Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2009, Microsoft Corporation.
4 *
5 * Authors:
6 * Haiyang Zhang <haiyangz@microsoft.com>
7 * Hank Janssen <hjanssen@microsoft.com>
8 */
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/init.h>
12#include <linux/atomic.h>
13#include <linux/ethtool.h>
14#include <linux/module.h>
15#include <linux/highmem.h>
16#include <linux/device.h>
17#include <linux/io.h>
18#include <linux/delay.h>
19#include <linux/netdevice.h>
20#include <linux/inetdevice.h>
21#include <linux/etherdevice.h>
22#include <linux/pci.h>
23#include <linux/skbuff.h>
24#include <linux/if_vlan.h>
25#include <linux/in.h>
26#include <linux/slab.h>
27#include <linux/rtnetlink.h>
28#include <linux/netpoll.h>
29#include <linux/bpf.h>
30
31#include <net/arp.h>
32#include <net/route.h>
33#include <net/sock.h>
34#include <net/pkt_sched.h>
35#include <net/checksum.h>
36#include <net/ip6_checksum.h>
37
38#include "hyperv_net.h"
39
40#define RING_SIZE_MIN 64
41
42#define LINKCHANGE_INT (2 * HZ)
43#define VF_TAKEOVER_INT (HZ / 10)
44
45static unsigned int ring_size __ro_after_init = 128;
46module_param(ring_size, uint, 0444);
47MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
48unsigned int netvsc_ring_bytes __ro_after_init;
49
50static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
51 NETIF_MSG_LINK | NETIF_MSG_IFUP |
52 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
53 NETIF_MSG_TX_ERR;
54
55static int debug = -1;
56module_param(debug, int, 0444);
57MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
58
59static LIST_HEAD(netvsc_dev_list);
60
61static void netvsc_change_rx_flags(struct net_device *net, int change)
62{
63 struct net_device_context *ndev_ctx = netdev_priv(net);
64 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
65 int inc;
66
67 if (!vf_netdev)
68 return;
69
70 if (change & IFF_PROMISC) {
71 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
72 dev_set_promiscuity(vf_netdev, inc);
73 }
74
75 if (change & IFF_ALLMULTI) {
76 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
77 dev_set_allmulti(vf_netdev, inc);
78 }
79}
80
81static void netvsc_set_rx_mode(struct net_device *net)
82{
83 struct net_device_context *ndev_ctx = netdev_priv(net);
84 struct net_device *vf_netdev;
85 struct netvsc_device *nvdev;
86
87 rcu_read_lock();
88 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
89 if (vf_netdev) {
90 dev_uc_sync(vf_netdev, net);
91 dev_mc_sync(vf_netdev, net);
92 }
93
94 nvdev = rcu_dereference(ndev_ctx->nvdev);
95 if (nvdev)
96 rndis_filter_update(nvdev);
97 rcu_read_unlock();
98}
99
100static void netvsc_tx_enable(struct netvsc_device *nvscdev,
101 struct net_device *ndev)
102{
103 nvscdev->tx_disable = false;
104 virt_wmb(); /* ensure queue wake up mechanism is on */
105
106 netif_tx_wake_all_queues(ndev);
107}
108
109static int netvsc_open(struct net_device *net)
110{
111 struct net_device_context *ndev_ctx = netdev_priv(net);
112 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
113 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
114 struct rndis_device *rdev;
115 int ret = 0;
116
117 netif_carrier_off(net);
118
119 /* Open up the device */
120 ret = rndis_filter_open(nvdev);
121 if (ret != 0) {
122 netdev_err(net, "unable to open device (ret %d).\n", ret);
123 return ret;
124 }
125
126 rdev = nvdev->extension;
127 if (!rdev->link_state) {
128 netif_carrier_on(net);
129 netvsc_tx_enable(nvdev, net);
130 }
131
132 if (vf_netdev) {
133 /* Setting synthetic device up transparently sets
134 * slave as up. If open fails, then slave will be
135 * still be offline (and not used).
136 */
137 ret = dev_open(vf_netdev, NULL);
138 if (ret)
139 netdev_warn(net,
140 "unable to open slave: %s: %d\n",
141 vf_netdev->name, ret);
142 }
143 return 0;
144}
145
146static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
147{
148 unsigned int retry = 0;
149 int i;
150
151 /* Ensure pending bytes in ring are read */
152 for (;;) {
153 u32 aread = 0;
154
155 for (i = 0; i < nvdev->num_chn; i++) {
156 struct vmbus_channel *chn
157 = nvdev->chan_table[i].channel;
158
159 if (!chn)
160 continue;
161
162 /* make sure receive not running now */
163 napi_synchronize(&nvdev->chan_table[i].napi);
164
165 aread = hv_get_bytes_to_read(&chn->inbound);
166 if (aread)
167 break;
168
169 aread = hv_get_bytes_to_read(&chn->outbound);
170 if (aread)
171 break;
172 }
173
174 if (aread == 0)
175 return 0;
176
177 if (++retry > RETRY_MAX)
178 return -ETIMEDOUT;
179
180 usleep_range(RETRY_US_LO, RETRY_US_HI);
181 }
182}
183
184static void netvsc_tx_disable(struct netvsc_device *nvscdev,
185 struct net_device *ndev)
186{
187 if (nvscdev) {
188 nvscdev->tx_disable = true;
189 virt_wmb(); /* ensure txq will not wake up after stop */
190 }
191
192 netif_tx_disable(ndev);
193}
194
195static int netvsc_close(struct net_device *net)
196{
197 struct net_device_context *net_device_ctx = netdev_priv(net);
198 struct net_device *vf_netdev
199 = rtnl_dereference(net_device_ctx->vf_netdev);
200 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
201 int ret;
202
203 netvsc_tx_disable(nvdev, net);
204
205 /* No need to close rndis filter if it is removed already */
206 if (!nvdev)
207 return 0;
208
209 ret = rndis_filter_close(nvdev);
210 if (ret != 0) {
211 netdev_err(net, "unable to close device (ret %d).\n", ret);
212 return ret;
213 }
214
215 ret = netvsc_wait_until_empty(nvdev);
216 if (ret)
217 netdev_err(net, "Ring buffer not empty after closing rndis\n");
218
219 if (vf_netdev)
220 dev_close(vf_netdev);
221
222 return ret;
223}
224
225static inline void *init_ppi_data(struct rndis_message *msg,
226 u32 ppi_size, u32 pkt_type)
227{
228 struct rndis_packet *rndis_pkt = &msg->msg.pkt;
229 struct rndis_per_packet_info *ppi;
230
231 rndis_pkt->data_offset += ppi_size;
232 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
233 + rndis_pkt->per_pkt_info_len;
234
235 ppi->size = ppi_size;
236 ppi->type = pkt_type;
237 ppi->internal = 0;
238 ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
239
240 rndis_pkt->per_pkt_info_len += ppi_size;
241
242 return ppi + 1;
243}
244
245static inline int netvsc_get_tx_queue(struct net_device *ndev,
246 struct sk_buff *skb, int old_idx)
247{
248 const struct net_device_context *ndc = netdev_priv(ndev);
249 struct sock *sk = skb->sk;
250 int q_idx;
251
252 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
253 (VRSS_SEND_TAB_SIZE - 1)];
254
255 /* If queue index changed record the new value */
256 if (q_idx != old_idx &&
257 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
258 sk_tx_queue_set(sk, q_idx);
259
260 return q_idx;
261}
262
263/*
264 * Select queue for transmit.
265 *
266 * If a valid queue has already been assigned, then use that.
267 * Otherwise compute tx queue based on hash and the send table.
268 *
269 * This is basically similar to default (netdev_pick_tx) with the added step
270 * of using the host send_table when no other queue has been assigned.
271 *
272 * TODO support XPS - but get_xps_queue not exported
273 */
274static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
275{
276 int q_idx = sk_tx_queue_get(skb->sk);
277
278 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
279 /* If forwarding a packet, we use the recorded queue when
280 * available for better cache locality.
281 */
282 if (skb_rx_queue_recorded(skb))
283 q_idx = skb_get_rx_queue(skb);
284 else
285 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
286 }
287
288 return q_idx;
289}
290
291static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
292 struct net_device *sb_dev)
293{
294 struct net_device_context *ndc = netdev_priv(ndev);
295 struct net_device *vf_netdev;
296 u16 txq;
297
298 rcu_read_lock();
299 vf_netdev = rcu_dereference(ndc->vf_netdev);
300 if (vf_netdev) {
301 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
302
303 if (vf_ops->ndo_select_queue)
304 txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
305 else
306 txq = netdev_pick_tx(vf_netdev, skb, NULL);
307
308 /* Record the queue selected by VF so that it can be
309 * used for common case where VF has more queues than
310 * the synthetic device.
311 */
312 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
313 } else {
314 txq = netvsc_pick_tx(ndev, skb);
315 }
316 rcu_read_unlock();
317
318 while (txq >= ndev->real_num_tx_queues)
319 txq -= ndev->real_num_tx_queues;
320
321 return txq;
322}
323
324static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len,
325 struct hv_page_buffer *pb)
326{
327 int j = 0;
328
329 hvpfn += offset >> HV_HYP_PAGE_SHIFT;
330 offset = offset & ~HV_HYP_PAGE_MASK;
331
332 while (len > 0) {
333 unsigned long bytes;
334
335 bytes = HV_HYP_PAGE_SIZE - offset;
336 if (bytes > len)
337 bytes = len;
338 pb[j].pfn = hvpfn;
339 pb[j].offset = offset;
340 pb[j].len = bytes;
341
342 offset += bytes;
343 len -= bytes;
344
345 if (offset == HV_HYP_PAGE_SIZE && len) {
346 hvpfn++;
347 offset = 0;
348 j++;
349 }
350 }
351
352 return j + 1;
353}
354
355static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
356 struct hv_netvsc_packet *packet,
357 struct hv_page_buffer *pb)
358{
359 u32 slots_used = 0;
360 char *data = skb->data;
361 int frags = skb_shinfo(skb)->nr_frags;
362 int i;
363
364 /* The packet is laid out thus:
365 * 1. hdr: RNDIS header and PPI
366 * 2. skb linear data
367 * 3. skb fragment data
368 */
369 slots_used += fill_pg_buf(virt_to_hvpfn(hdr),
370 offset_in_hvpage(hdr),
371 len,
372 &pb[slots_used]);
373
374 packet->rmsg_size = len;
375 packet->rmsg_pgcnt = slots_used;
376
377 slots_used += fill_pg_buf(virt_to_hvpfn(data),
378 offset_in_hvpage(data),
379 skb_headlen(skb),
380 &pb[slots_used]);
381
382 for (i = 0; i < frags; i++) {
383 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
384
385 slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)),
386 skb_frag_off(frag),
387 skb_frag_size(frag),
388 &pb[slots_used]);
389 }
390 return slots_used;
391}
392
393static int count_skb_frag_slots(struct sk_buff *skb)
394{
395 int i, frags = skb_shinfo(skb)->nr_frags;
396 int pages = 0;
397
398 for (i = 0; i < frags; i++) {
399 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
400 unsigned long size = skb_frag_size(frag);
401 unsigned long offset = skb_frag_off(frag);
402
403 /* Skip unused frames from start of page */
404 offset &= ~HV_HYP_PAGE_MASK;
405 pages += HVPFN_UP(offset + size);
406 }
407 return pages;
408}
409
410static int netvsc_get_slots(struct sk_buff *skb)
411{
412 char *data = skb->data;
413 unsigned int offset = offset_in_hvpage(data);
414 unsigned int len = skb_headlen(skb);
415 int slots;
416 int frag_slots;
417
418 slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE);
419 frag_slots = count_skb_frag_slots(skb);
420 return slots + frag_slots;
421}
422
423static u32 net_checksum_info(struct sk_buff *skb)
424{
425 if (skb->protocol == htons(ETH_P_IP)) {
426 struct iphdr *ip = ip_hdr(skb);
427
428 if (ip->protocol == IPPROTO_TCP)
429 return TRANSPORT_INFO_IPV4_TCP;
430 else if (ip->protocol == IPPROTO_UDP)
431 return TRANSPORT_INFO_IPV4_UDP;
432 } else {
433 struct ipv6hdr *ip6 = ipv6_hdr(skb);
434
435 if (ip6->nexthdr == IPPROTO_TCP)
436 return TRANSPORT_INFO_IPV6_TCP;
437 else if (ip6->nexthdr == IPPROTO_UDP)
438 return TRANSPORT_INFO_IPV6_UDP;
439 }
440
441 return TRANSPORT_INFO_NOT_IP;
442}
443
444/* Send skb on the slave VF device. */
445static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
446 struct sk_buff *skb)
447{
448 struct net_device_context *ndev_ctx = netdev_priv(net);
449 unsigned int len = skb->len;
450 int rc;
451
452 skb->dev = vf_netdev;
453 skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping);
454
455 rc = dev_queue_xmit(skb);
456 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
457 struct netvsc_vf_pcpu_stats *pcpu_stats
458 = this_cpu_ptr(ndev_ctx->vf_stats);
459
460 u64_stats_update_begin(&pcpu_stats->syncp);
461 pcpu_stats->tx_packets++;
462 pcpu_stats->tx_bytes += len;
463 u64_stats_update_end(&pcpu_stats->syncp);
464 } else {
465 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
466 }
467
468 return rc;
469}
470
471static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx)
472{
473 struct net_device_context *net_device_ctx = netdev_priv(net);
474 struct hv_netvsc_packet *packet = NULL;
475 int ret;
476 unsigned int num_data_pgs;
477 struct rndis_message *rndis_msg;
478 struct net_device *vf_netdev;
479 u32 rndis_msg_size;
480 u32 hash;
481 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
482
483 /* If VF is present and up then redirect packets to it.
484 * Skip the VF if it is marked down or has no carrier.
485 * If netpoll is in uses, then VF can not be used either.
486 */
487 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
488 if (vf_netdev && netif_running(vf_netdev) &&
489 netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net) &&
490 net_device_ctx->data_path_is_vf)
491 return netvsc_vf_xmit(net, vf_netdev, skb);
492
493 /* We will atmost need two pages to describe the rndis
494 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
495 * of pages in a single packet. If skb is scattered around
496 * more pages we try linearizing it.
497 */
498
499 num_data_pgs = netvsc_get_slots(skb) + 2;
500
501 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
502 ++net_device_ctx->eth_stats.tx_scattered;
503
504 if (skb_linearize(skb))
505 goto no_memory;
506
507 num_data_pgs = netvsc_get_slots(skb) + 2;
508 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
509 ++net_device_ctx->eth_stats.tx_too_big;
510 goto drop;
511 }
512 }
513
514 /*
515 * Place the rndis header in the skb head room and
516 * the skb->cb will be used for hv_netvsc_packet
517 * structure.
518 */
519 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
520 if (ret)
521 goto no_memory;
522
523 /* Use the skb control buffer for building up the packet */
524 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
525 sizeof_field(struct sk_buff, cb));
526 packet = (struct hv_netvsc_packet *)skb->cb;
527
528 packet->q_idx = skb_get_queue_mapping(skb);
529
530 packet->total_data_buflen = skb->len;
531 packet->total_bytes = skb->len;
532 packet->total_packets = 1;
533
534 rndis_msg = (struct rndis_message *)skb->head;
535
536 /* Add the rndis header */
537 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
538 rndis_msg->msg_len = packet->total_data_buflen;
539
540 rndis_msg->msg.pkt = (struct rndis_packet) {
541 .data_offset = sizeof(struct rndis_packet),
542 .data_len = packet->total_data_buflen,
543 .per_pkt_info_offset = sizeof(struct rndis_packet),
544 };
545
546 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
547
548 hash = skb_get_hash_raw(skb);
549 if (hash != 0 && net->real_num_tx_queues > 1) {
550 u32 *hash_info;
551
552 rndis_msg_size += NDIS_HASH_PPI_SIZE;
553 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
554 NBL_HASH_VALUE);
555 *hash_info = hash;
556 }
557
558 /* When using AF_PACKET we need to drop VLAN header from
559 * the frame and update the SKB to allow the HOST OS
560 * to transmit the 802.1Q packet
561 */
562 if (skb->protocol == htons(ETH_P_8021Q)) {
563 u16 vlan_tci;
564
565 skb_reset_mac_header(skb);
566 if (eth_type_vlan(eth_hdr(skb)->h_proto)) {
567 if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) {
568 ++net_device_ctx->eth_stats.vlan_error;
569 goto drop;
570 }
571
572 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
573 /* Update the NDIS header pkt lengths */
574 packet->total_data_buflen -= VLAN_HLEN;
575 packet->total_bytes -= VLAN_HLEN;
576 rndis_msg->msg_len = packet->total_data_buflen;
577 rndis_msg->msg.pkt.data_len = packet->total_data_buflen;
578 }
579 }
580
581 if (skb_vlan_tag_present(skb)) {
582 struct ndis_pkt_8021q_info *vlan;
583
584 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
585 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
586 IEEE_8021Q_INFO);
587
588 vlan->value = 0;
589 vlan->vlanid = skb_vlan_tag_get_id(skb);
590 vlan->cfi = skb_vlan_tag_get_cfi(skb);
591 vlan->pri = skb_vlan_tag_get_prio(skb);
592 }
593
594 if (skb_is_gso(skb)) {
595 struct ndis_tcp_lso_info *lso_info;
596
597 rndis_msg_size += NDIS_LSO_PPI_SIZE;
598 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
599 TCP_LARGESEND_PKTINFO);
600
601 lso_info->value = 0;
602 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
603 if (skb->protocol == htons(ETH_P_IP)) {
604 lso_info->lso_v2_transmit.ip_version =
605 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
606 ip_hdr(skb)->tot_len = 0;
607 ip_hdr(skb)->check = 0;
608 tcp_hdr(skb)->check =
609 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
610 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
611 } else {
612 lso_info->lso_v2_transmit.ip_version =
613 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
614 tcp_v6_gso_csum_prep(skb);
615 }
616 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
617 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
618 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
619 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
620 struct ndis_tcp_ip_checksum_info *csum_info;
621
622 rndis_msg_size += NDIS_CSUM_PPI_SIZE;
623 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
624 TCPIP_CHKSUM_PKTINFO);
625
626 csum_info->value = 0;
627 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
628
629 if (skb->protocol == htons(ETH_P_IP)) {
630 csum_info->transmit.is_ipv4 = 1;
631
632 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
633 csum_info->transmit.tcp_checksum = 1;
634 else
635 csum_info->transmit.udp_checksum = 1;
636 } else {
637 csum_info->transmit.is_ipv6 = 1;
638
639 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
640 csum_info->transmit.tcp_checksum = 1;
641 else
642 csum_info->transmit.udp_checksum = 1;
643 }
644 } else {
645 /* Can't do offload of this type of checksum */
646 if (skb_checksum_help(skb))
647 goto drop;
648 }
649 }
650
651 /* Start filling in the page buffers with the rndis hdr */
652 rndis_msg->msg_len += rndis_msg_size;
653 packet->total_data_buflen = rndis_msg->msg_len;
654 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
655 skb, packet, pb);
656
657 /* timestamp packet in software */
658 skb_tx_timestamp(skb);
659
660 ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx);
661 if (likely(ret == 0))
662 return NETDEV_TX_OK;
663
664 if (ret == -EAGAIN) {
665 ++net_device_ctx->eth_stats.tx_busy;
666 return NETDEV_TX_BUSY;
667 }
668
669 if (ret == -ENOSPC)
670 ++net_device_ctx->eth_stats.tx_no_space;
671
672drop:
673 dev_kfree_skb_any(skb);
674 net->stats.tx_dropped++;
675
676 return NETDEV_TX_OK;
677
678no_memory:
679 ++net_device_ctx->eth_stats.tx_no_memory;
680 goto drop;
681}
682
683static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb,
684 struct net_device *ndev)
685{
686 return netvsc_xmit(skb, ndev, false);
687}
688
689/*
690 * netvsc_linkstatus_callback - Link up/down notification
691 */
692void netvsc_linkstatus_callback(struct net_device *net,
693 struct rndis_message *resp,
694 void *data, u32 data_buflen)
695{
696 struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
697 struct net_device_context *ndev_ctx = netdev_priv(net);
698 struct netvsc_reconfig *event;
699 unsigned long flags;
700
701 /* Ensure the packet is big enough to access its fields */
702 if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) {
703 netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n",
704 resp->msg_len);
705 return;
706 }
707
708 /* Copy the RNDIS indicate status into nvchan->recv_buf */
709 memcpy(indicate, data + RNDIS_HEADER_SIZE, sizeof(*indicate));
710
711 /* Update the physical link speed when changing to another vSwitch */
712 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
713 u32 speed;
714
715 /* Validate status_buf_offset and status_buflen.
716 *
717 * Certain (pre-Fe) implementations of Hyper-V's vSwitch didn't account
718 * for the status buffer field in resp->msg_len; perform the validation
719 * using data_buflen (>= resp->msg_len).
