Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2009, Microsoft Corporation.
4 *
5 * Authors:
6 * Haiyang Zhang <haiyangz@microsoft.com>
7 * Hank Janssen <hjanssen@microsoft.com>
8 */
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/init.h>
12#include <linux/atomic.h>
13#include <linux/ethtool.h>
14#include <linux/module.h>
15#include <linux/highmem.h>
16#include <linux/device.h>
17#include <linux/io.h>
18#include <linux/delay.h>
19#include <linux/netdevice.h>
20#include <linux/inetdevice.h>
21#include <linux/etherdevice.h>
22#include <linux/pci.h>
23#include <linux/skbuff.h>
24#include <linux/if_vlan.h>
25#include <linux/in.h>
26#include <linux/slab.h>
27#include <linux/rtnetlink.h>
28#include <linux/netpoll.h>
29#include <linux/bpf.h>
30
31#include <net/arp.h>
32#include <net/route.h>
33#include <net/sock.h>
34#include <net/pkt_sched.h>
35#include <net/checksum.h>
36#include <net/ip6_checksum.h>
37
38#include "hyperv_net.h"
39
40#define RING_SIZE_MIN 64
41
42#define LINKCHANGE_INT (2 * HZ)
43#define VF_TAKEOVER_INT (HZ / 10)
44
45static unsigned int ring_size __ro_after_init = 128;
46module_param(ring_size, uint, 0444);
47MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
48unsigned int netvsc_ring_bytes __ro_after_init;
49
50static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
51 NETIF_MSG_LINK | NETIF_MSG_IFUP |
52 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
53 NETIF_MSG_TX_ERR;
54
55static int debug = -1;
56module_param(debug, int, 0444);
57MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
58
59static LIST_HEAD(netvsc_dev_list);
60
61static void netvsc_change_rx_flags(struct net_device *net, int change)
62{
63 struct net_device_context *ndev_ctx = netdev_priv(net);
64 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
65 int inc;
66
67 if (!vf_netdev)
68 return;
69
70 if (change & IFF_PROMISC) {
71 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
72 dev_set_promiscuity(vf_netdev, inc);
73 }
74
75 if (change & IFF_ALLMULTI) {
76 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
77 dev_set_allmulti(vf_netdev, inc);
78 }
79}
80
81static void netvsc_set_rx_mode(struct net_device *net)
82{
83 struct net_device_context *ndev_ctx = netdev_priv(net);
84 struct net_device *vf_netdev;
85 struct netvsc_device *nvdev;
86
87 rcu_read_lock();
88 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
89 if (vf_netdev) {
90 dev_uc_sync(vf_netdev, net);
91 dev_mc_sync(vf_netdev, net);
92 }
93
94 nvdev = rcu_dereference(ndev_ctx->nvdev);
95 if (nvdev)
96 rndis_filter_update(nvdev);
97 rcu_read_unlock();
98}
99
100static void netvsc_tx_enable(struct netvsc_device *nvscdev,
101 struct net_device *ndev)
102{
103 nvscdev->tx_disable = false;
104 virt_wmb(); /* ensure queue wake up mechanism is on */
105
106 netif_tx_wake_all_queues(ndev);
107}
108
109static int netvsc_open(struct net_device *net)
110{
111 struct net_device_context *ndev_ctx = netdev_priv(net);
112 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
113 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
114 struct rndis_device *rdev;
115 int ret = 0;
116
117 netif_carrier_off(net);
118
119 /* Open up the device */
120 ret = rndis_filter_open(nvdev);
121 if (ret != 0) {
122 netdev_err(net, "unable to open device (ret %d).\n", ret);
123 return ret;
124 }
125
126 rdev = nvdev->extension;
127 if (!rdev->link_state) {
128 netif_carrier_on(net);
129 netvsc_tx_enable(nvdev, net);
130 }
131
132 if (vf_netdev) {
133 /* Setting synthetic device up transparently sets
134 * slave as up. If open fails, then slave will be
135 * still be offline (and not used).
136 */
137 ret = dev_open(vf_netdev, NULL);
138 if (ret)
139 netdev_warn(net,
140 "unable to open slave: %s: %d\n",
141 vf_netdev->name, ret);
142 }
143 return 0;
144}
145
146static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
147{
148 unsigned int retry = 0;
149 int i;
150
151 /* Ensure pending bytes in ring are read */
152 for (;;) {
153 u32 aread = 0;
154
155 for (i = 0; i < nvdev->num_chn; i++) {
156 struct vmbus_channel *chn
157 = nvdev->chan_table[i].channel;
158
159 if (!chn)
160 continue;
161
162 /* make sure receive not running now */
163 napi_synchronize(&nvdev->chan_table[i].napi);
164
165 aread = hv_get_bytes_to_read(&chn->inbound);
166 if (aread)
167 break;
168
169 aread = hv_get_bytes_to_read(&chn->outbound);
170 if (aread)
171 break;
172 }
173
174 if (aread == 0)
175 return 0;
176
177 if (++retry > RETRY_MAX)
178 return -ETIMEDOUT;
179
180 usleep_range(RETRY_US_LO, RETRY_US_HI);
181 }
182}
183
184static void netvsc_tx_disable(struct netvsc_device *nvscdev,
185 struct net_device *ndev)
186{
187 if (nvscdev) {
188 nvscdev->tx_disable = true;
189 virt_wmb(); /* ensure txq will not wake up after stop */
190 }
191
192 netif_tx_disable(ndev);
193}
194
195static int netvsc_close(struct net_device *net)
196{
197 struct net_device_context *net_device_ctx = netdev_priv(net);
198 struct net_device *vf_netdev
199 = rtnl_dereference(net_device_ctx->vf_netdev);
200 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
201 int ret;
202
203 netvsc_tx_disable(nvdev, net);
204
205 /* No need to close rndis filter if it is removed already */
206 if (!nvdev)
207 return 0;
208
209 ret = rndis_filter_close(nvdev);
210 if (ret != 0) {
211 netdev_err(net, "unable to close device (ret %d).\n", ret);
212 return ret;
213 }
214
215 ret = netvsc_wait_until_empty(nvdev);
216 if (ret)
217 netdev_err(net, "Ring buffer not empty after closing rndis\n");
218
219 if (vf_netdev)
220 dev_close(vf_netdev);
221
222 return ret;
223}
224
225static inline void *init_ppi_data(struct rndis_message *msg,
226 u32 ppi_size, u32 pkt_type)
227{
228 struct rndis_packet *rndis_pkt = &msg->msg.pkt;
229 struct rndis_per_packet_info *ppi;
230
231 rndis_pkt->data_offset += ppi_size;
232 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
233 + rndis_pkt->per_pkt_info_len;
234
235 ppi->size = ppi_size;
236 ppi->type = pkt_type;
237 ppi->internal = 0;
238 ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
239
240 rndis_pkt->per_pkt_info_len += ppi_size;
241
242 return ppi + 1;
243}
244
245static inline int netvsc_get_tx_queue(struct net_device *ndev,
246 struct sk_buff *skb, int old_idx)
247{
248 const struct net_device_context *ndc = netdev_priv(ndev);
249 struct sock *sk = skb->sk;
250 int q_idx;
251
252 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
253 (VRSS_SEND_TAB_SIZE - 1)];
254
255 /* If queue index changed record the new value */
256 if (q_idx != old_idx &&
257 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
258 sk_tx_queue_set(sk, q_idx);
259
260 return q_idx;
261}
262
263/*
264 * Select queue for transmit.
265 *
266 * If a valid queue has already been assigned, then use that.
267 * Otherwise compute tx queue based on hash and the send table.
268 *
269 * This is basically similar to default (netdev_pick_tx) with the added step
270 * of using the host send_table when no other queue has been assigned.
271 *
272 * TODO support XPS - but get_xps_queue not exported
273 */
274static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
275{
276 int q_idx = sk_tx_queue_get(skb->sk);
277
278 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
279 /* If forwarding a packet, we use the recorded queue when
280 * available for better cache locality.
281 */
282 if (skb_rx_queue_recorded(skb))
283 q_idx = skb_get_rx_queue(skb);
284 else
285 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
286 }
287
288 return q_idx;
289}
290
291static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
292 struct net_device *sb_dev)
293{
294 struct net_device_context *ndc = netdev_priv(ndev);
295 struct net_device *vf_netdev;
296 u16 txq;
297
298 rcu_read_lock();
299 vf_netdev = rcu_dereference(ndc->vf_netdev);
300 if (vf_netdev) {
301 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
302
303 if (vf_ops->ndo_select_queue)
304 txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
305 else
306 txq = netdev_pick_tx(vf_netdev, skb, NULL);
307
308 /* Record the queue selected by VF so that it can be
309 * used for common case where VF has more queues than
310 * the synthetic device.
311 */
312 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
313 } else {
314 txq = netvsc_pick_tx(ndev, skb);
315 }
316 rcu_read_unlock();
317
318 while (txq >= ndev->real_num_tx_queues)
319 txq -= ndev->real_num_tx_queues;
320
321 return txq;
322}
323
324static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len,
325 struct hv_page_buffer *pb)
326{
327 int j = 0;
328
329 hvpfn += offset >> HV_HYP_PAGE_SHIFT;
330 offset = offset & ~HV_HYP_PAGE_MASK;
331
332 while (len > 0) {
333 unsigned long bytes;
334
335 bytes = HV_HYP_PAGE_SIZE - offset;
336 if (bytes > len)
337 bytes = len;
338 pb[j].pfn = hvpfn;
339 pb[j].offset = offset;
340 pb[j].len = bytes;
341
342 offset += bytes;
343 len -= bytes;
344
345 if (offset == HV_HYP_PAGE_SIZE && len) {
346 hvpfn++;
347 offset = 0;
348 j++;
349 }
350 }
351
352 return j + 1;
353}
354
355static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
356 struct hv_netvsc_packet *packet,
357 struct hv_page_buffer *pb)
358{
359 u32 slots_used = 0;
360 char *data = skb->data;
361 int frags = skb_shinfo(skb)->nr_frags;
362 int i;
363
364 /* The packet is laid out thus:
365 * 1. hdr: RNDIS header and PPI
366 * 2. skb linear data
367 * 3. skb fragment data
368 */
369 slots_used += fill_pg_buf(virt_to_hvpfn(hdr),
370 offset_in_hvpage(hdr),
371 len,
372 &pb[slots_used]);
373
374 packet->rmsg_size = len;
375 packet->rmsg_pgcnt = slots_used;
376
377 slots_used += fill_pg_buf(virt_to_hvpfn(data),
378 offset_in_hvpage(data),
379 skb_headlen(skb),
380 &pb[slots_used]);
381
382 for (i = 0; i < frags; i++) {
383 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
384
385 slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)),
386 skb_frag_off(frag),
387 skb_frag_size(frag),
388 &pb[slots_used]);
389 }
390 return slots_used;
391}
392
393static int count_skb_frag_slots(struct sk_buff *skb)
394{
395 int i, frags = skb_shinfo(skb)->nr_frags;
396 int pages = 0;
397
398 for (i = 0; i < frags; i++) {
399 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
400 unsigned long size = skb_frag_size(frag);
401 unsigned long offset = skb_frag_off(frag);
402
403 /* Skip unused frames from start of page */
404 offset &= ~HV_HYP_PAGE_MASK;
405 pages += HVPFN_UP(offset + size);
406 }
407 return pages;
408}
409
410static int netvsc_get_slots(struct sk_buff *skb)
411{
412 char *data = skb->data;
413 unsigned int offset = offset_in_hvpage(data);
414 unsigned int len = skb_headlen(skb);
415 int slots;
416 int frag_slots;
417
418 slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE);
419 frag_slots = count_skb_frag_slots(skb);
420 return slots + frag_slots;
421}
422
423static u32 net_checksum_info(struct sk_buff *skb)
424{
425 if (skb->protocol == htons(ETH_P_IP)) {
426 struct iphdr *ip = ip_hdr(skb);
427
428 if (ip->protocol == IPPROTO_TCP)
429 return TRANSPORT_INFO_IPV4_TCP;
430 else if (ip->protocol == IPPROTO_UDP)
431 return TRANSPORT_INFO_IPV4_UDP;
432 } else {
433 struct ipv6hdr *ip6 = ipv6_hdr(skb);
434
435 if (ip6->nexthdr == IPPROTO_TCP)
436 return TRANSPORT_INFO_IPV6_TCP;
437 else if (ip6->nexthdr == IPPROTO_UDP)
438 return TRANSPORT_INFO_IPV6_UDP;
439 }
440
441 return TRANSPORT_INFO_NOT_IP;
442}
443
444/* Send skb on the slave VF device. */
445static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
446 struct sk_buff *skb)
447{
448 struct net_device_context *ndev_ctx = netdev_priv(net);
449 unsigned int len = skb->len;
450 int rc;
451
452 skb->dev = vf_netdev;
453 skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping);
454
455 rc = dev_queue_xmit(skb);
456 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
457 struct netvsc_vf_pcpu_stats *pcpu_stats
458 = this_cpu_ptr(ndev_ctx->vf_stats);
459
460 u64_stats_update_begin(&pcpu_stats->syncp);
461 pcpu_stats->tx_packets++;
462 pcpu_stats->tx_bytes += len;
463 u64_stats_update_end(&pcpu_stats->syncp);
464 } else {
465 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
466 }
467
468 return rc;
469}
470
471static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx)
472{
473 struct net_device_context *net_device_ctx = netdev_priv(net);
474 struct hv_netvsc_packet *packet = NULL;
475 int ret;
476 unsigned int num_data_pgs;
477 struct rndis_message *rndis_msg;
478 struct net_device *vf_netdev;
479 u32 rndis_msg_size;
480 u32 hash;
481 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
482
483 /* If VF is present and up then redirect packets to it.
484 * Skip the VF if it is marked down or has no carrier.
485 * If netpoll is in uses, then VF can not be used either.
486 */
487 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
488 if (vf_netdev && netif_running(vf_netdev) &&
489 netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net) &&
490 net_device_ctx->data_path_is_vf)
491 return netvsc_vf_xmit(net, vf_netdev, skb);
492
493 /* We will atmost need two pages to describe the rndis
494 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
495 * of pages in a single packet. If skb is scattered around
496 * more pages we try linearizing it.
497 */
498
499 num_data_pgs = netvsc_get_slots(skb) + 2;
500
501 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
502 ++net_device_ctx->eth_stats.tx_scattered;
503
504 if (skb_linearize(skb))
505 goto no_memory;
506
507 num_data_pgs = netvsc_get_slots(skb) + 2;
508 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
509 ++net_device_ctx->eth_stats.tx_too_big;
510 goto drop;
511 }
512 }
513
514 /*
515 * Place the rndis header in the skb head room and
516 * the skb->cb will be used for hv_netvsc_packet
517 * structure.
518 */
519 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
520 if (ret)
521 goto no_memory;
522
523 /* Use the skb control buffer for building up the packet */
524 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
525 sizeof_field(struct sk_buff, cb));
526 packet = (struct hv_netvsc_packet *)skb->cb;
527
528 packet->q_idx = skb_get_queue_mapping(skb);
529
530 packet->total_data_buflen = skb->len;
531 packet->total_bytes = skb->len;
532 packet->total_packets = 1;
533
534 rndis_msg = (struct rndis_message *)skb->head;
535
536 /* Add the rndis header */
537 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
538 rndis_msg->msg_len = packet->total_data_buflen;
539
540 rndis_msg->msg.pkt = (struct rndis_packet) {
541 .data_offset = sizeof(struct rndis_packet),
542 .data_len = packet->total_data_buflen,
543 .per_pkt_info_offset = sizeof(struct rndis_packet),
544 };
545
546 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
547
548 hash = skb_get_hash_raw(skb);
549 if (hash != 0 && net->real_num_tx_queues > 1) {
550 u32 *hash_info;
551
552 rndis_msg_size += NDIS_HASH_PPI_SIZE;
553 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
554 NBL_HASH_VALUE);
555 *hash_info = hash;
556 }
557
558 /* When using AF_PACKET we need to drop VLAN header from
559 * the frame and update the SKB to allow the HOST OS
560 * to transmit the 802.1Q packet
561 */
562 if (skb->protocol == htons(ETH_P_8021Q)) {
563 u16 vlan_tci;
564
565 skb_reset_mac_header(skb);
566 if (eth_type_vlan(eth_hdr(skb)->h_proto)) {
567 if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) {
568 ++net_device_ctx->eth_stats.vlan_error;
569 goto drop;
570 }
571
572 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
573 /* Update the NDIS header pkt lengths */
574 packet->total_data_buflen -= VLAN_HLEN;
575 packet->total_bytes -= VLAN_HLEN;
576 rndis_msg->msg_len = packet->total_data_buflen;
577 rndis_msg->msg.pkt.data_len = packet->total_data_buflen;
578 }
579 }
580
581 if (skb_vlan_tag_present(skb)) {
582 struct ndis_pkt_8021q_info *vlan;
583
584 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
585 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
586 IEEE_8021Q_INFO);
587
588 vlan->value = 0;
589 vlan->vlanid = skb_vlan_tag_get_id(skb);
590 vlan->cfi = skb_vlan_tag_get_cfi(skb);
591 vlan->pri = skb_vlan_tag_get_prio(skb);
592 }
593
594 if (skb_is_gso(skb)) {
595 struct ndis_tcp_lso_info *lso_info;
596
597 rndis_msg_size += NDIS_LSO_PPI_SIZE;
598 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
599 TCP_LARGESEND_PKTINFO);
600
601 lso_info->value = 0;
602 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
603 if (skb->protocol == htons(ETH_P_IP)) {
604 lso_info->lso_v2_transmit.ip_version =
605 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
606 ip_hdr(skb)->tot_len = 0;
607 ip_hdr(skb)->check = 0;
608 tcp_hdr(skb)->check =
609 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
610 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
611 } else {
612 lso_info->lso_v2_transmit.ip_version =
613 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
614 tcp_v6_gso_csum_prep(skb);
615 }
616 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
617 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
618 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
619 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
620 struct ndis_tcp_ip_checksum_info *csum_info;
621
622 rndis_msg_size += NDIS_CSUM_PPI_SIZE;
623 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
624 TCPIP_CHKSUM_PKTINFO);
625
626 csum_info->value = 0;
627 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
628
629 if (skb->protocol == htons(ETH_P_IP)) {
630 csum_info->transmit.is_ipv4 = 1;
631
632 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
633 csum_info->transmit.tcp_checksum = 1;
634 else
635 csum_info->transmit.udp_checksum = 1;
636 } else {
637 csum_info->transmit.is_ipv6 = 1;
638
639 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
640 csum_info->transmit.tcp_checksum = 1;
641 else
642 csum_info->transmit.udp_checksum = 1;
643 }
644 } else {
645 /* Can't do offload of this type of checksum */
646 if (skb_checksum_help(skb))
647 goto drop;
648 }
649 }
650
651 /* Start filling in the page buffers with the rndis hdr */
652 rndis_msg->msg_len += rndis_msg_size;
653 packet->total_data_buflen = rndis_msg->msg_len;
654 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
655 skb, packet, pb);
656
657 /* timestamp packet in software */
658 skb_tx_timestamp(skb);
659
660 ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx);
661 if (likely(ret == 0))
662 return NETDEV_TX_OK;
663
664 if (ret == -EAGAIN) {
665 ++net_device_ctx->eth_stats.tx_busy;
666 return NETDEV_TX_BUSY;
667 }
668
669 if (ret == -ENOSPC)
670 ++net_device_ctx->eth_stats.tx_no_space;
671
672drop:
673 dev_kfree_skb_any(skb);
674 net->stats.tx_dropped++;
675
676 return NETDEV_TX_OK;
677
678no_memory:
679 ++net_device_ctx->eth_stats.tx_no_memory;
680 goto drop;
681}
682
683static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb,
684 struct net_device *ndev)
685{
686 return netvsc_xmit(skb, ndev, false);
687}
688
689/*
690 * netvsc_linkstatus_callback - Link up/down notification
691 */
692void netvsc_linkstatus_callback(struct net_device *net,
693 struct rndis_message *resp,
694 void *data, u32 data_buflen)
695{
696 struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
697 struct net_device_context *ndev_ctx = netdev_priv(net);
698 struct netvsc_reconfig *event;
699 unsigned long flags;
700
701 /* Ensure the packet is big enough to access its fields */
702 if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) {
703 netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n",
704 resp->msg_len);
705 return;
706 }
707
708 /* Copy the RNDIS indicate status into nvchan->recv_buf */
709 memcpy(indicate, data + RNDIS_HEADER_SIZE, sizeof(*indicate));
710
711 /* Update the physical link speed when changing to another vSwitch */
712 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
713 u32 speed;
714
715 /* Validate status_buf_offset and status_buflen.
