Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * RTC subsystem, base class
  4 *
  5 * Copyright (C) 2005 Tower Technologies
  6 * Author: Alessandro Zummo <a.zummo@towertech.it>
  7 *
  8 * class skeleton from drivers/hwmon/hwmon.c
  9 */
 10
 11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 12
 13#include <linux/module.h>
 14#include <linux/of.h>
 15#include <linux/rtc.h>
 16#include <linux/kdev_t.h>
 17#include <linux/idr.h>
 18#include <linux/slab.h>
 19#include <linux/workqueue.h>
 20
 21#include "rtc-core.h"
 22
 23static DEFINE_IDA(rtc_ida);
 24struct class *rtc_class;
 25
 26static void rtc_device_release(struct device *dev)
 27{
 28	struct rtc_device *rtc = to_rtc_device(dev);
 29	struct timerqueue_head *head = &rtc->timerqueue;
 30	struct timerqueue_node *node;
 31
 32	mutex_lock(&rtc->ops_lock);
 33	while ((node = timerqueue_getnext(head)))
 34		timerqueue_del(head, node);
 35	mutex_unlock(&rtc->ops_lock);
 36
 37	cancel_work_sync(&rtc->irqwork);
 38
 39	ida_free(&rtc_ida, rtc->id);
 40	mutex_destroy(&rtc->ops_lock);
 41	kfree(rtc);
 42}
 43
 44#ifdef CONFIG_RTC_HCTOSYS_DEVICE
 45/* Result of the last RTC to system clock attempt. */
 46int rtc_hctosys_ret = -ENODEV;
 47
 48/* IMPORTANT: the RTC only stores whole seconds. It is arbitrary
 49 * whether it stores the most close value or the value with partial
 50 * seconds truncated. However, it is important that we use it to store
 51 * the truncated value. This is because otherwise it is necessary,
 52 * in an rtc sync function, to read both xtime.tv_sec and
 53 * xtime.tv_nsec. On some processors (i.e. ARM), an atomic read
 54 * of >32bits is not possible. So storing the most close value would
 55 * slow down the sync API. So here we have the truncated value and
 56 * the best guess is to add 0.5s.
 57 */
 58
 59static void rtc_hctosys(struct rtc_device *rtc)
 60{
 61	int err;
 62	struct rtc_time tm;
 63	struct timespec64 tv64 = {
 64		.tv_nsec = NSEC_PER_SEC >> 1,
 65	};
 66
 67	err = rtc_read_time(rtc, &tm);
 68	if (err) {
 69		dev_err(rtc->dev.parent,
 70			"hctosys: unable to read the hardware clock\n");
 71		goto err_read;
 72	}
 73
 74	tv64.tv_sec = rtc_tm_to_time64(&tm);
 75
 76#if BITS_PER_LONG == 32
 77	if (tv64.tv_sec > INT_MAX) {
 78		err = -ERANGE;
 79		goto err_read;
 80	}
 81#endif
 82
 83	err = do_settimeofday64(&tv64);
 84
 85	dev_info(rtc->dev.parent, "setting system clock to %ptR UTC (%lld)\n",
 86		 &tm, (long long)tv64.tv_sec);
 87
 88err_read:
 89	rtc_hctosys_ret = err;
 90}
 91#endif
 92
 93#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
 94/*
 95 * On suspend(), measure the delta between one RTC and the
 96 * system's wall clock; restore it on resume().
 97 */
 98
 99static struct timespec64 old_rtc, old_system, old_delta;
100
101static int rtc_suspend(struct device *dev)
102{
103	struct rtc_device	*rtc = to_rtc_device(dev);
104	struct rtc_time		tm;
105	struct timespec64	delta, delta_delta;
106	int err;
107
108	if (timekeeping_rtc_skipsuspend())
109		return 0;
110
111	if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
112		return 0;
113
114	/* snapshot the current RTC and system time at suspend*/
115	err = rtc_read_time(rtc, &tm);
116	if (err < 0) {
117		pr_debug("%s:  fail to read rtc time\n", dev_name(&rtc->dev));
118		return 0;
119	}
120
121	ktime_get_real_ts64(&old_system);
122	old_rtc.tv_sec = rtc_tm_to_time64(&tm);
123
124	/*
125	 * To avoid drift caused by repeated suspend/resumes,
126	 * which each can add ~1 second drift error,
127	 * try to compensate so the difference in system time
128	 * and rtc time stays close to constant.
