Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6#include <linux/kernel.h>
7#include <linux/bio.h>
8#include <linux/file.h>
9#include <linux/fs.h>
10#include <linux/pagemap.h>
11#include <linux/pagevec.h>
12#include <linux/highmem.h>
13#include <linux/kthread.h>
14#include <linux/time.h>
15#include <linux/init.h>
16#include <linux/string.h>
17#include <linux/backing-dev.h>
18#include <linux/writeback.h>
19#include <linux/psi.h>
20#include <linux/slab.h>
21#include <linux/sched/mm.h>
22#include <linux/log2.h>
23#include <crypto/hash.h>
24#include "misc.h"
25#include "ctree.h"
26#include "fs.h"
27#include "disk-io.h"
28#include "transaction.h"
29#include "btrfs_inode.h"
30#include "bio.h"
31#include "ordered-data.h"
32#include "compression.h"
33#include "extent_io.h"
34#include "extent_map.h"
35#include "subpage.h"
36#include "zoned.h"
37#include "file-item.h"
38#include "super.h"
39
40static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
41
42const char* btrfs_compress_type2str(enum btrfs_compression_type type)
43{
44 switch (type) {
45 case BTRFS_COMPRESS_ZLIB:
46 case BTRFS_COMPRESS_LZO:
47 case BTRFS_COMPRESS_ZSTD:
48 case BTRFS_COMPRESS_NONE:
49 return btrfs_compress_types[type];
50 default:
51 break;
52 }
53
54 return NULL;
55}
56
57bool btrfs_compress_is_valid_type(const char *str, size_t len)
58{
59 int i;
60
61 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
62 size_t comp_len = strlen(btrfs_compress_types[i]);
63
64 if (len < comp_len)
65 continue;
66
67 if (!strncmp(btrfs_compress_types[i], str, comp_len))
68 return true;
69 }
70 return false;
71}
72
73static int compression_compress_pages(int type, struct list_head *ws,
74 struct address_space *mapping, u64 start, struct page **pages,
75 unsigned long *out_pages, unsigned long *total_in,
76 unsigned long *total_out)
77{
78 switch (type) {
79 case BTRFS_COMPRESS_ZLIB:
80 return zlib_compress_pages(ws, mapping, start, pages,
81 out_pages, total_in, total_out);
82 case BTRFS_COMPRESS_LZO:
83 return lzo_compress_pages(ws, mapping, start, pages,
84 out_pages, total_in, total_out);
85 case BTRFS_COMPRESS_ZSTD:
86 return zstd_compress_pages(ws, mapping, start, pages,
87 out_pages, total_in, total_out);
88 case BTRFS_COMPRESS_NONE:
89 default:
90 /*
91 * This can happen when compression races with remount setting
92 * it to 'no compress', while caller doesn't call
93 * inode_need_compress() to check if we really need to
94 * compress.
95 *
96 * Not a big deal, just need to inform caller that we
97 * haven't allocated any pages yet.
98 */
99 *out_pages = 0;
100 return -E2BIG;
101 }
102}
103
104static int compression_decompress_bio(struct list_head *ws,
105 struct compressed_bio *cb)
106{
107 switch (cb->compress_type) {
108 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
109 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb);
110 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
111 case BTRFS_COMPRESS_NONE:
112 default:
113 /*
114 * This can't happen, the type is validated several times
115 * before we get here.
116 */
117 BUG();
118 }
119}
120
121static int compression_decompress(int type, struct list_head *ws,
122 const u8 *data_in, struct page *dest_page,
123 unsigned long start_byte, size_t srclen, size_t destlen)
124{
125 switch (type) {
126 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
127 start_byte, srclen, destlen);
128 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page,
129 start_byte, srclen, destlen);
130 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
131 start_byte, srclen, destlen);
132 case BTRFS_COMPRESS_NONE:
133 default:
134 /*
135 * This can't happen, the type is validated several times
136 * before we get here.
137 */
138 BUG();
139 }
140}
141
142static int btrfs_decompress_bio(struct compressed_bio *cb);
143
144static void finish_compressed_bio_read(struct compressed_bio *cb)
145{
146 unsigned int index;
147 struct page *page;
148
149 if (cb->status == BLK_STS_OK)
150 cb->status = errno_to_blk_status(btrfs_decompress_bio(cb));
151
152 /* Release the compressed pages */
153 for (index = 0; index < cb->nr_pages; index++) {
154 page = cb->compressed_pages[index];
155 page->mapping = NULL;
156 put_page(page);
157 }
158
159 /* Do io completion on the original bio */
160 btrfs_bio_end_io(btrfs_bio(cb->orig_bio), cb->status);
161
162 /* Finally free the cb struct */
163 kfree(cb->compressed_pages);
164 kfree(cb);
165}
166
167/*
168 * Verify the checksums and kick off repair if needed on the uncompressed data
169 * before decompressing it into the original bio and freeing the uncompressed
170 * pages.
171 */
172static void end_compressed_bio_read(struct btrfs_bio *bbio)
173{
174 struct compressed_bio *cb = bbio->private;
175 struct inode *inode = cb->inode;
176 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
177 struct btrfs_inode *bi = BTRFS_I(inode);
178 bool csum = !(bi->flags & BTRFS_INODE_NODATASUM) &&
179 !test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
180 blk_status_t status = bbio->bio.bi_status;
181 struct bvec_iter iter;
182 struct bio_vec bv;
183 u32 offset;
184
185 btrfs_bio_for_each_sector(fs_info, bv, bbio, iter, offset) {
186 u64 start = bbio->file_offset + offset;
187
188 if (!status &&
189 (!csum || !btrfs_check_data_csum(bi, bbio, offset,
190 bv.bv_page, bv.bv_offset))) {
191 btrfs_clean_io_failure(bi, start, bv.bv_page,
192 bv.bv_offset);
193 } else {
194 int ret;
195
196 refcount_inc(&cb->pending_ios);
197 ret = btrfs_repair_one_sector(BTRFS_I(inode), bbio, offset,
198 bv.bv_page, bv.bv_offset,
199 true);
200 if (ret) {
201 refcount_dec(&cb->pending_ios);
202 status = errno_to_blk_status(ret);
203 }
204 }
205 }
206
207 if (status)
208 cb->status = status;
209
210 if (refcount_dec_and_test(&cb->pending_ios))
211 finish_compressed_bio_read(cb);
212 btrfs_bio_free_csum(bbio);
213 bio_put(&bbio->bio);
214}
215
216/*
217 * Clear the writeback bits on all of the file
218 * pages for a compressed write
219 */
220static noinline void end_compressed_writeback(struct inode *inode,
221 const struct compressed_bio *cb)
222{
223 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
224 unsigned long index = cb->start >> PAGE_SHIFT;
225 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
226 struct folio_batch fbatch;
227 const int errno = blk_status_to_errno(cb->status);
228 int i;
229 int ret;
230
231 if (errno)
232 mapping_set_error(inode->i_mapping, errno);
233
234 folio_batch_init(&fbatch);
235 while (index <= end_index) {
236 ret = filemap_get_folios(inode->i_mapping, &index, end_index,
237 &fbatch);
238
239 if (ret == 0)
240 return;
241
242 for (i = 0; i < ret; i++) {
243 struct folio *folio = fbatch.folios[i];
244
245 if (errno)
246 folio_set_error(folio);
247 btrfs_page_clamp_clear_writeback(fs_info, &folio->page,
248 cb->start, cb->len);
249 }
250 folio_batch_release(&fbatch);
251 }
252 /* the inode may be gone now */
253}
254
255static void finish_compressed_bio_write(struct compressed_bio *cb)
256{
257 struct inode *inode = cb->inode;
258 unsigned int index;
259
260 /*
261 * Ok, we're the last bio for this extent, step one is to call back
262 * into the FS and do all the end_io operations.
263 */
264 btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL,
265 cb->start, cb->start + cb->len - 1,
266 cb->status == BLK_STS_OK);
267
268 if (cb->writeback)
269 end_compressed_writeback(inode, cb);
270 /* Note, our inode could be gone now */
271
272 /*
273 * Release the compressed pages, these came from alloc_page and
274 * are not attached to the inode at all
275 */
276 for (index = 0; index < cb->nr_pages; index++) {
277 struct page *page = cb->compressed_pages[index];
278
279 page->mapping = NULL;
280 put_page(page);
281 }
282
283 /* Finally free the cb struct */
284 kfree(cb->compressed_pages);
285 kfree(cb);
286}
287
288static void btrfs_finish_compressed_write_work(struct work_struct *work)
289{
290 struct compressed_bio *cb =
291 container_of(work, struct compressed_bio, write_end_work);
292
293 finish_compressed_bio_write(cb);
294}
295
296/*
297 * Do the cleanup once all the compressed pages hit the disk. This will clear
298 * writeback on the file pages and free the compressed pages.
299 *
300 * This also calls the writeback end hooks for the file pages so that metadata
301 * and checksums can be updated in the file.
302 */
303static void end_compressed_bio_write(struct btrfs_bio *bbio)
304{
305 struct compressed_bio *cb = bbio->private;
306
307 if (bbio->bio.bi_status)
308 cb->status = bbio->bio.bi_status;
309
310 if (refcount_dec_and_test(&cb->pending_ios)) {
311 struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
312
313 btrfs_record_physical_zoned(cb->inode, cb->start, &bbio->bio);
314 queue_work(fs_info->compressed_write_workers, &cb->write_end_work);
315 }
316 bio_put(&bbio->bio);
317}
318
319/*
320 * Allocate a compressed_bio, which will be used to read/write on-disk
321 * (aka, compressed) * data.
322 *
323 * @cb: The compressed_bio structure, which records all the needed
324 * information to bind the compressed data to the uncompressed
325 * page cache.
326 * @disk_byten: The logical bytenr where the compressed data will be read
327 * from or written to.
328 * @endio_func: The endio function to call after the IO for compressed data
329 * is finished.
330 * @next_stripe_start: Return value of logical bytenr of where next stripe starts.
331 * Let the caller know to only fill the bio up to the stripe
332 * boundary.
333 */
334
335
336static struct bio *alloc_compressed_bio(struct compressed_bio *cb, u64 disk_bytenr,
337 blk_opf_t opf,
338 btrfs_bio_end_io_t endio_func,
339 u64 *next_stripe_start)
340{
341 struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
342 struct btrfs_io_geometry geom;
343 struct extent_map *em;
344 struct bio *bio;
345 int ret;
346
347 bio = btrfs_bio_alloc(BIO_MAX_VECS, opf, endio_func, cb);
348 bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
349
350 em = btrfs_get_chunk_map(fs_info, disk_bytenr, fs_info->sectorsize);
351 if (IS_ERR(em)) {
352 bio_put(bio);
353 return ERR_CAST(em);
354 }
355
356 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
357 bio_set_dev(bio, em->map_lookup->stripes[0].dev->bdev);
358
359 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), disk_bytenr, &geom);
360 free_extent_map(em);
361 if (ret < 0) {
362 bio_put(bio);
363 return ERR_PTR(ret);
364 }
365 *next_stripe_start = disk_bytenr + geom.len;
366 refcount_inc(&cb->pending_ios);
367 return bio;
368}
369
370/*
371 * worker function to build and submit bios for previously compressed pages.
372 * The corresponding pages in the inode should be marked for writeback
373 * and the compressed pages should have a reference on them for dropping
374 * when the IO is complete.
375 *
376 * This also checksums the file bytes and gets things ready for
377 * the end io hooks.
378 */
379blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
380 unsigned int len, u64 disk_start,
381 unsigned int compressed_len,
382 struct page **compressed_pages,
383 unsigned int nr_pages,
384 blk_opf_t write_flags,
385 struct cgroup_subsys_state *blkcg_css,
386 bool writeback)
387{
388 struct btrfs_fs_info *fs_info = inode->root->fs_info;
389 struct bio *bio = NULL;
390 struct compressed_bio *cb;
391 u64 cur_disk_bytenr = disk_start;
392 u64 next_stripe_start;
393 blk_status_t ret = BLK_STS_OK;
394 int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
395 const bool use_append = btrfs_use_zone_append(inode, disk_start);
396 const enum req_op bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
397
398 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
399 IS_ALIGNED(len, fs_info->sectorsize));
400 cb = kmalloc(sizeof(struct compressed_bio), GFP_NOFS);
401 if (!cb)
402 return BLK_STS_RESOURCE;
403 refcount_set(&cb->pending_ios, 1);
404 cb->status = BLK_STS_OK;
405 cb->inode = &inode->vfs_inode;
406 cb->start = start;
407 cb->len = len;
408 cb->compressed_pages = compressed_pages;
409 cb->compressed_len = compressed_len;
410 cb->writeback = writeback;
411 INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work);
412 cb->nr_pages = nr_pages;
413
414 if (blkcg_css)
415 kthread_associate_blkcg(blkcg_css);
416
417 while (cur_disk_bytenr < disk_start + compressed_len) {
418 u64 offset = cur_disk_bytenr - disk_start;
419 unsigned int index = offset >> PAGE_SHIFT;
420 unsigned int real_size;
421 unsigned int added;
422 struct page *page = compressed_pages[index];
423 bool submit = false;
424
425 /* Allocate new bio if submitted or not yet allocated */
426 if (!bio) {
427 bio = alloc_compressed_bio(cb, cur_disk_bytenr,
428 bio_op | write_flags, end_compressed_bio_write,
429 &next_stripe_start);
430 if (IS_ERR(bio)) {
431 ret = errno_to_blk_status(PTR_ERR(bio));
432 break;
433 }
434 if (blkcg_css)
435 bio->bi_opf |= REQ_CGROUP_PUNT;
436 }
437 /*
438 * We should never reach next_stripe_start start as we will
439 * submit comp_bio when reach the boundary immediately.
