Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * RTC subsystem, base class
  4 *
  5 * Copyright (C) 2005 Tower Technologies
  6 * Author: Alessandro Zummo <a.zummo@towertech.it>
  7 *
  8 * class skeleton from drivers/hwmon/hwmon.c
  9 */
 10
 11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 12
 13#include <linux/module.h>
 14#include <linux/of.h>
 15#include <linux/rtc.h>
 16#include <linux/kdev_t.h>
 17#include <linux/idr.h>
 18#include <linux/slab.h>
 19#include <linux/workqueue.h>
 20
 21#include "rtc-core.h"
 22
 23static DEFINE_IDA(rtc_ida);
 24struct class *rtc_class;
 25
 26static void rtc_device_release(struct device *dev)
 27{
 28	struct rtc_device *rtc = to_rtc_device(dev);
 29	struct timerqueue_head *head = &rtc->timerqueue;
 30	struct timerqueue_node *node;
 31
 32	mutex_lock(&rtc->ops_lock);
 33	while ((node = timerqueue_getnext(head)))
 34		timerqueue_del(head, node);
 35	mutex_unlock(&rtc->ops_lock);
 36
 37	cancel_work_sync(&rtc->irqwork);
 38
 39	ida_free(&rtc_ida, rtc->id);
 40	mutex_destroy(&rtc->ops_lock);
 41	kfree(rtc);
 42}
 43
 44#ifdef CONFIG_RTC_HCTOSYS_DEVICE
 45/* Result of the last RTC to system clock attempt. */
 46int rtc_hctosys_ret = -ENODEV;
 47
 48/* IMPORTANT: the RTC only stores whole seconds. It is arbitrary
 49 * whether it stores the most close value or the value with partial
 50 * seconds truncated. However, it is important that we use it to store
 51 * the truncated value. This is because otherwise it is necessary,
 52 * in an rtc sync function, to read both xtime.tv_sec and
 53 * xtime.tv_nsec. On some processors (i.e. ARM), an atomic read
 54 * of >32bits is not possible. So storing the most close value would
 55 * slow down the sync API. So here we have the truncated value and
 56 * the best guess is to add 0.5s.
 57 */
 58
 59static void rtc_hctosys(struct rtc_device *rtc)
 60{
 61	int err;
 62	struct rtc_time tm;
 63	struct timespec64 tv64 = {
 64		.tv_nsec = NSEC_PER_SEC >> 1,
 65	};
 66
 67	err = rtc_read_time(rtc, &tm);
 68	if (err) {
 69		dev_err(rtc->dev.parent,
 70			"hctosys: unable to read the hardware clock\n");
 71		goto err_read;
 72	}
 73
 74	tv64.tv_sec = rtc_tm_to_time64(&tm);
 75
 76#if BITS_PER_LONG == 32
 77	if (tv64.tv_sec > INT_MAX) {
 78		err = -ERANGE;
 79		goto err_read;
 80	}
 81#endif
 82
 83	err = do_settimeofday64(&tv64);
 84
 85	dev_info(rtc->dev.parent, "setting system clock to %ptR UTC (%lld)\n",
 86		 &tm, (long long)tv64.tv_sec);
 87
 88err_read:
 89	rtc_hctosys_ret = err;
 90}
 91#endif
 92
 93#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
 94/*
 95 * On suspend(), measure the delta between one RTC and the
 96 * system's wall clock; restore it on resume().
 97 */
 98
 99static struct timespec64 old_rtc, old_system, old_delta;
100
101static int rtc_suspend(struct device *dev)
102{
103	struct rtc_device	*rtc = to_rtc_device(dev);
104	struct rtc_time		tm;
105	struct timespec64	delta, delta_delta;
106	int err;
107
108	if (timekeeping_rtc_skipsuspend())
109		return 0;
110
111	if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
112		return 0;
113
114	/* snapshot the current RTC and system time at suspend*/
115	err = rtc_read_time(rtc, &tm);
116	if (err < 0) {
117		pr_debug("%s:  fail to read rtc time\n", dev_name(&rtc->dev));
118		return 0;
119	}
120
121	ktime_get_real_ts64(&old_system);
122	old_rtc.tv_sec = rtc_tm_to_time64(&tm);
123
124	/*
125	 * To avoid drift caused by repeated suspend/resumes,
126	 * which each can add ~1 second drift error,