720 */
721 if (indicate->status_buflen < sizeof(speed) ||
722 indicate->status_buf_offset < sizeof(*indicate) ||
723 data_buflen - RNDIS_HEADER_SIZE < indicate->status_buf_offset ||
724 data_buflen - RNDIS_HEADER_SIZE - indicate->status_buf_offset
725 < indicate->status_buflen) {
726 netdev_err(net, "invalid rndis_indicate_status packet\n");
727 return;
728 }
729
730 speed = *(u32 *)(data + RNDIS_HEADER_SIZE + indicate->status_buf_offset) / 10000;
731 ndev_ctx->speed = speed;
732 return;
733 }
734
735 /* Handle these link change statuses below */
736 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
737 indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
738 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
739 return;
740
741 if (net->reg_state != NETREG_REGISTERED)
742 return;
743
744 event = kzalloc(sizeof(*event), GFP_ATOMIC);
745 if (!event)
746 return;
747 event->event = indicate->status;
748
749 spin_lock_irqsave(&ndev_ctx->lock, flags);
750 list_add_tail(&event->list, &ndev_ctx->reconfig_events);
751 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
752
753 schedule_delayed_work(&ndev_ctx->dwork, 0);
754}
755
756/* This function should only be called after skb_record_rx_queue() */
757void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev)
758{
759 int rc;
760
761 skb->queue_mapping = skb_get_rx_queue(skb);
762 __skb_push(skb, ETH_HLEN);
763
764 rc = netvsc_xmit(skb, ndev, true);
765
766 if (dev_xmit_complete(rc))
767 return;
768
769 dev_kfree_skb_any(skb);
770 ndev->stats.tx_dropped++;
771}
772
773static void netvsc_comp_ipcsum(struct sk_buff *skb)
774{
775 struct iphdr *iph = (struct iphdr *)skb->data;
776
777 iph->check = 0;
778 iph->check = ip_fast_csum(iph, iph->ihl);
779}
780
781static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
782 struct netvsc_channel *nvchan,
783 struct xdp_buff *xdp)
784{
785 struct napi_struct *napi = &nvchan->napi;
786 const struct ndis_pkt_8021q_info *vlan = &nvchan->rsc.vlan;
787 const struct ndis_tcp_ip_checksum_info *csum_info =
788 &nvchan->rsc.csum_info;
789 const u32 *hash_info = &nvchan->rsc.hash_info;
790 u8 ppi_flags = nvchan->rsc.ppi_flags;
791 struct sk_buff *skb;
792 void *xbuf = xdp->data_hard_start;
793 int i;
794
795 if (xbuf) {
796 unsigned int hdroom = xdp->data - xdp->data_hard_start;
797 unsigned int xlen = xdp->data_end - xdp->data;
798 unsigned int frag_size = xdp->frame_sz;
799
800 skb = build_skb(xbuf, frag_size);
801
802 if (!skb) {
803 __free_page(virt_to_page(xbuf));
804 return NULL;
805 }
806
807 skb_reserve(skb, hdroom);
808 skb_put(skb, xlen);
809 skb->dev = napi->dev;
810 } else {
811 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
812
813 if (!skb)
814 return NULL;
815
816 /* Copy to skb. This copy is needed here since the memory
817 * pointed by hv_netvsc_packet cannot be deallocated.
818 */
819 for (i = 0; i < nvchan->rsc.cnt; i++)
820 skb_put_data(skb, nvchan->rsc.data[i],
821 nvchan->rsc.len[i]);
822 }
823
824 skb->protocol = eth_type_trans(skb, net);
825
826 /* skb is already created with CHECKSUM_NONE */
827 skb_checksum_none_assert(skb);
828
829 /* Incoming packets may have IP header checksum verified by the host.
830 * They may not have IP header checksum computed after coalescing.
831 * We compute it here if the flags are set, because on Linux, the IP
832 * checksum is always checked.
833 */
834 if ((ppi_flags & NVSC_RSC_CSUM_INFO) && csum_info->receive.ip_checksum_value_invalid &&
835 csum_info->receive.ip_checksum_succeeded &&
836 skb->protocol == htons(ETH_P_IP)) {
837 /* Check that there is enough space to hold the IP header. */
838 if (skb_headlen(skb) < sizeof(struct iphdr)) {
839 kfree_skb(skb);
840 return NULL;
841 }
842 netvsc_comp_ipcsum(skb);
843 }
844
845 /* Do L4 checksum offload if enabled and present. */
846 if ((ppi_flags & NVSC_RSC_CSUM_INFO) && (net->features & NETIF_F_RXCSUM)) {
847 if (csum_info->receive.tcp_checksum_succeeded ||
848 csum_info->receive.udp_checksum_succeeded)
849 skb->ip_summed = CHECKSUM_UNNECESSARY;
850 }
851
852 if ((ppi_flags & NVSC_RSC_HASH_INFO) && (net->features & NETIF_F_RXHASH))
853 skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
854
855 if (ppi_flags & NVSC_RSC_VLAN) {
856 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
857 (vlan->cfi ? VLAN_CFI_MASK : 0);
858
859 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
860 vlan_tci);
861 }
862
863 return skb;
864}
865
866/*
867 * netvsc_recv_callback - Callback when we receive a packet from the
868 * "wire" on the specified device.
869 */
870int netvsc_recv_callback(struct net_device *net,
871 struct netvsc_device *net_device,
872 struct netvsc_channel *nvchan)
873{
874 struct net_device_context *net_device_ctx = netdev_priv(net);
875 struct vmbus_channel *channel = nvchan->channel;
876 u16 q_idx = channel->offermsg.offer.sub_channel_index;
877 struct sk_buff *skb;
878 struct netvsc_stats_rx *rx_stats = &nvchan->rx_stats;
879 struct xdp_buff xdp;
880 u32 act;
881
882 if (net->reg_state != NETREG_REGISTERED)
883 return NVSP_STAT_FAIL;
884
885 act = netvsc_run_xdp(net, nvchan, &xdp);
886
887 if (act == XDP_REDIRECT)
888 return NVSP_STAT_SUCCESS;
889
890 if (act != XDP_PASS && act != XDP_TX) {
891 u64_stats_update_begin(&rx_stats->syncp);
892 rx_stats->xdp_drop++;
893 u64_stats_update_end(&rx_stats->syncp);
894
895 return NVSP_STAT_SUCCESS; /* consumed by XDP */
896 }
897
898 /* Allocate a skb - TODO direct I/O to pages? */
899 skb = netvsc_alloc_recv_skb(net, nvchan, &xdp);
900
901 if (unlikely(!skb)) {
902 ++net_device_ctx->eth_stats.rx_no_memory;
903 return NVSP_STAT_FAIL;
904 }
905
906 skb_record_rx_queue(skb, q_idx);
907
908 /*
909 * Even if injecting the packet, record the statistics
910 * on the synthetic device because modifying the VF device
911 * statistics will not work correctly.
912 */
913 u64_stats_update_begin(&rx_stats->syncp);
914 if (act == XDP_TX)
915 rx_stats->xdp_tx++;
916
917 rx_stats->packets++;
918 rx_stats->bytes += nvchan->rsc.pktlen;
919
920 if (skb->pkt_type == PACKET_BROADCAST)
921 ++rx_stats->broadcast;
922 else if (skb->pkt_type == PACKET_MULTICAST)
923 ++rx_stats->multicast;
924 u64_stats_update_end(&rx_stats->syncp);
925
926 if (act == XDP_TX) {
927 netvsc_xdp_xmit(skb, net);
928 return NVSP_STAT_SUCCESS;
929 }
930
931 napi_gro_receive(&nvchan->napi, skb);
932 return NVSP_STAT_SUCCESS;
933}
934
935static void netvsc_get_drvinfo(struct net_device *net,
936 struct ethtool_drvinfo *info)
937{
938 strscpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
939 strscpy(info->fw_version, "N/A", sizeof(info->fw_version));
940}
941
942static void netvsc_get_channels(struct net_device *net,
943 struct ethtool_channels *channel)
944{
945 struct net_device_context *net_device_ctx = netdev_priv(net);
946 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
947
948 if (nvdev) {
949 channel->max_combined = nvdev->max_chn;
950 channel->combined_count = nvdev->num_chn;
951 }
952}
953
954/* Alloc struct netvsc_device_info, and initialize it from either existing
955 * struct netvsc_device, or from default values.
956 */
957static
958struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev)
959{
960 struct netvsc_device_info *dev_info;
961 struct bpf_prog *prog;
962
963 dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
964
965 if (!dev_info)
966 return NULL;
967
968 if (nvdev) {
969 ASSERT_RTNL();
970
971 dev_info->num_chn = nvdev->num_chn;
972 dev_info->send_sections = nvdev->send_section_cnt;
973 dev_info->send_section_size = nvdev->send_section_size;
974 dev_info->recv_sections = nvdev->recv_section_cnt;
975 dev_info->recv_section_size = nvdev->recv_section_size;
976
977 memcpy(dev_info->rss_key, nvdev->extension->rss_key,
978 NETVSC_HASH_KEYLEN);
979
980 prog = netvsc_xdp_get(nvdev);
981 if (prog) {
982 bpf_prog_inc(prog);
983 dev_info->bprog = prog;
984 }
985 } else {
986 dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
987 dev_info->send_sections = NETVSC_DEFAULT_TX;
988 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
989 dev_info->recv_sections = NETVSC_DEFAULT_RX;
990 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
991 }
992
993 return dev_info;
994}
995
996/* Free struct netvsc_device_info */
997static void netvsc_devinfo_put(struct netvsc_device_info *dev_info)
998{
999 if (dev_info->bprog) {
1000 ASSERT_RTNL();
1001 bpf_prog_put(dev_info->bprog);
1002 }
1003
1004 kfree(dev_info);
1005}
1006
1007static int netvsc_detach(struct net_device *ndev,
1008 struct netvsc_device *nvdev)
1009{
1010 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1011 struct hv_device *hdev = ndev_ctx->device_ctx;
1012 int ret;
1013
1014 /* Don't try continuing to try and setup sub channels */
1015 if (cancel_work_sync(&nvdev->subchan_work))
1016 nvdev->num_chn = 1;
1017
1018 netvsc_xdp_set(ndev, NULL, NULL, nvdev);
1019
1020 /* If device was up (receiving) then shutdown */
1021 if (netif_running(ndev)) {
1022 netvsc_tx_disable(nvdev, ndev);
1023
1024 ret = rndis_filter_close(nvdev);
1025 if (ret) {
1026 netdev_err(ndev,
1027 "unable to close device (ret %d).\n", ret);
1028 return ret;
1029 }
1030
1031 ret = netvsc_wait_until_empty(nvdev);
1032 if (ret) {
1033 netdev_err(ndev,
1034 "Ring buffer not empty after closing rndis\n");
1035 return ret;
1036 }
1037 }
1038
1039 netif_device_detach(ndev);
1040
1041 rndis_filter_device_remove(hdev, nvdev);
1042
1043 return 0;
1044}
1045
1046static int netvsc_attach(struct net_device *ndev,
1047 struct netvsc_device_info *dev_info)
1048{
1049 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1050 struct hv_device *hdev = ndev_ctx->device_ctx;
1051 struct netvsc_device *nvdev;
1052 struct rndis_device *rdev;
1053 struct bpf_prog *prog;
1054 int ret = 0;
1055
1056 nvdev = rndis_filter_device_add(hdev, dev_info);
1057 if (IS_ERR(nvdev))
1058 return PTR_ERR(nvdev);
1059
1060 if (nvdev->num_chn > 1) {
1061 ret = rndis_set_subchannel(ndev, nvdev, dev_info);
1062
1063 /* if unavailable, just proceed with one queue */
1064 if (ret) {
1065 nvdev->max_chn = 1;
1066 nvdev->num_chn = 1;
1067 }
1068 }
1069
1070 prog = dev_info->bprog;
1071 if (prog) {
1072 bpf_prog_inc(prog);
1073 ret = netvsc_xdp_set(ndev, prog, NULL, nvdev);
1074 if (ret) {
1075 bpf_prog_put(prog);
1076 goto err1;
1077 }
1078 }
1079
1080 /* In any case device is now ready */
1081 nvdev->tx_disable = false;
1082 netif_device_attach(ndev);
1083
1084 /* Note: enable and attach happen when sub-channels setup */
1085 netif_carrier_off(ndev);
1086
1087 if (netif_running(ndev)) {
1088 ret = rndis_filter_open(nvdev);
1089 if (ret)
1090 goto err2;
1091
1092 rdev = nvdev->extension;
1093 if (!rdev->link_state)
1094 netif_carrier_on(ndev);
1095 }
1096
1097 return 0;
1098
1099err2:
1100 netif_device_detach(ndev);
1101
1102err1:
1103 rndis_filter_device_remove(hdev, nvdev);
1104
1105 return ret;
1106}
1107
1108static int netvsc_set_channels(struct net_device *net,
1109 struct ethtool_channels *channels)
1110{
1111 struct net_device_context *net_device_ctx = netdev_priv(net);
1112 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1113 unsigned int orig, count = channels->combined_count;
1114 struct netvsc_device_info *device_info;
1115 int ret;
1116
1117 /* We do not support separate count for rx, tx, or other */
1118 if (count == 0 ||
1119 channels->rx_count || channels->tx_count || channels->other_count)
1120 return -EINVAL;
1121
1122 if (!nvdev || nvdev->destroy)
1123 return -ENODEV;
1124
1125 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1126 return -EINVAL;
1127
1128 if (count > nvdev->max_chn)
1129 return -EINVAL;
1130
1131 orig = nvdev->num_chn;
1132
1133 device_info = netvsc_devinfo_get(nvdev);
1134
1135 if (!device_info)
1136 return -ENOMEM;
1137
1138 device_info->num_chn = count;
1139
1140 ret = netvsc_detach(net, nvdev);
1141 if (ret)
1142 goto out;
1143
1144 ret = netvsc_attach(net, device_info);
1145 if (ret) {
1146 device_info->num_chn = orig;
1147 if (netvsc_attach(net, device_info))
1148 netdev_err(net, "restoring channel setting failed\n");
1149 }
1150
1151out:
1152 netvsc_devinfo_put(device_info);
1153 return ret;
1154}
1155
1156static void netvsc_init_settings(struct net_device *dev)
1157{
1158 struct net_device_context *ndc = netdev_priv(dev);
1159
1160 ndc->l4_hash = HV_DEFAULT_L4HASH;
1161
1162 ndc->speed = SPEED_UNKNOWN;
1163 ndc->duplex = DUPLEX_FULL;
1164
1165 dev->features = NETIF_F_LRO;
1166}
1167
1168static int netvsc_get_link_ksettings(struct net_device *dev,
1169 struct ethtool_link_ksettings *cmd)
1170{
1171 struct net_device_context *ndc = netdev_priv(dev);
1172 struct net_device *vf_netdev;
1173
1174 vf_netdev = rtnl_dereference(ndc->vf_netdev);
1175
1176 if (vf_netdev)
1177 return __ethtool_get_link_ksettings(vf_netdev, cmd);
1178
1179 cmd->base.speed = ndc->speed;
1180 cmd->base.duplex = ndc->duplex;
1181 cmd->base.port = PORT_OTHER;
1182
1183 return 0;
1184}
1185
1186static int netvsc_set_link_ksettings(struct net_device *dev,
1187 const struct ethtool_link_ksettings *cmd)
1188{
1189 struct net_device_context *ndc = netdev_priv(dev);
1190 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1191
1192 if (vf_netdev) {
1193 if (!vf_netdev->ethtool_ops->set_link_ksettings)
1194 return -EOPNOTSUPP;
1195
1196 return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev,
1197 cmd);
1198 }
1199
1200 return ethtool_virtdev_set_link_ksettings(dev, cmd,
1201 &ndc->speed, &ndc->duplex);
1202}
1203
1204static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1205{
1206 struct net_device_context *ndevctx = netdev_priv(ndev);
1207 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1208 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1209 int orig_mtu = ndev->mtu;
1210 struct netvsc_device_info *device_info;
1211 int ret = 0;
1212
1213 if (!nvdev || nvdev->destroy)
1214 return -ENODEV;
1215
1216 device_info = netvsc_devinfo_get(nvdev);
1217
1218 if (!device_info)
1219 return -ENOMEM;
1220
1221 /* Change MTU of underlying VF netdev first. */
1222 if (vf_netdev) {
1223 ret = dev_set_mtu(vf_netdev, mtu);
1224 if (ret)
1225 goto out;
1226 }
1227
1228 ret = netvsc_detach(ndev, nvdev);
1229 if (ret)
1230 goto rollback_vf;
1231
1232 ndev->mtu = mtu;
1233
1234 ret = netvsc_attach(ndev, device_info);
1235 if (!ret)
1236 goto out;
1237
1238 /* Attempt rollback to original MTU */
1239 ndev->mtu = orig_mtu;
1240
1241 if (netvsc_attach(ndev, device_info))
1242 netdev_err(ndev, "restoring mtu failed\n");
1243rollback_vf:
1244 if (vf_netdev)
1245 dev_set_mtu(vf_netdev, orig_mtu);
1246
1247out:
1248 netvsc_devinfo_put(device_info);
1249 return ret;
1250}
1251
1252static void netvsc_get_vf_stats(struct net_device *net,
1253 struct netvsc_vf_pcpu_stats *tot)
1254{
1255 struct net_device_context *ndev_ctx = netdev_priv(net);
1256 int i;
1257
1258 memset(tot, 0, sizeof(*tot));
1259
1260 for_each_possible_cpu(i) {
1261 const struct netvsc_vf_pcpu_stats *stats
1262 = per_cpu_ptr(ndev_ctx->vf_stats, i);
1263 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1264 unsigned int start;
1265
1266 do {
1267 start = u64_stats_fetch_begin(&stats->syncp);
1268 rx_packets = stats->rx_packets;
1269 tx_packets = stats->tx_packets;
1270 rx_bytes = stats->rx_bytes;
1271 tx_bytes = stats->tx_bytes;
1272 } while (u64_stats_fetch_retry(&stats->syncp, start));
1273
1274 tot->rx_packets += rx_packets;
1275 tot->tx_packets += tx_packets;
1276 tot->rx_bytes += rx_bytes;
1277 tot->tx_bytes += tx_bytes;
1278 tot->tx_dropped += stats->tx_dropped;
1279 }
1280}
1281
1282static void netvsc_get_pcpu_stats(struct net_device *net,
1283 struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1284{
1285 struct net_device_context *ndev_ctx = netdev_priv(net);
1286 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1287 int i;
1288
1289 /* fetch percpu stats of vf */
1290 for_each_possible_cpu(i) {
1291 const struct netvsc_vf_pcpu_stats *stats =
1292 per_cpu_ptr(ndev_ctx->vf_stats, i);
1293 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1294 unsigned int start;
1295
1296 do {
1297 start = u64_stats_fetch_begin(&stats->syncp);
1298 this_tot->vf_rx_packets = stats->rx_packets;
1299 this_tot->vf_tx_packets = stats->tx_packets;
1300 this_tot->vf_rx_bytes = stats->rx_bytes;
1301 this_tot->vf_tx_bytes = stats->tx_bytes;
1302 } while (u64_stats_fetch_retry(&stats->syncp, start));
1303 this_tot->rx_packets = this_tot->vf_rx_packets;
1304 this_tot->tx_packets = this_tot->vf_tx_packets;
1305 this_tot->rx_bytes = this_tot->vf_rx_bytes;
1306 this_tot->tx_bytes = this_tot->vf_tx_bytes;
1307 }
1308
1309 /* fetch percpu stats of netvsc */
1310 for (i = 0; i < nvdev->num_chn; i++) {
1311 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1312 const struct netvsc_stats_tx *tx_stats;
1313 const struct netvsc_stats_rx *rx_stats;
1314 struct netvsc_ethtool_pcpu_stats *this_tot =
1315 &pcpu_tot[nvchan->channel->target_cpu];
1316 u64 packets, bytes;
1317 unsigned int start;
1318
1319 tx_stats = &nvchan->tx_stats;
1320 do {
1321 start = u64_stats_fetch_begin(&tx_stats->syncp);
1322 packets = tx_stats->packets;
1323 bytes = tx_stats->bytes;
1324 } while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1325
1326 this_tot->tx_bytes += bytes;
1327 this_tot->tx_packets += packets;
1328
1329 rx_stats = &nvchan->rx_stats;
1330 do {
1331 start = u64_stats_fetch_begin(&rx_stats->syncp);
1332 packets = rx_stats->packets;
1333 bytes = rx_stats->bytes;
1334 } while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1335
1336 this_tot->rx_bytes += bytes;
1337 this_tot->rx_packets += packets;
1338 }
1339}
1340
1341static void netvsc_get_stats64(struct net_device *net,
1342 struct rtnl_link_stats64 *t)
1343{
1344 struct net_device_context *ndev_ctx = netdev_priv(net);
1345 struct netvsc_device *nvdev;
1346 struct netvsc_vf_pcpu_stats vf_tot;
1347 int i;
1348
1349 rcu_read_lock();
1350
1351 nvdev = rcu_dereference(ndev_ctx->nvdev);
1352 if (!nvdev)
1353 goto out;
1354
1355 netdev_stats_to_stats64(t, &net->stats);
1356
1357 netvsc_get_vf_stats(net, &vf_tot);
1358 t->rx_packets += vf_tot.rx_packets;
1359 t->tx_packets += vf_tot.tx_packets;
1360 t->rx_bytes += vf_tot.rx_bytes;
1361 t->tx_bytes += vf_tot.tx_bytes;
1362 t->tx_dropped += vf_tot.tx_dropped;
1363
1364 for (i = 0; i < nvdev->num_chn; i++) {
1365 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1366 const struct netvsc_stats_tx *tx_stats;
1367 const struct netvsc_stats_rx *rx_stats;
1368 u64 packets, bytes, multicast;
1369 unsigned int start;
1370
1371 tx_stats = &nvchan->tx_stats;
1372 do {
1373 start = u64_stats_fetch_begin(&tx_stats->syncp);
1374 packets = tx_stats->packets;
1375 bytes = tx_stats->bytes;
1376 } while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1377
1378 t->tx_bytes += bytes;
1379 t->tx_packets += packets;
1380
1381 rx_stats = &nvchan->rx_stats;
1382 do {
1383 start = u64_stats_fetch_begin(&rx_stats->syncp);
1384 packets = rx_stats->packets;
1385 bytes = rx_stats->bytes;
1386 multicast = rx_stats->multicast + rx_stats->broadcast;
1387 } while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1388
1389 t->rx_bytes += bytes;
1390 t->rx_packets += packets;
1391 t->multicast += multicast;
1392 }
1393out:
1394 rcu_read_unlock();
1395}
1396
1397static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1398{
1399 struct net_device_context *ndc = netdev_priv(ndev);