440 */
441 ASSERT(cur_disk_bytenr != next_stripe_start);
442
443 /*
444 * We have various limits on the real read size:
445 * - stripe boundary
446 * - page boundary
447 * - compressed length boundary
448 */
449 real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_bytenr);
450 real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
451 real_size = min_t(u64, real_size, compressed_len - offset);
452 ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
453
454 if (use_append)
455 added = bio_add_zone_append_page(bio, page, real_size,
456 offset_in_page(offset));
457 else
458 added = bio_add_page(bio, page, real_size,
459 offset_in_page(offset));
460 /* Reached zoned boundary */
461 if (added == 0)
462 submit = true;
463
464 cur_disk_bytenr += added;
465 /* Reached stripe boundary */
466 if (cur_disk_bytenr == next_stripe_start)
467 submit = true;
468
469 /* Finished the range */
470 if (cur_disk_bytenr == disk_start + compressed_len)
471 submit = true;
472
473 if (submit) {
474 if (!skip_sum) {
475 ret = btrfs_csum_one_bio(inode, bio, start, true);
476 if (ret) {
477 btrfs_bio_end_io(btrfs_bio(bio), ret);
478 break;
479 }
480 }
481
482 ASSERT(bio->bi_iter.bi_size);
483 btrfs_submit_bio(fs_info, bio, 0);
484 bio = NULL;
485 }
486 cond_resched();
487 }
488
489 if (blkcg_css)
490 kthread_associate_blkcg(NULL);
491
492 if (refcount_dec_and_test(&cb->pending_ios))
493 finish_compressed_bio_write(cb);
494 return ret;
495}
496
497static u64 bio_end_offset(struct bio *bio)
498{
499 struct bio_vec *last = bio_last_bvec_all(bio);
500
501 return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
502}
503
504/*
505 * Add extra pages in the same compressed file extent so that we don't need to
506 * re-read the same extent again and again.
507 *
508 * NOTE: this won't work well for subpage, as for subpage read, we lock the
509 * full page then submit bio for each compressed/regular extents.
510 *
511 * This means, if we have several sectors in the same page points to the same
512 * on-disk compressed data, we will re-read the same extent many times and
513 * this function can only help for the next page.
514 */
515static noinline int add_ra_bio_pages(struct inode *inode,
516 u64 compressed_end,
517 struct compressed_bio *cb,
518 int *memstall, unsigned long *pflags)
519{
520 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
521 unsigned long end_index;
522 u64 cur = bio_end_offset(cb->orig_bio);
523 u64 isize = i_size_read(inode);
524 int ret;
525 struct page *page;
526 struct extent_map *em;
527 struct address_space *mapping = inode->i_mapping;
528 struct extent_map_tree *em_tree;
529 struct extent_io_tree *tree;
530 int sectors_missed = 0;
531
532 em_tree = &BTRFS_I(inode)->extent_tree;
533 tree = &BTRFS_I(inode)->io_tree;
534
535 if (isize == 0)
536 return 0;
537
538 /*
539 * For current subpage support, we only support 64K page size,
540 * which means maximum compressed extent size (128K) is just 2x page
541 * size.
542 * This makes readahead less effective, so here disable readahead for
543 * subpage for now, until full compressed write is supported.
544 */
545 if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
546 return 0;
547
548 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
549
550 while (cur < compressed_end) {
551 u64 page_end;
552 u64 pg_index = cur >> PAGE_SHIFT;
553 u32 add_size;
554
555 if (pg_index > end_index)
556 break;
557
558 page = xa_load(&mapping->i_pages, pg_index);
559 if (page && !xa_is_value(page)) {
560 sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
561 fs_info->sectorsize_bits;
562
563 /* Beyond threshold, no need to continue */
564 if (sectors_missed > 4)
565 break;
566
567 /*
568 * Jump to next page start as we already have page for
569 * current offset.
570 */
571 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
572 continue;
573 }
574
575 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
576 ~__GFP_FS));
577 if (!page)
578 break;
579
580 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
581 put_page(page);
582 /* There is already a page, skip to page end */
583 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
584 continue;
585 }
586
587 if (!*memstall && PageWorkingset(page)) {
588 psi_memstall_enter(pflags);
589 *memstall = 1;
590 }
591
592 ret = set_page_extent_mapped(page);
593 if (ret < 0) {
594 unlock_page(page);
595 put_page(page);
596 break;
597 }
598
599 page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
600 lock_extent(tree, cur, page_end, NULL);
601 read_lock(&em_tree->lock);
602 em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
603 read_unlock(&em_tree->lock);
604
605 /*
606 * At this point, we have a locked page in the page cache for
607 * these bytes in the file. But, we have to make sure they map
608 * to this compressed extent on disk.
609 */
610 if (!em || cur < em->start ||
611 (cur + fs_info->sectorsize > extent_map_end(em)) ||
612 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
613 free_extent_map(em);
614 unlock_extent(tree, cur, page_end, NULL);
615 unlock_page(page);
616 put_page(page);
617 break;
618 }
619 free_extent_map(em);
620
621 if (page->index == end_index) {
622 size_t zero_offset = offset_in_page(isize);
623
624 if (zero_offset) {
625 int zeros;
626 zeros = PAGE_SIZE - zero_offset;
627 memzero_page(page, zero_offset, zeros);
628 }
629 }
630
631 add_size = min(em->start + em->len, page_end + 1) - cur;
632 ret = bio_add_page(cb->orig_bio, page, add_size, offset_in_page(cur));
633 if (ret != add_size) {
634 unlock_extent(tree, cur, page_end, NULL);
635 unlock_page(page);
636 put_page(page);
637 break;
638 }
639 /*
640 * If it's subpage, we also need to increase its
641 * subpage::readers number, as at endio we will decrease
642 * subpage::readers and to unlock the page.
643 */
644 if (fs_info->sectorsize < PAGE_SIZE)
645 btrfs_subpage_start_reader(fs_info, page, cur, add_size);
646 put_page(page);
647 cur += add_size;
648 }
649 return 0;
650}
651
652/*
653 * for a compressed read, the bio we get passed has all the inode pages
654 * in it. We don't actually do IO on those pages but allocate new ones
655 * to hold the compressed pages on disk.
656 *
657 * bio->bi_iter.bi_sector points to the compressed extent on disk
658 * bio->bi_io_vec points to all of the inode pages
659 *
660 * After the compressed pages are read, we copy the bytes into the
661 * bio we were passed and then call the bio end_io calls
662 */
663void btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
664 int mirror_num)
665{
666 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
667 struct extent_map_tree *em_tree;
668 struct compressed_bio *cb;
669 unsigned int compressed_len;
670 struct bio *comp_bio = NULL;
671 const u64 disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
672 u64 cur_disk_byte = disk_bytenr;
673 u64 next_stripe_start;
674 u64 file_offset;
675 u64 em_len;
676 u64 em_start;
677 struct extent_map *em;
678 unsigned long pflags;
679 int memstall = 0;
680 blk_status_t ret;
681 int ret2;
682 int i;
683
684 em_tree = &BTRFS_I(inode)->extent_tree;
685
686 file_offset = bio_first_bvec_all(bio)->bv_offset +
687 page_offset(bio_first_page_all(bio));
688
689 /* we need the actual starting offset of this extent in the file */
690 read_lock(&em_tree->lock);
691 em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
692 read_unlock(&em_tree->lock);
693 if (!em) {
694 ret = BLK_STS_IOERR;
695 goto out;
696 }
697
698 ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
699 compressed_len = em->block_len;
700 cb = kmalloc(sizeof(struct compressed_bio), GFP_NOFS);
701 if (!cb) {
702 ret = BLK_STS_RESOURCE;
703 goto out;
704 }
705
706 refcount_set(&cb->pending_ios, 1);
707 cb->status = BLK_STS_OK;
708 cb->inode = inode;
709
710 cb->start = em->orig_start;
711 em_len = em->len;
712 em_start = em->start;
713
714 cb->len = bio->bi_iter.bi_size;
715 cb->compressed_len = compressed_len;
716 cb->compress_type = em->compress_type;
717 cb->orig_bio = bio;
718
719 free_extent_map(em);
720 em = NULL;
721
722 cb->nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
723 cb->compressed_pages = kcalloc(cb->nr_pages, sizeof(struct page *), GFP_NOFS);
724 if (!cb->compressed_pages) {
725 ret = BLK_STS_RESOURCE;
726 goto fail;
727 }
728
729 ret2 = btrfs_alloc_page_array(cb->nr_pages, cb->compressed_pages);
730 if (ret2) {
731 ret = BLK_STS_RESOURCE;
732 goto fail;
733 }
734
735 add_ra_bio_pages(inode, em_start + em_len, cb, &memstall, &pflags);
736
737 /* include any pages we added in add_ra-bio_pages */
738 cb->len = bio->bi_iter.bi_size;
739
740 while (cur_disk_byte < disk_bytenr + compressed_len) {
741 u64 offset = cur_disk_byte - disk_bytenr;
742 unsigned int index = offset >> PAGE_SHIFT;
743 unsigned int real_size;
744 unsigned int added;
745 struct page *page = cb->compressed_pages[index];
746 bool submit = false;
747
748 /* Allocate new bio if submitted or not yet allocated */
749 if (!comp_bio) {
750 comp_bio = alloc_compressed_bio(cb, cur_disk_byte,
751 REQ_OP_READ, end_compressed_bio_read,
752 &next_stripe_start);
753 if (IS_ERR(comp_bio)) {
754 cb->status = errno_to_blk_status(PTR_ERR(comp_bio));
755 break;
756 }
757 }
758 /*
759 * We should never reach next_stripe_start start as we will
760 * submit comp_bio when reach the boundary immediately.
761 */
762 ASSERT(cur_disk_byte != next_stripe_start);
763 /*
764 * We have various limit on the real read size:
765 * - stripe boundary
766 * - page boundary
767 * - compressed length boundary
768 */
769 real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_byte);
770 real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
771 real_size = min_t(u64, real_size, compressed_len - offset);
772 ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
773
774 added = bio_add_page(comp_bio, page, real_size, offset_in_page(offset));
775 /*
776 * Maximum compressed extent is smaller than bio size limit,
777 * thus bio_add_page() should always success.
778 */
779 ASSERT(added == real_size);
780 cur_disk_byte += added;
781
782 /* Reached stripe boundary, need to submit */
783 if (cur_disk_byte == next_stripe_start)
784 submit = true;
785
786 /* Has finished the range, need to submit */
787 if (cur_disk_byte == disk_bytenr + compressed_len)
788 submit = true;
789
790 if (submit) {
791 /* Save the original iter for read repair */
792 if (bio_op(comp_bio) == REQ_OP_READ)
793 btrfs_bio(comp_bio)->iter = comp_bio->bi_iter;
794
795 /*
796 * Save the initial offset of this chunk, as there
797 * is no direct correlation between compressed pages and
798 * the original file offset. The field is only used for
799 * priting error messages.
800 */
801 btrfs_bio(comp_bio)->file_offset = file_offset;
802
803 ret = btrfs_lookup_bio_sums(inode, comp_bio, NULL);
804 if (ret) {
805 btrfs_bio_end_io(btrfs_bio(comp_bio), ret);
806 break;
807 }
808
809 ASSERT(comp_bio->bi_iter.bi_size);
810 btrfs_submit_bio(fs_info, comp_bio, mirror_num);
811 comp_bio = NULL;
812 }
813 }
814
815 if (memstall)
816 psi_memstall_leave(&pflags);
817
818 if (refcount_dec_and_test(&cb->pending_ios))
819 finish_compressed_bio_read(cb);
820 return;
821
822fail:
823 if (cb->compressed_pages) {
824 for (i = 0; i < cb->nr_pages; i++) {
825 if (cb->compressed_pages[i])
826 __free_page(cb->compressed_pages[i]);
827 }
828 }
829
830 kfree(cb->compressed_pages);
831 kfree(cb);
832out:
833 free_extent_map(em);
834 btrfs_bio_end_io(btrfs_bio(bio), ret);
835 return;
836}
837
838/*
839 * Heuristic uses systematic sampling to collect data from the input data
840 * range, the logic can be tuned by the following constants:
841 *
842 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
843 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
844 */
845#define SAMPLING_READ_SIZE (16)
846#define SAMPLING_INTERVAL (256)
847
848/*
849 * For statistical analysis of the input data we consider bytes that form a
850 * Galois Field of 256 objects. Each object has an attribute count, ie. how
851 * many times the object appeared in the sample.