129	 */
130	delta = timespec64_sub(old_system, old_rtc);
131	delta_delta = timespec64_sub(delta, old_delta);
132	if (delta_delta.tv_sec < -2 || delta_delta.tv_sec >= 2) {
133		/*
134		 * if delta_delta is too large, assume time correction
135		 * has occurred and set old_delta to the current delta.
136		 */
137		old_delta = delta;
138	} else {
139		/* Otherwise try to adjust old_system to compensate */
140		old_system = timespec64_sub(old_system, delta_delta);
141	}
142
143	return 0;
144}
145
146static int rtc_resume(struct device *dev)
147{
148	struct rtc_device	*rtc = to_rtc_device(dev);
149	struct rtc_time		tm;
150	struct timespec64	new_system, new_rtc;
151	struct timespec64	sleep_time;
152	int err;
153
154	if (timekeeping_rtc_skipresume())
155		return 0;
156
157	rtc_hctosys_ret = -ENODEV;
158	if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
159		return 0;
160
161	/* snapshot the current rtc and system time at resume */
162	ktime_get_real_ts64(&new_system);
163	err = rtc_read_time(rtc, &tm);
164	if (err < 0) {
165		pr_debug("%s:  fail to read rtc time\n", dev_name(&rtc->dev));
166		return 0;
167	}
168
169	new_rtc.tv_sec = rtc_tm_to_time64(&tm);
170	new_rtc.tv_nsec = 0;
171
172	if (new_rtc.tv_sec < old_rtc.tv_sec) {
173		pr_debug("%s:  time travel!\n", dev_name(&rtc->dev));
174		return 0;
175	}
176
177	/* calculate the RTC time delta (sleep time)*/
178	sleep_time = timespec64_sub(new_rtc, old_rtc);
179
180	/*
181	 * Since these RTC suspend/resume handlers are not called
182	 * at the very end of suspend or the start of resume,
183	 * some run-time may pass on either sides of the sleep time
184	 * so subtract kernel run-time between rtc_suspend to rtc_resume
185	 * to keep things accurate.
186	 */
187	sleep_time = timespec64_sub(sleep_time,
188				    timespec64_sub(new_system, old_system));
189
190	if (sleep_time.tv_sec >= 0)
191		timekeeping_inject_sleeptime64(&sleep_time);
192	rtc_hctosys_ret = 0;
193	return 0;
194}
195
196static SIMPLE_DEV_PM_OPS(rtc_class_dev_pm_ops, rtc_suspend, rtc_resume);
197#define RTC_CLASS_DEV_PM_OPS	(&rtc_class_dev_pm_ops)
198#else
199#define RTC_CLASS_DEV_PM_OPS	NULL
200#endif
201
202/* Ensure the caller will set the id before releasing the device */
203static struct rtc_device *rtc_allocate_device(void)
204{
205	struct rtc_device *rtc;
206
207	rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
208	if (!rtc)
209		return NULL;
210
211	device_initialize(&rtc->dev);
212
213	/*
214	 * Drivers can revise this default after allocating the device.
215	 * The default is what most RTCs do: Increment seconds exactly one
216	 * second after the write happened. This adds a default transport
217	 * time of 5ms which is at least halfways close to reality.