127	 * try to compensate so the difference in system time
128	 * and rtc time stays close to constant.
129	 */
130	delta = timespec64_sub(old_system, old_rtc);
131	delta_delta = timespec64_sub(delta, old_delta);
132	if (delta_delta.tv_sec < -2 || delta_delta.tv_sec >= 2) {
133		/*
134		 * if delta_delta is too large, assume time correction
135		 * has occurred and set old_delta to the current delta.
136		 */
137		old_delta = delta;
138	} else {
139		/* Otherwise try to adjust old_system to compensate */
140		old_system = timespec64_sub(old_system, delta_delta);
141	}
142
143	return 0;
144}
145
146static int rtc_resume(struct device *dev)
147{
148	struct rtc_device	*rtc = to_rtc_device(dev);
149	struct rtc_time		tm;
150	struct timespec64	new_system, new_rtc;
151	struct timespec64	sleep_time;
152	int err;
153
154	if (timekeeping_rtc_skipresume())
155		return 0;
156
157	rtc_hctosys_ret = -ENODEV;
158	if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
159		return 0;
160
161	/* snapshot the current rtc and system time at resume */
162	ktime_get_real_ts64(&new_system);
163	err = rtc_read_time(rtc, &tm);
164	if (err < 0) {
165		pr_debug("%s:  fail to read rtc time\n", dev_name(&rtc->dev));
166		return 0;
167	}
168
169	new_rtc.tv_sec = rtc_tm_to_time64(&tm);
170	new_rtc.tv_nsec = 0;
171
172	if (new_rtc.tv_sec < old_rtc.tv_sec) {
173		pr_debug("%s:  time travel!\n", dev_name(&rtc->dev));
174		return 0;
175	}
176
177	/* calculate the RTC time delta (sleep time)*/
178	sleep_time = timespec64_sub(new_rtc, old_rtc);
179
180	/*
181	 * Since these RTC suspend/resume handlers are not called
182	 * at the very end of suspend or the start of resume,
183	 * some run-time may pass on either sides of the sleep time
184	 * so subtract kernel run-time between rtc_suspend to rtc_resume
185	 * to keep things accurate.
186	 */
187	sleep_time = timespec64_sub(sleep_time,
188				    timespec64_sub(new_system, old_system));
189
190	if (sleep_time.tv_sec >= 0)
191		timekeeping_inject_sleeptime64(&sleep_time);
192	rtc_hctosys_ret = 0;
193	return 0;
194}
195
196static SIMPLE_DEV_PM_OPS(rtc_class_dev_pm_ops, rtc_suspend, rtc_resume);
197#define RTC_CLASS_DEV_PM_OPS	(&rtc_class_dev_pm_ops)
198#else
199#define RTC_CLASS_DEV_PM_OPS	NULL
200#endif
201
202/* Ensure the caller will set the id before releasing the device */
203static struct rtc_device *rtc_allocate_device(void)
204{
205	struct rtc_device *rtc;
206
207	rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
208	if (!rtc)
209		return NULL;
210
211	device_initialize(&rtc->dev);
212
213	/*
214	 * Drivers can revise this default after allocating the device.
215	 * The default is what most RTCs do: Increment seconds exactly one
216	 * second after the write happened. This adds a default transport
217	 * time of 5ms which is at least halfways close to reality.
218	 */
219	rtc->set_offset_nsec = NSEC_PER_SEC + 5 * NSEC_PER_MSEC;
220
221	rtc->irq_freq = 1;
222	rtc->max_user_freq = 64;
223	rtc->dev.class = rtc_class;
224	rtc->dev.groups = rtc_get_dev_attribute_groups();
225	rtc->dev.release = rtc_device_release;
226
227	mutex_init(&rtc->ops_lock);
228	spin_lock_init(&rtc->irq_lock);
229	init_waitqueue_head(&rtc->irq_queue);
230
231	/* Init timerqueue */
232	timerqueue_init_head(&rtc->timerqueue);
233	INIT_WORK(&rtc->irqwork, rtc_timer_do_work);
234	/* Init aie timer */
235	rtc_timer_init(&rtc->aie_timer, rtc_aie_update_irq, rtc);
236	/* Init uie timer */
237	rtc_timer_init(&rtc->uie_rtctimer, rtc_uie_update_irq, rtc);
238	/* Init pie timer */
