end_page_writeback(pages[i]);
 334			put_page(pages[i]);
 
 
 335		}
 336		nr_pages -= ret;
 337		index += ret;
 338	}
 339	/* the inode may be gone now */
 340}
 341
 342/*
 343 * do the cleanup once all the compressed pages hit the disk.
 344 * This will clear writeback on the file pages and free the compressed
 345 * pages.
 346 *
 347 * This also calls the writeback end hooks for the file pages so that
 348 * metadata and checksums can be updated in the file.
 349 */
 350static void end_compressed_bio_write(struct bio *bio)
 351{
 352	struct compressed_bio *cb = bio->bi_private;
 353	struct inode *inode;
 354	struct page *page;
 355	unsigned long index;
 356
 357	if (bio->bi_status)
 358		cb->errors = 1;
 359
 360	/* if there are more bios still pending for this compressed
 361	 * extent, just exit
 362	 */
 363	if (!refcount_dec_and_test(&cb->pending_bios))
 364		goto out;
 365
 366	/* ok, we're the last bio for this extent, step one is to
 367	 * call back into the FS and do all the end_io operations
 368	 */
 369	inode = cb->inode;
 370	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
 371	btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
 372			cb->start, cb->start + cb->len - 1,
 373			bio->bi_status == BLK_STS_OK);
 374	cb->compressed_pages[0]->mapping = NULL;
 375
 376	end_compressed_writeback(inode, cb);
 377	/* note, our inode could be gone now */
 
 378
 379	/*
 380	 * release the compressed pages, these came from alloc_page and
 381	 * are not attached to the inode at all
 382	 */
 383	index = 0;
 384	for (index = 0; index < cb->nr_pages; index++) {
 385		page = cb->compressed_pages[index];
 
 386		page->mapping = NULL;
 387		put_page(page);
 388	}
 389
 390	/* finally free the cb struct */
 391	kfree(cb->compressed_pages);
 392	kfree(cb);
 393out:
 394	bio_put(bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 395}
 396
 397/*
 398 * worker function to build and submit bios for previously compressed pages.
 399 * The corresponding pages in the inode should be marked for writeback
 400 * and the compressed pages should have a reference on them for dropping
 401 * when the IO is complete.
 402 *
 403 * This also checksums the file bytes and gets things ready for
 404 * the end io hooks.
 405 */
 406blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
 407				 unsigned long len, u64 disk_start,
 408				 unsigned long compressed_len,
 409				 struct page **compressed_pages,
 410				 unsigned long nr_pages,
 411				 unsigned int write_flags,
 412				 struct cgroup_subsys_state *blkcg_css)
 
 413{
 414	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 415	struct bio *bio = NULL;
 416	struct compressed_bio *cb;
 417	unsigned long bytes_left;
 418	int pg_index = 0;
 419	struct page *page;
 420	u64 first_byte = disk_start;
 421	blk_status_t ret;
 422	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
 
 
 423
 424	WARN_ON(!PAGE_ALIGNED(start));
 425	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
 
 426	if (!cb)
 427		return BLK_STS_RESOURCE;
 428	refcount_set(&cb->pending_bios, 0);
 429	cb->errors = 0;
 430	cb->inode = &inode->vfs_inode;
 431	cb->start = start;
 432	cb->len = len;
 433	cb->mirror_num = 0;
 434	cb->compressed_pages = compressed_pages;
 435	cb->compressed_len = compressed_len;
 436	cb->orig_bio = NULL;
 
 437	cb->nr_pages = nr_pages;
 438
 439	bio = btrfs_bio_alloc(first_byte);
 440	bio->bi_opf = REQ_OP_WRITE | write_flags;
 441	bio->bi_private = cb;
 442	bio->bi_end_io = end_compressed_bio_write;
 443
 444	if (blkcg_css) {
 445		bio->bi_opf |= REQ_CGROUP_PUNT;
 446		kthread_associate_blkcg(blkcg_css);
 447	}
 448	refcount_set(&cb->pending_bios, 1);
 449
 450	/* create and submit bios for the compressed pages */
 451	bytes_left = compressed_len;
 452	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
 453		int submit = 0;
 454
 455		page = compressed_pages[pg_index];
 456		page->mapping = inode->vfs_inode.i_mapping;
 457		if (bio->bi_iter.bi_size)
 458			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
 459							  0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 460
 461		page->mapping = NULL;
 462		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
 463		    PAGE_SIZE) {
 464			/*
 465			 * inc the count before we submit the bio so
 466			 * we know the end IO handler won't happen before
 467			 * we inc the count.  Otherwise, the cb might get
 468			 * freed before we're done setting it up
 469			 */
 470			refcount_inc(&cb->pending_bios);
 471			ret = btrfs_bio_wq_end_io(fs_info, bio,
 472						  BTRFS_WQ_ENDIO_DATA);
 473			BUG_ON(ret); /* -ENOMEM */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 474
 
