Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2009, Microsoft Corporation.
   4 *
   5 * Authors:
   6 *   Haiyang Zhang <haiyangz@microsoft.com>
   7 *   Hank Janssen  <hjanssen@microsoft.com>
   8 */
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/init.h>
  12#include <linux/atomic.h>
  13#include <linux/ethtool.h>
  14#include <linux/module.h>
  15#include <linux/highmem.h>
  16#include <linux/device.h>
  17#include <linux/io.h>
  18#include <linux/delay.h>
  19#include <linux/netdevice.h>
  20#include <linux/inetdevice.h>
  21#include <linux/etherdevice.h>
  22#include <linux/pci.h>
  23#include <linux/skbuff.h>
  24#include <linux/if_vlan.h>
  25#include <linux/in.h>
  26#include <linux/slab.h>
  27#include <linux/rtnetlink.h>
  28#include <linux/netpoll.h>
  29#include <linux/bpf.h>
  30
  31#include <net/arp.h>
  32#include <net/route.h>
  33#include <net/sock.h>
  34#include <net/pkt_sched.h>
  35#include <net/checksum.h>
  36#include <net/ip6_checksum.h>
  37
  38#include "hyperv_net.h"
  39
  40#define RING_SIZE_MIN	64
 
 
 
  41
  42#define LINKCHANGE_INT (2 * HZ)
  43#define VF_TAKEOVER_INT (HZ / 10)
  44
  45static unsigned int ring_size __ro_after_init = 128;
  46module_param(ring_size, uint, 0444);
  47MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
  48unsigned int netvsc_ring_bytes __ro_after_init;
  49
  50static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
  51				NETIF_MSG_LINK | NETIF_MSG_IFUP |
  52				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
  53				NETIF_MSG_TX_ERR;
  54
  55static int debug = -1;
  56module_param(debug, int, 0444);
  57MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  58
  59static LIST_HEAD(netvsc_dev_list);
  60
  61static void netvsc_change_rx_flags(struct net_device *net, int change)
  62{
  63	struct net_device_context *ndev_ctx = netdev_priv(net);
  64	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
  65	int inc;
  66
  67	if (!vf_netdev)
  68		return;
  69
  70	if (change & IFF_PROMISC) {
  71		inc = (net->flags & IFF_PROMISC) ? 1 : -1;
  72		dev_set_promiscuity(vf_netdev, inc);
  73	}
  74
  75	if (change & IFF_ALLMULTI) {
  76		inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
  77		dev_set_allmulti(vf_netdev, inc);
  78	}
  79}
  80
  81static void netvsc_set_rx_mode(struct net_device *net)
  82{
  83	struct net_device_context *ndev_ctx = netdev_priv(net);
  84	struct net_device *vf_netdev;
  85	struct netvsc_device *nvdev;
  86
  87	rcu_read_lock();
  88	vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
  89	if (vf_netdev) {
  90		dev_uc_sync(vf_netdev, net);
  91		dev_mc_sync(vf_netdev, net);
  92	}
  93
  94	nvdev = rcu_dereference(ndev_ctx->nvdev);
  95	if (nvdev)
  96		rndis_filter_update(nvdev);
  97	rcu_read_unlock();
  98}
  99
 100static void netvsc_tx_enable(struct netvsc_device *nvscdev,
 101			     struct net_device *ndev)
 102{
 103	nvscdev->tx_disable = false;
 104	virt_wmb(); /* ensure queue wake up mechanism is on */
 105
 106	netif_tx_wake_all_queues(ndev);
 107}
 108
 109static int netvsc_open(struct net_device *net)
 110{
 111	struct net_device_context *ndev_ctx = netdev_priv(net);
 112	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
 113	struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
 114	struct rndis_device *rdev;
 115	int ret = 0;
 116
 117	netif_carrier_off(net);
 118
 119	/* Open up the device */
 120	ret = rndis_filter_open(nvdev);
 121	if (ret != 0) {
 122		netdev_err(net, "unable to open device (ret %d).\n", ret);
 123		return ret;
 124	}
 125
 126	rdev = nvdev->extension;
 127	if (!rdev->link_state) {
 128		netif_carrier_on(net);
 129		netvsc_tx_enable(nvdev, net);
 130	}
 131
 132	if (vf_netdev) {
 133		/* Setting synthetic device up transparently sets
 134		 * slave as up. If open fails, then slave will be
 135		 * still be offline (and not used).
 136		 */
 137		ret = dev_open(vf_netdev, NULL);
 138		if (ret)
 139			netdev_warn(net,
 140				    "unable to open slave: %s: %d\n",
 141				    vf_netdev->name, ret);
 142	}
 143	return 0;
 144}
 145
 146static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
 147{
 148	unsigned int retry = 0;
 149	int i;
 150
 151	/* Ensure pending bytes in ring are read */
 152	for (;;) {
 153		u32 aread = 0;
 154
 155		for (i = 0; i < nvdev->num_chn; i++) {
 156			struct vmbus_channel *chn
 157				= nvdev->chan_table[i].channel;
 158
 159			if (!chn)
 160				continue;
 161
 162			/* make sure receive not running now */
 163			napi_synchronize(&nvdev->chan_table[i].napi);
 164
 165			aread = hv_get_bytes_to_read(&chn->inbound);
 166			if (aread)
 167				break;
 168
 169			aread = hv_get_bytes_to_read(&chn->outbound);
 170			if (aread)
 171				break;
 172		}
 173
 174		if (aread == 0)
 175			return 0;
 176
 177		if (++retry > RETRY_MAX)
 178			return -ETIMEDOUT;
 179
 180		usleep_range(RETRY_US_LO, RETRY_US_HI);
 181	}
 182}
 183
 184static void netvsc_tx_disable(struct netvsc_device *nvscdev,
 185			      struct net_device *ndev)
 186{
 187	if (nvscdev) {
 188		nvscdev->tx_disable = true;
 189		virt_wmb(); /* ensure txq will not wake up after stop */
 190	}
 191
 192	netif_tx_disable(ndev);
 193}
 194
 195static int netvsc_close(struct net_device *net)
 196{
 197	struct net_device_context *net_device_ctx = netdev_priv(net);
 198	struct net_device *vf_netdev
 199		= rtnl_dereference(net_device_ctx->vf_netdev);
 200	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
 201	int ret;
 202
 203	netvsc_tx_disable(nvdev, net);
 204
 205	/* No need to close rndis filter if it is removed already */
 206	if (!nvdev)
 207		return 0;
 208
 209	ret = rndis_filter_close(nvdev);
 210	if (ret != 0) {
 211		netdev_err(net, "unable to close device (ret %d).\n", ret);
 212		return ret;
 213	}
 214
 215	ret = netvsc_wait_until_empty(nvdev);
 216	if (ret)
 217		netdev_err(net, "Ring buffer not empty after closing rndis\n");
 218
 219	if (vf_netdev)
 220		dev_close(vf_netdev);
 221
 222	return ret;
 223}
 224
 225static inline void *init_ppi_data(struct rndis_message *msg,
 226				  u32 ppi_size, u32 pkt_type)
 227{
 228	struct rndis_packet *rndis_pkt = &msg->msg.pkt;
 229	struct rndis_per_packet_info *ppi;
 230
 231	rndis_pkt->data_offset += ppi_size;
 232	ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
 233		+ rndis_pkt->per_pkt_info_len;
 234
 235	ppi->size = ppi_size;
 236	ppi->type = pkt_type;
 237	ppi->internal = 0;
 238	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
 239
 240	rndis_pkt->per_pkt_info_len += ppi_size;
 241
 242	return ppi + 1;
 243}
 244
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 245static inline int netvsc_get_tx_queue(struct net_device *ndev,
 246				      struct sk_buff *skb, int old_idx)
 247{
 248	const struct net_device_context *ndc = netdev_priv(ndev);
 249	struct sock *sk = skb->sk;
 250	int q_idx;
 251
 252	q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
 253			      (VRSS_SEND_TAB_SIZE - 1)];
 254
 255	/* If queue index changed record the new value */
 256	if (q_idx != old_idx &&
 257	    sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
 258		sk_tx_queue_set(sk, q_idx);
 259
 260	return q_idx;
 261}
 262
 263/*
 264 * Select queue for transmit.
 265 *
 266 * If a valid queue has already been assigned, then use that.
 267 * Otherwise compute tx queue based on hash and the send table.
 268 *
 269 * This is basically similar to default (netdev_pick_tx) with the added step
 270 * of using the host send_table when no other queue has been assigned.
 271 *
 272 * TODO support XPS - but get_xps_queue not exported
 273 */
 274static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
 275{
 276	int q_idx = sk_tx_queue_get(skb->sk);
 277
 278	if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
 279		/* If forwarding a packet, we use the recorded queue when
 280		 * available for better cache locality.
 281		 */
 282		if (skb_rx_queue_recorded(skb))
 283			q_idx = skb_get_rx_queue(skb);
 284		else
 285			q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
 286	}
 287
 288	return q_idx;
 289}
 290
 291static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
 292			       struct net_device *sb_dev)
 293{
 294	struct net_device_context *ndc = netdev_priv(ndev);
 295	struct net_device *vf_netdev;
 296	u16 txq;
 297
 298	rcu_read_lock();
 299	vf_netdev = rcu_dereference(ndc->vf_netdev);
 300	if (vf_netdev) {
 301		const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
 302
 303		if (vf_ops->ndo_select_queue)
 304			txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
 305		else
 306			txq = netdev_pick_tx(vf_netdev, skb, NULL);
 307
 308		/* Record the queue selected by VF so that it can be
 309		 * used for common case where VF has more queues than
 310		 * the synthetic device.
 311		 */
 312		qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
 313	} else {
 314		txq = netvsc_pick_tx(ndev, skb);
 315	}
 316	rcu_read_unlock();
 317
 318	while (txq >= ndev->real_num_tx_queues)
 319		txq -= ndev->real_num_tx_queues;
 320
 321	return txq;
 322}
 323
 324static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len,
 325		       struct hv_page_buffer *pb)
 326{
 327	int j = 0;
 328
 329	hvpfn += offset >> HV_HYP_PAGE_SHIFT;
 330	offset = offset & ~HV_HYP_PAGE_MASK;
 
 
 
 331
 332	while (len > 0) {
 333		unsigned long bytes;
 334
 335		bytes = HV_HYP_PAGE_SIZE - offset;
 336		if (bytes > len)
 337			bytes = len;
 338		pb[j].pfn = hvpfn;
 339		pb[j].offset = offset;
 340		pb[j].len = bytes;
 341
 342		offset += bytes;
 343		len -= bytes;
 344
 345		if (offset == HV_HYP_PAGE_SIZE && len) {
 346			hvpfn++;
 347			offset = 0;
 348			j++;
 349		}
 350	}
 351
 352	return j + 1;
 353}
 354
 355static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
 356			   struct hv_netvsc_packet *packet,
 357			   struct hv_page_buffer *pb)
 358{
 359	u32 slots_used = 0;
 360	char *data = skb->data;
 361	int frags = skb_shinfo(skb)->nr_frags;
 362	int i;
 363
 364	/* The packet is laid out thus:
 365	 * 1. hdr: RNDIS header and PPI
 366	 * 2. skb linear data
 367	 * 3. skb fragment data
 368	 */
 369	slots_used += fill_pg_buf(virt_to_hvpfn(hdr),
 370				  offset_in_hvpage(hdr),
 371				  len,
 372				  &pb[slots_used]);
 373
 374	packet->rmsg_size = len;
 375	packet->rmsg_pgcnt = slots_used;
 376
 377	slots_used += fill_pg_buf(virt_to_hvpfn(data),
 378				  offset_in_hvpage(data),
 379				  skb_headlen(skb),
 380				  &pb[slots_used]);
 381
 382	for (i = 0; i < frags; i++) {
 383		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
 384
 385		slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)),
 386					  skb_frag_off(frag),
 387					  skb_frag_size(frag),
 388					  &pb[slots_used]);
 389	}
 390	return slots_used;
 391}
 392
 393static int count_skb_frag_slots(struct sk_buff *skb)
 394{
 395	int i, frags = skb_shinfo(skb)->nr_frags;
 396	int pages = 0;
 397
 398	for (i = 0; i < frags; i++) {
 399		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
 400		unsigned long size = skb_frag_size(frag);
 401		unsigned long offset = skb_frag_off(frag);
 402
 403		/* Skip unused frames from start of page */
 404		offset &= ~HV_HYP_PAGE_MASK;
 405		pages += HVPFN_UP(offset + size);
 406	}
 407	return pages;
 408}
 409
 410static int netvsc_get_slots(struct sk_buff *skb)
 411{
 412	char *data = skb->data;
 413	unsigned int offset = offset_in_hvpage(data);
 414	unsigned int len = skb_headlen(skb);
 415	int slots;
 416	int frag_slots;
 417
 418	slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE);
 419	frag_slots = count_skb_frag_slots(skb);
 420	return slots + frag_slots;
 421}
 422
 423static u32 net_checksum_info(struct sk_buff *skb)
 424{
 425	if (skb->protocol == htons(ETH_P_IP)) {
 426		struct iphdr *ip = ip_hdr(skb);
 427
 428		if (ip->protocol == IPPROTO_TCP)
 429			return TRANSPORT_INFO_IPV4_TCP;
 430		else if (ip->protocol == IPPROTO_UDP)
 431			return TRANSPORT_INFO_IPV4_UDP;
 432	} else {
 433		struct ipv6hdr *ip6 = ipv6_hdr(skb);
 434
 435		if (ip6->nexthdr == IPPROTO_TCP)
 436			return TRANSPORT_INFO_IPV6_TCP;
 437		else if (ip6->nexthdr == IPPROTO_UDP)
 438			return TRANSPORT_INFO_IPV6_UDP;
 439	}
 440
 441	return TRANSPORT_INFO_NOT_IP;
 442}
 443
 444/* Send skb on the slave VF device. */
 445static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
 446			  struct sk_buff *skb)
 447{
 448	struct net_device_context *ndev_ctx = netdev_priv(net);
 449	unsigned int len = skb->len;
 450	int rc;
 451
 452	skb->dev = vf_netdev;
 453	skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping);
 454
 455	rc = dev_queue_xmit(skb);
 456	if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
 457		struct netvsc_vf_pcpu_stats *pcpu_stats
 458			= this_cpu_ptr(ndev_ctx->vf_stats);
 459
 460		u64_stats_update_begin(&pcpu_stats->syncp);
 461		pcpu_stats->tx_packets++;
 462		pcpu_stats->tx_bytes += len;
 463		u64_stats_update_end(&pcpu_stats->syncp);
 464	} else {
 465		this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
 466	}
 467
 468	return rc;
 469}
 470
 471static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx)
 472{
 473	struct net_device_context *net_device_ctx = netdev_priv(net);
 474	struct hv_netvsc_packet *packet = NULL;
 475	int ret;
 476	unsigned int num_data_pgs;
 477	struct rndis_message *rndis_msg;
 478	struct net_device *vf_netdev;
 479	u32 rndis_msg_size;
 480	u32 hash;
 481	struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
 482
 483	/* If VF is present and up then redirect packets to it.
 484	 * Skip the VF if it is marked down or has no carrier.
 485	 * If netpoll is in uses, then VF can not be used either.
 486	 */
 487	vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
 488	if (vf_netdev && netif_running(vf_netdev) &&
 489	    netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net) &&
 490	    net_device_ctx->data_path_is_vf)
 491		return netvsc_vf_xmit(net, vf_netdev, skb);
 492
 493	/* We will atmost need two pages to describe the rndis
 494	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
 495	 * of pages in a single packet. If skb is scattered around
 496	 * more pages we try linearizing it.
 497	 */
 498
 499	num_data_pgs = netvsc_get_slots(skb) + 2;
 500
 501	if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
 502		++net_device_ctx->eth_stats.tx_scattered;
 503
 504		if (skb_linearize(skb))
 505			goto no_memory;
 506
 507		num_data_pgs = netvsc_get_slots(skb) + 2;
 508		if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
 509			++net_device_ctx->eth_stats.tx_too_big;
 510			goto drop;
 511		}
 512	}
 513
 514	/*
 515	 * Place the rndis header in the skb head room and
 516	 * the skb->cb will be used for hv_netvsc_packet
 517	 * structure.
 518	 */
 519	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
 520	if (ret)
 521		goto no_memory;
 522
 523	/* Use the skb control buffer for building up the packet */
 524	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
 525			sizeof_field(struct sk_buff, cb));
 526	packet = (struct hv_netvsc_packet *)skb->cb;
 527
 528	packet->q_idx = skb_get_queue_mapping(skb);
 529
 530	packet->total_data_buflen = skb->len;
 531	packet->total_bytes = skb->len;
 532	packet->total_packets = 1;
 533
 534	rndis_msg = (struct rndis_message *)skb->head;
 535
 536	/* Add the rndis header */
 537	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
 538	rndis_msg->msg_len = packet->total_data_buflen;
 539
 540	rndis_msg->msg.pkt = (struct rndis_packet) {
 541		.data_offset = sizeof(struct rndis_packet),
 542		.data_len = packet->total_data_buflen,
 543		.per_pkt_info_offset = sizeof(struct rndis_packet),
 544	};
 545
 546	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
 547
 548	hash = skb_get_hash_raw(skb);
 549	if (hash != 0 && net->real_num_tx_queues > 1) {
 550		u32 *hash_info;
 551
 552		rndis_msg_size += NDIS_HASH_PPI_SIZE;
 553		hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
 554					  NBL_HASH_VALUE);
 555		*hash_info = hash;
 556	}
 557
 558	/* When using AF_PACKET we need to drop VLAN header from
 559	 * the frame and update the SKB to allow the HOST OS
 560	 * to transmit the 802.1Q packet
 561	 */
 562	if (skb->protocol == htons(ETH_P_8021Q)) {
 563		u16 vlan_tci;
 564
 565		skb_reset_mac_header(skb);
 566		if (eth_type_vlan(eth_hdr(skb)->h_proto)) {
 567			if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) {
 568				++net_device_ctx->eth_stats.vlan_error;
 569				goto drop;
 570			}
 571
 572			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
 573			/* Update the NDIS header pkt lengths */
 574			packet->total_data_buflen -= VLAN_HLEN;
 575			packet->total_bytes -= VLAN_HLEN;
 576			rndis_msg->msg_len = packet->total_data_buflen;
 577			rndis_msg->msg.pkt.data_len = packet->total_data_buflen;
 578		}
 579	}
 580
 581	if (skb_vlan_tag_present(skb)) {
 582		struct ndis_pkt_8021q_info *vlan;
 583
 584		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
 585		vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
 586				     IEEE_8021Q_INFO);
 587
 588		vlan->value = 0;
 589		vlan->vlanid = skb_vlan_tag_get_id(skb);
 590		vlan->cfi = skb_vlan_tag_get_cfi(skb);
 591		vlan->pri = skb_vlan_tag_get_prio(skb);
 592	}
 593
 594	if (skb_is_gso(skb)) {
 595		struct ndis_tcp_lso_info *lso_info;
 596
 597		rndis_msg_size += NDIS_LSO_PPI_SIZE;
 598		lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
 599					 TCP_LARGESEND_PKTINFO);
 600
 601		lso_info->value = 0;
 602		lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
 603		if (skb->protocol == htons(ETH_P_IP)) {
 604			lso_info->lso_v2_transmit.ip_version =
 605				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
 606			ip_hdr(skb)->tot_len = 0;
 607			ip_hdr(skb)->check = 0;
 608			tcp_hdr(skb)->check =
 609				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
 610						   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
 611		} else {
 612			lso_info->lso_v2_transmit.ip_version =
 613				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
 614			tcp_v6_gso_csum_prep(skb);
 