1400 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1401 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1402 struct sockaddr *addr = p;
1403 int err;
1404
1405 err = eth_prepare_mac_addr_change(ndev, p);
1406 if (err)
1407 return err;
1408
1409 if (!nvdev)
1410 return -ENODEV;
1411
1412 if (vf_netdev) {
1413 err = dev_set_mac_address(vf_netdev, addr, NULL);
1414 if (err)
1415 return err;
1416 }
1417
1418 err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1419 if (!err) {
1420 eth_commit_mac_addr_change(ndev, p);
1421 } else if (vf_netdev) {
1422 /* rollback change on VF */
1423 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1424 dev_set_mac_address(vf_netdev, addr, NULL);
1425 }
1426
1427 return err;
1428}
1429
1430static const struct {
1431 char name[ETH_GSTRING_LEN];
1432 u16 offset;
1433} netvsc_stats[] = {
1434 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1435 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1436 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1437 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1438 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) },
1439 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1440 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1441 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1442 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1443 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1444 { "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) },
1445}, pcpu_stats[] = {
1446 { "cpu%u_rx_packets",
1447 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1448 { "cpu%u_rx_bytes",
1449 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1450 { "cpu%u_tx_packets",
1451 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1452 { "cpu%u_tx_bytes",
1453 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1454 { "cpu%u_vf_rx_packets",
1455 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1456 { "cpu%u_vf_rx_bytes",
1457 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1458 { "cpu%u_vf_tx_packets",
1459 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1460 { "cpu%u_vf_tx_bytes",
1461 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1462}, vf_stats[] = {
1463 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1464 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1465 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1466 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1467 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1468};
1469
1470#define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1471#define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats)
1472
1473/* statistics per queue (rx/tx packets/bytes) */
1474#define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1475
1476/* 8 statistics per queue (rx/tx packets/bytes, XDP actions) */
1477#define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 8)
1478
1479static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1480{
1481 struct net_device_context *ndc = netdev_priv(dev);
1482 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1483
1484 if (!nvdev)
1485 return -ENODEV;
1486
1487 switch (string_set) {
1488 case ETH_SS_STATS:
1489 return NETVSC_GLOBAL_STATS_LEN
1490 + NETVSC_VF_STATS_LEN
1491 + NETVSC_QUEUE_STATS_LEN(nvdev)
1492 + NETVSC_PCPU_STATS_LEN;
1493 default:
1494 return -EINVAL;
1495 }
1496}
1497
1498static void netvsc_get_ethtool_stats(struct net_device *dev,
1499 struct ethtool_stats *stats, u64 *data)
1500{
1501 struct net_device_context *ndc = netdev_priv(dev);
1502 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1503 const void *nds = &ndc->eth_stats;
1504 const struct netvsc_stats_tx *tx_stats;
1505 const struct netvsc_stats_rx *rx_stats;
1506 struct netvsc_vf_pcpu_stats sum;
1507 struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1508 unsigned int start;
1509 u64 packets, bytes;
1510 u64 xdp_drop;
1511 u64 xdp_redirect;
1512 u64 xdp_tx;
1513 u64 xdp_xmit;
1514 int i, j, cpu;
1515
1516 if (!nvdev)
1517 return;
1518
1519 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1520 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1521
1522 netvsc_get_vf_stats(dev, &sum);
1523 for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1524 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1525
1526 for (j = 0; j < nvdev->num_chn; j++) {
1527 tx_stats = &nvdev->chan_table[j].tx_stats;
1528
1529 do {
1530 start = u64_stats_fetch_begin(&tx_stats->syncp);
1531 packets = tx_stats->packets;
1532 bytes = tx_stats->bytes;
1533 xdp_xmit = tx_stats->xdp_xmit;
1534 } while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1535 data[i++] = packets;
1536 data[i++] = bytes;
1537 data[i++] = xdp_xmit;
1538
1539 rx_stats = &nvdev->chan_table[j].rx_stats;
1540 do {
1541 start = u64_stats_fetch_begin(&rx_stats->syncp);
1542 packets = rx_stats->packets;
1543 bytes = rx_stats->bytes;
1544 xdp_drop = rx_stats->xdp_drop;
1545 xdp_redirect = rx_stats->xdp_redirect;
1546 xdp_tx = rx_stats->xdp_tx;
1547 } while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1548 data[i++] = packets;
1549 data[i++] = bytes;
1550 data[i++] = xdp_drop;
1551 data[i++] = xdp_redirect;
1552 data[i++] = xdp_tx;
1553 }
1554
1555 pcpu_sum = kvmalloc_array(num_possible_cpus(),
1556 sizeof(struct netvsc_ethtool_pcpu_stats),
1557 GFP_KERNEL);
1558 if (!pcpu_sum)
1559 return;
1560
1561 netvsc_get_pcpu_stats(dev, pcpu_sum);
1562 for_each_present_cpu(cpu) {
1563 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1564
1565 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1566 data[i++] = *(u64 *)((void *)this_sum
1567 + pcpu_stats[j].offset);
1568 }
1569 kvfree(pcpu_sum);
1570}
1571
1572static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1573{
1574 struct net_device_context *ndc = netdev_priv(dev);
1575 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1576 u8 *p = data;
1577 int i, cpu;
1578
1579 if (!nvdev)
1580 return;
1581
1582 switch (stringset) {
1583 case ETH_SS_STATS:
1584 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++)
1585 ethtool_sprintf(&p, netvsc_stats[i].name);
1586
1587 for (i = 0; i < ARRAY_SIZE(vf_stats); i++)
1588 ethtool_sprintf(&p, vf_stats[i].name);
1589
1590 for (i = 0; i < nvdev->num_chn; i++) {
1591 ethtool_sprintf(&p, "tx_queue_%u_packets", i);
1592 ethtool_sprintf(&p, "tx_queue_%u_bytes", i);
1593 ethtool_sprintf(&p, "tx_queue_%u_xdp_xmit", i);
1594 ethtool_sprintf(&p, "rx_queue_%u_packets", i);
1595 ethtool_sprintf(&p, "rx_queue_%u_bytes", i);
1596 ethtool_sprintf(&p, "rx_queue_%u_xdp_drop", i);
1597 ethtool_sprintf(&p, "rx_queue_%u_xdp_redirect", i);
1598 ethtool_sprintf(&p, "rx_queue_%u_xdp_tx", i);
1599 }
1600
1601 for_each_present_cpu(cpu) {
1602 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++)
1603 ethtool_sprintf(&p, pcpu_stats[i].name, cpu);
1604 }
1605
1606 break;
1607 }
1608}
1609
1610static int
1611netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1612 struct ethtool_rxnfc *info)
1613{
1614 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1615
1616 info->data = RXH_IP_SRC | RXH_IP_DST;
1617
1618 switch (info->flow_type) {
1619 case TCP_V4_FLOW:
1620 if (ndc->l4_hash & HV_TCP4_L4HASH)
1621 info->data |= l4_flag;
1622
1623 break;
1624
1625 case TCP_V6_FLOW:
1626 if (ndc->l4_hash & HV_TCP6_L4HASH)
1627 info->data |= l4_flag;
1628
1629 break;
1630
1631 case UDP_V4_FLOW:
1632 if (ndc->l4_hash & HV_UDP4_L4HASH)
1633 info->data |= l4_flag;
1634
1635 break;
1636
1637 case UDP_V6_FLOW:
1638 if (ndc->l4_hash & HV_UDP6_L4HASH)
1639 info->data |= l4_flag;
1640
1641 break;
1642
1643 case IPV4_FLOW:
1644 case IPV6_FLOW:
1645 break;
1646 default:
1647 info->data = 0;
1648 break;
1649 }
1650
1651 return 0;
1652}
1653
1654static int
1655netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1656 u32 *rules)
1657{
1658 struct net_device_context *ndc = netdev_priv(dev);
1659 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1660
1661 if (!nvdev)
1662 return -ENODEV;
1663
1664 switch (info->cmd) {
1665 case ETHTOOL_GRXRINGS:
1666 info->data = nvdev->num_chn;
1667 return 0;
1668
1669 case ETHTOOL_GRXFH:
1670 return netvsc_get_rss_hash_opts(ndc, info);
1671 }
1672 return -EOPNOTSUPP;
1673}
1674
1675static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1676 struct ethtool_rxnfc *info)
1677{
1678 if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1679 RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1680 switch (info->flow_type) {
1681 case TCP_V4_FLOW:
1682 ndc->l4_hash |= HV_TCP4_L4HASH;
1683 break;
1684
1685 case TCP_V6_FLOW:
1686 ndc->l4_hash |= HV_TCP6_L4HASH;
1687 break;
1688
1689 case UDP_V4_FLOW:
1690 ndc->l4_hash |= HV_UDP4_L4HASH;
1691 break;
1692
1693 case UDP_V6_FLOW:
1694 ndc->l4_hash |= HV_UDP6_L4HASH;
1695 break;
1696
1697 default:
1698 return -EOPNOTSUPP;
1699 }
1700
1701 return 0;
1702 }
1703
1704 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1705 switch (info->flow_type) {
1706 case TCP_V4_FLOW:
1707 ndc->l4_hash &= ~HV_TCP4_L4HASH;
1708 break;
1709
1710 case TCP_V6_FLOW:
1711 ndc->l4_hash &= ~HV_TCP6_L4HASH;
1712 break;
1713
1714 case UDP_V4_FLOW:
1715 ndc->l4_hash &= ~HV_UDP4_L4HASH;
1716 break;
1717
1718 case UDP_V6_FLOW:
1719 ndc->l4_hash &= ~HV_UDP6_L4HASH;
1720 break;
1721
1722 default:
1723 return -EOPNOTSUPP;
1724 }
1725
1726 return 0;
1727 }
1728
1729 return -EOPNOTSUPP;
1730}
1731
1732static int
1733netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1734{
1735 struct net_device_context *ndc = netdev_priv(ndev);
1736
1737 if (info->cmd == ETHTOOL_SRXFH)
1738 return netvsc_set_rss_hash_opts(ndc, info);
1739
1740 return -EOPNOTSUPP;
1741}
1742
1743static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1744{
1745 return NETVSC_HASH_KEYLEN;
1746}
1747
1748static u32 netvsc_rss_indir_size(struct net_device *dev)
1749{
1750 return ITAB_NUM;
1751}
1752
1753static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1754 u8 *hfunc)
1755{
1756 struct net_device_context *ndc = netdev_priv(dev);
1757 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1758 struct rndis_device *rndis_dev;
1759 int i;
1760
1761 if (!ndev)
1762 return -ENODEV;
1763
1764 if (hfunc)
1765 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */
1766
1767 rndis_dev = ndev->extension;
1768 if (indir) {
1769 for (i = 0; i < ITAB_NUM; i++)
1770 indir[i] = ndc->rx_table[i];
1771 }
1772
1773 if (key)
1774 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1775
1776 return 0;
1777}
1778
1779static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1780 const u8 *key, const u8 hfunc)
1781{
1782 struct net_device_context *ndc = netdev_priv(dev);
1783 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1784 struct rndis_device *rndis_dev;
1785 int i;
1786
1787 if (!ndev)
1788 return -ENODEV;
1789
1790 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1791 return -EOPNOTSUPP;
1792
1793 rndis_dev = ndev->extension;
1794 if (indir) {
1795 for (i = 0; i < ITAB_NUM; i++)
1796 if (indir[i] >= ndev->num_chn)
1797 return -EINVAL;
1798
1799 for (i = 0; i < ITAB_NUM; i++)
1800 ndc->rx_table[i] = indir[i];
1801 }
1802
1803 if (!key) {
1804 if (!indir)
1805 return 0;
1806
1807 key = rndis_dev->rss_key;
1808 }
1809
1810 return rndis_filter_set_rss_param(rndis_dev, key);
1811}
1812
1813/* Hyper-V RNDIS protocol does not have ring in the HW sense.
1814 * It does have pre-allocated receive area which is divided into sections.
1815 */
1816static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1817 struct ethtool_ringparam *ring)
1818{
1819 u32 max_buf_size;
1820
1821 ring->rx_pending = nvdev->recv_section_cnt;
1822 ring->tx_pending = nvdev->send_section_cnt;
1823
1824 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1825 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1826 else
1827 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1828
1829 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1830 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1831 / nvdev->send_section_size;
1832}
1833
1834static void netvsc_get_ringparam(struct net_device *ndev,
1835 struct ethtool_ringparam *ring,
1836 struct kernel_ethtool_ringparam *kernel_ring,
1837 struct netlink_ext_ack *extack)
1838{
1839 struct net_device_context *ndevctx = netdev_priv(ndev);
1840 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1841
1842 if (!nvdev)
1843 return;
1844
1845 __netvsc_get_ringparam(nvdev, ring);
1846}
1847
1848static int netvsc_set_ringparam(struct net_device *ndev,
1849 struct ethtool_ringparam *ring,
1850 struct kernel_ethtool_ringparam *kernel_ring,
1851 struct netlink_ext_ack *extack)
1852{
1853 struct net_device_context *ndevctx = netdev_priv(ndev);
1854 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1855 struct netvsc_device_info *device_info;
1856 struct ethtool_ringparam orig;
1857 u32 new_tx, new_rx;
1858 int ret = 0;
1859
1860 if (!nvdev || nvdev->destroy)
1861 return -ENODEV;
1862
1863 memset(&orig, 0, sizeof(orig));
1864 __netvsc_get_ringparam(nvdev, &orig);
1865
1866 new_tx = clamp_t(u32, ring->tx_pending,
1867 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1868 new_rx = clamp_t(u32, ring->rx_pending,
1869 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1870
1871 if (new_tx == orig.tx_pending &&
1872 new_rx == orig.rx_pending)
1873 return 0; /* no change */
1874
1875 device_info = netvsc_devinfo_get(nvdev);
1876
1877 if (!device_info)
1878 return -ENOMEM;
1879
1880 device_info->send_sections = new_tx;
1881 device_info->recv_sections = new_rx;
1882
1883 ret = netvsc_detach(ndev, nvdev);
1884 if (ret)
1885 goto out;
1886
1887 ret = netvsc_attach(ndev, device_info);
1888 if (ret) {
1889 device_info->send_sections = orig.tx_pending;
1890 device_info->recv_sections = orig.rx_pending;
1891
1892 if (netvsc_attach(ndev, device_info))
1893 netdev_err(ndev, "restoring ringparam failed");
1894 }
1895
1896out:
1897 netvsc_devinfo_put(device_info);
1898 return ret;
1899}
1900
1901static netdev_features_t netvsc_fix_features(struct net_device *ndev,
1902 netdev_features_t features)
1903{
1904 struct net_device_context *ndevctx = netdev_priv(ndev);
1905 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1906
1907 if (!nvdev || nvdev->destroy)
1908 return features;
1909
1910 if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) {
1911 features ^= NETIF_F_LRO;
1912 netdev_info(ndev, "Skip LRO - unsupported with XDP\n");
1913 }
1914
1915 return features;
1916}
1917
1918static int netvsc_set_features(struct net_device *ndev,
1919 netdev_features_t features)
1920{
1921 netdev_features_t change = features ^ ndev->features;
1922 struct net_device_context *ndevctx = netdev_priv(ndev);
1923 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1924 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1925 struct ndis_offload_params offloads;
1926 int ret = 0;
1927
1928 if (!nvdev || nvdev->destroy)
1929 return -ENODEV;
1930
1931 if (!(change & NETIF_F_LRO))
1932 goto syncvf;
1933
1934 memset(&offloads, 0, sizeof(struct ndis_offload_params));
1935
1936 if (features & NETIF_F_LRO) {
1937 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1938 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1939 } else {
1940 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1941 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1942 }
1943
1944 ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1945
1946 if (ret) {
1947 features ^= NETIF_F_LRO;
1948 ndev->features = features;
1949 }
1950
1951syncvf:
1952 if (!vf_netdev)
1953 return ret;
1954
1955 vf_netdev->wanted_features = features;
1956 netdev_update_features(vf_netdev);
1957
1958 return ret;
1959}
1960
1961static int netvsc_get_regs_len(struct net_device *netdev)
1962{
1963 return VRSS_SEND_TAB_SIZE * sizeof(u32);
1964}
1965
1966static void netvsc_get_regs(struct net_device *netdev,
1967 struct ethtool_regs *regs, void *p)
1968{
1969 struct net_device_context *ndc = netdev_priv(netdev);
1970 u32 *regs_buff = p;
1971
1972 /* increase the version, if buffer format is changed. */
1973 regs->version = 1;
1974
1975 memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32));
1976}
1977
1978static u32 netvsc_get_msglevel(struct net_device *ndev)
1979{
1980 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1981
1982 return ndev_ctx->msg_enable;
1983}
1984
1985static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1986{
1987 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1988
1989 ndev_ctx->msg_enable = val;
1990}
1991
1992static const struct ethtool_ops ethtool_ops = {
1993 .get_drvinfo = netvsc_get_drvinfo,
1994 .get_regs_len = netvsc_get_regs_len,
1995 .get_regs = netvsc_get_regs,
1996 .get_msglevel = netvsc_get_msglevel,
1997 .set_msglevel = netvsc_set_msglevel,
1998 .get_link = ethtool_op_get_link,
1999 .get_ethtool_stats = netvsc_get_ethtool_stats,
2000 .get_sset_count = netvsc_get_sset_count,
2001 .get_strings = netvsc_get_strings,
2002 .get_channels = netvsc_get_channels,
2003 .set_channels = netvsc_set_channels,
2004 .get_ts_info = ethtool_op_get_ts_info,
2005 .get_rxnfc = netvsc_get_rxnfc,
2006 .set_rxnfc = netvsc_set_rxnfc,
2007 .get_rxfh_key_size = netvsc_get_rxfh_key_size,
2008 .get_rxfh_indir_size = netvsc_rss_indir_size,
2009 .get_rxfh = netvsc_get_rxfh,
2010 .set_rxfh = netvsc_set_rxfh,
2011 .get_link_ksettings = netvsc_get_link_ksettings,
2012 .set_link_ksettings = netvsc_set_link_ksettings,
2013 .get_ringparam = netvsc_get_ringparam,
2014 .set_ringparam = netvsc_set_ringparam,
2015};
2016
2017static const struct net_device_ops device_ops = {
2018 .ndo_open = netvsc_open,
2019 .ndo_stop = netvsc_close,
2020 .ndo_start_xmit = netvsc_start_xmit,
2021 .ndo_change_rx_flags = netvsc_change_rx_flags,
2022 .ndo_set_rx_mode = netvsc_set_rx_mode,
2023 .ndo_fix_features = netvsc_fix_features,
2024 .ndo_set_features = netvsc_set_features,
2025 .ndo_change_mtu = netvsc_change_mtu,
2026 .ndo_validate_addr = eth_validate_addr,
2027 .ndo_set_mac_address = netvsc_set_mac_addr,
2028 .ndo_select_queue = netvsc_select_queue,
2029 .ndo_get_stats64 = netvsc_get_stats64,
2030 .ndo_bpf = netvsc_bpf,
2031 .ndo_xdp_xmit = netvsc_ndoxdp_xmit,
2032};
2033
2034/*
2035 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
2036 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
2037 * present send GARP packet to network peers with netif_notify_peers().
2038 */
2039static void netvsc_link_change(struct work_struct *w)
2040{
2041 struct net_device_context *ndev_ctx =
2042 container_of(w, struct net_device_context, dwork.work);
2043 struct hv_device *device_obj = ndev_ctx->device_ctx;
2044 struct net_device *net = hv_get_drvdata(device_obj);
2045 unsigned long flags, next_reconfig, delay;
2046 struct netvsc_reconfig *event = NULL;
2047 struct netvsc_device *net_device;
2048 struct rndis_device *rdev;
2049 bool reschedule = false;
2050
2051 /* if changes are happening, comeback later */
2052 if (!rtnl_trylock()) {
2053 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2054 return;
2055 }
2056
2057 net_device = rtnl_dereference(ndev_ctx->nvdev);
2058 if (!net_device)
2059 goto out_unlock;
2060
2061 rdev = net_device->extension;
2062
2063 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
2064 if (time_is_after_jiffies(next_reconfig)) {
2065 /* link_watch only sends one notification with current state
2066 * per second, avoid doing reconfig more frequently. Handle
2067 * wrap around.