239	hrtimer_init(&rtc->pie_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
240	rtc->pie_timer.function = rtc_pie_update_irq;
241	rtc->pie_enabled = 0;
242
243	set_bit(RTC_FEATURE_ALARM, rtc->features);
244	set_bit(RTC_FEATURE_UPDATE_INTERRUPT, rtc->features);
245
246	return rtc;
247}
248
249static int rtc_device_get_id(struct device *dev)
250{
251	int of_id = -1, id = -1;
252
253	if (dev->of_node)
254		of_id = of_alias_get_id(dev->of_node, "rtc");
255	else if (dev->parent && dev->parent->of_node)
256		of_id = of_alias_get_id(dev->parent->of_node, "rtc");
257
258	if (of_id >= 0) {
259		id = ida_simple_get(&rtc_ida, of_id, of_id + 1, GFP_KERNEL);
260		if (id < 0)
261			dev_warn(dev, "/aliases ID %d not available\n", of_id);
262	}
263
264	if (id < 0)
265		id = ida_alloc(&rtc_ida, GFP_KERNEL);
266
267	return id;
268}
269
270static void rtc_device_get_offset(struct rtc_device *rtc)
271{
272	time64_t range_secs;
273	u32 start_year;
274	int ret;
275
276	/*
277	 * If RTC driver did not implement the range of RTC hardware device,
278	 * then we can not expand the RTC range by adding or subtracting one
279	 * offset.
280	 */
281	if (rtc->range_min == rtc->range_max)
282		return;
283
284	ret = device_property_read_u32(rtc->dev.parent, "start-year",
285				       &start_year);
286	if (!ret) {
287		rtc->start_secs = mktime64(start_year, 1, 1, 0, 0, 0);
288		rtc->set_start_time = true;
289	}
290
291	/*
292	 * If user did not implement the start time for RTC driver, then no
293	 * need to expand the RTC range.
294	 */
295	if (!rtc->set_start_time)
296		return;
297
298	range_secs = rtc->range_max - rtc->range_min + 1;
299
300	/*
301	 * If the start_secs is larger than the maximum seconds (rtc->range_max)
302	 * supported by RTC hardware or the maximum seconds of new expanded
303	 * range (start_secs + rtc->range_max - rtc->range_min) is less than
304	 * rtc->range_min, which means the minimum seconds (rtc->range_min) of
305	 * RTC hardware will be mapped to start_secs by adding one offset, so
306	 * the offset seconds calculation formula should be:
307	 * rtc->offset_secs = rtc->start_secs - rtc->range_min;
308	 *
309	 * If the start_secs is larger than the minimum seconds (rtc->range_min)
310	 * supported by RTC hardware, then there is one region is overlapped
311	 * between the original RTC hardware range and the new expanded range,
312	 * and this overlapped region do not need to be mapped into the new
313	 * expanded range due to it is valid for RTC device. So the minimum
314	 * seconds of RTC hardware (rtc->range_min) should be mapped to
315	 * rtc->range_max + 1, then the offset seconds formula should be:
316	 * rtc->offset_secs = rtc->range_max - rtc->range_min + 1;
317	 *
318	 * If the start_secs is less than the minimum seconds (rtc->range_min),
319	 * which is similar to case 2. So the start_secs should be mapped to
320	 * start_secs + rtc->range_max - rtc->range_min + 1, then the
321	 * offset seconds formula should be:
322	 * rtc->offset_secs = -(rtc->range_max - rtc->range_min + 1);
323	 *
324	 * Otherwise the offset seconds should be 0.
325	 */
326	if (rtc->start_secs > rtc->range_max ||
327	    rtc->start_secs + range_secs - 1 < rtc->range_min)
328		rtc->offset_secs = rtc->start_secs - rtc->range_min;
329	else if (rtc->start_secs > rtc->range_min)
330		rtc->offset_secs = range_secs;
331	else if (rtc->start_secs < rtc->range_min)
332		rtc->offset_secs = -range_secs;
333	else
334		rtc->offset_secs = 0;
335}
336
337static void devm_rtc_unregister_device(void *data)
 