852 */
853#define BUCKET_SIZE (256)
854
855/*
856 * The size of the sample is based on a statistical sampling rule of thumb.
857 * The common way is to perform sampling tests as long as the number of
858 * elements in each cell is at least 5.
859 *
860 * Instead of 5, we choose 32 to obtain more accurate results.
861 * If the data contain the maximum number of symbols, which is 256, we obtain a
862 * sample size bound by 8192.
863 *
864 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
865 * from up to 512 locations.
866 */
867#define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
868 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
869
870struct bucket_item {
871 u32 count;
872};
873
874struct heuristic_ws {
875 /* Partial copy of input data */
876 u8 *sample;
877 u32 sample_size;
878 /* Buckets store counters for each byte value */
879 struct bucket_item *bucket;
880 /* Sorting buffer */
881 struct bucket_item *bucket_b;
882 struct list_head list;
883};
884
885static struct workspace_manager heuristic_wsm;
886
887static void free_heuristic_ws(struct list_head *ws)
888{
889 struct heuristic_ws *workspace;
890
891 workspace = list_entry(ws, struct heuristic_ws, list);
892
893 kvfree(workspace->sample);
894 kfree(workspace->bucket);
895 kfree(workspace->bucket_b);
896 kfree(workspace);
897}
898
899static struct list_head *alloc_heuristic_ws(unsigned int level)
900{
901 struct heuristic_ws *ws;
902
903 ws = kzalloc(sizeof(*ws), GFP_KERNEL);
904 if (!ws)
905 return ERR_PTR(-ENOMEM);
906
907 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
908 if (!ws->sample)
909 goto fail;
910
911 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
912 if (!ws->bucket)
913 goto fail;
914
915 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
916 if (!ws->bucket_b)
917 goto fail;
918
919 INIT_LIST_HEAD(&ws->list);
920 return &ws->list;
921fail:
922 free_heuristic_ws(&ws->list);
923 return ERR_PTR(-ENOMEM);
924}
925
926const struct btrfs_compress_op btrfs_heuristic_compress = {
927 .workspace_manager = &heuristic_wsm,
928};
929
930static const struct btrfs_compress_op * const btrfs_compress_op[] = {
931 /* The heuristic is represented as compression type 0 */
932 &btrfs_heuristic_compress,
933 &btrfs_zlib_compress,
934 &btrfs_lzo_compress,
935 &btrfs_zstd_compress,
936};
937
938static struct list_head *alloc_workspace(int type, unsigned int level)
939{
940 switch (type) {
941 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
942 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
943 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level);
944 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
945 default:
946 /*
947 * This can't happen, the type is validated several times
948 * before we get here.
949 */
950 BUG();
951 }
952}
953
954static void free_workspace(int type, struct list_head *ws)
955{
956 switch (type) {
957 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
958 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
959 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws);
960 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
961 default:
962 /*
963 * This can't happen, the type is validated several times
964 * before we get here.
965 */
966 BUG();
967 }
968}
969
970static void btrfs_init_workspace_manager(int type)
971{
972 struct workspace_manager *wsm;
973 struct list_head *workspace;
974
975 wsm = btrfs_compress_op[type]->workspace_manager;
976 INIT_LIST_HEAD(&wsm->idle_ws);
977 spin_lock_init(&wsm->ws_lock);
978 atomic_set(&wsm->total_ws, 0);
979 init_waitqueue_head(&wsm->ws_wait);
980
981 /*
982 * Preallocate one workspace for each compression type so we can
983 * guarantee forward progress in the worst case
984 */
985 workspace = alloc_workspace(type, 0);
986 if (IS_ERR(workspace)) {
987 pr_warn(
988 "BTRFS: cannot preallocate compression workspace, will try later\n");
989 } else {
990 atomic_set(&wsm->total_ws, 1);
991 wsm->free_ws = 1;
992 list_add(workspace, &wsm->idle_ws);
993 }
994}
995
996static void btrfs_cleanup_workspace_manager(int type)
997{
998 struct workspace_manager *wsman;
999 struct list_head *ws;
1000
1001 wsman = btrfs_compress_op[type]->workspace_manager;
1002 while (!list_empty(&wsman->idle_ws)) {
1003 ws = wsman->idle_ws.next;
1004 list_del(ws);
1005 free_workspace(type, ws);
1006 atomic_dec(&wsman->total_ws);
1007 }
1008}
1009
1010/*
1011 * This finds an available workspace or allocates a new one.
1012 * If it's not possible to allocate a new one, waits until there's one.
1013 * Preallocation makes a forward progress guarantees and we do not return
1014 * errors.
1015 */
1016struct list_head *btrfs_get_workspace(int type, unsigned int level)
1017{
1018 struct workspace_manager *wsm;
1019 struct list_head *workspace;
1020 int cpus = num_online_cpus();
1021 unsigned nofs_flag;
1022 struct list_head *idle_ws;
1023 spinlock_t *ws_lock;
1024 atomic_t *total_ws;
1025 wait_queue_head_t *ws_wait;
1026 int *free_ws;
1027
1028 wsm = btrfs_compress_op[type]->workspace_manager;
1029 idle_ws = &wsm->idle_ws;
1030 ws_lock = &wsm->ws_lock;
1031 total_ws = &wsm->total_ws;
1032 ws_wait = &wsm->ws_wait;
1033 free_ws = &wsm->free_ws;
1034
1035again:
1036 spin_lock(ws_lock);
1037 if (!list_empty(idle_ws)) {
1038 workspace = idle_ws->next;
1039 list_del(workspace);
1040 (*free_ws)--;
1041 spin_unlock(ws_lock);
1042 return workspace;
1043
1044 }
1045 if (atomic_read(total_ws) > cpus) {
1046 DEFINE_WAIT(wait);
1047
1048 spin_unlock(ws_lock);
1049 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1050 if (atomic_read(total_ws) > cpus && !*free_ws)
1051 schedule();
1052 finish_wait(ws_wait, &wait);
1053 goto again;
1054 }
1055 atomic_inc(total_ws);
1056 spin_unlock(ws_lock);
1057
1058 /*
1059 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1060 * to turn it off here because we might get called from the restricted
1061 * context of btrfs_compress_bio/btrfs_compress_pages
1062 */
1063 nofs_flag = memalloc_nofs_save();
1064 workspace = alloc_workspace(type, level);
1065 memalloc_nofs_restore(nofs_flag);
1066
1067 if (IS_ERR(workspace)) {
1068 atomic_dec(total_ws);
1069 wake_up(ws_wait);
1070
1071 /*
1072 * Do not return the error but go back to waiting. There's a
1073 * workspace preallocated for each type and the compression
1074 * time is bounded so we get to a workspace eventually. This
1075 * makes our caller's life easier.
1076 *
1077 * To prevent silent and low-probability deadlocks (when the
1078 * initial preallocation fails), check if there are any
1079 * workspaces at all.
1080 */
1081 if (atomic_read(total_ws) == 0) {
1082 static DEFINE_RATELIMIT_STATE(_rs,
1083 /* once per minute */ 60 * HZ,
1084 /* no burst */ 1);
1085
1086 if (__ratelimit(&_rs)) {
1087 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1088 }
1089 }
1090 goto again;
1091 }
1092 return workspace;
1093}
1094
1095static struct list_head *get_workspace(int type, int level)
1096{
1097 switch (type) {
1098 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1099 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1100 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level);
1101 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1102 default:
1103 /*
1104 * This can't happen, the type is validated several times
1105 * before we get here.
1106 */
1107 BUG();
1108 }
1109}
1110
1111/*
1112 * put a workspace struct back on the list or free it if we have enough
1113 * idle ones sitting around
1114 */
1115void btrfs_put_workspace(int type, struct list_head *ws)
1116{
1117 struct workspace_manager *wsm;
1118 struct list_head *idle_ws;
1119 spinlock_t *ws_lock;
1120 atomic_t *total_ws;
1121 wait_queue_head_t *ws_wait;
1122 int *free_ws;
1123
1124 wsm = btrfs_compress_op[type]->workspace_manager;
1125 idle_ws = &wsm->idle_ws;
1126 ws_lock = &wsm->ws_lock;
1127 total_ws = &wsm->total_ws;
1128 ws_wait = &wsm->ws_wait;
1129 free_ws = &wsm->free_ws;
1130
1131 spin_lock(ws_lock);
1132 if (*free_ws <= num_online_cpus()) {
1133 list_add(ws, idle_ws);
1134 (*free_ws)++;
1135 spin_unlock(ws_lock);
1136 goto wake;
1137 }
1138 spin_unlock(ws_lock);
1139
1140 free_workspace(type, ws);
1141 atomic_dec(total_ws);
1142wake:
1143 cond_wake_up(ws_wait);
1144}
1145
1146static void put_workspace(int type, struct list_head *ws)
1147{
1148 switch (type) {
1149 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1150 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1151 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws);
1152 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1153 default:
1154 /*
1155 * This can't happen, the type is validated several times
1156 * before we get here.
1157 */
1158 BUG();
1159 }
1160}
1161
1162/*
1163 * Adjust @level according to the limits of the compression algorithm or
1164 * fallback to default
1165 */
1166static unsigned int btrfs_compress_set_level(int type, unsigned level)
1167{
1168 const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1169
1170 if (level == 0)
1171 level = ops->default_level;
1172 else
1173 level = min(level, ops->max_level);
1174
1175 return level;
1176}
1177
1178/*
1179 * Given an address space and start and length, compress the bytes into @pages
1180 * that are allocated on demand.
1181 *
1182 * @type_level is encoded algorithm and level, where level 0 means whatever
1183 * default the algorithm chooses and is opaque here;
1184 * - compression algo are 0-3
1185 * - the level are bits 4-7
1186 *
1187 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1188 * and returns number of actually allocated pages
1189 *
1190 * @total_in is used to return the number of bytes actually read. It
1191 * may be smaller than the input length if we had to exit early because we
1192 * ran out of room in the pages array or because we cross the
1193 * max_out threshold.
1194 *
1195 * @total_out is an in/out parameter, must be set to the input length and will
1196 * be also used to return the total number of compressed bytes
1197 */
1198int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1199 u64 start, struct page **pages,
1200 unsigned long *out_pages,
1201 unsigned long *total_in,
1202 unsigned long *total_out)
1203{
1204 int type = btrfs_compress_type(type_level);
1205 int level = btrfs_compress_level(type_level);
1206 struct list_head *workspace;
1207 int ret;
1208
1209 level = btrfs_compress_set_level(type, level);
1210 workspace = get_workspace(type, level);
1211 ret = compression_compress_pages(type, workspace, mapping, start, pages,
1212 out_pages, total_in, total_out);
1213 put_workspace(type, workspace);
1214 return ret;
1215}
1216
1217static int btrfs_decompress_bio(struct compressed_bio *cb)
1218{
1219 struct list_head *workspace;
1220 int ret;
1221 int type = cb->compress_type;
1222
1223 workspace = get_workspace(type, 0);
1224 ret = compression_decompress_bio(workspace, cb);
1225 put_workspace(type, workspace);
1226
1227 return ret;
1228}
1229
1230/*
1231 * a less complex decompression routine. Our compressed data fits in a
1232 * single page, and we want to read a single page out of it.
1233 * start_byte tells us the offset into the compressed data we're interested in
1234 */
1235int btrfs_decompress(int type, const u8 *data_in, struct page *dest_page,
1236 unsigned long start_byte, size_t srclen, size_t destlen)
1237{
1238 struct list_head *workspace;
1239 int ret;
1240
1241 workspace = get_workspace(type, 0);
1242 ret = compression_decompress(type, workspace, data_in, dest_page,
1243 start_byte, srclen, destlen);
1244 put_workspace(type, workspace);
1245
1246 return ret;
1247}
1248
1249int __init btrfs_init_compress(void)
1250{
1251 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1252 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1253 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1254 zstd_init_workspace_manager();
1255 return 0;
1256}
1257
1258void __cold btrfs_exit_compress(void)
1259{
1260 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1261 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1262 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1263 zstd_cleanup_workspace_manager();
1264}
1265
1266/*
1267 * Copy decompressed data from working buffer to pages.