716 *
717 * Certain (pre-Fe) implementations of Hyper-V's vSwitch didn't account
718 * for the status buffer field in resp->msg_len; perform the validation
719 * using data_buflen (>= resp->msg_len).
720 */
721 if (indicate->status_buflen < sizeof(speed) ||
722 indicate->status_buf_offset < sizeof(*indicate) ||
723 data_buflen - RNDIS_HEADER_SIZE < indicate->status_buf_offset ||
724 data_buflen - RNDIS_HEADER_SIZE - indicate->status_buf_offset
725 < indicate->status_buflen) {
726 netdev_err(net, "invalid rndis_indicate_status packet\n");
727 return;
728 }
729
730 speed = *(u32 *)(data + RNDIS_HEADER_SIZE + indicate->status_buf_offset) / 10000;
731 ndev_ctx->speed = speed;
732 return;
733 }
734
735 /* Handle these link change statuses below */
736 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
737 indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
738 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
739 return;
740
741 if (net->reg_state != NETREG_REGISTERED)
742 return;
743
744 event = kzalloc(sizeof(*event), GFP_ATOMIC);
745 if (!event)
746 return;
747 event->event = indicate->status;
748
749 spin_lock_irqsave(&ndev_ctx->lock, flags);
750 list_add_tail(&event->list, &ndev_ctx->reconfig_events);
751 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
752
753 schedule_delayed_work(&ndev_ctx->dwork, 0);
754}
755
756/* This function should only be called after skb_record_rx_queue() */
757void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev)
758{
759 int rc;
760
761 skb->queue_mapping = skb_get_rx_queue(skb);
762 __skb_push(skb, ETH_HLEN);
763
764 rc = netvsc_xmit(skb, ndev, true);
765
766 if (dev_xmit_complete(rc))
767 return;
768
769 dev_kfree_skb_any(skb);
770 ndev->stats.tx_dropped++;
771}
772
773static void netvsc_comp_ipcsum(struct sk_buff *skb)
774{
775 struct iphdr *iph = (struct iphdr *)skb->data;
776
777 iph->check = 0;
778 iph->check = ip_fast_csum(iph, iph->ihl);
779}
780
781static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
782 struct netvsc_channel *nvchan,
783 struct xdp_buff *xdp)
784{
785 struct napi_struct *napi = &nvchan->napi;
786 const struct ndis_pkt_8021q_info *vlan = &nvchan->rsc.vlan;
787 const struct ndis_tcp_ip_checksum_info *csum_info =
788 &nvchan->rsc.csum_info;
789 const u32 *hash_info = &nvchan->rsc.hash_info;
790 u8 ppi_flags = nvchan->rsc.ppi_flags;
791 struct sk_buff *skb;
792 void *xbuf = xdp->data_hard_start;
793 int i;
794
795 if (xbuf) {
796 unsigned int hdroom = xdp->data - xdp->data_hard_start;
797 unsigned int xlen = xdp->data_end - xdp->data;
798 unsigned int frag_size = xdp->frame_sz;
799
800 skb = build_skb(xbuf, frag_size);
801
802 if (!skb) {
803 __free_page(virt_to_page(xbuf));
804 return NULL;
805 }
806
807 skb_reserve(skb, hdroom);
808 skb_put(skb, xlen);
809 skb->dev = napi->dev;
810 } else {
811 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
812
813 if (!skb)
814 return NULL;
815
816 /* Copy to skb. This copy is needed here since the memory
817 * pointed by hv_netvsc_packet cannot be deallocated.
818 */
819 for (i = 0; i < nvchan->rsc.cnt; i++)
820 skb_put_data(skb, nvchan->rsc.data[i],
821 nvchan->rsc.len[i]);
822 }
823
824 skb->protocol = eth_type_trans(skb, net);
825
826 /* skb is already created with CHECKSUM_NONE */
827 skb_checksum_none_assert(skb);
828
829 /* Incoming packets may have IP header checksum verified by the host.
830 * They may not have IP header checksum computed after coalescing.
831 * We compute it here if the flags are set, because on Linux, the IP
832 * checksum is always checked.
833 */
834 if ((ppi_flags & NVSC_RSC_CSUM_INFO) && csum_info->receive.ip_checksum_value_invalid &&
835 csum_info->receive.ip_checksum_succeeded &&
836 skb->protocol == htons(ETH_P_IP)) {
837 /* Check that there is enough space to hold the IP header. */
838 if (skb_headlen(skb) < sizeof(struct iphdr)) {
839 kfree_skb(skb);
840 return NULL;
841 }
842 netvsc_comp_ipcsum(skb);
843 }
844
845 /* Do L4 checksum offload if enabled and present. */
846 if ((ppi_flags & NVSC_RSC_CSUM_INFO) && (net->features & NETIF_F_RXCSUM)) {
847 if (csum_info->receive.tcp_checksum_succeeded ||
848 csum_info->receive.udp_checksum_succeeded)
849 skb->ip_summed = CHECKSUM_UNNECESSARY;
850 }
851
852 if ((ppi_flags & NVSC_RSC_HASH_INFO) && (net->features & NETIF_F_RXHASH))
853 skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
854
855 if (ppi_flags & NVSC_RSC_VLAN) {
856 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
857 (vlan->cfi ? VLAN_CFI_MASK : 0);
858
859 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
860 vlan_tci);
861 }
862
863 return skb;
864}
865
866/*
867 * netvsc_recv_callback - Callback when we receive a packet from the
868 * "wire" on the specified device.
869 */
870int netvsc_recv_callback(struct net_device *net,
871 struct netvsc_device *net_device,
872 struct netvsc_channel *nvchan)
873{
874 struct net_device_context *net_device_ctx = netdev_priv(net);
875 struct vmbus_channel *channel = nvchan->channel;
876 u16 q_idx = channel->offermsg.offer.sub_channel_index;
877 struct sk_buff *skb;
878 struct netvsc_stats_rx *rx_stats = &nvchan->rx_stats;
879 struct xdp_buff xdp;
880 u32 act;
881
882 if (net->reg_state != NETREG_REGISTERED)
883 return NVSP_STAT_FAIL;
884
885 act = netvsc_run_xdp(net, nvchan, &xdp);
886
887 if (act == XDP_REDIRECT)
888 return NVSP_STAT_SUCCESS;
889
890 if (act != XDP_PASS && act != XDP_TX) {
891 u64_stats_update_begin(&rx_stats->syncp);
892 rx_stats->xdp_drop++;
893 u64_stats_update_end(&rx_stats->syncp);
894
895 return NVSP_STAT_SUCCESS; /* consumed by XDP */
896 }
897
898 /* Allocate a skb - TODO direct I/O to pages? */
899 skb = netvsc_alloc_recv_skb(net, nvchan, &xdp);
900
901 if (unlikely(!skb)) {
902 ++net_device_ctx->eth_stats.rx_no_memory;
903 return NVSP_STAT_FAIL;
904 }
905
906 skb_record_rx_queue(skb, q_idx);
907
908 /*
909 * Even if injecting the packet, record the statistics
910 * on the synthetic device because modifying the VF device
911 * statistics will not work correctly.
912 */
913 u64_stats_update_begin(&rx_stats->syncp);
914 if (act == XDP_TX)
915 rx_stats->xdp_tx++;
916
917 rx_stats->packets++;
918 rx_stats->bytes += nvchan->rsc.pktlen;
919
920 if (skb->pkt_type == PACKET_BROADCAST)
921 ++rx_stats->broadcast;
922 else if (skb->pkt_type == PACKET_MULTICAST)
923 ++rx_stats->multicast;
924 u64_stats_update_end(&rx_stats->syncp);
925
926 if (act == XDP_TX) {
927 netvsc_xdp_xmit(skb, net);
928 return NVSP_STAT_SUCCESS;
929 }
930
931 napi_gro_receive(&nvchan->napi, skb);
932 return NVSP_STAT_SUCCESS;
933}
934
935static void netvsc_get_drvinfo(struct net_device *net,
936 struct ethtool_drvinfo *info)
937{
938 strscpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
939 strscpy(info->fw_version, "N/A", sizeof(info->fw_version));
940}
941
942static void netvsc_get_channels(struct net_device *net,
943 struct ethtool_channels *channel)
944{
945 struct net_device_context *net_device_ctx = netdev_priv(net);
946 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
947
948 if (nvdev) {
949 channel->max_combined = nvdev->max_chn;
950 channel->combined_count = nvdev->num_chn;
951 }
952}
953
954/* Alloc struct netvsc_device_info, and initialize it from either existing
955 * struct netvsc_device, or from default values.
956 */
957static
958struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev)
959{
960 struct netvsc_device_info *dev_info;
961 struct bpf_prog *prog;
962
963 dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
964
965 if (!dev_info)
966 return NULL;
967
968 if (nvdev) {
969 ASSERT_RTNL();
970
971 dev_info->num_chn = nvdev->num_chn;
972 dev_info->send_sections = nvdev->send_section_cnt;
973 dev_info->send_section_size = nvdev->send_section_size;
974 dev_info->recv_sections = nvdev->recv_section_cnt;
975 dev_info->recv_section_size = nvdev->recv_section_size;
976
977 memcpy(dev_info->rss_key, nvdev->extension->rss_key,
978 NETVSC_HASH_KEYLEN);
979
980 prog = netvsc_xdp_get(nvdev);
981 if (prog) {
982 bpf_prog_inc(prog);
983 dev_info->bprog = prog;
984 }
985 } else {
986 dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
987 dev_info->send_sections = NETVSC_DEFAULT_TX;
988 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
989 dev_info->recv_sections = NETVSC_DEFAULT_RX;
990 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
991 }
992
993 return dev_info;
994}
995
996/* Free struct netvsc_device_info */
997static void netvsc_devinfo_put(struct netvsc_device_info *dev_info)
998{
999 if (dev_info->bprog) {
1000 ASSERT_RTNL();
1001 bpf_prog_put(dev_info->bprog);
1002 }
1003
1004 kfree(dev_info);
1005}
1006
1007static int netvsc_detach(struct net_device *ndev,
1008 struct netvsc_device *nvdev)
1009{
1010 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1011 struct hv_device *hdev = ndev_ctx->device_ctx;
1012 int ret;
1013
1014 /* Don't try continuing to try and setup sub channels */
1015 if (cancel_work_sync(&nvdev->subchan_work))
1016 nvdev->num_chn = 1;
1017
1018 netvsc_xdp_set(ndev, NULL, NULL, nvdev);
1019
1020 /* If device was up (receiving) then shutdown */
1021 if (netif_running(ndev)) {
1022 netvsc_tx_disable(nvdev, ndev);
1023
1024 ret = rndis_filter_close(nvdev);
1025 if (ret) {
1026 netdev_err(ndev,
1027 "unable to close device (ret %d).\n", ret);
1028 return ret;
1029 }
1030
1031 ret = netvsc_wait_until_empty(nvdev);
1032 if (ret) {
1033 netdev_err(ndev,
1034 "Ring buffer not empty after closing rndis\n");
1035 return ret;
1036 }
1037 }
1038
1039 netif_device_detach(ndev);
1040
1041 rndis_filter_device_remove(hdev, nvdev);
1042
1043 return 0;
1044}
1045
1046static int netvsc_attach(struct net_device *ndev,
1047 struct netvsc_device_info *dev_info)
1048{
1049 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1050 struct hv_device *hdev = ndev_ctx->device_ctx;
1051 struct netvsc_device *nvdev;
1052 struct rndis_device *rdev;
1053 struct bpf_prog *prog;
1054 int ret = 0;
1055
1056 nvdev = rndis_filter_device_add(hdev, dev_info);
1057 if (IS_ERR(nvdev))
1058 return PTR_ERR(nvdev);
1059
1060 if (nvdev->num_chn > 1) {
1061 ret = rndis_set_subchannel(ndev, nvdev, dev_info);
1062
1063 /* if unavailable, just proceed with one queue */
1064 if (ret) {
1065 nvdev->max_chn = 1;
1066 nvdev->num_chn = 1;
1067 }
1068 }
1069
1070 prog = dev_info->bprog;
1071 if (prog) {
1072 bpf_prog_inc(prog);
1073 ret = netvsc_xdp_set(ndev, prog, NULL, nvdev);
1074 if (ret) {
1075 bpf_prog_put(prog);
1076 goto err1;
1077 }
1078 }
1079
1080 /* In any case device is now ready */
1081 nvdev->tx_disable = false;
1082 netif_device_attach(ndev);
1083
1084 /* Note: enable and attach happen when sub-channels setup */
1085 netif_carrier_off(ndev);
1086
1087 if (netif_running(ndev)) {
1088 ret = rndis_filter_open(nvdev);
1089 if (ret)
1090 goto err2;
1091
1092 rdev = nvdev->extension;
1093 if (!rdev->link_state)
1094 netif_carrier_on(ndev);
1095 }
1096
1097 return 0;
1098
1099err2:
1100 netif_device_detach(ndev);
1101
1102err1:
1103 rndis_filter_device_remove(hdev, nvdev);
1104
1105 return ret;
1106}
1107
1108static int netvsc_set_channels(struct net_device *net,
1109 struct ethtool_channels *channels)
1110{
1111 struct net_device_context *net_device_ctx = netdev_priv(net);
1112 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1113 unsigned int orig, count = channels->combined_count;
1114 struct netvsc_device_info *device_info;
1115 int ret;
1116
1117 /* We do not support separate count for rx, tx, or other */
1118 if (count == 0 ||
1119 channels->rx_count || channels->tx_count || channels->other_count)
1120 return -EINVAL;
1121
1122 if (!nvdev || nvdev->destroy)
1123 return -ENODEV;
1124
1125 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1126 return -EINVAL;
1127
1128 if (count > nvdev->max_chn)
1129 return -EINVAL;
1130
1131 orig = nvdev->num_chn;
1132
1133 device_info = netvsc_devinfo_get(nvdev);
1134
1135 if (!device_info)
1136 return -ENOMEM;
1137
1138 device_info->num_chn = count;
1139
1140 ret = netvsc_detach(net, nvdev);
1141 if (ret)
1142 goto out;
1143
1144 ret = netvsc_attach(net, device_info);
1145 if (ret) {
1146 device_info->num_chn = orig;
1147 if (netvsc_attach(net, device_info))
1148 netdev_err(net, "restoring channel setting failed\n");
1149 }
1150
1151out:
1152 netvsc_devinfo_put(device_info);
1153 return ret;
1154}
1155
1156static void netvsc_init_settings(struct net_device *dev)
1157{
1158 struct net_device_context *ndc = netdev_priv(dev);
1159
1160 ndc->l4_hash = HV_DEFAULT_L4HASH;
1161
1162 ndc->speed = SPEED_UNKNOWN;
1163 ndc->duplex = DUPLEX_FULL;
1164
1165 dev->features = NETIF_F_LRO;
1166}
1167
1168static int netvsc_get_link_ksettings(struct net_device *dev,
1169 struct ethtool_link_ksettings *cmd)
1170{
1171 struct net_device_context *ndc = netdev_priv(dev);
1172 struct net_device *vf_netdev;
1173
1174 vf_netdev = rtnl_dereference(ndc->vf_netdev);
1175
1176 if (vf_netdev)
1177 return __ethtool_get_link_ksettings(vf_netdev, cmd);
1178
1179 cmd->base.speed = ndc->speed;
1180 cmd->base.duplex = ndc->duplex;
1181 cmd->base.port = PORT_OTHER;
1182
1183 return 0;
1184}
1185
1186static int netvsc_set_link_ksettings(struct net_device *dev,
1187 const struct ethtool_link_ksettings *cmd)
1188{
1189 struct net_device_context *ndc = netdev_priv(dev);
1190 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1191
1192 if (vf_netdev) {
1193 if (!vf_netdev->ethtool_ops->set_link_ksettings)
1194 return -EOPNOTSUPP;
1195
1196 return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev,
1197 cmd);
1198 }
1199
1200 return ethtool_virtdev_set_link_ksettings(dev, cmd,
1201 &ndc->speed, &ndc->duplex);
1202}
1203
1204static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1205{
1206 struct net_device_context *ndevctx = netdev_priv(ndev);
1207 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1208 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1209 int orig_mtu = ndev->mtu;
1210 struct netvsc_device_info *device_info;
1211 int ret = 0;
1212
1213 if (!nvdev || nvdev->destroy)
1214 return -ENODEV;
1215
1216 device_info = netvsc_devinfo_get(nvdev);
1217
1218 if (!device_info)
1219 return -ENOMEM;
1220
1221 /* Change MTU of underlying VF netdev first. */
1222 if (vf_netdev) {
1223 ret = dev_set_mtu(vf_netdev, mtu);
1224 if (ret)
1225 goto out;
1226 }
1227
1228 ret = netvsc_detach(ndev, nvdev);
1229 if (ret)
1230 goto rollback_vf;
1231
1232 ndev->mtu = mtu;
1233
1234 ret = netvsc_attach(ndev, device_info);
1235 if (!ret)
1236 goto out;
1237
1238 /* Attempt rollback to original MTU */
1239 ndev->mtu = orig_mtu;
1240
1241 if (netvsc_attach(ndev, device_info))
1242 netdev_err(ndev, "restoring mtu failed\n");
1243rollback_vf:
1244 if (vf_netdev)
1245 dev_set_mtu(vf_netdev, orig_mtu);
1246
1247out:
1248 netvsc_devinfo_put(device_info);
1249 return ret;
1250}
1251
1252static void netvsc_get_vf_stats(struct net_device *net,
1253 struct netvsc_vf_pcpu_stats *tot)
1254{
1255 struct net_device_context *ndev_ctx = netdev_priv(net);
1256 int i;
1257
1258 memset(tot, 0, sizeof(*tot));
1259
1260 for_each_possible_cpu(i) {
1261 const struct netvsc_vf_pcpu_stats *stats
1262 = per_cpu_ptr(ndev_ctx->vf_stats, i);
1263 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1264 unsigned int start;
1265
1266 do {
1267 start = u64_stats_fetch_begin(&stats->syncp);
1268 rx_packets = stats->rx_packets;
1269 tx_packets = stats->tx_packets;
1270 rx_bytes = stats->rx_bytes;
1271 tx_bytes = stats->tx_bytes;
1272 } while (u64_stats_fetch_retry(&stats->syncp, start));
1273
1274 tot->rx_packets += rx_packets;
1275 tot->tx_packets += tx_packets;
1276 tot->rx_bytes += rx_bytes;
1277 tot->tx_bytes += tx_bytes;
1278 tot->tx_dropped += stats->tx_dropped;
1279 }
1280}
1281
1282static void netvsc_get_pcpu_stats(struct net_device *net,
1283 struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1284{
1285 struct net_device_context *ndev_ctx = netdev_priv(net);
1286 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1287 int i;
1288
1289 /* fetch percpu stats of vf */
1290 for_each_possible_cpu(i) {
1291 const struct netvsc_vf_pcpu_stats *stats =
1292 per_cpu_ptr(ndev_ctx->vf_stats, i);
1293 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1294 unsigned int start;
1295
1296 do {
1297 start = u64_stats_fetch_begin(&stats->syncp);
1298 this_tot->vf_rx_packets = stats->rx_packets;
1299 this_tot->vf_tx_packets = stats->tx_packets;
1300 this_tot->vf_rx_bytes = stats->rx_bytes;
1301 this_tot->vf_tx_bytes = stats->tx_bytes;
1302 } while (u64_stats_fetch_retry(&stats->syncp, start));
1303 this_tot->rx_packets = this_tot->vf_rx_packets;
1304 this_tot->tx_packets = this_tot->vf_tx_packets;
1305 this_tot->rx_bytes = this_tot->vf_rx_bytes;
1306 this_tot->tx_bytes = this_tot->vf_tx_bytes;
1307 }
1308
1309 /* fetch percpu stats of netvsc */
1310 for (i = 0; i < nvdev->num_chn; i++) {
1311 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1312 const struct netvsc_stats_tx *tx_stats;
1313 const struct netvsc_stats_rx *rx_stats;
1314 struct netvsc_ethtool_pcpu_stats *this_tot =
1315 &pcpu_tot[nvchan->channel->target_cpu];
1316 u64 packets, bytes;
1317 unsigned int start;
1318
1319 tx_stats = &nvchan->tx_stats;
1320 do {
1321 start = u64_stats_fetch_begin(&tx_stats->syncp);
1322 packets = tx_stats->packets;
1323 bytes = tx_stats->bytes;
1324 } while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1325
1326 this_tot->tx_bytes += bytes;
1327 this_tot->tx_packets += packets;
1328
1329 rx_stats = &nvchan->rx_stats;
1330 do {
1331 start = u64_stats_fetch_begin(&rx_stats->syncp);
1332 packets = rx_stats->packets;
1333 bytes = rx_stats->bytes;
1334 } while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1335
1336 this_tot->rx_bytes += bytes;
1337 this_tot->rx_packets += packets;
1338 }
1339}
1340
1341static void netvsc_get_stats64(struct net_device *net,
1342 struct rtnl_link_stats64 *t)
1343{
1344 struct net_device_context *ndev_ctx = netdev_priv(net);
1345 struct netvsc_device *nvdev;
1346 struct netvsc_vf_pcpu_stats vf_tot;
1347 int i;
1348
1349 rcu_read_lock();
1350
1351 nvdev = rcu_dereference(ndev_ctx->nvdev);
1352 if (!nvdev)
1353 goto out;
1354
1355 netdev_stats_to_stats64(t, &net->stats);
1356
1357 netvsc_get_vf_stats(net, &vf_tot);
1358 t->rx_packets += vf_tot.rx_packets;
1359 t->tx_packets += vf_tot.tx_packets;
1360 t->rx_bytes += vf_tot.rx_bytes;
1361 t->tx_bytes += vf_tot.tx_bytes;
1362 t->tx_dropped += vf_tot.tx_dropped;
1363
1364 for (i = 0; i < nvdev->num_chn; i++) {
1365 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1366 const struct netvsc_stats_tx *tx_stats;
1367 const struct netvsc_stats_rx *rx_stats;
1368 u64 packets, bytes, multicast;
1369 unsigned int start;
1370
1371 tx_stats = &nvchan->tx_stats;
1372 do {
1373 start = u64_stats_fetch_begin(&tx_stats->syncp);
1374 packets = tx_stats->packets;
1375 bytes = tx_stats->bytes;
1376 } while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1377
1378 t->tx_bytes += bytes;