 475			if (!skip_sum) {
 476				ret = btrfs_csum_one_bio(inode, bio, start, 1);
 477				BUG_ON(ret); /* -ENOMEM */
 478			}
 479
 480			ret = btrfs_map_bio(fs_info, bio, 0);
 481			if (ret) {
 482				bio->bi_status = ret;
 483				bio_endio(bio);
 484			}
 485
 486			bio = btrfs_bio_alloc(first_byte);
 487			bio->bi_opf = REQ_OP_WRITE | write_flags;
 488			bio->bi_private = cb;
 489			bio->bi_end_io = end_compressed_bio_write;
 490			if (blkcg_css)
 491				bio->bi_opf |= REQ_CGROUP_PUNT;
 492			bio_add_page(bio, page, PAGE_SIZE, 0);
 493		}
 494		if (bytes_left < PAGE_SIZE) {
 495			btrfs_info(fs_info,
 496					"bytes left %lu compress len %lu nr %lu",
 497			       bytes_left, cb->compressed_len, cb->nr_pages);
 498		}
 499		bytes_left -= PAGE_SIZE;
 500		first_byte += PAGE_SIZE;
 501		cond_resched();
 502	}
 503
 504	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
 505	BUG_ON(ret); /* -ENOMEM */
 506
 507	if (!skip_sum) {
 508		ret = btrfs_csum_one_bio(inode, bio, start, 1);
 509		BUG_ON(ret); /* -ENOMEM */
 510	}
 511
 512	ret = btrfs_map_bio(fs_info, bio, 0);
 513	if (ret) {
 514		bio->bi_status = ret;
 515		bio_endio(bio);
 516	}
 517
 518	if (blkcg_css)
 519		kthread_associate_blkcg(NULL);
 520
 521	return 0;
 
 
 522}
 523
 524static u64 bio_end_offset(struct bio *bio)
 525{
 526	struct bio_vec *last = bio_last_bvec_all(bio);
 527
 528	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
 529}
 530
 
 
 
 
 
 
 
 
 
 
 
 531static noinline int add_ra_bio_pages(struct inode *inode,
 532				     u64 compressed_end,
 533				     struct compressed_bio *cb)
 
 534{
 
 535	unsigned long end_index;
 536	unsigned long pg_index;
 537	u64 last_offset;
 538	u64 isize = i_size_read(inode);
 539	int ret;
 540	struct page *page;
 541	unsigned long nr_pages = 0;
 542	struct extent_map *em;
 543	struct address_space *mapping = inode->i_mapping;
 544	struct extent_map_tree *em_tree;
 545	struct extent_io_tree *tree;
 546	u64 end;
 547	int misses = 0;
 548
 549	last_offset = bio_end_offset(cb->orig_bio);
 550	em_tree = &BTRFS_I(inode)->extent_tree;
 551	tree = &BTRFS_I(inode)->io_tree;
 552
 553	if (isize == 0)
 554		return 0;
 555
 
 
 
 
 
 
 
 
 
 
 556	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 557
 558	while (last_offset < compressed_end) {
 559		pg_index = last_offset >> PAGE_SHIFT;
 
 
 560
 561		if (pg_index > end_index)
 562			break;
 563
 564		page = xa_load(&mapping->i_pages, pg_index);
 565		if (page && !xa_is_value(page)) {
 566			misses++;
 567			if (misses > 4)
 
 
 
 568				break;
 569			goto next;
 
 
 
 
 
 
 570		}
 571
 572		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
 573								 ~__GFP_FS));
 574		if (!page)
 575			break;
 576
 577		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
 578			put_page(page);
 579			goto next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 580		}
 581
 582		end = last_offset + PAGE_SIZE - 1;
 583		/*
 584		 * at this point, we have a locked page in the page cache
 585		 * for these bytes in the file.  But, we have to make
 586		 * sure they map to this compressed extent on disk.
 587		 */
 588		set_page_extent_mapped(page);
 589		lock_extent(tree, last_offset, end);
 590		read_lock(&em_tree->lock);
 591		em = lookup_extent_mapping(em_tree, last_offset,
 592					   PAGE_SIZE);
 593		read_unlock(&em_tree->lock);
 594
 595		if (!em || last_offset < em->start ||
 596		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
 
 
 
 
 
 597		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
 598			free_extent_map(em);
 599			unlock_extent(tree, last_offset, end);
 600			unlock_page(page);
 601			put_page(page);
 602			break;
 603		}
 604		free_extent_map(em);
 605
 606		if (page->index == end_index) {
 607			char *userpage;
 608			size_t zero_offset = offset_in_page(isize);
 609
 610			if (zero_offset) {
 611				int zeros;
 612				zeros = PAGE_SIZE - zero_offset;
 613				userpage = kmap_atomic(page);
 614				memset(userpage + zero_offset, 0, zeros);
 615				flush_dcache_page(page);
 616				kunmap_atomic(userpage);
 617			}
 618		}
 619
 620		ret = bio_add_page(cb->orig_bio, page,
 621				   PAGE_SIZE, 0);
 622
 623		if (ret == PAGE_SIZE) {
 624			nr_pages++;
 625			put_page(page);
 626		} else {
 627			unlock_extent(tree, last_offset, end);
 628			unlock_page(page);
 629			put_page(page);
 630			break;
 631		}
 632next:
 633		last_offset += PAGE_SIZE;
 
 
 
 
 
 
 
 634	}
 635	return 0;
 636}
 637
 638/*
 639 * for a compressed read, the bio we get passed has all the inode pages
 640 * in it.  We don't actually do IO on those pages but allocate new ones
 641 * to hold the compressed pages on disk.
 642 *
 643 * bio->bi_iter.bi_sector points to the compressed extent on disk
 644 * bio->bi_io_vec points to all of the inode pages
 645 *
 646 * After the compressed pages are read, we copy the bytes into the
 647 * bio we were passed and then call the bio end_io calls
 648 */
 649blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
 650				 int mirror_num, unsigned long bio_flags)
 651{
 652	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 653	struct extent_map_tree *em_tree;
 654	struct compressed_bio *cb;
 655	unsigned long compressed_len;
 656	unsigned long nr_pages;
 657	unsigned long pg_index;
 658	struct page *page;
 659	struct bio *comp_bio;
 660	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
 661	u64 em_len;
 662	u64 em_start;
 663	struct extent_map *em;
 664	blk_status_t ret = BLK_STS_RESOURCE;
 665	int faili = 0;
 666	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 667	u8 *sums;
 