1268 *
1269 * @buf: The decompressed data buffer
1270 * @buf_len: The decompressed data length
1271 * @decompressed: Number of bytes that are already decompressed inside the
1272 * compressed extent
1273 * @cb: The compressed extent descriptor
1274 * @orig_bio: The original bio that the caller wants to read for
1275 *
1276 * An easier to understand graph is like below:
1277 *
1278 * |<- orig_bio ->| |<- orig_bio->|
1279 * |<------- full decompressed extent ----->|
1280 * |<----------- @cb range ---->|
1281 * | |<-- @buf_len -->|
1282 * |<--- @decompressed --->|
1283 *
1284 * Note that, @cb can be a subpage of the full decompressed extent, but
1285 * @cb->start always has the same as the orig_file_offset value of the full
1286 * decompressed extent.
1287 *
1288 * When reading compressed extent, we have to read the full compressed extent,
1289 * while @orig_bio may only want part of the range.
1290 * Thus this function will ensure only data covered by @orig_bio will be copied
1291 * to.
1292 *
1293 * Return 0 if we have copied all needed contents for @orig_bio.
1294 * Return >0 if we need continue decompress.
1295 */
1296int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1297 struct compressed_bio *cb, u32 decompressed)
1298{
1299 struct bio *orig_bio = cb->orig_bio;
1300 /* Offset inside the full decompressed extent */
1301 u32 cur_offset;
1302
1303 cur_offset = decompressed;
1304 /* The main loop to do the copy */
1305 while (cur_offset < decompressed + buf_len) {
1306 struct bio_vec bvec;
1307 size_t copy_len;
1308 u32 copy_start;
1309 /* Offset inside the full decompressed extent */
1310 u32 bvec_offset;
1311
1312 bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1313 /*
1314 * cb->start may underflow, but subtracting that value can still
1315 * give us correct offset inside the full decompressed extent.
1316 */
1317 bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1318
1319 /* Haven't reached the bvec range, exit */
1320 if (decompressed + buf_len <= bvec_offset)
1321 return 1;
1322
1323 copy_start = max(cur_offset, bvec_offset);
1324 copy_len = min(bvec_offset + bvec.bv_len,
1325 decompressed + buf_len) - copy_start;
1326 ASSERT(copy_len);
1327
1328 /*
1329 * Extra range check to ensure we didn't go beyond
1330 * @buf + @buf_len.
1331 */
1332 ASSERT(copy_start - decompressed < buf_len);
1333 memcpy_to_page(bvec.bv_page, bvec.bv_offset,
1334 buf + copy_start - decompressed, copy_len);
1335 cur_offset += copy_len;
1336
1337 bio_advance(orig_bio, copy_len);
1338 /* Finished the bio */
1339 if (!orig_bio->bi_iter.bi_size)
1340 return 0;
1341 }
1342 return 1;
1343}
1344
1345/*
1346 * Shannon Entropy calculation
1347 *
1348 * Pure byte distribution analysis fails to determine compressibility of data.
1349 * Try calculating entropy to estimate the average minimum number of bits
1350 * needed to encode the sampled data.
1351 *
1352 * For convenience, return the percentage of needed bits, instead of amount of
1353 * bits directly.
1354 *
1355 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1356 * and can be compressible with high probability
1357 *
1358 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1359 *
1360 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1361 */
1362#define ENTROPY_LVL_ACEPTABLE (65)
1363#define ENTROPY_LVL_HIGH (80)
1364
1365/*
1366 * For increasead precision in shannon_entropy calculation,
1367 * let's do pow(n, M) to save more digits after comma:
1368 *
1369 * - maximum int bit length is 64
1370 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1371 * - 13 * 4 = 52 < 64 -> M = 4
1372 *
1373 * So use pow(n, 4).
1374 */
1375static inline u32 ilog2_w(u64 n)
1376{
1377 return ilog2(n * n * n * n);
1378}
1379
1380static u32 shannon_entropy(struct heuristic_ws *ws)
1381{
1382 const u32 entropy_max = 8 * ilog2_w(2);
1383 u32 entropy_sum = 0;
1384 u32 p, p_base, sz_base;
1385 u32 i;
1386
1387 sz_base = ilog2_w(ws->sample_size);
1388 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1389 p = ws->bucket[i].count;
1390 p_base = ilog2_w(p);
1391 entropy_sum += p * (sz_base - p_base);
1392 }
1393
1394 entropy_sum /= ws->sample_size;
1395 return entropy_sum * 100 / entropy_max;
1396}
1397
1398#define RADIX_BASE 4U
1399#define COUNTERS_SIZE (1U << RADIX_BASE)
1400
1401static u8 get4bits(u64 num, int shift) {
1402 u8 low4bits;
1403
1404 num >>= shift;
1405 /* Reverse order */
1406 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1407 return low4bits;
1408}
1409
1410/*
1411 * Use 4 bits as radix base
1412 * Use 16 u32 counters for calculating new position in buf array
1413 *
1414 * @array - array that will be sorted
1415 * @array_buf - buffer array to store sorting results
1416 * must be equal in size to @array
1417 * @num - array size
1418 */
1419static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1420 int num)
1421{
1422 u64 max_num;
1423 u64 buf_num;
1424 u32 counters[COUNTERS_SIZE];
1425 u32 new_addr;
1426 u32 addr;
1427 int bitlen;
1428 int shift;
1429 int i;
1430
1431 /*
1432 * Try avoid useless loop iterations for small numbers stored in big
1433 * counters. Example: 48 33 4 ... in 64bit array
1434 */
1435 max_num = array[0].count;
1436 for (i = 1; i < num; i++) {
1437 buf_num = array[i].count;
1438 if (buf_num > max_num)
1439 max_num = buf_num;
1440 }
1441
1442 buf_num = ilog2(max_num);
1443 bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1444
1445 shift = 0;
1446 while (shift < bitlen) {
1447 memset(counters, 0, sizeof(counters));
1448
1449 for (i = 0; i < num; i++) {
1450 buf_num = array[i].count;
1451 addr = get4bits(buf_num, shift);
1452 counters[addr]++;
1453 }
1454
1455 for (i = 1; i < COUNTERS_SIZE; i++)
1456 counters[i] += counters[i - 1];
1457
1458 for (i = num - 1; i >= 0; i--) {
1459 buf_num = array[i].count;
1460 addr = get4bits(buf_num, shift);
1461 counters[addr]--;
1462 new_addr = counters[addr];
1463 array_buf[new_addr] = array[i];
1464 }
1465
1466 shift += RADIX_BASE;
1467
1468 /*
1469 * Normal radix expects to move data from a temporary array, to
1470 * the main one. But that requires some CPU time. Avoid that
1471 * by doing another sort iteration to original array instead of
1472 * memcpy()
1473 */
1474 memset(counters, 0, sizeof(counters));
1475
1476 for (i = 0; i < num; i ++) {
1477 buf_num = array_buf[i].count;
1478 addr = get4bits(buf_num, shift);
1479 counters[addr]++;
1480 }
1481
1482 for (i = 1; i < COUNTERS_SIZE; i++)
1483 counters[i] += counters[i - 1];
1484
1485 for (i = num - 1; i >= 0; i--) {
1486 buf_num = array_buf[i].count;
1487 addr = get4bits(buf_num, shift);
1488 counters[addr]--;
1489 new_addr = counters[addr];
1490 array[new_addr] = array_buf[i];
1491 }
1492
1493 shift += RADIX_BASE;
1494 }
1495}
1496
1497/*
1498 * Size of the core byte set - how many bytes cover 90% of the sample
1499 *
1500 * There are several types of structured binary data that use nearly all byte
1501 * values. The distribution can be uniform and counts in all buckets will be
1502 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1503 *
1504 * Other possibility is normal (Gaussian) distribution, where the data could
1505 * be potentially compressible, but we have to take a few more steps to decide
1506 * how much.
1507 *
1508 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1509 * compression algo can easy fix that
1510 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1511 * probability is not compressible
1512 */
1513#define BYTE_CORE_SET_LOW (64)
1514#define BYTE_CORE_SET_HIGH (200)
1515
1516static int byte_core_set_size(struct heuristic_ws *ws)
1517{
1518 u32 i;
1519 u32 coreset_sum = 0;
1520 const u32 core_set_threshold = ws->sample_size * 90 / 100;
1521 struct bucket_item *bucket = ws->bucket;
1522
1523 /* Sort in reverse order */
1524 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1525
1526 for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1527 coreset_sum += bucket[i].count;
1528
1529 if (coreset_sum > core_set_threshold)
1530 return i;
1531
1532 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1533 coreset_sum += bucket[i].count;
1534 if (coreset_sum > core_set_threshold)
1535 break;
1536 }
1537
1538 return i;
1539}
1540
1541/*
1542 * Count byte values in buckets.
1543 * This heuristic can detect textual data (configs, xml, json, html, etc).
1544 * Because in most text-like data byte set is restricted to limited number of
1545 * possible characters, and that restriction in most cases makes data easy to
1546 * compress.
1547 *
1548 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1549 * less - compressible
1550 * more - need additional analysis
1551 */
1552#define BYTE_SET_THRESHOLD (64)
1553
1554static u32 byte_set_size(const struct heuristic_ws *ws)
1555{
1556 u32 i;
1557 u32 byte_set_size = 0;
1558
1559 for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1560 if (ws->bucket[i].count > 0)
1561 byte_set_size++;
1562 }
1563
1564 /*
1565 * Continue collecting count of byte values in buckets. If the byte
1566 * set size is bigger then the threshold, it's pointless to continue,
1567 * the detection technique would fail for this type of data.
1568 */
1569 for (; i < BUCKET_SIZE; i++) {
1570 if (ws->bucket[i].count > 0) {
1571 byte_set_size++;
1572 if (byte_set_size > BYTE_SET_THRESHOLD)
1573 return byte_set_size;
1574 }
1575 }
1576
1577 return byte_set_size;
1578}
1579
1580static bool sample_repeated_patterns(struct heuristic_ws *ws)
1581{
1582 const u32 half_of_sample = ws->sample_size / 2;
1583 const u8 *data = ws->sample;
1584
1585 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1586}
1587
1588static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1589 struct heuristic_ws *ws)
1590{
1591 struct page *page;
1592 u64 index, index_end;
1593 u32 i, curr_sample_pos;
1594 u8 *in_data;
1595
1596 /*
1597 * Compression handles the input data by chunks of 128KiB
1598 * (defined by BTRFS_MAX_UNCOMPRESSED)
1599 *
1600 * We do the same for the heuristic and loop over the whole range.
1601 *
1602 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1603 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1604 */
1605 if (end - start > BTRFS_MAX_UNCOMPRESSED)
1606 end = start + BTRFS_MAX_UNCOMPRESSED;
1607
1608 index = start >> PAGE_SHIFT;
1609 index_end = end >> PAGE_SHIFT;
1610
1611 /* Don't miss unaligned end */
1612 if (!IS_ALIGNED(end, PAGE_SIZE))
1613 index_end++;
1614
1615 curr_sample_pos = 0;
1616 while (index < index_end) {
1617 page = find_get_page(inode->i_mapping, index);
1618 in_data = kmap_local_page(page);
1619 /* Handle case where the start is not aligned to PAGE_SIZE */
1620 i = start % PAGE_SIZE;
1621 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1622 /* Don't sample any garbage from the last page */
1623 if (start > end - SAMPLING_READ_SIZE)
1624 break;
1625 memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1626 SAMPLING_READ_SIZE);
1627 i += SAMPLING_INTERVAL;
1628 start += SAMPLING_INTERVAL;
1629 curr_sample_pos += SAMPLING_READ_SIZE;
1630 }
1631 kunmap_local(in_data);
1632 put_page(page);
1633
1634 index++;
1635 }
1636
1637 ws->sample_size = curr_sample_pos;
1638}
1639
1640/*
1641 * Compression heuristic.
1642 *
1643 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1644 * quickly (compared to direct compression) detect data characteristics
1645 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1646 * data.
1647 *
1648 * The following types of analysis can be performed:
1649 * - detect mostly zero data
1650 * - detect data with low "byte set" size (text, etc)
1651 * - detect data with low/high "core byte" set
1652 *
1653 * Return non-zero if the compression should be done, 0 otherwise.