 
 
 615		}
 616		lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
 617		lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
 618	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
 619		if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
 620			struct ndis_tcp_ip_checksum_info *csum_info;
 621
 622			rndis_msg_size += NDIS_CSUM_PPI_SIZE;
 623			csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
 624						  TCPIP_CHKSUM_PKTINFO);
 625
 626			csum_info->value = 0;
 627			csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
 628
 629			if (skb->protocol == htons(ETH_P_IP)) {
 630				csum_info->transmit.is_ipv4 = 1;
 631
 632				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
 633					csum_info->transmit.tcp_checksum = 1;
 634				else
 635					csum_info->transmit.udp_checksum = 1;
 636			} else {
 637				csum_info->transmit.is_ipv6 = 1;
 638
 639				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
 640					csum_info->transmit.tcp_checksum = 1;
 641				else
 642					csum_info->transmit.udp_checksum = 1;
 643			}
 644		} else {
 645			/* Can't do offload of this type of checksum */
 646			if (skb_checksum_help(skb))
 647				goto drop;
 648		}
 649	}
 650
 651	/* Start filling in the page buffers with the rndis hdr */
 652	rndis_msg->msg_len += rndis_msg_size;
 653	packet->total_data_buflen = rndis_msg->msg_len;
 654	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
 655					       skb, packet, pb);
 656
 657	/* timestamp packet in software */
 658	skb_tx_timestamp(skb);
 659
 660	ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx);
 661	if (likely(ret == 0))
 662		return NETDEV_TX_OK;
 663
 664	if (ret == -EAGAIN) {
 665		++net_device_ctx->eth_stats.tx_busy;
 666		return NETDEV_TX_BUSY;
 667	}
 668
 669	if (ret == -ENOSPC)
 670		++net_device_ctx->eth_stats.tx_no_space;
 671
 672drop:
 673	dev_kfree_skb_any(skb);
 674	net->stats.tx_dropped++;
 675
 676	return NETDEV_TX_OK;
 677
 678no_memory:
 679	++net_device_ctx->eth_stats.tx_no_memory;
 680	goto drop;
 681}
 682
 683static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb,
 684				     struct net_device *ndev)
 685{
 686	return netvsc_xmit(skb, ndev, false);
 687}
 688
 689/*
 690 * netvsc_linkstatus_callback - Link up/down notification
 691 */
 692void netvsc_linkstatus_callback(struct net_device *net,
 693				struct rndis_message *resp,
 694				void *data, u32 data_buflen)
 695{
 696	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
 697	struct net_device_context *ndev_ctx = netdev_priv(net);
 698	struct netvsc_reconfig *event;
 699	unsigned long flags;
 700
 701	/* Ensure the packet is big enough to access its fields */
 702	if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) {
 703		netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n",
 704			   resp->msg_len);
 705		return;
 706	}
 707
 708	/* Copy the RNDIS indicate status into nvchan->recv_buf */
 709	memcpy(indicate, data + RNDIS_HEADER_SIZE, sizeof(*indicate));
 710
 711	/* Update the physical link speed when changing to another vSwitch */
 712	if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
 713		u32 speed;
 714
 715		/* Validate status_buf_offset and status_buflen.
 716		 *
 717		 * Certain (pre-Fe) implementations of Hyper-V's vSwitch didn't account
 718		 * for the status buffer field in resp->msg_len; perform the validation
 719		 * using data_buflen (>= resp->msg_len).
 720		 */
 721		if (indicate->status_buflen < sizeof(speed) ||
 722		    indicate->status_buf_offset < sizeof(*indicate) ||
 723		    data_buflen - RNDIS_HEADER_SIZE < indicate->status_buf_offset ||
 724		    data_buflen - RNDIS_HEADER_SIZE - indicate->status_buf_offset
 725				< indicate->status_buflen) {
 726			netdev_err(net, "invalid rndis_indicate_status packet\n");
 727			return;
 728		}
 729
 730		speed = *(u32 *)(data + RNDIS_HEADER_SIZE + indicate->status_buf_offset) / 10000;
 731		ndev_ctx->speed = speed;
 732		return;
 733	}
 734
 735	/* Handle these link change statuses below */
 736	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
 737	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
 738	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
 739		return;
 740
 741	if (net->reg_state != NETREG_REGISTERED)
 742		return;
 743
 744	event = kzalloc(sizeof(*event), GFP_ATOMIC);
 745	if (!event)
 746		return;
 747	event->event = indicate->status;
 748
 749	spin_lock_irqsave(&ndev_ctx->lock, flags);
 750	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
 751	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
 752
 753	schedule_delayed_work(&ndev_ctx->dwork, 0);
 754}
 755
 756/* This function should only be called after skb_record_rx_queue() */
 757void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev)
 758{
 759	int rc;
 760
 761	skb->queue_mapping = skb_get_rx_queue(skb);
 762	__skb_push(skb, ETH_HLEN);
 763
 764	rc = netvsc_xmit(skb, ndev, true);
 765
 766	if (dev_xmit_complete(rc))
 767		return;
 768
 769	dev_kfree_skb_any(skb);
 770	ndev->stats.tx_dropped++;
 771}
 772
 773static void netvsc_comp_ipcsum(struct sk_buff *skb)
 774{
 775	struct iphdr *iph = (struct iphdr *)skb->data;
 776
 777	iph->check = 0;
 778	iph->check = ip_fast_csum(iph, iph->ihl);
 779}
 780
 781static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
 782					     struct netvsc_channel *nvchan,
 783					     struct xdp_buff *xdp)
 784{
 785	struct napi_struct *napi = &nvchan->napi;
 786	const struct ndis_pkt_8021q_info *vlan = &nvchan->rsc.vlan;
 787	const struct ndis_tcp_ip_checksum_info *csum_info =
 788						&nvchan->rsc.csum_info;
 789	const u32 *hash_info = &nvchan->rsc.hash_info;
 790	u8 ppi_flags = nvchan->rsc.ppi_flags;
 791	struct sk_buff *skb;
 792	void *xbuf = xdp->data_hard_start;
 793	int i;
 794
 795	if (xbuf) {
 796		unsigned int hdroom = xdp->data - xdp->data_hard_start;
 797		unsigned int xlen = xdp->data_end - xdp->data;
 798		unsigned int frag_size = xdp->frame_sz;
 799
 800		skb = build_skb(xbuf, frag_size);
 801
 802		if (!skb) {
 803			__free_page(virt_to_page(xbuf));
 804			return NULL;
 805		}
 806
 807		skb_reserve(skb, hdroom);
 808		skb_put(skb, xlen);
 809		skb->dev = napi->dev;
 810	} else {
 811		skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
 812
 813		if (!skb)
 814			return NULL;
 815
 816		/* Copy to skb. This copy is needed here since the memory
 817		 * pointed by hv_netvsc_packet cannot be deallocated.
 818		 */
 819		for (i = 0; i < nvchan->rsc.cnt; i++)
 820			skb_put_data(skb, nvchan->rsc.data[i],
 821				     nvchan->rsc.len[i]);
 822	}
 823
 824	skb->protocol = eth_type_trans(skb, net);
 825
 826	/* skb is already created with CHECKSUM_NONE */
 827	skb_checksum_none_assert(skb);
 828
 829	/* Incoming packets may have IP header checksum verified by the host.
 830	 * They may not have IP header checksum computed after coalescing.
 831	 * We compute it here if the flags are set, because on Linux, the IP
 832	 * checksum is always checked.
 833	 */
 834	if ((ppi_flags & NVSC_RSC_CSUM_INFO) && csum_info->receive.ip_checksum_value_invalid &&
 835	    csum_info->receive.ip_checksum_succeeded &&
 836	    skb->protocol == htons(ETH_P_IP)) {
 837		/* Check that there is enough space to hold the IP header. */
 838		if (skb_headlen(skb) < sizeof(struct iphdr)) {
 839			kfree_skb(skb);
 840			return NULL;
 841		}
 842		netvsc_comp_ipcsum(skb);
 843	}
 844
 845	/* Do L4 checksum offload if enabled and present. */
 846	if ((ppi_flags & NVSC_RSC_CSUM_INFO) && (net->features & NETIF_F_RXCSUM)) {
 
 847		if (csum_info->receive.tcp_checksum_succeeded ||
 848		    csum_info->receive.udp_checksum_succeeded)
 849			skb->ip_summed = CHECKSUM_UNNECESSARY;
 850	}
 851
 852	if ((ppi_flags & NVSC_RSC_HASH_INFO) && (net->features & NETIF_F_RXHASH))
 853		skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
 854
 855	if (ppi_flags & NVSC_RSC_VLAN) {
 856		u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
 857			(vlan->cfi ? VLAN_CFI_MASK : 0);
 858
 859		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
 860				       vlan_tci);
 861	}
 862
 863	return skb;
 864}
 865
 866/*
 867 * netvsc_recv_callback -  Callback when we receive a packet from the
 868 * "wire" on the specified device.
 869 */
 870int netvsc_recv_callback(struct net_device *net,
 871			 struct netvsc_device *net_device,
 872			 struct netvsc_channel *nvchan)
 873{
 874	struct net_device_context *net_device_ctx = netdev_priv(net);
 875	struct vmbus_channel *channel = nvchan->channel;
 876	u16 q_idx = channel->offermsg.offer.sub_channel_index;
 877	struct sk_buff *skb;
 878	struct netvsc_stats_rx *rx_stats = &nvchan->rx_stats;
 879	struct xdp_buff xdp;
 880	u32 act;
 881
 882	if (net->reg_state != NETREG_REGISTERED)
 883		return NVSP_STAT_FAIL;
 884
 885	act = netvsc_run_xdp(net, nvchan, &xdp);
 886
 887	if (act == XDP_REDIRECT)
 888		return NVSP_STAT_SUCCESS;
 889
 890	if (act != XDP_PASS && act != XDP_TX) {
 891		u64_stats_update_begin(&rx_stats->syncp);
 892		rx_stats->xdp_drop++;
 893		u64_stats_update_end(&rx_stats->syncp);
 894
 895		return NVSP_STAT_SUCCESS; /* consumed by XDP */
 896	}
 897
 898	/* Allocate a skb - TODO direct I/O to pages? */
 899	skb = netvsc_alloc_recv_skb(net, nvchan, &xdp);
 900
 901	if (unlikely(!skb)) {
 902		++net_device_ctx->eth_stats.rx_no_memory;
 903		return NVSP_STAT_FAIL;
 904	}
 905
 906	skb_record_rx_queue(skb, q_idx);
 907
 908	/*
 909	 * Even if injecting the packet, record the statistics
 910	 * on the synthetic device because modifying the VF device
 911	 * statistics will not work correctly.
 912	 */
 
 913	u64_stats_update_begin(&rx_stats->syncp);
 914	if (act == XDP_TX)
 915		rx_stats->xdp_tx++;
 916
 917	rx_stats->packets++;
 918	rx_stats->bytes += nvchan->rsc.pktlen;
 919
 920	if (skb->pkt_type == PACKET_BROADCAST)
 921		++rx_stats->broadcast;
 922	else if (skb->pkt_type == PACKET_MULTICAST)
 923		++rx_stats->multicast;
 924	u64_stats_update_end(&rx_stats->syncp);
 925
 926	if (act == XDP_TX) {
 927		netvsc_xdp_xmit(skb, net);
 928		return NVSP_STAT_SUCCESS;
 929	}
 930
 931	napi_gro_receive(&nvchan->napi, skb);
 932	return NVSP_STAT_SUCCESS;
 933}
 934
 935static void netvsc_get_drvinfo(struct net_device *net,
 936			       struct ethtool_drvinfo *info)
 937{
 938	strscpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
 939	strscpy(info->fw_version, "N/A", sizeof(info->fw_version));
 940}
 941
 942static void netvsc_get_channels(struct net_device *net,
 943				struct ethtool_channels *channel)
 944{
 945	struct net_device_context *net_device_ctx = netdev_priv(net);
 946	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
 947
 948	if (nvdev) {
 949		channel->max_combined	= nvdev->max_chn;
 950		channel->combined_count = nvdev->num_chn;
 951	}
 952}
 953
 954/* Alloc struct netvsc_device_info, and initialize it from either existing
 955 * struct netvsc_device, or from default values.
 956 */
 957static
 958struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev)
 959{
 960	struct netvsc_device_info *dev_info;
 961	struct bpf_prog *prog;
 962
 963	dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
 964
 965	if (!dev_info)
 966		return NULL;
 967
 968	if (nvdev) {
 969		ASSERT_RTNL();
 970
 971		dev_info->num_chn = nvdev->num_chn;
 972		dev_info->send_sections = nvdev->send_section_cnt;
 973		dev_info->send_section_size = nvdev->send_section_size;
 974		dev_info->recv_sections = nvdev->recv_section_cnt;
 975		dev_info->recv_section_size = nvdev->recv_section_size;
 976
 977		memcpy(dev_info->rss_key, nvdev->extension->rss_key,
 978		       NETVSC_HASH_KEYLEN);
 979
 980		prog = netvsc_xdp_get(nvdev);
 981		if (prog) {
 982			bpf_prog_inc(prog);
 983			dev_info->bprog = prog;
 984		}
 985	} else {
 986		dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
 987		dev_info->send_sections = NETVSC_DEFAULT_TX;
 988		dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
 989		dev_info->recv_sections = NETVSC_DEFAULT_RX;
 990		dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
 991	}
 992
 993	return dev_info;
 994}
 995
 996/* Free struct netvsc_device_info */
 997static void netvsc_devinfo_put(struct netvsc_device_info *dev_info)
 998{
 999	if (dev_info->bprog) {
1000		ASSERT_RTNL();
1001		bpf_prog_put(dev_info->bprog);
1002	}
1003
1004	kfree(dev_info);
1005}
1006
1007static int netvsc_detach(struct net_device *ndev,
1008			 struct netvsc_device *nvdev)
1009{
1010	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1011	struct hv_device *hdev = ndev_ctx->device_ctx;
1012	int ret;
1013
1014	/* Don't try continuing to try and setup sub channels */
1015	if (cancel_work_sync(&nvdev->subchan_work))
1016		nvdev->num_chn = 1;
1017
1018	netvsc_xdp_set(ndev, NULL, NULL, nvdev);
1019
1020	/* If device was up (receiving) then shutdown */
1021	if (netif_running(ndev)) {
1022		netvsc_tx_disable(nvdev, ndev);
1023
1024		ret = rndis_filter_close(nvdev);
1025		if (ret) {
1026			netdev_err(ndev,
1027				   "unable to close device (ret %d).\n", ret);
1028			return ret;
1029		}
1030
1031		ret = netvsc_wait_until_empty(nvdev);
1032		if (ret) {
1033			netdev_err(ndev,
1034				   "Ring buffer not empty after closing rndis\n");
1035			return ret;
1036		}
1037	}
1038
1039	netif_device_detach(ndev);
1040
1041	rndis_filter_device_remove(hdev, nvdev);
1042
1043	return 0;
1044}
1045
1046static int netvsc_attach(struct net_device *ndev,
1047			 struct netvsc_device_info *dev_info)
1048{
1049	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1050	struct hv_device *hdev = ndev_ctx->device_ctx;
1051	struct netvsc_device *nvdev;
1052	struct rndis_device *rdev;
1053	struct bpf_prog *prog;
1054	int ret = 0;
1055
1056	nvdev = rndis_filter_device_add(hdev, dev_info);
1057	if (IS_ERR(nvdev))
1058		return PTR_ERR(nvdev);
1059
1060	if (nvdev->num_chn > 1) {
1061		ret = rndis_set_subchannel(ndev, nvdev, dev_info);
1062
1063		/* if unavailable, just proceed with one queue */
1064		if (ret) {
1065			nvdev->max_chn = 1;
1066			nvdev->num_chn = 1;
1067		}
1068	}
1069
1070	prog = dev_info->bprog;
1071	if (prog) {
1072		bpf_prog_inc(prog);
1073		ret = netvsc_xdp_set(ndev, prog, NULL, nvdev);
1074		if (ret) {
1075			bpf_prog_put(prog);
1076			goto err1;
1077		}
1078	}
1079
1080	/* In any case device is now ready */
1081	nvdev->tx_disable = false;
1082	netif_device_attach(ndev);
1083
1084	/* Note: enable and attach happen when sub-channels setup */
1085	netif_carrier_off(ndev);
1086
1087	if (netif_running(ndev)) {
1088		ret = rndis_filter_open(nvdev);
1089		if (ret)
1090			goto err2;
1091
1092		rdev = nvdev->extension;
1093		if (!rdev->link_state)
1094			netif_carrier_on(ndev);
1095	}
1096
1097	return 0;
1098
1099err2:
1100	netif_device_detach(ndev);
1101
1102err1:
1103	rndis_filter_device_remove(hdev, nvdev);
1104
1105	return ret;
1106}
1107
1108static int netvsc_set_channels(struct net_device *net,
1109			       struct ethtool_channels *channels)
1110{
1111	struct net_device_context *net_device_ctx = netdev_priv(net);
1112	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1113	unsigned int orig, count = channels->combined_count;
1114	struct netvsc_device_info *device_info;
1115	int ret;
1116
1117	/* We do not support separate count for rx, tx, or other */
1118	if (count == 0 ||
1119	    channels->rx_count || channels->tx_count || channels->other_count)
1120		return -EINVAL;
1121
1122	if (!nvdev || nvdev->destroy)
1123		return -ENODEV;
1124
1125	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1126		return -EINVAL;
1127
1128	if (count > nvdev->max_chn)
1129		return -EINVAL;
1130
1131	orig = nvdev->num_chn;
1132
1133	device_info = netvsc_devinfo_get(nvdev);
1134
1135	if (!device_info)
1136		return -ENOMEM;
1137
1138	device_info->num_chn = count;
1139
1140	ret = netvsc_detach(net, nvdev);
1141	if (ret)
1142		goto out;
1143
1144	ret = netvsc_attach(net, device_info);
1145	if (ret) {
1146		device_info->num_chn = orig;
1147		if (netvsc_attach(net, device_info))
1148			netdev_err(net, "restoring channel setting failed\n");
1149	}
1150
1151out:
1152	netvsc_devinfo_put(device_info);
1153	return ret;
1154}
1155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1156static void netvsc_init_settings(struct net_device *dev)
1157{
1158	struct net_device_context *ndc = netdev_priv(dev);
1159
1160	ndc->l4_hash = HV_DEFAULT_L4HASH;
1161
1162	ndc->speed = SPEED_UNKNOWN;
1163	ndc->duplex = DUPLEX_FULL;
1164
1165	dev->features = NETIF_F_LRO;
1166}
1167
1168static int netvsc_get_link_ksettings(struct net_device *dev,
1169				     struct ethtool_link_ksettings *cmd)
1170{
1171	struct net_device_context *ndc = netdev_priv(dev);
1172	struct net_device *vf_netdev;
1173
1174	vf_netdev = rtnl_dereference(ndc->vf_netdev);
1175
1176	if (vf_netdev)
1177		return __ethtool_get_link_ksettings(vf_netdev, cmd);
1178
1179	cmd->base.speed = ndc->speed;
1180	cmd->base.duplex = ndc->duplex;
1181	cmd->base.port = PORT_OTHER;
1182
1183	return 0;
1184}
1185
1186static int netvsc_set_link_ksettings(struct net_device *dev,
1187				     const struct ethtool_link_ksettings *cmd)
1188{
1189	struct net_device_context *ndc = netdev_priv(dev);
1190	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1191
1192	if (vf_netdev) {
1193		if (!vf_netdev->ethtool_ops->set_link_ksettings)
1194			return -EOPNOTSUPP;
 