218	 */
219	rtc->set_offset_nsec = NSEC_PER_SEC + 5 * NSEC_PER_MSEC;
220
221	rtc->irq_freq = 1;
222	rtc->max_user_freq = 64;
223	rtc->dev.class = rtc_class;
224	rtc->dev.groups = rtc_get_dev_attribute_groups();
225	rtc->dev.release = rtc_device_release;
226
227	mutex_init(&rtc->ops_lock);
228	spin_lock_init(&rtc->irq_lock);
229	init_waitqueue_head(&rtc->irq_queue);
230
231	/* Init timerqueue */
232	timerqueue_init_head(&rtc->timerqueue);
233	INIT_WORK(&rtc->irqwork, rtc_timer_do_work);
234	/* Init aie timer */
235	rtc_timer_init(&rtc->aie_timer, rtc_aie_update_irq, rtc);
236	/* Init uie timer */
237	rtc_timer_init(&rtc->uie_rtctimer, rtc_uie_update_irq, rtc);
238	/* Init pie timer */
239	hrtimer_init(&rtc->pie_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
240	rtc->pie_timer.function = rtc_pie_update_irq;
241	rtc->pie_enabled = 0;
242
243	set_bit(RTC_FEATURE_ALARM, rtc->features);
244	set_bit(RTC_FEATURE_UPDATE_INTERRUPT, rtc->features);
245
246	return rtc;
247}
248
249static int rtc_device_get_id(struct device *dev)
250{
251	int of_id = -1, id = -1;
252
253	if (dev->of_node)
254		of_id = of_alias_get_id(dev->of_node, "rtc");
255	else if (dev->parent && dev->parent->of_node)
256		of_id = of_alias_get_id(dev->parent->of_node, "rtc");
257
258	if (of_id >= 0) {
259		id = ida_simple_get(&rtc_ida, of_id, of_id + 1, GFP_KERNEL);
260		if (id < 0)
261			dev_warn(dev, "/aliases ID %d not available\n", of_id);
262	}
263
264	if (id < 0)
265		id = ida_alloc(&rtc_ida, GFP_KERNEL);
266
267	return id;
268}
269
270static void rtc_device_get_offset(struct rtc_device *rtc)
271{
272	time64_t range_secs;
273	u32 start_year;
274	int ret;
275
276	/*
277	 * If RTC driver did not implement the range of RTC hardware device,
278	 * then we can not expand the RTC range by adding or subtracting one
279	 * offset.
280	 */
281	if (rtc->range_min == rtc->range_max)
282		return;
283
284	ret = device_property_read_u32(rtc->dev.parent, "start-year",
285				       &start_year);
286	if (!ret) {
287		rtc->start_secs = mktime64(start_year, 1, 1, 0, 0, 0);
288		rtc->set_start_time = true;
289	}
290
291	/*
292	 * If user did not implement the start time for RTC driver, then no
293	 * need to expand the RTC range.
294	 */
295	if (!rtc->set_start_time)
296		return;
297
298	range_secs = rtc->range_max - rtc->range_min + 1;
299
300	/*
301	 * If the start_secs is larger than the maximum seconds (rtc->range_max)
302	 * supported by RTC hardware or the maximum seconds of new expanded
303	 * range (start_secs + rtc->range_max - rtc->range_min) is less than
304	 * rtc->range_min, which means the minimum seconds (rtc->range_min) of
305	 * RTC hardware will be mapped to start_secs by adding one offset, so
306	 * the offset seconds calculation formula should be:
307	 * rtc->offset_secs = rtc->start_secs - rtc->range_min;
308	 *
309	 * If the start_secs is larger than the minimum seconds (rtc->range_min)
310	 * supported by RTC hardware, then there is one region is overlapped
311	 * between the original RTC hardware range and the new expanded range,
312	 * and this overlapped region do not need to be mapped into the new
313	 * expanded range due to it is valid for RTC device. So the minimum
314	 * seconds of RTC hardware (rtc->range_min) should be mapped to
315	 * rtc->range_max + 1, then the offset seconds formula should be:
316	 * rtc->offset_secs = rtc->range_max - rtc->range_min + 1;
317	 *
318	 * If the start_secs is less than the minimum seconds (rtc->range_min),
319	 * which is similar to case 2. So the start_secs should be mapped to
320	 * start_secs + rtc->range_max - rtc->range_min + 1, then the
321	 * offset seconds formula should be:
322	 * rtc->offset_secs = -(rtc->range_max - rtc->range_min + 1);
323	 *
324	 * Otherwise the offset seconds should be 0.