 668
 669	em_tree = &BTRFS_I(inode)->extent_tree;
 670
 
 
 
 671	/* we need the actual starting offset of this extent in the file */
 672	read_lock(&em_tree->lock);
 673	em = lookup_extent_mapping(em_tree,
 674				   page_offset(bio_first_page_all(bio)),
 675				   PAGE_SIZE);
 676	read_unlock(&em_tree->lock);
 677	if (!em)
 678		return BLK_STS_IOERR;
 
 
 679
 
 680	compressed_len = em->block_len;
 681	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
 682	if (!cb)
 
 683		goto out;
 
 684
 685	refcount_set(&cb->pending_bios, 0);
 686	cb->errors = 0;
 687	cb->inode = inode;
 688	cb->mirror_num = mirror_num;
 689	sums = cb->sums;
 690
 691	cb->start = em->orig_start;
 692	em_len = em->len;
 693	em_start = em->start;
 694
 
 
 
 
 
 695	free_extent_map(em);
 696	em = NULL;
 697
 698	cb->len = bio->bi_iter.bi_size;
 699	cb->compressed_len = compressed_len;
 700	cb->compress_type = extent_compress_type(bio_flags);
 701	cb->orig_bio = bio;
 
 
 702
 703	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
 704	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
 705				       GFP_NOFS);
 706	if (!cb->compressed_pages)
 707		goto fail1;
 708
 709	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 710		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
 711							      __GFP_HIGHMEM);
 712		if (!cb->compressed_pages[pg_index]) {
 713			faili = pg_index - 1;
 714			ret = BLK_STS_RESOURCE;
 715			goto fail2;
 716		}
 717	}
 718	faili = nr_pages - 1;
 719	cb->nr_pages = nr_pages;
 720
 721	add_ra_bio_pages(inode, em_start + em_len, cb);
 722
 723	/* include any pages we added in add_ra-bio_pages */
 724	cb->len = bio->bi_iter.bi_size;
 725
 726	comp_bio = btrfs_bio_alloc(cur_disk_byte);
 727	comp_bio->bi_opf = REQ_OP_READ;
 728	comp_bio->bi_private = cb;
 729	comp_bio->bi_end_io = end_compressed_bio_read;
 730	refcount_set(&cb->pending_bios, 1);
 731
 732	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 733		int submit = 0;
 734
 735		page = cb->compressed_pages[pg_index];
 736		page->mapping = inode->i_mapping;
 737		page->index = em_start >> PAGE_SHIFT;
 738
 739		if (comp_bio->bi_iter.bi_size)
 740			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE,
 741							  comp_bio, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 742
 743		page->mapping = NULL;
 744		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
 745		    PAGE_SIZE) {
 746			unsigned int nr_sectors;
 747
 748			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
 749						  BTRFS_WQ_ENDIO_DATA);
 750			BUG_ON(ret); /* -ENOMEM */
 
 
 
 
 751
 752			/*
 753			 * inc the count before we submit the bio so
 754			 * we know the end IO handler won't happen before
 755			 * we inc the count.  Otherwise, the cb might get
 756			 * freed before we're done setting it up
 757			 */
 758			refcount_inc(&cb->pending_bios);
 759
 760			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 761				ret = btrfs_lookup_bio_sums(inode, comp_bio,
 762							    (u64)-1, sums);
 763				BUG_ON(ret); /* -ENOMEM */
 764			}
 765
 766			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
 767						  fs_info->sectorsize);
 768			sums += csum_size * nr_sectors;
 769
 770			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
 771			if (ret) {
 772				comp_bio->bi_status = ret;
 773				bio_endio(comp_bio);
 774			}
 775
 776			comp_bio = btrfs_bio_alloc(cur_disk_byte);
 777			comp_bio->bi_opf = REQ_OP_READ;
 778			comp_bio->bi_private = cb;
 779			comp_bio->bi_end_io = end_compressed_bio_read;
 780
 781			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
 782		}
 783		cur_disk_byte += PAGE_SIZE;
 784	}
 785
 786	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
 787	BUG_ON(ret); /* -ENOMEM */
 788
 789	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 790		ret = btrfs_lookup_bio_sums(inode, comp_bio, (u64)-1, sums);
 791		BUG_ON(ret); /* -ENOMEM */
 792	}
 793
 794	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
 795	if (ret) {
 796		comp_bio->bi_status = ret;
 797		bio_endio(comp_bio);
 798	}
 799
 800	return 0;
 801
 802fail2:
 803	while (faili >= 0) {
 804		__free_page(cb->compressed_pages[faili]);
 805		faili--;
 806	}
 807
 808	kfree(cb->compressed_pages);
 809fail1:
 810	kfree(cb);
 811out:
 812	free_extent_map(em);
 813	return ret;
 