2068 */
2069 delay = next_reconfig - jiffies;
2070 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
2071 schedule_delayed_work(&ndev_ctx->dwork, delay);
2072 goto out_unlock;
2073 }
2074 ndev_ctx->last_reconfig = jiffies;
2075
2076 spin_lock_irqsave(&ndev_ctx->lock, flags);
2077 if (!list_empty(&ndev_ctx->reconfig_events)) {
2078 event = list_first_entry(&ndev_ctx->reconfig_events,
2079 struct netvsc_reconfig, list);
2080 list_del(&event->list);
2081 reschedule = !list_empty(&ndev_ctx->reconfig_events);
2082 }
2083 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2084
2085 if (!event)
2086 goto out_unlock;
2087
2088 switch (event->event) {
2089 /* Only the following events are possible due to the check in
2090 * netvsc_linkstatus_callback()
2091 */
2092 case RNDIS_STATUS_MEDIA_CONNECT:
2093 if (rdev->link_state) {
2094 rdev->link_state = false;
2095 netif_carrier_on(net);
2096 netvsc_tx_enable(net_device, net);
2097 } else {
2098 __netdev_notify_peers(net);
2099 }
2100 kfree(event);
2101 break;
2102 case RNDIS_STATUS_MEDIA_DISCONNECT:
2103 if (!rdev->link_state) {
2104 rdev->link_state = true;
2105 netif_carrier_off(net);
2106 netvsc_tx_disable(net_device, net);
2107 }
2108 kfree(event);
2109 break;
2110 case RNDIS_STATUS_NETWORK_CHANGE:
2111 /* Only makes sense if carrier is present */
2112 if (!rdev->link_state) {
2113 rdev->link_state = true;
2114 netif_carrier_off(net);
2115 netvsc_tx_disable(net_device, net);
2116 event->event = RNDIS_STATUS_MEDIA_CONNECT;
2117 spin_lock_irqsave(&ndev_ctx->lock, flags);
2118 list_add(&event->list, &ndev_ctx->reconfig_events);
2119 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2120 reschedule = true;
2121 }
2122 break;
2123 }
2124
2125 rtnl_unlock();
2126
2127 /* link_watch only sends one notification with current state per
2128 * second, handle next reconfig event in 2 seconds.
2129 */
2130 if (reschedule)
2131 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2132
2133 return;
2134
2135out_unlock:
2136 rtnl_unlock();
2137}
2138
2139static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
2140{
2141 struct net_device_context *net_device_ctx;
2142 struct net_device *dev;
2143
2144 dev = netdev_master_upper_dev_get(vf_netdev);
2145 if (!dev || dev->netdev_ops != &device_ops)
2146 return NULL; /* not a netvsc device */
2147
2148 net_device_ctx = netdev_priv(dev);
2149 if (!rtnl_dereference(net_device_ctx->nvdev))
2150 return NULL; /* device is removed */
2151
2152 return dev;
2153}
2154
2155/* Called when VF is injecting data into network stack.
2156 * Change the associated network device from VF to netvsc.
2157 * note: already called with rcu_read_lock
2158 */
2159static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2160{
2161 struct sk_buff *skb = *pskb;
2162 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2163 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2164 struct netvsc_vf_pcpu_stats *pcpu_stats
2165 = this_cpu_ptr(ndev_ctx->vf_stats);
2166
2167 skb = skb_share_check(skb, GFP_ATOMIC);
2168 if (unlikely(!skb))
2169 return RX_HANDLER_CONSUMED;
2170
2171 *pskb = skb;
2172
2173 skb->dev = ndev;
2174
2175 u64_stats_update_begin(&pcpu_stats->syncp);
2176 pcpu_stats->rx_packets++;
2177 pcpu_stats->rx_bytes += skb->len;
2178 u64_stats_update_end(&pcpu_stats->syncp);
2179
2180 return RX_HANDLER_ANOTHER;
2181}
2182
2183static int netvsc_vf_join(struct net_device *vf_netdev,
2184 struct net_device *ndev)
2185{
2186 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2187 int ret;
2188
2189 ret = netdev_rx_handler_register(vf_netdev,
2190 netvsc_vf_handle_frame, ndev);
2191 if (ret != 0) {
2192 netdev_err(vf_netdev,
2193 "can not register netvsc VF receive handler (err = %d)\n",
2194 ret);
2195 goto rx_handler_failed;
2196 }
2197
2198 ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2199 NULL, NULL, NULL);
2200 if (ret != 0) {
2201 netdev_err(vf_netdev,
2202 "can not set master device %s (err = %d)\n",
2203 ndev->name, ret);
2204 goto upper_link_failed;
2205 }
2206
2207 /* set slave flag before open to prevent IPv6 addrconf */
2208 vf_netdev->flags |= IFF_SLAVE;
2209
2210 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2211
2212 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2213
2214 netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2215 return 0;
2216
2217upper_link_failed:
2218 netdev_rx_handler_unregister(vf_netdev);
2219rx_handler_failed:
2220 return ret;
2221}
2222
2223static void __netvsc_vf_setup(struct net_device *ndev,
2224 struct net_device *vf_netdev)
2225{
2226 int ret;
2227
2228 /* Align MTU of VF with master */
2229 ret = dev_set_mtu(vf_netdev, ndev->mtu);
2230 if (ret)
2231 netdev_warn(vf_netdev,
2232 "unable to change mtu to %u\n", ndev->mtu);
2233
2234 /* set multicast etc flags on VF */
2235 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2236
2237 /* sync address list from ndev to VF */
2238 netif_addr_lock_bh(ndev);
2239 dev_uc_sync(vf_netdev, ndev);
2240 dev_mc_sync(vf_netdev, ndev);
2241 netif_addr_unlock_bh(ndev);
2242
2243 if (netif_running(ndev)) {
2244 ret = dev_open(vf_netdev, NULL);
2245 if (ret)
2246 netdev_warn(vf_netdev,
2247 "unable to open: %d\n", ret);
2248 }
2249}
2250
2251/* Setup VF as slave of the synthetic device.
2252 * Runs in workqueue to avoid recursion in netlink callbacks.
2253 */
2254static void netvsc_vf_setup(struct work_struct *w)
2255{
2256 struct net_device_context *ndev_ctx
2257 = container_of(w, struct net_device_context, vf_takeover.work);
2258 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2259 struct net_device *vf_netdev;
2260
2261 if (!rtnl_trylock()) {
2262 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2263 return;
2264 }
2265
2266 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2267 if (vf_netdev)
2268 __netvsc_vf_setup(ndev, vf_netdev);
2269
2270 rtnl_unlock();
2271}
2272
2273/* Find netvsc by VF serial number.
2274 * The PCI hyperv controller records the serial number as the slot kobj name.
2275 */
2276static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2277{
2278 struct device *parent = vf_netdev->dev.parent;
2279 struct net_device_context *ndev_ctx;
2280 struct net_device *ndev;
2281 struct pci_dev *pdev;
2282 u32 serial;
2283
2284 if (!parent || !dev_is_pci(parent))
2285 return NULL; /* not a PCI device */
2286
2287 pdev = to_pci_dev(parent);
2288 if (!pdev->slot) {
2289 netdev_notice(vf_netdev, "no PCI slot information\n");
2290 return NULL;
2291 }
2292
2293 if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2294 netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2295 pci_slot_name(pdev->slot));
2296 return NULL;
2297 }
2298
2299 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2300 if (!ndev_ctx->vf_alloc)
2301 continue;
2302
2303 if (ndev_ctx->vf_serial != serial)
2304 continue;
2305
2306 ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2307 if (ndev->addr_len != vf_netdev->addr_len ||
2308 memcmp(ndev->perm_addr, vf_netdev->perm_addr,
2309 ndev->addr_len) != 0)
2310 continue;
2311
2312 return ndev;
2313
2314 }
2315
2316 /* Fallback path to check synthetic vf with
2317 * help of mac addr
2318 */
2319 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2320 ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2321 if (ether_addr_equal(vf_netdev->perm_addr, ndev->perm_addr)) {
2322 netdev_notice(vf_netdev,
2323 "falling back to mac addr based matching\n");
2324 return ndev;
2325 }
2326 }
2327
2328 netdev_notice(vf_netdev,
2329 "no netdev found for vf serial:%u\n", serial);
2330 return NULL;
2331}
2332
2333static int netvsc_register_vf(struct net_device *vf_netdev)
2334{
2335 struct net_device_context *net_device_ctx;
2336 struct netvsc_device *netvsc_dev;
2337 struct bpf_prog *prog;
2338 struct net_device *ndev;
2339 int ret;
2340
2341 if (vf_netdev->addr_len != ETH_ALEN)
2342 return NOTIFY_DONE;
2343
2344 ndev = get_netvsc_byslot(vf_netdev);
2345 if (!ndev)
2346 return NOTIFY_DONE;
2347
2348 net_device_ctx = netdev_priv(ndev);
2349 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2350 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2351 return NOTIFY_DONE;
2352
2353 /* if synthetic interface is a different namespace,
2354 * then move the VF to that namespace; join will be
2355 * done again in that context.
2356 */
2357 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2358 ret = dev_change_net_namespace(vf_netdev,
2359 dev_net(ndev), "eth%d");
2360 if (ret)
2361 netdev_err(vf_netdev,
2362 "could not move to same namespace as %s: %d\n",
2363 ndev->name, ret);
2364 else
2365 netdev_info(vf_netdev,
2366 "VF moved to namespace with: %s\n",
2367 ndev->name);
2368 return NOTIFY_DONE;
2369 }
2370
2371 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2372
2373 if (netvsc_vf_join(vf_netdev, ndev) != 0)
2374 return NOTIFY_DONE;
2375
2376 dev_hold(vf_netdev);
2377 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2378
2379 if (ndev->needed_headroom < vf_netdev->needed_headroom)
2380 ndev->needed_headroom = vf_netdev->needed_headroom;
2381
2382 vf_netdev->wanted_features = ndev->features;
2383 netdev_update_features(vf_netdev);
2384
2385 prog = netvsc_xdp_get(netvsc_dev);
2386 netvsc_vf_setxdp(vf_netdev, prog);
2387
2388 return NOTIFY_OK;
2389}
2390
2391/* Change the data path when VF UP/DOWN/CHANGE are detected.
2392 *
2393 * Typically a UP or DOWN event is followed by a CHANGE event, so
2394 * net_device_ctx->data_path_is_vf is used to cache the current data path
2395 * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate
2396 * message.
2397 *
2398 * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network
2399 * interface, there is only the CHANGE event and no UP or DOWN event.
2400 */
2401static int netvsc_vf_changed(struct net_device *vf_netdev, unsigned long event)
2402{
2403 struct net_device_context *net_device_ctx;
2404 struct netvsc_device *netvsc_dev;
2405 struct net_device *ndev;
2406 bool vf_is_up = false;
2407 int ret;
2408
2409 if (event != NETDEV_GOING_DOWN)
2410 vf_is_up = netif_running(vf_netdev);
2411
2412 ndev = get_netvsc_byref(vf_netdev);
2413 if (!ndev)
2414 return NOTIFY_DONE;
2415
2416 net_device_ctx = netdev_priv(ndev);
2417 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2418 if (!netvsc_dev)
2419 return NOTIFY_DONE;
2420
2421 if (net_device_ctx->data_path_is_vf == vf_is_up)
2422 return NOTIFY_OK;
2423
2424 if (vf_is_up && !net_device_ctx->vf_alloc) {
2425 netdev_info(ndev, "Waiting for the VF association from host\n");
2426 wait_for_completion(&net_device_ctx->vf_add);
2427 }
2428
2429 ret = netvsc_switch_datapath(ndev, vf_is_up);
2430
2431 if (ret) {
2432 netdev_err(ndev,
2433 "Data path failed to switch %s VF: %s, err: %d\n",
2434 vf_is_up ? "to" : "from", vf_netdev->name, ret);
2435 return NOTIFY_DONE;
2436 } else {
2437 netdev_info(ndev, "Data path switched %s VF: %s\n",
2438 vf_is_up ? "to" : "from", vf_netdev->name);
2439 }
2440
2441 return NOTIFY_OK;
2442}
2443
2444static int netvsc_unregister_vf(struct net_device *vf_netdev)
2445{
2446 struct net_device *ndev;
2447 struct net_device_context *net_device_ctx;
2448
2449 ndev = get_netvsc_byref(vf_netdev);
2450 if (!ndev)
2451 return NOTIFY_DONE;
2452
2453 net_device_ctx = netdev_priv(ndev);
2454 cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2455
2456 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2457
2458 netvsc_vf_setxdp(vf_netdev, NULL);
2459
2460 reinit_completion(&net_device_ctx->vf_add);
2461 netdev_rx_handler_unregister(vf_netdev);
2462 netdev_upper_dev_unlink(vf_netdev, ndev);
2463 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2464 dev_put(vf_netdev);
2465
2466 ndev->needed_headroom = RNDIS_AND_PPI_SIZE;
2467
2468 return NOTIFY_OK;
2469}
2470
2471static int netvsc_probe(struct hv_device *dev,
2472 const struct hv_vmbus_device_id *dev_id)
2473{
2474 struct net_device *net = NULL;
2475 struct net_device_context *net_device_ctx;
2476 struct netvsc_device_info *device_info = NULL;
2477 struct netvsc_device *nvdev;
2478 int ret = -ENOMEM;
2479
2480 net = alloc_etherdev_mq(sizeof(struct net_device_context),
2481 VRSS_CHANNEL_MAX);
2482 if (!net)
2483 goto no_net;
2484
2485 netif_carrier_off(net);
2486
2487 netvsc_init_settings(net);
2488
2489 net_device_ctx = netdev_priv(net);
2490 net_device_ctx->device_ctx = dev;
2491 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2492 if (netif_msg_probe(net_device_ctx))
2493 netdev_dbg(net, "netvsc msg_enable: %d\n",
2494 net_device_ctx->msg_enable);
2495
2496 hv_set_drvdata(dev, net);
2497
2498 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2499
2500 init_completion(&net_device_ctx->vf_add);
2501 spin_lock_init(&net_device_ctx->lock);
2502 INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2503 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2504
2505 net_device_ctx->vf_stats
2506 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2507 if (!net_device_ctx->vf_stats)
2508 goto no_stats;
2509
2510 net->netdev_ops = &device_ops;
2511 net->ethtool_ops = ðtool_ops;
2512 SET_NETDEV_DEV(net, &dev->device);
2513 dma_set_min_align_mask(&dev->device, HV_HYP_PAGE_SIZE - 1);
2514
2515 /* We always need headroom for rndis header */
2516 net->needed_headroom = RNDIS_AND_PPI_SIZE;
2517
2518 /* Initialize the number of queues to be 1, we may change it if more
2519 * channels are offered later.
2520 */
2521 netif_set_real_num_tx_queues(net, 1);
2522 netif_set_real_num_rx_queues(net, 1);
2523
2524 /* Notify the netvsc driver of the new device */
2525 device_info = netvsc_devinfo_get(NULL);
2526
2527 if (!device_info) {
2528 ret = -ENOMEM;
2529 goto devinfo_failed;
2530 }
2531
2532 nvdev = rndis_filter_device_add(dev, device_info);
2533 if (IS_ERR(nvdev)) {
2534 ret = PTR_ERR(nvdev);
2535 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2536 goto rndis_failed;
2537 }
2538
2539 eth_hw_addr_set(net, device_info->mac_adr);
2540
2541 /* We must get rtnl lock before scheduling nvdev->subchan_work,
2542 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2543 * all subchannels to show up, but that may not happen because
2544 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2545 * -> ... -> device_add() -> ... -> __device_attach() can't get
2546 * the device lock, so all the subchannels can't be processed --
2547 * finally netvsc_subchan_work() hangs forever.
2548 */
2549 rtnl_lock();
2550
2551 if (nvdev->num_chn > 1)
2552 schedule_work(&nvdev->subchan_work);
2553
2554 /* hw_features computed in rndis_netdev_set_hwcaps() */
2555 net->features = net->hw_features |
2556 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2557 NETIF_F_HW_VLAN_CTAG_RX;
2558 net->vlan_features = net->features;
2559
2560 netdev_lockdep_set_classes(net);
2561
2562 /* MTU range: 68 - 1500 or 65521 */
2563 net->min_mtu = NETVSC_MTU_MIN;
2564 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2565 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2566 else
2567 net->max_mtu = ETH_DATA_LEN;
2568
2569 nvdev->tx_disable = false;
2570
2571 ret = register_netdevice(net);
2572 if (ret != 0) {
2573 pr_err("Unable to register netdev.\n");
2574 goto register_failed;
2575 }
2576
2577 list_add(&net_device_ctx->list, &netvsc_dev_list);
2578 rtnl_unlock();
2579
2580 netvsc_devinfo_put(device_info);
2581 return 0;
2582
2583register_failed:
2584 rtnl_unlock();
2585 rndis_filter_device_remove(dev, nvdev);
2586rndis_failed:
2587 netvsc_devinfo_put(device_info);
2588devinfo_failed:
2589 free_percpu(net_device_ctx->vf_stats);
2590no_stats:
2591 hv_set_drvdata(dev, NULL);
2592 free_netdev(net);
2593no_net:
2594 return ret;
2595}
2596
2597static int netvsc_remove(struct hv_device *dev)
2598{
2599 struct net_device_context *ndev_ctx;
2600 struct net_device *vf_netdev, *net;
2601 struct netvsc_device *nvdev;
2602
2603 net = hv_get_drvdata(dev);
2604 if (net == NULL) {
2605 dev_err(&dev->device, "No net device to remove\n");
2606 return 0;
2607 }
2608
2609 ndev_ctx = netdev_priv(net);
2610
2611 cancel_delayed_work_sync(&ndev_ctx->dwork);
2612
2613 rtnl_lock();
2614 nvdev = rtnl_dereference(ndev_ctx->nvdev);
2615 if (nvdev) {
2616 cancel_work_sync(&nvdev->subchan_work);
2617 netvsc_xdp_set(net, NULL, NULL, nvdev);
2618 }
2619
2620 /*
2621 * Call to the vsc driver to let it know that the device is being
2622 * removed. Also blocks mtu and channel changes.
2623 */
2624 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2625 if (vf_netdev)
2626 netvsc_unregister_vf(vf_netdev);
2627
2628 if (nvdev)
2629 rndis_filter_device_remove(dev, nvdev);
2630
2631 unregister_netdevice(net);
2632 list_del(&ndev_ctx->list);
2633
2634 rtnl_unlock();
2635
2636 hv_set_drvdata(dev, NULL);
2637
2638 free_percpu(ndev_ctx->vf_stats);
2639 free_netdev(net);
2640 return 0;
2641}
2642
2643static int netvsc_suspend(struct hv_device *dev)
2644{
2645 struct net_device_context *ndev_ctx;
2646 struct netvsc_device *nvdev;
2647 struct net_device *net;
2648 int ret;
2649
2650 net = hv_get_drvdata(dev);
2651
2652 ndev_ctx = netdev_priv(net);
2653 cancel_delayed_work_sync(&ndev_ctx->dwork);
2654
2655 rtnl_lock();
2656
2657 nvdev = rtnl_dereference(ndev_ctx->nvdev);
2658 if (nvdev == NULL) {
2659 ret = -ENODEV;
2660 goto out;
2661 }
2662
2663 /* Save the current config info */
2664 ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2665 if (!ndev_ctx->saved_netvsc_dev_info) {
2666 ret = -ENOMEM;
2667 goto out;
2668 }
2669 ret = netvsc_detach(net, nvdev);
2670out:
2671 rtnl_unlock();
2672
2673 return ret;
2674}
2675
2676static int netvsc_resume(struct hv_device *dev)
2677{
2678 struct net_device *net = hv_get_drvdata(dev);
2679 struct net_device_context *net_device_ctx;
2680 struct netvsc_device_info *device_info;
2681 int ret;
2682
2683 rtnl_lock();
2684
2685 net_device_ctx = netdev_priv(net);
2686
2687 /* Reset the data path to the netvsc NIC before re-opening the vmbus
2688 * channel. Later netvsc_netdev_event() will switch the data path to
2689 * the VF upon the UP or CHANGE event.
2690 */
2691 net_device_ctx->data_path_is_vf = false;
2692 device_info = net_device_ctx->saved_netvsc_dev_info;
2693
2694 ret = netvsc_attach(net, device_info);
2695
2696 netvsc_devinfo_put(device_info);
2697 net_device_ctx->saved_netvsc_dev_info = NULL;
2698
2699 rtnl_unlock();
2700
2701 return ret;
2702}
2703static const struct hv_vmbus_device_id id_table[] = {
2704 /* Network guid */
2705 { HV_NIC_GUID, },
2706 { },
2707};
2708
2709MODULE_DEVICE_TABLE(vmbus, id_table);
2710
2711/* The one and only one */
2712static struct hv_driver netvsc_drv = {
2713 .name = KBUILD_MODNAME,
2714 .id_table = id_table,
2715 .probe = netvsc_probe,
2716 .remove = netvsc_remove,
2717 .suspend = netvsc_suspend,
2718 .resume = netvsc_resume,
2719 .driver = {
2720 .probe_type = PROBE_FORCE_SYNCHRONOUS,
2721 },
2722};
2723
2724/*
2725 * On Hyper-V, every VF interface is matched with a corresponding
2726 * synthetic interface. The synthetic interface is presented first
2727 * to the guest. When the corresponding VF instance is registered,
2728 * we will take care of switching the data path.