1379 t->tx_packets += packets;
1380
1381 rx_stats = &nvchan->rx_stats;
1382 do {
1383 start = u64_stats_fetch_begin(&rx_stats->syncp);
1384 packets = rx_stats->packets;
1385 bytes = rx_stats->bytes;
1386 multicast = rx_stats->multicast + rx_stats->broadcast;
1387 } while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1388
1389 t->rx_bytes += bytes;
1390 t->rx_packets += packets;
1391 t->multicast += multicast;
1392 }
1393out:
1394 rcu_read_unlock();
1395}
1396
1397static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1398{
1399 struct net_device_context *ndc = netdev_priv(ndev);
1400 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1401 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1402 struct sockaddr *addr = p;
1403 int err;
1404
1405 err = eth_prepare_mac_addr_change(ndev, p);
1406 if (err)
1407 return err;
1408
1409 if (!nvdev)
1410 return -ENODEV;
1411
1412 if (vf_netdev) {
1413 err = dev_set_mac_address(vf_netdev, addr, NULL);
1414 if (err)
1415 return err;
1416 }
1417
1418 err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1419 if (!err) {
1420 eth_commit_mac_addr_change(ndev, p);
1421 } else if (vf_netdev) {
1422 /* rollback change on VF */
1423 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1424 dev_set_mac_address(vf_netdev, addr, NULL);
1425 }
1426
1427 return err;
1428}
1429
1430static const struct {
1431 char name[ETH_GSTRING_LEN];
1432 u16 offset;
1433} netvsc_stats[] = {
1434 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1435 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1436 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1437 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1438 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) },
1439 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1440 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1441 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1442 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1443 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1444 { "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) },
1445}, pcpu_stats[] = {
1446 { "cpu%u_rx_packets",
1447 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1448 { "cpu%u_rx_bytes",
1449 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1450 { "cpu%u_tx_packets",
1451 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1452 { "cpu%u_tx_bytes",
1453 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1454 { "cpu%u_vf_rx_packets",
1455 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1456 { "cpu%u_vf_rx_bytes",
1457 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1458 { "cpu%u_vf_tx_packets",
1459 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1460 { "cpu%u_vf_tx_bytes",
1461 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1462}, vf_stats[] = {
1463 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1464 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1465 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1466 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1467 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1468};
1469
1470#define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1471#define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats)
1472
1473/* statistics per queue (rx/tx packets/bytes) */
1474#define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1475
1476/* 8 statistics per queue (rx/tx packets/bytes, XDP actions) */
1477#define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 8)
1478
1479static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1480{
1481 struct net_device_context *ndc = netdev_priv(dev);
1482 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1483
1484 if (!nvdev)
1485 return -ENODEV;
1486
1487 switch (string_set) {
1488 case ETH_SS_STATS:
1489 return NETVSC_GLOBAL_STATS_LEN
1490 + NETVSC_VF_STATS_LEN
1491 + NETVSC_QUEUE_STATS_LEN(nvdev)
1492 + NETVSC_PCPU_STATS_LEN;
1493 default:
1494 return -EINVAL;
1495 }
1496}
1497
1498static void netvsc_get_ethtool_stats(struct net_device *dev,
1499 struct ethtool_stats *stats, u64 *data)
1500{
1501 struct net_device_context *ndc = netdev_priv(dev);
1502 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1503 const void *nds = &ndc->eth_stats;
1504 const struct netvsc_stats_tx *tx_stats;
1505 const struct netvsc_stats_rx *rx_stats;
1506 struct netvsc_vf_pcpu_stats sum;
1507 struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1508 unsigned int start;
1509 u64 packets, bytes;
1510 u64 xdp_drop;
1511 u64 xdp_redirect;
1512 u64 xdp_tx;
1513 u64 xdp_xmit;
1514 int i, j, cpu;
1515
1516 if (!nvdev)
1517 return;
1518
1519 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1520 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1521
1522 netvsc_get_vf_stats(dev, &sum);
1523 for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1524 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1525
1526 for (j = 0; j < nvdev->num_chn; j++) {
1527 tx_stats = &nvdev->chan_table[j].tx_stats;
1528
1529 do {
1530 start = u64_stats_fetch_begin(&tx_stats->syncp);
1531 packets = tx_stats->packets;
1532 bytes = tx_stats->bytes;
1533 xdp_xmit = tx_stats->xdp_xmit;
1534 } while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1535 data[i++] = packets;
1536 data[i++] = bytes;
1537 data[i++] = xdp_xmit;
1538
1539 rx_stats = &nvdev->chan_table[j].rx_stats;
1540 do {
1541 start = u64_stats_fetch_begin(&rx_stats->syncp);
1542 packets = rx_stats->packets;
1543 bytes = rx_stats->bytes;
1544 xdp_drop = rx_stats->xdp_drop;
1545 xdp_redirect = rx_stats->xdp_redirect;
1546 xdp_tx = rx_stats->xdp_tx;
1547 } while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1548 data[i++] = packets;
1549 data[i++] = bytes;
1550 data[i++] = xdp_drop;
1551 data[i++] = xdp_redirect;
1552 data[i++] = xdp_tx;
1553 }
1554
1555 pcpu_sum = kvmalloc_array(num_possible_cpus(),
1556 sizeof(struct netvsc_ethtool_pcpu_stats),
1557 GFP_KERNEL);
1558 if (!pcpu_sum)
1559 return;
1560
1561 netvsc_get_pcpu_stats(dev, pcpu_sum);
1562 for_each_present_cpu(cpu) {
1563 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1564
1565 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1566 data[i++] = *(u64 *)((void *)this_sum
1567 + pcpu_stats[j].offset);
1568 }
1569 kvfree(pcpu_sum);
1570}
1571
1572static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1573{
1574 struct net_device_context *ndc = netdev_priv(dev);
1575 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1576 u8 *p = data;
1577 int i, cpu;
1578
1579 if (!nvdev)
1580 return;
1581
1582 switch (stringset) {
1583 case ETH_SS_STATS:
1584 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++)
1585 ethtool_sprintf(&p, netvsc_stats[i].name);
1586
1587 for (i = 0; i < ARRAY_SIZE(vf_stats); i++)
1588 ethtool_sprintf(&p, vf_stats[i].name);
1589
1590 for (i = 0; i < nvdev->num_chn; i++) {
1591 ethtool_sprintf(&p, "tx_queue_%u_packets", i);
1592 ethtool_sprintf(&p, "tx_queue_%u_bytes", i);
1593 ethtool_sprintf(&p, "tx_queue_%u_xdp_xmit", i);
1594 ethtool_sprintf(&p, "rx_queue_%u_packets", i);
1595 ethtool_sprintf(&p, "rx_queue_%u_bytes", i);
1596 ethtool_sprintf(&p, "rx_queue_%u_xdp_drop", i);
1597 ethtool_sprintf(&p, "rx_queue_%u_xdp_redirect", i);
1598 ethtool_sprintf(&p, "rx_queue_%u_xdp_tx", i);
1599 }
1600
1601 for_each_present_cpu(cpu) {
1602 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++)
1603 ethtool_sprintf(&p, pcpu_stats[i].name, cpu);
1604 }
1605
1606 break;
1607 }
1608}
1609
1610static int
1611netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1612 struct ethtool_rxnfc *info)
1613{
1614 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1615
1616 info->data = RXH_IP_SRC | RXH_IP_DST;
1617
1618 switch (info->flow_type) {
1619 case TCP_V4_FLOW:
1620 if (ndc->l4_hash & HV_TCP4_L4HASH)
1621 info->data |= l4_flag;
1622
1623 break;
1624
1625 case TCP_V6_FLOW:
1626 if (ndc->l4_hash & HV_TCP6_L4HASH)
1627 info->data |= l4_flag;
1628
1629 break;
1630
1631 case UDP_V4_FLOW:
1632 if (ndc->l4_hash & HV_UDP4_L4HASH)
1633 info->data |= l4_flag;
1634
1635 break;
1636
1637 case UDP_V6_FLOW:
1638 if (ndc->l4_hash & HV_UDP6_L4HASH)
1639 info->data |= l4_flag;
1640
1641 break;
1642
1643 case IPV4_FLOW:
1644 case IPV6_FLOW:
1645 break;
1646 default:
1647 info->data = 0;
1648 break;
1649 }
1650
1651 return 0;
1652}
1653
1654static int
1655netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1656 u32 *rules)
1657{
1658 struct net_device_context *ndc = netdev_priv(dev);
1659 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1660
1661 if (!nvdev)
1662 return -ENODEV;
1663
1664 switch (info->cmd) {
1665 case ETHTOOL_GRXRINGS:
1666 info->data = nvdev->num_chn;
1667 return 0;
1668
1669 case ETHTOOL_GRXFH:
1670 return netvsc_get_rss_hash_opts(ndc, info);
1671 }
1672 return -EOPNOTSUPP;
1673}
1674
1675static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1676 struct ethtool_rxnfc *info)
1677{
1678 if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1679 RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1680 switch (info->flow_type) {
1681 case TCP_V4_FLOW:
1682 ndc->l4_hash |= HV_TCP4_L4HASH;
1683 break;
1684
1685 case TCP_V6_FLOW:
1686 ndc->l4_hash |= HV_TCP6_L4HASH;
1687 break;
1688
1689 case UDP_V4_FLOW:
1690 ndc->l4_hash |= HV_UDP4_L4HASH;
1691 break;
1692
1693 case UDP_V6_FLOW:
1694 ndc->l4_hash |= HV_UDP6_L4HASH;
1695 break;
1696
1697 default:
1698 return -EOPNOTSUPP;
1699 }
1700
1701 return 0;
1702 }
1703
1704 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1705 switch (info->flow_type) {
1706 case TCP_V4_FLOW:
1707 ndc->l4_hash &= ~HV_TCP4_L4HASH;
1708 break;
1709
1710 case TCP_V6_FLOW:
1711 ndc->l4_hash &= ~HV_TCP6_L4HASH;
1712 break;
1713
1714 case UDP_V4_FLOW:
1715 ndc->l4_hash &= ~HV_UDP4_L4HASH;
1716 break;
1717
1718 case UDP_V6_FLOW:
1719 ndc->l4_hash &= ~HV_UDP6_L4HASH;
1720 break;
1721
1722 default:
1723 return -EOPNOTSUPP;
1724 }
1725
1726 return 0;
1727 }
1728
1729 return -EOPNOTSUPP;
1730}
1731
1732static int
1733netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1734{
1735 struct net_device_context *ndc = netdev_priv(ndev);
1736
1737 if (info->cmd == ETHTOOL_SRXFH)
1738 return netvsc_set_rss_hash_opts(ndc, info);
1739
1740 return -EOPNOTSUPP;
1741}
1742
1743static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1744{
1745 return NETVSC_HASH_KEYLEN;
1746}
1747
1748static u32 netvsc_rss_indir_size(struct net_device *dev)
1749{
1750 return ITAB_NUM;
1751}
1752
1753static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1754 u8 *hfunc)
1755{
1756 struct net_device_context *ndc = netdev_priv(dev);
1757 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1758 struct rndis_device *rndis_dev;
1759 int i;
1760
1761 if (!ndev)
1762 return -ENODEV;
1763
1764 if (hfunc)
1765 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */
1766
1767 rndis_dev = ndev->extension;
1768 if (indir) {
1769 for (i = 0; i < ITAB_NUM; i++)
1770 indir[i] = ndc->rx_table[i];
1771 }
1772
1773 if (key)
1774 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1775
1776 return 0;
1777}
1778
1779static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1780 const u8 *key, const u8 hfunc)
1781{
1782 struct net_device_context *ndc = netdev_priv(dev);
1783 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1784 struct rndis_device *rndis_dev;
1785 int i;
1786
1787 if (!ndev)
1788 return -ENODEV;
1789
1790 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1791 return -EOPNOTSUPP;
1792
1793 rndis_dev = ndev->extension;
1794 if (indir) {
1795 for (i = 0; i < ITAB_NUM; i++)
1796 if (indir[i] >= ndev->num_chn)
1797 return -EINVAL;
1798
1799 for (i = 0; i < ITAB_NUM; i++)
1800 ndc->rx_table[i] = indir[i];
1801 }
1802
1803 if (!key) {
1804 if (!indir)
1805 return 0;
1806
1807 key = rndis_dev->rss_key;
1808 }
1809
1810 return rndis_filter_set_rss_param(rndis_dev, key);
1811}
1812
1813/* Hyper-V RNDIS protocol does not have ring in the HW sense.
1814 * It does have pre-allocated receive area which is divided into sections.
1815 */
1816static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1817 struct ethtool_ringparam *ring)
1818{
1819 u32 max_buf_size;
1820
1821 ring->rx_pending = nvdev->recv_section_cnt;
1822 ring->tx_pending = nvdev->send_section_cnt;
1823
1824 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1825 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1826 else
1827 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1828
1829 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1830 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1831 / nvdev->send_section_size;
1832}
1833
1834static void netvsc_get_ringparam(struct net_device *ndev,
1835 struct ethtool_ringparam *ring,
1836 struct kernel_ethtool_ringparam *kernel_ring,
1837 struct netlink_ext_ack *extack)
1838{
1839 struct net_device_context *ndevctx = netdev_priv(ndev);
1840 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1841
1842 if (!nvdev)
1843 return;
1844
1845 __netvsc_get_ringparam(nvdev, ring);
1846}
1847
1848static int netvsc_set_ringparam(struct net_device *ndev,
1849 struct ethtool_ringparam *ring,
1850 struct kernel_ethtool_ringparam *kernel_ring,
1851 struct netlink_ext_ack *extack)
1852{
1853 struct net_device_context *ndevctx = netdev_priv(ndev);
1854 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1855 struct netvsc_device_info *device_info;
1856 struct ethtool_ringparam orig;
1857 u32 new_tx, new_rx;
1858 int ret = 0;
1859
1860 if (!nvdev || nvdev->destroy)
1861 return -ENODEV;
1862
1863 memset(&orig, 0, sizeof(orig));
1864 __netvsc_get_ringparam(nvdev, &orig);
1865
1866 new_tx = clamp_t(u32, ring->tx_pending,
1867 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1868 new_rx = clamp_t(u32, ring->rx_pending,
1869 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1870
1871 if (new_tx == orig.tx_pending &&
1872 new_rx == orig.rx_pending)
1873 return 0; /* no change */
1874
1875 device_info = netvsc_devinfo_get(nvdev);
1876
1877 if (!device_info)
1878 return -ENOMEM;
1879
1880 device_info->send_sections = new_tx;
1881 device_info->recv_sections = new_rx;
1882
1883 ret = netvsc_detach(ndev, nvdev);
1884 if (ret)
1885 goto out;
1886
1887 ret = netvsc_attach(ndev, device_info);
1888 if (ret) {
1889 device_info->send_sections = orig.tx_pending;
1890 device_info->recv_sections = orig.rx_pending;
1891
1892 if (netvsc_attach(ndev, device_info))
1893 netdev_err(ndev, "restoring ringparam failed");
1894 }
1895
1896out:
1897 netvsc_devinfo_put(device_info);
1898 return ret;
1899}
1900
1901static netdev_features_t netvsc_fix_features(struct net_device *ndev,
1902 netdev_features_t features)
1903{
1904 struct net_device_context *ndevctx = netdev_priv(ndev);
1905 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1906
1907 if (!nvdev || nvdev->destroy)
1908 return features;
1909
1910 if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) {
1911 features ^= NETIF_F_LRO;
1912 netdev_info(ndev, "Skip LRO - unsupported with XDP\n");
1913 }
1914
1915 return features;
1916}
1917
1918static int netvsc_set_features(struct net_device *ndev,
1919 netdev_features_t features)
1920{
1921 netdev_features_t change = features ^ ndev->features;
1922 struct net_device_context *ndevctx = netdev_priv(ndev);
1923 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1924 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1925 struct ndis_offload_params offloads;
1926 int ret = 0;
1927
1928 if (!nvdev || nvdev->destroy)
1929 return -ENODEV;
1930
1931 if (!(change & NETIF_F_LRO))
1932 goto syncvf;
1933
1934 memset(&offloads, 0, sizeof(struct ndis_offload_params));
1935
1936 if (features & NETIF_F_LRO) {
1937 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1938 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1939 } else {
1940 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1941 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1942 }
1943
1944 ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1945
1946 if (ret) {
1947 features ^= NETIF_F_LRO;
1948 ndev->features = features;
1949 }
1950
1951syncvf:
1952 if (!vf_netdev)
1953 return ret;
1954
1955 vf_netdev->wanted_features = features;
1956 netdev_update_features(vf_netdev);
1957
1958 return ret;
1959}
1960
1961static int netvsc_get_regs_len(struct net_device *netdev)
1962{
1963 return VRSS_SEND_TAB_SIZE * sizeof(u32);
1964}
1965
1966static void netvsc_get_regs(struct net_device *netdev,
1967 struct ethtool_regs *regs, void *p)
1968{
1969 struct net_device_context *ndc = netdev_priv(netdev);
1970 u32 *regs_buff = p;
1971
1972 /* increase the version, if buffer format is changed. */
1973 regs->version = 1;
1974
1975 memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32));
1976}
1977
1978static u32 netvsc_get_msglevel(struct net_device *ndev)
1979{
1980 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1981
1982 return ndev_ctx->msg_enable;
1983}
1984
1985static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1986{
1987 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1988
1989 ndev_ctx->msg_enable = val;
1990}
1991
1992static const struct ethtool_ops ethtool_ops = {
1993 .get_drvinfo = netvsc_get_drvinfo,
1994 .get_regs_len = netvsc_get_regs_len,
1995 .get_regs = netvsc_get_regs,
1996 .get_msglevel = netvsc_get_msglevel,
1997 .set_msglevel = netvsc_set_msglevel,
1998 .get_link = ethtool_op_get_link,
1999 .get_ethtool_stats = netvsc_get_ethtool_stats,
2000 .get_sset_count = netvsc_get_sset_count,
2001 .get_strings = netvsc_get_strings,
2002 .get_channels = netvsc_get_channels,
2003 .set_channels = netvsc_set_channels,
2004 .get_ts_info = ethtool_op_get_ts_info,
2005 .get_rxnfc = netvsc_get_rxnfc,
2006 .set_rxnfc = netvsc_set_rxnfc,
2007 .get_rxfh_key_size = netvsc_get_rxfh_key_size,
2008 .get_rxfh_indir_size = netvsc_rss_indir_size,
2009 .get_rxfh = netvsc_get_rxfh,
2010 .set_rxfh = netvsc_set_rxfh,
2011 .get_link_ksettings = netvsc_get_link_ksettings,
2012 .set_link_ksettings = netvsc_set_link_ksettings,
2013 .get_ringparam = netvsc_get_ringparam,
2014 .set_ringparam = netvsc_set_ringparam,
2015};
2016
2017static const struct net_device_ops device_ops = {
2018 .ndo_open = netvsc_open,
2019 .ndo_stop = netvsc_close,
2020 .ndo_start_xmit = netvsc_start_xmit,
2021 .ndo_change_rx_flags = netvsc_change_rx_flags,
2022 .ndo_set_rx_mode = netvsc_set_rx_mode,
2023 .ndo_fix_features = netvsc_fix_features,
2024 .ndo_set_features = netvsc_set_features,
2025 .ndo_change_mtu = netvsc_change_mtu,
2026 .ndo_validate_addr = eth_validate_addr,
2027 .ndo_set_mac_address = netvsc_set_mac_addr,
2028 .ndo_select_queue = netvsc_select_queue,
2029 .ndo_get_stats64 = netvsc_get_stats64,
2030 .ndo_bpf = netvsc_bpf,
2031 .ndo_xdp_xmit = netvsc_ndoxdp_xmit,
2032};
2033
2034/*
2035 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
2036 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
2037 * present send GARP packet to network peers with netif_notify_peers().