 814}
 815
 816/*
 817 * Heuristic uses systematic sampling to collect data from the input data
 818 * range, the logic can be tuned by the following constants:
 819 *
 820 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 821 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 822 */
 823#define SAMPLING_READ_SIZE	(16)
 824#define SAMPLING_INTERVAL	(256)
 825
 826/*
 827 * For statistical analysis of the input data we consider bytes that form a
 828 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 829 * many times the object appeared in the sample.
 830 */
 831#define BUCKET_SIZE		(256)
 832
 833/*
 834 * The size of the sample is based on a statistical sampling rule of thumb.
 835 * The common way is to perform sampling tests as long as the number of
 836 * elements in each cell is at least 5.
 837 *
 838 * Instead of 5, we choose 32 to obtain more accurate results.
 839 * If the data contain the maximum number of symbols, which is 256, we obtain a
 840 * sample size bound by 8192.
 841 *
 842 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 843 * from up to 512 locations.
 844 */
 845#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
 846				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
 847
 848struct bucket_item {
 849	u32 count;
 850};
 851
 852struct heuristic_ws {
 853	/* Partial copy of input data */
 854	u8 *sample;
 855	u32 sample_size;
 856	/* Buckets store counters for each byte value */
 857	struct bucket_item *bucket;
 858	/* Sorting buffer */
 859	struct bucket_item *bucket_b;
 860	struct list_head list;
 861};
 862
 863static struct workspace_manager heuristic_wsm;
 864
 865static void free_heuristic_ws(struct list_head *ws)
 866{
 867	struct heuristic_ws *workspace;
 868
 869	workspace = list_entry(ws, struct heuristic_ws, list);
 870
 871	kvfree(workspace->sample);
 872	kfree(workspace->bucket);
 873	kfree(workspace->bucket_b);
 874	kfree(workspace);
 875}
 876
 877static struct list_head *alloc_heuristic_ws(unsigned int level)
 878{
 879	struct heuristic_ws *ws;
 880
 881	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
 882	if (!ws)
 883		return ERR_PTR(-ENOMEM);
 884
 885	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
 886	if (!ws->sample)
 887		goto fail;
 888
 889	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
 890	if (!ws->bucket)
 891		goto fail;
 892
 893	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
 894	if (!ws->bucket_b)
 895		goto fail;
 896
 897	INIT_LIST_HEAD(&ws->list);
 898	return &ws->list;
 899fail:
 900	free_heuristic_ws(&ws->list);
 901	return ERR_PTR(-ENOMEM);
 902}
 903
 904const struct btrfs_compress_op btrfs_heuristic_compress = {
 905	.workspace_manager = &heuristic_wsm,
 906};
 907
 908static const struct btrfs_compress_op * const btrfs_compress_op[] = {
 909	/* The heuristic is represented as compression type 0 */
 910	&btrfs_heuristic_compress,
 911	&btrfs_zlib_compress,
 912	&btrfs_lzo_compress,
 913	&btrfs_zstd_compress,
 914};
 915
 916static struct list_head *alloc_workspace(int type, unsigned int level)
 917{
 918	switch (type) {
 919	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
 920	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
 921	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
 922	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
 923	default:
 924		/*
 925		 * This can't happen, the type is validated several times
 926		 * before we get here.
 927		 */
 928		BUG();
 929	}
 930}
 931
 932static void free_workspace(int type, struct list_head *ws)
 933{
 934	switch (type) {
 935	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
 936	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
 937	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
 938	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
 939	default:
 940		/*
 941		 * This can't happen, the type is validated several times
 942		 * before we get here.
 943		 */
 944		BUG();
 945	}
 946}
 947
 948static void btrfs_init_workspace_manager(int type)
 949{
 950	struct workspace_manager *wsm;
 951	struct list_head *workspace;
 952
 953	wsm = btrfs_compress_op[type]->workspace_manager;
 954	INIT_LIST_HEAD(&wsm->idle_ws);
 955	spin_lock_init(&wsm->ws_lock);
 956	atomic_set(&wsm->total_ws, 0);
 957	init_waitqueue_head(&wsm->ws_wait);
 958
 959	/*
 960	 * Preallocate one workspace for each compression type so we can
 961	 * guarantee forward progress in the worst case
 962	 */
 963	workspace = alloc_workspace(type, 0);
 964	if (IS_ERR(workspace)) {
 965		pr_warn(
 966	"BTRFS: cannot preallocate compression workspace, will try later\n");
 967	} else {
 968		atomic_set(&wsm->total_ws, 1);
 969		wsm->free_ws = 1;
 970		list_add(workspace, &wsm->idle_ws);
 971	}
 972}
 973
 974static void btrfs_cleanup_workspace_manager(int type)
 975{
 976	struct workspace_manager *wsman;
 977	struct list_head *ws;
 978
 979	wsman = btrfs_compress_op[type]->workspace_manager;
 980	while (!list_empty(&wsman->idle_ws)) {
 981		ws = wsman->idle_ws.next;
 982		list_del(ws);
 983		free_workspace(type, ws);
 984		atomic_dec(&wsman->total_ws);
 985	}
 986}
 987
 988/*
 989 * This finds an available workspace or allocates a new one.
 990 * If it's not possible to allocate a new one, waits until there's one.
 991 * Preallocation makes a forward progress guarantees and we do not return
 992 * errors.
 993 */
 994struct list_head *btrfs_get_workspace(int type, unsigned int level)
 995{
 996	struct workspace_manager *wsm;
 997	struct list_head *workspace;
 998	int cpus = num_online_cpus();
 999	unsigned nofs_flag;
1000	struct list_head *idle_ws;
1001	spinlock_t *ws_lock;
1002	atomic_t *total_ws;
1003	wait_queue_head_t *ws_wait;
1004	int *free_ws;
1005
1006	wsm = btrfs_compress_op[type]->workspace_manager;
1007	idle_ws	 = &wsm->idle_ws;
1008	ws_lock	 = &wsm->ws_lock;
1009	total_ws = &wsm->total_ws;
1010	ws_wait	 = &wsm->ws_wait;
1011	free_ws	 = &wsm->free_ws;
1012
1013again:
1014	spin_lock(ws_lock);
1015	if (!list_empty(idle_ws)) {
1016		workspace = idle_ws->next;
1017		list_del(workspace);
1018		(*free_ws)--;
1019		spin_unlock(ws_lock);
1020		return workspace;
1021
1022	}
1023	if (atomic_read(total_ws) > cpus) {
1024		DEFINE_WAIT(wait);
1025
1026		spin_unlock(ws_lock);
1027		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1028		if (atomic_read(total_ws) > cpus && !*free_ws)
1029			schedule();
1030		finish_wait(ws_wait, &wait);
1031		goto again;
1032	}
1033	atomic_inc(total_ws);
1034	spin_unlock(ws_lock);
1035
1036	/*
1037	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1038	 * to turn it off here because we might get called from the restricted
1039	 * context of btrfs_compress_bio/btrfs_compress_pages