 
1195
1196		return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev,
1197								  cmd);
1198	}
1199
1200	return ethtool_virtdev_set_link_ksettings(dev, cmd,
1201						  &ndc->speed, &ndc->duplex);
1202}
1203
1204static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1205{
1206	struct net_device_context *ndevctx = netdev_priv(ndev);
1207	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1208	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1209	int orig_mtu = ndev->mtu;
1210	struct netvsc_device_info *device_info;
1211	int ret = 0;
1212
1213	if (!nvdev || nvdev->destroy)
1214		return -ENODEV;
1215
1216	device_info = netvsc_devinfo_get(nvdev);
1217
1218	if (!device_info)
1219		return -ENOMEM;
1220
1221	/* Change MTU of underlying VF netdev first. */
1222	if (vf_netdev) {
1223		ret = dev_set_mtu(vf_netdev, mtu);
1224		if (ret)
1225			goto out;
1226	}
1227
1228	ret = netvsc_detach(ndev, nvdev);
1229	if (ret)
1230		goto rollback_vf;
1231
1232	ndev->mtu = mtu;
1233
1234	ret = netvsc_attach(ndev, device_info);
1235	if (!ret)
1236		goto out;
1237
1238	/* Attempt rollback to original MTU */
1239	ndev->mtu = orig_mtu;
1240
1241	if (netvsc_attach(ndev, device_info))
1242		netdev_err(ndev, "restoring mtu failed\n");
1243rollback_vf:
1244	if (vf_netdev)
1245		dev_set_mtu(vf_netdev, orig_mtu);
1246
1247out:
1248	netvsc_devinfo_put(device_info);
1249	return ret;
1250}
1251
1252static void netvsc_get_vf_stats(struct net_device *net,
1253				struct netvsc_vf_pcpu_stats *tot)
1254{
1255	struct net_device_context *ndev_ctx = netdev_priv(net);
1256	int i;
1257
1258	memset(tot, 0, sizeof(*tot));
1259
1260	for_each_possible_cpu(i) {
1261		const struct netvsc_vf_pcpu_stats *stats
1262			= per_cpu_ptr(ndev_ctx->vf_stats, i);
1263		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1264		unsigned int start;
1265
1266		do {
1267			start = u64_stats_fetch_begin(&stats->syncp);
1268			rx_packets = stats->rx_packets;
1269			tx_packets = stats->tx_packets;
1270			rx_bytes = stats->rx_bytes;
1271			tx_bytes = stats->tx_bytes;
1272		} while (u64_stats_fetch_retry(&stats->syncp, start));
1273
1274		tot->rx_packets += rx_packets;
1275		tot->tx_packets += tx_packets;
1276		tot->rx_bytes   += rx_bytes;
1277		tot->tx_bytes   += tx_bytes;
1278		tot->tx_dropped += stats->tx_dropped;
1279	}
1280}
1281
1282static void netvsc_get_pcpu_stats(struct net_device *net,
1283				  struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1284{
1285	struct net_device_context *ndev_ctx = netdev_priv(net);
1286	struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1287	int i;
1288
1289	/* fetch percpu stats of vf */
1290	for_each_possible_cpu(i) {
1291		const struct netvsc_vf_pcpu_stats *stats =
1292			per_cpu_ptr(ndev_ctx->vf_stats, i);
1293		struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1294		unsigned int start;
1295
1296		do {
1297			start = u64_stats_fetch_begin(&stats->syncp);
1298			this_tot->vf_rx_packets = stats->rx_packets;
1299			this_tot->vf_tx_packets = stats->tx_packets;
1300			this_tot->vf_rx_bytes = stats->rx_bytes;
1301			this_tot->vf_tx_bytes = stats->tx_bytes;
1302		} while (u64_stats_fetch_retry(&stats->syncp, start));
1303		this_tot->rx_packets = this_tot->vf_rx_packets;
1304		this_tot->tx_packets = this_tot->vf_tx_packets;
1305		this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1306		this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1307	}
1308
1309	/* fetch percpu stats of netvsc */
1310	for (i = 0; i < nvdev->num_chn; i++) {
1311		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1312		const struct netvsc_stats_tx *tx_stats;
1313		const struct netvsc_stats_rx *rx_stats;
1314		struct netvsc_ethtool_pcpu_stats *this_tot =
1315			&pcpu_tot[nvchan->channel->target_cpu];
1316		u64 packets, bytes;
1317		unsigned int start;
1318
1319		tx_stats = &nvchan->tx_stats;
1320		do {
1321			start = u64_stats_fetch_begin(&tx_stats->syncp);
1322			packets = tx_stats->packets;
1323			bytes = tx_stats->bytes;
1324		} while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1325
1326		this_tot->tx_bytes	+= bytes;
1327		this_tot->tx_packets	+= packets;
1328
1329		rx_stats = &nvchan->rx_stats;
1330		do {
1331			start = u64_stats_fetch_begin(&rx_stats->syncp);
1332			packets = rx_stats->packets;
1333			bytes = rx_stats->bytes;
1334		} while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1335
1336		this_tot->rx_bytes	+= bytes;
1337		this_tot->rx_packets	+= packets;
1338	}
1339}
1340
1341static void netvsc_get_stats64(struct net_device *net,
1342			       struct rtnl_link_stats64 *t)
1343{
1344	struct net_device_context *ndev_ctx = netdev_priv(net);
1345	struct netvsc_device *nvdev;
1346	struct netvsc_vf_pcpu_stats vf_tot;
1347	int i;
1348
1349	rcu_read_lock();
1350
1351	nvdev = rcu_dereference(ndev_ctx->nvdev);
1352	if (!nvdev)
1353		goto out;
1354
1355	netdev_stats_to_stats64(t, &net->stats);
1356
1357	netvsc_get_vf_stats(net, &vf_tot);
1358	t->rx_packets += vf_tot.rx_packets;
1359	t->tx_packets += vf_tot.tx_packets;
1360	t->rx_bytes   += vf_tot.rx_bytes;
1361	t->tx_bytes   += vf_tot.tx_bytes;
1362	t->tx_dropped += vf_tot.tx_dropped;
1363
1364	for (i = 0; i < nvdev->num_chn; i++) {
1365		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1366		const struct netvsc_stats_tx *tx_stats;
1367		const struct netvsc_stats_rx *rx_stats;
1368		u64 packets, bytes, multicast;
1369		unsigned int start;
1370
1371		tx_stats = &nvchan->tx_stats;
1372		do {
1373			start = u64_stats_fetch_begin(&tx_stats->syncp);
1374			packets = tx_stats->packets;
1375			bytes = tx_stats->bytes;
1376		} while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1377
1378		t->tx_bytes	+= bytes;
1379		t->tx_packets	+= packets;
1380
1381		rx_stats = &nvchan->rx_stats;
1382		do {
1383			start = u64_stats_fetch_begin(&rx_stats->syncp);
1384			packets = rx_stats->packets;
1385			bytes = rx_stats->bytes;
1386			multicast = rx_stats->multicast + rx_stats->broadcast;
1387		} while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1388
1389		t->rx_bytes	+= bytes;
1390		t->rx_packets	+= packets;
1391		t->multicast	+= multicast;
1392	}
1393out:
1394	rcu_read_unlock();
1395}
1396
1397static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1398{
1399	struct net_device_context *ndc = netdev_priv(ndev);
1400	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1401	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1402	struct sockaddr *addr = p;
1403	int err;
1404
1405	err = eth_prepare_mac_addr_change(ndev, p);
1406	if (err)
1407		return err;
1408
1409	if (!nvdev)
1410		return -ENODEV;
1411
1412	if (vf_netdev) {
1413		err = dev_set_mac_address(vf_netdev, addr, NULL);
1414		if (err)
1415			return err;
1416	}
1417
1418	err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1419	if (!err) {
1420		eth_commit_mac_addr_change(ndev, p);
1421	} else if (vf_netdev) {
1422		/* rollback change on VF */
1423		memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1424		dev_set_mac_address(vf_netdev, addr, NULL);
1425	}
1426
1427	return err;
1428}
1429
1430static const struct {
1431	char name[ETH_GSTRING_LEN];
1432	u16 offset;
1433} netvsc_stats[] = {
1434	{ "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1435	{ "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1436	{ "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1437	{ "tx_too_big",	  offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1438	{ "tx_busy",	  offsetof(struct netvsc_ethtool_stats, tx_busy) },
1439	{ "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1440	{ "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1441	{ "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1442	{ "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1443	{ "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1444	{ "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) },
1445}, pcpu_stats[] = {
1446	{ "cpu%u_rx_packets",
1447		offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1448	{ "cpu%u_rx_bytes",
1449		offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1450	{ "cpu%u_tx_packets",
1451		offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1452	{ "cpu%u_tx_bytes",
1453		offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1454	{ "cpu%u_vf_rx_packets",
1455		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1456	{ "cpu%u_vf_rx_bytes",
1457		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1458	{ "cpu%u_vf_tx_packets",
1459		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1460	{ "cpu%u_vf_tx_bytes",
1461		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1462}, vf_stats[] = {
1463	{ "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1464	{ "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1465	{ "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1466	{ "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1467	{ "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1468};
1469
1470#define NETVSC_GLOBAL_STATS_LEN	ARRAY_SIZE(netvsc_stats)
1471#define NETVSC_VF_STATS_LEN	ARRAY_SIZE(vf_stats)
1472
1473/* statistics per queue (rx/tx packets/bytes) */
1474#define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1475
1476/* 8 statistics per queue (rx/tx packets/bytes, XDP actions) */
1477#define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 8)
1478
1479static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1480{
1481	struct net_device_context *ndc = netdev_priv(dev);
1482	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1483
1484	if (!nvdev)
1485		return -ENODEV;
1486
1487	switch (string_set) {
1488	case ETH_SS_STATS:
1489		return NETVSC_GLOBAL_STATS_LEN
1490			+ NETVSC_VF_STATS_LEN
1491			+ NETVSC_QUEUE_STATS_LEN(nvdev)
1492			+ NETVSC_PCPU_STATS_LEN;
1493	default:
1494		return -EINVAL;
1495	}
1496}
1497
1498static void netvsc_get_ethtool_stats(struct net_device *dev,
1499				     struct ethtool_stats *stats, u64 *data)
1500{
1501	struct net_device_context *ndc = netdev_priv(dev);
1502	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1503	const void *nds = &ndc->eth_stats;
1504	const struct netvsc_stats_tx *tx_stats;
1505	const struct netvsc_stats_rx *rx_stats;
1506	struct netvsc_vf_pcpu_stats sum;
1507	struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1508	unsigned int start;
1509	u64 packets, bytes;
1510	u64 xdp_drop;
1511	u64 xdp_redirect;
1512	u64 xdp_tx;
1513	u64 xdp_xmit;
1514	int i, j, cpu;
1515
1516	if (!nvdev)
1517		return;
1518
1519	for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1520		data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1521
1522	netvsc_get_vf_stats(dev, &sum);
1523	for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1524		data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1525
1526	for (j = 0; j < nvdev->num_chn; j++) {
1527		tx_stats = &nvdev->chan_table[j].tx_stats;
1528
1529		do {
1530			start = u64_stats_fetch_begin(&tx_stats->syncp);
1531			packets = tx_stats->packets;
1532			bytes = tx_stats->bytes;
1533			xdp_xmit = tx_stats->xdp_xmit;
1534		} while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1535		data[i++] = packets;
1536		data[i++] = bytes;
1537		data[i++] = xdp_xmit;
1538
1539		rx_stats = &nvdev->chan_table[j].rx_stats;
1540		do {
1541			start = u64_stats_fetch_begin(&rx_stats->syncp);
1542			packets = rx_stats->packets;
1543			bytes = rx_stats->bytes;
1544			xdp_drop = rx_stats->xdp_drop;
1545			xdp_redirect = rx_stats->xdp_redirect;
1546			xdp_tx = rx_stats->xdp_tx;
1547		} while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1548		data[i++] = packets;
1549		data[i++] = bytes;
1550		data[i++] = xdp_drop;
1551		data[i++] = xdp_redirect;
1552		data[i++] = xdp_tx;
1553	}
1554
1555	pcpu_sum = kvmalloc_array(num_possible_cpus(),
1556				  sizeof(struct netvsc_ethtool_pcpu_stats),
1557				  GFP_KERNEL);
1558	if (!pcpu_sum)
1559		return;
1560
1561	netvsc_get_pcpu_stats(dev, pcpu_sum);
1562	for_each_present_cpu(cpu) {
1563		struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1564
1565		for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1566			data[i++] = *(u64 *)((void *)this_sum
1567					     + pcpu_stats[j].offset);
1568	}
1569	kvfree(pcpu_sum);
1570}
1571
1572static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1573{
1574	struct net_device_context *ndc = netdev_priv(dev);
1575	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1576	u8 *p = data;
1577	int i, cpu;
1578
1579	if (!nvdev)
1580		return;
1581
1582	switch (stringset) {
1583	case ETH_SS_STATS:
1584		for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++)
1585			ethtool_sprintf(&p, netvsc_stats[i].name);
 
 
1586
1587		for (i = 0; i < ARRAY_SIZE(vf_stats); i++)
1588			ethtool_sprintf(&p, vf_stats[i].name);
 
 
1589
1590		for (i = 0; i < nvdev->num_chn; i++) {
1591			ethtool_sprintf(&p, "tx_queue_%u_packets", i);
1592			ethtool_sprintf(&p, "tx_queue_%u_bytes", i);
1593			ethtool_sprintf(&p, "tx_queue_%u_xdp_xmit", i);
1594			ethtool_sprintf(&p, "rx_queue_%u_packets", i);
1595			ethtool_sprintf(&p, "rx_queue_%u_bytes", i);
1596			ethtool_sprintf(&p, "rx_queue_%u_xdp_drop", i);
1597			ethtool_sprintf(&p, "rx_queue_%u_xdp_redirect", i);
1598			ethtool_sprintf(&p, "rx_queue_%u_xdp_tx", i);
1599		}
1600
1601		for_each_present_cpu(cpu) {
1602			for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++)
1603				ethtool_sprintf(&p, pcpu_stats[i].name, cpu);
 