2038 */
2039static void netvsc_link_change(struct work_struct *w)
2040{
2041 struct net_device_context *ndev_ctx =
2042 container_of(w, struct net_device_context, dwork.work);
2043 struct hv_device *device_obj = ndev_ctx->device_ctx;
2044 struct net_device *net = hv_get_drvdata(device_obj);
2045 unsigned long flags, next_reconfig, delay;
2046 struct netvsc_reconfig *event = NULL;
2047 struct netvsc_device *net_device;
2048 struct rndis_device *rdev;
2049 bool reschedule = false;
2050
2051 /* if changes are happening, comeback later */
2052 if (!rtnl_trylock()) {
2053 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2054 return;
2055 }
2056
2057 net_device = rtnl_dereference(ndev_ctx->nvdev);
2058 if (!net_device)
2059 goto out_unlock;
2060
2061 rdev = net_device->extension;
2062
2063 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
2064 if (time_is_after_jiffies(next_reconfig)) {
2065 /* link_watch only sends one notification with current state
2066 * per second, avoid doing reconfig more frequently. Handle
2067 * wrap around.
2068 */
2069 delay = next_reconfig - jiffies;
2070 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
2071 schedule_delayed_work(&ndev_ctx->dwork, delay);
2072 goto out_unlock;
2073 }
2074 ndev_ctx->last_reconfig = jiffies;
2075
2076 spin_lock_irqsave(&ndev_ctx->lock, flags);
2077 if (!list_empty(&ndev_ctx->reconfig_events)) {
2078 event = list_first_entry(&ndev_ctx->reconfig_events,
2079 struct netvsc_reconfig, list);
2080 list_del(&event->list);
2081 reschedule = !list_empty(&ndev_ctx->reconfig_events);
2082 }
2083 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2084
2085 if (!event)
2086 goto out_unlock;
2087
2088 switch (event->event) {
2089 /* Only the following events are possible due to the check in
2090 * netvsc_linkstatus_callback()
2091 */
2092 case RNDIS_STATUS_MEDIA_CONNECT:
2093 if (rdev->link_state) {
2094 rdev->link_state = false;
2095 netif_carrier_on(net);
2096 netvsc_tx_enable(net_device, net);
2097 } else {
2098 __netdev_notify_peers(net);
2099 }
2100 kfree(event);
2101 break;
2102 case RNDIS_STATUS_MEDIA_DISCONNECT:
2103 if (!rdev->link_state) {
2104 rdev->link_state = true;
2105 netif_carrier_off(net);
2106 netvsc_tx_disable(net_device, net);
2107 }
2108 kfree(event);
2109 break;
2110 case RNDIS_STATUS_NETWORK_CHANGE:
2111 /* Only makes sense if carrier is present */
2112 if (!rdev->link_state) {
2113 rdev->link_state = true;
2114 netif_carrier_off(net);
2115 netvsc_tx_disable(net_device, net);
2116 event->event = RNDIS_STATUS_MEDIA_CONNECT;
2117 spin_lock_irqsave(&ndev_ctx->lock, flags);
2118 list_add(&event->list, &ndev_ctx->reconfig_events);
2119 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2120 reschedule = true;
2121 }
2122 break;
2123 }
2124
2125 rtnl_unlock();
2126
2127 /* link_watch only sends one notification with current state per
2128 * second, handle next reconfig event in 2 seconds.
2129 */
2130 if (reschedule)
2131 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2132
2133 return;
2134
2135out_unlock:
2136 rtnl_unlock();
2137}
2138
2139static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
2140{
2141 struct net_device_context *net_device_ctx;
2142 struct net_device *dev;
2143
2144 dev = netdev_master_upper_dev_get(vf_netdev);
2145 if (!dev || dev->netdev_ops != &device_ops)
2146 return NULL; /* not a netvsc device */
2147
2148 net_device_ctx = netdev_priv(dev);
2149 if (!rtnl_dereference(net_device_ctx->nvdev))
2150 return NULL; /* device is removed */
2151
2152 return dev;
2153}
2154
2155/* Called when VF is injecting data into network stack.
2156 * Change the associated network device from VF to netvsc.
2157 * note: already called with rcu_read_lock
2158 */
2159static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2160{
2161 struct sk_buff *skb = *pskb;
2162 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2163 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2164 struct netvsc_vf_pcpu_stats *pcpu_stats
2165 = this_cpu_ptr(ndev_ctx->vf_stats);
2166
2167 skb = skb_share_check(skb, GFP_ATOMIC);
2168 if (unlikely(!skb))
2169 return RX_HANDLER_CONSUMED;
2170
2171 *pskb = skb;
2172
2173 skb->dev = ndev;
2174
2175 u64_stats_update_begin(&pcpu_stats->syncp);
2176 pcpu_stats->rx_packets++;
2177 pcpu_stats->rx_bytes += skb->len;
2178 u64_stats_update_end(&pcpu_stats->syncp);
2179
2180 return RX_HANDLER_ANOTHER;
2181}
2182
2183static int netvsc_vf_join(struct net_device *vf_netdev,
2184 struct net_device *ndev)
2185{
2186 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2187 int ret;
2188
2189 ret = netdev_rx_handler_register(vf_netdev,
2190 netvsc_vf_handle_frame, ndev);
2191 if (ret != 0) {
2192 netdev_err(vf_netdev,
2193 "can not register netvsc VF receive handler (err = %d)\n",
2194 ret);
2195 goto rx_handler_failed;
2196 }
2197
2198 ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2199 NULL, NULL, NULL);
2200 if (ret != 0) {
2201 netdev_err(vf_netdev,
2202 "can not set master device %s (err = %d)\n",
2203 ndev->name, ret);
2204 goto upper_link_failed;
2205 }
2206
2207 /* set slave flag before open to prevent IPv6 addrconf */
2208 vf_netdev->flags |= IFF_SLAVE;
2209
2210 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2211
2212 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2213
2214 netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2215 return 0;
2216
2217upper_link_failed:
2218 netdev_rx_handler_unregister(vf_netdev);
2219rx_handler_failed:
2220 return ret;
2221}
2222
2223static void __netvsc_vf_setup(struct net_device *ndev,
2224 struct net_device *vf_netdev)
2225{
2226 int ret;
2227
2228 /* Align MTU of VF with master */
2229 ret = dev_set_mtu(vf_netdev, ndev->mtu);
2230 if (ret)
2231 netdev_warn(vf_netdev,
2232 "unable to change mtu to %u\n", ndev->mtu);
2233
2234 /* set multicast etc flags on VF */
2235 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2236
2237 /* sync address list from ndev to VF */
2238 netif_addr_lock_bh(ndev);
2239 dev_uc_sync(vf_netdev, ndev);
2240 dev_mc_sync(vf_netdev, ndev);
2241 netif_addr_unlock_bh(ndev);
2242
2243 if (netif_running(ndev)) {
2244 ret = dev_open(vf_netdev, NULL);
2245 if (ret)
2246 netdev_warn(vf_netdev,
2247 "unable to open: %d\n", ret);
2248 }
2249}
2250
2251/* Setup VF as slave of the synthetic device.
2252 * Runs in workqueue to avoid recursion in netlink callbacks.
2253 */
2254static void netvsc_vf_setup(struct work_struct *w)
2255{
2256 struct net_device_context *ndev_ctx
2257 = container_of(w, struct net_device_context, vf_takeover.work);
2258 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2259 struct net_device *vf_netdev;
2260
2261 if (!rtnl_trylock()) {
2262 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2263 return;
2264 }
2265
2266 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2267 if (vf_netdev)
2268 __netvsc_vf_setup(ndev, vf_netdev);
2269
2270 rtnl_unlock();
2271}
2272
2273/* Find netvsc by VF serial number.
2274 * The PCI hyperv controller records the serial number as the slot kobj name.
2275 */
2276static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2277{
2278 struct device *parent = vf_netdev->dev.parent;
2279 struct net_device_context *ndev_ctx;
2280 struct net_device *ndev;
2281 struct pci_dev *pdev;
2282 u32 serial;
2283
2284 if (!parent || !dev_is_pci(parent))
2285 return NULL; /* not a PCI device */
2286
2287 pdev = to_pci_dev(parent);
2288 if (!pdev->slot) {
2289 netdev_notice(vf_netdev, "no PCI slot information\n");
2290 return NULL;
2291 }
2292
2293 if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2294 netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2295 pci_slot_name(pdev->slot));
2296 return NULL;
2297 }
2298
2299 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2300 if (!ndev_ctx->vf_alloc)
2301 continue;
2302
2303 if (ndev_ctx->vf_serial != serial)
2304 continue;
2305
2306 ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2307 if (ndev->addr_len != vf_netdev->addr_len ||
2308 memcmp(ndev->perm_addr, vf_netdev->perm_addr,
2309 ndev->addr_len) != 0)
2310 continue;
2311
2312 return ndev;
2313
2314 }
2315
2316 /* Fallback path to check synthetic vf with
2317 * help of mac addr
2318 */
2319 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2320 ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2321 if (ether_addr_equal(vf_netdev->perm_addr, ndev->perm_addr)) {
2322 netdev_notice(vf_netdev,
2323 "falling back to mac addr based matching\n");
2324 return ndev;
2325 }
2326 }
2327
2328 netdev_notice(vf_netdev,
2329 "no netdev found for vf serial:%u\n", serial);
2330 return NULL;
2331}
2332
2333static int netvsc_register_vf(struct net_device *vf_netdev)
2334{
2335 struct net_device_context *net_device_ctx;
2336 struct netvsc_device *netvsc_dev;
2337 struct bpf_prog *prog;
2338 struct net_device *ndev;
2339 int ret;
2340
2341 if (vf_netdev->addr_len != ETH_ALEN)
2342 return NOTIFY_DONE;
2343
2344 ndev = get_netvsc_byslot(vf_netdev);
2345 if (!ndev)
2346 return NOTIFY_DONE;
2347
2348 net_device_ctx = netdev_priv(ndev);
2349 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2350 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2351 return NOTIFY_DONE;
2352
2353 /* if synthetic interface is a different namespace,
2354 * then move the VF to that namespace; join will be
2355 * done again in that context.
2356 */
2357 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2358 ret = dev_change_net_namespace(vf_netdev,
2359 dev_net(ndev), "eth%d");
2360 if (ret)
2361 netdev_err(vf_netdev,
2362 "could not move to same namespace as %s: %d\n",
2363 ndev->name, ret);
2364 else
2365 netdev_info(vf_netdev,
2366 "VF moved to namespace with: %s\n",
2367 ndev->name);
2368 return NOTIFY_DONE;
2369 }
2370
2371 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2372
2373 if (netvsc_vf_join(vf_netdev, ndev) != 0)
2374 return NOTIFY_DONE;
2375
2376 dev_hold(vf_netdev);
2377 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2378
2379 if (ndev->needed_headroom < vf_netdev->needed_headroom)
2380 ndev->needed_headroom = vf_netdev->needed_headroom;
2381
2382 vf_netdev->wanted_features = ndev->features;
2383 netdev_update_features(vf_netdev);
2384
2385 prog = netvsc_xdp_get(netvsc_dev);
2386 netvsc_vf_setxdp(vf_netdev, prog);
2387
2388 return NOTIFY_OK;
2389}
2390
2391/* Change the data path when VF UP/DOWN/CHANGE are detected.
2392 *
2393 * Typically a UP or DOWN event is followed by a CHANGE event, so
2394 * net_device_ctx->data_path_is_vf is used to cache the current data path
2395 * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate
2396 * message.
2397 *
2398 * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network
2399 * interface, there is only the CHANGE event and no UP or DOWN event.
2400 */
2401static int netvsc_vf_changed(struct net_device *vf_netdev, unsigned long event)
2402{
2403 struct net_device_context *net_device_ctx;
2404 struct netvsc_device *netvsc_dev;
2405 struct net_device *ndev;
2406 bool vf_is_up = false;
2407 int ret;
2408
2409 if (event != NETDEV_GOING_DOWN)
2410 vf_is_up = netif_running(vf_netdev);
2411
2412 ndev = get_netvsc_byref(vf_netdev);
2413 if (!ndev)
2414 return NOTIFY_DONE;
2415
2416 net_device_ctx = netdev_priv(ndev);
2417 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2418 if (!netvsc_dev)
2419 return NOTIFY_DONE;
2420
2421 if (net_device_ctx->data_path_is_vf == vf_is_up)
2422 return NOTIFY_OK;
2423
2424 if (vf_is_up && !net_device_ctx->vf_alloc) {
2425 netdev_info(ndev, "Waiting for the VF association from host\n");
2426 wait_for_completion(&net_device_ctx->vf_add);
2427 }
2428
2429 ret = netvsc_switch_datapath(ndev, vf_is_up);
2430
2431 if (ret) {
2432 netdev_err(ndev,
2433 "Data path failed to switch %s VF: %s, err: %d\n",
2434 vf_is_up ? "to" : "from", vf_netdev->name, ret);
2435 return NOTIFY_DONE;
2436 } else {
2437 netdev_info(ndev, "Data path switched %s VF: %s\n",
2438 vf_is_up ? "to" : "from", vf_netdev->name);
2439 }
2440
2441 return NOTIFY_OK;
2442}
2443
2444static int netvsc_unregister_vf(struct net_device *vf_netdev)
2445{
2446 struct net_device *ndev;
2447 struct net_device_context *net_device_ctx;
2448
2449 ndev = get_netvsc_byref(vf_netdev);
2450 if (!ndev)
2451 return NOTIFY_DONE;
2452
2453 net_device_ctx = netdev_priv(ndev);
2454 cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2455
2456 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2457
2458 netvsc_vf_setxdp(vf_netdev, NULL);
2459
2460 reinit_completion(&net_device_ctx->vf_add);
2461 netdev_rx_handler_unregister(vf_netdev);
2462 netdev_upper_dev_unlink(vf_netdev, ndev);
2463 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2464 dev_put(vf_netdev);
2465
2466 ndev->needed_headroom = RNDIS_AND_PPI_SIZE;
2467
2468 return NOTIFY_OK;
2469}
2470
2471static int netvsc_probe(struct hv_device *dev,
2472 const struct hv_vmbus_device_id *dev_id)
2473{
2474 struct net_device *net = NULL;
2475 struct net_device_context *net_device_ctx;
2476 struct netvsc_device_info *device_info = NULL;
2477 struct netvsc_device *nvdev;
2478 int ret = -ENOMEM;
2479
2480 net = alloc_etherdev_mq(sizeof(struct net_device_context),
2481 VRSS_CHANNEL_MAX);
2482 if (!net)
2483 goto no_net;
2484
2485 netif_carrier_off(net);
2486
2487 netvsc_init_settings(net);
2488
2489 net_device_ctx = netdev_priv(net);
2490 net_device_ctx->device_ctx = dev;
2491 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2492 if (netif_msg_probe(net_device_ctx))
2493 netdev_dbg(net, "netvsc msg_enable: %d\n",
2494 net_device_ctx->msg_enable);
2495
2496 hv_set_drvdata(dev, net);
2497
2498 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2499
2500 init_completion(&net_device_ctx->vf_add);
2501 spin_lock_init(&net_device_ctx->lock);
2502 INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2503 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2504
2505 net_device_ctx->vf_stats
2506 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2507 if (!net_device_ctx->vf_stats)
2508 goto no_stats;
2509
2510 net->netdev_ops = &device_ops;
2511 net->ethtool_ops = ðtool_ops;
2512 SET_NETDEV_DEV(net, &dev->device);
2513 dma_set_min_align_mask(&dev->device, HV_HYP_PAGE_SIZE - 1);
2514
2515 /* We always need headroom for rndis header */
2516 net->needed_headroom = RNDIS_AND_PPI_SIZE;
2517
2518 /* Initialize the number of queues to be 1, we may change it if more
2519 * channels are offered later.
2520 */
2521 netif_set_real_num_tx_queues(net, 1);
2522 netif_set_real_num_rx_queues(net, 1);
2523
2524 /* Notify the netvsc driver of the new device */
2525 device_info = netvsc_devinfo_get(NULL);
2526
2527 if (!device_info) {
2528 ret = -ENOMEM;
2529 goto devinfo_failed;
2530 }
2531
2532 nvdev = rndis_filter_device_add(dev, device_info);
2533 if (IS_ERR(nvdev)) {
2534 ret = PTR_ERR(nvdev);
2535 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2536 goto rndis_failed;
2537 }
2538
2539 eth_hw_addr_set(net, device_info->mac_adr);
2540
2541 /* We must get rtnl lock before scheduling nvdev->subchan_work,
2542 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2543 * all subchannels to show up, but that may not happen because
2544 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2545 * -> ... -> device_add() -> ... -> __device_attach() can't get
2546 * the device lock, so all the subchannels can't be processed --
2547 * finally netvsc_subchan_work() hangs forever.
2548 */
2549 rtnl_lock();
2550
2551 if (nvdev->num_chn > 1)
2552 schedule_work(&nvdev->subchan_work);
2553
2554 /* hw_features computed in rndis_netdev_set_hwcaps() */
2555 net->features = net->hw_features |
2556 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2557 NETIF_F_HW_VLAN_CTAG_RX;
2558 net->vlan_features = net->features;
2559
2560 netdev_lockdep_set_classes(net);
2561
2562 /* MTU range: 68 - 1500 or 65521 */
2563 net->min_mtu = NETVSC_MTU_MIN;
2564 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2565 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2566 else
2567 net->max_mtu = ETH_DATA_LEN;
2568
2569 nvdev->tx_disable = false;
2570
2571 ret = register_netdevice(net);
2572 if (ret != 0) {
2573 pr_err("Unable to register netdev.\n");
2574 goto register_failed;
2575 }
2576
2577 list_add(&net_device_ctx->list, &netvsc_dev_list);
2578 rtnl_unlock();
2579
2580 netvsc_devinfo_put(device_info);
2581 return 0;
2582
2583register_failed:
2584 rtnl_unlock();
2585 rndis_filter_device_remove(dev, nvdev);
2586rndis_failed:
2587 netvsc_devinfo_put(device_info);
2588devinfo_failed:
2589 free_percpu(net_device_ctx->vf_stats);
2590no_stats:
2591 hv_set_drvdata(dev, NULL);
2592 free_netdev(net);
2593no_net:
2594 return ret;
2595}
2596
2597static int netvsc_remove(struct hv_device *dev)
2598{
2599 struct net_device_context *ndev_ctx;
2600 struct net_device *vf_netdev, *net;
2601 struct netvsc_device *nvdev;
2602
2603 net = hv_get_drvdata(dev);
2604 if (net == NULL) {
2605 dev_err(&dev->device, "No net device to remove\n");
2606 return 0;
2607 }
2608
2609 ndev_ctx = netdev_priv(net);
2610
2611 cancel_delayed_work_sync(&ndev_ctx->dwork);
2612
2613 rtnl_lock();
2614 nvdev = rtnl_dereference(ndev_ctx->nvdev);
2615 if (nvdev) {
2616 cancel_work_sync(&nvdev->subchan_work);
2617 netvsc_xdp_set(net, NULL, NULL, nvdev);
2618 }
2619
2620 /*
2621 * Call to the vsc driver to let it know that the device is being
2622 * removed. Also blocks mtu and channel changes.