1040	 */
1041	nofs_flag = memalloc_nofs_save();
1042	workspace = alloc_workspace(type, level);
1043	memalloc_nofs_restore(nofs_flag);
1044
1045	if (IS_ERR(workspace)) {
1046		atomic_dec(total_ws);
1047		wake_up(ws_wait);
1048
1049		/*
1050		 * Do not return the error but go back to waiting. There's a
1051		 * workspace preallocated for each type and the compression
1052		 * time is bounded so we get to a workspace eventually. This
1053		 * makes our caller's life easier.
1054		 *
1055		 * To prevent silent and low-probability deadlocks (when the
1056		 * initial preallocation fails), check if there are any
1057		 * workspaces at all.
1058		 */
1059		if (atomic_read(total_ws) == 0) {
1060			static DEFINE_RATELIMIT_STATE(_rs,
1061					/* once per minute */ 60 * HZ,
1062					/* no burst */ 1);
1063
1064			if (__ratelimit(&_rs)) {
1065				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1066			}
1067		}
1068		goto again;
1069	}
1070	return workspace;
1071}
1072
1073static struct list_head *get_workspace(int type, int level)
1074{
1075	switch (type) {
1076	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1077	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1078	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1079	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1080	default:
1081		/*
1082		 * This can't happen, the type is validated several times
1083		 * before we get here.
1084		 */
1085		BUG();
1086	}
1087}
1088
1089/*
1090 * put a workspace struct back on the list or free it if we have enough
1091 * idle ones sitting around
1092 */
1093void btrfs_put_workspace(int type, struct list_head *ws)
1094{
1095	struct workspace_manager *wsm;
1096	struct list_head *idle_ws;
1097	spinlock_t *ws_lock;
1098	atomic_t *total_ws;
1099	wait_queue_head_t *ws_wait;
1100	int *free_ws;
1101
1102	wsm = btrfs_compress_op[type]->workspace_manager;
1103	idle_ws	 = &wsm->idle_ws;
1104	ws_lock	 = &wsm->ws_lock;
1105	total_ws = &wsm->total_ws;
1106	ws_wait	 = &wsm->ws_wait;
1107	free_ws	 = &wsm->free_ws;
1108
1109	spin_lock(ws_lock);
1110	if (*free_ws <= num_online_cpus()) {
1111		list_add(ws, idle_ws);
1112		(*free_ws)++;
1113		spin_unlock(ws_lock);
1114		goto wake;
1115	}
1116	spin_unlock(ws_lock);
1117
1118	free_workspace(type, ws);
1119	atomic_dec(total_ws);
1120wake:
1121	cond_wake_up(ws_wait);
1122}
1123
1124static void put_workspace(int type, struct list_head *ws)
1125{
1126	switch (type) {
1127	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1128	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1129	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1130	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1131	default:
1132		/*
1133		 * This can't happen, the type is validated several times
1134		 * before we get here.
1135		 */
1136		BUG();
1137	}
1138}
1139
1140/*
1141 * Adjust @level according to the limits of the compression algorithm or
1142 * fallback to default
1143 */
1144static unsigned int btrfs_compress_set_level(int type, unsigned level)
1145{
1146	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1147
1148	if (level == 0)
1149		level = ops->default_level;
1150	else
1151		level = min(level, ops->max_level);
1152
1153	return level;
1154}
1155
1156/*
1157 * Given an address space and start and length, compress the bytes into @pages
1158 * that are allocated on demand.
1159 *
1160 * @type_level is encoded algorithm and level, where level 0 means whatever
1161 * default the algorithm chooses and is opaque here;
1162 * - compression algo are 0-3
1163 * - the level are bits 4-7
1164 *
1165 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1166 * and returns number of actually allocated pages
1167 *
1168 * @total_in is used to return the number of bytes actually read.  It
1169 * may be smaller than the input length if we had to exit early because we
1170 * ran out of room in the pages array or because we cross the
1171 * max_out threshold.
1172 *
1173 * @total_out is an in/out parameter, must be set to the input length and will
1174 * be also used to return the total number of compressed bytes
1175 *
1176 * @max_out tells us the max number of bytes that we're allowed to
1177 * stuff into pages
1178 */
1179int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1180			 u64 start, struct page **pages,
1181			 unsigned long *out_pages,
1182			 unsigned long *total_in,
1183			 unsigned long *total_out)
1184{
1185	int type = btrfs_compress_type(type_level);
1186	int level = btrfs_compress_level(type_level);
1187	struct list_head *workspace;
1188	int ret;
1189
1190	level = btrfs_compress_set_level(type, level);
1191	workspace = get_workspace(type, level);
1192	ret = compression_compress_pages(type, workspace, mapping, start, pages,
1193					 out_pages, total_in, total_out);
1194	put_workspace(type, workspace);
1195	return ret;
1196}
1197
1198/*
1199 * pages_in is an array of pages with compressed data.
1200 *
1201 * disk_start is the starting logical offset of this array in the file
1202 *
1203 * orig_bio contains the pages from the file that we want to decompress into
1204 *
1205 * srclen is the number of bytes in pages_in
1206 *
1207 * The basic idea is that we have a bio that was created by readpages.
1208 * The pages in the bio are for the uncompressed data, and they may not
1209 * be contiguous.  They all correspond to the range of bytes covered by
1210 * the compressed extent.
1211 */
1212static int btrfs_decompress_bio(struct compressed_bio *cb)
1213{
1214	struct list_head *workspace;
1215	int ret;
1216	int type = cb->compress_type;
1217
1218	workspace = get_workspace(type, 0);
1219	ret = compression_decompress_bio(type, workspace, cb);
1220	put_workspace(type, workspace);
1221
1222	return ret;
1223}
1224
1225/*
1226 * a less complex decompression routine.  Our compressed data fits in a
1227 * single page, and we want to read a single page out of it.
1228 * start_byte tells us the offset into the compressed data we're interested in
1229 */
1230int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1231		     unsigned long start_byte, size_t srclen, size_t destlen)
1232{
1233	struct list_head *workspace;
1234	int ret;
1235
1236	workspace = get_workspace(type, 0);
1237	ret = compression_decompress(type, workspace, data_in, dest_page,
1238				     start_byte, srclen, destlen);
1239	put_workspace(type, workspace);
1240
1241	return ret;
1242}
1243
1244void __init btrfs_init_compress(void)
1245{
1246	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1247	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1248	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1249	zstd_init_workspace_manager();
 