325	 */
326	if (rtc->start_secs > rtc->range_max ||
327	    rtc->start_secs + range_secs - 1 < rtc->range_min)
328		rtc->offset_secs = rtc->start_secs - rtc->range_min;
329	else if (rtc->start_secs > rtc->range_min)
330		rtc->offset_secs = range_secs;
331	else if (rtc->start_secs < rtc->range_min)
332		rtc->offset_secs = -range_secs;
333	else
334		rtc->offset_secs = 0;
335}
336
337static void devm_rtc_unregister_device(void *data)
338{
339	struct rtc_device *rtc = data;
340
341	mutex_lock(&rtc->ops_lock);
342	/*
343	 * Remove innards of this RTC, then disable it, before
344	 * letting any rtc_class_open() users access it again
345	 */
346	rtc_proc_del_device(rtc);
347	if (!test_bit(RTC_NO_CDEV, &rtc->flags))
348		cdev_device_del(&rtc->char_dev, &rtc->dev);
349	rtc->ops = NULL;
350	mutex_unlock(&rtc->ops_lock);
351}
352
353static void devm_rtc_release_device(void *res)
354{
355	struct rtc_device *rtc = res;
356
357	put_device(&rtc->dev);
358}
359
360struct rtc_device *devm_rtc_allocate_device(struct device *dev)
361{
362	struct rtc_device *rtc;
363	int id, err;
364
365	id = rtc_device_get_id(dev);
366	if (id < 0)
367		return ERR_PTR(id);
368
369	rtc = rtc_allocate_device();
370	if (!rtc) {
371		ida_free(&rtc_ida, id);
372		return ERR_PTR(-ENOMEM);
373	}
374
375	rtc->id = id;
376	rtc->dev.parent = dev;
377	err = devm_add_action_or_reset(dev, devm_rtc_release_device, rtc);
378	if (err)
379		return ERR_PTR(err);
380
381	err = dev_set_name(&rtc->dev, "rtc%d", id);
382	if (err)
383		return ERR_PTR(err);
384
385	return rtc;
386}
387EXPORT_SYMBOL_GPL(devm_rtc_allocate_device);
388
389int __devm_rtc_register_device(struct module *owner, struct rtc_device *rtc)
390{
391	struct rtc_wkalrm alrm;
392	int err;
393
394	if (!rtc->ops) {
395		dev_dbg(&rtc->dev, "no ops set\n");
396		return -EINVAL;
397	}
398
399	if (!rtc->ops->set_alarm)
400		clear_bit(RTC_FEATURE_ALARM, rtc->features);
401
402	if (rtc->ops->set_offset)
403		set_bit(RTC_FEATURE_CORRECTION, rtc->features);
404
405	rtc->owner = owner;
406	rtc_device_get_offset(rtc);
407
408	/* Check to see if there is an ALARM already set in hw */
409	err = __rtc_read_alarm(rtc, &alrm);
410	if (!err && !rtc_valid_tm(&alrm.time))
411		rtc_initialize_alarm(rtc, &alrm);
412
413	rtc_dev_prepare(rtc);
414
415	err = cdev_device_add(&rtc->char_dev, &rtc->dev);
416	if (err) {
417		set_bit(RTC_NO_CDEV, &rtc->flags);
418		dev_warn(rtc->dev.parent, "failed to add char device %d:%d\n",
419			 MAJOR(rtc->dev.devt), rtc->id);
420	} else {
421		dev_dbg(rtc->dev.parent, "char device (%d:%d)\n",
422			MAJOR(rtc->dev.devt), rtc->id);
423	}
424
425	rtc_proc_add_device(rtc);
426
427	dev_info(rtc->dev.parent, "registered as %s\n",
428		 dev_name(&rtc->dev));
429
430#ifdef CONFIG_RTC_HCTOSYS_DEVICE
431	if (!strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE))
432		rtc_hctosys(rtc);
433#endif
434
435	return devm_add_action_or_reset(rtc->dev.parent,
436					devm_rtc_unregister_device, rtc);
437}
438EXPORT_SYMBOL_GPL(__devm_rtc_register_device);
439
440/**
441 * devm_rtc_device_register - resource managed rtc_device_register()
442 * @dev: the device to register
443 * @name: the name of the device (unused)
444 * @ops: the rtc operations structure
445 * @owner: the module owner
446 *
447 * @return a struct rtc on success, or an ERR_PTR on error
448 *
449 * Managed rtc_device_register(). The rtc_device returned from this function
450 * are automatically freed on driver detach.