2623 */
2624 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2625 if (vf_netdev)
2626 netvsc_unregister_vf(vf_netdev);
2627
2628 if (nvdev)
2629 rndis_filter_device_remove(dev, nvdev);
2630
2631 unregister_netdevice(net);
2632 list_del(&ndev_ctx->list);
2633
2634 rtnl_unlock();
2635
2636 hv_set_drvdata(dev, NULL);
2637
2638 free_percpu(ndev_ctx->vf_stats);
2639 free_netdev(net);
2640 return 0;
2641}
2642
2643static int netvsc_suspend(struct hv_device *dev)
2644{
2645 struct net_device_context *ndev_ctx;
2646 struct netvsc_device *nvdev;
2647 struct net_device *net;
2648 int ret;
2649
2650 net = hv_get_drvdata(dev);
2651
2652 ndev_ctx = netdev_priv(net);
2653 cancel_delayed_work_sync(&ndev_ctx->dwork);
2654
2655 rtnl_lock();
2656
2657 nvdev = rtnl_dereference(ndev_ctx->nvdev);
2658 if (nvdev == NULL) {
2659 ret = -ENODEV;
2660 goto out;
2661 }
2662
2663 /* Save the current config info */
2664 ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2665 if (!ndev_ctx->saved_netvsc_dev_info) {
2666 ret = -ENOMEM;
2667 goto out;
2668 }
2669 ret = netvsc_detach(net, nvdev);
2670out:
2671 rtnl_unlock();
2672
2673 return ret;
2674}
2675
2676static int netvsc_resume(struct hv_device *dev)
2677{
2678 struct net_device *net = hv_get_drvdata(dev);
2679 struct net_device_context *net_device_ctx;
2680 struct netvsc_device_info *device_info;
2681 int ret;
2682
2683 rtnl_lock();
2684
2685 net_device_ctx = netdev_priv(net);
2686
2687 /* Reset the data path to the netvsc NIC before re-opening the vmbus
2688 * channel. Later netvsc_netdev_event() will switch the data path to
2689 * the VF upon the UP or CHANGE event.
2690 */
2691 net_device_ctx->data_path_is_vf = false;
2692 device_info = net_device_ctx->saved_netvsc_dev_info;
2693
2694 ret = netvsc_attach(net, device_info);
2695
2696 netvsc_devinfo_put(device_info);
2697 net_device_ctx->saved_netvsc_dev_info = NULL;
2698
2699 rtnl_unlock();
2700
2701 return ret;
2702}
2703static const struct hv_vmbus_device_id id_table[] = {
2704 /* Network guid */
2705 { HV_NIC_GUID, },
2706 { },
2707};
2708
2709MODULE_DEVICE_TABLE(vmbus, id_table);
2710
2711/* The one and only one */
2712static struct hv_driver netvsc_drv = {
2713 .name = KBUILD_MODNAME,
2714 .id_table = id_table,
2715 .probe = netvsc_probe,
2716 .remove = netvsc_remove,
2717 .suspend = netvsc_suspend,
2718 .resume = netvsc_resume,
2719 .driver = {
2720 .probe_type = PROBE_FORCE_SYNCHRONOUS,
2721 },
2722};
2723
2724/*
2725 * On Hyper-V, every VF interface is matched with a corresponding
2726 * synthetic interface. The synthetic interface is presented first
2727 * to the guest. When the corresponding VF instance is registered,
2728 * we will take care of switching the data path.
2729 */
2730static int netvsc_netdev_event(struct notifier_block *this,
2731 unsigned long event, void *ptr)
2732{
2733 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2734
2735 /* Skip our own events */
2736 if (event_dev->netdev_ops == &device_ops)
2737 return NOTIFY_DONE;
2738
2739 /* Avoid non-Ethernet type devices */
2740 if (event_dev->type != ARPHRD_ETHER)
2741 return NOTIFY_DONE;
2742
2743 /* Avoid Vlan dev with same MAC registering as VF */
2744 if (is_vlan_dev(event_dev))
2745 return NOTIFY_DONE;
2746
2747 /* Avoid Bonding master dev with same MAC registering as VF */
2748 if (netif_is_bond_master(event_dev))
2749 return NOTIFY_DONE;
2750
2751 switch (event) {
2752 case NETDEV_REGISTER:
2753 return netvsc_register_vf(event_dev);
2754 case NETDEV_UNREGISTER:
2755 return netvsc_unregister_vf(event_dev);
2756 case NETDEV_UP:
2757 case NETDEV_DOWN:
2758 case NETDEV_CHANGE:
2759 case NETDEV_GOING_DOWN:
2760 return netvsc_vf_changed(event_dev, event);
2761 default:
2762 return NOTIFY_DONE;
2763 }
2764}
2765
2766static struct notifier_block netvsc_netdev_notifier = {
2767 .notifier_call = netvsc_netdev_event,
2768};
2769
2770static void __exit netvsc_drv_exit(void)
2771{
2772 unregister_netdevice_notifier(&netvsc_netdev_notifier);
2773 vmbus_driver_unregister(&netvsc_drv);
2774}
2775
2776static int __init netvsc_drv_init(void)
2777{
2778 int ret;
2779
2780 if (ring_size < RING_SIZE_MIN) {
2781 ring_size = RING_SIZE_MIN;
2782 pr_info("Increased ring_size to %u (min allowed)\n",
2783 ring_size);
2784 }
2785 netvsc_ring_bytes = ring_size * PAGE_SIZE;
2786
2787 ret = vmbus_driver_register(&netvsc_drv);
2788 if (ret)
2789 return ret;
2790
2791 register_netdevice_notifier(&netvsc_netdev_notifier);
2792 return 0;
2793}
2794
2795MODULE_LICENSE("GPL");
2796MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2797
2798module_init(netvsc_drv_init);
2799module_exit(netvsc_drv_exit);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2009, Microsoft Corporation.
4 *
5 * Authors:
6 * Haiyang Zhang <haiyangz@microsoft.com>
7 * Hank Janssen <hjanssen@microsoft.com>
8 */
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/init.h>
12#include <linux/atomic.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
15#include <linux/device.h>
16#include <linux/io.h>
17#include <linux/delay.h>
18#include <linux/netdevice.h>
19#include <linux/inetdevice.h>
20#include <linux/etherdevice.h>
21#include <linux/pci.h>
22#include <linux/skbuff.h>
23#include <linux/if_vlan.h>
24#include <linux/in.h>
25#include <linux/slab.h>
26#include <linux/rtnetlink.h>
27#include <linux/netpoll.h>
28
29#include <net/arp.h>
30#include <net/route.h>
31#include <net/sock.h>
32#include <net/pkt_sched.h>
33#include <net/checksum.h>
34#include <net/ip6_checksum.h>
35
36#include "hyperv_net.h"
37
38#define RING_SIZE_MIN 64
39#define RETRY_US_LO 5000
40#define RETRY_US_HI 10000
41#define RETRY_MAX 2000 /* >10 sec */
42
43#define LINKCHANGE_INT (2 * HZ)
44#define VF_TAKEOVER_INT (HZ / 10)
45
46static unsigned int ring_size __ro_after_init = 128;
47module_param(ring_size, uint, 0444);
48MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
49unsigned int netvsc_ring_bytes __ro_after_init;
50
51static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
52 NETIF_MSG_LINK | NETIF_MSG_IFUP |
53 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
54 NETIF_MSG_TX_ERR;
55
56static int debug = -1;
57module_param(debug, int, 0444);
58MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59
60static LIST_HEAD(netvsc_dev_list);
61
62static void netvsc_change_rx_flags(struct net_device *net, int change)
63{
64 struct net_device_context *ndev_ctx = netdev_priv(net);
65 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
66 int inc;
67
68 if (!vf_netdev)
69 return;
70
71 if (change & IFF_PROMISC) {
72 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
73 dev_set_promiscuity(vf_netdev, inc);
74 }
75
76 if (change & IFF_ALLMULTI) {
77 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
78 dev_set_allmulti(vf_netdev, inc);
79 }
80}
81
82static void netvsc_set_rx_mode(struct net_device *net)
83{
84 struct net_device_context *ndev_ctx = netdev_priv(net);
85 struct net_device *vf_netdev;
86 struct netvsc_device *nvdev;
87
88 rcu_read_lock();
89 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
90 if (vf_netdev) {
91 dev_uc_sync(vf_netdev, net);
92 dev_mc_sync(vf_netdev, net);
93 }
94
95 nvdev = rcu_dereference(ndev_ctx->nvdev);
96 if (nvdev)
97 rndis_filter_update(nvdev);
98 rcu_read_unlock();
99}
100
101static void netvsc_tx_enable(struct netvsc_device *nvscdev,
102 struct net_device *ndev)
103{
104 nvscdev->tx_disable = false;
105 virt_wmb(); /* ensure queue wake up mechanism is on */
106
107 netif_tx_wake_all_queues(ndev);
108}
109
110static int netvsc_open(struct net_device *net)
111{
112 struct net_device_context *ndev_ctx = netdev_priv(net);
113 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
114 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
115 struct rndis_device *rdev;
116 int ret = 0;
117
118 netif_carrier_off(net);
119
120 /* Open up the device */
121 ret = rndis_filter_open(nvdev);
122 if (ret != 0) {
123 netdev_err(net, "unable to open device (ret %d).\n", ret);
124 return ret;
125 }
126
127 rdev = nvdev->extension;
128 if (!rdev->link_state) {
129 netif_carrier_on(net);
130 netvsc_tx_enable(nvdev, net);
131 }
132
133 if (vf_netdev) {
134 /* Setting synthetic device up transparently sets
135 * slave as up. If open fails, then slave will be
136 * still be offline (and not used).
137 */
138 ret = dev_open(vf_netdev, NULL);
139 if (ret)
140 netdev_warn(net,
141 "unable to open slave: %s: %d\n",
142 vf_netdev->name, ret);
143 }
144 return 0;
145}
146
147static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
148{
149 unsigned int retry = 0;
150 int i;
151
152 /* Ensure pending bytes in ring are read */
153 for (;;) {
154 u32 aread = 0;
155
156 for (i = 0; i < nvdev->num_chn; i++) {
157 struct vmbus_channel *chn
158 = nvdev->chan_table[i].channel;
159
160 if (!chn)
161 continue;
162
163 /* make sure receive not running now */
164 napi_synchronize(&nvdev->chan_table[i].napi);
165
166 aread = hv_get_bytes_to_read(&chn->inbound);
167 if (aread)
168 break;
169
170 aread = hv_get_bytes_to_read(&chn->outbound);
171 if (aread)
172 break;
173 }
174
175 if (aread == 0)
176 return 0;
177
178 if (++retry > RETRY_MAX)
179 return -ETIMEDOUT;
180
181 usleep_range(RETRY_US_LO, RETRY_US_HI);
182 }
183}
184
185static void netvsc_tx_disable(struct netvsc_device *nvscdev,
186 struct net_device *ndev)
187{
188 if (nvscdev) {
189 nvscdev->tx_disable = true;
190 virt_wmb(); /* ensure txq will not wake up after stop */
191 }
192
193 netif_tx_disable(ndev);
194}
195
196static int netvsc_close(struct net_device *net)
197{
198 struct net_device_context *net_device_ctx = netdev_priv(net);
199 struct net_device *vf_netdev
200 = rtnl_dereference(net_device_ctx->vf_netdev);
201 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
202 int ret;
203
204 netvsc_tx_disable(nvdev, net);
205
206 /* No need to close rndis filter if it is removed already */
207 if (!nvdev)
208 return 0;
209
210 ret = rndis_filter_close(nvdev);
211 if (ret != 0) {
212 netdev_err(net, "unable to close device (ret %d).\n", ret);
213 return ret;
214 }
215
216 ret = netvsc_wait_until_empty(nvdev);
217 if (ret)
218 netdev_err(net, "Ring buffer not empty after closing rndis\n");
219
220 if (vf_netdev)
221 dev_close(vf_netdev);
222
223 return ret;
224}
225
226static inline void *init_ppi_data(struct rndis_message *msg,
227 u32 ppi_size, u32 pkt_type)
228{
229 struct rndis_packet *rndis_pkt = &msg->msg.pkt;
230 struct rndis_per_packet_info *ppi;
231
232 rndis_pkt->data_offset += ppi_size;
233 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
234 + rndis_pkt->per_pkt_info_len;
235
236 ppi->size = ppi_size;
237 ppi->type = pkt_type;
238 ppi->internal = 0;
239 ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
240
241 rndis_pkt->per_pkt_info_len += ppi_size;
242
243 return ppi + 1;
244}
245
246/* Azure hosts don't support non-TCP port numbers in hashing for fragmented
247 * packets. We can use ethtool to change UDP hash level when necessary.
248 */
249static inline u32 netvsc_get_hash(
250 struct sk_buff *skb,
251 const struct net_device_context *ndc)
252{
253 struct flow_keys flow;
254 u32 hash, pkt_proto = 0;
255 static u32 hashrnd __read_mostly;
256
257 net_get_random_once(&hashrnd, sizeof(hashrnd));
258
259 if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
260 return 0;
261
262 switch (flow.basic.ip_proto) {
263 case IPPROTO_TCP:
264 if (flow.basic.n_proto == htons(ETH_P_IP))
265 pkt_proto = HV_TCP4_L4HASH;
266 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
267 pkt_proto = HV_TCP6_L4HASH;
268
269 break;
270
271 case IPPROTO_UDP:
272 if (flow.basic.n_proto == htons(ETH_P_IP))
273 pkt_proto = HV_UDP4_L4HASH;
274 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
275 pkt_proto = HV_UDP6_L4HASH;
276
277 break;
278 }
279
280 if (pkt_proto & ndc->l4_hash) {
281 return skb_get_hash(skb);
282 } else {
283 if (flow.basic.n_proto == htons(ETH_P_IP))
284 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
285 else if (flow.basic.n_proto == htons(ETH_P_IPV6))
286 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
287 else
288 hash = 0;
289
290 skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
291 }
292
293 return hash;
294}
295
296static inline int netvsc_get_tx_queue(struct net_device *ndev,
297 struct sk_buff *skb, int old_idx)
298{
299 const struct net_device_context *ndc = netdev_priv(ndev);
300 struct sock *sk = skb->sk;
301 int q_idx;
302
303 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
304 (VRSS_SEND_TAB_SIZE - 1)];
305
306 /* If queue index changed record the new value */
307 if (q_idx != old_idx &&
308 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
309 sk_tx_queue_set(sk, q_idx);
310
311 return q_idx;
312}
313
314/*
315 * Select queue for transmit.
316 *
317 * If a valid queue has already been assigned, then use that.
318 * Otherwise compute tx queue based on hash and the send table.
319 *
320 * This is basically similar to default (netdev_pick_tx) with the added step
321 * of using the host send_table when no other queue has been assigned.
322 *
323 * TODO support XPS - but get_xps_queue not exported
324 */
325static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
326{
327 int q_idx = sk_tx_queue_get(skb->sk);
328
329 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
330 /* If forwarding a packet, we use the recorded queue when
331 * available for better cache locality.
332 */
333 if (skb_rx_queue_recorded(skb))
334 q_idx = skb_get_rx_queue(skb);
335 else
336 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
337 }
338
339 return q_idx;
340}
341
342static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
343 struct net_device *sb_dev)
344{
345 struct net_device_context *ndc = netdev_priv(ndev);
346 struct net_device *vf_netdev;
347 u16 txq;
348
349 rcu_read_lock();
350 vf_netdev = rcu_dereference(ndc->vf_netdev);
351 if (vf_netdev) {
352 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
353
354 if (vf_ops->ndo_select_queue)
355 txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
356 else
357 txq = netdev_pick_tx(vf_netdev, skb, NULL);
358
359 /* Record the queue selected by VF so that it can be
360 * used for common case where VF has more queues than
361 * the synthetic device.
362 */
363 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
364 } else {
365 txq = netvsc_pick_tx(ndev, skb);
366 }
367 rcu_read_unlock();
368
369 while (unlikely(txq >= ndev->real_num_tx_queues))
370 txq -= ndev->real_num_tx_queues;
371
372 return txq;
373}
374
375static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
376 struct hv_page_buffer *pb)
377{
378 int j = 0;
379
380 /* Deal with compound pages by ignoring unused part
381 * of the page.
382 */
383 page += (offset >> PAGE_SHIFT);
384 offset &= ~PAGE_MASK;
385
386 while (len > 0) {
387 unsigned long bytes;
388
389 bytes = PAGE_SIZE - offset;
390 if (bytes > len)
391 bytes = len;
392 pb[j].pfn = page_to_pfn(page);
393 pb[j].offset = offset;
394 pb[j].len = bytes;
395
396 offset += bytes;
397 len -= bytes;
398
399 if (offset == PAGE_SIZE && len) {
400 page++;
401 offset = 0;
402 j++;
403 }
404 }
405
406 return j + 1;
407}
408
409static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
410 struct hv_netvsc_packet *packet,
411 struct hv_page_buffer *pb)
412{
413 u32 slots_used = 0;
414 char *data = skb->data;
415 int frags = skb_shinfo(skb)->nr_frags;
416 int i;
417
418 /* The packet is laid out thus:
419 * 1. hdr: RNDIS header and PPI
420 * 2. skb linear data
421 * 3. skb fragment data
422 */
423 slots_used += fill_pg_buf(virt_to_page(hdr),
424 offset_in_page(hdr),
425 len, &pb[slots_used]);
426
427 packet->rmsg_size = len;
428 packet->rmsg_pgcnt = slots_used;
429
430 slots_used += fill_pg_buf(virt_to_page(data),
431 offset_in_page(data),
432 skb_headlen(skb), &pb[slots_used]);
433
434 for (i = 0; i < frags; i++) {
435 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
436
437 slots_used += fill_pg_buf(skb_frag_page(frag),
438 skb_frag_off(frag),
439 skb_frag_size(frag), &pb[slots_used]);
440 }
441 return slots_used;
442}
443
444static int count_skb_frag_slots(struct sk_buff *skb)
445{
446 int i, frags = skb_shinfo(skb)->nr_frags;
447 int pages = 0;
448
449 for (i = 0; i < frags; i++) {
450 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
451 unsigned long size = skb_frag_size(frag);
452 unsigned long offset = skb_frag_off(frag);
453
454 /* Skip unused frames from start of page */
455 offset &= ~PAGE_MASK;
456 pages += PFN_UP(offset + size);
457 }
458 return pages;
459}
460
461static int netvsc_get_slots(struct sk_buff *skb)
462{
463 char *data = skb->data;
464 unsigned int offset = offset_in_page(data);
465 unsigned int len = skb_headlen(skb);
466 int slots;
467 int frag_slots;
468
469 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
470 frag_slots = count_skb_frag_slots(skb);
471 return slots + frag_slots;
472}
473
474static u32 net_checksum_info(struct sk_buff *skb)
475{
476 if (skb->protocol == htons(ETH_P_IP)) {
477 struct iphdr *ip = ip_hdr(skb);
478
479 if (ip->protocol == IPPROTO_TCP)
480 return TRANSPORT_INFO_IPV4_TCP;
481 else if (ip->protocol == IPPROTO_UDP)
482 return TRANSPORT_INFO_IPV4_UDP;
483 } else {
484 struct ipv6hdr *ip6 = ipv6_hdr(skb);
485
486 if (ip6->nexthdr == IPPROTO_TCP)
487 return TRANSPORT_INFO_IPV6_TCP;
488 else if (ip6->nexthdr == IPPROTO_UDP)
489 return TRANSPORT_INFO_IPV6_UDP;
490 }
491
492 return TRANSPORT_INFO_NOT_IP;
493}
494
495/* Send skb on the slave VF device. */
496static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
497 struct sk_buff *skb)
498{
499 struct net_device_context *ndev_ctx = netdev_priv(net);
500 unsigned int len = skb->len;
501 int rc;
502
503 skb->dev = vf_netdev;
504 skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
505
506 rc = dev_queue_xmit(skb);
507 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
508 struct netvsc_vf_pcpu_stats *pcpu_stats
509 = this_cpu_ptr(ndev_ctx->vf_stats);
510
511 u64_stats_update_begin(&pcpu_stats->syncp);
512 pcpu_stats->tx_packets++;
513 pcpu_stats->tx_bytes += len;
514 u64_stats_update_end(&pcpu_stats->syncp);
515 } else {
516 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
517 }
518
519 return rc;
520}
521
522static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
523{
524 struct net_device_context *net_device_ctx = netdev_priv(net);
525 struct hv_netvsc_packet *packet = NULL;
526 int ret;
527 unsigned int num_data_pgs;
528 struct rndis_message *rndis_msg;
529 struct net_device *vf_netdev;
530 u32 rndis_msg_size;
531 u32 hash;
532 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
533
534 /* if VF is present and up then redirect packets
535 * already called with rcu_read_lock_bh
536 */
537 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
538 if (vf_netdev && netif_running(vf_netdev) &&
539 !netpoll_tx_running(net))
540 return netvsc_vf_xmit(net, vf_netdev, skb);
541
542 /* We will atmost need two pages to describe the rndis
543 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
544 * of pages in a single packet. If skb is scattered around
545 * more pages we try linearizing it.