2729 */
2730static int netvsc_netdev_event(struct notifier_block *this,
2731 unsigned long event, void *ptr)
2732{
2733 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2734
2735 /* Skip our own events */
2736 if (event_dev->netdev_ops == &device_ops)
2737 return NOTIFY_DONE;
2738
2739 /* Avoid non-Ethernet type devices */
2740 if (event_dev->type != ARPHRD_ETHER)
2741 return NOTIFY_DONE;
2742
2743 /* Avoid Vlan dev with same MAC registering as VF */
2744 if (is_vlan_dev(event_dev))
2745 return NOTIFY_DONE;
2746
2747 /* Avoid Bonding master dev with same MAC registering as VF */
2748 if (netif_is_bond_master(event_dev))
2749 return NOTIFY_DONE;
2750
2751 switch (event) {
2752 case NETDEV_REGISTER:
2753 return netvsc_register_vf(event_dev);
2754 case NETDEV_UNREGISTER:
2755 return netvsc_unregister_vf(event_dev);
2756 case NETDEV_UP:
2757 case NETDEV_DOWN:
2758 case NETDEV_CHANGE:
2759 case NETDEV_GOING_DOWN:
2760 return netvsc_vf_changed(event_dev, event);
2761 default:
2762 return NOTIFY_DONE;
2763 }
2764}
2765
2766static struct notifier_block netvsc_netdev_notifier = {
2767 .notifier_call = netvsc_netdev_event,
2768};
2769
2770static void __exit netvsc_drv_exit(void)
2771{
2772 unregister_netdevice_notifier(&netvsc_netdev_notifier);
2773 vmbus_driver_unregister(&netvsc_drv);
2774}
2775
2776static int __init netvsc_drv_init(void)
2777{
2778 int ret;
2779
2780 if (ring_size < RING_SIZE_MIN) {
2781 ring_size = RING_SIZE_MIN;
2782 pr_info("Increased ring_size to %u (min allowed)\n",
2783 ring_size);
2784 }
2785 netvsc_ring_bytes = ring_size * PAGE_SIZE;
2786
2787 ret = vmbus_driver_register(&netvsc_drv);
2788 if (ret)
2789 return ret;
2790
2791 register_netdevice_notifier(&netvsc_netdev_notifier);
2792 return 0;
2793}
2794
2795MODULE_LICENSE("GPL");
2796MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2797
2798module_init(netvsc_drv_init);
2799module_exit(netvsc_drv_exit);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2009, Microsoft Corporation.
4 *
5 * Authors:
6 * Haiyang Zhang <haiyangz@microsoft.com>
7 * Hank Janssen <hjanssen@microsoft.com>
8 */
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/init.h>
12#include <linux/atomic.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
15#include <linux/device.h>
16#include <linux/io.h>
17#include <linux/delay.h>
18#include <linux/netdevice.h>
19#include <linux/inetdevice.h>
20#include <linux/etherdevice.h>
21#include <linux/pci.h>
22#include <linux/skbuff.h>
23#include <linux/if_vlan.h>
24#include <linux/in.h>
25#include <linux/slab.h>
26#include <linux/rtnetlink.h>
27#include <linux/netpoll.h>
28#include <linux/bpf.h>
29
30#include <net/arp.h>
31#include <net/route.h>
32#include <net/sock.h>
33#include <net/pkt_sched.h>
34#include <net/checksum.h>
35#include <net/ip6_checksum.h>
36
37#include "hyperv_net.h"
38
39#define RING_SIZE_MIN 64
40#define RETRY_US_LO 5000
41#define RETRY_US_HI 10000
42#define RETRY_MAX 2000 /* >10 sec */
43
44#define LINKCHANGE_INT (2 * HZ)
45#define VF_TAKEOVER_INT (HZ / 10)
46
47static unsigned int ring_size __ro_after_init = 128;
48module_param(ring_size, uint, 0444);
49MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
50unsigned int netvsc_ring_bytes __ro_after_init;
51
52static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
53 NETIF_MSG_LINK | NETIF_MSG_IFUP |
54 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
55 NETIF_MSG_TX_ERR;
56
57static int debug = -1;
58module_param(debug, int, 0444);
59MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
60
61static LIST_HEAD(netvsc_dev_list);
62
63static void netvsc_change_rx_flags(struct net_device *net, int change)
64{
65 struct net_device_context *ndev_ctx = netdev_priv(net);
66 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
67 int inc;
68
69 if (!vf_netdev)
70 return;
71
72 if (change & IFF_PROMISC) {
73 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
74 dev_set_promiscuity(vf_netdev, inc);
75 }
76
77 if (change & IFF_ALLMULTI) {
78 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
79 dev_set_allmulti(vf_netdev, inc);
80 }
81}
82
83static void netvsc_set_rx_mode(struct net_device *net)
84{
85 struct net_device_context *ndev_ctx = netdev_priv(net);
86 struct net_device *vf_netdev;
87 struct netvsc_device *nvdev;
88
89 rcu_read_lock();
90 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
91 if (vf_netdev) {
92 dev_uc_sync(vf_netdev, net);
93 dev_mc_sync(vf_netdev, net);
94 }
95
96 nvdev = rcu_dereference(ndev_ctx->nvdev);
97 if (nvdev)
98 rndis_filter_update(nvdev);
99 rcu_read_unlock();
100}
101
102static void netvsc_tx_enable(struct netvsc_device *nvscdev,
103 struct net_device *ndev)
104{
105 nvscdev->tx_disable = false;
106 virt_wmb(); /* ensure queue wake up mechanism is on */
107
108 netif_tx_wake_all_queues(ndev);
109}
110
111static int netvsc_open(struct net_device *net)
112{
113 struct net_device_context *ndev_ctx = netdev_priv(net);
114 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
115 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
116 struct rndis_device *rdev;
117 int ret = 0;
118
119 netif_carrier_off(net);
120
121 /* Open up the device */
122 ret = rndis_filter_open(nvdev);
123 if (ret != 0) {
124 netdev_err(net, "unable to open device (ret %d).\n", ret);
125 return ret;
126 }
127
128 rdev = nvdev->extension;
129 if (!rdev->link_state) {
130 netif_carrier_on(net);
131 netvsc_tx_enable(nvdev, net);
132 }
133
134 if (vf_netdev) {
135 /* Setting synthetic device up transparently sets
136 * slave as up. If open fails, then slave will be
137 * still be offline (and not used).
138 */
139 ret = dev_open(vf_netdev, NULL);
140 if (ret)
141 netdev_warn(net,
142 "unable to open slave: %s: %d\n",
143 vf_netdev->name, ret);
144 }
145 return 0;
146}
147
148static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
149{
150 unsigned int retry = 0;
151 int i;
152
153 /* Ensure pending bytes in ring are read */
154 for (;;) {
155 u32 aread = 0;
156
157 for (i = 0; i < nvdev->num_chn; i++) {
158 struct vmbus_channel *chn
159 = nvdev->chan_table[i].channel;
160
161 if (!chn)
162 continue;
163
164 /* make sure receive not running now */
165 napi_synchronize(&nvdev->chan_table[i].napi);
166
167 aread = hv_get_bytes_to_read(&chn->inbound);
168 if (aread)
169 break;
170
171 aread = hv_get_bytes_to_read(&chn->outbound);
172 if (aread)
173 break;
174 }
175
176 if (aread == 0)
177 return 0;
178
179 if (++retry > RETRY_MAX)
180 return -ETIMEDOUT;
181
182 usleep_range(RETRY_US_LO, RETRY_US_HI);
183 }
184}
185
186static void netvsc_tx_disable(struct netvsc_device *nvscdev,
187 struct net_device *ndev)
188{
189 if (nvscdev) {
190 nvscdev->tx_disable = true;
191 virt_wmb(); /* ensure txq will not wake up after stop */
192 }
193
194 netif_tx_disable(ndev);
195}
196
197static int netvsc_close(struct net_device *net)
198{
199 struct net_device_context *net_device_ctx = netdev_priv(net);
200 struct net_device *vf_netdev
201 = rtnl_dereference(net_device_ctx->vf_netdev);
202 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
203 int ret;
204
205 netvsc_tx_disable(nvdev, net);
206
207 /* No need to close rndis filter if it is removed already */
208 if (!nvdev)
209 return 0;
210
211 ret = rndis_filter_close(nvdev);
212 if (ret != 0) {
213 netdev_err(net, "unable to close device (ret %d).\n", ret);
214 return ret;
215 }
216
217 ret = netvsc_wait_until_empty(nvdev);
218 if (ret)
219 netdev_err(net, "Ring buffer not empty after closing rndis\n");
220
221 if (vf_netdev)
222 dev_close(vf_netdev);
223
224 return ret;
225}
226
227static inline void *init_ppi_data(struct rndis_message *msg,
228 u32 ppi_size, u32 pkt_type)
229{
230 struct rndis_packet *rndis_pkt = &msg->msg.pkt;
231 struct rndis_per_packet_info *ppi;
232
233 rndis_pkt->data_offset += ppi_size;
234 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
235 + rndis_pkt->per_pkt_info_len;
236
237 ppi->size = ppi_size;
238 ppi->type = pkt_type;
239 ppi->internal = 0;
240 ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
241
242 rndis_pkt->per_pkt_info_len += ppi_size;
243
244 return ppi + 1;
245}
246
247/* Azure hosts don't support non-TCP port numbers in hashing for fragmented
248 * packets. We can use ethtool to change UDP hash level when necessary.
249 */
250static inline u32 netvsc_get_hash(
251 struct sk_buff *skb,
252 const struct net_device_context *ndc)
253{
254 struct flow_keys flow;
255 u32 hash, pkt_proto = 0;
256 static u32 hashrnd __read_mostly;
257
258 net_get_random_once(&hashrnd, sizeof(hashrnd));
259
260 if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
261 return 0;
262
263 switch (flow.basic.ip_proto) {
264 case IPPROTO_TCP:
265 if (flow.basic.n_proto == htons(ETH_P_IP))
266 pkt_proto = HV_TCP4_L4HASH;
267 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
268 pkt_proto = HV_TCP6_L4HASH;
269
270 break;
271
272 case IPPROTO_UDP:
273 if (flow.basic.n_proto == htons(ETH_P_IP))
274 pkt_proto = HV_UDP4_L4HASH;
275 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
276 pkt_proto = HV_UDP6_L4HASH;
277
278 break;
279 }
280
281 if (pkt_proto & ndc->l4_hash) {
282 return skb_get_hash(skb);
283 } else {
284 if (flow.basic.n_proto == htons(ETH_P_IP))
285 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
286 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
287 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
288 else
289 return 0;
290
291 __skb_set_sw_hash(skb, hash, false);
292 }
293
294 return hash;
295}
296
297static inline int netvsc_get_tx_queue(struct net_device *ndev,
298 struct sk_buff *skb, int old_idx)
299{
300 const struct net_device_context *ndc = netdev_priv(ndev);
301 struct sock *sk = skb->sk;
302 int q_idx;
303
304 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
305 (VRSS_SEND_TAB_SIZE - 1)];
306
307 /* If queue index changed record the new value */
308 if (q_idx != old_idx &&
309 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
310 sk_tx_queue_set(sk, q_idx);
311
312 return q_idx;
313}
314
315/*
316 * Select queue for transmit.
317 *
318 * If a valid queue has already been assigned, then use that.
319 * Otherwise compute tx queue based on hash and the send table.
320 *
321 * This is basically similar to default (netdev_pick_tx) with the added step
322 * of using the host send_table when no other queue has been assigned.
323 *
324 * TODO support XPS - but get_xps_queue not exported
325 */
326static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
327{
328 int q_idx = sk_tx_queue_get(skb->sk);
329
330 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
331 /* If forwarding a packet, we use the recorded queue when
332 * available for better cache locality.
333 */
334 if (skb_rx_queue_recorded(skb))
335 q_idx = skb_get_rx_queue(skb);
336 else
337 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
338 }
339
340 return q_idx;
341}
342
343static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
344 struct net_device *sb_dev)
345{
346 struct net_device_context *ndc = netdev_priv(ndev);
347 struct net_device *vf_netdev;
348 u16 txq;
349
350 rcu_read_lock();
351 vf_netdev = rcu_dereference(ndc->vf_netdev);
352 if (vf_netdev) {
353 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
354
355 if (vf_ops->ndo_select_queue)
356 txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
357 else
358 txq = netdev_pick_tx(vf_netdev, skb, NULL);
359
360 /* Record the queue selected by VF so that it can be
361 * used for common case where VF has more queues than
362 * the synthetic device.
363 */
364 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
365 } else {
366 txq = netvsc_pick_tx(ndev, skb);
367 }
368 rcu_read_unlock();
369
370 while (txq >= ndev->real_num_tx_queues)
371 txq -= ndev->real_num_tx_queues;
372
373 return txq;
374}
375
376static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
377 struct hv_page_buffer *pb)
378{
379 int j = 0;
380
381 /* Deal with compound pages by ignoring unused part
382 * of the page.
383 */
384 page += (offset >> PAGE_SHIFT);
385 offset &= ~PAGE_MASK;
386
387 while (len > 0) {
388 unsigned long bytes;
389
390 bytes = PAGE_SIZE - offset;
391 if (bytes > len)
392 bytes = len;
393 pb[j].pfn = page_to_pfn(page);
394 pb[j].offset = offset;
395 pb[j].len = bytes;
396
397 offset += bytes;
398 len -= bytes;
399
400 if (offset == PAGE_SIZE && len) {
401 page++;
402 offset = 0;
403 j++;
404 }
405 }
406
407 return j + 1;
408}
409
410static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
411 struct hv_netvsc_packet *packet,
412 struct hv_page_buffer *pb)
413{
414 u32 slots_used = 0;
415 char *data = skb->data;
416 int frags = skb_shinfo(skb)->nr_frags;
417 int i;
418
419 /* The packet is laid out thus:
420 * 1. hdr: RNDIS header and PPI
421 * 2. skb linear data
422 * 3. skb fragment data
423 */
424 slots_used += fill_pg_buf(virt_to_page(hdr),
425 offset_in_page(hdr),
426 len, &pb[slots_used]);
427
428 packet->rmsg_size = len;
429 packet->rmsg_pgcnt = slots_used;
430
431 slots_used += fill_pg_buf(virt_to_page(data),
432 offset_in_page(data),
433 skb_headlen(skb), &pb[slots_used]);
434
435 for (i = 0; i < frags; i++) {
436 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
437
438 slots_used += fill_pg_buf(skb_frag_page(frag),
439 skb_frag_off(frag),
440 skb_frag_size(frag), &pb[slots_used]);
441 }
442 return slots_used;
443}
444
445static int count_skb_frag_slots(struct sk_buff *skb)
446{
447 int i, frags = skb_shinfo(skb)->nr_frags;
448 int pages = 0;
449
450 for (i = 0; i < frags; i++) {
451 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
452 unsigned long size = skb_frag_size(frag);
453 unsigned long offset = skb_frag_off(frag);
454
455 /* Skip unused frames from start of page */
456 offset &= ~PAGE_MASK;
457 pages += PFN_UP(offset + size);
458 }
459 return pages;
460}
461
462static int netvsc_get_slots(struct sk_buff *skb)
463{
464 char *data = skb->data;
465 unsigned int offset = offset_in_page(data);
466 unsigned int len = skb_headlen(skb);
467 int slots;
468 int frag_slots;
469
470 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
471 frag_slots = count_skb_frag_slots(skb);
472 return slots + frag_slots;
473}
474
475static u32 net_checksum_info(struct sk_buff *skb)
476{
477 if (skb->protocol == htons(ETH_P_IP)) {
478 struct iphdr *ip = ip_hdr(skb);
479
480 if (ip->protocol == IPPROTO_TCP)
481 return TRANSPORT_INFO_IPV4_TCP;
482 else if (ip->protocol == IPPROTO_UDP)
483 return TRANSPORT_INFO_IPV4_UDP;
484 } else {
485 struct ipv6hdr *ip6 = ipv6_hdr(skb);
486
487 if (ip6->nexthdr == IPPROTO_TCP)
488 return TRANSPORT_INFO_IPV6_TCP;
489 else if (ip6->nexthdr == IPPROTO_UDP)
490 return TRANSPORT_INFO_IPV6_UDP;
491 }
492
493 return TRANSPORT_INFO_NOT_IP;
494}
495
496/* Send skb on the slave VF device. */
497static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
498 struct sk_buff *skb)
499{
500 struct net_device_context *ndev_ctx = netdev_priv(net);
501 unsigned int len = skb->len;
502 int rc;
503
504 skb->dev = vf_netdev;
505 skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping);
506
507 rc = dev_queue_xmit(skb);
508 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
509 struct netvsc_vf_pcpu_stats *pcpu_stats
510 = this_cpu_ptr(ndev_ctx->vf_stats);
511
512 u64_stats_update_begin(&pcpu_stats->syncp);
513 pcpu_stats->tx_packets++;
514 pcpu_stats->tx_bytes += len;
515 u64_stats_update_end(&pcpu_stats->syncp);
516 } else {
517 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
518 }
519
520 return rc;
521}
522
523static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx)
524{
525 struct net_device_context *net_device_ctx = netdev_priv(net);
526 struct hv_netvsc_packet *packet = NULL;
527 int ret;
528 unsigned int num_data_pgs;
529 struct rndis_message *rndis_msg;
530 struct net_device *vf_netdev;
531 u32 rndis_msg_size;
532 u32 hash;
533 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
534
535 /* If VF is present and up then redirect packets to it.
536 * Skip the VF if it is marked down or has no carrier.
537 * If netpoll is in uses, then VF can not be used either.
538 */
539 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
540 if (vf_netdev && netif_running(vf_netdev) &&
541 netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net))
542 return netvsc_vf_xmit(net, vf_netdev, skb);
543
544 /* We will atmost need two pages to describe the rndis
545 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
546 * of pages in a single packet. If skb is scattered around
547 * more pages we try linearizing it.
548 */
549
550 num_data_pgs = netvsc_get_slots(skb) + 2;
551
552 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
553 ++net_device_ctx->eth_stats.tx_scattered;
554
555 if (skb_linearize(skb))
556 goto no_memory;
557
558 num_data_pgs = netvsc_get_slots(skb) + 2;
559 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
560 ++net_device_ctx->eth_stats.tx_too_big;
561 goto drop;
562 }
563 }
564
565 /*
566 * Place the rndis header in the skb head room and
567 * the skb->cb will be used for hv_netvsc_packet
568 * structure.