1654 */
1655int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1656{
1657 struct list_head *ws_list = get_workspace(0, 0);
1658 struct heuristic_ws *ws;
1659 u32 i;
1660 u8 byte;
1661 int ret = 0;
1662
1663 ws = list_entry(ws_list, struct heuristic_ws, list);
1664
1665 heuristic_collect_sample(inode, start, end, ws);
1666
1667 if (sample_repeated_patterns(ws)) {
1668 ret = 1;
1669 goto out;
1670 }
1671
1672 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1673
1674 for (i = 0; i < ws->sample_size; i++) {
1675 byte = ws->sample[i];
1676 ws->bucket[byte].count++;
1677 }
1678
1679 i = byte_set_size(ws);
1680 if (i < BYTE_SET_THRESHOLD) {
1681 ret = 2;
1682 goto out;
1683 }
1684
1685 i = byte_core_set_size(ws);
1686 if (i <= BYTE_CORE_SET_LOW) {
1687 ret = 3;
1688 goto out;
1689 }
1690
1691 if (i >= BYTE_CORE_SET_HIGH) {
1692 ret = 0;
1693 goto out;
1694 }
1695
1696 i = shannon_entropy(ws);
1697 if (i <= ENTROPY_LVL_ACEPTABLE) {
1698 ret = 4;
1699 goto out;
1700 }
1701
1702 /*
1703 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1704 * needed to give green light to compression.
1705 *
1706 * For now just assume that compression at that level is not worth the
1707 * resources because:
1708 *
1709 * 1. it is possible to defrag the data later
1710 *
1711 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1712 * values, every bucket has counter at level ~54. The heuristic would
1713 * be confused. This can happen when data have some internal repeated
1714 * patterns like "abbacbbc...". This can be detected by analyzing
1715 * pairs of bytes, which is too costly.
1716 */
1717 if (i < ENTROPY_LVL_HIGH) {
1718 ret = 5;
1719 goto out;
1720 } else {
1721 ret = 0;
1722 goto out;
1723 }
1724
1725out:
1726 put_workspace(0, ws_list);
1727 return ret;
1728}
1729
1730/*
1731 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1732 * level, unrecognized string will set the default level
1733 */
1734unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1735{
1736 unsigned int level = 0;
1737 int ret;
1738
1739 if (!type)
1740 return 0;
1741
1742 if (str[0] == ':') {
1743 ret = kstrtouint(str + 1, 10, &level);
1744 if (ret)
1745 level = 0;
1746 }
1747
1748 level = btrfs_compress_set_level(type, level);
1749
1750 return level;
1751}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6#include <linux/kernel.h>
7#include <linux/bio.h>
8#include <linux/buffer_head.h>
9#include <linux/file.h>
10#include <linux/fs.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/time.h>
14#include <linux/init.h>
15#include <linux/string.h>
16#include <linux/backing-dev.h>
17#include <linux/mpage.h>
18#include <linux/swap.h>
19#include <linux/writeback.h>
20#include <linux/bit_spinlock.h>
21#include <linux/slab.h>
22#include <linux/sched/mm.h>
23#include <linux/log2.h>
24#include "ctree.h"
25#include "disk-io.h"
26#include "transaction.h"
27#include "btrfs_inode.h"
28#include "volumes.h"
29#include "ordered-data.h"
30#include "compression.h"
31#include "extent_io.h"
32#include "extent_map.h"
33
34static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
35
36const char* btrfs_compress_type2str(enum btrfs_compression_type type)
37{
38 switch (type) {
39 case BTRFS_COMPRESS_ZLIB:
40 case BTRFS_COMPRESS_LZO:
41 case BTRFS_COMPRESS_ZSTD:
42 case BTRFS_COMPRESS_NONE:
43 return btrfs_compress_types[type];
44 }
45
46 return NULL;
47}
48
49static int btrfs_decompress_bio(struct compressed_bio *cb);
50
51static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
52 unsigned long disk_size)
53{
54 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
55
56 return sizeof(struct compressed_bio) +
57 (DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
58}
59
60static int check_compressed_csum(struct btrfs_inode *inode,
61 struct compressed_bio *cb,
62 u64 disk_start)
63{
64 int ret;
65 struct page *page;
66 unsigned long i;
67 char *kaddr;
68 u32 csum;
69 u32 *cb_sum = &cb->sums;
70
71 if (inode->flags & BTRFS_INODE_NODATASUM)
72 return 0;
73
74 for (i = 0; i < cb->nr_pages; i++) {
75 page = cb->compressed_pages[i];
76 csum = ~(u32)0;
77
78 kaddr = kmap_atomic(page);
79 csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
80 btrfs_csum_final(csum, (u8 *)&csum);
81 kunmap_atomic(kaddr);
82
83 if (csum != *cb_sum) {
84 btrfs_print_data_csum_error(inode, disk_start, csum,
85 *cb_sum, cb->mirror_num);
86 ret = -EIO;
87 goto fail;
88 }
89 cb_sum++;
90
91 }
92 ret = 0;
93fail:
94 return ret;
95}
96
97/* when we finish reading compressed pages from the disk, we
98 * decompress them and then run the bio end_io routines on the
99 * decompressed pages (in the inode address space).
100 *
101 * This allows the checksumming and other IO error handling routines
102 * to work normally
103 *
104 * The compressed pages are freed here, and it must be run
105 * in process context
106 */
107static void end_compressed_bio_read(struct bio *bio)
108{
109 struct compressed_bio *cb = bio->bi_private;
110 struct inode *inode;
111 struct page *page;
112 unsigned long index;
113 unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
114 int ret = 0;
115
116 if (bio->bi_status)
117 cb->errors = 1;
118
119 /* if there are more bios still pending for this compressed
120 * extent, just exit
121 */
122 if (!refcount_dec_and_test(&cb->pending_bios))
123 goto out;
124
125 /*
126 * Record the correct mirror_num in cb->orig_bio so that
127 * read-repair can work properly.
128 */
129 ASSERT(btrfs_io_bio(cb->orig_bio));
130 btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
131 cb->mirror_num = mirror;
132
133 /*
134 * Some IO in this cb have failed, just skip checksum as there
135 * is no way it could be correct.
136 */
137 if (cb->errors == 1)
138 goto csum_failed;
139
140 inode = cb->inode;
141 ret = check_compressed_csum(BTRFS_I(inode), cb,
142 (u64)bio->bi_iter.bi_sector << 9);
143 if (ret)
144 goto csum_failed;
145
146 /* ok, we're the last bio for this extent, lets start
147 * the decompression.
148 */
149 ret = btrfs_decompress_bio(cb);
150
151csum_failed:
152 if (ret)
153 cb->errors = 1;
154
155 /* release the compressed pages */
156 index = 0;
157 for (index = 0; index < cb->nr_pages; index++) {
158 page = cb->compressed_pages[index];
159 page->mapping = NULL;
160 put_page(page);
161 }
162
163 /* do io completion on the original bio */
164 if (cb->errors) {
165 bio_io_error(cb->orig_bio);
166 } else {
167 int i;
168 struct bio_vec *bvec;
169
170 /*
171 * we have verified the checksum already, set page
172 * checked so the end_io handlers know about it
173 */
174 ASSERT(!bio_flagged(bio, BIO_CLONED));
175 bio_for_each_segment_all(bvec, cb->orig_bio, i)
176 SetPageChecked(bvec->bv_page);
177
178 bio_endio(cb->orig_bio);
179 }
180
181 /* finally free the cb struct */
182 kfree(cb->compressed_pages);
183 kfree(cb);
184out:
185 bio_put(bio);
186}
187
188/*
189 * Clear the writeback bits on all of the file
190 * pages for a compressed write
191 */
192static noinline void end_compressed_writeback(struct inode *inode,
193 const struct compressed_bio *cb)
194{
195 unsigned long index = cb->start >> PAGE_SHIFT;
196 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
197 struct page *pages[16];
198 unsigned long nr_pages = end_index - index + 1;
199 int i;
200 int ret;
201
202 if (cb->errors)
203 mapping_set_error(inode->i_mapping, -EIO);
204
205 while (nr_pages > 0) {
206 ret = find_get_pages_contig(inode->i_mapping, index,
207 min_t(unsigned long,
208 nr_pages, ARRAY_SIZE(pages)), pages);
209 if (ret == 0) {
210 nr_pages -= 1;
211 index += 1;
212 continue;
213 }
214 for (i = 0; i < ret; i++) {
215 if (cb->errors)
216 SetPageError(pages[i]);
217 end_page_writeback(pages[i]);
218 put_page(pages[i]);
219 }
220 nr_pages -= ret;
221 index += ret;
222 }
223 /* the inode may be gone now */
224}
225
226/*
227 * do the cleanup once all the compressed pages hit the disk.
228 * This will clear writeback on the file pages and free the compressed
229 * pages.
230 *
231 * This also calls the writeback end hooks for the file pages so that
232 * metadata and checksums can be updated in the file.
233 */
234static void end_compressed_bio_write(struct bio *bio)
235{
236 struct extent_io_tree *tree;
237 struct compressed_bio *cb = bio->bi_private;
238 struct inode *inode;
239 struct page *page;
240 unsigned long index;
241
242 if (bio->bi_status)
243 cb->errors = 1;
244
245 /* if there are more bios still pending for this compressed
246 * extent, just exit
247 */
248 if (!refcount_dec_and_test(&cb->pending_bios))
249 goto out;
250
251 /* ok, we're the last bio for this extent, step one is to
252 * call back into the FS and do all the end_io operations
253 */
254 inode = cb->inode;
255 tree = &BTRFS_I(inode)->io_tree;
256 cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
257 tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
258 cb->start,
259 cb->start + cb->len - 1,
260 NULL,
261 bio->bi_status ?
262 BLK_STS_OK : BLK_STS_NOTSUPP);
263 cb->compressed_pages[0]->mapping = NULL;
264
265 end_compressed_writeback(inode, cb);
266 /* note, our inode could be gone now */
267
268 /*
269 * release the compressed pages, these came from alloc_page and
270 * are not attached to the inode at all
271 */
272 index = 0;
273 for (index = 0; index < cb->nr_pages; index++) {
274 page = cb->compressed_pages[index];
275 page->mapping = NULL;
276 put_page(page);
277 }
278
279 /* finally free the cb struct */
280 kfree(cb->compressed_pages);
281 kfree(cb);
282out:
283 bio_put(bio);
284}
285
286/*
287 * worker function to build and submit bios for previously compressed pages.
288 * The corresponding pages in the inode should be marked for writeback
289 * and the compressed pages should have a reference on them for dropping
290 * when the IO is complete.
291 *
292 * This also checksums the file bytes and gets things ready for
293 * the end io hooks.