546 */
547
548 num_data_pgs = netvsc_get_slots(skb) + 2;
549
550 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
551 ++net_device_ctx->eth_stats.tx_scattered;
552
553 if (skb_linearize(skb))
554 goto no_memory;
555
556 num_data_pgs = netvsc_get_slots(skb) + 2;
557 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
558 ++net_device_ctx->eth_stats.tx_too_big;
559 goto drop;
560 }
561 }
562
563 /*
564 * Place the rndis header in the skb head room and
565 * the skb->cb will be used for hv_netvsc_packet
566 * structure.
567 */
568 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
569 if (ret)
570 goto no_memory;
571
572 /* Use the skb control buffer for building up the packet */
573 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
574 FIELD_SIZEOF(struct sk_buff, cb));
575 packet = (struct hv_netvsc_packet *)skb->cb;
576
577 packet->q_idx = skb_get_queue_mapping(skb);
578
579 packet->total_data_buflen = skb->len;
580 packet->total_bytes = skb->len;
581 packet->total_packets = 1;
582
583 rndis_msg = (struct rndis_message *)skb->head;
584
585 /* Add the rndis header */
586 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
587 rndis_msg->msg_len = packet->total_data_buflen;
588
589 rndis_msg->msg.pkt = (struct rndis_packet) {
590 .data_offset = sizeof(struct rndis_packet),
591 .data_len = packet->total_data_buflen,
592 .per_pkt_info_offset = sizeof(struct rndis_packet),
593 };
594
595 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
596
597 hash = skb_get_hash_raw(skb);
598 if (hash != 0 && net->real_num_tx_queues > 1) {
599 u32 *hash_info;
600
601 rndis_msg_size += NDIS_HASH_PPI_SIZE;
602 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
603 NBL_HASH_VALUE);
604 *hash_info = hash;
605 }
606
607 if (skb_vlan_tag_present(skb)) {
608 struct ndis_pkt_8021q_info *vlan;
609
610 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
611 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
612 IEEE_8021Q_INFO);
613
614 vlan->value = 0;
615 vlan->vlanid = skb_vlan_tag_get_id(skb);
616 vlan->cfi = skb_vlan_tag_get_cfi(skb);
617 vlan->pri = skb_vlan_tag_get_prio(skb);
618 }
619
620 if (skb_is_gso(skb)) {
621 struct ndis_tcp_lso_info *lso_info;
622
623 rndis_msg_size += NDIS_LSO_PPI_SIZE;
624 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
625 TCP_LARGESEND_PKTINFO);
626
627 lso_info->value = 0;
628 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
629 if (skb->protocol == htons(ETH_P_IP)) {
630 lso_info->lso_v2_transmit.ip_version =
631 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
632 ip_hdr(skb)->tot_len = 0;
633 ip_hdr(skb)->check = 0;
634 tcp_hdr(skb)->check =
635 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
636 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
637 } else {
638 lso_info->lso_v2_transmit.ip_version =
639 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
640 ipv6_hdr(skb)->payload_len = 0;
641 tcp_hdr(skb)->check =
642 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
643 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
644 }
645 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
646 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
647 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
648 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
649 struct ndis_tcp_ip_checksum_info *csum_info;
650
651 rndis_msg_size += NDIS_CSUM_PPI_SIZE;
652 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
653 TCPIP_CHKSUM_PKTINFO);
654
655 csum_info->value = 0;
656 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
657
658 if (skb->protocol == htons(ETH_P_IP)) {
659 csum_info->transmit.is_ipv4 = 1;
660
661 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
662 csum_info->transmit.tcp_checksum = 1;
663 else
664 csum_info->transmit.udp_checksum = 1;
665 } else {
666 csum_info->transmit.is_ipv6 = 1;
667
668 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
669 csum_info->transmit.tcp_checksum = 1;
670 else
671 csum_info->transmit.udp_checksum = 1;
672 }
673 } else {
674 /* Can't do offload of this type of checksum */
675 if (skb_checksum_help(skb))
676 goto drop;
677 }
678 }
679
680 /* Start filling in the page buffers with the rndis hdr */
681 rndis_msg->msg_len += rndis_msg_size;
682 packet->total_data_buflen = rndis_msg->msg_len;
683 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
684 skb, packet, pb);
685
686 /* timestamp packet in software */
687 skb_tx_timestamp(skb);
688
689 ret = netvsc_send(net, packet, rndis_msg, pb, skb);
690 if (likely(ret == 0))
691 return NETDEV_TX_OK;
692
693 if (ret == -EAGAIN) {
694 ++net_device_ctx->eth_stats.tx_busy;
695 return NETDEV_TX_BUSY;
696 }
697
698 if (ret == -ENOSPC)
699 ++net_device_ctx->eth_stats.tx_no_space;
700
701drop:
702 dev_kfree_skb_any(skb);
703 net->stats.tx_dropped++;
704
705 return NETDEV_TX_OK;
706
707no_memory:
708 ++net_device_ctx->eth_stats.tx_no_memory;
709 goto drop;
710}
711
712/*
713 * netvsc_linkstatus_callback - Link up/down notification
714 */
715void netvsc_linkstatus_callback(struct net_device *net,
716 struct rndis_message *resp)
717{
718 struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
719 struct net_device_context *ndev_ctx = netdev_priv(net);
720 struct netvsc_reconfig *event;
721 unsigned long flags;
722
723 /* Update the physical link speed when changing to another vSwitch */
724 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
725 u32 speed;
726
727 speed = *(u32 *)((void *)indicate
728 + indicate->status_buf_offset) / 10000;
729 ndev_ctx->speed = speed;
730 return;
731 }
732
733 /* Handle these link change statuses below */
734 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
735 indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
736 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
737 return;
738
739 if (net->reg_state != NETREG_REGISTERED)
740 return;
741
742 event = kzalloc(sizeof(*event), GFP_ATOMIC);
743 if (!event)
744 return;
745 event->event = indicate->status;
746
747 spin_lock_irqsave(&ndev_ctx->lock, flags);
748 list_add_tail(&event->list, &ndev_ctx->reconfig_events);
749 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
750
751 schedule_delayed_work(&ndev_ctx->dwork, 0);
752}
753
754static void netvsc_comp_ipcsum(struct sk_buff *skb)
755{
756 struct iphdr *iph = (struct iphdr *)skb->data;
757
758 iph->check = 0;
759 iph->check = ip_fast_csum(iph, iph->ihl);
760}
761
762static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
763 struct netvsc_channel *nvchan)
764{
765 struct napi_struct *napi = &nvchan->napi;
766 const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan;
767 const struct ndis_tcp_ip_checksum_info *csum_info =
768 nvchan->rsc.csum_info;
769 struct sk_buff *skb;
770 int i;
771
772 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
773 if (!skb)
774 return skb;
775
776 /*
777 * Copy to skb. This copy is needed here since the memory pointed by
778 * hv_netvsc_packet cannot be deallocated
779 */
780 for (i = 0; i < nvchan->rsc.cnt; i++)
781 skb_put_data(skb, nvchan->rsc.data[i], nvchan->rsc.len[i]);
782
783 skb->protocol = eth_type_trans(skb, net);
784
785 /* skb is already created with CHECKSUM_NONE */
786 skb_checksum_none_assert(skb);
787
788 /* Incoming packets may have IP header checksum verified by the host.
789 * They may not have IP header checksum computed after coalescing.
790 * We compute it here if the flags are set, because on Linux, the IP
791 * checksum is always checked.
792 */
793 if (csum_info && csum_info->receive.ip_checksum_value_invalid &&
794 csum_info->receive.ip_checksum_succeeded &&
795 skb->protocol == htons(ETH_P_IP))
796 netvsc_comp_ipcsum(skb);
797
798 /* Do L4 checksum offload if enabled and present.
799 */
800 if (csum_info && (net->features & NETIF_F_RXCSUM)) {
801 if (csum_info->receive.tcp_checksum_succeeded ||
802 csum_info->receive.udp_checksum_succeeded)
803 skb->ip_summed = CHECKSUM_UNNECESSARY;
804 }
805
806 if (vlan) {
807 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
808 (vlan->cfi ? VLAN_CFI_MASK : 0);
809
810 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
811 vlan_tci);
812 }
813
814 return skb;
815}
816
817/*
818 * netvsc_recv_callback - Callback when we receive a packet from the
819 * "wire" on the specified device.
820 */
821int netvsc_recv_callback(struct net_device *net,
822 struct netvsc_device *net_device,
823 struct netvsc_channel *nvchan)
824{
825 struct net_device_context *net_device_ctx = netdev_priv(net);
826 struct vmbus_channel *channel = nvchan->channel;
827 u16 q_idx = channel->offermsg.offer.sub_channel_index;
828 struct sk_buff *skb;
829 struct netvsc_stats *rx_stats;
830
831 if (net->reg_state != NETREG_REGISTERED)
832 return NVSP_STAT_FAIL;
833
834 /* Allocate a skb - TODO direct I/O to pages? */
835 skb = netvsc_alloc_recv_skb(net, nvchan);
836
837 if (unlikely(!skb)) {
838 ++net_device_ctx->eth_stats.rx_no_memory;
839 return NVSP_STAT_FAIL;
840 }
841
842 skb_record_rx_queue(skb, q_idx);
843
844 /*
845 * Even if injecting the packet, record the statistics
846 * on the synthetic device because modifying the VF device
847 * statistics will not work correctly.
848 */
849 rx_stats = &nvchan->rx_stats;
850 u64_stats_update_begin(&rx_stats->syncp);
851 rx_stats->packets++;
852 rx_stats->bytes += nvchan->rsc.pktlen;
853
854 if (skb->pkt_type == PACKET_BROADCAST)
855 ++rx_stats->broadcast;
856 else if (skb->pkt_type == PACKET_MULTICAST)
857 ++rx_stats->multicast;
858 u64_stats_update_end(&rx_stats->syncp);
859
860 napi_gro_receive(&nvchan->napi, skb);
861 return NVSP_STAT_SUCCESS;
862}
863
864static void netvsc_get_drvinfo(struct net_device *net,
865 struct ethtool_drvinfo *info)
866{
867 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
868 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
869}
870
871static void netvsc_get_channels(struct net_device *net,
872 struct ethtool_channels *channel)
873{
874 struct net_device_context *net_device_ctx = netdev_priv(net);
875 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
876
877 if (nvdev) {
878 channel->max_combined = nvdev->max_chn;
879 channel->combined_count = nvdev->num_chn;
880 }
881}
882
883/* Alloc struct netvsc_device_info, and initialize it from either existing
884 * struct netvsc_device, or from default values.
885 */
886static struct netvsc_device_info *netvsc_devinfo_get
887 (struct netvsc_device *nvdev)
888{
889 struct netvsc_device_info *dev_info;
890
891 dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
892
893 if (!dev_info)
894 return NULL;
895
896 if (nvdev) {
897 dev_info->num_chn = nvdev->num_chn;
898 dev_info->send_sections = nvdev->send_section_cnt;
899 dev_info->send_section_size = nvdev->send_section_size;
900 dev_info->recv_sections = nvdev->recv_section_cnt;
901 dev_info->recv_section_size = nvdev->recv_section_size;
902
903 memcpy(dev_info->rss_key, nvdev->extension->rss_key,
904 NETVSC_HASH_KEYLEN);
905 } else {
906 dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
907 dev_info->send_sections = NETVSC_DEFAULT_TX;
908 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
909 dev_info->recv_sections = NETVSC_DEFAULT_RX;
910 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
911 }
912
913 return dev_info;
914}
915
916static int netvsc_detach(struct net_device *ndev,
917 struct netvsc_device *nvdev)
918{
919 struct net_device_context *ndev_ctx = netdev_priv(ndev);
920 struct hv_device *hdev = ndev_ctx->device_ctx;
921 int ret;
922
923 /* Don't try continuing to try and setup sub channels */
924 if (cancel_work_sync(&nvdev->subchan_work))
925 nvdev->num_chn = 1;
926
927 /* If device was up (receiving) then shutdown */
928 if (netif_running(ndev)) {
929 netvsc_tx_disable(nvdev, ndev);
930
931 ret = rndis_filter_close(nvdev);
932 if (ret) {
933 netdev_err(ndev,
934 "unable to close device (ret %d).\n", ret);
935 return ret;
936 }
937
938 ret = netvsc_wait_until_empty(nvdev);
939 if (ret) {
940 netdev_err(ndev,
941 "Ring buffer not empty after closing rndis\n");
942 return ret;
943 }
944 }
945
946 netif_device_detach(ndev);
947
948 rndis_filter_device_remove(hdev, nvdev);
949
950 return 0;
951}
952
953static int netvsc_attach(struct net_device *ndev,
954 struct netvsc_device_info *dev_info)
955{
956 struct net_device_context *ndev_ctx = netdev_priv(ndev);
957 struct hv_device *hdev = ndev_ctx->device_ctx;
958 struct netvsc_device *nvdev;
959 struct rndis_device *rdev;
960 int ret;
961
962 nvdev = rndis_filter_device_add(hdev, dev_info);
963 if (IS_ERR(nvdev))
964 return PTR_ERR(nvdev);
965
966 if (nvdev->num_chn > 1) {
967 ret = rndis_set_subchannel(ndev, nvdev, dev_info);
968
969 /* if unavailable, just proceed with one queue */
970 if (ret) {
971 nvdev->max_chn = 1;
972 nvdev->num_chn = 1;
973 }
974 }
975
976 /* In any case device is now ready */
977 netif_device_attach(ndev);
978
979 /* Note: enable and attach happen when sub-channels setup */
980 netif_carrier_off(ndev);
981
982 if (netif_running(ndev)) {
983 ret = rndis_filter_open(nvdev);
984 if (ret)
985 goto err;
986
987 rdev = nvdev->extension;
988 if (!rdev->link_state)
989 netif_carrier_on(ndev);
990 }
991
992 return 0;
993
994err:
995 netif_device_detach(ndev);
996
997 rndis_filter_device_remove(hdev, nvdev);
998
999 return ret;
1000}
1001
1002static int netvsc_set_channels(struct net_device *net,
1003 struct ethtool_channels *channels)
1004{
1005 struct net_device_context *net_device_ctx = netdev_priv(net);
1006 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1007 unsigned int orig, count = channels->combined_count;
1008 struct netvsc_device_info *device_info;
1009 int ret;
1010
1011 /* We do not support separate count for rx, tx, or other */
1012 if (count == 0 ||
1013 channels->rx_count || channels->tx_count || channels->other_count)
1014 return -EINVAL;
1015
1016 if (!nvdev || nvdev->destroy)
1017 return -ENODEV;
1018
1019 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1020 return -EINVAL;
1021
1022 if (count > nvdev->max_chn)
1023 return -EINVAL;
1024
1025 orig = nvdev->num_chn;
1026
1027 device_info = netvsc_devinfo_get(nvdev);
1028
1029 if (!device_info)
1030 return -ENOMEM;
1031
1032 device_info->num_chn = count;
1033
1034 ret = netvsc_detach(net, nvdev);
1035 if (ret)
1036 goto out;
1037
1038 ret = netvsc_attach(net, device_info);
1039 if (ret) {
1040 device_info->num_chn = orig;
1041 if (netvsc_attach(net, device_info))
1042 netdev_err(net, "restoring channel setting failed\n");
1043 }
1044
1045out:
1046 kfree(device_info);
1047 return ret;
1048}
1049
1050static bool
1051netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
1052{
1053 struct ethtool_link_ksettings diff1 = *cmd;
1054 struct ethtool_link_ksettings diff2 = {};
1055
1056 diff1.base.speed = 0;
1057 diff1.base.duplex = 0;
1058 /* advertising and cmd are usually set */
1059 ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
1060 diff1.base.cmd = 0;
1061 /* We set port to PORT_OTHER */
1062 diff2.base.port = PORT_OTHER;
1063
1064 return !memcmp(&diff1, &diff2, sizeof(diff1));
1065}
1066
1067static void netvsc_init_settings(struct net_device *dev)
1068{
1069 struct net_device_context *ndc = netdev_priv(dev);
1070
1071 ndc->l4_hash = HV_DEFAULT_L4HASH;
1072
1073 ndc->speed = SPEED_UNKNOWN;
1074 ndc->duplex = DUPLEX_FULL;
1075
1076 dev->features = NETIF_F_LRO;
1077}
1078
1079static int netvsc_get_link_ksettings(struct net_device *dev,
1080 struct ethtool_link_ksettings *cmd)
1081{
1082 struct net_device_context *ndc = netdev_priv(dev);
1083
1084 cmd->base.speed = ndc->speed;
1085 cmd->base.duplex = ndc->duplex;
1086 cmd->base.port = PORT_OTHER;
1087
1088 return 0;
1089}
1090
1091static int netvsc_set_link_ksettings(struct net_device *dev,
1092 const struct ethtool_link_ksettings *cmd)
1093{
1094 struct net_device_context *ndc = netdev_priv(dev);
1095 u32 speed;
1096
1097 speed = cmd->base.speed;
1098 if (!ethtool_validate_speed(speed) ||
1099 !ethtool_validate_duplex(cmd->base.duplex) ||
1100 !netvsc_validate_ethtool_ss_cmd(cmd))
1101 return -EINVAL;
1102
1103 ndc->speed = speed;
1104 ndc->duplex = cmd->base.duplex;
1105
1106 return 0;
1107}
1108
1109static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1110{
1111 struct net_device_context *ndevctx = netdev_priv(ndev);
1112 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1113 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1114 int orig_mtu = ndev->mtu;
1115 struct netvsc_device_info *device_info;
1116 int ret = 0;
1117
1118 if (!nvdev || nvdev->destroy)
1119 return -ENODEV;
1120
1121 device_info = netvsc_devinfo_get(nvdev);
1122
1123 if (!device_info)
1124 return -ENOMEM;
1125
1126 /* Change MTU of underlying VF netdev first. */
1127 if (vf_netdev) {
1128 ret = dev_set_mtu(vf_netdev, mtu);
1129 if (ret)
1130 goto out;
1131 }
1132
1133 ret = netvsc_detach(ndev, nvdev);
1134 if (ret)
1135 goto rollback_vf;
1136
1137 ndev->mtu = mtu;
1138
1139 ret = netvsc_attach(ndev, device_info);
1140 if (!ret)
1141 goto out;
1142
1143 /* Attempt rollback to original MTU */
1144 ndev->mtu = orig_mtu;
1145
1146 if (netvsc_attach(ndev, device_info))
1147 netdev_err(ndev, "restoring mtu failed\n");
1148rollback_vf:
1149 if (vf_netdev)
1150 dev_set_mtu(vf_netdev, orig_mtu);
1151
1152out:
1153 kfree(device_info);
1154 return ret;
1155}
1156
1157static void netvsc_get_vf_stats(struct net_device *net,
1158 struct netvsc_vf_pcpu_stats *tot)
1159{
1160 struct net_device_context *ndev_ctx = netdev_priv(net);
1161 int i;
1162
1163 memset(tot, 0, sizeof(*tot));
1164
1165 for_each_possible_cpu(i) {
1166 const struct netvsc_vf_pcpu_stats *stats
1167 = per_cpu_ptr(ndev_ctx->vf_stats, i);
1168 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1169 unsigned int start;
1170
1171 do {
1172 start = u64_stats_fetch_begin_irq(&stats->syncp);
1173 rx_packets = stats->rx_packets;
1174 tx_packets = stats->tx_packets;
1175 rx_bytes = stats->rx_bytes;
1176 tx_bytes = stats->tx_bytes;
1177 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1178
1179 tot->rx_packets += rx_packets;
1180 tot->tx_packets += tx_packets;
1181 tot->rx_bytes += rx_bytes;
1182 tot->tx_bytes += tx_bytes;
1183 tot->tx_dropped += stats->tx_dropped;
1184 }
1185}
1186
1187static void netvsc_get_pcpu_stats(struct net_device *net,
1188 struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1189{
1190 struct net_device_context *ndev_ctx = netdev_priv(net);
1191 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1192 int i;
1193
1194 /* fetch percpu stats of vf */
1195 for_each_possible_cpu(i) {
1196 const struct netvsc_vf_pcpu_stats *stats =
1197 per_cpu_ptr(ndev_ctx->vf_stats, i);
1198 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1199 unsigned int start;
1200
1201 do {
1202 start = u64_stats_fetch_begin_irq(&stats->syncp);
1203 this_tot->vf_rx_packets = stats->rx_packets;
1204 this_tot->vf_tx_packets = stats->tx_packets;
1205 this_tot->vf_rx_bytes = stats->rx_bytes;
1206 this_tot->vf_tx_bytes = stats->tx_bytes;
1207 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1208 this_tot->rx_packets = this_tot->vf_rx_packets;
1209 this_tot->tx_packets = this_tot->vf_tx_packets;
1210 this_tot->rx_bytes = this_tot->vf_rx_bytes;