569 */
570 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
571 if (ret)
572 goto no_memory;
573
574 /* Use the skb control buffer for building up the packet */
575 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
576 sizeof_field(struct sk_buff, cb));
577 packet = (struct hv_netvsc_packet *)skb->cb;
578
579 packet->q_idx = skb_get_queue_mapping(skb);
580
581 packet->total_data_buflen = skb->len;
582 packet->total_bytes = skb->len;
583 packet->total_packets = 1;
584
585 rndis_msg = (struct rndis_message *)skb->head;
586
587 /* Add the rndis header */
588 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
589 rndis_msg->msg_len = packet->total_data_buflen;
590
591 rndis_msg->msg.pkt = (struct rndis_packet) {
592 .data_offset = sizeof(struct rndis_packet),
593 .data_len = packet->total_data_buflen,
594 .per_pkt_info_offset = sizeof(struct rndis_packet),
595 };
596
597 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
598
599 hash = skb_get_hash_raw(skb);
600 if (hash != 0 && net->real_num_tx_queues > 1) {
601 u32 *hash_info;
602
603 rndis_msg_size += NDIS_HASH_PPI_SIZE;
604 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
605 NBL_HASH_VALUE);
606 *hash_info = hash;
607 }
608
609 /* When using AF_PACKET we need to drop VLAN header from
610 * the frame and update the SKB to allow the HOST OS
611 * to transmit the 802.1Q packet
612 */
613 if (skb->protocol == htons(ETH_P_8021Q)) {
614 u16 vlan_tci;
615
616 skb_reset_mac_header(skb);
617 if (eth_type_vlan(eth_hdr(skb)->h_proto)) {
618 if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) {
619 ++net_device_ctx->eth_stats.vlan_error;
620 goto drop;
621 }
622
623 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
624 /* Update the NDIS header pkt lengths */
625 packet->total_data_buflen -= VLAN_HLEN;
626 packet->total_bytes -= VLAN_HLEN;
627 rndis_msg->msg_len = packet->total_data_buflen;
628 rndis_msg->msg.pkt.data_len = packet->total_data_buflen;
629 }
630 }
631
632 if (skb_vlan_tag_present(skb)) {
633 struct ndis_pkt_8021q_info *vlan;
634
635 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
636 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
637 IEEE_8021Q_INFO);
638
639 vlan->value = 0;
640 vlan->vlanid = skb_vlan_tag_get_id(skb);
641 vlan->cfi = skb_vlan_tag_get_cfi(skb);
642 vlan->pri = skb_vlan_tag_get_prio(skb);
643 }
644
645 if (skb_is_gso(skb)) {
646 struct ndis_tcp_lso_info *lso_info;
647
648 rndis_msg_size += NDIS_LSO_PPI_SIZE;
649 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
650 TCP_LARGESEND_PKTINFO);
651
652 lso_info->value = 0;
653 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
654 if (skb->protocol == htons(ETH_P_IP)) {
655 lso_info->lso_v2_transmit.ip_version =
656 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
657 ip_hdr(skb)->tot_len = 0;
658 ip_hdr(skb)->check = 0;
659 tcp_hdr(skb)->check =
660 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
661 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
662 } else {
663 lso_info->lso_v2_transmit.ip_version =
664 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
665 tcp_v6_gso_csum_prep(skb);
666 }
667 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
668 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
669 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
670 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
671 struct ndis_tcp_ip_checksum_info *csum_info;
672
673 rndis_msg_size += NDIS_CSUM_PPI_SIZE;
674 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
675 TCPIP_CHKSUM_PKTINFO);
676
677 csum_info->value = 0;
678 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
679
680 if (skb->protocol == htons(ETH_P_IP)) {
681 csum_info->transmit.is_ipv4 = 1;
682
683 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
684 csum_info->transmit.tcp_checksum = 1;
685 else
686 csum_info->transmit.udp_checksum = 1;
687 } else {
688 csum_info->transmit.is_ipv6 = 1;
689
690 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
691 csum_info->transmit.tcp_checksum = 1;
692 else
693 csum_info->transmit.udp_checksum = 1;
694 }
695 } else {
696 /* Can't do offload of this type of checksum */
697 if (skb_checksum_help(skb))
698 goto drop;
699 }
700 }
701
702 /* Start filling in the page buffers with the rndis hdr */
703 rndis_msg->msg_len += rndis_msg_size;
704 packet->total_data_buflen = rndis_msg->msg_len;
705 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
706 skb, packet, pb);
707
708 /* timestamp packet in software */
709 skb_tx_timestamp(skb);
710
711 ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx);
712 if (likely(ret == 0))
713 return NETDEV_TX_OK;
714
715 if (ret == -EAGAIN) {
716 ++net_device_ctx->eth_stats.tx_busy;
717 return NETDEV_TX_BUSY;
718 }
719
720 if (ret == -ENOSPC)
721 ++net_device_ctx->eth_stats.tx_no_space;
722
723drop:
724 dev_kfree_skb_any(skb);
725 net->stats.tx_dropped++;
726
727 return NETDEV_TX_OK;
728
729no_memory:
730 ++net_device_ctx->eth_stats.tx_no_memory;
731 goto drop;
732}
733
734static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb,
735 struct net_device *ndev)
736{
737 return netvsc_xmit(skb, ndev, false);
738}
739
740/*
741 * netvsc_linkstatus_callback - Link up/down notification
742 */
743void netvsc_linkstatus_callback(struct net_device *net,
744 struct rndis_message *resp)
745{
746 struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
747 struct net_device_context *ndev_ctx = netdev_priv(net);
748 struct netvsc_reconfig *event;
749 unsigned long flags;
750
751 /* Ensure the packet is big enough to access its fields */
752 if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) {
753 netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n",
754 resp->msg_len);
755 return;
756 }
757
758 /* Update the physical link speed when changing to another vSwitch */
759 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
760 u32 speed;
761
762 speed = *(u32 *)((void *)indicate
763 + indicate->status_buf_offset) / 10000;
764 ndev_ctx->speed = speed;
765 return;
766 }
767
768 /* Handle these link change statuses below */
769 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
770 indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
771 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
772 return;
773
774 if (net->reg_state != NETREG_REGISTERED)
775 return;
776
777 event = kzalloc(sizeof(*event), GFP_ATOMIC);
778 if (!event)
779 return;
780 event->event = indicate->status;
781
782 spin_lock_irqsave(&ndev_ctx->lock, flags);
783 list_add_tail(&event->list, &ndev_ctx->reconfig_events);
784 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
785
786 schedule_delayed_work(&ndev_ctx->dwork, 0);
787}
788
789static void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev)
790{
791 int rc;
792
793 skb->queue_mapping = skb_get_rx_queue(skb);
794 __skb_push(skb, ETH_HLEN);
795
796 rc = netvsc_xmit(skb, ndev, true);
797
798 if (dev_xmit_complete(rc))
799 return;
800
801 dev_kfree_skb_any(skb);
802 ndev->stats.tx_dropped++;
803}
804
805static void netvsc_comp_ipcsum(struct sk_buff *skb)
806{
807 struct iphdr *iph = (struct iphdr *)skb->data;
808
809 iph->check = 0;
810 iph->check = ip_fast_csum(iph, iph->ihl);
811}
812
813static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
814 struct netvsc_channel *nvchan,
815 struct xdp_buff *xdp)
816{
817 struct napi_struct *napi = &nvchan->napi;
818 const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan;
819 const struct ndis_tcp_ip_checksum_info *csum_info =
820 nvchan->rsc.csum_info;
821 const u32 *hash_info = nvchan->rsc.hash_info;
822 struct sk_buff *skb;
823 void *xbuf = xdp->data_hard_start;
824 int i;
825
826 if (xbuf) {
827 unsigned int hdroom = xdp->data - xdp->data_hard_start;
828 unsigned int xlen = xdp->data_end - xdp->data;
829 unsigned int frag_size = xdp->frame_sz;
830
831 skb = build_skb(xbuf, frag_size);
832
833 if (!skb) {
834 __free_page(virt_to_page(xbuf));
835 return NULL;
836 }
837
838 skb_reserve(skb, hdroom);
839 skb_put(skb, xlen);
840 skb->dev = napi->dev;
841 } else {
842 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
843
844 if (!skb)
845 return NULL;
846
847 /* Copy to skb. This copy is needed here since the memory
848 * pointed by hv_netvsc_packet cannot be deallocated.
849 */
850 for (i = 0; i < nvchan->rsc.cnt; i++)
851 skb_put_data(skb, nvchan->rsc.data[i],
852 nvchan->rsc.len[i]);
853 }
854
855 skb->protocol = eth_type_trans(skb, net);
856
857 /* skb is already created with CHECKSUM_NONE */
858 skb_checksum_none_assert(skb);
859
860 /* Incoming packets may have IP header checksum verified by the host.
861 * They may not have IP header checksum computed after coalescing.
862 * We compute it here if the flags are set, because on Linux, the IP
863 * checksum is always checked.
864 */
865 if (csum_info && csum_info->receive.ip_checksum_value_invalid &&
866 csum_info->receive.ip_checksum_succeeded &&
867 skb->protocol == htons(ETH_P_IP))
868 netvsc_comp_ipcsum(skb);
869
870 /* Do L4 checksum offload if enabled and present. */
871 if (csum_info && (net->features & NETIF_F_RXCSUM)) {
872 if (csum_info->receive.tcp_checksum_succeeded ||
873 csum_info->receive.udp_checksum_succeeded)
874 skb->ip_summed = CHECKSUM_UNNECESSARY;
875 }
876
877 if (hash_info && (net->features & NETIF_F_RXHASH))
878 skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
879
880 if (vlan) {
881 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
882 (vlan->cfi ? VLAN_CFI_MASK : 0);
883
884 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
885 vlan_tci);
886 }
887
888 return skb;
889}
890
891/*
892 * netvsc_recv_callback - Callback when we receive a packet from the
893 * "wire" on the specified device.
894 */
895int netvsc_recv_callback(struct net_device *net,
896 struct netvsc_device *net_device,
897 struct netvsc_channel *nvchan)
898{
899 struct net_device_context *net_device_ctx = netdev_priv(net);
900 struct vmbus_channel *channel = nvchan->channel;
901 u16 q_idx = channel->offermsg.offer.sub_channel_index;
902 struct sk_buff *skb;
903 struct netvsc_stats *rx_stats = &nvchan->rx_stats;
904 struct xdp_buff xdp;
905 u32 act;
906
907 if (net->reg_state != NETREG_REGISTERED)
908 return NVSP_STAT_FAIL;
909
910 act = netvsc_run_xdp(net, nvchan, &xdp);
911
912 if (act != XDP_PASS && act != XDP_TX) {
913 u64_stats_update_begin(&rx_stats->syncp);
914 rx_stats->xdp_drop++;
915 u64_stats_update_end(&rx_stats->syncp);
916
917 return NVSP_STAT_SUCCESS; /* consumed by XDP */
918 }
919
920 /* Allocate a skb - TODO direct I/O to pages? */
921 skb = netvsc_alloc_recv_skb(net, nvchan, &xdp);
922
923 if (unlikely(!skb)) {
924 ++net_device_ctx->eth_stats.rx_no_memory;
925 return NVSP_STAT_FAIL;
926 }
927
928 skb_record_rx_queue(skb, q_idx);
929
930 /*
931 * Even if injecting the packet, record the statistics
932 * on the synthetic device because modifying the VF device
933 * statistics will not work correctly.
934 */
935 u64_stats_update_begin(&rx_stats->syncp);
936 rx_stats->packets++;
937 rx_stats->bytes += nvchan->rsc.pktlen;
938
939 if (skb->pkt_type == PACKET_BROADCAST)
940 ++rx_stats->broadcast;
941 else if (skb->pkt_type == PACKET_MULTICAST)
942 ++rx_stats->multicast;
943 u64_stats_update_end(&rx_stats->syncp);
944
945 if (act == XDP_TX) {
946 netvsc_xdp_xmit(skb, net);
947 return NVSP_STAT_SUCCESS;
948 }
949
950 napi_gro_receive(&nvchan->napi, skb);
951 return NVSP_STAT_SUCCESS;
952}
953
954static void netvsc_get_drvinfo(struct net_device *net,
955 struct ethtool_drvinfo *info)
956{
957 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
958 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
959}
960
961static void netvsc_get_channels(struct net_device *net,
962 struct ethtool_channels *channel)
963{
964 struct net_device_context *net_device_ctx = netdev_priv(net);
965 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
966
967 if (nvdev) {
968 channel->max_combined = nvdev->max_chn;
969 channel->combined_count = nvdev->num_chn;
970 }
971}
972
973/* Alloc struct netvsc_device_info, and initialize it from either existing
974 * struct netvsc_device, or from default values.
975 */
976static
977struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev)
978{
979 struct netvsc_device_info *dev_info;
980 struct bpf_prog *prog;
981
982 dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
983
984 if (!dev_info)
985 return NULL;
986
987 if (nvdev) {
988 ASSERT_RTNL();
989
990 dev_info->num_chn = nvdev->num_chn;
991 dev_info->send_sections = nvdev->send_section_cnt;
992 dev_info->send_section_size = nvdev->send_section_size;
993 dev_info->recv_sections = nvdev->recv_section_cnt;
994 dev_info->recv_section_size = nvdev->recv_section_size;
995
996 memcpy(dev_info->rss_key, nvdev->extension->rss_key,
997 NETVSC_HASH_KEYLEN);
998
999 prog = netvsc_xdp_get(nvdev);
1000 if (prog) {
1001 bpf_prog_inc(prog);
1002 dev_info->bprog = prog;
1003 }
1004 } else {
1005 dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
1006 dev_info->send_sections = NETVSC_DEFAULT_TX;
1007 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
1008 dev_info->recv_sections = NETVSC_DEFAULT_RX;
1009 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
1010 }
1011
1012 return dev_info;
1013}
1014
1015/* Free struct netvsc_device_info */
1016static void netvsc_devinfo_put(struct netvsc_device_info *dev_info)
1017{
1018 if (dev_info->bprog) {
1019 ASSERT_RTNL();
1020 bpf_prog_put(dev_info->bprog);
1021 }
1022
1023 kfree(dev_info);
1024}
1025
1026static int netvsc_detach(struct net_device *ndev,
1027 struct netvsc_device *nvdev)
1028{
1029 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1030 struct hv_device *hdev = ndev_ctx->device_ctx;
1031 int ret;
1032
1033 /* Don't try continuing to try and setup sub channels */
1034 if (cancel_work_sync(&nvdev->subchan_work))
1035 nvdev->num_chn = 1;
1036
1037 netvsc_xdp_set(ndev, NULL, NULL, nvdev);
1038
1039 /* If device was up (receiving) then shutdown */
1040 if (netif_running(ndev)) {
1041 netvsc_tx_disable(nvdev, ndev);
1042
1043 ret = rndis_filter_close(nvdev);
1044 if (ret) {
1045 netdev_err(ndev,
1046 "unable to close device (ret %d).\n", ret);
1047 return ret;
1048 }
1049
1050 ret = netvsc_wait_until_empty(nvdev);
1051 if (ret) {
1052 netdev_err(ndev,
1053 "Ring buffer not empty after closing rndis\n");
1054 return ret;
1055 }
1056 }
1057
1058 netif_device_detach(ndev);
1059
1060 rndis_filter_device_remove(hdev, nvdev);
1061
1062 return 0;
1063}
1064
1065static int netvsc_attach(struct net_device *ndev,
1066 struct netvsc_device_info *dev_info)
1067{
1068 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1069 struct hv_device *hdev = ndev_ctx->device_ctx;
1070 struct netvsc_device *nvdev;
1071 struct rndis_device *rdev;
1072 struct bpf_prog *prog;
1073 int ret = 0;
1074
1075 nvdev = rndis_filter_device_add(hdev, dev_info);
1076 if (IS_ERR(nvdev))
1077 return PTR_ERR(nvdev);
1078
1079 if (nvdev->num_chn > 1) {
1080 ret = rndis_set_subchannel(ndev, nvdev, dev_info);
1081
1082 /* if unavailable, just proceed with one queue */
1083 if (ret) {
1084 nvdev->max_chn = 1;
1085 nvdev->num_chn = 1;
1086 }
1087 }
1088
1089 prog = dev_info->bprog;
1090 if (prog) {
1091 bpf_prog_inc(prog);
1092 ret = netvsc_xdp_set(ndev, prog, NULL, nvdev);
1093 if (ret) {
1094 bpf_prog_put(prog);
1095 goto err1;
1096 }
1097 }
1098
1099 /* In any case device is now ready */
1100 nvdev->tx_disable = false;
1101 netif_device_attach(ndev);
1102
1103 /* Note: enable and attach happen when sub-channels setup */
1104 netif_carrier_off(ndev);
1105
1106 if (netif_running(ndev)) {
1107 ret = rndis_filter_open(nvdev);
1108 if (ret)
1109 goto err2;
1110
1111 rdev = nvdev->extension;
1112 if (!rdev->link_state)
1113 netif_carrier_on(ndev);
1114 }
1115
1116 return 0;
1117
1118err2:
1119 netif_device_detach(ndev);
1120
1121err1:
1122 rndis_filter_device_remove(hdev, nvdev);
1123
1124 return ret;
1125}
1126
1127static int netvsc_set_channels(struct net_device *net,
1128 struct ethtool_channels *channels)
1129{
1130 struct net_device_context *net_device_ctx = netdev_priv(net);
1131 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1132 unsigned int orig, count = channels->combined_count;
1133 struct netvsc_device_info *device_info;
1134 int ret;
1135
1136 /* We do not support separate count for rx, tx, or other */
1137 if (count == 0 ||
1138 channels->rx_count || channels->tx_count || channels->other_count)
1139 return -EINVAL;
1140
1141 if (!nvdev || nvdev->destroy)
1142 return -ENODEV;
1143
1144 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1145 return -EINVAL;
1146
1147 if (count > nvdev->max_chn)
1148 return -EINVAL;
1149
1150 orig = nvdev->num_chn;
1151
1152 device_info = netvsc_devinfo_get(nvdev);
1153
1154 if (!device_info)
1155 return -ENOMEM;
1156
1157 device_info->num_chn = count;
1158
1159 ret = netvsc_detach(net, nvdev);
1160 if (ret)
1161 goto out;
1162
1163 ret = netvsc_attach(net, device_info);
1164 if (ret) {
1165 device_info->num_chn = orig;
1166 if (netvsc_attach(net, device_info))
1167 netdev_err(net, "restoring channel setting failed\n");
1168 }
1169
1170out:
1171 netvsc_devinfo_put(device_info);
1172 return ret;
1173}
1174
1175static void netvsc_init_settings(struct net_device *dev)
1176{
1177 struct net_device_context *ndc = netdev_priv(dev);
1178
1179 ndc->l4_hash = HV_DEFAULT_L4HASH;
1180
1181 ndc->speed = SPEED_UNKNOWN;
1182 ndc->duplex = DUPLEX_FULL;
1183
1184 dev->features = NETIF_F_LRO;
1185}
1186
1187static int netvsc_get_link_ksettings(struct net_device *dev,
1188 struct ethtool_link_ksettings *cmd)
1189{
1190 struct net_device_context *ndc = netdev_priv(dev);
1191 struct net_device *vf_netdev;
1192
1193 vf_netdev = rtnl_dereference(ndc->vf_netdev);
1194
1195 if (vf_netdev)
1196 return __ethtool_get_link_ksettings(vf_netdev, cmd);
1197
1198 cmd->base.speed = ndc->speed;
1199 cmd->base.duplex = ndc->duplex;
1200 cmd->base.port = PORT_OTHER;
1201
1202 return 0;
1203}
1204
1205static int netvsc_set_link_ksettings(struct net_device *dev,
1206 const struct ethtool_link_ksettings *cmd)
1207{
1208 struct net_device_context *ndc = netdev_priv(dev);
1209 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1210
1211 if (vf_netdev) {
1212 if (!vf_netdev->ethtool_ops->set_link_ksettings)
1213 return -EOPNOTSUPP;
1214
1215 return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev,
1216 cmd);
1217 }
1218
1219 return ethtool_virtdev_set_link_ksettings(dev, cmd,
1220 &ndc->speed, &ndc->duplex);
1221}
1222
1223static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1224{
1225 struct net_device_context *ndevctx = netdev_priv(ndev);
1226 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1227 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1228 int orig_mtu = ndev->mtu;
1229 struct netvsc_device_info *device_info;
1230 int ret = 0;
1231
1232 if (!nvdev || nvdev->destroy)
1233 return -ENODEV;
1234
1235 device_info = netvsc_devinfo_get(nvdev);
1236
1237 if (!device_info)
1238 return -ENOMEM;
1239
1240 /* Change MTU of underlying VF netdev first. */
1241 if (vf_netdev) {
1242 ret = dev_set_mtu(vf_netdev, mtu);
1243 if (ret)
1244 goto out;
1245 }
1246
1247 ret = netvsc_detach(ndev, nvdev);
1248 if (ret)
1249 goto rollback_vf;
1250
1251 ndev->mtu = mtu;
1252
1253 ret = netvsc_attach(ndev, device_info);
1254 if (!ret)
1255 goto out;
1256
1257 /* Attempt rollback to original MTU */
1258 ndev->mtu = orig_mtu;
1259
1260 if (netvsc_attach(ndev, device_info))
1261 netdev_err(ndev, "restoring mtu failed\n");
1262rollback_vf:
1263 if (vf_netdev)
1264 dev_set_mtu(vf_netdev, orig_mtu);
1265
1266out:
1267 netvsc_devinfo_put(device_info);
1268 return ret;
1269}
1270
1271static void netvsc_get_vf_stats(struct net_device *net,
1272 struct netvsc_vf_pcpu_stats *tot)
1273{
1274 struct net_device_context *ndev_ctx = netdev_priv(net);
1275 int i;
1276
1277 memset(tot, 0, sizeof(*tot));
1278
1279 for_each_possible_cpu(i) {
1280 const struct netvsc_vf_pcpu_stats *stats
1281 = per_cpu_ptr(ndev_ctx->vf_stats, i);
1282 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1283 unsigned int start;
1284
1285 do {
1286 start = u64_stats_fetch_begin_irq(&stats->syncp);
1287 rx_packets = stats->rx_packets;
1288 tx_packets = stats->tx_packets;
1289 rx_bytes = stats->rx_bytes;
1290 tx_bytes = stats->tx_bytes;
1291 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1292
1293 tot->rx_packets += rx_packets;
1294 tot->tx_packets += tx_packets;
1295 tot->rx_bytes += rx_bytes;
1296 tot->tx_bytes += tx_bytes;
1297 tot->tx_dropped += stats->tx_dropped;
1298 }
1299}
1300
1301static void netvsc_get_pcpu_stats(struct net_device *net,
1302 struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1303{
1304 struct net_device_context *ndev_ctx = netdev_priv(net);
1305 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1306 int i;
1307
1308 /* fetch percpu stats of vf */
1309 for_each_possible_cpu(i) {
1310 const struct netvsc_vf_pcpu_stats *stats =
1311 per_cpu_ptr(ndev_ctx->vf_stats, i);
1312 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1313 unsigned int start;
1314
1315 do {
1316 start = u64_stats_fetch_begin_irq(&stats->syncp);
1317 this_tot->vf_rx_packets = stats->rx_packets;
1318 this_tot->vf_tx_packets = stats->tx_packets;
1319 this_tot->vf_rx_bytes = stats->rx_bytes;
1320 this_tot->vf_tx_bytes = stats->tx_bytes;
1321 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1322 this_tot->rx_packets = this_tot->vf_rx_packets;
1323 this_tot->tx_packets = this_tot->vf_tx_packets;
1324 this_tot->rx_bytes = this_tot->vf_rx_bytes;