451 * This function is deprecated, use devm_rtc_allocate_device and
452 * rtc_register_device instead
453 */
454struct rtc_device *devm_rtc_device_register(struct device *dev,
455					    const char *name,
456					    const struct rtc_class_ops *ops,
457					    struct module *owner)
458{
459	struct rtc_device *rtc;
460	int err;
461
462	rtc = devm_rtc_allocate_device(dev);
463	if (IS_ERR(rtc))
464		return rtc;
465
466	rtc->ops = ops;
467
468	err = __devm_rtc_register_device(owner, rtc);
469	if (err)
470		return ERR_PTR(err);
471
472	return rtc;
473}
474EXPORT_SYMBOL_GPL(devm_rtc_device_register);
475
476static int __init rtc_init(void)
477{
478	rtc_class = class_create(THIS_MODULE, "rtc");
479	if (IS_ERR(rtc_class)) {
480		pr_err("couldn't create class\n");
481		return PTR_ERR(rtc_class);
482	}
483	rtc_class->pm = RTC_CLASS_DEV_PM_OPS;
484	rtc_dev_init();
485	return 0;
486}
487subsys_initcall(rtc_init);
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * RTC subsystem, base class
  4 *
  5 * Copyright (C) 2005 Tower Technologies
  6 * Author: Alessandro Zummo <a.zummo@towertech.it>
  7 *
  8 * class skeleton from drivers/hwmon/hwmon.c
  9 */
 10
 11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 12
 13#include <linux/module.h>
 14#include <linux/of.h>
 15#include <linux/rtc.h>
 16#include <linux/kdev_t.h>
 17#include <linux/idr.h>
 18#include <linux/slab.h>
 19#include <linux/workqueue.h>
 20
 21#include "rtc-core.h"
 22
 23static DEFINE_IDA(rtc_ida);
 24struct class *rtc_class;
 25
 26static void rtc_device_release(struct device *dev)
 27{
 28	struct rtc_device *rtc = to_rtc_device(dev);
 
 
 29
 30	ida_simple_remove(&rtc_ida, rtc->id);
 
 
 
 
 
 
 
 31	mutex_destroy(&rtc->ops_lock);
 32	kfree(rtc);
 33}
 34
 35#ifdef CONFIG_RTC_HCTOSYS_DEVICE
 36/* Result of the last RTC to system clock attempt. */
 37int rtc_hctosys_ret = -ENODEV;
 38
 39/* IMPORTANT: the RTC only stores whole seconds. It is arbitrary
 40 * whether it stores the most close value or the value with partial
 41 * seconds truncated. However, it is important that we use it to store
 42 * the truncated value. This is because otherwise it is necessary,
 43 * in an rtc sync function, to read both xtime.tv_sec and
 44 * xtime.tv_nsec. On some processors (i.e. ARM), an atomic read
 45 * of >32bits is not possible. So storing the most close value would
 46 * slow down the sync API. So here we have the truncated value and
 47 * the best guess is to add 0.5s.
 48 */
 49
 50static void rtc_hctosys(struct rtc_device *rtc)
 51{
 52	int err;
 53	struct rtc_time tm;
 54	struct timespec64 tv64 = {
 55		.tv_nsec = NSEC_PER_SEC >> 1,
 56	};
 57
 58	err = rtc_read_time(rtc, &tm);
 59	if (err) {
 60		dev_err(rtc->dev.parent,
 61			"hctosys: unable to read the hardware clock\n");
 62		goto err_read;
 63	}
 64
 65	tv64.tv_sec = rtc_tm_to_time64(&tm);
 66
 67#if BITS_PER_LONG == 32
 68	if (tv64.tv_sec > INT_MAX) {
 69		err = -ERANGE;
 70		goto err_read;
 71	}
 72#endif
 73
 74	err = do_settimeofday64(&tv64);
 75
 76	dev_info(rtc->dev.parent, "setting system clock to %ptR UTC (%lld)\n",
 77		 &tm, (long long)tv64.tv_sec);
 78
 79err_read:
 80	rtc_hctosys_ret = err;
 81}
 82#endif
 83
 84#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
 85/*
 86 * On suspend(), measure the delta between one RTC and the
 87 * system's wall clock; restore it on resume().
 88 */
 89
 90static struct timespec64 old_rtc, old_system, old_delta;
 91
 92static int rtc_suspend(struct device *dev)
 93{
 94	struct rtc_device	*rtc = to_rtc_device(dev);
 95	struct rtc_time		tm;
 96	struct timespec64	delta, delta_delta;
 97	int err;
 98
 99	if (timekeeping_rtc_skipsuspend())
100		return 0;
101
102	if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
103		return 0;
104
105	/* snapshot the current RTC and system time at suspend*/
106	err = rtc_read_time(rtc, &tm);
107	if (err < 0) {
108		pr_debug("%s:  fail to read rtc time\n", dev_name(&rtc->dev));
109		return 0;
110	}
111
112	ktime_get_real_ts64(&old_system);
113	old_rtc.tv_sec = rtc_tm_to_time64(&tm);
114
115	/*
116	 * To avoid drift caused by repeated suspend/resumes,
117	 * which each can add ~1 second drift error,
118	 * try to compensate so the difference in system time
119	 * and rtc time stays close to constant.