 
 
 
 
338{
339	struct rtc_device *rtc = data;
340
341	mutex_lock(&rtc->ops_lock);
342	/*
343	 * Remove innards of this RTC, then disable it, before
344	 * letting any rtc_class_open() users access it again
345	 */
346	rtc_proc_del_device(rtc);
347	if (!test_bit(RTC_NO_CDEV, &rtc->flags))
348		cdev_device_del(&rtc->char_dev, &rtc->dev);
349	rtc->ops = NULL;
350	mutex_unlock(&rtc->ops_lock);
 
351}
352
353static void devm_rtc_release_device(void *res)
354{
355	struct rtc_device *rtc = res;
356
357	put_device(&rtc->dev);
 
 
 
 
 
358}
359
360struct rtc_device *devm_rtc_allocate_device(struct device *dev)
361{
362	struct rtc_device *rtc;
363	int id, err;
364
365	id = rtc_device_get_id(dev);
366	if (id < 0)
367		return ERR_PTR(id);
368
 
 
 
 
 
 
369	rtc = rtc_allocate_device();
370	if (!rtc) {
371		ida_free(&rtc_ida, id);
372		return ERR_PTR(-ENOMEM);
373	}
374
 
 
 
375	rtc->id = id;
376	rtc->dev.parent = dev;
377	err = devm_add_action_or_reset(dev, devm_rtc_release_device, rtc);
378	if (err)
379		return ERR_PTR(err);
380
381	err = dev_set_name(&rtc->dev, "rtc%d", id);
382	if (err)
383		return ERR_PTR(err);
384
385	return rtc;
 
 
 
 
 
 
386}
387EXPORT_SYMBOL_GPL(devm_rtc_allocate_device);
388
389int __devm_rtc_register_device(struct module *owner, struct rtc_device *rtc)
390{
391	struct rtc_wkalrm alrm;
392	int err;
393
394	if (!rtc->ops) {
395		dev_dbg(&rtc->dev, "no ops set\n");
396		return -EINVAL;
397	}
398
399	if (!rtc->ops->set_alarm)
400		clear_bit(RTC_FEATURE_ALARM, rtc->features);
401
402	if (rtc->ops->set_offset)
403		set_bit(RTC_FEATURE_CORRECTION, rtc->features);
404
405	rtc->owner = owner;
406	rtc_device_get_offset(rtc);
407
408	/* Check to see if there is an ALARM already set in hw */
409	err = __rtc_read_alarm(rtc, &alrm);
410	if (!err && !rtc_valid_tm(&alrm.time))
411		rtc_initialize_alarm(rtc, &alrm);
412
413	rtc_dev_prepare(rtc);
414
415	err = cdev_device_add(&rtc->char_dev, &rtc->dev);
416	if (err) {
417		set_bit(RTC_NO_CDEV, &rtc->flags);
418		dev_warn(rtc->dev.parent, "failed to add char device %d:%d\n",
419			 MAJOR(rtc->dev.devt), rtc->id);
420	} else {
421		dev_dbg(rtc->dev.parent, "char device (%d:%d)\n",
422			MAJOR(rtc->dev.devt), rtc->id);
423	}
424
425	rtc_proc_add_device(rtc);
426
 
427	dev_info(rtc->dev.parent, "registered as %s\n",
428		 dev_name(&rtc->dev));
429
430#ifdef CONFIG_RTC_HCTOSYS_DEVICE
431	if (!strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE))
432		rtc_hctosys(rtc);
433#endif
434
435	return devm_add_action_or_reset(rtc->dev.parent,
436					devm_rtc_unregister_device, rtc);
437}
438EXPORT_SYMBOL_GPL(__devm_rtc_register_device);
439
440/**
441 * devm_rtc_device_register - resource managed rtc_device_register()
442 * @dev: the device to register
443 * @name: the name of the device (unused)
444 * @ops: the rtc operations structure
445 * @owner: the module owner
446 *
447 * @return a struct rtc on success, or an ERR_PTR on error
448 *
449 * Managed rtc_device_register(). The rtc_device returned from this function
450 * are automatically freed on driver detach.
451 * This function is deprecated, use devm_rtc_allocate_device and
452 * rtc_register_device instead
453 */
454struct rtc_device *devm_rtc_device_register(struct device *dev,
455					    const char *name,
456					    const struct rtc_class_ops *ops,
457					    struct module *owner)
458{
459	struct rtc_device *rtc;
460	int err;
461
462	rtc = devm_rtc_allocate_device(dev);
463	if (IS_ERR(rtc))
464		return rtc;
465
466	rtc->ops = ops;
467
468	err = __devm_rtc_register_device(owner, rtc);
469	if (err)
470		return ERR_PTR(err);
471
472	return rtc;
473}
474EXPORT_SYMBOL_GPL(devm_rtc_device_register);
475
476static int __init rtc_init(void)
477{
478	rtc_class = class_create(THIS_MODULE, "rtc");
479	if (IS_ERR(rtc_class)) {
480		pr_err("couldn't create class\n");
481		return PTR_ERR(rtc_class);
482	}
483	rtc_class->pm = RTC_CLASS_DEV_PM_OPS;
484	rtc_dev_init();
485	return 0;
486}
487subsys_initcall(rtc_init);
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * RTC subsystem, base class
  4 *
  5 * Copyright (C) 2005 Tower Technologies
  6 * Author: Alessandro Zummo <a.zummo@towertech.it>
  7 *
  8 * class skeleton from drivers/hwmon/hwmon.c
  9 */
 10
 11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 12
 13#include <linux/module.h>
 14#include <linux/of.h>
 15#include <linux/rtc.h>
 16#include <linux/kdev_t.h>
 17#include <linux/idr.h>
 18#include <linux/slab.h>
 19#include <linux/workqueue.h>
 20
 21#include "rtc-core.h"
 22
 23static DEFINE_IDA(rtc_ida);
 24struct class *rtc_class;
 25
 26static void rtc_device_release(struct device *dev)
 27{
 28	struct rtc_device *rtc = to_rtc_device(dev);
 