1325 this_tot->tx_bytes = this_tot->vf_tx_bytes;
1326 }
1327
1328 /* fetch percpu stats of netvsc */
1329 for (i = 0; i < nvdev->num_chn; i++) {
1330 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1331 const struct netvsc_stats *stats;
1332 struct netvsc_ethtool_pcpu_stats *this_tot =
1333 &pcpu_tot[nvchan->channel->target_cpu];
1334 u64 packets, bytes;
1335 unsigned int start;
1336
1337 stats = &nvchan->tx_stats;
1338 do {
1339 start = u64_stats_fetch_begin_irq(&stats->syncp);
1340 packets = stats->packets;
1341 bytes = stats->bytes;
1342 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1343
1344 this_tot->tx_bytes += bytes;
1345 this_tot->tx_packets += packets;
1346
1347 stats = &nvchan->rx_stats;
1348 do {
1349 start = u64_stats_fetch_begin_irq(&stats->syncp);
1350 packets = stats->packets;
1351 bytes = stats->bytes;
1352 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1353
1354 this_tot->rx_bytes += bytes;
1355 this_tot->rx_packets += packets;
1356 }
1357}
1358
1359static void netvsc_get_stats64(struct net_device *net,
1360 struct rtnl_link_stats64 *t)
1361{
1362 struct net_device_context *ndev_ctx = netdev_priv(net);
1363 struct netvsc_device *nvdev;
1364 struct netvsc_vf_pcpu_stats vf_tot;
1365 int i;
1366
1367 rcu_read_lock();
1368
1369 nvdev = rcu_dereference(ndev_ctx->nvdev);
1370 if (!nvdev)
1371 goto out;
1372
1373 netdev_stats_to_stats64(t, &net->stats);
1374
1375 netvsc_get_vf_stats(net, &vf_tot);
1376 t->rx_packets += vf_tot.rx_packets;
1377 t->tx_packets += vf_tot.tx_packets;
1378 t->rx_bytes += vf_tot.rx_bytes;
1379 t->tx_bytes += vf_tot.tx_bytes;
1380 t->tx_dropped += vf_tot.tx_dropped;
1381
1382 for (i = 0; i < nvdev->num_chn; i++) {
1383 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1384 const struct netvsc_stats *stats;
1385 u64 packets, bytes, multicast;
1386 unsigned int start;
1387
1388 stats = &nvchan->tx_stats;
1389 do {
1390 start = u64_stats_fetch_begin_irq(&stats->syncp);
1391 packets = stats->packets;
1392 bytes = stats->bytes;
1393 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1394
1395 t->tx_bytes += bytes;
1396 t->tx_packets += packets;
1397
1398 stats = &nvchan->rx_stats;
1399 do {
1400 start = u64_stats_fetch_begin_irq(&stats->syncp);
1401 packets = stats->packets;
1402 bytes = stats->bytes;
1403 multicast = stats->multicast + stats->broadcast;
1404 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1405
1406 t->rx_bytes += bytes;
1407 t->rx_packets += packets;
1408 t->multicast += multicast;
1409 }
1410out:
1411 rcu_read_unlock();
1412}
1413
1414static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1415{
1416 struct net_device_context *ndc = netdev_priv(ndev);
1417 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1418 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1419 struct sockaddr *addr = p;
1420 int err;
1421
1422 err = eth_prepare_mac_addr_change(ndev, p);
1423 if (err)
1424 return err;
1425
1426 if (!nvdev)
1427 return -ENODEV;
1428
1429 if (vf_netdev) {
1430 err = dev_set_mac_address(vf_netdev, addr, NULL);
1431 if (err)
1432 return err;
1433 }
1434
1435 err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1436 if (!err) {
1437 eth_commit_mac_addr_change(ndev, p);
1438 } else if (vf_netdev) {
1439 /* rollback change on VF */
1440 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1441 dev_set_mac_address(vf_netdev, addr, NULL);
1442 }
1443
1444 return err;
1445}
1446
1447static const struct {
1448 char name[ETH_GSTRING_LEN];
1449 u16 offset;
1450} netvsc_stats[] = {
1451 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1452 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1453 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1454 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1455 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) },
1456 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1457 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1458 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1459 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1460 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1461 { "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) },
1462}, pcpu_stats[] = {
1463 { "cpu%u_rx_packets",
1464 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1465 { "cpu%u_rx_bytes",
1466 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1467 { "cpu%u_tx_packets",
1468 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1469 { "cpu%u_tx_bytes",
1470 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1471 { "cpu%u_vf_rx_packets",
1472 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1473 { "cpu%u_vf_rx_bytes",
1474 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1475 { "cpu%u_vf_tx_packets",
1476 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1477 { "cpu%u_vf_tx_bytes",
1478 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1479}, vf_stats[] = {
1480 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1481 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1482 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1483 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1484 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1485};
1486
1487#define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1488#define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats)
1489
1490/* statistics per queue (rx/tx packets/bytes) */
1491#define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1492
1493/* 5 statistics per queue (rx/tx packets/bytes, rx xdp_drop) */
1494#define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 5)
1495
1496static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1497{
1498 struct net_device_context *ndc = netdev_priv(dev);
1499 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1500
1501 if (!nvdev)
1502 return -ENODEV;
1503
1504 switch (string_set) {
1505 case ETH_SS_STATS:
1506 return NETVSC_GLOBAL_STATS_LEN
1507 + NETVSC_VF_STATS_LEN
1508 + NETVSC_QUEUE_STATS_LEN(nvdev)
1509 + NETVSC_PCPU_STATS_LEN;
1510 default:
1511 return -EINVAL;
1512 }
1513}
1514
1515static void netvsc_get_ethtool_stats(struct net_device *dev,
1516 struct ethtool_stats *stats, u64 *data)
1517{
1518 struct net_device_context *ndc = netdev_priv(dev);
1519 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1520 const void *nds = &ndc->eth_stats;
1521 const struct netvsc_stats *qstats;
1522 struct netvsc_vf_pcpu_stats sum;
1523 struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1524 unsigned int start;
1525 u64 packets, bytes;
1526 u64 xdp_drop;
1527 int i, j, cpu;
1528
1529 if (!nvdev)
1530 return;
1531
1532 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1533 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1534
1535 netvsc_get_vf_stats(dev, &sum);
1536 for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1537 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1538
1539 for (j = 0; j < nvdev->num_chn; j++) {
1540 qstats = &nvdev->chan_table[j].tx_stats;
1541
1542 do {
1543 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1544 packets = qstats->packets;
1545 bytes = qstats->bytes;
1546 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1547 data[i++] = packets;
1548 data[i++] = bytes;
1549
1550 qstats = &nvdev->chan_table[j].rx_stats;
1551 do {
1552 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1553 packets = qstats->packets;
1554 bytes = qstats->bytes;
1555 xdp_drop = qstats->xdp_drop;
1556 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1557 data[i++] = packets;
1558 data[i++] = bytes;
1559 data[i++] = xdp_drop;
1560 }
1561
1562 pcpu_sum = kvmalloc_array(num_possible_cpus(),
1563 sizeof(struct netvsc_ethtool_pcpu_stats),
1564 GFP_KERNEL);
1565 netvsc_get_pcpu_stats(dev, pcpu_sum);
1566 for_each_present_cpu(cpu) {
1567 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1568
1569 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1570 data[i++] = *(u64 *)((void *)this_sum
1571 + pcpu_stats[j].offset);
1572 }
1573 kvfree(pcpu_sum);
1574}
1575
1576static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1577{
1578 struct net_device_context *ndc = netdev_priv(dev);
1579 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1580 u8 *p = data;
1581 int i, cpu;
1582
1583 if (!nvdev)
1584 return;
1585
1586 switch (stringset) {
1587 case ETH_SS_STATS:
1588 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1589 memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1590 p += ETH_GSTRING_LEN;
1591 }
1592
1593 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1594 memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1595 p += ETH_GSTRING_LEN;
1596 }
1597
1598 for (i = 0; i < nvdev->num_chn; i++) {
1599 sprintf(p, "tx_queue_%u_packets", i);
1600 p += ETH_GSTRING_LEN;
1601 sprintf(p, "tx_queue_%u_bytes", i);
1602 p += ETH_GSTRING_LEN;
1603 sprintf(p, "rx_queue_%u_packets", i);
1604 p += ETH_GSTRING_LEN;
1605 sprintf(p, "rx_queue_%u_bytes", i);
1606 p += ETH_GSTRING_LEN;
1607 sprintf(p, "rx_queue_%u_xdp_drop", i);
1608 p += ETH_GSTRING_LEN;
1609 }
1610
1611 for_each_present_cpu(cpu) {
1612 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) {
1613 sprintf(p, pcpu_stats[i].name, cpu);
1614 p += ETH_GSTRING_LEN;
1615 }
1616 }
1617
1618 break;
1619 }
1620}
1621
1622static int
1623netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1624 struct ethtool_rxnfc *info)
1625{
1626 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1627
1628 info->data = RXH_IP_SRC | RXH_IP_DST;
1629
1630 switch (info->flow_type) {
1631 case TCP_V4_FLOW:
1632 if (ndc->l4_hash & HV_TCP4_L4HASH)
1633 info->data |= l4_flag;
1634
1635 break;
1636
1637 case TCP_V6_FLOW:
1638 if (ndc->l4_hash & HV_TCP6_L4HASH)
1639 info->data |= l4_flag;
1640
1641 break;
1642
1643 case UDP_V4_FLOW:
1644 if (ndc->l4_hash & HV_UDP4_L4HASH)
1645 info->data |= l4_flag;
1646
1647 break;
1648
1649 case UDP_V6_FLOW:
1650 if (ndc->l4_hash & HV_UDP6_L4HASH)
1651 info->data |= l4_flag;
1652
1653 break;
1654
1655 case IPV4_FLOW:
1656 case IPV6_FLOW:
1657 break;
1658 default:
1659 info->data = 0;
1660 break;
1661 }
1662
1663 return 0;
1664}
1665
1666static int
1667netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1668 u32 *rules)
1669{
1670 struct net_device_context *ndc = netdev_priv(dev);
1671 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1672
1673 if (!nvdev)
1674 return -ENODEV;
1675
1676 switch (info->cmd) {
1677 case ETHTOOL_GRXRINGS:
1678 info->data = nvdev->num_chn;
1679 return 0;
1680
1681 case ETHTOOL_GRXFH:
1682 return netvsc_get_rss_hash_opts(ndc, info);
1683 }
1684 return -EOPNOTSUPP;
1685}
1686
1687static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1688 struct ethtool_rxnfc *info)
1689{
1690 if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1691 RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1692 switch (info->flow_type) {
1693 case TCP_V4_FLOW:
1694 ndc->l4_hash |= HV_TCP4_L4HASH;
1695 break;
1696
1697 case TCP_V6_FLOW:
1698 ndc->l4_hash |= HV_TCP6_L4HASH;
1699 break;
1700
1701 case UDP_V4_FLOW:
1702 ndc->l4_hash |= HV_UDP4_L4HASH;
1703 break;
1704
1705 case UDP_V6_FLOW:
1706 ndc->l4_hash |= HV_UDP6_L4HASH;
1707 break;
1708
1709 default:
1710 return -EOPNOTSUPP;
1711 }
1712
1713 return 0;
1714 }
1715
1716 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1717 switch (info->flow_type) {
1718 case TCP_V4_FLOW:
1719 ndc->l4_hash &= ~HV_TCP4_L4HASH;
1720 break;
1721
1722 case TCP_V6_FLOW:
1723 ndc->l4_hash &= ~HV_TCP6_L4HASH;
1724 break;
1725
1726 case UDP_V4_FLOW:
1727 ndc->l4_hash &= ~HV_UDP4_L4HASH;
1728 break;
1729
1730 case UDP_V6_FLOW:
1731 ndc->l4_hash &= ~HV_UDP6_L4HASH;
1732 break;
1733
1734 default:
1735 return -EOPNOTSUPP;
1736 }
1737
1738 return 0;
1739 }
1740
1741 return -EOPNOTSUPP;
1742}
1743
1744static int
1745netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1746{
1747 struct net_device_context *ndc = netdev_priv(ndev);
1748
1749 if (info->cmd == ETHTOOL_SRXFH)
1750 return netvsc_set_rss_hash_opts(ndc, info);
1751
1752 return -EOPNOTSUPP;
1753}
1754
1755static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1756{
1757 return NETVSC_HASH_KEYLEN;
1758}
1759
1760static u32 netvsc_rss_indir_size(struct net_device *dev)
1761{
1762 return ITAB_NUM;
1763}
1764
1765static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1766 u8 *hfunc)
1767{
1768 struct net_device_context *ndc = netdev_priv(dev);
1769 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1770 struct rndis_device *rndis_dev;
1771 int i;
1772
1773 if (!ndev)
1774 return -ENODEV;
1775
1776 if (hfunc)
1777 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */
1778
1779 rndis_dev = ndev->extension;
1780 if (indir) {
1781 for (i = 0; i < ITAB_NUM; i++)
1782 indir[i] = ndc->rx_table[i];
1783 }
1784
1785 if (key)
1786 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1787
1788 return 0;
1789}
1790
1791static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1792 const u8 *key, const u8 hfunc)
1793{
1794 struct net_device_context *ndc = netdev_priv(dev);
1795 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1796 struct rndis_device *rndis_dev;
1797 int i;
1798
1799 if (!ndev)
1800 return -ENODEV;
1801
1802 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1803 return -EOPNOTSUPP;
1804
1805 rndis_dev = ndev->extension;
1806 if (indir) {
1807 for (i = 0; i < ITAB_NUM; i++)
1808 if (indir[i] >= ndev->num_chn)
1809 return -EINVAL;
1810
1811 for (i = 0; i < ITAB_NUM; i++)
1812 ndc->rx_table[i] = indir[i];
1813 }
1814
1815 if (!key) {
1816 if (!indir)
1817 return 0;
1818
1819 key = rndis_dev->rss_key;
1820 }
1821
1822 return rndis_filter_set_rss_param(rndis_dev, key);
1823}
1824
1825/* Hyper-V RNDIS protocol does not have ring in the HW sense.
1826 * It does have pre-allocated receive area which is divided into sections.
1827 */
1828static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1829 struct ethtool_ringparam *ring)
1830{
1831 u32 max_buf_size;
1832
1833 ring->rx_pending = nvdev->recv_section_cnt;
1834 ring->tx_pending = nvdev->send_section_cnt;
1835
1836 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1837 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1838 else
1839 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1840
1841 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1842 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1843 / nvdev->send_section_size;
1844}
1845
1846static void netvsc_get_ringparam(struct net_device *ndev,
1847 struct ethtool_ringparam *ring)
1848{
1849 struct net_device_context *ndevctx = netdev_priv(ndev);
1850 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1851
1852 if (!nvdev)
1853 return;
1854
1855 __netvsc_get_ringparam(nvdev, ring);
1856}
1857
1858static int netvsc_set_ringparam(struct net_device *ndev,
1859 struct ethtool_ringparam *ring)
1860{
1861 struct net_device_context *ndevctx = netdev_priv(ndev);
1862 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1863 struct netvsc_device_info *device_info;
1864 struct ethtool_ringparam orig;
1865 u32 new_tx, new_rx;
1866 int ret = 0;
1867
1868 if (!nvdev || nvdev->destroy)
1869 return -ENODEV;
1870
1871 memset(&orig, 0, sizeof(orig));
1872 __netvsc_get_ringparam(nvdev, &orig);
1873
1874 new_tx = clamp_t(u32, ring->tx_pending,
1875 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1876 new_rx = clamp_t(u32, ring->rx_pending,
1877 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1878
1879 if (new_tx == orig.tx_pending &&
1880 new_rx == orig.rx_pending)
1881 return 0; /* no change */
1882
1883 device_info = netvsc_devinfo_get(nvdev);
1884
1885 if (!device_info)
1886 return -ENOMEM;
1887
1888 device_info->send_sections = new_tx;
1889 device_info->recv_sections = new_rx;
1890
1891 ret = netvsc_detach(ndev, nvdev);
1892 if (ret)
1893 goto out;
1894
1895 ret = netvsc_attach(ndev, device_info);
1896 if (ret) {
1897 device_info->send_sections = orig.tx_pending;
1898 device_info->recv_sections = orig.rx_pending;
1899
1900 if (netvsc_attach(ndev, device_info))
1901 netdev_err(ndev, "restoring ringparam failed");
1902 }
1903
1904out:
1905 netvsc_devinfo_put(device_info);
1906 return ret;
1907}
1908
1909static netdev_features_t netvsc_fix_features(struct net_device *ndev,
1910 netdev_features_t features)
1911{
1912 struct net_device_context *ndevctx = netdev_priv(ndev);
1913 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1914
1915 if (!nvdev || nvdev->destroy)
1916 return features;
1917
1918 if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) {
1919 features ^= NETIF_F_LRO;
1920 netdev_info(ndev, "Skip LRO - unsupported with XDP\n");
1921 }
1922
1923 return features;
1924}
1925
1926static int netvsc_set_features(struct net_device *ndev,
1927 netdev_features_t features)
1928{
1929 netdev_features_t change = features ^ ndev->features;
1930 struct net_device_context *ndevctx = netdev_priv(ndev);
1931 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1932 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1933 struct ndis_offload_params offloads;
1934 int ret = 0;
1935
1936 if (!nvdev || nvdev->destroy)
1937 return -ENODEV;
1938
1939 if (!(change & NETIF_F_LRO))
1940 goto syncvf;
1941
1942 memset(&offloads, 0, sizeof(struct ndis_offload_params));
1943
1944 if (features & NETIF_F_LRO) {
1945 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1946 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1947 } else {
1948 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1949 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1950 }
1951
1952 ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1953
1954 if (ret) {
1955 features ^= NETIF_F_LRO;
1956 ndev->features = features;
1957 }
1958
1959syncvf:
1960 if (!vf_netdev)
1961 return ret;
1962
1963 vf_netdev->wanted_features = features;
1964 netdev_update_features(vf_netdev);
1965
1966 return ret;
1967}
1968
1969static int netvsc_get_regs_len(struct net_device *netdev)
1970{
1971 return VRSS_SEND_TAB_SIZE * sizeof(u32);
1972}
1973
1974static void netvsc_get_regs(struct net_device *netdev,
1975 struct ethtool_regs *regs, void *p)
1976{
1977 struct net_device_context *ndc = netdev_priv(netdev);
1978 u32 *regs_buff = p;
1979
1980 /* increase the version, if buffer format is changed. */
1981 regs->version = 1;
1982
1983 memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32));
1984}
1985
1986static u32 netvsc_get_msglevel(struct net_device *ndev)
1987{
1988 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1989
1990 return ndev_ctx->msg_enable;
1991}
1992
1993static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1994{
1995 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1996
1997 ndev_ctx->msg_enable = val;
1998}
1999
2000static const struct ethtool_ops ethtool_ops = {
2001 .get_drvinfo = netvsc_get_drvinfo,
2002 .get_regs_len = netvsc_get_regs_len,
2003 .get_regs = netvsc_get_regs,
2004 .get_msglevel = netvsc_get_msglevel,
2005 .set_msglevel = netvsc_set_msglevel,
2006 .get_link = ethtool_op_get_link,
2007 .get_ethtool_stats = netvsc_get_ethtool_stats,
2008 .get_sset_count = netvsc_get_sset_count,
2009 .get_strings = netvsc_get_strings,
2010 .get_channels = netvsc_get_channels,
2011 .set_channels = netvsc_set_channels,
2012 .get_ts_info = ethtool_op_get_ts_info,
2013 .get_rxnfc = netvsc_get_rxnfc,
2014 .set_rxnfc = netvsc_set_rxnfc,
2015 .get_rxfh_key_size = netvsc_get_rxfh_key_size,
2016 .get_rxfh_indir_size = netvsc_rss_indir_size,
2017 .get_rxfh = netvsc_get_rxfh,
2018 .set_rxfh = netvsc_set_rxfh,
2019 .get_link_ksettings = netvsc_get_link_ksettings,
2020 .set_link_ksettings = netvsc_set_link_ksettings,
2021 .get_ringparam = netvsc_get_ringparam,
2022 .set_ringparam = netvsc_set_ringparam,
2023};
2024
2025static const struct net_device_ops device_ops = {
2026 .ndo_open = netvsc_open,
2027 .ndo_stop = netvsc_close,
2028 .ndo_start_xmit = netvsc_start_xmit,
2029 .ndo_change_rx_flags = netvsc_change_rx_flags,
2030 .ndo_set_rx_mode = netvsc_set_rx_mode,
2031 .ndo_fix_features = netvsc_fix_features,
2032 .ndo_set_features = netvsc_set_features,
2033 .ndo_change_mtu = netvsc_change_mtu,
2034 .ndo_validate_addr = eth_validate_addr,
2035 .ndo_set_mac_address = netvsc_set_mac_addr,
2036 .ndo_select_queue = netvsc_select_queue,
2037 .ndo_get_stats64 = netvsc_get_stats64,
2038 .ndo_bpf = netvsc_bpf,
2039};
2040
2041/*
2042 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
2043 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
2044 * present send GARP packet to network peers with netif_notify_peers().
2045 */
2046static void netvsc_link_change(struct work_struct *w)
2047{
2048 struct net_device_context *ndev_ctx =
2049 container_of(w, struct net_device_context, dwork.work);
2050 struct hv_device *device_obj = ndev_ctx->device_ctx;
2051 struct net_device *net = hv_get_drvdata(device_obj);
2052 struct netvsc_device *net_device;
2053 struct rndis_device *rdev;
2054 struct netvsc_reconfig *event = NULL;
2055 bool notify = false, reschedule = false;
2056 unsigned long flags, next_reconfig, delay;
2057
2058 /* if changes are happening, comeback later */
2059 if (!rtnl_trylock()) {
2060 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2061 return;
2062 }
2063
2064 net_device = rtnl_dereference(ndev_ctx->nvdev);
2065 if (!net_device)
2066 goto out_unlock;
2067
2068 rdev = net_device->extension;
2069
2070 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
2071 if (time_is_after_jiffies(next_reconfig)) {
2072 /* link_watch only sends one notification with current state
2073 * per second, avoid doing reconfig more frequently. Handle
2074 * wrap around.