120	 */
121	delta = timespec64_sub(old_system, old_rtc);
122	delta_delta = timespec64_sub(delta, old_delta);
123	if (delta_delta.tv_sec < -2 || delta_delta.tv_sec >= 2) {
124		/*
125		 * if delta_delta is too large, assume time correction
126		 * has occurred and set old_delta to the current delta.
127		 */
128		old_delta = delta;
129	} else {
130		/* Otherwise try to adjust old_system to compensate */
131		old_system = timespec64_sub(old_system, delta_delta);
132	}
133
134	return 0;
135}
136
137static int rtc_resume(struct device *dev)
138{
139	struct rtc_device	*rtc = to_rtc_device(dev);
140	struct rtc_time		tm;
141	struct timespec64	new_system, new_rtc;
142	struct timespec64	sleep_time;
143	int err;
144
145	if (timekeeping_rtc_skipresume())
146		return 0;
147
148	rtc_hctosys_ret = -ENODEV;
149	if (strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE) != 0)
150		return 0;
151
152	/* snapshot the current rtc and system time at resume */
153	ktime_get_real_ts64(&new_system);
154	err = rtc_read_time(rtc, &tm);
155	if (err < 0) {
156		pr_debug("%s:  fail to read rtc time\n", dev_name(&rtc->dev));
157		return 0;
158	}
159
160	new_rtc.tv_sec = rtc_tm_to_time64(&tm);
161	new_rtc.tv_nsec = 0;
162
163	if (new_rtc.tv_sec < old_rtc.tv_sec) {
164		pr_debug("%s:  time travel!\n", dev_name(&rtc->dev));
165		return 0;
166	}
167
168	/* calculate the RTC time delta (sleep time)*/
169	sleep_time = timespec64_sub(new_rtc, old_rtc);
170
171	/*
172	 * Since these RTC suspend/resume handlers are not called
173	 * at the very end of suspend or the start of resume,
174	 * some run-time may pass on either sides of the sleep time
175	 * so subtract kernel run-time between rtc_suspend to rtc_resume
176	 * to keep things accurate.
177	 */
178	sleep_time = timespec64_sub(sleep_time,
179				    timespec64_sub(new_system, old_system));
180
181	if (sleep_time.tv_sec >= 0)
182		timekeeping_inject_sleeptime64(&sleep_time);
183	rtc_hctosys_ret = 0;
184	return 0;
185}
186
187static SIMPLE_DEV_PM_OPS(rtc_class_dev_pm_ops, rtc_suspend, rtc_resume);
188#define RTC_CLASS_DEV_PM_OPS	(&rtc_class_dev_pm_ops)
189#else
190#define RTC_CLASS_DEV_PM_OPS	NULL
191#endif
192
193/* Ensure the caller will set the id before releasing the device */
194static struct rtc_device *rtc_allocate_device(void)
195{
196	struct rtc_device *rtc;
197
198	rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
199	if (!rtc)
200		return NULL;
201
202	device_initialize(&rtc->dev);
203
204	/*
205	 * Drivers can revise this default after allocating the device.
206	 * The default is what most RTCs do: Increment seconds exactly one
207	 * second after the write happened. This adds a default transport
208	 * time of 5ms which is at least halfways close to reality.