 
1604		}
1605
1606		break;
1607	}
1608}
1609
1610static int
1611netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1612			 struct ethtool_rxnfc *info)
1613{
1614	const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1615
1616	info->data = RXH_IP_SRC | RXH_IP_DST;
1617
1618	switch (info->flow_type) {
1619	case TCP_V4_FLOW:
1620		if (ndc->l4_hash & HV_TCP4_L4HASH)
1621			info->data |= l4_flag;
1622
1623		break;
1624
1625	case TCP_V6_FLOW:
1626		if (ndc->l4_hash & HV_TCP6_L4HASH)
1627			info->data |= l4_flag;
1628
1629		break;
1630
1631	case UDP_V4_FLOW:
1632		if (ndc->l4_hash & HV_UDP4_L4HASH)
1633			info->data |= l4_flag;
1634
1635		break;
1636
1637	case UDP_V6_FLOW:
1638		if (ndc->l4_hash & HV_UDP6_L4HASH)
1639			info->data |= l4_flag;
1640
1641		break;
1642
1643	case IPV4_FLOW:
1644	case IPV6_FLOW:
1645		break;
1646	default:
1647		info->data = 0;
1648		break;
1649	}
1650
1651	return 0;
1652}
1653
1654static int
1655netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1656		 u32 *rules)
1657{
1658	struct net_device_context *ndc = netdev_priv(dev);
1659	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1660
1661	if (!nvdev)
1662		return -ENODEV;
1663
1664	switch (info->cmd) {
1665	case ETHTOOL_GRXRINGS:
1666		info->data = nvdev->num_chn;
1667		return 0;
1668
1669	case ETHTOOL_GRXFH:
1670		return netvsc_get_rss_hash_opts(ndc, info);
1671	}
1672	return -EOPNOTSUPP;
1673}
1674
1675static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1676				    struct ethtool_rxnfc *info)
1677{
1678	if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1679			   RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1680		switch (info->flow_type) {
1681		case TCP_V4_FLOW:
1682			ndc->l4_hash |= HV_TCP4_L4HASH;
1683			break;
1684
1685		case TCP_V6_FLOW:
1686			ndc->l4_hash |= HV_TCP6_L4HASH;
1687			break;
1688
1689		case UDP_V4_FLOW:
1690			ndc->l4_hash |= HV_UDP4_L4HASH;
1691			break;
1692
1693		case UDP_V6_FLOW:
1694			ndc->l4_hash |= HV_UDP6_L4HASH;
1695			break;
1696
1697		default:
1698			return -EOPNOTSUPP;
1699		}
1700
1701		return 0;
1702	}
1703
1704	if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1705		switch (info->flow_type) {
1706		case TCP_V4_FLOW:
1707			ndc->l4_hash &= ~HV_TCP4_L4HASH;
1708			break;
1709
1710		case TCP_V6_FLOW:
1711			ndc->l4_hash &= ~HV_TCP6_L4HASH;
1712			break;
1713
1714		case UDP_V4_FLOW:
1715			ndc->l4_hash &= ~HV_UDP4_L4HASH;
1716			break;
1717
1718		case UDP_V6_FLOW:
1719			ndc->l4_hash &= ~HV_UDP6_L4HASH;
1720			break;
1721
1722		default:
1723			return -EOPNOTSUPP;
1724		}
1725
1726		return 0;
1727	}
1728
1729	return -EOPNOTSUPP;
1730}
1731
1732static int
1733netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1734{
1735	struct net_device_context *ndc = netdev_priv(ndev);
1736
1737	if (info->cmd == ETHTOOL_SRXFH)
1738		return netvsc_set_rss_hash_opts(ndc, info);
1739
1740	return -EOPNOTSUPP;
1741}
1742
1743static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1744{
1745	return NETVSC_HASH_KEYLEN;
1746}
1747
1748static u32 netvsc_rss_indir_size(struct net_device *dev)
1749{
1750	return ITAB_NUM;
1751}
1752
1753static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1754			   u8 *hfunc)
1755{
1756	struct net_device_context *ndc = netdev_priv(dev);
1757	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1758	struct rndis_device *rndis_dev;
1759	int i;
1760
1761	if (!ndev)
1762		return -ENODEV;
1763
1764	if (hfunc)
1765		*hfunc = ETH_RSS_HASH_TOP;	/* Toeplitz */
1766
1767	rndis_dev = ndev->extension;
1768	if (indir) {
1769		for (i = 0; i < ITAB_NUM; i++)
1770			indir[i] = ndc->rx_table[i];
1771	}
1772
1773	if (key)
1774		memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1775
1776	return 0;
1777}
1778
1779static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1780			   const u8 *key, const u8 hfunc)
1781{
1782	struct net_device_context *ndc = netdev_priv(dev);
1783	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1784	struct rndis_device *rndis_dev;
1785	int i;
1786
1787	if (!ndev)
1788		return -ENODEV;
1789
1790	if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1791		return -EOPNOTSUPP;
1792
1793	rndis_dev = ndev->extension;
1794	if (indir) {
1795		for (i = 0; i < ITAB_NUM; i++)
1796			if (indir[i] >= ndev->num_chn)
1797				return -EINVAL;
1798
1799		for (i = 0; i < ITAB_NUM; i++)
1800			ndc->rx_table[i] = indir[i];
1801	}
1802
1803	if (!key) {
1804		if (!indir)
1805			return 0;
1806
1807		key = rndis_dev->rss_key;
1808	}
1809
1810	return rndis_filter_set_rss_param(rndis_dev, key);
1811}
1812
1813/* Hyper-V RNDIS protocol does not have ring in the HW sense.
1814 * It does have pre-allocated receive area which is divided into sections.
1815 */
1816static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1817				   struct ethtool_ringparam *ring)
1818{
1819	u32 max_buf_size;
1820
1821	ring->rx_pending = nvdev->recv_section_cnt;
1822	ring->tx_pending = nvdev->send_section_cnt;
1823
1824	if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1825		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1826	else
1827		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1828
1829	ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1830	ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1831		/ nvdev->send_section_size;
1832}
1833
1834static void netvsc_get_ringparam(struct net_device *ndev,
1835				 struct ethtool_ringparam *ring,
1836				 struct kernel_ethtool_ringparam *kernel_ring,
1837				 struct netlink_ext_ack *extack)
1838{
1839	struct net_device_context *ndevctx = netdev_priv(ndev);
1840	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1841
1842	if (!nvdev)
1843		return;
1844
1845	__netvsc_get_ringparam(nvdev, ring);
1846}
1847
1848static int netvsc_set_ringparam(struct net_device *ndev,
1849				struct ethtool_ringparam *ring,
1850				struct kernel_ethtool_ringparam *kernel_ring,
1851				struct netlink_ext_ack *extack)
1852{
1853	struct net_device_context *ndevctx = netdev_priv(ndev);
1854	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1855	struct netvsc_device_info *device_info;
1856	struct ethtool_ringparam orig;
1857	u32 new_tx, new_rx;
1858	int ret = 0;
1859
1860	if (!nvdev || nvdev->destroy)
1861		return -ENODEV;
1862
1863	memset(&orig, 0, sizeof(orig));
1864	__netvsc_get_ringparam(nvdev, &orig);
1865
1866	new_tx = clamp_t(u32, ring->tx_pending,
1867			 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1868	new_rx = clamp_t(u32, ring->rx_pending,
1869			 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1870
1871	if (new_tx == orig.tx_pending &&
1872	    new_rx == orig.rx_pending)
1873		return 0;	 /* no change */
1874
1875	device_info = netvsc_devinfo_get(nvdev);
1876
1877	if (!device_info)
1878		return -ENOMEM;
1879
1880	device_info->send_sections = new_tx;
1881	device_info->recv_sections = new_rx;
1882
1883	ret = netvsc_detach(ndev, nvdev);
1884	if (ret)
1885		goto out;
1886
1887	ret = netvsc_attach(ndev, device_info);
1888	if (ret) {
1889		device_info->send_sections = orig.tx_pending;
1890		device_info->recv_sections = orig.rx_pending;
1891
1892		if (netvsc_attach(ndev, device_info))
1893			netdev_err(ndev, "restoring ringparam failed");
1894	}
1895
1896out:
1897	netvsc_devinfo_put(device_info);
1898	return ret;
1899}
1900
1901static netdev_features_t netvsc_fix_features(struct net_device *ndev,
1902					     netdev_features_t features)
1903{
1904	struct net_device_context *ndevctx = netdev_priv(ndev);
1905	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1906
1907	if (!nvdev || nvdev->destroy)
1908		return features;
1909
1910	if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) {
1911		features ^= NETIF_F_LRO;
1912		netdev_info(ndev, "Skip LRO - unsupported with XDP\n");
1913	}
1914
1915	return features;
1916}
1917
1918static int netvsc_set_features(struct net_device *ndev,
1919			       netdev_features_t features)
1920{
1921	netdev_features_t change = features ^ ndev->features;
1922	struct net_device_context *ndevctx = netdev_priv(ndev);
1923	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1924	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1925	struct ndis_offload_params offloads;
1926	int ret = 0;
1927
1928	if (!nvdev || nvdev->destroy)
1929		return -ENODEV;
1930
1931	if (!(change & NETIF_F_LRO))
1932		goto syncvf;
1933
1934	memset(&offloads, 0, sizeof(struct ndis_offload_params));
1935
1936	if (features & NETIF_F_LRO) {
1937		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1938		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1939	} else {
1940		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1941		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1942	}
1943
1944	ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1945
1946	if (ret) {
1947		features ^= NETIF_F_LRO;
1948		ndev->features = features;
1949	}
1950
1951syncvf:
1952	if (!vf_netdev)
1953		return ret;
1954
1955	vf_netdev->wanted_features = features;
1956	netdev_update_features(vf_netdev);
1957
1958	return ret;
1959}
1960
1961static int netvsc_get_regs_len(struct net_device *netdev)
1962{
1963	return VRSS_SEND_TAB_SIZE * sizeof(u32);
1964}
1965
1966static void netvsc_get_regs(struct net_device *netdev,
1967			    struct ethtool_regs *regs, void *p)
1968{
1969	struct net_device_context *ndc = netdev_priv(netdev);
1970	u32 *regs_buff = p;
1971
1972	/* increase the version, if buffer format is changed. */
1973	regs->version = 1;
1974
1975	memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32));
1976}
1977
1978static u32 netvsc_get_msglevel(struct net_device *ndev)
1979{
1980	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1981
1982	return ndev_ctx->msg_enable;
1983}
1984
1985static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1986{
1987	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1988
1989	ndev_ctx->msg_enable = val;
1990}
1991
1992static const struct ethtool_ops ethtool_ops = {
1993	.get_drvinfo	= netvsc_get_drvinfo,
1994	.get_regs_len	= netvsc_get_regs_len,
1995	.get_regs	= netvsc_get_regs,
1996	.get_msglevel	= netvsc_get_msglevel,
1997	.set_msglevel	= netvsc_set_msglevel,
1998	.get_link	= ethtool_op_get_link,
1999	.get_ethtool_stats = netvsc_get_ethtool_stats,
2000	.get_sset_count = netvsc_get_sset_count,
2001	.get_strings	= netvsc_get_strings,
2002	.get_channels   = netvsc_get_channels,
2003	.set_channels   = netvsc_set_channels,
2004	.get_ts_info	= ethtool_op_get_ts_info,
2005	.get_rxnfc	= netvsc_get_rxnfc,
2006	.set_rxnfc	= netvsc_set_rxnfc,
2007	.get_rxfh_key_size = netvsc_get_rxfh_key_size,
2008	.get_rxfh_indir_size = netvsc_rss_indir_size,
2009	.get_rxfh	= netvsc_get_rxfh,
2010	.set_rxfh	= netvsc_set_rxfh,
2011	.get_link_ksettings = netvsc_get_link_ksettings,
2012	.set_link_ksettings = netvsc_set_link_ksettings,
2013	.get_ringparam	= netvsc_get_ringparam,
2014	.set_ringparam	= netvsc_set_ringparam,
2015};
2016
2017static const struct net_device_ops device_ops = {
2018	.ndo_open =			netvsc_open,
2019	.ndo_stop =			netvsc_close,
2020	.ndo_start_xmit =		netvsc_start_xmit,
2021	.ndo_change_rx_flags =		netvsc_change_rx_flags,
2022	.ndo_set_rx_mode =		netvsc_set_rx_mode,
2023	.ndo_fix_features =		netvsc_fix_features,
2024	.ndo_set_features =		netvsc_set_features,
2025	.ndo_change_mtu =		netvsc_change_mtu,
2026	.ndo_validate_addr =		eth_validate_addr,
2027	.ndo_set_mac_address =		netvsc_set_mac_addr,
2028	.ndo_select_queue =		netvsc_select_queue,
2029	.ndo_get_stats64 =		netvsc_get_stats64,
2030	.ndo_bpf =			netvsc_bpf,
2031	.ndo_xdp_xmit =			netvsc_ndoxdp_xmit,
2032};
2033
2034/*
2035 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
2036 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
2037 * present send GARP packet to network peers with netif_notify_peers().
2038 */
2039static void netvsc_link_change(struct work_struct *w)
2040{
2041	struct net_device_context *ndev_ctx =
2042		container_of(w, struct net_device_context, dwork.work);
2043	struct hv_device *device_obj = ndev_ctx->device_ctx;
2044	struct net_device *net = hv_get_drvdata(device_obj);
2045	unsigned long flags, next_reconfig, delay;
2046	struct netvsc_reconfig *event = NULL;
2047	struct netvsc_device *net_device;
2048	struct rndis_device *rdev;
2049	bool reschedule = false;
 
 
2050
2051	/* if changes are happening, comeback later */
2052	if (!rtnl_trylock()) {
2053		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2054		return;
2055	}
2056
2057	net_device = rtnl_dereference(ndev_ctx->nvdev);
2058	if (!net_device)
2059		goto out_unlock;
2060
2061	rdev = net_device->extension;
2062
2063	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
2064	if (time_is_after_jiffies(next_reconfig)) {
2065		/* link_watch only sends one notification with current state
2066		 * per second, avoid doing reconfig more frequently. Handle
2067		 * wrap around.
2068		 */
2069		delay = next_reconfig - jiffies;
2070		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
2071		schedule_delayed_work(&ndev_ctx->dwork, delay);
2072		goto out_unlock;
2073	}
2074	ndev_ctx->last_reconfig = jiffies;
2075
2076	spin_lock_irqsave(&ndev_ctx->lock, flags);
2077	if (!list_empty(&ndev_ctx->reconfig_events)) {
2078		event = list_first_entry(&ndev_ctx->reconfig_events,
2079					 struct netvsc_reconfig, list);
2080		list_del(&event->list);
2081		reschedule = !list_empty(&ndev_ctx->reconfig_events);
2082	}
2083	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2084
2085	if (!event)
2086		goto out_unlock;
2087
2088	switch (event->event) {
2089		/* Only the following events are possible due to the check in
2090		 * netvsc_linkstatus_callback()
2091		 */
2092	case RNDIS_STATUS_MEDIA_CONNECT:
2093		if (rdev->link_state) {
2094			rdev->link_state = false;
2095			netif_carrier_on(net);
2096			netvsc_tx_enable(net_device, net);
2097		} else {
2098			__netdev_notify_peers(net);
2099		}
2100		kfree(event);
2101		break;
2102	case RNDIS_STATUS_MEDIA_DISCONNECT:
2103		if (!rdev->link_state) {
2104			rdev->link_state = true;
2105			netif_carrier_off(net);
2106			netvsc_tx_disable(net_device, net);
2107		}
2108		kfree(event);
2109		break;
2110	case RNDIS_STATUS_NETWORK_CHANGE:
2111		/* Only makes sense if carrier is present */
2112		if (!rdev->link_state) {
2113			rdev->link_state = true;
2114			netif_carrier_off(net);
2115			netvsc_tx_disable(net_device, net);
2116			event->event = RNDIS_STATUS_MEDIA_CONNECT;
2117			spin_lock_irqsave(&ndev_ctx->lock, flags);
2118			list_add(&event->list, &ndev_ctx->reconfig_events);
2119			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2120			reschedule = true;
2121		}
2122		break;
2123	}
2124
2125	rtnl_unlock();
2126
 
 
 