294 */
295blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
296 unsigned long len, u64 disk_start,
297 unsigned long compressed_len,
298 struct page **compressed_pages,
299 unsigned long nr_pages,
300 unsigned int write_flags)
301{
302 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
303 struct bio *bio = NULL;
304 struct compressed_bio *cb;
305 unsigned long bytes_left;
306 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
307 int pg_index = 0;
308 struct page *page;
309 u64 first_byte = disk_start;
310 struct block_device *bdev;
311 blk_status_t ret;
312 int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
313
314 WARN_ON(start & ((u64)PAGE_SIZE - 1));
315 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
316 if (!cb)
317 return BLK_STS_RESOURCE;
318 refcount_set(&cb->pending_bios, 0);
319 cb->errors = 0;
320 cb->inode = inode;
321 cb->start = start;
322 cb->len = len;
323 cb->mirror_num = 0;
324 cb->compressed_pages = compressed_pages;
325 cb->compressed_len = compressed_len;
326 cb->orig_bio = NULL;
327 cb->nr_pages = nr_pages;
328
329 bdev = fs_info->fs_devices->latest_bdev;
330
331 bio = btrfs_bio_alloc(bdev, first_byte);
332 bio->bi_opf = REQ_OP_WRITE | write_flags;
333 bio->bi_private = cb;
334 bio->bi_end_io = end_compressed_bio_write;
335 refcount_set(&cb->pending_bios, 1);
336
337 /* create and submit bios for the compressed pages */
338 bytes_left = compressed_len;
339 for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
340 int submit = 0;
341
342 page = compressed_pages[pg_index];
343 page->mapping = inode->i_mapping;
344 if (bio->bi_iter.bi_size)
345 submit = io_tree->ops->merge_bio_hook(page, 0,
346 PAGE_SIZE,
347 bio, 0);
348
349 page->mapping = NULL;
350 if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
351 PAGE_SIZE) {
352 /*
353 * inc the count before we submit the bio so
354 * we know the end IO handler won't happen before
355 * we inc the count. Otherwise, the cb might get
356 * freed before we're done setting it up
357 */
358 refcount_inc(&cb->pending_bios);
359 ret = btrfs_bio_wq_end_io(fs_info, bio,
360 BTRFS_WQ_ENDIO_DATA);
361 BUG_ON(ret); /* -ENOMEM */
362
363 if (!skip_sum) {
364 ret = btrfs_csum_one_bio(inode, bio, start, 1);
365 BUG_ON(ret); /* -ENOMEM */
366 }
367
368 ret = btrfs_map_bio(fs_info, bio, 0, 1);
369 if (ret) {
370 bio->bi_status = ret;
371 bio_endio(bio);
372 }
373
374 bio = btrfs_bio_alloc(bdev, first_byte);
375 bio->bi_opf = REQ_OP_WRITE | write_flags;
376 bio->bi_private = cb;
377 bio->bi_end_io = end_compressed_bio_write;
378 bio_add_page(bio, page, PAGE_SIZE, 0);
379 }
380 if (bytes_left < PAGE_SIZE) {
381 btrfs_info(fs_info,
382 "bytes left %lu compress len %lu nr %lu",
383 bytes_left, cb->compressed_len, cb->nr_pages);
384 }
385 bytes_left -= PAGE_SIZE;
386 first_byte += PAGE_SIZE;
387 cond_resched();
388 }
389
390 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
391 BUG_ON(ret); /* -ENOMEM */
392
393 if (!skip_sum) {
394 ret = btrfs_csum_one_bio(inode, bio, start, 1);
395 BUG_ON(ret); /* -ENOMEM */
396 }
397
398 ret = btrfs_map_bio(fs_info, bio, 0, 1);
399 if (ret) {
400 bio->bi_status = ret;
401 bio_endio(bio);
402 }
403
404 return 0;
405}
406
407static u64 bio_end_offset(struct bio *bio)
408{
409 struct bio_vec *last = bio_last_bvec_all(bio);
410
411 return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
412}
413
414static noinline int add_ra_bio_pages(struct inode *inode,
415 u64 compressed_end,
416 struct compressed_bio *cb)
417{
418 unsigned long end_index;
419 unsigned long pg_index;
420 u64 last_offset;
421 u64 isize = i_size_read(inode);
422 int ret;
423 struct page *page;
424 unsigned long nr_pages = 0;
425 struct extent_map *em;
426 struct address_space *mapping = inode->i_mapping;
427 struct extent_map_tree *em_tree;
428 struct extent_io_tree *tree;
429 u64 end;
430 int misses = 0;
431
432 last_offset = bio_end_offset(cb->orig_bio);
433 em_tree = &BTRFS_I(inode)->extent_tree;
434 tree = &BTRFS_I(inode)->io_tree;
435
436 if (isize == 0)
437 return 0;
438
439 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
440
441 while (last_offset < compressed_end) {
442 pg_index = last_offset >> PAGE_SHIFT;
443
444 if (pg_index > end_index)
445 break;
446
447 rcu_read_lock();
448 page = radix_tree_lookup(&mapping->i_pages, pg_index);
449 rcu_read_unlock();
450 if (page && !radix_tree_exceptional_entry(page)) {
451 misses++;
452 if (misses > 4)
453 break;
454 goto next;
455 }
456
457 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
458 ~__GFP_FS));
459 if (!page)
460 break;
461
462 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
463 put_page(page);
464 goto next;
465 }
466
467 end = last_offset + PAGE_SIZE - 1;
468 /*
469 * at this point, we have a locked page in the page cache
470 * for these bytes in the file. But, we have to make
471 * sure they map to this compressed extent on disk.
472 */
473 set_page_extent_mapped(page);
474 lock_extent(tree, last_offset, end);
475 read_lock(&em_tree->lock);
476 em = lookup_extent_mapping(em_tree, last_offset,
477 PAGE_SIZE);
478 read_unlock(&em_tree->lock);
479
480 if (!em || last_offset < em->start ||
481 (last_offset + PAGE_SIZE > extent_map_end(em)) ||
482 (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
483 free_extent_map(em);
484 unlock_extent(tree, last_offset, end);
485 unlock_page(page);
486 put_page(page);
487 break;
488 }
489 free_extent_map(em);
490
491 if (page->index == end_index) {
492 char *userpage;
493 size_t zero_offset = isize & (PAGE_SIZE - 1);
494
495 if (zero_offset) {
496 int zeros;
497 zeros = PAGE_SIZE - zero_offset;
498 userpage = kmap_atomic(page);
499 memset(userpage + zero_offset, 0, zeros);
500 flush_dcache_page(page);
501 kunmap_atomic(userpage);
502 }
503 }
504
505 ret = bio_add_page(cb->orig_bio, page,
506 PAGE_SIZE, 0);
507
508 if (ret == PAGE_SIZE) {
509 nr_pages++;
510 put_page(page);
511 } else {
512 unlock_extent(tree, last_offset, end);
513 unlock_page(page);
514 put_page(page);
515 break;
516 }
517next:
518 last_offset += PAGE_SIZE;
519 }
520 return 0;
521}
522
523/*
524 * for a compressed read, the bio we get passed has all the inode pages
525 * in it. We don't actually do IO on those pages but allocate new ones
526 * to hold the compressed pages on disk.
527 *
528 * bio->bi_iter.bi_sector points to the compressed extent on disk
529 * bio->bi_io_vec points to all of the inode pages
530 *
531 * After the compressed pages are read, we copy the bytes into the
532 * bio we were passed and then call the bio end_io calls
533 */
534blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
535 int mirror_num, unsigned long bio_flags)
536{
537 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
538 struct extent_io_tree *tree;
539 struct extent_map_tree *em_tree;
540 struct compressed_bio *cb;
541 unsigned long compressed_len;
542 unsigned long nr_pages;
543 unsigned long pg_index;
544 struct page *page;
545 struct block_device *bdev;
546 struct bio *comp_bio;
547 u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
548 u64 em_len;
549 u64 em_start;
550 struct extent_map *em;
551 blk_status_t ret = BLK_STS_RESOURCE;
552 int faili = 0;
553 u32 *sums;
554
555 tree = &BTRFS_I(inode)->io_tree;
556 em_tree = &BTRFS_I(inode)->extent_tree;
557
558 /* we need the actual starting offset of this extent in the file */
559 read_lock(&em_tree->lock);
560 em = lookup_extent_mapping(em_tree,
561 page_offset(bio_first_page_all(bio)),
562 PAGE_SIZE);
563 read_unlock(&em_tree->lock);
564 if (!em)
565 return BLK_STS_IOERR;
566
567 compressed_len = em->block_len;
568 cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
569 if (!cb)
570 goto out;
571
572 refcount_set(&cb->pending_bios, 0);
573 cb->errors = 0;
574 cb->inode = inode;
575 cb->mirror_num = mirror_num;
576 sums = &cb->sums;
577
578 cb->start = em->orig_start;
579 em_len = em->len;
580 em_start = em->start;
581
582 free_extent_map(em);
583 em = NULL;
584
585 cb->len = bio->bi_iter.bi_size;
586 cb->compressed_len = compressed_len;
587 cb->compress_type = extent_compress_type(bio_flags);
588 cb->orig_bio = bio;
589
590 nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
591 cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
592 GFP_NOFS);
593 if (!cb->compressed_pages)
594 goto fail1;
595
596 bdev = fs_info->fs_devices->latest_bdev;
597
598 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
599 cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
600 __GFP_HIGHMEM);
601 if (!cb->compressed_pages[pg_index]) {
602 faili = pg_index - 1;
603 ret = BLK_STS_RESOURCE;
604 goto fail2;
605 }
606 }
607 faili = nr_pages - 1;
608 cb->nr_pages = nr_pages;
609
610 add_ra_bio_pages(inode, em_start + em_len, cb);
611
612 /* include any pages we added in add_ra-bio_pages */
613 cb->len = bio->bi_iter.bi_size;
614
615 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
616 bio_set_op_attrs (comp_bio, REQ_OP_READ, 0);
617 comp_bio->bi_private = cb;
618 comp_bio->bi_end_io = end_compressed_bio_read;
619 refcount_set(&cb->pending_bios, 1);
620
621 for (pg_index = 0; pg_index < nr_pages; pg_index++) {
622 int submit = 0;
623
624 page = cb->compressed_pages[pg_index];
625 page->mapping = inode->i_mapping;
626 page->index = em_start >> PAGE_SHIFT;
627
628 if (comp_bio->bi_iter.bi_size)
629 submit = tree->ops->merge_bio_hook(page, 0,
630 PAGE_SIZE,
631 comp_bio, 0);
632
633 page->mapping = NULL;
634 if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
635 PAGE_SIZE) {
636 ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
637 BTRFS_WQ_ENDIO_DATA);
638 BUG_ON(ret); /* -ENOMEM */
639
640 /*
641 * inc the count before we submit the bio so
642 * we know the end IO handler won't happen before
643 * we inc the count. Otherwise, the cb might get
644 * freed before we're done setting it up
645 */
646 refcount_inc(&cb->pending_bios);
647
648 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
649 ret = btrfs_lookup_bio_sums(inode, comp_bio,
650 sums);
651 BUG_ON(ret); /* -ENOMEM */
652 }
653 sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
654 fs_info->sectorsize);
655
656 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
657 if (ret) {
658 comp_bio->bi_status = ret;
659 bio_endio(comp_bio);
660 }
661
662 comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
663 bio_set_op_attrs(comp_bio, REQ_OP_READ, 0);
664 comp_bio->bi_private = cb;
665 comp_bio->bi_end_io = end_compressed_bio_read;
666
667 bio_add_page(comp_bio, page, PAGE_SIZE, 0);
668 }
669 cur_disk_byte += PAGE_SIZE;
670 }
671
672 ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
673 BUG_ON(ret); /* -ENOMEM */
674
675 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
676 ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
677 BUG_ON(ret); /* -ENOMEM */
678 }
679
680 ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
681 if (ret) {
682 comp_bio->bi_status = ret;
683 bio_endio(comp_bio);
684 }
685
686 return 0;
687
688fail2:
689 while (faili >= 0) {
690 __free_page(cb->compressed_pages[faili]);
691 faili--;
692 }
693
694 kfree(cb->compressed_pages);
695fail1:
696 kfree(cb);
697out:
698 free_extent_map(em);
699 return ret;
700}
701
702/*
703 * Heuristic uses systematic sampling to collect data from the input data
704 * range, the logic can be tuned by the following constants:
705 *
706 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
707 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
708 */
709#define SAMPLING_READ_SIZE (16)
710#define SAMPLING_INTERVAL (256)
711
712/*
713 * For statistical analysis of the input data we consider bytes that form a
714 * Galois Field of 256 objects. Each object has an attribute count, ie. how
715 * many times the object appeared in the sample.
716 */
717#define BUCKET_SIZE (256)
718
719/*
720 * The size of the sample is based on a statistical sampling rule of thumb.
721 * The common way is to perform sampling tests as long as the number of
722 * elements in each cell is at least 5.
723 *
724 * Instead of 5, we choose 32 to obtain more accurate results.
725 * If the data contain the maximum number of symbols, which is 256, we obtain a
726 * sample size bound by 8192.
727 *
728 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
729 * from up to 512 locations.
730 */
731#define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
732 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
733
734struct bucket_item {
735 u32 count;
736};
737
738struct heuristic_ws {
739 /* Partial copy of input data */
740 u8 *sample;
741 u32 sample_size;
742 /* Buckets store counters for each byte value */
743 struct bucket_item *bucket;
744 /* Sorting buffer */
745 struct bucket_item *bucket_b;
746 struct list_head list;
747};
748
749static void free_heuristic_ws(struct list_head *ws)
750{
751 struct heuristic_ws *workspace;
752
753 workspace = list_entry(ws, struct heuristic_ws, list);
754
755 kvfree(workspace->sample);
756 kfree(workspace->bucket);
757 kfree(workspace->bucket_b);
758 kfree(workspace);
759}
760
761static struct list_head *alloc_heuristic_ws(void)
762{
763 struct heuristic_ws *ws;
764
765 ws = kzalloc(sizeof(*ws), GFP_KERNEL);
766 if (!ws)
767 return ERR_PTR(-ENOMEM);
768
769 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
770 if (!ws->sample)
771 goto fail;
772
773 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
774 if (!ws->bucket)
775 goto fail;
776
777 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
778 if (!ws->bucket_b)
779 goto fail;
780
781 INIT_LIST_HEAD(&ws->list);
782 return &ws->list;
783fail:
784 free_heuristic_ws(&ws->list);
785 return ERR_PTR(-ENOMEM);
786}
787
788struct workspaces_list {
789 struct list_head idle_ws;
790 spinlock_t ws_lock;
791 /* Number of free workspaces */
792 int free_ws;
793 /* Total number of allocated workspaces */
794 atomic_t total_ws;
795 /* Waiters for a free workspace */
796 wait_queue_head_t ws_wait;
797};
798
799static struct workspaces_list btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
800
801static struct workspaces_list btrfs_heuristic_ws;
802
803static const struct btrfs_compress_op * const btrfs_compress_op[] = {
804 &btrfs_zlib_compress,
805 &btrfs_lzo_compress,
806 &btrfs_zstd_compress,
807};
808
809void __init btrfs_init_compress(void)
810{
811 struct list_head *workspace;
812 int i;
813
814 INIT_LIST_HEAD(&btrfs_heuristic_ws.idle_ws);
815 spin_lock_init(&btrfs_heuristic_ws.ws_lock);
816 atomic_set(&btrfs_heuristic_ws.total_ws, 0);
817 init_waitqueue_head(&btrfs_heuristic_ws.ws_wait);
818
819 workspace = alloc_heuristic_ws();
820 if (IS_ERR(workspace)) {
821 pr_warn(
822 "BTRFS: cannot preallocate heuristic workspace, will try later\n");
823 } else {
824 atomic_set(&btrfs_heuristic_ws.total_ws, 1);
825 btrfs_heuristic_ws.free_ws = 1;
826 list_add(workspace, &btrfs_heuristic_ws.idle_ws);
827 }
828
829 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
830 INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
831 spin_lock_init(&btrfs_comp_ws[i].ws_lock);
832 atomic_set(&btrfs_comp_ws[i].total_ws, 0);
833 init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
834
835 /*
836 * Preallocate one workspace for each compression type so
837 * we can guarantee forward progress in the worst case
838 */
839 workspace = btrfs_compress_op[i]->alloc_workspace();
840 if (IS_ERR(workspace)) {
841 pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
842 } else {
843 atomic_set(&btrfs_comp_ws[i].total_ws, 1);
844 btrfs_comp_ws[i].free_ws = 1;
845 list_add(workspace, &btrfs_comp_ws[i].idle_ws);
846 }
847 }
848}
849
850/*
851 * This finds an available workspace or allocates a new one.