209	 */
210	rtc->set_offset_nsec = NSEC_PER_SEC + 5 * NSEC_PER_MSEC;
211
212	rtc->irq_freq = 1;
213	rtc->max_user_freq = 64;
214	rtc->dev.class = rtc_class;
215	rtc->dev.groups = rtc_get_dev_attribute_groups();
216	rtc->dev.release = rtc_device_release;
217
218	mutex_init(&rtc->ops_lock);
219	spin_lock_init(&rtc->irq_lock);
220	init_waitqueue_head(&rtc->irq_queue);
221
222	/* Init timerqueue */
223	timerqueue_init_head(&rtc->timerqueue);
224	INIT_WORK(&rtc->irqwork, rtc_timer_do_work);
225	/* Init aie timer */
226	rtc_timer_init(&rtc->aie_timer, rtc_aie_update_irq, rtc);
227	/* Init uie timer */
228	rtc_timer_init(&rtc->uie_rtctimer, rtc_uie_update_irq, rtc);
229	/* Init pie timer */
230	hrtimer_init(&rtc->pie_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
231	rtc->pie_timer.function = rtc_pie_update_irq;
232	rtc->pie_enabled = 0;
233
234	set_bit(RTC_FEATURE_ALARM, rtc->features);
 
235
236	return rtc;
237}
238
239static int rtc_device_get_id(struct device *dev)
240{
241	int of_id = -1, id = -1;
242
243	if (dev->of_node)
244		of_id = of_alias_get_id(dev->of_node, "rtc");
245	else if (dev->parent && dev->parent->of_node)
246		of_id = of_alias_get_id(dev->parent->of_node, "rtc");
247
248	if (of_id >= 0) {
249		id = ida_simple_get(&rtc_ida, of_id, of_id + 1, GFP_KERNEL);
250		if (id < 0)
251			dev_warn(dev, "/aliases ID %d not available\n", of_id);
252	}
253
254	if (id < 0)
255		id = ida_simple_get(&rtc_ida, 0, 0, GFP_KERNEL);
256
257	return id;
258}
259
260static void rtc_device_get_offset(struct rtc_device *rtc)
261{
262	time64_t range_secs;
263	u32 start_year;
264	int ret;
265
266	/*
267	 * If RTC driver did not implement the range of RTC hardware device,
268	 * then we can not expand the RTC range by adding or subtracting one
269	 * offset.
270	 */
271	if (rtc->range_min == rtc->range_max)
272		return;
273
274	ret = device_property_read_u32(rtc->dev.parent, "start-year",
275				       &start_year);
276	if (!ret) {
277		rtc->start_secs = mktime64(start_year, 1, 1, 0, 0, 0);
278		rtc->set_start_time = true;
279	}
280
281	/*
282	 * If user did not implement the start time for RTC driver, then no
283	 * need to expand the RTC range.
284	 */
285	if (!rtc->set_start_time)
286		return;
287
288	range_secs = rtc->range_max - rtc->range_min + 1;
289
290	/*
291	 * If the start_secs is larger than the maximum seconds (rtc->range_max)
292	 * supported by RTC hardware or the maximum seconds of new expanded
293	 * range (start_secs + rtc->range_max - rtc->range_min) is less than
294	 * rtc->range_min, which means the minimum seconds (rtc->range_min) of
295	 * RTC hardware will be mapped to start_secs by adding one offset, so
296	 * the offset seconds calculation formula should be:
297	 * rtc->offset_secs = rtc->start_secs - rtc->range_min;
298	 *
299	 * If the start_secs is larger than the minimum seconds (rtc->range_min)
300	 * supported by RTC hardware, then there is one region is overlapped
301	 * between the original RTC hardware range and the new expanded range,
302	 * and this overlapped region do not need to be mapped into the new
303	 * expanded range due to it is valid for RTC device. So the minimum
304	 * seconds of RTC hardware (rtc->range_min) should be mapped to
305	 * rtc->range_max + 1, then the offset seconds formula should be:
306	 * rtc->offset_secs = rtc->range_max - rtc->range_min + 1;
307	 *
308	 * If the start_secs is less than the minimum seconds (rtc->range_min),
309	 * which is similar to case 2. So the start_secs should be mapped to
310	 * start_secs + rtc->range_max - rtc->range_min + 1, then the
311	 * offset seconds formula should be:
312	 * rtc->offset_secs = -(rtc->range_max - rtc->range_min + 1);
313	 *
314	 * Otherwise the offset seconds should be 0.