2127	/* link_watch only sends one notification with current state per
2128	 * second, handle next reconfig event in 2 seconds.
2129	 */
2130	if (reschedule)
2131		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2132
2133	return;
2134
2135out_unlock:
2136	rtnl_unlock();
2137}
2138
2139static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
2140{
2141	struct net_device_context *net_device_ctx;
2142	struct net_device *dev;
2143
2144	dev = netdev_master_upper_dev_get(vf_netdev);
2145	if (!dev || dev->netdev_ops != &device_ops)
2146		return NULL;	/* not a netvsc device */
2147
2148	net_device_ctx = netdev_priv(dev);
2149	if (!rtnl_dereference(net_device_ctx->nvdev))
2150		return NULL;	/* device is removed */
2151
2152	return dev;
2153}
2154
2155/* Called when VF is injecting data into network stack.
2156 * Change the associated network device from VF to netvsc.
2157 * note: already called with rcu_read_lock
2158 */
2159static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2160{
2161	struct sk_buff *skb = *pskb;
2162	struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2163	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2164	struct netvsc_vf_pcpu_stats *pcpu_stats
2165		 = this_cpu_ptr(ndev_ctx->vf_stats);
2166
2167	skb = skb_share_check(skb, GFP_ATOMIC);
2168	if (unlikely(!skb))
2169		return RX_HANDLER_CONSUMED;
2170
2171	*pskb = skb;
2172
2173	skb->dev = ndev;
2174
2175	u64_stats_update_begin(&pcpu_stats->syncp);
2176	pcpu_stats->rx_packets++;
2177	pcpu_stats->rx_bytes += skb->len;
2178	u64_stats_update_end(&pcpu_stats->syncp);
2179
2180	return RX_HANDLER_ANOTHER;
2181}
2182
2183static int netvsc_vf_join(struct net_device *vf_netdev,
2184			  struct net_device *ndev)
2185{
2186	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2187	int ret;
2188
2189	ret = netdev_rx_handler_register(vf_netdev,
2190					 netvsc_vf_handle_frame, ndev);
2191	if (ret != 0) {
2192		netdev_err(vf_netdev,
2193			   "can not register netvsc VF receive handler (err = %d)\n",
2194			   ret);
2195		goto rx_handler_failed;
2196	}
2197
2198	ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2199					   NULL, NULL, NULL);
2200	if (ret != 0) {
2201		netdev_err(vf_netdev,
2202			   "can not set master device %s (err = %d)\n",
2203			   ndev->name, ret);
2204		goto upper_link_failed;
2205	}
2206
2207	/* set slave flag before open to prevent IPv6 addrconf */
2208	vf_netdev->flags |= IFF_SLAVE;
2209
2210	schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2211
2212	call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2213
2214	netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2215	return 0;
2216
2217upper_link_failed:
2218	netdev_rx_handler_unregister(vf_netdev);
2219rx_handler_failed:
2220	return ret;
2221}
2222
2223static void __netvsc_vf_setup(struct net_device *ndev,
2224			      struct net_device *vf_netdev)
2225{
2226	int ret;
2227
2228	/* Align MTU of VF with master */
2229	ret = dev_set_mtu(vf_netdev, ndev->mtu);
2230	if (ret)
2231		netdev_warn(vf_netdev,
2232			    "unable to change mtu to %u\n", ndev->mtu);
2233
2234	/* set multicast etc flags on VF */
2235	dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2236
2237	/* sync address list from ndev to VF */
2238	netif_addr_lock_bh(ndev);
2239	dev_uc_sync(vf_netdev, ndev);
2240	dev_mc_sync(vf_netdev, ndev);
2241	netif_addr_unlock_bh(ndev);
2242
2243	if (netif_running(ndev)) {
2244		ret = dev_open(vf_netdev, NULL);
2245		if (ret)
2246			netdev_warn(vf_netdev,
2247				    "unable to open: %d\n", ret);
2248	}
2249}
2250
2251/* Setup VF as slave of the synthetic device.
2252 * Runs in workqueue to avoid recursion in netlink callbacks.
2253 */
2254static void netvsc_vf_setup(struct work_struct *w)
2255{
2256	struct net_device_context *ndev_ctx
2257		= container_of(w, struct net_device_context, vf_takeover.work);
2258	struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2259	struct net_device *vf_netdev;
2260
2261	if (!rtnl_trylock()) {
2262		schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2263		return;
2264	}
2265
2266	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2267	if (vf_netdev)
2268		__netvsc_vf_setup(ndev, vf_netdev);
2269
2270	rtnl_unlock();
2271}
2272
2273/* Find netvsc by VF serial number.
2274 * The PCI hyperv controller records the serial number as the slot kobj name.
2275 */
2276static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2277{
2278	struct device *parent = vf_netdev->dev.parent;
2279	struct net_device_context *ndev_ctx;
2280	struct net_device *ndev;
2281	struct pci_dev *pdev;
2282	u32 serial;
2283
2284	if (!parent || !dev_is_pci(parent))
2285		return NULL; /* not a PCI device */
2286
2287	pdev = to_pci_dev(parent);
2288	if (!pdev->slot) {
2289		netdev_notice(vf_netdev, "no PCI slot information\n");
2290		return NULL;
2291	}
2292
2293	if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2294		netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2295			      pci_slot_name(pdev->slot));
2296		return NULL;
2297	}
2298
2299	list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2300		if (!ndev_ctx->vf_alloc)
2301			continue;
2302
2303		if (ndev_ctx->vf_serial != serial)
2304			continue;
2305
2306		ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2307		if (ndev->addr_len != vf_netdev->addr_len ||
2308		    memcmp(ndev->perm_addr, vf_netdev->perm_addr,
2309			   ndev->addr_len) != 0)
2310			continue;
2311
2312		return ndev;
2313
2314	}
2315
2316	/* Fallback path to check synthetic vf with
2317	 * help of mac addr
2318	 */
2319	list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2320		ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2321		if (ether_addr_equal(vf_netdev->perm_addr, ndev->perm_addr)) {
2322			netdev_notice(vf_netdev,
2323				      "falling back to mac addr based matching\n");
2324			return ndev;
2325		}
2326	}
2327
2328	netdev_notice(vf_netdev,
2329		      "no netdev found for vf serial:%u\n", serial);
2330	return NULL;
2331}
2332
2333static int netvsc_register_vf(struct net_device *vf_netdev)
2334{
2335	struct net_device_context *net_device_ctx;
2336	struct netvsc_device *netvsc_dev;
2337	struct bpf_prog *prog;
2338	struct net_device *ndev;
2339	int ret;
2340
2341	if (vf_netdev->addr_len != ETH_ALEN)
2342		return NOTIFY_DONE;
2343
2344	ndev = get_netvsc_byslot(vf_netdev);
2345	if (!ndev)
2346		return NOTIFY_DONE;
2347
2348	net_device_ctx = netdev_priv(ndev);
2349	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2350	if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2351		return NOTIFY_DONE;
2352
2353	/* if synthetic interface is a different namespace,
2354	 * then move the VF to that namespace; join will be
2355	 * done again in that context.
2356	 */
2357	if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2358		ret = dev_change_net_namespace(vf_netdev,
2359					       dev_net(ndev), "eth%d");
2360		if (ret)
2361			netdev_err(vf_netdev,
2362				   "could not move to same namespace as %s: %d\n",
2363				   ndev->name, ret);
2364		else
2365			netdev_info(vf_netdev,
2366				    "VF moved to namespace with: %s\n",
2367				    ndev->name);
2368		return NOTIFY_DONE;
2369	}
2370
2371	netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2372
2373	if (netvsc_vf_join(vf_netdev, ndev) != 0)
2374		return NOTIFY_DONE;
2375
2376	dev_hold(vf_netdev);
2377	rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2378
2379	if (ndev->needed_headroom < vf_netdev->needed_headroom)
2380		ndev->needed_headroom = vf_netdev->needed_headroom;
2381
2382	vf_netdev->wanted_features = ndev->features;
2383	netdev_update_features(vf_netdev);
2384
2385	prog = netvsc_xdp_get(netvsc_dev);
2386	netvsc_vf_setxdp(vf_netdev, prog);
2387
2388	return NOTIFY_OK;
2389}
2390
2391/* Change the data path when VF UP/DOWN/CHANGE are detected.
2392 *
2393 * Typically a UP or DOWN event is followed by a CHANGE event, so
2394 * net_device_ctx->data_path_is_vf is used to cache the current data path
2395 * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate
2396 * message.
2397 *
2398 * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network
2399 * interface, there is only the CHANGE event and no UP or DOWN event.
2400 */
2401static int netvsc_vf_changed(struct net_device *vf_netdev, unsigned long event)
2402{
2403	struct net_device_context *net_device_ctx;
2404	struct netvsc_device *netvsc_dev;
2405	struct net_device *ndev;
2406	bool vf_is_up = false;
2407	int ret;
2408
2409	if (event != NETDEV_GOING_DOWN)
2410		vf_is_up = netif_running(vf_netdev);
2411
2412	ndev = get_netvsc_byref(vf_netdev);
2413	if (!ndev)
2414		return NOTIFY_DONE;
2415
2416	net_device_ctx = netdev_priv(ndev);
2417	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2418	if (!netvsc_dev)
2419		return NOTIFY_DONE;
2420
2421	if (net_device_ctx->data_path_is_vf == vf_is_up)
2422		return NOTIFY_OK;
2423
2424	if (vf_is_up && !net_device_ctx->vf_alloc) {
2425		netdev_info(ndev, "Waiting for the VF association from host\n");
2426		wait_for_completion(&net_device_ctx->vf_add);
2427	}
2428
2429	ret = netvsc_switch_datapath(ndev, vf_is_up);
2430
2431	if (ret) {
2432		netdev_err(ndev,
2433			   "Data path failed to switch %s VF: %s, err: %d\n",
2434			   vf_is_up ? "to" : "from", vf_netdev->name, ret);
2435		return NOTIFY_DONE;
2436	} else {
2437		netdev_info(ndev, "Data path switched %s VF: %s\n",
2438			    vf_is_up ? "to" : "from", vf_netdev->name);
2439	}
2440
2441	return NOTIFY_OK;
2442}
2443
2444static int netvsc_unregister_vf(struct net_device *vf_netdev)
2445{
2446	struct net_device *ndev;
2447	struct net_device_context *net_device_ctx;
2448
2449	ndev = get_netvsc_byref(vf_netdev);
2450	if (!ndev)
2451		return NOTIFY_DONE;
2452
2453	net_device_ctx = netdev_priv(ndev);
2454	cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2455
2456	netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2457
2458	netvsc_vf_setxdp(vf_netdev, NULL);
2459
2460	reinit_completion(&net_device_ctx->vf_add);
2461	netdev_rx_handler_unregister(vf_netdev);
2462	netdev_upper_dev_unlink(vf_netdev, ndev);
2463	RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2464	dev_put(vf_netdev);
2465
2466	ndev->needed_headroom = RNDIS_AND_PPI_SIZE;
2467
2468	return NOTIFY_OK;
2469}
2470
2471static int netvsc_probe(struct hv_device *dev,
2472			const struct hv_vmbus_device_id *dev_id)
2473{
2474	struct net_device *net = NULL;
2475	struct net_device_context *net_device_ctx;
2476	struct netvsc_device_info *device_info = NULL;
2477	struct netvsc_device *nvdev;
2478	int ret = -ENOMEM;
2479
2480	net = alloc_etherdev_mq(sizeof(struct net_device_context),
2481				VRSS_CHANNEL_MAX);
2482	if (!net)
2483		goto no_net;
2484
2485	netif_carrier_off(net);
2486
2487	netvsc_init_settings(net);
2488
2489	net_device_ctx = netdev_priv(net);
2490	net_device_ctx->device_ctx = dev;
2491	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2492	if (netif_msg_probe(net_device_ctx))
2493		netdev_dbg(net, "netvsc msg_enable: %d\n",
2494			   net_device_ctx->msg_enable);
2495
2496	hv_set_drvdata(dev, net);
2497
2498	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2499
2500	init_completion(&net_device_ctx->vf_add);
2501	spin_lock_init(&net_device_ctx->lock);
2502	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2503	INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2504
2505	net_device_ctx->vf_stats
2506		= netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2507	if (!net_device_ctx->vf_stats)
2508		goto no_stats;
2509
2510	net->netdev_ops = &device_ops;
2511	net->ethtool_ops = &ethtool_ops;
2512	SET_NETDEV_DEV(net, &dev->device);
2513	dma_set_min_align_mask(&dev->device, HV_HYP_PAGE_SIZE - 1);
2514
2515	/* We always need headroom for rndis header */
2516	net->needed_headroom = RNDIS_AND_PPI_SIZE;
2517
2518	/* Initialize the number of queues to be 1, we may change it if more
2519	 * channels are offered later.
2520	 */
2521	netif_set_real_num_tx_queues(net, 1);
2522	netif_set_real_num_rx_queues(net, 1);
2523
2524	/* Notify the netvsc driver of the new device */
2525	device_info = netvsc_devinfo_get(NULL);
2526
2527	if (!device_info) {
2528		ret = -ENOMEM;
2529		goto devinfo_failed;
2530	}
2531
2532	nvdev = rndis_filter_device_add(dev, device_info);
2533	if (IS_ERR(nvdev)) {
2534		ret = PTR_ERR(nvdev);
2535		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2536		goto rndis_failed;
2537	}
2538
2539	eth_hw_addr_set(net, device_info->mac_adr);
2540
2541	/* We must get rtnl lock before scheduling nvdev->subchan_work,
2542	 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2543	 * all subchannels to show up, but that may not happen because
2544	 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2545	 * -> ... -> device_add() -> ... -> __device_attach() can't get
2546	 * the device lock, so all the subchannels can't be processed --
2547	 * finally netvsc_subchan_work() hangs forever.
2548	 */
2549	rtnl_lock();
2550
2551	if (nvdev->num_chn > 1)
2552		schedule_work(&nvdev->subchan_work);
2553
2554	/* hw_features computed in rndis_netdev_set_hwcaps() */
2555	net->features = net->hw_features |
2556		NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2557		NETIF_F_HW_VLAN_CTAG_RX;
2558	net->vlan_features = net->features;
2559
2560	netdev_lockdep_set_classes(net);
2561
2562	/* MTU range: 68 - 1500 or 65521 */
2563	net->min_mtu = NETVSC_MTU_MIN;
2564	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2565		net->max_mtu = NETVSC_MTU - ETH_HLEN;
2566	else
2567		net->max_mtu = ETH_DATA_LEN;
2568
2569	nvdev->tx_disable = false;
2570
2571	ret = register_netdevice(net);
2572	if (ret != 0) {
2573		pr_err("Unable to register netdev.\n");
2574		goto register_failed;
2575	}
2576
2577	list_add(&net_device_ctx->list, &netvsc_dev_list);
2578	rtnl_unlock();
2579
2580	netvsc_devinfo_put(device_info);
2581	return 0;
2582
2583register_failed:
2584	rtnl_unlock();
2585	rndis_filter_device_remove(dev, nvdev);
2586rndis_failed:
2587	netvsc_devinfo_put(device_info);
2588devinfo_failed:
2589	free_percpu(net_device_ctx->vf_stats);
2590no_stats:
2591	hv_set_drvdata(dev, NULL);
2592	free_netdev(net);
2593no_net:
2594	return ret;
2595}
2596
2597static int netvsc_remove(struct hv_device *dev)
2598{
2599	struct net_device_context *ndev_ctx;
2600	struct net_device *vf_netdev, *net;
2601	struct netvsc_device *nvdev;
2602
2603	net = hv_get_drvdata(dev);
2604	if (net == NULL) {
2605		dev_err(&dev->device, "No net device to remove\n");
2606		return 0;
2607	}
2608
2609	ndev_ctx = netdev_priv(net);
2610
2611	cancel_delayed_work_sync(&ndev_ctx->dwork);
2612
2613	rtnl_lock();
2614	nvdev = rtnl_dereference(ndev_ctx->nvdev);
2615	if (nvdev) {
2616		cancel_work_sync(&nvdev->subchan_work);
2617		netvsc_xdp_set(net, NULL, NULL, nvdev);
2618	}
2619
2620	/*
2621	 * Call to the vsc driver to let it know that the device is being
2622	 * removed. Also blocks mtu and channel changes.
2623	 */
2624	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2625	if (vf_netdev)
2626		netvsc_unregister_vf(vf_netdev);
2627
2628	if (nvdev)
2629		rndis_filter_device_remove(dev, nvdev);
2630
2631	unregister_netdevice(net);
2632	list_del(&ndev_ctx->list);
2633
2634	rtnl_unlock();
2635
2636	hv_set_drvdata(dev, NULL);
2637
2638	free_percpu(ndev_ctx->vf_stats);
2639	free_netdev(net);
2640	return 0;
2641}
2642
2643static int netvsc_suspend(struct hv_device *dev)
2644{
2645	struct net_device_context *ndev_ctx;
2646	struct netvsc_device *nvdev;
2647	struct net_device *net;
2648	int ret;
2649
2650	net = hv_get_drvdata(dev);
2651
2652	ndev_ctx = netdev_priv(net);
2653	cancel_delayed_work_sync(&ndev_ctx->dwork);
2654
2655	rtnl_lock();
2656
2657	nvdev = rtnl_dereference(ndev_ctx->nvdev);
2658	if (nvdev == NULL) {
2659		ret = -ENODEV;
2660		goto out;
2661	}
2662
2663	/* Save the current config info */
2664	ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2665	if (!ndev_ctx->saved_netvsc_dev_info) {
2666		ret = -ENOMEM;
2667		goto out;
2668	}
2669	ret = netvsc_detach(net, nvdev);
2670out:
2671	rtnl_unlock();
2672
2673	return ret;
2674}
2675
2676static int netvsc_resume(struct hv_device *dev)
2677{
2678	struct net_device *net = hv_get_drvdata(dev);
2679	struct net_device_context *net_device_ctx;
2680	struct netvsc_device_info *device_info;
2681	int ret;
2682
2683	rtnl_lock();
2684
2685	net_device_ctx = netdev_priv(net);
2686
2687	/* Reset the data path to the netvsc NIC before re-opening the vmbus
2688	 * channel. Later netvsc_netdev_event() will switch the data path to
2689	 * the VF upon the UP or CHANGE event.
2690	 */
2691	net_device_ctx->data_path_is_vf = false;
2692	device_info = net_device_ctx->saved_netvsc_dev_info;
2693
2694	ret = netvsc_attach(net, device_info);
2695
2696	netvsc_devinfo_put(device_info);
2697	net_device_ctx->saved_netvsc_dev_info = NULL;
2698
2699	rtnl_unlock();
2700
2701	return ret;
2702}
2703static const struct hv_vmbus_device_id id_table[] = {
2704	/* Network guid */
2705	{ HV_NIC_GUID, },
2706	{ },
2707};
2708
2709MODULE_DEVICE_TABLE(vmbus, id_table);
2710
2711/* The one and only one */
2712static struct  hv_driver netvsc_drv = {
2713	.name = KBUILD_MODNAME,
2714	.id_table = id_table,
2715	.probe = netvsc_probe,
2716	.remove = netvsc_remove,
2717	.suspend = netvsc_suspend,
2718	.resume = netvsc_resume,
2719	.driver = {
2720		.probe_type = PROBE_FORCE_SYNCHRONOUS,
2721	},
2722};
2723
2724/*
2725 * On Hyper-V, every VF interface is matched with a corresponding
2726 * synthetic interface. The synthetic interface is presented first
2727 * to the guest. When the corresponding VF instance is registered,
2728 * we will take care of switching the data path.
2729 */
2730static int netvsc_netdev_event(struct notifier_block *this,
2731			       unsigned long event, void *ptr)
2732{
2733	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2734
2735	/* Skip our own events */
2736	if (event_dev->netdev_ops == &device_ops)
2737		return NOTIFY_DONE;
2738
2739	/* Avoid non-Ethernet type devices */
2740	if (event_dev->type != ARPHRD_ETHER)
2741		return NOTIFY_DONE;
2742
2743	/* Avoid Vlan dev with same MAC registering as VF */
2744	if (is_vlan_dev(event_dev))
2745		return NOTIFY_DONE;
2746
2747	/* Avoid Bonding master dev with same MAC registering as VF */
2748	if (netif_is_bond_master(event_dev))
 