852 * If it's not possible to allocate a new one, waits until there's one.
853 * Preallocation makes a forward progress guarantees and we do not return
854 * errors.
855 */
856static struct list_head *__find_workspace(int type, bool heuristic)
857{
858 struct list_head *workspace;
859 int cpus = num_online_cpus();
860 int idx = type - 1;
861 unsigned nofs_flag;
862 struct list_head *idle_ws;
863 spinlock_t *ws_lock;
864 atomic_t *total_ws;
865 wait_queue_head_t *ws_wait;
866 int *free_ws;
867
868 if (heuristic) {
869 idle_ws = &btrfs_heuristic_ws.idle_ws;
870 ws_lock = &btrfs_heuristic_ws.ws_lock;
871 total_ws = &btrfs_heuristic_ws.total_ws;
872 ws_wait = &btrfs_heuristic_ws.ws_wait;
873 free_ws = &btrfs_heuristic_ws.free_ws;
874 } else {
875 idle_ws = &btrfs_comp_ws[idx].idle_ws;
876 ws_lock = &btrfs_comp_ws[idx].ws_lock;
877 total_ws = &btrfs_comp_ws[idx].total_ws;
878 ws_wait = &btrfs_comp_ws[idx].ws_wait;
879 free_ws = &btrfs_comp_ws[idx].free_ws;
880 }
881
882again:
883 spin_lock(ws_lock);
884 if (!list_empty(idle_ws)) {
885 workspace = idle_ws->next;
886 list_del(workspace);
887 (*free_ws)--;
888 spin_unlock(ws_lock);
889 return workspace;
890
891 }
892 if (atomic_read(total_ws) > cpus) {
893 DEFINE_WAIT(wait);
894
895 spin_unlock(ws_lock);
896 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
897 if (atomic_read(total_ws) > cpus && !*free_ws)
898 schedule();
899 finish_wait(ws_wait, &wait);
900 goto again;
901 }
902 atomic_inc(total_ws);
903 spin_unlock(ws_lock);
904
905 /*
906 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
907 * to turn it off here because we might get called from the restricted
908 * context of btrfs_compress_bio/btrfs_compress_pages
909 */
910 nofs_flag = memalloc_nofs_save();
911 if (heuristic)
912 workspace = alloc_heuristic_ws();
913 else
914 workspace = btrfs_compress_op[idx]->alloc_workspace();
915 memalloc_nofs_restore(nofs_flag);
916
917 if (IS_ERR(workspace)) {
918 atomic_dec(total_ws);
919 wake_up(ws_wait);
920
921 /*
922 * Do not return the error but go back to waiting. There's a
923 * workspace preallocated for each type and the compression
924 * time is bounded so we get to a workspace eventually. This
925 * makes our caller's life easier.
926 *
927 * To prevent silent and low-probability deadlocks (when the
928 * initial preallocation fails), check if there are any
929 * workspaces at all.
930 */
931 if (atomic_read(total_ws) == 0) {
932 static DEFINE_RATELIMIT_STATE(_rs,
933 /* once per minute */ 60 * HZ,
934 /* no burst */ 1);
935
936 if (__ratelimit(&_rs)) {
937 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
938 }
939 }
940 goto again;
941 }
942 return workspace;
943}
944
945static struct list_head *find_workspace(int type)
946{
947 return __find_workspace(type, false);
948}
949
950/*
951 * put a workspace struct back on the list or free it if we have enough
952 * idle ones sitting around
953 */
954static void __free_workspace(int type, struct list_head *workspace,
955 bool heuristic)
956{
957 int idx = type - 1;
958 struct list_head *idle_ws;
959 spinlock_t *ws_lock;
960 atomic_t *total_ws;
961 wait_queue_head_t *ws_wait;
962 int *free_ws;
963
964 if (heuristic) {
965 idle_ws = &btrfs_heuristic_ws.idle_ws;
966 ws_lock = &btrfs_heuristic_ws.ws_lock;
967 total_ws = &btrfs_heuristic_ws.total_ws;
968 ws_wait = &btrfs_heuristic_ws.ws_wait;
969 free_ws = &btrfs_heuristic_ws.free_ws;
970 } else {
971 idle_ws = &btrfs_comp_ws[idx].idle_ws;
972 ws_lock = &btrfs_comp_ws[idx].ws_lock;
973 total_ws = &btrfs_comp_ws[idx].total_ws;
974 ws_wait = &btrfs_comp_ws[idx].ws_wait;
975 free_ws = &btrfs_comp_ws[idx].free_ws;
976 }
977
978 spin_lock(ws_lock);
979 if (*free_ws <= num_online_cpus()) {
980 list_add(workspace, idle_ws);
981 (*free_ws)++;
982 spin_unlock(ws_lock);
983 goto wake;
984 }
985 spin_unlock(ws_lock);
986
987 if (heuristic)
988 free_heuristic_ws(workspace);
989 else
990 btrfs_compress_op[idx]->free_workspace(workspace);
991 atomic_dec(total_ws);
992wake:
993 /*
994 * Make sure counter is updated before we wake up waiters.
995 */
996 smp_mb();
997 if (waitqueue_active(ws_wait))
998 wake_up(ws_wait);
999}
1000
1001static void free_workspace(int type, struct list_head *ws)
1002{
1003 return __free_workspace(type, ws, false);
1004}
1005
1006/*
1007 * cleanup function for module exit
1008 */
1009static void free_workspaces(void)
1010{
1011 struct list_head *workspace;
1012 int i;
1013
1014 while (!list_empty(&btrfs_heuristic_ws.idle_ws)) {
1015 workspace = btrfs_heuristic_ws.idle_ws.next;
1016 list_del(workspace);
1017 free_heuristic_ws(workspace);
1018 atomic_dec(&btrfs_heuristic_ws.total_ws);
1019 }
1020
1021 for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
1022 while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
1023 workspace = btrfs_comp_ws[i].idle_ws.next;
1024 list_del(workspace);
1025 btrfs_compress_op[i]->free_workspace(workspace);
1026 atomic_dec(&btrfs_comp_ws[i].total_ws);
1027 }
1028 }
1029}
1030
1031/*
1032 * Given an address space and start and length, compress the bytes into @pages
1033 * that are allocated on demand.
1034 *
1035 * @type_level is encoded algorithm and level, where level 0 means whatever
1036 * default the algorithm chooses and is opaque here;
1037 * - compression algo are 0-3
1038 * - the level are bits 4-7
1039 *
1040 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1041 * and returns number of actually allocated pages
1042 *
1043 * @total_in is used to return the number of bytes actually read. It
1044 * may be smaller than the input length if we had to exit early because we
1045 * ran out of room in the pages array or because we cross the
1046 * max_out threshold.
1047 *
1048 * @total_out is an in/out parameter, must be set to the input length and will
1049 * be also used to return the total number of compressed bytes
1050 *
1051 * @max_out tells us the max number of bytes that we're allowed to
1052 * stuff into pages
1053 */
1054int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1055 u64 start, struct page **pages,
1056 unsigned long *out_pages,
1057 unsigned long *total_in,
1058 unsigned long *total_out)
1059{
1060 struct list_head *workspace;
1061 int ret;
1062 int type = type_level & 0xF;
1063
1064 workspace = find_workspace(type);
1065
1066 btrfs_compress_op[type - 1]->set_level(workspace, type_level);
1067 ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
1068 start, pages,
1069 out_pages,
1070 total_in, total_out);
1071 free_workspace(type, workspace);
1072 return ret;
1073}
1074
1075/*
1076 * pages_in is an array of pages with compressed data.
1077 *
1078 * disk_start is the starting logical offset of this array in the file
1079 *
1080 * orig_bio contains the pages from the file that we want to decompress into
1081 *
1082 * srclen is the number of bytes in pages_in
1083 *
1084 * The basic idea is that we have a bio that was created by readpages.
1085 * The pages in the bio are for the uncompressed data, and they may not
1086 * be contiguous. They all correspond to the range of bytes covered by
1087 * the compressed extent.
1088 */
1089static int btrfs_decompress_bio(struct compressed_bio *cb)
1090{
1091 struct list_head *workspace;
1092 int ret;
1093 int type = cb->compress_type;
1094
1095 workspace = find_workspace(type);
1096 ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb);
1097 free_workspace(type, workspace);
1098
1099 return ret;
1100}
1101
1102/*
1103 * a less complex decompression routine. Our compressed data fits in a
1104 * single page, and we want to read a single page out of it.
1105 * start_byte tells us the offset into the compressed data we're interested in
1106 */
1107int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1108 unsigned long start_byte, size_t srclen, size_t destlen)
1109{
1110 struct list_head *workspace;
1111 int ret;
1112
1113 workspace = find_workspace(type);
1114
1115 ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
1116 dest_page, start_byte,
1117 srclen, destlen);
1118
1119 free_workspace(type, workspace);
1120 return ret;
1121}
1122
1123void __cold btrfs_exit_compress(void)
1124{
1125 free_workspaces();
1126}
1127
1128/*
1129 * Copy uncompressed data from working buffer to pages.
1130 *
1131 * buf_start is the byte offset we're of the start of our workspace buffer.
1132 *
1133 * total_out is the last byte of the buffer
1134 */
1135int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1136 unsigned long total_out, u64 disk_start,
1137 struct bio *bio)
1138{
1139 unsigned long buf_offset;
1140 unsigned long current_buf_start;
1141 unsigned long start_byte;
1142 unsigned long prev_start_byte;
1143 unsigned long working_bytes = total_out - buf_start;
1144 unsigned long bytes;
1145 char *kaddr;
1146 struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1147
1148 /*
1149 * start byte is the first byte of the page we're currently
1150 * copying into relative to the start of the compressed data.
1151 */
1152 start_byte = page_offset(bvec.bv_page) - disk_start;
1153
1154 /* we haven't yet hit data corresponding to this page */
1155 if (total_out <= start_byte)
1156 return 1;
1157
1158 /*
1159 * the start of the data we care about is offset into
1160 * the middle of our working buffer
1161 */
1162 if (total_out > start_byte && buf_start < start_byte) {
1163 buf_offset = start_byte - buf_start;
1164 working_bytes -= buf_offset;
1165 } else {
1166 buf_offset = 0;
1167 }
1168 current_buf_start = buf_start;
1169
1170 /* copy bytes from the working buffer into the pages */
1171 while (working_bytes > 0) {
1172 bytes = min_t(unsigned long, bvec.bv_len,
1173 PAGE_SIZE - buf_offset);
1174 bytes = min(bytes, working_bytes);
1175
1176 kaddr = kmap_atomic(bvec.bv_page);
1177 memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1178 kunmap_atomic(kaddr);
1179 flush_dcache_page(bvec.bv_page);
1180
1181 buf_offset += bytes;
1182 working_bytes -= bytes;
1183 current_buf_start += bytes;
1184
1185 /* check if we need to pick another page */
1186 bio_advance(bio, bytes);
1187 if (!bio->bi_iter.bi_size)
1188 return 0;
1189 bvec = bio_iter_iovec(bio, bio->bi_iter);
1190 prev_start_byte = start_byte;
1191 start_byte = page_offset(bvec.bv_page) - disk_start;
1192
1193 /*
1194 * We need to make sure we're only adjusting
1195 * our offset into compression working buffer when
1196 * we're switching pages. Otherwise we can incorrectly
1197 * keep copying when we were actually done.