1250}
1251
1252void __cold btrfs_exit_compress(void)
1253{
1254	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1255	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1256	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1257	zstd_cleanup_workspace_manager();
1258}
1259
1260/*
1261 * Copy uncompressed data from working buffer to pages.
1262 *
1263 * buf_start is the byte offset we're of the start of our workspace buffer.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1264 *
1265 * total_out is the last byte of the buffer
 
1266 */
1267int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1268			      unsigned long total_out, u64 disk_start,
1269			      struct bio *bio)
1270{
1271	unsigned long buf_offset;
1272	unsigned long current_buf_start;
1273	unsigned long start_byte;
1274	unsigned long prev_start_byte;
1275	unsigned long working_bytes = total_out - buf_start;
1276	unsigned long bytes;
1277	char *kaddr;
1278	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
 
 
 
1279
1280	/*
1281	 * start byte is the first byte of the page we're currently
1282	 * copying into relative to the start of the compressed data.
1283	 */
1284	start_byte = page_offset(bvec.bv_page) - disk_start;
1285
1286	/* we haven't yet hit data corresponding to this page */
1287	if (total_out <= start_byte)
1288		return 1;
1289
1290	/*
1291	 * the start of the data we care about is offset into
1292	 * the middle of our working buffer
1293	 */
1294	if (total_out > start_byte && buf_start < start_byte) {
1295		buf_offset = start_byte - buf_start;
1296		working_bytes -= buf_offset;
1297	} else {
1298		buf_offset = 0;
1299	}
1300	current_buf_start = buf_start;
1301
1302	/* copy bytes from the working buffer into the pages */
1303	while (working_bytes > 0) {
1304		bytes = min_t(unsigned long, bvec.bv_len,
1305				PAGE_SIZE - (buf_offset % PAGE_SIZE));
1306		bytes = min(bytes, working_bytes);
1307
1308		kaddr = kmap_atomic(bvec.bv_page);
1309		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1310		kunmap_atomic(kaddr);
1311		flush_dcache_page(bvec.bv_page);
1312
1313		buf_offset += bytes;
1314		working_bytes -= bytes;
1315		current_buf_start += bytes;
1316
1317		/* check if we need to pick another page */
1318		bio_advance(bio, bytes);
1319		if (!bio->bi_iter.bi_size)
1320			return 0;
1321		bvec = bio_iter_iovec(bio, bio->bi_iter);
1322		prev_start_byte = start_byte;
1323		start_byte = page_offset(bvec.bv_page) - disk_start;
1324
1325		/*
1326		 * We need to make sure we're only adjusting
1327		 * our offset into compression working buffer when
1328		 * we're switching pages.  Otherwise we can incorrectly
1329		 * keep copying when we were actually done.
1330		 */
1331		if (start_byte != prev_start_byte) {
1332			/*
1333			 * make sure our new page is covered by this
1334			 * working buffer
1335			 */
1336			if (total_out <= start_byte)
1337				return 1;
1338
1339			/*
1340			 * the next page in the biovec might not be adjacent
1341			 * to the last page, but it might still be found
1342			 * inside this working buffer. bump our offset pointer
1343			 */
1344			if (total_out > start_byte &&
1345			    current_buf_start < start_byte) {
1346				buf_offset = start_byte - buf_start;
1347				working_bytes = total_out - start_byte;
1348				current_buf_start = buf_start + buf_offset;
1349			}
1350		}
1351	}
1352
1353	return 1;
1354}
1355
1356/*
1357 * Shannon Entropy calculation
1358 *
1359 * Pure byte distribution analysis fails to determine compressibility of data.
1360 * Try calculating entropy to estimate the average minimum number of bits
1361 * needed to encode the sampled data.
1362 *
1363 * For convenience, return the percentage of needed bits, instead of amount of
1364 * bits directly.
1365 *
1366 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1367 *			    and can be compressible with high probability
1368 *
1369 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1370 *
1371 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1372 */
1373#define ENTROPY_LVL_ACEPTABLE		(65)
1374#define ENTROPY_LVL_HIGH		(80)
1375
1376/*
1377 * For increasead precision in shannon_entropy calculation,
1378 * let's do pow(n, M) to save more digits after comma:
1379 *
1380 * - maximum int bit length is 64
1381 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1382 * - 13 * 4 = 52 < 64		-> M = 4
1383 *
1384 * So use pow(n, 4).
1385 */
1386static inline u32 ilog2_w(u64 n)
1387{
1388	return ilog2(n * n * n * n);
1389}
1390
1391static u32 shannon_entropy(struct heuristic_ws *ws)
1392{
1393	const u32 entropy_max = 8 * ilog2_w(2);
1394	u32 entropy_sum = 0;
1395	u32 p, p_base, sz_base;
1396	u32 i;
1397
1398	sz_base = ilog2_w(ws->sample_size);
1399	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1400		p = ws->bucket[i].count;
1401		p_base = ilog2_w(p);
1402		entropy_sum += p * (sz_base - p_base);
1403	}
1404
1405	entropy_sum /= ws->sample_size;
1406	return entropy_sum * 100 / entropy_max;
1407}
1408