2749		return NOTIFY_DONE;
2750
2751	switch (event) {
2752	case NETDEV_REGISTER:
2753		return netvsc_register_vf(event_dev);
2754	case NETDEV_UNREGISTER:
2755		return netvsc_unregister_vf(event_dev);
2756	case NETDEV_UP:
2757	case NETDEV_DOWN:
2758	case NETDEV_CHANGE:
2759	case NETDEV_GOING_DOWN:
2760		return netvsc_vf_changed(event_dev, event);
2761	default:
2762		return NOTIFY_DONE;
2763	}
2764}
2765
2766static struct notifier_block netvsc_netdev_notifier = {
2767	.notifier_call = netvsc_netdev_event,
2768};
2769
2770static void __exit netvsc_drv_exit(void)
2771{
2772	unregister_netdevice_notifier(&netvsc_netdev_notifier);
2773	vmbus_driver_unregister(&netvsc_drv);
2774}
2775
2776static int __init netvsc_drv_init(void)
2777{
2778	int ret;
2779
2780	if (ring_size < RING_SIZE_MIN) {
2781		ring_size = RING_SIZE_MIN;
2782		pr_info("Increased ring_size to %u (min allowed)\n",
2783			ring_size);
2784	}
2785	netvsc_ring_bytes = ring_size * PAGE_SIZE;
2786
2787	ret = vmbus_driver_register(&netvsc_drv);
2788	if (ret)
2789		return ret;
2790
2791	register_netdevice_notifier(&netvsc_netdev_notifier);
2792	return 0;
2793}
2794
2795MODULE_LICENSE("GPL");
2796MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2797
2798module_init(netvsc_drv_init);
2799module_exit(netvsc_drv_exit);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2009, Microsoft Corporation.
   4 *
   5 * Authors:
   6 *   Haiyang Zhang <haiyangz@microsoft.com>
   7 *   Hank Janssen  <hjanssen@microsoft.com>
   8 */
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/init.h>
  12#include <linux/atomic.h>
 
  13#include <linux/module.h>
  14#include <linux/highmem.h>
  15#include <linux/device.h>
  16#include <linux/io.h>
  17#include <linux/delay.h>
  18#include <linux/netdevice.h>
  19#include <linux/inetdevice.h>
  20#include <linux/etherdevice.h>
  21#include <linux/pci.h>
  22#include <linux/skbuff.h>
  23#include <linux/if_vlan.h>
  24#include <linux/in.h>
  25#include <linux/slab.h>
  26#include <linux/rtnetlink.h>
  27#include <linux/netpoll.h>
 
  28
  29#include <net/arp.h>
  30#include <net/route.h>
  31#include <net/sock.h>
  32#include <net/pkt_sched.h>
  33#include <net/checksum.h>
  34#include <net/ip6_checksum.h>
  35
  36#include "hyperv_net.h"
  37
  38#define RING_SIZE_MIN	64
  39#define RETRY_US_LO	5000
  40#define RETRY_US_HI	10000
  41#define RETRY_MAX	2000	/* >10 sec */
  42
  43#define LINKCHANGE_INT (2 * HZ)
  44#define VF_TAKEOVER_INT (HZ / 10)
  45
  46static unsigned int ring_size __ro_after_init = 128;
  47module_param(ring_size, uint, 0444);
  48MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
  49unsigned int netvsc_ring_bytes __ro_after_init;
  50
  51static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
  52				NETIF_MSG_LINK | NETIF_MSG_IFUP |
  53				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
  54				NETIF_MSG_TX_ERR;
  55
  56static int debug = -1;
  57module_param(debug, int, 0444);
  58MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  59
  60static LIST_HEAD(netvsc_dev_list);
  61
  62static void netvsc_change_rx_flags(struct net_device *net, int change)
  63{
  64	struct net_device_context *ndev_ctx = netdev_priv(net);
  65	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
  66	int inc;
  67
  68	if (!vf_netdev)
  69		return;
  70
  71	if (change & IFF_PROMISC) {
  72		inc = (net->flags & IFF_PROMISC) ? 1 : -1;
  73		dev_set_promiscuity(vf_netdev, inc);
  74	}
  75
  76	if (change & IFF_ALLMULTI) {
  77		inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
  78		dev_set_allmulti(vf_netdev, inc);
  79	}
  80}
  81
  82static void netvsc_set_rx_mode(struct net_device *net)
  83{
  84	struct net_device_context *ndev_ctx = netdev_priv(net);
  85	struct net_device *vf_netdev;
  86	struct netvsc_device *nvdev;
  87
  88	rcu_read_lock();
  89	vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
  90	if (vf_netdev) {
  91		dev_uc_sync(vf_netdev, net);
  92		dev_mc_sync(vf_netdev, net);
  93	}
  94
  95	nvdev = rcu_dereference(ndev_ctx->nvdev);
  96	if (nvdev)
  97		rndis_filter_update(nvdev);
  98	rcu_read_unlock();
  99}
 100
 101static void netvsc_tx_enable(struct netvsc_device *nvscdev,
 102			     struct net_device *ndev)
 103{
 104	nvscdev->tx_disable = false;
 105	virt_wmb(); /* ensure queue wake up mechanism is on */
 106
 107	netif_tx_wake_all_queues(ndev);
 108}
 109
 110static int netvsc_open(struct net_device *net)
 111{
 112	struct net_device_context *ndev_ctx = netdev_priv(net);
 113	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
 114	struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
 115	struct rndis_device *rdev;
 116	int ret = 0;
 117
 118	netif_carrier_off(net);
 119
 120	/* Open up the device */
 121	ret = rndis_filter_open(nvdev);
 122	if (ret != 0) {
 123		netdev_err(net, "unable to open device (ret %d).\n", ret);
 124		return ret;
 125	}
 126
 127	rdev = nvdev->extension;
 128	if (!rdev->link_state) {
 129		netif_carrier_on(net);
 130		netvsc_tx_enable(nvdev, net);
 131	}
 132
 133	if (vf_netdev) {
 134		/* Setting synthetic device up transparently sets
 135		 * slave as up. If open fails, then slave will be
 136		 * still be offline (and not used).
 137		 */
 138		ret = dev_open(vf_netdev, NULL);
 139		if (ret)
 140			netdev_warn(net,
 141				    "unable to open slave: %s: %d\n",
 142				    vf_netdev->name, ret);
 143	}
 144	return 0;
 145}
 146
 147static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
 148{
 149	unsigned int retry = 0;
 150	int i;
 151
 152	/* Ensure pending bytes in ring are read */
 153	for (;;) {
 154		u32 aread = 0;
 155
 156		for (i = 0; i < nvdev->num_chn; i++) {
 157			struct vmbus_channel *chn
 158				= nvdev->chan_table[i].channel;
 159
 160			if (!chn)
 161				continue;
 162
 163			/* make sure receive not running now */
 164			napi_synchronize(&nvdev->chan_table[i].napi);
 165
 166			aread = hv_get_bytes_to_read(&chn->inbound);
 167			if (aread)
 168				break;
 169
 170			aread = hv_get_bytes_to_read(&chn->outbound);
 171			if (aread)
 172				break;
 173		}
 174
 175		if (aread == 0)
 176			return 0;
 177
 178		if (++retry > RETRY_MAX)
 179			return -ETIMEDOUT;
 180
 181		usleep_range(RETRY_US_LO, RETRY_US_HI);
 182	}
 183}
 184
 185static void netvsc_tx_disable(struct netvsc_device *nvscdev,
 186			      struct net_device *ndev)
 187{
 188	if (nvscdev) {
 189		nvscdev->tx_disable = true;
 190		virt_wmb(); /* ensure txq will not wake up after stop */
 191	}
 192
 193	netif_tx_disable(ndev);
 194}
 195
 196static int netvsc_close(struct net_device *net)
 197{
 198	struct net_device_context *net_device_ctx = netdev_priv(net);
 199	struct net_device *vf_netdev
 200		= rtnl_dereference(net_device_ctx->vf_netdev);
 201	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
 202	int ret;
 203
 204	netvsc_tx_disable(nvdev, net);
 205
 206	/* No need to close rndis filter if it is removed already */
 207	if (!nvdev)
 208		return 0;
 209
 210	ret = rndis_filter_close(nvdev);
 211	if (ret != 0) {
 212		netdev_err(net, "unable to close device (ret %d).\n", ret);
 213		return ret;
 214	}
 215
 216	ret = netvsc_wait_until_empty(nvdev);
 217	if (ret)
 218		netdev_err(net, "Ring buffer not empty after closing rndis\n");
 219
 220	if (vf_netdev)
 221		dev_close(vf_netdev);
 222
 223	return ret;
 224}
 225
 226static inline void *init_ppi_data(struct rndis_message *msg,
 227				  u32 ppi_size, u32 pkt_type)
 228{
 229	struct rndis_packet *rndis_pkt = &msg->msg.pkt;
 230	struct rndis_per_packet_info *ppi;
 231
 232	rndis_pkt->data_offset += ppi_size;
 233	ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
 234		+ rndis_pkt->per_pkt_info_len;
 235
 236	ppi->size = ppi_size;
 237	ppi->type = pkt_type;
 238	ppi->internal = 0;
 239	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
 240
 241	rndis_pkt->per_pkt_info_len += ppi_size;
 242
 243	return ppi + 1;
 244}
 245
 246/* Azure hosts don't support non-TCP port numbers in hashing for fragmented
 247 * packets. We can use ethtool to change UDP hash level when necessary.
 248 */
 249static inline u32 netvsc_get_hash(
 250	struct sk_buff *skb,
 251	const struct net_device_context *ndc)
 252{
 253	struct flow_keys flow;
 254	u32 hash, pkt_proto = 0;
 255	static u32 hashrnd __read_mostly;
 256
 257	net_get_random_once(&hashrnd, sizeof(hashrnd));
 258
 259	if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
 260		return 0;
 261
 262	switch (flow.basic.ip_proto) {
 263	case IPPROTO_TCP:
 264		if (flow.basic.n_proto == htons(ETH_P_IP))
 265			pkt_proto = HV_TCP4_L4HASH;
 266		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
 267			pkt_proto = HV_TCP6_L4HASH;
 268
 269		break;
 270
 271	case IPPROTO_UDP:
 272		if (flow.basic.n_proto == htons(ETH_P_IP))
 273			pkt_proto = HV_UDP4_L4HASH;
 274		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
 275			pkt_proto = HV_UDP6_L4HASH;
 276
 277		break;
 278	}
 279
 280	if (pkt_proto & ndc->l4_hash) {
 281		return skb_get_hash(skb);
 282	} else {
 283		if (flow.basic.n_proto == htons(ETH_P_IP))
 284			hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
 285		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
 286			hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
 287		else
 288			hash = 0;
 289
 290		skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
 291	}
 292
 293	return hash;
 294}
 295
 296static inline int netvsc_get_tx_queue(struct net_device *ndev,
 297				      struct sk_buff *skb, int old_idx)
 298{
 299	const struct net_device_context *ndc = netdev_priv(ndev);
 300	struct sock *sk = skb->sk;
 301	int q_idx;
 302
 303	q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
 304			      (VRSS_SEND_TAB_SIZE - 1)];
 305
 306	/* If queue index changed record the new value */
 307	if (q_idx != old_idx &&
 308	    sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
 309		sk_tx_queue_set(sk, q_idx);
 310
 311	return q_idx;
 312}
 313
 314/*
 315 * Select queue for transmit.
 316 *
 317 * If a valid queue has already been assigned, then use that.
 318 * Otherwise compute tx queue based on hash and the send table.
 319 *
 320 * This is basically similar to default (netdev_pick_tx) with the added step
 321 * of using the host send_table when no other queue has been assigned.
 322 *
 323 * TODO support XPS - but get_xps_queue not exported
 324 */
 325static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
 326{
 327	int q_idx = sk_tx_queue_get(skb->sk);
 328
 329	if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
 330		/* If forwarding a packet, we use the recorded queue when
 331		 * available for better cache locality.
 332		 */
 333		if (skb_rx_queue_recorded(skb))
 334			q_idx = skb_get_rx_queue(skb);
 335		else
 336			q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
 337	}
 338
 339	return q_idx;
 340}
 341
 342static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
 343			       struct net_device *sb_dev)
 344{
 345	struct net_device_context *ndc = netdev_priv(ndev);
 346	struct net_device *vf_netdev;
 347	u16 txq;
 348
 349	rcu_read_lock();
 350	vf_netdev = rcu_dereference(ndc->vf_netdev);
 351	if (vf_netdev) {
 352		const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
 353
 354		if (vf_ops->ndo_select_queue)
 355			txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
 356		else
 357			txq = netdev_pick_tx(vf_netdev, skb, NULL);
 358
 359		/* Record the queue selected by VF so that it can be
 360		 * used for common case where VF has more queues than
 361		 * the synthetic device.
 362		 */
 363		qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
 364	} else {
 365		txq = netvsc_pick_tx(ndev, skb);
 366	}
 367	rcu_read_unlock();
 368
 369	while (unlikely(txq >= ndev->real_num_tx_queues))
 370		txq -= ndev->real_num_tx_queues;
 371
 372	return txq;
 373}
 374
 375static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
 376		       struct hv_page_buffer *pb)
 377{
 378	int j = 0;
 379
 380	/* Deal with compound pages by ignoring unused part
 381	 * of the page.
 382	 */
 383	page += (offset >> PAGE_SHIFT);
 384	offset &= ~PAGE_MASK;
 385
 386	while (len > 0) {
 387		unsigned long bytes;
 388
 389		bytes = PAGE_SIZE - offset;
 390		if (bytes > len)
 391			bytes = len;
 392		pb[j].pfn = page_to_pfn(page);
 393		pb[j].offset = offset;
 394		pb[j].len = bytes;
 395
 396		offset += bytes;
 397		len -= bytes;
 398
 399		if (offset == PAGE_SIZE && len) {
 400			page++;
 401			offset = 0;
 402			j++;
 403		}
 404	}
 405
 406	return j + 1;
 407}
 408
 409static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
 410			   struct hv_netvsc_packet *packet,
 411			   struct hv_page_buffer *pb)
 412{
 413	u32 slots_used = 0;
 414	char *data = skb->data;
 415	int frags = skb_shinfo(skb)->nr_frags;
 416	int i;
 417
 418	/* The packet is laid out thus:
 419	 * 1. hdr: RNDIS header and PPI
 420	 * 2. skb linear data
 421	 * 3. skb fragment data
 422	 */
 423	slots_used += fill_pg_buf(virt_to_page(hdr),
 424				  offset_in_page(hdr),
 425				  len, &pb[slots_used]);
 
 426
 427	packet->rmsg_size = len;
 428	packet->rmsg_pgcnt = slots_used;
 429
 430	slots_used += fill_pg_buf(virt_to_page(data),
 431				offset_in_page(data),
 432				skb_headlen(skb), &pb[slots_used]);
 
 433
 434	for (i = 0; i < frags; i++) {
 435		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
 436
 437		slots_used += fill_pg_buf(skb_frag_page(frag),
 438					skb_frag_off(frag),
 439					skb_frag_size(frag), &pb[slots_used]);
 