315	 */
316	if (rtc->start_secs > rtc->range_max ||
317	    rtc->start_secs + range_secs - 1 < rtc->range_min)
318		rtc->offset_secs = rtc->start_secs - rtc->range_min;
319	else if (rtc->start_secs > rtc->range_min)
320		rtc->offset_secs = range_secs;
321	else if (rtc->start_secs < rtc->range_min)
322		rtc->offset_secs = -range_secs;
323	else
324		rtc->offset_secs = 0;
325}
326
327static void devm_rtc_unregister_device(void *data)
328{
329	struct rtc_device *rtc = data;
330
331	mutex_lock(&rtc->ops_lock);
332	/*
333	 * Remove innards of this RTC, then disable it, before
334	 * letting any rtc_class_open() users access it again
335	 */
336	rtc_proc_del_device(rtc);
337	cdev_device_del(&rtc->char_dev, &rtc->dev);
 
338	rtc->ops = NULL;
339	mutex_unlock(&rtc->ops_lock);
340}
341
342static void devm_rtc_release_device(void *res)
343{
344	struct rtc_device *rtc = res;
345
346	put_device(&rtc->dev);
347}
348
349struct rtc_device *devm_rtc_allocate_device(struct device *dev)
350{
351	struct rtc_device *rtc;
352	int id, err;
353
354	id = rtc_device_get_id(dev);
355	if (id < 0)
356		return ERR_PTR(id);
357
358	rtc = rtc_allocate_device();
359	if (!rtc) {
360		ida_simple_remove(&rtc_ida, id);
361		return ERR_PTR(-ENOMEM);
362	}
363
364	rtc->id = id;
365	rtc->dev.parent = dev;
366	dev_set_name(&rtc->dev, "rtc%d", id);
 
 
367
368	err = devm_add_action_or_reset(dev, devm_rtc_release_device, rtc);
369	if (err)
370		return ERR_PTR(err);
371
372	return rtc;
373}
374EXPORT_SYMBOL_GPL(devm_rtc_allocate_device);
375
376int __devm_rtc_register_device(struct module *owner, struct rtc_device *rtc)
377{
378	struct rtc_wkalrm alrm;
379	int err;
380
381	if (!rtc->ops) {
382		dev_dbg(&rtc->dev, "no ops set\n");
383		return -EINVAL;
384	}
385
386	if (!rtc->ops->set_alarm)
387		clear_bit(RTC_FEATURE_ALARM, rtc->features);
388
 
 
 
389	rtc->owner = owner;
390	rtc_device_get_offset(rtc);
391
392	/* Check to see if there is an ALARM already set in hw */
393	err = __rtc_read_alarm(rtc, &alrm);
394	if (!err && !rtc_valid_tm(&alrm.time))
395		rtc_initialize_alarm(rtc, &alrm);
396
397	rtc_dev_prepare(rtc);
398
399	err = cdev_device_add(&rtc->char_dev, &rtc->dev);
400	if (err)
 
401		dev_warn(rtc->dev.parent, "failed to add char device %d:%d\n",
402			 MAJOR(rtc->dev.devt), rtc->id);
403	else
404		dev_dbg(rtc->dev.parent, "char device (%d:%d)\n",
405			MAJOR(rtc->dev.devt), rtc->id);
 
406
407	rtc_proc_add_device(rtc);
408
409	dev_info(rtc->dev.parent, "registered as %s\n",
410		 dev_name(&rtc->dev));
411
412#ifdef CONFIG_RTC_HCTOSYS_DEVICE
413	if (!strcmp(dev_name(&rtc->dev), CONFIG_RTC_HCTOSYS_DEVICE))
414		rtc_hctosys(rtc);
415#endif
416
417	return devm_add_action_or_reset(rtc->dev.parent,
418					devm_rtc_unregister_device, rtc);
419}
420EXPORT_SYMBOL_GPL(__devm_rtc_register_device);
421
422/**
423 * devm_rtc_device_register - resource managed rtc_device_register()
424 * @dev: the device to register
425 * @name: the name of the device (unused)
426 * @ops: the rtc operations structure
427 * @owner: the module owner
428 *
429 * @return a struct rtc on success, or an ERR_PTR on error
430 *
431 * Managed rtc_device_register(). The rtc_device returned from this function
432 * are automatically freed on driver detach.
433 * This function is deprecated, use devm_rtc_allocate_device and
434 * rtc_register_device instead
435 */
436struct rtc_device *devm_rtc_device_register(struct device *dev,
437					    const char *name,
438					    const struct rtc_class_ops *ops,
439					    struct module *owner)
440{
441	struct rtc_device *rtc;
442	int err;
443
444	rtc = devm_rtc_allocate_device(dev);
445	if (IS_ERR(rtc))
446		return rtc;
447
448	rtc->ops = ops;
449
450	err = __devm_rtc_register_device(owner, rtc);
451	if (err)
452		return ERR_PTR(err);
453
454	return rtc;
455}
456EXPORT_SYMBOL_GPL(devm_rtc_device_register);
457
458static int __init rtc_init(void)
459{
460	rtc_class = class_create(THIS_MODULE, "rtc");
461	if (IS_ERR(rtc_class)) {
462		pr_err("couldn't create class\n");
463		return PTR_ERR(rtc_class);
464	}
465	rtc_class->pm = RTC_CLASS_DEV_PM_OPS;
466	rtc_dev_init();
467	return 0;
468}
469subsys_initcall(rtc_init);