2075 */
2076 delay = next_reconfig - jiffies;
2077 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
2078 schedule_delayed_work(&ndev_ctx->dwork, delay);
2079 goto out_unlock;
2080 }
2081 ndev_ctx->last_reconfig = jiffies;
2082
2083 spin_lock_irqsave(&ndev_ctx->lock, flags);
2084 if (!list_empty(&ndev_ctx->reconfig_events)) {
2085 event = list_first_entry(&ndev_ctx->reconfig_events,
2086 struct netvsc_reconfig, list);
2087 list_del(&event->list);
2088 reschedule = !list_empty(&ndev_ctx->reconfig_events);
2089 }
2090 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2091
2092 if (!event)
2093 goto out_unlock;
2094
2095 switch (event->event) {
2096 /* Only the following events are possible due to the check in
2097 * netvsc_linkstatus_callback()
2098 */
2099 case RNDIS_STATUS_MEDIA_CONNECT:
2100 if (rdev->link_state) {
2101 rdev->link_state = false;
2102 netif_carrier_on(net);
2103 netvsc_tx_enable(net_device, net);
2104 } else {
2105 notify = true;
2106 }
2107 kfree(event);
2108 break;
2109 case RNDIS_STATUS_MEDIA_DISCONNECT:
2110 if (!rdev->link_state) {
2111 rdev->link_state = true;
2112 netif_carrier_off(net);
2113 netvsc_tx_disable(net_device, net);
2114 }
2115 kfree(event);
2116 break;
2117 case RNDIS_STATUS_NETWORK_CHANGE:
2118 /* Only makes sense if carrier is present */
2119 if (!rdev->link_state) {
2120 rdev->link_state = true;
2121 netif_carrier_off(net);
2122 netvsc_tx_disable(net_device, net);
2123 event->event = RNDIS_STATUS_MEDIA_CONNECT;
2124 spin_lock_irqsave(&ndev_ctx->lock, flags);
2125 list_add(&event->list, &ndev_ctx->reconfig_events);
2126 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2127 reschedule = true;
2128 }
2129 break;
2130 }
2131
2132 rtnl_unlock();
2133
2134 if (notify)
2135 netdev_notify_peers(net);
2136
2137 /* link_watch only sends one notification with current state per
2138 * second, handle next reconfig event in 2 seconds.
2139 */
2140 if (reschedule)
2141 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2142
2143 return;
2144
2145out_unlock:
2146 rtnl_unlock();
2147}
2148
2149static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
2150{
2151 struct net_device_context *net_device_ctx;
2152 struct net_device *dev;
2153
2154 dev = netdev_master_upper_dev_get(vf_netdev);
2155 if (!dev || dev->netdev_ops != &device_ops)
2156 return NULL; /* not a netvsc device */
2157
2158 net_device_ctx = netdev_priv(dev);
2159 if (!rtnl_dereference(net_device_ctx->nvdev))
2160 return NULL; /* device is removed */
2161
2162 return dev;
2163}
2164
2165/* Called when VF is injecting data into network stack.
2166 * Change the associated network device from VF to netvsc.
2167 * note: already called with rcu_read_lock
2168 */
2169static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2170{
2171 struct sk_buff *skb = *pskb;
2172 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2173 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2174 struct netvsc_vf_pcpu_stats *pcpu_stats
2175 = this_cpu_ptr(ndev_ctx->vf_stats);
2176
2177 skb = skb_share_check(skb, GFP_ATOMIC);
2178 if (unlikely(!skb))
2179 return RX_HANDLER_CONSUMED;
2180
2181 *pskb = skb;
2182
2183 skb->dev = ndev;
2184
2185 u64_stats_update_begin(&pcpu_stats->syncp);
2186 pcpu_stats->rx_packets++;
2187 pcpu_stats->rx_bytes += skb->len;
2188 u64_stats_update_end(&pcpu_stats->syncp);
2189
2190 return RX_HANDLER_ANOTHER;
2191}
2192
2193static int netvsc_vf_join(struct net_device *vf_netdev,
2194 struct net_device *ndev)
2195{
2196 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2197 int ret;
2198
2199 ret = netdev_rx_handler_register(vf_netdev,
2200 netvsc_vf_handle_frame, ndev);
2201 if (ret != 0) {
2202 netdev_err(vf_netdev,
2203 "can not register netvsc VF receive handler (err = %d)\n",
2204 ret);
2205 goto rx_handler_failed;
2206 }
2207
2208 ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2209 NULL, NULL, NULL);
2210 if (ret != 0) {
2211 netdev_err(vf_netdev,
2212 "can not set master device %s (err = %d)\n",
2213 ndev->name, ret);
2214 goto upper_link_failed;
2215 }
2216
2217 /* set slave flag before open to prevent IPv6 addrconf */
2218 vf_netdev->flags |= IFF_SLAVE;
2219
2220 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2221
2222 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2223
2224 netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2225 return 0;
2226
2227upper_link_failed:
2228 netdev_rx_handler_unregister(vf_netdev);
2229rx_handler_failed:
2230 return ret;
2231}
2232
2233static void __netvsc_vf_setup(struct net_device *ndev,
2234 struct net_device *vf_netdev)
2235{
2236 int ret;
2237
2238 /* Align MTU of VF with master */
2239 ret = dev_set_mtu(vf_netdev, ndev->mtu);
2240 if (ret)
2241 netdev_warn(vf_netdev,
2242 "unable to change mtu to %u\n", ndev->mtu);
2243
2244 /* set multicast etc flags on VF */
2245 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2246
2247 /* sync address list from ndev to VF */
2248 netif_addr_lock_bh(ndev);
2249 dev_uc_sync(vf_netdev, ndev);
2250 dev_mc_sync(vf_netdev, ndev);
2251 netif_addr_unlock_bh(ndev);
2252
2253 if (netif_running(ndev)) {
2254 ret = dev_open(vf_netdev, NULL);
2255 if (ret)
2256 netdev_warn(vf_netdev,
2257 "unable to open: %d\n", ret);
2258 }
2259}
2260
2261/* Setup VF as slave of the synthetic device.
2262 * Runs in workqueue to avoid recursion in netlink callbacks.
2263 */
2264static void netvsc_vf_setup(struct work_struct *w)
2265{
2266 struct net_device_context *ndev_ctx
2267 = container_of(w, struct net_device_context, vf_takeover.work);
2268 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2269 struct net_device *vf_netdev;
2270
2271 if (!rtnl_trylock()) {
2272 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2273 return;
2274 }
2275
2276 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2277 if (vf_netdev)
2278 __netvsc_vf_setup(ndev, vf_netdev);
2279
2280 rtnl_unlock();
2281}
2282
2283/* Find netvsc by VF serial number.
2284 * The PCI hyperv controller records the serial number as the slot kobj name.
2285 */
2286static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2287{
2288 struct device *parent = vf_netdev->dev.parent;
2289 struct net_device_context *ndev_ctx;
2290 struct pci_dev *pdev;
2291 u32 serial;
2292
2293 if (!parent || !dev_is_pci(parent))
2294 return NULL; /* not a PCI device */
2295
2296 pdev = to_pci_dev(parent);
2297 if (!pdev->slot) {
2298 netdev_notice(vf_netdev, "no PCI slot information\n");
2299 return NULL;
2300 }
2301
2302 if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2303 netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2304 pci_slot_name(pdev->slot));
2305 return NULL;
2306 }
2307
2308 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2309 if (!ndev_ctx->vf_alloc)
2310 continue;
2311
2312 if (ndev_ctx->vf_serial == serial)
2313 return hv_get_drvdata(ndev_ctx->device_ctx);
2314 }
2315
2316 netdev_notice(vf_netdev,
2317 "no netdev found for vf serial:%u\n", serial);
2318 return NULL;
2319}
2320
2321static int netvsc_register_vf(struct net_device *vf_netdev)
2322{
2323 struct net_device_context *net_device_ctx;
2324 struct netvsc_device *netvsc_dev;
2325 struct bpf_prog *prog;
2326 struct net_device *ndev;
2327 int ret;
2328
2329 if (vf_netdev->addr_len != ETH_ALEN)
2330 return NOTIFY_DONE;
2331
2332 ndev = get_netvsc_byslot(vf_netdev);
2333 if (!ndev)
2334 return NOTIFY_DONE;
2335
2336 net_device_ctx = netdev_priv(ndev);
2337 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2338 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2339 return NOTIFY_DONE;
2340
2341 /* if synthetic interface is a different namespace,
2342 * then move the VF to that namespace; join will be
2343 * done again in that context.
2344 */
2345 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2346 ret = dev_change_net_namespace(vf_netdev,
2347 dev_net(ndev), "eth%d");
2348 if (ret)
2349 netdev_err(vf_netdev,
2350 "could not move to same namespace as %s: %d\n",
2351 ndev->name, ret);
2352 else
2353 netdev_info(vf_netdev,
2354 "VF moved to namespace with: %s\n",
2355 ndev->name);
2356 return NOTIFY_DONE;
2357 }
2358
2359 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2360
2361 if (netvsc_vf_join(vf_netdev, ndev) != 0)
2362 return NOTIFY_DONE;
2363
2364 dev_hold(vf_netdev);
2365 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2366
2367 vf_netdev->wanted_features = ndev->features;
2368 netdev_update_features(vf_netdev);
2369
2370 prog = netvsc_xdp_get(netvsc_dev);
2371 netvsc_vf_setxdp(vf_netdev, prog);
2372
2373 return NOTIFY_OK;
2374}
2375
2376/* Change the data path when VF UP/DOWN/CHANGE are detected.
2377 *
2378 * Typically a UP or DOWN event is followed by a CHANGE event, so
2379 * net_device_ctx->data_path_is_vf is used to cache the current data path
2380 * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate
2381 * message.
2382 *
2383 * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network
2384 * interface, there is only the CHANGE event and no UP or DOWN event.
2385 */
2386static int netvsc_vf_changed(struct net_device *vf_netdev)
2387{
2388 struct net_device_context *net_device_ctx;
2389 struct netvsc_device *netvsc_dev;
2390 struct net_device *ndev;
2391 bool vf_is_up = netif_running(vf_netdev);
2392
2393 ndev = get_netvsc_byref(vf_netdev);
2394 if (!ndev)
2395 return NOTIFY_DONE;
2396
2397 net_device_ctx = netdev_priv(ndev);
2398 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2399 if (!netvsc_dev)
2400 return NOTIFY_DONE;
2401
2402 if (net_device_ctx->data_path_is_vf == vf_is_up)
2403 return NOTIFY_OK;
2404 net_device_ctx->data_path_is_vf = vf_is_up;
2405
2406 netvsc_switch_datapath(ndev, vf_is_up);
2407 netdev_info(ndev, "Data path switched %s VF: %s\n",
2408 vf_is_up ? "to" : "from", vf_netdev->name);
2409
2410 return NOTIFY_OK;
2411}
2412
2413static int netvsc_unregister_vf(struct net_device *vf_netdev)
2414{
2415 struct net_device *ndev;
2416 struct net_device_context *net_device_ctx;
2417
2418 ndev = get_netvsc_byref(vf_netdev);
2419 if (!ndev)
2420 return NOTIFY_DONE;
2421
2422 net_device_ctx = netdev_priv(ndev);
2423 cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2424
2425 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2426
2427 netvsc_vf_setxdp(vf_netdev, NULL);
2428
2429 netdev_rx_handler_unregister(vf_netdev);
2430 netdev_upper_dev_unlink(vf_netdev, ndev);
2431 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2432 dev_put(vf_netdev);
2433
2434 return NOTIFY_OK;
2435}
2436
2437static int netvsc_probe(struct hv_device *dev,
2438 const struct hv_vmbus_device_id *dev_id)
2439{
2440 struct net_device *net = NULL;
2441 struct net_device_context *net_device_ctx;
2442 struct netvsc_device_info *device_info = NULL;
2443 struct netvsc_device *nvdev;
2444 int ret = -ENOMEM;
2445
2446 net = alloc_etherdev_mq(sizeof(struct net_device_context),
2447 VRSS_CHANNEL_MAX);
2448 if (!net)
2449 goto no_net;
2450
2451 netif_carrier_off(net);
2452
2453 netvsc_init_settings(net);
2454
2455 net_device_ctx = netdev_priv(net);
2456 net_device_ctx->device_ctx = dev;
2457 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2458 if (netif_msg_probe(net_device_ctx))
2459 netdev_dbg(net, "netvsc msg_enable: %d\n",
2460 net_device_ctx->msg_enable);
2461
2462 hv_set_drvdata(dev, net);
2463
2464 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2465
2466 spin_lock_init(&net_device_ctx->lock);
2467 INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2468 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2469
2470 net_device_ctx->vf_stats
2471 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2472 if (!net_device_ctx->vf_stats)
2473 goto no_stats;
2474
2475 net->netdev_ops = &device_ops;
2476 net->ethtool_ops = ðtool_ops;
2477 SET_NETDEV_DEV(net, &dev->device);
2478
2479 /* We always need headroom for rndis header */
2480 net->needed_headroom = RNDIS_AND_PPI_SIZE;
2481
2482 /* Initialize the number of queues to be 1, we may change it if more
2483 * channels are offered later.
2484 */
2485 netif_set_real_num_tx_queues(net, 1);
2486 netif_set_real_num_rx_queues(net, 1);
2487
2488 /* Notify the netvsc driver of the new device */
2489 device_info = netvsc_devinfo_get(NULL);
2490
2491 if (!device_info) {
2492 ret = -ENOMEM;
2493 goto devinfo_failed;
2494 }
2495
2496 nvdev = rndis_filter_device_add(dev, device_info);
2497 if (IS_ERR(nvdev)) {
2498 ret = PTR_ERR(nvdev);
2499 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2500 goto rndis_failed;
2501 }
2502
2503 memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN);
2504
2505 /* We must get rtnl lock before scheduling nvdev->subchan_work,
2506 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2507 * all subchannels to show up, but that may not happen because
2508 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2509 * -> ... -> device_add() -> ... -> __device_attach() can't get
2510 * the device lock, so all the subchannels can't be processed --
2511 * finally netvsc_subchan_work() hangs forever.
2512 */
2513 rtnl_lock();
2514
2515 if (nvdev->num_chn > 1)
2516 schedule_work(&nvdev->subchan_work);
2517
2518 /* hw_features computed in rndis_netdev_set_hwcaps() */
2519 net->features = net->hw_features |
2520 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2521 NETIF_F_HW_VLAN_CTAG_RX;
2522 net->vlan_features = net->features;
2523
2524 netdev_lockdep_set_classes(net);
2525
2526 /* MTU range: 68 - 1500 or 65521 */
2527 net->min_mtu = NETVSC_MTU_MIN;
2528 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2529 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2530 else
2531 net->max_mtu = ETH_DATA_LEN;
2532
2533 nvdev->tx_disable = false;
2534
2535 ret = register_netdevice(net);
2536 if (ret != 0) {
2537 pr_err("Unable to register netdev.\n");
2538 goto register_failed;
2539 }
2540
2541 list_add(&net_device_ctx->list, &netvsc_dev_list);
2542 rtnl_unlock();
2543
2544 netvsc_devinfo_put(device_info);
2545 return 0;
2546
2547register_failed:
2548 rtnl_unlock();
2549 rndis_filter_device_remove(dev, nvdev);
2550rndis_failed:
2551 netvsc_devinfo_put(device_info);
2552devinfo_failed:
2553 free_percpu(net_device_ctx->vf_stats);
2554no_stats:
2555 hv_set_drvdata(dev, NULL);
2556 free_netdev(net);
2557no_net:
2558 return ret;
2559}
2560
2561static int netvsc_remove(struct hv_device *dev)
2562{
2563 struct net_device_context *ndev_ctx;
2564 struct net_device *vf_netdev, *net;
2565 struct netvsc_device *nvdev;
2566
2567 net = hv_get_drvdata(dev);
2568 if (net == NULL) {
2569 dev_err(&dev->device, "No net device to remove\n");
2570 return 0;
2571 }
2572
2573 ndev_ctx = netdev_priv(net);
2574
2575 cancel_delayed_work_sync(&ndev_ctx->dwork);
2576
2577 rtnl_lock();
2578 nvdev = rtnl_dereference(ndev_ctx->nvdev);
2579 if (nvdev) {
2580 cancel_work_sync(&nvdev->subchan_work);
2581 netvsc_xdp_set(net, NULL, NULL, nvdev);
2582 }
2583
2584 /*
2585 * Call to the vsc driver to let it know that the device is being
2586 * removed. Also blocks mtu and channel changes.
2587 */
2588 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2589 if (vf_netdev)
2590 netvsc_unregister_vf(vf_netdev);
2591
2592 if (nvdev)
2593 rndis_filter_device_remove(dev, nvdev);
2594
2595 unregister_netdevice(net);
2596 list_del(&ndev_ctx->list);
2597
2598 rtnl_unlock();
2599
2600 hv_set_drvdata(dev, NULL);
2601
2602 free_percpu(ndev_ctx->vf_stats);
2603 free_netdev(net);
2604 return 0;
2605}
2606
2607static int netvsc_suspend(struct hv_device *dev)
2608{
2609 struct net_device_context *ndev_ctx;
2610 struct netvsc_device *nvdev;
2611 struct net_device *net;
2612 int ret;
2613
2614 net = hv_get_drvdata(dev);
2615
2616 ndev_ctx = netdev_priv(net);
2617 cancel_delayed_work_sync(&ndev_ctx->dwork);
2618
2619 rtnl_lock();
2620
2621 nvdev = rtnl_dereference(ndev_ctx->nvdev);
2622 if (nvdev == NULL) {
2623 ret = -ENODEV;
2624 goto out;
2625 }
2626
2627 /* Save the current config info */
2628 ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2629
2630 ret = netvsc_detach(net, nvdev);
2631out:
2632 rtnl_unlock();
2633
2634 return ret;
2635}
2636
2637static int netvsc_resume(struct hv_device *dev)
2638{
2639 struct net_device *net = hv_get_drvdata(dev);
2640 struct net_device_context *net_device_ctx;
2641 struct netvsc_device_info *device_info;
2642 int ret;
2643
2644 rtnl_lock();
2645
2646 net_device_ctx = netdev_priv(net);
2647
2648 /* Reset the data path to the netvsc NIC before re-opening the vmbus
2649 * channel. Later netvsc_netdev_event() will switch the data path to
2650 * the VF upon the UP or CHANGE event.
2651 */
2652 net_device_ctx->data_path_is_vf = false;
2653 device_info = net_device_ctx->saved_netvsc_dev_info;
2654
2655 ret = netvsc_attach(net, device_info);
2656
2657 netvsc_devinfo_put(device_info);
2658 net_device_ctx->saved_netvsc_dev_info = NULL;
2659
2660 rtnl_unlock();
2661
2662 return ret;
2663}
2664static const struct hv_vmbus_device_id id_table[] = {
2665 /* Network guid */
2666 { HV_NIC_GUID, },
2667 { },
2668};
2669
2670MODULE_DEVICE_TABLE(vmbus, id_table);
2671
2672/* The one and only one */
2673static struct hv_driver netvsc_drv = {
2674 .name = KBUILD_MODNAME,
2675 .id_table = id_table,
2676 .probe = netvsc_probe,
2677 .remove = netvsc_remove,
2678 .suspend = netvsc_suspend,
2679 .resume = netvsc_resume,
2680 .driver = {
2681 .probe_type = PROBE_FORCE_SYNCHRONOUS,
2682 },
2683};
2684
2685/*
2686 * On Hyper-V, every VF interface is matched with a corresponding
2687 * synthetic interface. The synthetic interface is presented first
2688 * to the guest. When the corresponding VF instance is registered,
2689 * we will take care of switching the data path.
2690 */
2691static int netvsc_netdev_event(struct notifier_block *this,
2692 unsigned long event, void *ptr)
2693{
2694 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2695
2696 /* Skip our own events */
2697 if (event_dev->netdev_ops == &device_ops)
2698 return NOTIFY_DONE;
2699
2700 /* Avoid non-Ethernet type devices */
2701 if (event_dev->type != ARPHRD_ETHER)
2702 return NOTIFY_DONE;
2703
2704 /* Avoid Vlan dev with same MAC registering as VF */
2705 if (is_vlan_dev(event_dev))
2706 return NOTIFY_DONE;
2707
2708 /* Avoid Bonding master dev with same MAC registering as VF */
2709 if ((event_dev->priv_flags & IFF_BONDING) &&
2710 (event_dev->flags & IFF_MASTER))
2711 return NOTIFY_DONE;
2712
2713 switch (event) {
2714 case NETDEV_REGISTER:
2715 return netvsc_register_vf(event_dev);
2716 case NETDEV_UNREGISTER:
2717 return netvsc_unregister_vf(event_dev);
2718 case NETDEV_UP:
2719 case NETDEV_DOWN:
2720 case NETDEV_CHANGE:
2721 return netvsc_vf_changed(event_dev);
2722 default:
2723 return NOTIFY_DONE;
2724 }
2725}
2726
2727static struct notifier_block netvsc_netdev_notifier = {
2728 .notifier_call = netvsc_netdev_event,
2729};
2730
2731static void __exit netvsc_drv_exit(void)
2732{
2733 unregister_netdevice_notifier(&netvsc_netdev_notifier);
2734 vmbus_driver_unregister(&netvsc_drv);
2735}
2736
2737static int __init netvsc_drv_init(void)
2738{
2739 int ret;
2740
2741 if (ring_size < RING_SIZE_MIN) {
2742 ring_size = RING_SIZE_MIN;
2743 pr_info("Increased ring_size to %u (min allowed)\n",
2744 ring_size);
2745 }
2746 netvsc_ring_bytes = ring_size * PAGE_SIZE;
2747
2748 ret = vmbus_driver_register(&netvsc_drv);
2749 if (ret)
2750 return ret;
2751
2752 register_netdevice_notifier(&netvsc_netdev_notifier);
2753 return 0;
2754}
2755
2756MODULE_LICENSE("GPL");
2757MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2758
2759module_init(netvsc_drv_init);
2760module_exit(netvsc_drv_exit);