 
 29
 30	ida_simple_remove(&rtc_ida, rtc->id);
 
 
 
 
 
 
 
 
 31	kfree(rtc);
 32}
 33
 34#ifdef CONFIG_RTC_HCTOSYS_DEVICE
 35/* Result of the last RTC to system clock attempt. */
 36int rtc_hctosys_ret = -ENODEV;
 37
 38/* IMPORTANT: the RTC only stores whole seconds. It is arbitrary
 39 * whether it stores the most close value or the value with partial
 40 * seconds truncated. However, it is important that we use it to store
 41 * the truncated value. This is because otherwise it is necessary,
 42 * in an rtc sync function, to read both xtime.tv_sec and
 43 * xtime.tv_nsec. On some processors (i.e. ARM), an atomic read
 44 * of >32bits is not possible. So storing the most close value would
 45 * slow down the sync API. So here we have the truncated value and
 46 * the best guess is to add 0.5s.
 47 */
 48
 49static void rtc_hctosys(struct rtc_device *rtc)
 50{
 51	int err;
 52	struct rtc_time tm;
 53	struct timespec64 tv64 = {
 54		.tv_nsec = NSEC_PER_SEC >> 1,
 55	};
 56
 57	err = rtc_read_time(rtc, &tm);
 58	if (err) {
 59		dev_err(rtc->dev.parent,
 60			"hctosys: unable to read the hardware clock\n");
 61		goto err_read;
 62	}
 63
 64	tv64.tv_sec = rtc_tm_to_time64(&tm);
 65
 66#if BITS_PER_LONG == 32
 67	if (tv64.tv_sec > INT_MAX) {
 68		err = -ERANGE;
 69		goto err_read;
 70	}
 71#endif
 72
 73	err = do_settimeofday64(&tv64);
 74
 75	dev_info(rtc->dev.parent, "setting system clock to %ptR UTC (%lld)\n",
 76		 &tm, (long long)tv64.tv_sec);
 77
 78err_read:
 79	rtc_hctosys_ret = err;
 80}
 81#endif
 82
 83#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
 84/*
 85 * On suspend(), measure the delta between one RTC and the
 86 * system's wall clock; restore it on resume().
 87 */
 88
 89static struct timespec64 old_rtc, old_system, old_delta;
 90
 91static int rtc_suspend(struct device *dev)
 92{
 93	struct rtc_device	*rtc = to_rtc_device(dev);
 94	struct rtc_time		tm;
 95	struct timespec64	delta, delta_delta;
 96	int err;
 97
 98	if (timekeeping_rtc_skipsuspend())
 99		return 0;
100
101	if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
102		return 0;
103
104	/* snapshot the current RTC and system time at suspend*/
105	err = rtc_read_time(rtc, &tm);
106	if (err < 0) {
107		pr_debug("%s:  fail to read rtc time\n", dev_name(&rtc->dev));
108		return 0;
109	}
110
111	ktime_get_real_ts64(&old_system);
112	old_rtc.tv_sec = rtc_tm_to_time64(&tm);
113
114	/*
115	 * To avoid drift caused by repeated suspend/resumes,
116	 * which each can add ~1 second drift error,
117	 * try to compensate so the difference in system time