1198 */
1199 if (start_byte != prev_start_byte) {
1200 /*
1201 * make sure our new page is covered by this
1202 * working buffer
1203 */
1204 if (total_out <= start_byte)
1205 return 1;
1206
1207 /*
1208 * the next page in the biovec might not be adjacent
1209 * to the last page, but it might still be found
1210 * inside this working buffer. bump our offset pointer
1211 */
1212 if (total_out > start_byte &&
1213 current_buf_start < start_byte) {
1214 buf_offset = start_byte - buf_start;
1215 working_bytes = total_out - start_byte;
1216 current_buf_start = buf_start + buf_offset;
1217 }
1218 }
1219 }
1220
1221 return 1;
1222}
1223
1224/*
1225 * Shannon Entropy calculation
1226 *
1227 * Pure byte distribution analysis fails to determine compressiability of data.
1228 * Try calculating entropy to estimate the average minimum number of bits
1229 * needed to encode the sampled data.
1230 *
1231 * For convenience, return the percentage of needed bits, instead of amount of
1232 * bits directly.
1233 *
1234 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1235 * and can be compressible with high probability
1236 *
1237 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1238 *
1239 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1240 */
1241#define ENTROPY_LVL_ACEPTABLE (65)
1242#define ENTROPY_LVL_HIGH (80)
1243
1244/*
1245 * For increasead precision in shannon_entropy calculation,
1246 * let's do pow(n, M) to save more digits after comma:
1247 *
1248 * - maximum int bit length is 64
1249 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1250 * - 13 * 4 = 52 < 64 -> M = 4
1251 *
1252 * So use pow(n, 4).
1253 */
1254static inline u32 ilog2_w(u64 n)
1255{
1256 return ilog2(n * n * n * n);
1257}
1258
1259static u32 shannon_entropy(struct heuristic_ws *ws)
1260{
1261 const u32 entropy_max = 8 * ilog2_w(2);
1262 u32 entropy_sum = 0;
1263 u32 p, p_base, sz_base;
1264 u32 i;
1265
1266 sz_base = ilog2_w(ws->sample_size);
1267 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1268 p = ws->bucket[i].count;
1269 p_base = ilog2_w(p);
1270 entropy_sum += p * (sz_base - p_base);
1271 }
1272
1273 entropy_sum /= ws->sample_size;
1274 return entropy_sum * 100 / entropy_max;
1275}
1276
1277#define RADIX_BASE 4U
1278#define COUNTERS_SIZE (1U << RADIX_BASE)
1279
1280static u8 get4bits(u64 num, int shift) {
1281 u8 low4bits;
1282
1283 num >>= shift;
1284 /* Reverse order */
1285 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1286 return low4bits;
1287}
1288
1289/*
1290 * Use 4 bits as radix base
1291 * Use 16 u32 counters for calculating new possition in buf array
1292 *
1293 * @array - array that will be sorted
1294 * @array_buf - buffer array to store sorting results
1295 * must be equal in size to @array
1296 * @num - array size
1297 */
1298static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1299 int num)
1300{
1301 u64 max_num;
1302 u64 buf_num;
1303 u32 counters[COUNTERS_SIZE];
1304 u32 new_addr;
1305 u32 addr;
1306 int bitlen;
1307 int shift;
1308 int i;
1309
1310 /*
1311 * Try avoid useless loop iterations for small numbers stored in big
1312 * counters. Example: 48 33 4 ... in 64bit array
1313 */
1314 max_num = array[0].count;
1315 for (i = 1; i < num; i++) {
1316 buf_num = array[i].count;
1317 if (buf_num > max_num)
1318 max_num = buf_num;
1319 }
1320
1321 buf_num = ilog2(max_num);
1322 bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1323
1324 shift = 0;
1325 while (shift < bitlen) {
1326 memset(counters, 0, sizeof(counters));
1327
1328 for (i = 0; i < num; i++) {
1329 buf_num = array[i].count;
1330 addr = get4bits(buf_num, shift);
1331 counters[addr]++;
1332 }
1333
1334 for (i = 1; i < COUNTERS_SIZE; i++)
1335 counters[i] += counters[i - 1];
1336
1337 for (i = num - 1; i >= 0; i--) {
1338 buf_num = array[i].count;
1339 addr = get4bits(buf_num, shift);
1340 counters[addr]--;
1341 new_addr = counters[addr];
1342 array_buf[new_addr] = array[i];
1343 }
1344
1345 shift += RADIX_BASE;
1346
1347 /*
1348 * Normal radix expects to move data from a temporary array, to
1349 * the main one. But that requires some CPU time. Avoid that
1350 * by doing another sort iteration to original array instead of
1351 * memcpy()
1352 */
1353 memset(counters, 0, sizeof(counters));
1354
1355 for (i = 0; i < num; i ++) {
1356 buf_num = array_buf[i].count;
1357 addr = get4bits(buf_num, shift);
1358 counters[addr]++;
1359 }
1360
1361 for (i = 1; i < COUNTERS_SIZE; i++)
1362 counters[i] += counters[i - 1];
1363
1364 for (i = num - 1; i >= 0; i--) {
1365 buf_num = array_buf[i].count;
1366 addr = get4bits(buf_num, shift);
1367 counters[addr]--;
1368 new_addr = counters[addr];
1369 array[new_addr] = array_buf[i];
1370 }
1371
1372 shift += RADIX_BASE;
1373 }
1374}
1375
1376/*
1377 * Size of the core byte set - how many bytes cover 90% of the sample
1378 *
1379 * There are several types of structured binary data that use nearly all byte
1380 * values. The distribution can be uniform and counts in all buckets will be
1381 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1382 *
1383 * Other possibility is normal (Gaussian) distribution, where the data could
1384 * be potentially compressible, but we have to take a few more steps to decide
1385 * how much.
1386 *
1387 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1388 * compression algo can easy fix that
1389 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1390 * probability is not compressible
1391 */
1392#define BYTE_CORE_SET_LOW (64)
1393#define BYTE_CORE_SET_HIGH (200)
1394
1395static int byte_core_set_size(struct heuristic_ws *ws)
1396{
1397 u32 i;
1398 u32 coreset_sum = 0;
1399 const u32 core_set_threshold = ws->sample_size * 90 / 100;
1400 struct bucket_item *bucket = ws->bucket;
1401
1402 /* Sort in reverse order */
1403 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1404
1405 for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1406 coreset_sum += bucket[i].count;
1407
1408 if (coreset_sum > core_set_threshold)
1409 return i;
1410
1411 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1412 coreset_sum += bucket[i].count;
1413 if (coreset_sum > core_set_threshold)
1414 break;
1415 }
1416
1417 return i;
1418}
1419
1420/*
1421 * Count byte values in buckets.
1422 * This heuristic can detect textual data (configs, xml, json, html, etc).
1423 * Because in most text-like data byte set is restricted to limited number of
1424 * possible characters, and that restriction in most cases makes data easy to
1425 * compress.
1426 *
1427 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1428 * less - compressible
1429 * more - need additional analysis
1430 */
1431#define BYTE_SET_THRESHOLD (64)
1432
1433static u32 byte_set_size(const struct heuristic_ws *ws)
1434{
1435 u32 i;
1436 u32 byte_set_size = 0;
1437
1438 for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1439 if (ws->bucket[i].count > 0)
1440 byte_set_size++;
1441 }
1442
1443 /*
1444 * Continue collecting count of byte values in buckets. If the byte
1445 * set size is bigger then the threshold, it's pointless to continue,
1446 * the detection technique would fail for this type of data.
1447 */
1448 for (; i < BUCKET_SIZE; i++) {
1449 if (ws->bucket[i].count > 0) {
1450 byte_set_size++;
1451 if (byte_set_size > BYTE_SET_THRESHOLD)
1452 return byte_set_size;
1453 }
1454 }
1455
1456 return byte_set_size;
1457}
1458
1459static bool sample_repeated_patterns(struct heuristic_ws *ws)
1460{
1461 const u32 half_of_sample = ws->sample_size / 2;
1462 const u8 *data = ws->sample;
1463
1464 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1465}
1466
1467static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1468 struct heuristic_ws *ws)
1469{
1470 struct page *page;
1471 u64 index, index_end;
1472 u32 i, curr_sample_pos;
1473 u8 *in_data;
1474
1475 /*
1476 * Compression handles the input data by chunks of 128KiB
1477 * (defined by BTRFS_MAX_UNCOMPRESSED)
1478 *
1479 * We do the same for the heuristic and loop over the whole range.
1480 *
1481 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1482 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1483 */
1484 if (end - start > BTRFS_MAX_UNCOMPRESSED)
1485 end = start + BTRFS_MAX_UNCOMPRESSED;
1486
1487 index = start >> PAGE_SHIFT;
1488 index_end = end >> PAGE_SHIFT;
1489
1490 /* Don't miss unaligned end */
1491 if (!IS_ALIGNED(end, PAGE_SIZE))
1492 index_end++;
1493
1494 curr_sample_pos = 0;
1495 while (index < index_end) {
1496 page = find_get_page(inode->i_mapping, index);
1497 in_data = kmap(page);
1498 /* Handle case where the start is not aligned to PAGE_SIZE */
1499 i = start % PAGE_SIZE;
1500 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1501 /* Don't sample any garbage from the last page */
1502 if (start > end - SAMPLING_READ_SIZE)
1503 break;
1504 memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1505 SAMPLING_READ_SIZE);
1506 i += SAMPLING_INTERVAL;
1507 start += SAMPLING_INTERVAL;
1508 curr_sample_pos += SAMPLING_READ_SIZE;
1509 }
1510 kunmap(page);
1511 put_page(page);
1512
1513 index++;
1514 }
1515
1516 ws->sample_size = curr_sample_pos;
1517}
1518
1519/*
1520 * Compression heuristic.
1521 *
1522 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1523 * quickly (compared to direct compression) detect data characteristics
1524 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1525 * data.
1526 *
1527 * The following types of analysis can be performed:
1528 * - detect mostly zero data
1529 * - detect data with low "byte set" size (text, etc)
1530 * - detect data with low/high "core byte" set
1531 *
1532 * Return non-zero if the compression should be done, 0 otherwise.
1533 */
1534int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1535{
1536 struct list_head *ws_list = __find_workspace(0, true);
1537 struct heuristic_ws *ws;
1538 u32 i;
1539 u8 byte;
1540 int ret = 0;
1541
1542 ws = list_entry(ws_list, struct heuristic_ws, list);
1543
1544 heuristic_collect_sample(inode, start, end, ws);
1545
1546 if (sample_repeated_patterns(ws)) {
1547 ret = 1;
1548 goto out;
1549 }
1550
1551 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1552
1553 for (i = 0; i < ws->sample_size; i++) {
1554 byte = ws->sample[i];
1555 ws->bucket[byte].count++;
1556 }
1557
1558 i = byte_set_size(ws);
1559 if (i < BYTE_SET_THRESHOLD) {
1560 ret = 2;
1561 goto out;
1562 }
1563
1564 i = byte_core_set_size(ws);
1565 if (i <= BYTE_CORE_SET_LOW) {
1566 ret = 3;
1567 goto out;
1568 }
1569
1570 if (i >= BYTE_CORE_SET_HIGH) {
1571 ret = 0;
1572 goto out;
1573 }
1574
1575 i = shannon_entropy(ws);
1576 if (i <= ENTROPY_LVL_ACEPTABLE) {
1577 ret = 4;
1578 goto out;
1579 }
1580
1581 /*
1582 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1583 * needed to give green light to compression.
1584 *
1585 * For now just assume that compression at that level is not worth the
1586 * resources because:
1587 *
1588 * 1. it is possible to defrag the data later
1589 *
1590 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1591 * values, every bucket has counter at level ~54. The heuristic would
1592 * be confused. This can happen when data have some internal repeated
1593 * patterns like "abbacbbc...". This can be detected by analyzing
1594 * pairs of bytes, which is too costly.
1595 */
1596 if (i < ENTROPY_LVL_HIGH) {
1597 ret = 5;
1598 goto out;
1599 } else {
1600 ret = 0;
1601 goto out;
1602 }
1603
1604out:
1605 __free_workspace(0, ws_list, true);
1606 return ret;
1607}
1608
1609unsigned int btrfs_compress_str2level(const char *str)
1610{
1611 if (strncmp(str, "zlib", 4) != 0)
1612 return 0;
1613
1614 /* Accepted form: zlib:1 up to zlib:9 and nothing left after the number */
1615 if (str[4] == ':' && '1' <= str[5] && str[5] <= '9' && str[6] == 0)
1616 return str[5] - '0';
1617
1618 return BTRFS_ZLIB_DEFAULT_LEVEL;
1619}