1409#define RADIX_BASE		4U
1410#define COUNTERS_SIZE		(1U << RADIX_BASE)
1411
1412static u8 get4bits(u64 num, int shift) {
1413	u8 low4bits;
1414
1415	num >>= shift;
1416	/* Reverse order */
1417	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1418	return low4bits;
1419}
1420
1421/*
1422 * Use 4 bits as radix base
1423 * Use 16 u32 counters for calculating new position in buf array
1424 *
1425 * @array     - array that will be sorted
1426 * @array_buf - buffer array to store sorting results
1427 *              must be equal in size to @array
1428 * @num       - array size
1429 */
1430static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1431		       int num)
1432{
1433	u64 max_num;
1434	u64 buf_num;
1435	u32 counters[COUNTERS_SIZE];
1436	u32 new_addr;
1437	u32 addr;
1438	int bitlen;
1439	int shift;
1440	int i;
1441
1442	/*
1443	 * Try avoid useless loop iterations for small numbers stored in big
1444	 * counters.  Example: 48 33 4 ... in 64bit array
1445	 */
1446	max_num = array[0].count;
1447	for (i = 1; i < num; i++) {
1448		buf_num = array[i].count;
1449		if (buf_num > max_num)
1450			max_num = buf_num;
1451	}
1452
1453	buf_num = ilog2(max_num);
1454	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1455
1456	shift = 0;
1457	while (shift < bitlen) {
1458		memset(counters, 0, sizeof(counters));
1459
1460		for (i = 0; i < num; i++) {
1461			buf_num = array[i].count;
1462			addr = get4bits(buf_num, shift);
1463			counters[addr]++;
1464		}
1465
1466		for (i = 1; i < COUNTERS_SIZE; i++)
1467			counters[i] += counters[i - 1];
1468
1469		for (i = num - 1; i >= 0; i--) {
1470			buf_num = array[i].count;
1471			addr = get4bits(buf_num, shift);
1472			counters[addr]--;
1473			new_addr = counters[addr];
1474			array_buf[new_addr] = array[i];
1475		}
1476
1477		shift += RADIX_BASE;
1478
1479		/*
1480		 * Normal radix expects to move data from a temporary array, to
1481		 * the main one.  But that requires some CPU time. Avoid that
1482		 * by doing another sort iteration to original array instead of
1483		 * memcpy()
1484		 */
1485		memset(counters, 0, sizeof(counters));
1486
1487		for (i = 0; i < num; i ++) {
1488			buf_num = array_buf[i].count;
1489			addr = get4bits(buf_num, shift);
1490			counters[addr]++;
1491		}
1492
1493		for (i = 1; i < COUNTERS_SIZE; i++)
1494			counters[i] += counters[i - 1];
1495
1496		for (i = num - 1; i >= 0; i--) {
1497			buf_num = array_buf[i].count;
1498			addr = get4bits(buf_num, shift);
1499			counters[addr]--;
1500			new_addr = counters[addr];
1501			array[new_addr] = array_buf[i];
1502		}
1503
1504		shift += RADIX_BASE;
1505	}
1506}
1507
1508/*
1509 * Size of the core byte set - how many bytes cover 90% of the sample
1510 *
1511 * There are several types of structured binary data that use nearly all byte
1512 * values. The distribution can be uniform and counts in all buckets will be
1513 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1514 *
1515 * Other possibility is normal (Gaussian) distribution, where the data could
1516 * be potentially compressible, but we have to take a few more steps to decide
1517 * how much.
1518 *
1519 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1520 *                       compression algo can easy fix that
1521 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1522 *                       probability is not compressible
1523 */
1524#define BYTE_CORE_SET_LOW		(64)
1525#define BYTE_CORE_SET_HIGH		(200)
1526
1527static int byte_core_set_size(struct heuristic_ws *ws)
1528{
1529	u32 i;
1530	u32 coreset_sum = 0;
1531	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1532	struct bucket_item *bucket = ws->bucket;
1533
1534	/* Sort in reverse order */
1535	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1536
1537	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1538		coreset_sum += bucket[i].count;
1539
1540	if (coreset_sum > core_set_threshold)
1541		return i;
1542
1543	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1544		coreset_sum += bucket[i].count;
1545		if (coreset_sum > core_set_threshold)
1546			break;
1547	}
1548
1549	return i;
1550}
1551
1552/*
1553 * Count byte values in buckets.
1554 * This heuristic can detect textual data (configs, xml, json, html, etc).
1555 * Because in most text-like data byte set is restricted to limited number of
1556 * possible characters, and that restriction in most cases makes data easy to
1557 * compress.
1558 *
1559 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1560 *	less - compressible
1561 *	more - need additional analysis
1562 */
1563#define BYTE_SET_THRESHOLD		(64)
1564
1565static u32 byte_set_size(const struct heuristic_ws *ws)
1566{
1567	u32 i;
1568	u32 byte_set_size = 0;
1569
1570	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1571		if (ws->bucket[i].count > 0)
1572			byte_set_size++;
1573	}
1574
1575	/*
1576	 * Continue collecting count of byte values in buckets.  If the byte
1577	 * set size is bigger then the threshold, it's pointless to continue,