118	 * and rtc time stays close to constant.
119	 */
120	delta = timespec64_sub(old_system, old_rtc);
121	delta_delta = timespec64_sub(delta, old_delta);
122	if (delta_delta.tv_sec < -2 || delta_delta.tv_sec >= 2) {
123		/*
124		 * if delta_delta is too large, assume time correction
125		 * has occurred and set old_delta to the current delta.
126		 */
127		old_delta = delta;
128	} else {
129		/* Otherwise try to adjust old_system to compensate */
130		old_system = timespec64_sub(old_system, delta_delta);
131	}
132
133	return 0;
134}
135
136static int rtc_resume(struct device *dev)
137{
138	struct rtc_device	*rtc = to_rtc_device(dev);
139	struct rtc_time		tm;
140	struct timespec64	new_system, new_rtc;
141	struct timespec64	sleep_time;
142	int err;
143
144	if (timekeeping_rtc_skipresume())
145		return 0;
146
147	rtc_hctosys_ret = -ENODEV;
148	if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
149		return 0;
150
151	/* snapshot the current rtc and system time at resume */
152	ktime_get_real_ts64(&new_system);
153	err = rtc_read_time(rtc, &tm);
154	if (err < 0) {
155		pr_debug("%s:  fail to read rtc time\n", dev_name(&rtc->dev));
156		return 0;
157	}
158
159	new_rtc.tv_sec = rtc_tm_to_time64(&tm);
160	new_rtc.tv_nsec = 0;
161
162	if (new_rtc.tv_sec < old_rtc.tv_sec) {
163		pr_debug("%s:  time travel!\n", dev_name(&rtc->dev));
164		return 0;
165	}
166
167	/* calculate the RTC time delta (sleep time)*/
168	sleep_time = timespec64_sub(new_rtc, old_rtc);
169
170	/*
171	 * Since these RTC suspend/resume handlers are not called
172	 * at the very end of suspend or the start of resume,
173	 * some run-time may pass on either sides of the sleep time
174	 * so subtract kernel run-time between rtc_suspend to rtc_resume
175	 * to keep things accurate.
176	 */
177	sleep_time = timespec64_sub(sleep_time,
178				    timespec64_sub(new_system, old_system));
179
180	if (sleep_time.tv_sec >= 0)
181		timekeeping_inject_sleeptime64(&sleep_time);
182	rtc_hctosys_ret = 0;
183	return 0;
184}
185
186static SIMPLE_DEV_PM_OPS(rtc_class_dev_pm_ops, rtc_suspend, rtc_resume);
187#define RTC_CLASS_DEV_PM_OPS	(&rtc_class_dev_pm_ops)
188#else
189#define RTC_CLASS_DEV_PM_OPS	NULL
190#endif
191
192/* Ensure the caller will set the id before releasing the device */
193static struct rtc_device *rtc_allocate_device(void)
194{
195	struct rtc_device *rtc;
196
197	rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
198	if (!rtc)
199		return NULL;
200
201	device_initialize(&rtc->dev);
202
203	/* Drivers can revise this default after allocating the device. */
204	rtc->set_offset_nsec =  NSEC_PER_SEC / 2;
 