 440	}
 441	return slots_used;
 442}
 443
 444static int count_skb_frag_slots(struct sk_buff *skb)
 445{
 446	int i, frags = skb_shinfo(skb)->nr_frags;
 447	int pages = 0;
 448
 449	for (i = 0; i < frags; i++) {
 450		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
 451		unsigned long size = skb_frag_size(frag);
 452		unsigned long offset = skb_frag_off(frag);
 453
 454		/* Skip unused frames from start of page */
 455		offset &= ~PAGE_MASK;
 456		pages += PFN_UP(offset + size);
 457	}
 458	return pages;
 459}
 460
 461static int netvsc_get_slots(struct sk_buff *skb)
 462{
 463	char *data = skb->data;
 464	unsigned int offset = offset_in_page(data);
 465	unsigned int len = skb_headlen(skb);
 466	int slots;
 467	int frag_slots;
 468
 469	slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
 470	frag_slots = count_skb_frag_slots(skb);
 471	return slots + frag_slots;
 472}
 473
 474static u32 net_checksum_info(struct sk_buff *skb)
 475{
 476	if (skb->protocol == htons(ETH_P_IP)) {
 477		struct iphdr *ip = ip_hdr(skb);
 478
 479		if (ip->protocol == IPPROTO_TCP)
 480			return TRANSPORT_INFO_IPV4_TCP;
 481		else if (ip->protocol == IPPROTO_UDP)
 482			return TRANSPORT_INFO_IPV4_UDP;
 483	} else {
 484		struct ipv6hdr *ip6 = ipv6_hdr(skb);
 485
 486		if (ip6->nexthdr == IPPROTO_TCP)
 487			return TRANSPORT_INFO_IPV6_TCP;
 488		else if (ip6->nexthdr == IPPROTO_UDP)
 489			return TRANSPORT_INFO_IPV6_UDP;
 490	}
 491
 492	return TRANSPORT_INFO_NOT_IP;
 493}
 494
 495/* Send skb on the slave VF device. */
 496static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
 497			  struct sk_buff *skb)
 498{
 499	struct net_device_context *ndev_ctx = netdev_priv(net);
 500	unsigned int len = skb->len;
 501	int rc;
 502
 503	skb->dev = vf_netdev;
 504	skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
 505
 506	rc = dev_queue_xmit(skb);
 507	if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
 508		struct netvsc_vf_pcpu_stats *pcpu_stats
 509			= this_cpu_ptr(ndev_ctx->vf_stats);
 510
 511		u64_stats_update_begin(&pcpu_stats->syncp);
 512		pcpu_stats->tx_packets++;
 513		pcpu_stats->tx_bytes += len;
 514		u64_stats_update_end(&pcpu_stats->syncp);
 515	} else {
 516		this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
 517	}
 518
 519	return rc;
 520}
 521
 522static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
 523{
 524	struct net_device_context *net_device_ctx = netdev_priv(net);
 525	struct hv_netvsc_packet *packet = NULL;
 526	int ret;
 527	unsigned int num_data_pgs;
 528	struct rndis_message *rndis_msg;
 529	struct net_device *vf_netdev;
 530	u32 rndis_msg_size;
 531	u32 hash;
 532	struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
 533
 534	/* if VF is present and up then redirect packets
 535	 * already called with rcu_read_lock_bh
 
 536	 */
 537	vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
 538	if (vf_netdev && netif_running(vf_netdev) &&
 539	    !netpoll_tx_running(net))
 
 540		return netvsc_vf_xmit(net, vf_netdev, skb);
 541
 542	/* We will atmost need two pages to describe the rndis
 543	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
 544	 * of pages in a single packet. If skb is scattered around
 545	 * more pages we try linearizing it.
 546	 */
 547
 548	num_data_pgs = netvsc_get_slots(skb) + 2;
 549
 550	if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
 551		++net_device_ctx->eth_stats.tx_scattered;
 552
 553		if (skb_linearize(skb))
 554			goto no_memory;
 555
 556		num_data_pgs = netvsc_get_slots(skb) + 2;
 557		if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
 558			++net_device_ctx->eth_stats.tx_too_big;
 559			goto drop;
 560		}
 561	}
 562
 563	/*
 564	 * Place the rndis header in the skb head room and
 565	 * the skb->cb will be used for hv_netvsc_packet
 566	 * structure.
 567	 */
 568	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
 569	if (ret)
 570		goto no_memory;
 571
 572	/* Use the skb control buffer for building up the packet */
 573	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
 574			FIELD_SIZEOF(struct sk_buff, cb));
 575	packet = (struct hv_netvsc_packet *)skb->cb;
 576
 577	packet->q_idx = skb_get_queue_mapping(skb);
 578
 579	packet->total_data_buflen = skb->len;
 580	packet->total_bytes = skb->len;
 581	packet->total_packets = 1;
 582
 583	rndis_msg = (struct rndis_message *)skb->head;
 584
 585	/* Add the rndis header */
 586	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
 587	rndis_msg->msg_len = packet->total_data_buflen;
 588
 589	rndis_msg->msg.pkt = (struct rndis_packet) {
 590		.data_offset = sizeof(struct rndis_packet),
 591		.data_len = packet->total_data_buflen,
 592		.per_pkt_info_offset = sizeof(struct rndis_packet),
 593	};
 594
 595	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
 596
 597	hash = skb_get_hash_raw(skb);
 598	if (hash != 0 && net->real_num_tx_queues > 1) {
 599		u32 *hash_info;
 600
 601		rndis_msg_size += NDIS_HASH_PPI_SIZE;
 602		hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
 603					  NBL_HASH_VALUE);
 604		*hash_info = hash;
 605	}
 606
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 607	if (skb_vlan_tag_present(skb)) {
 608		struct ndis_pkt_8021q_info *vlan;
 609
 610		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
 611		vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
 612				     IEEE_8021Q_INFO);
 613
 614		vlan->value = 0;
 615		vlan->vlanid = skb_vlan_tag_get_id(skb);
 616		vlan->cfi = skb_vlan_tag_get_cfi(skb);
 617		vlan->pri = skb_vlan_tag_get_prio(skb);
 618	}
 619
 620	if (skb_is_gso(skb)) {
 621		struct ndis_tcp_lso_info *lso_info;
 622
 623		rndis_msg_size += NDIS_LSO_PPI_SIZE;
 624		lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
 625					 TCP_LARGESEND_PKTINFO);
 626
 627		lso_info->value = 0;
 628		lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
 629		if (skb->protocol == htons(ETH_P_IP)) {
 630			lso_info->lso_v2_transmit.ip_version =
 631				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
 632			ip_hdr(skb)->tot_len = 0;
 633			ip_hdr(skb)->check = 0;
 634			tcp_hdr(skb)->check =
 635				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
 636						   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
 637		} else {
 638			lso_info->lso_v2_transmit.ip_version =
 639				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
 640			ipv6_hdr(skb)->payload_len = 0;
 641			tcp_hdr(skb)->check =
 642				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
 643						 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
 644		}
 645		lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
 646		lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
 647	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
 648		if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
 649			struct ndis_tcp_ip_checksum_info *csum_info;
 650
 651			rndis_msg_size += NDIS_CSUM_PPI_SIZE;
 652			csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
 653						  TCPIP_CHKSUM_PKTINFO);
 654
 655			csum_info->value = 0;
 656			csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
 657
 658			if (skb->protocol == htons(ETH_P_IP)) {
 659				csum_info->transmit.is_ipv4 = 1;
 660
 661				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
 662					csum_info->transmit.tcp_checksum = 1;
 663				else
 664					csum_info->transmit.udp_checksum = 1;
 665			} else {
 666				csum_info->transmit.is_ipv6 = 1;
 667
 668				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
 669					csum_info->transmit.tcp_checksum = 1;
 670				else
 671					csum_info->transmit.udp_checksum = 1;
 672			}
 673		} else {
 674			/* Can't do offload of this type of checksum */
 675			if (skb_checksum_help(skb))
 676				goto drop;
 677		}
 678	}
 679
 680	/* Start filling in the page buffers with the rndis hdr */
 681	rndis_msg->msg_len += rndis_msg_size;
 682	packet->total_data_buflen = rndis_msg->msg_len;
 683	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
 684					       skb, packet, pb);
 685
 686	/* timestamp packet in software */
 687	skb_tx_timestamp(skb);
 688
 689	ret = netvsc_send(net, packet, rndis_msg, pb, skb);
 690	if (likely(ret == 0))
 691		return NETDEV_TX_OK;
 692
 693	if (ret == -EAGAIN) {
 694		++net_device_ctx->eth_stats.tx_busy;
 695		return NETDEV_TX_BUSY;
 696	}
 697
 698	if (ret == -ENOSPC)
 699		++net_device_ctx->eth_stats.tx_no_space;
 700
 701drop:
 702	dev_kfree_skb_any(skb);
 703	net->stats.tx_dropped++;
 704
 705	return NETDEV_TX_OK;
 706
 707no_memory:
 708	++net_device_ctx->eth_stats.tx_no_memory;
 709	goto drop;
 710}
 711
 
 
 
 
 
 
 712/*
 713 * netvsc_linkstatus_callback - Link up/down notification
 714 */
 715void netvsc_linkstatus_callback(struct net_device *net,
 716				struct rndis_message *resp)
 
 717{
 718	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
 719	struct net_device_context *ndev_ctx = netdev_priv(net);
 720	struct netvsc_reconfig *event;
 721	unsigned long flags;
 722
 
 
 
 
 
 
 
 
 
 
 723	/* Update the physical link speed when changing to another vSwitch */
 724	if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
 725		u32 speed;
 726
 727		speed = *(u32 *)((void *)indicate
 728				 + indicate->status_buf_offset) / 10000;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 729		ndev_ctx->speed = speed;
 730		return;
 731	}
 732
 733	/* Handle these link change statuses below */
 734	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
 735	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
 736	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
 737		return;
 738
 739	if (net->reg_state != NETREG_REGISTERED)
 740		return;
 741
 742	event = kzalloc(sizeof(*event), GFP_ATOMIC);
 743	if (!event)
 744		return;
 745	event->event = indicate->status;
 746
 747	spin_lock_irqsave(&ndev_ctx->lock, flags);
 748	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
 749	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
 750
 751	schedule_delayed_work(&ndev_ctx->dwork, 0);
 752}
 753
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 754static void netvsc_comp_ipcsum(struct sk_buff *skb)
 755{
 756	struct iphdr *iph = (struct iphdr *)skb->data;
 757
 758	iph->check = 0;
 759	iph->check = ip_fast_csum(iph, iph->ihl);
 760}
 761
 762static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
 763					     struct netvsc_channel *nvchan)
 
 764{
 765	struct napi_struct *napi = &nvchan->napi;
 766	const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan;
 767	const struct ndis_tcp_ip_checksum_info *csum_info =
 768						nvchan->rsc.csum_info;
 
 
 769	struct sk_buff *skb;
 
 770	int i;
 771
 772	skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
 773	if (!skb)
 774		return skb;
 
 
 
 
 
 
 
 
 775
 776	/*
 777	 * Copy to skb. This copy is needed here since the memory pointed by
 778	 * hv_netvsc_packet cannot be deallocated
 779	 */
 780	for (i = 0; i < nvchan->rsc.cnt; i++)
 781		skb_put_data(skb, nvchan->rsc.data[i], nvchan->rsc.len[i]);
 
 
 
 
 
 
 
 
 
 
 782
 783	skb->protocol = eth_type_trans(skb, net);
 784
 785	/* skb is already created with CHECKSUM_NONE */
 786	skb_checksum_none_assert(skb);
 787
 788	/* Incoming packets may have IP header checksum verified by the host.
 789	 * They may not have IP header checksum computed after coalescing.
 790	 * We compute it here if the flags are set, because on Linux, the IP
 791	 * checksum is always checked.
 792	 */
 793	if (csum_info && csum_info->receive.ip_checksum_value_invalid &&
 794	    csum_info->receive.ip_checksum_succeeded &&
 795	    skb->protocol == htons(ETH_P_IP))
 
 
 
 
 
 796		netvsc_comp_ipcsum(skb);
 
 797
 798	/* Do L4 checksum offload if enabled and present.
 799	 */
 800	if (csum_info && (net->features & NETIF_F_RXCSUM)) {
 801		if (csum_info->receive.tcp_checksum_succeeded ||
 802		    csum_info->receive.udp_checksum_succeeded)
 803			skb->ip_summed = CHECKSUM_UNNECESSARY;
 804	}
 805
 806	if (vlan) {
 
 
 
 807		u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
 808			(vlan->cfi ? VLAN_CFI_MASK : 0);
 809
 810		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
 811				       vlan_tci);
 812	}
 813
 814	return skb;
 815}
 816
 817/*
 818 * netvsc_recv_callback -  Callback when we receive a packet from the
 819 * "wire" on the specified device.
 820 */
 821int netvsc_recv_callback(struct net_device *net,
 822			 struct netvsc_device *net_device,
 823			 struct netvsc_channel *nvchan)
 824{
 825	struct net_device_context *net_device_ctx = netdev_priv(net);
 826	struct vmbus_channel *channel = nvchan->channel;
 827	u16 q_idx = channel->offermsg.offer.sub_channel_index;
 828	struct sk_buff *skb;
 829	struct netvsc_stats *rx_stats;
 
 
 830
 831	if (net->reg_state != NETREG_REGISTERED)
 832		return NVSP_STAT_FAIL;
 833
 
 
 
 
 
 
 
 
 
 
 
 
 
 834	/* Allocate a skb - TODO direct I/O to pages? */
 835	skb = netvsc_alloc_recv_skb(net, nvchan);
 836
 837	if (unlikely(!skb)) {
 838		++net_device_ctx->eth_stats.rx_no_memory;
 839		return NVSP_STAT_FAIL;
 840	}
 841
 842	skb_record_rx_queue(skb, q_idx);
 843
 844	/*
 845	 * Even if injecting the packet, record the statistics
 846	 * on the synthetic device because modifying the VF device
 847	 * statistics will not work correctly.
 848	 */
 849	rx_stats = &nvchan->rx_stats;
 850	u64_stats_update_begin(&rx_stats->syncp);
 
 
 
 851	rx_stats->packets++;
 852	rx_stats->bytes += nvchan->rsc.pktlen;
 853
 854	if (skb->pkt_type == PACKET_BROADCAST)
 855		++rx_stats->broadcast;
 856	else if (skb->pkt_type == PACKET_MULTICAST)
 857		++rx_stats->multicast;
 858	u64_stats_update_end(&rx_stats->syncp);
 859
 
 
 
 
 
 860	napi_gro_receive(&nvchan->napi, skb);
 861	return NVSP_STAT_SUCCESS;
 862}
 863
 864static void netvsc_get_drvinfo(struct net_device *net,
 865			       struct ethtool_drvinfo *info)
 866{
 867	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
 868	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
 869}
 870
 871static void netvsc_get_channels(struct net_device *net,
 872				struct ethtool_channels *channel)
 873{
 874	struct net_device_context *net_device_ctx = netdev_priv(net);
 875	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
 876
 877	if (nvdev) {
 878		channel->max_combined	= nvdev->max_chn;
 879		channel->combined_count = nvdev->num_chn;
 880	}
 881}
 882
 883/* Alloc struct netvsc_device_info, and initialize it from either existing
 884 * struct netvsc_device, or from default values.
 885 */
 886static struct netvsc_device_info *netvsc_devinfo_get
 887			(struct netvsc_device *nvdev)
 888{
 889	struct netvsc_device_info *dev_info;
 
 890
 891	dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
 892
 893	if (!dev_info)
 894		return NULL;
 895
 896	if (nvdev) {
 
 
 897		dev_info->num_chn = nvdev->num_chn;
 898		dev_info->send_sections = nvdev->send_section_cnt;
 899		dev_info->send_section_size = nvdev->send_section_size;
 900		dev_info->recv_sections = nvdev->recv_section_cnt;
 901		dev_info->recv_section_size = nvdev->recv_section_size;
 902
 903		memcpy(dev_info->rss_key, nvdev->extension->rss_key,
 904		       NETVSC_HASH_KEYLEN);
 
 
 
 
 
 
 905	} else {
 906		dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
 907		dev_info->send_sections = NETVSC_DEFAULT_TX;
 908		dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
 909		dev_info->recv_sections = NETVSC_DEFAULT_RX;
 910		dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
 911	}
 912
 913	return dev_info;
 914}
 915
 
 
 
 
 
 
 
 
 
 
 
 916static int netvsc_detach(struct net_device *ndev,
 917			 struct netvsc_device *nvdev)
 918{
 919	struct net_device_context *ndev_ctx = netdev_priv(ndev);
 920	struct hv_device *hdev = ndev_ctx->device_ctx;
 921	int ret;
 922
 923	/* Don't try continuing to try and setup sub channels */
 924	if (cancel_work_sync(&nvdev->subchan_work))
 925		nvdev->num_chn = 1;
 926
 
 
 927	/* If device was up (receiving) then shutdown */
 928	if (netif_running(ndev)) {
 929		netvsc_tx_disable(nvdev, ndev);
 930
 931		ret = rndis_filter_close(nvdev);
 932		if (ret) {
 933			netdev_err(ndev,
 934				   "unable to close device (ret %d).\n", ret);
 935			return ret;
 936		}
 937
 938		ret = netvsc_wait_until_empty(nvdev);
 939		if (ret) {
 940			netdev_err(ndev,
 941				   "Ring buffer not empty after closing rndis\n");
 942			return ret;
 943		}
 944	}
 945
 946	netif_device_detach(ndev);
 947
 948	rndis_filter_device_remove(hdev, nvdev);
 949
 950	return 0;
 951}
 952
 953static int netvsc_attach(struct net_device *ndev,
 954			 struct netvsc_device_info *dev_info)
 955{
 956	struct net_device_context *ndev_ctx = netdev_priv(ndev);
 957	struct hv_device *hdev = ndev_ctx->device_ctx;
 958	struct netvsc_device *nvdev;
 959	struct rndis_device *rdev;
 960	int ret;
 
 961
 962	nvdev = rndis_filter_device_add(hdev, dev_info);
 963	if (IS_ERR(nvdev))
 964		return PTR_ERR(nvdev);
 965
 966	if (nvdev->num_chn > 1) {
 967		ret = rndis_set_subchannel(ndev, nvdev, dev_info);
 968
 969		/* if unavailable, just proceed with one queue */
 970		if (ret) {
 971			nvdev->max_chn = 1;
 972			nvdev->num_chn = 1;
 973		}
 974	}
 975
 
 
 
 
 
 
 
 
 
 
 976	/* In any case device is now ready */
 
 977	netif_device_attach(ndev);
 978
 979	/* Note: enable and attach happen when sub-channels setup */
 980	netif_carrier_off(ndev);
 981
 982	if (netif_running(ndev)) {
 983		ret = rndis_filter_open(nvdev);
 984		if (ret)
 985			goto err;
 986
 987		rdev = nvdev->extension;
 988		if (!rdev->link_state)
 989			netif_carrier_on(ndev);
 990	}
 991
 992	return 0;
 993
 994err:
 995	netif_device_detach(ndev);
 996
 