1578	 * the detection technique would fail for this type of data.
1579	 */
1580	for (; i < BUCKET_SIZE; i++) {
1581		if (ws->bucket[i].count > 0) {
1582			byte_set_size++;
1583			if (byte_set_size > BYTE_SET_THRESHOLD)
1584				return byte_set_size;
1585		}
1586	}
1587
1588	return byte_set_size;
1589}
1590
1591static bool sample_repeated_patterns(struct heuristic_ws *ws)
1592{
1593	const u32 half_of_sample = ws->sample_size / 2;
1594	const u8 *data = ws->sample;
1595
1596	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1597}
1598
1599static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1600				     struct heuristic_ws *ws)
1601{
1602	struct page *page;
1603	u64 index, index_end;
1604	u32 i, curr_sample_pos;
1605	u8 *in_data;
1606
1607	/*
1608	 * Compression handles the input data by chunks of 128KiB
1609	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1610	 *
1611	 * We do the same for the heuristic and loop over the whole range.
1612	 *
1613	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1614	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1615	 */
1616	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1617		end = start + BTRFS_MAX_UNCOMPRESSED;
1618
1619	index = start >> PAGE_SHIFT;
1620	index_end = end >> PAGE_SHIFT;
1621
1622	/* Don't miss unaligned end */
1623	if (!IS_ALIGNED(end, PAGE_SIZE))
1624		index_end++;
1625
1626	curr_sample_pos = 0;
1627	while (index < index_end) {
1628		page = find_get_page(inode->i_mapping, index);
1629		in_data = kmap(page);
1630		/* Handle case where the start is not aligned to PAGE_SIZE */
1631		i = start % PAGE_SIZE;
1632		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1633			/* Don't sample any garbage from the last page */
1634			if (start > end - SAMPLING_READ_SIZE)
1635				break;
1636			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1637					SAMPLING_READ_SIZE);
1638			i += SAMPLING_INTERVAL;
1639			start += SAMPLING_INTERVAL;
1640			curr_sample_pos += SAMPLING_READ_SIZE;
1641		}
1642		kunmap(page);
1643		put_page(page);
1644
1645		index++;
1646	}
1647
1648	ws->sample_size = curr_sample_pos;
1649}
1650
1651/*
1652 * Compression heuristic.
1653 *
1654 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1655 * quickly (compared to direct compression) detect data characteristics
1656 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1657 * data.
1658 *
1659 * The following types of analysis can be performed:
1660 * - detect mostly zero data
1661 * - detect data with low "byte set" size (text, etc)
1662 * - detect data with low/high "core byte" set
1663 *
1664 * Return non-zero if the compression should be done, 0 otherwise.
1665 */
1666int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1667{
1668	struct list_head *ws_list = get_workspace(0, 0);
1669	struct heuristic_ws *ws;
1670	u32 i;
1671	u8 byte;
1672	int ret = 0;
1673
1674	ws = list_entry(ws_list, struct heuristic_ws, list);
1675
1676	heuristic_collect_sample(inode, start, end, ws);
1677
1678	if (sample_repeated_patterns(ws)) {
1679		ret = 1;
1680		goto out;
1681	}
1682
1683	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1684
1685	for (i = 0; i < ws->sample_size; i++) {
1686		byte = ws->sample[i];
1687		ws->bucket[byte].count++;
1688	}
1689
1690	i = byte_set_size(ws);
1691	if (i < BYTE_SET_THRESHOLD) {
1692		ret = 2;
1693		goto out;
1694	}
1695
1696	i = byte_core_set_size(ws);
1697	if (i <= BYTE_CORE_SET_LOW) {
1698		ret = 3;
1699		goto out;
1700	}
1701
1702	if (i >= BYTE_CORE_SET_HIGH) {
1703		ret = 0;
1704		goto out;
1705	}
1706
1707	i = shannon_entropy(ws);
1708	if (i <= ENTROPY_LVL_ACEPTABLE) {
1709		ret = 4;
1710		goto out;
1711	}
1712
1713	/*
1714	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1715	 * needed to give green light to compression.
1716	 *
1717	 * For now just assume that compression at that level is not worth the
1718	 * resources because:
1719	 *
1720	 * 1. it is possible to defrag the data later
1721	 *
1722	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1723	 * values, every bucket has counter at level ~54. The heuristic would
1724	 * be confused. This can happen when data have some internal repeated
1725	 * patterns like "abbacbbc...". This can be detected by analyzing
1726	 * pairs of bytes, which is too costly.
1727	 */
1728	if (i < ENTROPY_LVL_HIGH) {
1729		ret = 5;
1730		goto out;
1731	} else {
1732		ret = 0;
1733		goto out;
1734	}
1735
1736out:
1737	put_workspace(0, ws_list);
1738	return ret;
1739}
1740
1741/*
1742 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1743 * level, unrecognized string will set the default level
1744 */
1745unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1746{
1747	unsigned int level = 0;
1748	int ret;
1749
1750	if (!type)
1751		return 0;
1752
1753	if (str[0] == ':') {
1754		ret = kstrtouint(str + 1, 10, &level);
1755		if (ret)
1756			level = 0;
1757	}
1758
1759	level = btrfs_compress_set_level(type, level);
1760
1761	return level;
1762}