 
 
 
 
205
206	rtc->irq_freq = 1;
207	rtc->max_user_freq = 64;
208	rtc->dev.class = rtc_class;
209	rtc->dev.groups = rtc_get_dev_attribute_groups();
210	rtc->dev.release = rtc_device_release;
211
212	mutex_init(&rtc->ops_lock);
213	spin_lock_init(&rtc->irq_lock);
214	init_waitqueue_head(&rtc->irq_queue);
215
216	/* Init timerqueue */
217	timerqueue_init_head(&rtc->timerqueue);
218	INIT_WORK(&rtc->irqwork, rtc_timer_do_work);
219	/* Init aie timer */
220	rtc_timer_init(&rtc->aie_timer, rtc_aie_update_irq, rtc);
221	/* Init uie timer */
222	rtc_timer_init(&rtc->uie_rtctimer, rtc_uie_update_irq, rtc);
223	/* Init pie timer */
224	hrtimer_init(&rtc->pie_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
225	rtc->pie_timer.function = rtc_pie_update_irq;
226	rtc->pie_enabled = 0;
227
 
 
 
228	return rtc;
229}
230
231static int rtc_device_get_id(struct device *dev)
232{
233	int of_id = -1, id = -1;
234
235	if (dev->of_node)
236		of_id = of_alias_get_id(dev->of_node, "rtc");
237	else if (dev->parent && dev->parent->of_node)
238		of_id = of_alias_get_id(dev->parent->of_node, "rtc");
239
240	if (of_id >= 0) {
241		id = ida_simple_get(&rtc_ida, of_id, of_id + 1, GFP_KERNEL);
242		if (id < 0)
243			dev_warn(dev, "/aliases ID %d not available\n", of_id);
244	}
245
246	if (id < 0)
247		id = ida_simple_get(&rtc_ida, 0, 0, GFP_KERNEL);
248
249	return id;
250}
251
252static void rtc_device_get_offset(struct rtc_device *rtc)
253{
254	time64_t range_secs;
255	u32 start_year;
256	int ret;
257
258	/*
259	 * If RTC driver did not implement the range of RTC hardware device,
260	 * then we can not expand the RTC range by adding or subtracting one
261	 * offset.
262	 */
263	if (rtc->range_min == rtc->range_max)
264		return;
265
266	ret = device_property_read_u32(rtc->dev.parent, "start-year",
267				       &start_year);
268	if (!ret) {
269		rtc->start_secs = mktime64(start_year, 1, 1, 0, 0, 0);
270		rtc->set_start_time = true;
271	}
272
273	/*
274	 * If user did not implement the start time for RTC driver, then no
275	 * need to expand the RTC range.
276	 */
277	if (!rtc->set_start_time)
278		return;
279
280	range_secs = rtc->range_max - rtc->range_min + 1;
281
282	/*
283	 * If the start_secs is larger than the maximum seconds (rtc->range_max)
284	 * supported by RTC hardware or the maximum seconds of new expanded
285	 * range (start_secs + rtc->range_max - rtc->range_min) is less than
286	 * rtc->range_min, which means the minimum seconds (rtc->range_min) of
287	 * RTC hardware will be mapped to start_secs by adding one offset, so
288	 * the offset seconds calculation formula should be:
289	 * rtc->offset_secs = rtc->start_secs - rtc->range_min;
290	 *
291	 * If the start_secs is larger than the minimum seconds (rtc->range_min)
292	 * supported by RTC hardware, then there is one region is overlapped
293	 * between the original RTC hardware range and the new expanded range,
294	 * and this overlapped region do not need to be mapped into the new
295	 * expanded range due to it is valid for RTC device. So the minimum
296	 * seconds of RTC hardware (rtc->range_min) should be mapped to
297	 * rtc->range_max + 1, then the offset seconds formula should be:
298	 * rtc->offset_secs = rtc->range_max - rtc->range_min + 1;
299	 *
300	 * If the start_secs is less than the minimum seconds (rtc->range_min),
301	 * which is similar to case 2. So the start_secs should be mapped to
302	 * start_secs + rtc->range_max - rtc->range_min + 1, then the
303	 * offset seconds formula should be:
304	 * rtc->offset_secs = -(rtc->range_max - rtc->range_min + 1);
305	 *
306	 * Otherwise the offset seconds should be 0.
307	 */
308	if (rtc->start_secs > rtc->range_max ||
309	    rtc->start_secs + range_secs - 1 < rtc->range_min)
310		rtc->offset_secs = rtc->start_secs - rtc->range_min;
311	else if (rtc->start_secs > rtc->range_min)
312		rtc->offset_secs = range_secs;
313	else if (rtc->start_secs < rtc->range_min)
314		rtc->offset_secs = -range_secs;
315	else
316		rtc->offset_secs = 0;
317}
318
319/**
320 * rtc_device_unregister - removes the previously registered RTC class device
321 *
322 * @rtc: the RTC class device to destroy
323 */
324static void rtc_device_unregister(struct rtc_device *rtc)
325{
 
 
326	mutex_lock(&rtc->ops_lock);
327	/*
328	 * Remove innards of this RTC, then disable it, before
329	 * letting any rtc_class_open() users access it again
330	 */
331	rtc_proc_del_device(rtc);
332	cdev_device_del(&rtc->char_dev, &rtc->dev);
 