1211 this_tot->tx_bytes = this_tot->vf_tx_bytes;
1212 }
1213
1214 /* fetch percpu stats of netvsc */
1215 for (i = 0; i < nvdev->num_chn; i++) {
1216 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1217 const struct netvsc_stats *stats;
1218 struct netvsc_ethtool_pcpu_stats *this_tot =
1219 &pcpu_tot[nvchan->channel->target_cpu];
1220 u64 packets, bytes;
1221 unsigned int start;
1222
1223 stats = &nvchan->tx_stats;
1224 do {
1225 start = u64_stats_fetch_begin_irq(&stats->syncp);
1226 packets = stats->packets;
1227 bytes = stats->bytes;
1228 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1229
1230 this_tot->tx_bytes += bytes;
1231 this_tot->tx_packets += packets;
1232
1233 stats = &nvchan->rx_stats;
1234 do {
1235 start = u64_stats_fetch_begin_irq(&stats->syncp);
1236 packets = stats->packets;
1237 bytes = stats->bytes;
1238 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1239
1240 this_tot->rx_bytes += bytes;
1241 this_tot->rx_packets += packets;
1242 }
1243}
1244
1245static void netvsc_get_stats64(struct net_device *net,
1246 struct rtnl_link_stats64 *t)
1247{
1248 struct net_device_context *ndev_ctx = netdev_priv(net);
1249 struct netvsc_device *nvdev;
1250 struct netvsc_vf_pcpu_stats vf_tot;
1251 int i;
1252
1253 rcu_read_lock();
1254
1255 nvdev = rcu_dereference(ndev_ctx->nvdev);
1256 if (!nvdev)
1257 goto out;
1258
1259 netdev_stats_to_stats64(t, &net->stats);
1260
1261 netvsc_get_vf_stats(net, &vf_tot);
1262 t->rx_packets += vf_tot.rx_packets;
1263 t->tx_packets += vf_tot.tx_packets;
1264 t->rx_bytes += vf_tot.rx_bytes;
1265 t->tx_bytes += vf_tot.tx_bytes;
1266 t->tx_dropped += vf_tot.tx_dropped;
1267
1268 for (i = 0; i < nvdev->num_chn; i++) {
1269 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1270 const struct netvsc_stats *stats;
1271 u64 packets, bytes, multicast;
1272 unsigned int start;
1273
1274 stats = &nvchan->tx_stats;
1275 do {
1276 start = u64_stats_fetch_begin_irq(&stats->syncp);
1277 packets = stats->packets;
1278 bytes = stats->bytes;
1279 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1280
1281 t->tx_bytes += bytes;
1282 t->tx_packets += packets;
1283
1284 stats = &nvchan->rx_stats;
1285 do {
1286 start = u64_stats_fetch_begin_irq(&stats->syncp);
1287 packets = stats->packets;
1288 bytes = stats->bytes;
1289 multicast = stats->multicast + stats->broadcast;
1290 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1291
1292 t->rx_bytes += bytes;
1293 t->rx_packets += packets;
1294 t->multicast += multicast;
1295 }
1296out:
1297 rcu_read_unlock();
1298}
1299
1300static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1301{
1302 struct net_device_context *ndc = netdev_priv(ndev);
1303 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1304 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1305 struct sockaddr *addr = p;
1306 int err;
1307
1308 err = eth_prepare_mac_addr_change(ndev, p);
1309 if (err)
1310 return err;
1311
1312 if (!nvdev)
1313 return -ENODEV;
1314
1315 if (vf_netdev) {
1316 err = dev_set_mac_address(vf_netdev, addr, NULL);
1317 if (err)
1318 return err;
1319 }
1320
1321 err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1322 if (!err) {
1323 eth_commit_mac_addr_change(ndev, p);
1324 } else if (vf_netdev) {
1325 /* rollback change on VF */
1326 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1327 dev_set_mac_address(vf_netdev, addr, NULL);
1328 }
1329
1330 return err;
1331}
1332
1333static const struct {
1334 char name[ETH_GSTRING_LEN];
1335 u16 offset;
1336} netvsc_stats[] = {
1337 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1338 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1339 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1340 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1341 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) },
1342 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1343 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1344 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1345 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1346 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1347}, pcpu_stats[] = {
1348 { "cpu%u_rx_packets",
1349 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1350 { "cpu%u_rx_bytes",
1351 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1352 { "cpu%u_tx_packets",
1353 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1354 { "cpu%u_tx_bytes",
1355 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1356 { "cpu%u_vf_rx_packets",
1357 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1358 { "cpu%u_vf_rx_bytes",
1359 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1360 { "cpu%u_vf_tx_packets",
1361 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1362 { "cpu%u_vf_tx_bytes",
1363 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1364}, vf_stats[] = {
1365 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1366 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1367 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1368 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1369 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1370};
1371
1372#define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1373#define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats)
1374
1375/* statistics per queue (rx/tx packets/bytes) */
1376#define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1377
1378/* 4 statistics per queue (rx/tx packets/bytes) */
1379#define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1380
1381static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1382{
1383 struct net_device_context *ndc = netdev_priv(dev);
1384 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1385
1386 if (!nvdev)
1387 return -ENODEV;
1388
1389 switch (string_set) {
1390 case ETH_SS_STATS:
1391 return NETVSC_GLOBAL_STATS_LEN
1392 + NETVSC_VF_STATS_LEN
1393 + NETVSC_QUEUE_STATS_LEN(nvdev)
1394 + NETVSC_PCPU_STATS_LEN;
1395 default:
1396 return -EINVAL;
1397 }
1398}
1399
1400static void netvsc_get_ethtool_stats(struct net_device *dev,
1401 struct ethtool_stats *stats, u64 *data)
1402{
1403 struct net_device_context *ndc = netdev_priv(dev);
1404 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1405 const void *nds = &ndc->eth_stats;
1406 const struct netvsc_stats *qstats;
1407 struct netvsc_vf_pcpu_stats sum;
1408 struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1409 unsigned int start;
1410 u64 packets, bytes;
1411 int i, j, cpu;
1412
1413 if (!nvdev)
1414 return;
1415
1416 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1417 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1418
1419 netvsc_get_vf_stats(dev, &sum);
1420 for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1421 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1422
1423 for (j = 0; j < nvdev->num_chn; j++) {
1424 qstats = &nvdev->chan_table[j].tx_stats;
1425
1426 do {
1427 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1428 packets = qstats->packets;
1429 bytes = qstats->bytes;
1430 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1431 data[i++] = packets;
1432 data[i++] = bytes;
1433
1434 qstats = &nvdev->chan_table[j].rx_stats;
1435 do {
1436 start = u64_stats_fetch_begin_irq(&qstats->syncp);
1437 packets = qstats->packets;
1438 bytes = qstats->bytes;
1439 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1440 data[i++] = packets;
1441 data[i++] = bytes;
1442 }
1443
1444 pcpu_sum = kvmalloc_array(num_possible_cpus(),
1445 sizeof(struct netvsc_ethtool_pcpu_stats),
1446 GFP_KERNEL);
1447 netvsc_get_pcpu_stats(dev, pcpu_sum);
1448 for_each_present_cpu(cpu) {
1449 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1450
1451 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1452 data[i++] = *(u64 *)((void *)this_sum
1453 + pcpu_stats[j].offset);
1454 }
1455 kvfree(pcpu_sum);
1456}
1457
1458static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1459{
1460 struct net_device_context *ndc = netdev_priv(dev);
1461 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1462 u8 *p = data;
1463 int i, cpu;
1464
1465 if (!nvdev)
1466 return;
1467
1468 switch (stringset) {
1469 case ETH_SS_STATS:
1470 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1471 memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1472 p += ETH_GSTRING_LEN;
1473 }
1474
1475 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1476 memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1477 p += ETH_GSTRING_LEN;
1478 }
1479
1480 for (i = 0; i < nvdev->num_chn; i++) {
1481 sprintf(p, "tx_queue_%u_packets", i);
1482 p += ETH_GSTRING_LEN;
1483 sprintf(p, "tx_queue_%u_bytes", i);
1484 p += ETH_GSTRING_LEN;
1485 sprintf(p, "rx_queue_%u_packets", i);
1486 p += ETH_GSTRING_LEN;
1487 sprintf(p, "rx_queue_%u_bytes", i);
1488 p += ETH_GSTRING_LEN;
1489 }
1490
1491 for_each_present_cpu(cpu) {
1492 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) {
1493 sprintf(p, pcpu_stats[i].name, cpu);
1494 p += ETH_GSTRING_LEN;
1495 }
1496 }
1497
1498 break;
1499 }
1500}
1501
1502static int
1503netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1504 struct ethtool_rxnfc *info)
1505{
1506 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1507
1508 info->data = RXH_IP_SRC | RXH_IP_DST;
1509
1510 switch (info->flow_type) {
1511 case TCP_V4_FLOW:
1512 if (ndc->l4_hash & HV_TCP4_L4HASH)
1513 info->data |= l4_flag;
1514
1515 break;
1516
1517 case TCP_V6_FLOW:
1518 if (ndc->l4_hash & HV_TCP6_L4HASH)
1519 info->data |= l4_flag;
1520
1521 break;
1522
1523 case UDP_V4_FLOW:
1524 if (ndc->l4_hash & HV_UDP4_L4HASH)
1525 info->data |= l4_flag;
1526
1527 break;
1528
1529 case UDP_V6_FLOW:
1530 if (ndc->l4_hash & HV_UDP6_L4HASH)
1531 info->data |= l4_flag;
1532
1533 break;
1534
1535 case IPV4_FLOW:
1536 case IPV6_FLOW:
1537 break;
1538 default:
1539 info->data = 0;
1540 break;
1541 }
1542
1543 return 0;
1544}
1545
1546static int
1547netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1548 u32 *rules)
1549{
1550 struct net_device_context *ndc = netdev_priv(dev);
1551 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1552
1553 if (!nvdev)
1554 return -ENODEV;
1555
1556 switch (info->cmd) {
1557 case ETHTOOL_GRXRINGS:
1558 info->data = nvdev->num_chn;
1559 return 0;
1560
1561 case ETHTOOL_GRXFH:
1562 return netvsc_get_rss_hash_opts(ndc, info);
1563 }
1564 return -EOPNOTSUPP;
1565}
1566
1567static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1568 struct ethtool_rxnfc *info)
1569{
1570 if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1571 RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1572 switch (info->flow_type) {
1573 case TCP_V4_FLOW:
1574 ndc->l4_hash |= HV_TCP4_L4HASH;
1575 break;
1576
1577 case TCP_V6_FLOW:
1578 ndc->l4_hash |= HV_TCP6_L4HASH;
1579 break;
1580
1581 case UDP_V4_FLOW:
1582 ndc->l4_hash |= HV_UDP4_L4HASH;
1583 break;
1584
1585 case UDP_V6_FLOW:
1586 ndc->l4_hash |= HV_UDP6_L4HASH;
1587 break;
1588
1589 default:
1590 return -EOPNOTSUPP;
1591 }
1592
1593 return 0;
1594 }
1595
1596 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1597 switch (info->flow_type) {
1598 case TCP_V4_FLOW:
1599 ndc->l4_hash &= ~HV_TCP4_L4HASH;
1600 break;
1601
1602 case TCP_V6_FLOW:
1603 ndc->l4_hash &= ~HV_TCP6_L4HASH;
1604 break;
1605
1606 case UDP_V4_FLOW:
1607 ndc->l4_hash &= ~HV_UDP4_L4HASH;
1608 break;
1609
1610 case UDP_V6_FLOW:
1611 ndc->l4_hash &= ~HV_UDP6_L4HASH;
1612 break;
1613
1614 default:
1615 return -EOPNOTSUPP;
1616 }
1617
1618 return 0;
1619 }
1620
1621 return -EOPNOTSUPP;
1622}
1623
1624static int
1625netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1626{
1627 struct net_device_context *ndc = netdev_priv(ndev);
1628
1629 if (info->cmd == ETHTOOL_SRXFH)
1630 return netvsc_set_rss_hash_opts(ndc, info);
1631
1632 return -EOPNOTSUPP;
1633}
1634
1635static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1636{
1637 return NETVSC_HASH_KEYLEN;
1638}
1639
1640static u32 netvsc_rss_indir_size(struct net_device *dev)
1641{
1642 return ITAB_NUM;
1643}
1644
1645static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1646 u8 *hfunc)
1647{
1648 struct net_device_context *ndc = netdev_priv(dev);
1649 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1650 struct rndis_device *rndis_dev;
1651 int i;
1652
1653 if (!ndev)
1654 return -ENODEV;
1655
1656 if (hfunc)
1657 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */
1658
1659 rndis_dev = ndev->extension;
1660 if (indir) {
1661 for (i = 0; i < ITAB_NUM; i++)
1662 indir[i] = rndis_dev->rx_table[i];
1663 }
1664
1665 if (key)
1666 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1667
1668 return 0;
1669}
1670
1671static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1672 const u8 *key, const u8 hfunc)
1673{
1674 struct net_device_context *ndc = netdev_priv(dev);
1675 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1676 struct rndis_device *rndis_dev;
1677 int i;
1678
1679 if (!ndev)
1680 return -ENODEV;
1681
1682 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1683 return -EOPNOTSUPP;
1684
1685 rndis_dev = ndev->extension;
1686 if (indir) {
1687 for (i = 0; i < ITAB_NUM; i++)
1688 if (indir[i] >= ndev->num_chn)
1689 return -EINVAL;
1690
1691 for (i = 0; i < ITAB_NUM; i++)
1692 rndis_dev->rx_table[i] = indir[i];
1693 }
1694
1695 if (!key) {
1696 if (!indir)
1697 return 0;
1698
1699 key = rndis_dev->rss_key;
1700 }
1701
1702 return rndis_filter_set_rss_param(rndis_dev, key);
1703}
1704
1705/* Hyper-V RNDIS protocol does not have ring in the HW sense.
1706 * It does have pre-allocated receive area which is divided into sections.
1707 */
1708static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1709 struct ethtool_ringparam *ring)
1710{
1711 u32 max_buf_size;
1712
1713 ring->rx_pending = nvdev->recv_section_cnt;
1714 ring->tx_pending = nvdev->send_section_cnt;
1715
1716 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1717 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1718 else
1719 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1720
1721 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1722 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1723 / nvdev->send_section_size;
1724}
1725
1726static void netvsc_get_ringparam(struct net_device *ndev,
1727 struct ethtool_ringparam *ring)
1728{
1729 struct net_device_context *ndevctx = netdev_priv(ndev);
1730 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1731
1732 if (!nvdev)
1733 return;
1734
1735 __netvsc_get_ringparam(nvdev, ring);
1736}
1737
1738static int netvsc_set_ringparam(struct net_device *ndev,
1739 struct ethtool_ringparam *ring)
1740{
1741 struct net_device_context *ndevctx = netdev_priv(ndev);
1742 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1743 struct netvsc_device_info *device_info;
1744 struct ethtool_ringparam orig;
1745 u32 new_tx, new_rx;
1746 int ret = 0;
1747
1748 if (!nvdev || nvdev->destroy)
1749 return -ENODEV;
1750
1751 memset(&orig, 0, sizeof(orig));
1752 __netvsc_get_ringparam(nvdev, &orig);
1753
1754 new_tx = clamp_t(u32, ring->tx_pending,
1755 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1756 new_rx = clamp_t(u32, ring->rx_pending,
1757 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1758
1759 if (new_tx == orig.tx_pending &&
1760 new_rx == orig.rx_pending)
1761 return 0; /* no change */
1762
1763 device_info = netvsc_devinfo_get(nvdev);
1764
1765 if (!device_info)
1766 return -ENOMEM;
1767
1768 device_info->send_sections = new_tx;
1769 device_info->recv_sections = new_rx;
1770
1771 ret = netvsc_detach(ndev, nvdev);
1772 if (ret)
1773 goto out;
1774
1775 ret = netvsc_attach(ndev, device_info);
1776 if (ret) {
1777 device_info->send_sections = orig.tx_pending;
1778 device_info->recv_sections = orig.rx_pending;
1779
1780 if (netvsc_attach(ndev, device_info))
1781 netdev_err(ndev, "restoring ringparam failed");
1782 }
1783
1784out:
1785 kfree(device_info);
1786 return ret;
1787}
1788
1789static int netvsc_set_features(struct net_device *ndev,
1790 netdev_features_t features)
1791{
1792 netdev_features_t change = features ^ ndev->features;
1793 struct net_device_context *ndevctx = netdev_priv(ndev);
1794 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1795 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1796 struct ndis_offload_params offloads;
1797 int ret = 0;
1798
1799 if (!nvdev || nvdev->destroy)
1800 return -ENODEV;
1801
1802 if (!(change & NETIF_F_LRO))
1803 goto syncvf;
1804
1805 memset(&offloads, 0, sizeof(struct ndis_offload_params));
1806
1807 if (features & NETIF_F_LRO) {
1808 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1809 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1810 } else {
1811 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1812 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1813 }
1814
1815 ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1816
1817 if (ret) {
1818 features ^= NETIF_F_LRO;
1819 ndev->features = features;
1820 }
1821
1822syncvf:
1823 if (!vf_netdev)
1824 return ret;
1825
1826 vf_netdev->wanted_features = features;
1827 netdev_update_features(vf_netdev);
1828
1829 return ret;
1830}
1831
1832static u32 netvsc_get_msglevel(struct net_device *ndev)
1833{
1834 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1835
1836 return ndev_ctx->msg_enable;
1837}
1838
1839static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1840{
1841 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1842
1843 ndev_ctx->msg_enable = val;
1844}
1845
1846static const struct ethtool_ops ethtool_ops = {
1847 .get_drvinfo = netvsc_get_drvinfo,
1848 .get_msglevel = netvsc_get_msglevel,
1849 .set_msglevel = netvsc_set_msglevel,
1850 .get_link = ethtool_op_get_link,
1851 .get_ethtool_stats = netvsc_get_ethtool_stats,
1852 .get_sset_count = netvsc_get_sset_count,
1853 .get_strings = netvsc_get_strings,
1854 .get_channels = netvsc_get_channels,
1855 .set_channels = netvsc_set_channels,
1856 .get_ts_info = ethtool_op_get_ts_info,
1857 .get_rxnfc = netvsc_get_rxnfc,
1858 .set_rxnfc = netvsc_set_rxnfc,
1859 .get_rxfh_key_size = netvsc_get_rxfh_key_size,
1860 .get_rxfh_indir_size = netvsc_rss_indir_size,
1861 .get_rxfh = netvsc_get_rxfh,
1862 .set_rxfh = netvsc_set_rxfh,
1863 .get_link_ksettings = netvsc_get_link_ksettings,
1864 .set_link_ksettings = netvsc_set_link_ksettings,
1865 .get_ringparam = netvsc_get_ringparam,
1866 .set_ringparam = netvsc_set_ringparam,
1867};
1868
1869static const struct net_device_ops device_ops = {
1870 .ndo_open = netvsc_open,
1871 .ndo_stop = netvsc_close,
1872 .ndo_start_xmit = netvsc_start_xmit,
1873 .ndo_change_rx_flags = netvsc_change_rx_flags,
1874 .ndo_set_rx_mode = netvsc_set_rx_mode,
1875 .ndo_set_features = netvsc_set_features,
1876 .ndo_change_mtu = netvsc_change_mtu,
1877 .ndo_validate_addr = eth_validate_addr,
1878 .ndo_set_mac_address = netvsc_set_mac_addr,
1879 .ndo_select_queue = netvsc_select_queue,
1880 .ndo_get_stats64 = netvsc_get_stats64,
1881};
1882
1883/*
1884 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1885 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1886 * present send GARP packet to network peers with netif_notify_peers().