333	rtc->ops = NULL;
334	mutex_unlock(&rtc->ops_lock);
335	put_device(&rtc->dev);
336}
337
338static void devm_rtc_release_device(struct device *dev, void *res)
339{
340	struct rtc_device *rtc = *(struct rtc_device **)res;
341
342	rtc_nvmem_unregister(rtc);
343
344	if (rtc->registered)
345		rtc_device_unregister(rtc);
346	else
347		put_device(&rtc->dev);
348}
349
350struct rtc_device *devm_rtc_allocate_device(struct device *dev)
351{
352	struct rtc_device **ptr, *rtc;
353	int id, err;
354
355	id = rtc_device_get_id(dev);
356	if (id < 0)
357		return ERR_PTR(id);
358
359	ptr = devres_alloc(devm_rtc_release_device, sizeof(*ptr), GFP_KERNEL);
360	if (!ptr) {
361		err = -ENOMEM;
362		goto exit_ida;
363	}
364
365	rtc = rtc_allocate_device();
366	if (!rtc) {
367		err = -ENOMEM;
368		goto exit_devres;
369	}
370
371	*ptr = rtc;
372	devres_add(dev, ptr);
373
374	rtc->id = id;
375	rtc->dev.parent = dev;
376	dev_set_name(&rtc->dev, "rtc%d", id);
 
 
 
 
 
 
377
378	return rtc;
379
380exit_devres:
381	devres_free(ptr);
382exit_ida:
383	ida_simple_remove(&rtc_ida, id);
384	return ERR_PTR(err);
385}
386EXPORT_SYMBOL_GPL(devm_rtc_allocate_device);
387
388int __rtc_register_device(struct module *owner, struct rtc_device *rtc)
389{
390	struct rtc_wkalrm alrm;
391	int err;
392
393	if (!rtc->ops) {
394		dev_dbg(&rtc->dev, "no ops set\n");
395		return -EINVAL;
396	}
397
 
 
 
 
 
 
398	rtc->owner = owner;
399	rtc_device_get_offset(rtc);
400
401	/* Check to see if there is an ALARM already set in hw */
402	err = __rtc_read_alarm(rtc, &alrm);
403	if (!err && !rtc_valid_tm(&alrm.time))
404		rtc_initialize_alarm(rtc, &alrm);
405
406	rtc_dev_prepare(rtc);
407
408	err = cdev_device_add(&rtc->char_dev, &rtc->dev);
409	if (err)
 
410		dev_warn(rtc->dev.parent, "failed to add char device %d:%d\n",
411			 MAJOR(rtc->dev.devt), rtc->id);
412	else
413		dev_dbg(rtc->dev.parent, "char device (%d:%d)\n",
414			MAJOR(rtc->dev.devt), rtc->id);
 
415
416	rtc_proc_add_device(rtc);
417
418	rtc->registered = true;
419	dev_info(rtc->dev.parent, "registered as %s\n",
420		 dev_name(&rtc->dev));
421
422#ifdef CONFIG_RTC_HCTOSYS_DEVICE
423	if (!strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE))
424		rtc_hctosys(rtc);
425#endif
426
427	return 0;
 
428}
429EXPORT_SYMBOL_GPL(__rtc_register_device);
430
431/**
432 * devm_rtc_device_register - resource managed rtc_device_register()
433 * @dev: the device to register
434 * @name: the name of the device (unused)
435 * @ops: the rtc operations structure
436 * @owner: the module owner
437 *
438 * @return a struct rtc on success, or an ERR_PTR on error
439 *
440 * Managed rtc_device_register(). The rtc_device returned from this function
441 * are automatically freed on driver detach.
442 * This function is deprecated, use devm_rtc_allocate_device and
443 * rtc_register_device instead
444 */
445struct rtc_device *devm_rtc_device_register(struct device *dev,
446					    const char *name,
447					    const struct rtc_class_ops *ops,
448					    struct module *owner)
449{
450	struct rtc_device *rtc;
451	int err;
452
453	rtc = devm_rtc_allocate_device(dev);
454	if (IS_ERR(rtc))
455		return rtc;
456
457	rtc->ops = ops;
458
459	err = __rtc_register_device(owner, rtc);
460	if (err)
461		return ERR_PTR(err);
462
463	return rtc;
464}
465EXPORT_SYMBOL_GPL(devm_rtc_device_register);
466
467static int __init rtc_init(void)
468{
469	rtc_class = class_create(THIS_MODULE, "rtc");
470	if (IS_ERR(rtc_class)) {
471		pr_err("couldn't create class\n");
472		return PTR_ERR(rtc_class);
473	}
474	rtc_class->pm = RTC_CLASS_DEV_PM_OPS;
475	rtc_dev_init();
476	return 0;
477}
478subsys_initcall(rtc_init);