1887 */
1888static void netvsc_link_change(struct work_struct *w)
1889{
1890 struct net_device_context *ndev_ctx =
1891 container_of(w, struct net_device_context, dwork.work);
1892 struct hv_device *device_obj = ndev_ctx->device_ctx;
1893 struct net_device *net = hv_get_drvdata(device_obj);
1894 struct netvsc_device *net_device;
1895 struct rndis_device *rdev;
1896 struct netvsc_reconfig *event = NULL;
1897 bool notify = false, reschedule = false;
1898 unsigned long flags, next_reconfig, delay;
1899
1900 /* if changes are happening, comeback later */
1901 if (!rtnl_trylock()) {
1902 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1903 return;
1904 }
1905
1906 net_device = rtnl_dereference(ndev_ctx->nvdev);
1907 if (!net_device)
1908 goto out_unlock;
1909
1910 rdev = net_device->extension;
1911
1912 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1913 if (time_is_after_jiffies(next_reconfig)) {
1914 /* link_watch only sends one notification with current state
1915 * per second, avoid doing reconfig more frequently. Handle
1916 * wrap around.
1917 */
1918 delay = next_reconfig - jiffies;
1919 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1920 schedule_delayed_work(&ndev_ctx->dwork, delay);
1921 goto out_unlock;
1922 }
1923 ndev_ctx->last_reconfig = jiffies;
1924
1925 spin_lock_irqsave(&ndev_ctx->lock, flags);
1926 if (!list_empty(&ndev_ctx->reconfig_events)) {
1927 event = list_first_entry(&ndev_ctx->reconfig_events,
1928 struct netvsc_reconfig, list);
1929 list_del(&event->list);
1930 reschedule = !list_empty(&ndev_ctx->reconfig_events);
1931 }
1932 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1933
1934 if (!event)
1935 goto out_unlock;
1936
1937 switch (event->event) {
1938 /* Only the following events are possible due to the check in
1939 * netvsc_linkstatus_callback()
1940 */
1941 case RNDIS_STATUS_MEDIA_CONNECT:
1942 if (rdev->link_state) {
1943 rdev->link_state = false;
1944 netif_carrier_on(net);
1945 netvsc_tx_enable(net_device, net);
1946 } else {
1947 notify = true;
1948 }
1949 kfree(event);
1950 break;
1951 case RNDIS_STATUS_MEDIA_DISCONNECT:
1952 if (!rdev->link_state) {
1953 rdev->link_state = true;
1954 netif_carrier_off(net);
1955 netvsc_tx_disable(net_device, net);
1956 }
1957 kfree(event);
1958 break;
1959 case RNDIS_STATUS_NETWORK_CHANGE:
1960 /* Only makes sense if carrier is present */
1961 if (!rdev->link_state) {
1962 rdev->link_state = true;
1963 netif_carrier_off(net);
1964 netvsc_tx_disable(net_device, net);
1965 event->event = RNDIS_STATUS_MEDIA_CONNECT;
1966 spin_lock_irqsave(&ndev_ctx->lock, flags);
1967 list_add(&event->list, &ndev_ctx->reconfig_events);
1968 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1969 reschedule = true;
1970 }
1971 break;
1972 }
1973
1974 rtnl_unlock();
1975
1976 if (notify)
1977 netdev_notify_peers(net);
1978
1979 /* link_watch only sends one notification with current state per
1980 * second, handle next reconfig event in 2 seconds.
1981 */
1982 if (reschedule)
1983 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1984
1985 return;
1986
1987out_unlock:
1988 rtnl_unlock();
1989}
1990
1991static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1992{
1993 struct net_device_context *net_device_ctx;
1994 struct net_device *dev;
1995
1996 dev = netdev_master_upper_dev_get(vf_netdev);
1997 if (!dev || dev->netdev_ops != &device_ops)
1998 return NULL; /* not a netvsc device */
1999
2000 net_device_ctx = netdev_priv(dev);
2001 if (!rtnl_dereference(net_device_ctx->nvdev))
2002 return NULL; /* device is removed */
2003
2004 return dev;
2005}
2006
2007/* Called when VF is injecting data into network stack.
2008 * Change the associated network device from VF to netvsc.
2009 * note: already called with rcu_read_lock
2010 */
2011static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2012{
2013 struct sk_buff *skb = *pskb;
2014 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2015 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2016 struct netvsc_vf_pcpu_stats *pcpu_stats
2017 = this_cpu_ptr(ndev_ctx->vf_stats);
2018
2019 skb = skb_share_check(skb, GFP_ATOMIC);
2020 if (unlikely(!skb))
2021 return RX_HANDLER_CONSUMED;
2022
2023 *pskb = skb;
2024
2025 skb->dev = ndev;
2026
2027 u64_stats_update_begin(&pcpu_stats->syncp);
2028 pcpu_stats->rx_packets++;
2029 pcpu_stats->rx_bytes += skb->len;
2030 u64_stats_update_end(&pcpu_stats->syncp);
2031
2032 return RX_HANDLER_ANOTHER;
2033}
2034
2035static int netvsc_vf_join(struct net_device *vf_netdev,
2036 struct net_device *ndev)
2037{
2038 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2039 int ret;
2040
2041 ret = netdev_rx_handler_register(vf_netdev,
2042 netvsc_vf_handle_frame, ndev);
2043 if (ret != 0) {
2044 netdev_err(vf_netdev,
2045 "can not register netvsc VF receive handler (err = %d)\n",
2046 ret);
2047 goto rx_handler_failed;
2048 }
2049
2050 ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2051 NULL, NULL, NULL);
2052 if (ret != 0) {
2053 netdev_err(vf_netdev,
2054 "can not set master device %s (err = %d)\n",
2055 ndev->name, ret);
2056 goto upper_link_failed;
2057 }
2058
2059 /* set slave flag before open to prevent IPv6 addrconf */
2060 vf_netdev->flags |= IFF_SLAVE;
2061
2062 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2063
2064 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2065
2066 netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2067 return 0;
2068
2069upper_link_failed:
2070 netdev_rx_handler_unregister(vf_netdev);
2071rx_handler_failed:
2072 return ret;
2073}
2074
2075static void __netvsc_vf_setup(struct net_device *ndev,
2076 struct net_device *vf_netdev)
2077{
2078 int ret;
2079
2080 /* Align MTU of VF with master */
2081 ret = dev_set_mtu(vf_netdev, ndev->mtu);
2082 if (ret)
2083 netdev_warn(vf_netdev,
2084 "unable to change mtu to %u\n", ndev->mtu);
2085
2086 /* set multicast etc flags on VF */
2087 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2088
2089 /* sync address list from ndev to VF */
2090 netif_addr_lock_bh(ndev);
2091 dev_uc_sync(vf_netdev, ndev);
2092 dev_mc_sync(vf_netdev, ndev);
2093 netif_addr_unlock_bh(ndev);
2094
2095 if (netif_running(ndev)) {
2096 ret = dev_open(vf_netdev, NULL);
2097 if (ret)
2098 netdev_warn(vf_netdev,
2099 "unable to open: %d\n", ret);
2100 }
2101}
2102
2103/* Setup VF as slave of the synthetic device.
2104 * Runs in workqueue to avoid recursion in netlink callbacks.
2105 */
2106static void netvsc_vf_setup(struct work_struct *w)
2107{
2108 struct net_device_context *ndev_ctx
2109 = container_of(w, struct net_device_context, vf_takeover.work);
2110 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2111 struct net_device *vf_netdev;
2112
2113 if (!rtnl_trylock()) {
2114 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2115 return;
2116 }
2117
2118 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2119 if (vf_netdev)
2120 __netvsc_vf_setup(ndev, vf_netdev);
2121
2122 rtnl_unlock();
2123}
2124
2125/* Find netvsc by VF serial number.
2126 * The PCI hyperv controller records the serial number as the slot kobj name.
2127 */
2128static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2129{
2130 struct device *parent = vf_netdev->dev.parent;
2131 struct net_device_context *ndev_ctx;
2132 struct pci_dev *pdev;
2133 u32 serial;
2134
2135 if (!parent || !dev_is_pci(parent))
2136 return NULL; /* not a PCI device */
2137
2138 pdev = to_pci_dev(parent);
2139 if (!pdev->slot) {
2140 netdev_notice(vf_netdev, "no PCI slot information\n");
2141 return NULL;
2142 }
2143
2144 if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2145 netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2146 pci_slot_name(pdev->slot));
2147 return NULL;
2148 }
2149
2150 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2151 if (!ndev_ctx->vf_alloc)
2152 continue;
2153
2154 if (ndev_ctx->vf_serial == serial)
2155 return hv_get_drvdata(ndev_ctx->device_ctx);
2156 }
2157
2158 netdev_notice(vf_netdev,
2159 "no netdev found for vf serial:%u\n", serial);
2160 return NULL;
2161}
2162
2163static int netvsc_register_vf(struct net_device *vf_netdev)
2164{
2165 struct net_device_context *net_device_ctx;
2166 struct netvsc_device *netvsc_dev;
2167 struct net_device *ndev;
2168 int ret;
2169
2170 if (vf_netdev->addr_len != ETH_ALEN)
2171 return NOTIFY_DONE;
2172
2173 ndev = get_netvsc_byslot(vf_netdev);
2174 if (!ndev)
2175 return NOTIFY_DONE;
2176
2177 net_device_ctx = netdev_priv(ndev);
2178 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2179 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2180 return NOTIFY_DONE;
2181
2182 /* if synthetic interface is a different namespace,
2183 * then move the VF to that namespace; join will be
2184 * done again in that context.
2185 */
2186 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2187 ret = dev_change_net_namespace(vf_netdev,
2188 dev_net(ndev), "eth%d");
2189 if (ret)
2190 netdev_err(vf_netdev,
2191 "could not move to same namespace as %s: %d\n",
2192 ndev->name, ret);
2193 else
2194 netdev_info(vf_netdev,
2195 "VF moved to namespace with: %s\n",
2196 ndev->name);
2197 return NOTIFY_DONE;
2198 }
2199
2200 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2201
2202 if (netvsc_vf_join(vf_netdev, ndev) != 0)
2203 return NOTIFY_DONE;
2204
2205 dev_hold(vf_netdev);
2206 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2207
2208 vf_netdev->wanted_features = ndev->features;
2209 netdev_update_features(vf_netdev);
2210
2211 return NOTIFY_OK;
2212}
2213
2214/* VF up/down change detected, schedule to change data path */
2215static int netvsc_vf_changed(struct net_device *vf_netdev)
2216{
2217 struct net_device_context *net_device_ctx;
2218 struct netvsc_device *netvsc_dev;
2219 struct net_device *ndev;
2220 bool vf_is_up = netif_running(vf_netdev);
2221
2222 ndev = get_netvsc_byref(vf_netdev);
2223 if (!ndev)
2224 return NOTIFY_DONE;
2225
2226 net_device_ctx = netdev_priv(ndev);
2227 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2228 if (!netvsc_dev)
2229 return NOTIFY_DONE;
2230
2231 netvsc_switch_datapath(ndev, vf_is_up);
2232 netdev_info(ndev, "Data path switched %s VF: %s\n",
2233 vf_is_up ? "to" : "from", vf_netdev->name);
2234
2235 return NOTIFY_OK;
2236}
2237
2238static int netvsc_unregister_vf(struct net_device *vf_netdev)
2239{
2240 struct net_device *ndev;
2241 struct net_device_context *net_device_ctx;
2242
2243 ndev = get_netvsc_byref(vf_netdev);
2244 if (!ndev)
2245 return NOTIFY_DONE;
2246
2247 net_device_ctx = netdev_priv(ndev);
2248 cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2249
2250 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2251
2252 netdev_rx_handler_unregister(vf_netdev);
2253 netdev_upper_dev_unlink(vf_netdev, ndev);
2254 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2255 dev_put(vf_netdev);
2256
2257 return NOTIFY_OK;
2258}
2259
2260static int netvsc_probe(struct hv_device *dev,
2261 const struct hv_vmbus_device_id *dev_id)
2262{
2263 struct net_device *net = NULL;
2264 struct net_device_context *net_device_ctx;
2265 struct netvsc_device_info *device_info = NULL;
2266 struct netvsc_device *nvdev;
2267 int ret = -ENOMEM;
2268
2269 net = alloc_etherdev_mq(sizeof(struct net_device_context),
2270 VRSS_CHANNEL_MAX);
2271 if (!net)
2272 goto no_net;
2273
2274 netif_carrier_off(net);
2275
2276 netvsc_init_settings(net);
2277
2278 net_device_ctx = netdev_priv(net);
2279 net_device_ctx->device_ctx = dev;
2280 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2281 if (netif_msg_probe(net_device_ctx))
2282 netdev_dbg(net, "netvsc msg_enable: %d\n",
2283 net_device_ctx->msg_enable);
2284
2285 hv_set_drvdata(dev, net);
2286
2287 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2288
2289 spin_lock_init(&net_device_ctx->lock);
2290 INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2291 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2292
2293 net_device_ctx->vf_stats
2294 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2295 if (!net_device_ctx->vf_stats)
2296 goto no_stats;
2297
2298 net->netdev_ops = &device_ops;
2299 net->ethtool_ops = ðtool_ops;
2300 SET_NETDEV_DEV(net, &dev->device);
2301
2302 /* We always need headroom for rndis header */
2303 net->needed_headroom = RNDIS_AND_PPI_SIZE;
2304
2305 /* Initialize the number of queues to be 1, we may change it if more
2306 * channels are offered later.
2307 */
2308 netif_set_real_num_tx_queues(net, 1);
2309 netif_set_real_num_rx_queues(net, 1);
2310
2311 /* Notify the netvsc driver of the new device */
2312 device_info = netvsc_devinfo_get(NULL);
2313
2314 if (!device_info) {
2315 ret = -ENOMEM;
2316 goto devinfo_failed;
2317 }
2318
2319 nvdev = rndis_filter_device_add(dev, device_info);
2320 if (IS_ERR(nvdev)) {
2321 ret = PTR_ERR(nvdev);
2322 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2323 goto rndis_failed;
2324 }
2325
2326 memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN);
2327
2328 /* We must get rtnl lock before scheduling nvdev->subchan_work,
2329 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2330 * all subchannels to show up, but that may not happen because
2331 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2332 * -> ... -> device_add() -> ... -> __device_attach() can't get
2333 * the device lock, so all the subchannels can't be processed --
2334 * finally netvsc_subchan_work() hangs forever.
2335 */
2336 rtnl_lock();
2337
2338 if (nvdev->num_chn > 1)
2339 schedule_work(&nvdev->subchan_work);
2340
2341 /* hw_features computed in rndis_netdev_set_hwcaps() */
2342 net->features = net->hw_features |
2343 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2344 NETIF_F_HW_VLAN_CTAG_RX;
2345 net->vlan_features = net->features;
2346
2347 /* MTU range: 68 - 1500 or 65521 */
2348 net->min_mtu = NETVSC_MTU_MIN;
2349 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2350 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2351 else
2352 net->max_mtu = ETH_DATA_LEN;
2353
2354 ret = register_netdevice(net);
2355 if (ret != 0) {
2356 pr_err("Unable to register netdev.\n");
2357 goto register_failed;
2358 }
2359
2360 list_add(&net_device_ctx->list, &netvsc_dev_list);
2361 rtnl_unlock();
2362
2363 kfree(device_info);
2364 return 0;
2365
2366register_failed:
2367 rtnl_unlock();
2368 rndis_filter_device_remove(dev, nvdev);
2369rndis_failed:
2370 kfree(device_info);
2371devinfo_failed:
2372 free_percpu(net_device_ctx->vf_stats);
2373no_stats:
2374 hv_set_drvdata(dev, NULL);
2375 free_netdev(net);
2376no_net:
2377 return ret;
2378}
2379
2380static int netvsc_remove(struct hv_device *dev)
2381{
2382 struct net_device_context *ndev_ctx;
2383 struct net_device *vf_netdev, *net;
2384 struct netvsc_device *nvdev;
2385
2386 net = hv_get_drvdata(dev);
2387 if (net == NULL) {
2388 dev_err(&dev->device, "No net device to remove\n");
2389 return 0;
2390 }
2391
2392 ndev_ctx = netdev_priv(net);
2393
2394 cancel_delayed_work_sync(&ndev_ctx->dwork);
2395
2396 rtnl_lock();
2397 nvdev = rtnl_dereference(ndev_ctx->nvdev);
2398 if (nvdev)
2399 cancel_work_sync(&nvdev->subchan_work);
2400
2401 /*
2402 * Call to the vsc driver to let it know that the device is being
2403 * removed. Also blocks mtu and channel changes.
2404 */
2405 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2406 if (vf_netdev)
2407 netvsc_unregister_vf(vf_netdev);
2408
2409 if (nvdev)
2410 rndis_filter_device_remove(dev, nvdev);
2411
2412 unregister_netdevice(net);
2413 list_del(&ndev_ctx->list);
2414
2415 rtnl_unlock();
2416
2417 hv_set_drvdata(dev, NULL);
2418
2419 free_percpu(ndev_ctx->vf_stats);
2420 free_netdev(net);
2421 return 0;
2422}
2423
2424static const struct hv_vmbus_device_id id_table[] = {
2425 /* Network guid */
2426 { HV_NIC_GUID, },
2427 { },
2428};
2429
2430MODULE_DEVICE_TABLE(vmbus, id_table);
2431
2432/* The one and only one */
2433static struct hv_driver netvsc_drv = {
2434 .name = KBUILD_MODNAME,
2435 .id_table = id_table,
2436 .probe = netvsc_probe,
2437 .remove = netvsc_remove,
2438 .driver = {
2439 .probe_type = PROBE_FORCE_SYNCHRONOUS,
2440 },
2441};
2442
2443/*
2444 * On Hyper-V, every VF interface is matched with a corresponding
2445 * synthetic interface. The synthetic interface is presented first
2446 * to the guest. When the corresponding VF instance is registered,
2447 * we will take care of switching the data path.
2448 */
2449static int netvsc_netdev_event(struct notifier_block *this,
2450 unsigned long event, void *ptr)
2451{
2452 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2453
2454 /* Skip our own events */
2455 if (event_dev->netdev_ops == &device_ops)
2456 return NOTIFY_DONE;
2457
2458 /* Avoid non-Ethernet type devices */
2459 if (event_dev->type != ARPHRD_ETHER)
2460 return NOTIFY_DONE;
2461
2462 /* Avoid Vlan dev with same MAC registering as VF */
2463 if (is_vlan_dev(event_dev))
2464 return NOTIFY_DONE;
2465
2466 /* Avoid Bonding master dev with same MAC registering as VF */
2467 if ((event_dev->priv_flags & IFF_BONDING) &&
2468 (event_dev->flags & IFF_MASTER))
2469 return NOTIFY_DONE;
2470
2471 switch (event) {
2472 case NETDEV_REGISTER:
2473 return netvsc_register_vf(event_dev);
2474 case NETDEV_UNREGISTER:
2475 return netvsc_unregister_vf(event_dev);
2476 case NETDEV_UP:
2477 case NETDEV_DOWN:
2478 return netvsc_vf_changed(event_dev);
2479 default:
2480 return NOTIFY_DONE;
2481 }
2482}
2483
2484static struct notifier_block netvsc_netdev_notifier = {
2485 .notifier_call = netvsc_netdev_event,
2486};
2487
2488static void __exit netvsc_drv_exit(void)
2489{
2490 unregister_netdevice_notifier(&netvsc_netdev_notifier);
2491 vmbus_driver_unregister(&netvsc_drv);
2492}
2493
2494static int __init netvsc_drv_init(void)
2495{
2496 int ret;
2497
2498 if (ring_size < RING_SIZE_MIN) {
2499 ring_size = RING_SIZE_MIN;
2500 pr_info("Increased ring_size to %u (min allowed)\n",
2501 ring_size);
2502 }
2503 netvsc_ring_bytes = ring_size * PAGE_SIZE;
2504
2505 ret = vmbus_driver_register(&netvsc_drv);
2506 if (ret)
2507 return ret;
2508
2509 register_netdevice_notifier(&netvsc_netdev_notifier);
2510 return 0;
2511}
2512
2513MODULE_LICENSE("GPL");
2514MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2515
2516module_init(netvsc_drv_init);
2517module_exit(netvsc_drv_exit);