 997	rndis_filter_device_remove(hdev, nvdev);
 998
 999	return ret;
1000}
1001
1002static int netvsc_set_channels(struct net_device *net,
1003			       struct ethtool_channels *channels)
1004{
1005	struct net_device_context *net_device_ctx = netdev_priv(net);
1006	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1007	unsigned int orig, count = channels->combined_count;
1008	struct netvsc_device_info *device_info;
1009	int ret;
1010
1011	/* We do not support separate count for rx, tx, or other */
1012	if (count == 0 ||
1013	    channels->rx_count || channels->tx_count || channels->other_count)
1014		return -EINVAL;
1015
1016	if (!nvdev || nvdev->destroy)
1017		return -ENODEV;
1018
1019	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1020		return -EINVAL;
1021
1022	if (count > nvdev->max_chn)
1023		return -EINVAL;
1024
1025	orig = nvdev->num_chn;
1026
1027	device_info = netvsc_devinfo_get(nvdev);
1028
1029	if (!device_info)
1030		return -ENOMEM;
1031
1032	device_info->num_chn = count;
1033
1034	ret = netvsc_detach(net, nvdev);
1035	if (ret)
1036		goto out;
1037
1038	ret = netvsc_attach(net, device_info);
1039	if (ret) {
1040		device_info->num_chn = orig;
1041		if (netvsc_attach(net, device_info))
1042			netdev_err(net, "restoring channel setting failed\n");
1043	}
1044
1045out:
1046	kfree(device_info);
1047	return ret;
1048}
1049
1050static bool
1051netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
1052{
1053	struct ethtool_link_ksettings diff1 = *cmd;
1054	struct ethtool_link_ksettings diff2 = {};
1055
1056	diff1.base.speed = 0;
1057	diff1.base.duplex = 0;
1058	/* advertising and cmd are usually set */
1059	ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
1060	diff1.base.cmd = 0;
1061	/* We set port to PORT_OTHER */
1062	diff2.base.port = PORT_OTHER;
1063
1064	return !memcmp(&diff1, &diff2, sizeof(diff1));
1065}
1066
1067static void netvsc_init_settings(struct net_device *dev)
1068{
1069	struct net_device_context *ndc = netdev_priv(dev);
1070
1071	ndc->l4_hash = HV_DEFAULT_L4HASH;
1072
1073	ndc->speed = SPEED_UNKNOWN;
1074	ndc->duplex = DUPLEX_FULL;
1075
1076	dev->features = NETIF_F_LRO;
1077}
1078
1079static int netvsc_get_link_ksettings(struct net_device *dev,
1080				     struct ethtool_link_ksettings *cmd)
1081{
1082	struct net_device_context *ndc = netdev_priv(dev);
 
 
 
 
 
 
1083
1084	cmd->base.speed = ndc->speed;
1085	cmd->base.duplex = ndc->duplex;
1086	cmd->base.port = PORT_OTHER;
1087
1088	return 0;
1089}
1090
1091static int netvsc_set_link_ksettings(struct net_device *dev,
1092				     const struct ethtool_link_ksettings *cmd)
1093{
1094	struct net_device_context *ndc = netdev_priv(dev);
1095	u32 speed;
1096
1097	speed = cmd->base.speed;
1098	if (!ethtool_validate_speed(speed) ||
1099	    !ethtool_validate_duplex(cmd->base.duplex) ||
1100	    !netvsc_validate_ethtool_ss_cmd(cmd))
1101		return -EINVAL;
1102
1103	ndc->speed = speed;
1104	ndc->duplex = cmd->base.duplex;
 
1105
1106	return 0;
 
1107}
1108
1109static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1110{
1111	struct net_device_context *ndevctx = netdev_priv(ndev);
1112	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1113	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1114	int orig_mtu = ndev->mtu;
1115	struct netvsc_device_info *device_info;
1116	int ret = 0;
1117
1118	if (!nvdev || nvdev->destroy)
1119		return -ENODEV;
1120
1121	device_info = netvsc_devinfo_get(nvdev);
1122
1123	if (!device_info)
1124		return -ENOMEM;
1125
1126	/* Change MTU of underlying VF netdev first. */
1127	if (vf_netdev) {
1128		ret = dev_set_mtu(vf_netdev, mtu);
1129		if (ret)
1130			goto out;
1131	}
1132
1133	ret = netvsc_detach(ndev, nvdev);
1134	if (ret)
1135		goto rollback_vf;
1136
1137	ndev->mtu = mtu;
1138
1139	ret = netvsc_attach(ndev, device_info);
1140	if (!ret)
1141		goto out;
1142
1143	/* Attempt rollback to original MTU */
1144	ndev->mtu = orig_mtu;
1145
1146	if (netvsc_attach(ndev, device_info))
1147		netdev_err(ndev, "restoring mtu failed\n");
1148rollback_vf:
1149	if (vf_netdev)
1150		dev_set_mtu(vf_netdev, orig_mtu);
1151
1152out:
1153	kfree(device_info);
1154	return ret;
1155}
1156
1157static void netvsc_get_vf_stats(struct net_device *net,
1158				struct netvsc_vf_pcpu_stats *tot)
1159{
1160	struct net_device_context *ndev_ctx = netdev_priv(net);
1161	int i;
1162
1163	memset(tot, 0, sizeof(*tot));
1164
1165	for_each_possible_cpu(i) {
1166		const struct netvsc_vf_pcpu_stats *stats
1167			= per_cpu_ptr(ndev_ctx->vf_stats, i);
1168		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1169		unsigned int start;
1170
1171		do {
1172			start = u64_stats_fetch_begin_irq(&stats->syncp);
1173			rx_packets = stats->rx_packets;
1174			tx_packets = stats->tx_packets;
1175			rx_bytes = stats->rx_bytes;
1176			tx_bytes = stats->tx_bytes;
1177		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1178
1179		tot->rx_packets += rx_packets;
1180		tot->tx_packets += tx_packets;
1181		tot->rx_bytes   += rx_bytes;
1182		tot->tx_bytes   += tx_bytes;
1183		tot->tx_dropped += stats->tx_dropped;
1184	}
1185}
1186
1187static void netvsc_get_pcpu_stats(struct net_device *net,
1188				  struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1189{
1190	struct net_device_context *ndev_ctx = netdev_priv(net);
1191	struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1192	int i;
1193
1194	/* fetch percpu stats of vf */
1195	for_each_possible_cpu(i) {
1196		const struct netvsc_vf_pcpu_stats *stats =
1197			per_cpu_ptr(ndev_ctx->vf_stats, i);
1198		struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1199		unsigned int start;
1200
1201		do {
1202			start = u64_stats_fetch_begin_irq(&stats->syncp);
1203			this_tot->vf_rx_packets = stats->rx_packets;
1204			this_tot->vf_tx_packets = stats->tx_packets;
1205			this_tot->vf_rx_bytes = stats->rx_bytes;
1206			this_tot->vf_tx_bytes = stats->tx_bytes;
1207		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1208		this_tot->rx_packets = this_tot->vf_rx_packets;
1209		this_tot->tx_packets = this_tot->vf_tx_packets;
1210		this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1211		this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1212	}
1213
1214	/* fetch percpu stats of netvsc */
1215	for (i = 0; i < nvdev->num_chn; i++) {
1216		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1217		const struct netvsc_stats *stats;
 
1218		struct netvsc_ethtool_pcpu_stats *this_tot =
1219			&pcpu_tot[nvchan->channel->target_cpu];
1220		u64 packets, bytes;
1221		unsigned int start;
1222
1223		stats = &nvchan->tx_stats;
1224		do {
1225			start = u64_stats_fetch_begin_irq(&stats->syncp);
1226			packets = stats->packets;
1227			bytes = stats->bytes;
1228		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1229
1230		this_tot->tx_bytes	+= bytes;
1231		this_tot->tx_packets	+= packets;
1232
1233		stats = &nvchan->rx_stats;
1234		do {
1235			start = u64_stats_fetch_begin_irq(&stats->syncp);
1236			packets = stats->packets;
1237			bytes = stats->bytes;
1238		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1239
1240		this_tot->rx_bytes	+= bytes;
1241		this_tot->rx_packets	+= packets;
1242	}
1243}
1244
1245static void netvsc_get_stats64(struct net_device *net,
1246			       struct rtnl_link_stats64 *t)
1247{
1248	struct net_device_context *ndev_ctx = netdev_priv(net);
1249	struct netvsc_device *nvdev;
1250	struct netvsc_vf_pcpu_stats vf_tot;
1251	int i;
1252
1253	rcu_read_lock();
1254
1255	nvdev = rcu_dereference(ndev_ctx->nvdev);
1256	if (!nvdev)
1257		goto out;
1258
1259	netdev_stats_to_stats64(t, &net->stats);
1260
1261	netvsc_get_vf_stats(net, &vf_tot);
1262	t->rx_packets += vf_tot.rx_packets;
1263	t->tx_packets += vf_tot.tx_packets;
1264	t->rx_bytes   += vf_tot.rx_bytes;
1265	t->tx_bytes   += vf_tot.tx_bytes;
1266	t->tx_dropped += vf_tot.tx_dropped;
1267
1268	for (i = 0; i < nvdev->num_chn; i++) {
1269		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1270		const struct netvsc_stats *stats;
 
1271		u64 packets, bytes, multicast;
1272		unsigned int start;
1273
1274		stats = &nvchan->tx_stats;
1275		do {
1276			start = u64_stats_fetch_begin_irq(&stats->syncp);
1277			packets = stats->packets;
1278			bytes = stats->bytes;
1279		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1280
1281		t->tx_bytes	+= bytes;
1282		t->tx_packets	+= packets;
1283
1284		stats = &nvchan->rx_stats;
1285		do {
1286			start = u64_stats_fetch_begin_irq(&stats->syncp);
1287			packets = stats->packets;
1288			bytes = stats->bytes;
1289			multicast = stats->multicast + stats->broadcast;
1290		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1291
1292		t->rx_bytes	+= bytes;
1293		t->rx_packets	+= packets;
1294		t->multicast	+= multicast;
1295	}
1296out:
1297	rcu_read_unlock();
1298}
1299
1300static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1301{
1302	struct net_device_context *ndc = netdev_priv(ndev);
1303	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1304	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1305	struct sockaddr *addr = p;
1306	int err;
1307
1308	err = eth_prepare_mac_addr_change(ndev, p);
1309	if (err)
1310		return err;
1311
1312	if (!nvdev)
1313		return -ENODEV;
1314
1315	if (vf_netdev) {
1316		err = dev_set_mac_address(vf_netdev, addr, NULL);
1317		if (err)
1318			return err;
1319	}
1320
1321	err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1322	if (!err) {
1323		eth_commit_mac_addr_change(ndev, p);
1324	} else if (vf_netdev) {
1325		/* rollback change on VF */
1326		memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1327		dev_set_mac_address(vf_netdev, addr, NULL);
1328	}
1329
1330	return err;
1331}
1332
1333static const struct {
1334	char name[ETH_GSTRING_LEN];
1335	u16 offset;
1336} netvsc_stats[] = {
1337	{ "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1338	{ "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1339	{ "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1340	{ "tx_too_big",	  offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1341	{ "tx_busy",	  offsetof(struct netvsc_ethtool_stats, tx_busy) },
1342	{ "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1343	{ "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1344	{ "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1345	{ "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1346	{ "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
 
1347}, pcpu_stats[] = {
1348	{ "cpu%u_rx_packets",
1349		offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1350	{ "cpu%u_rx_bytes",
1351		offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1352	{ "cpu%u_tx_packets",
1353		offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1354	{ "cpu%u_tx_bytes",
1355		offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1356	{ "cpu%u_vf_rx_packets",
1357		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1358	{ "cpu%u_vf_rx_bytes",
1359		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1360	{ "cpu%u_vf_tx_packets",
1361		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1362	{ "cpu%u_vf_tx_bytes",
1363		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1364}, vf_stats[] = {
1365	{ "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1366	{ "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1367	{ "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1368	{ "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1369	{ "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1370};
1371
1372#define NETVSC_GLOBAL_STATS_LEN	ARRAY_SIZE(netvsc_stats)
1373#define NETVSC_VF_STATS_LEN	ARRAY_SIZE(vf_stats)
1374
1375/* statistics per queue (rx/tx packets/bytes) */
1376#define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1377
1378/* 4 statistics per queue (rx/tx packets/bytes) */
1379#define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1380
1381static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1382{
1383	struct net_device_context *ndc = netdev_priv(dev);
1384	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1385
1386	if (!nvdev)
1387		return -ENODEV;
1388
1389	switch (string_set) {
1390	case ETH_SS_STATS:
1391		return NETVSC_GLOBAL_STATS_LEN
1392			+ NETVSC_VF_STATS_LEN
1393			+ NETVSC_QUEUE_STATS_LEN(nvdev)
1394			+ NETVSC_PCPU_STATS_LEN;
1395	default:
1396		return -EINVAL;
1397	}
1398}
1399
1400static void netvsc_get_ethtool_stats(struct net_device *dev,
1401				     struct ethtool_stats *stats, u64 *data)
1402{
1403	struct net_device_context *ndc = netdev_priv(dev);
1404	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1405	const void *nds = &ndc->eth_stats;
1406	const struct netvsc_stats *qstats;
 
1407	struct netvsc_vf_pcpu_stats sum;
1408	struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1409	unsigned int start;
1410	u64 packets, bytes;
 
 
 
 
1411	int i, j, cpu;
1412
1413	if (!nvdev)
1414		return;
1415
1416	for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1417		data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1418
1419	netvsc_get_vf_stats(dev, &sum);
1420	for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1421		data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1422
1423	for (j = 0; j < nvdev->num_chn; j++) {
1424		qstats = &nvdev->chan_table[j].tx_stats;
1425
1426		do {
1427			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1428			packets = qstats->packets;
1429			bytes = qstats->bytes;
1430		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
 
1431		data[i++] = packets;
1432		data[i++] = bytes;
 
1433
1434		qstats = &nvdev->chan_table[j].rx_stats;
1435		do {
1436			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1437			packets = qstats->packets;
1438			bytes = qstats->bytes;
1439		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
 
 
 
1440		data[i++] = packets;
1441		data[i++] = bytes;
 
 
 
1442	}
1443
1444	pcpu_sum = kvmalloc_array(num_possible_cpus(),
1445				  sizeof(struct netvsc_ethtool_pcpu_stats),
1446				  GFP_KERNEL);
 
 
 
1447	netvsc_get_pcpu_stats(dev, pcpu_sum);
1448	for_each_present_cpu(cpu) {
1449		struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1450
1451		for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1452			data[i++] = *(u64 *)((void *)this_sum
1453					     + pcpu_stats[j].offset);
1454	}
1455	kvfree(pcpu_sum);
1456}
1457
1458static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1459{
1460	struct net_device_context *ndc = netdev_priv(dev);
1461	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1462	u8 *p = data;
1463	int i, cpu;
1464
1465	if (!nvdev)
1466		return;
1467
1468	switch (stringset) {
1469	case ETH_SS_STATS:
1470		for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1471			memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1472			p += ETH_GSTRING_LEN;
1473		}
1474
1475		for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1476			memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1477			p += ETH_GSTRING_LEN;
1478		}
1479
1480		for (i = 0; i < nvdev->num_chn; i++) {
1481			sprintf(p, "tx_queue_%u_packets", i);
1482			p += ETH_GSTRING_LEN;
1483			sprintf(p, "tx_queue_%u_bytes", i);
1484			p += ETH_GSTRING_LEN;
1485			sprintf(p, "rx_queue_%u_packets", i);
1486			p += ETH_GSTRING_LEN;
1487			sprintf(p, "rx_queue_%u_bytes", i);
1488			p += ETH_GSTRING_LEN;
1489		}
1490
1491		for_each_present_cpu(cpu) {
1492			for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) {
1493				sprintf(p, pcpu_stats[i].name, cpu);
1494				p += ETH_GSTRING_LEN;
1495			}
1496		}
1497
1498		break;
1499	}
1500}
1501
1502static int
1503netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1504			 struct ethtool_rxnfc *info)
1505{
1506	const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1507
1508	info->data = RXH_IP_SRC | RXH_IP_DST;
1509
1510	switch (info->flow_type) {
1511	case TCP_V4_FLOW:
1512		if (ndc->l4_hash & HV_TCP4_L4HASH)
1513			info->data |= l4_flag;
1514
1515		break;
1516
1517	case TCP_V6_FLOW:
1518		if (ndc->l4_hash & HV_TCP6_L4HASH)
1519			info->data |= l4_flag;
1520
1521		break;
1522
1523	case UDP_V4_FLOW:
1524		if (ndc->l4_hash & HV_UDP4_L4HASH)
1525			info->data |= l4_flag;
1526
1527		break;
1528
1529	case UDP_V6_FLOW:
1530		if (ndc->l4_hash & HV_UDP6_L4HASH)
1531			info->data |= l4_flag;
1532
1533		break;
1534
1535	case IPV4_FLOW:
1536	case IPV6_FLOW:
1537		break;
1538	default:
1539		info->data = 0;
1540		break;
1541	}
1542
1543	return 0;
1544}
1545
1546static int
1547netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1548		 u32 *rules)
1549{
1550	struct net_device_context *ndc = netdev_priv(dev);
1551	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1552
1553	if (!nvdev)
1554		return -ENODEV;
1555
1556	switch (info->cmd) {
1557	case ETHTOOL_GRXRINGS:
1558		info->data = nvdev->num_chn;
1559		return 0;
1560
1561	case ETHTOOL_GRXFH:
1562		return netvsc_get_rss_hash_opts(ndc, info);
1563	}
1564	return -EOPNOTSUPP;
1565}
1566
1567static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1568				    struct ethtool_rxnfc *info)
1569{
1570	if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1571			   RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1572		switch (info->flow_type) {
1573		case TCP_V4_FLOW:
1574			ndc->l4_hash |= HV_TCP4_L4HASH;
1575			break;
1576
1577		case TCP_V6_FLOW:
1578			ndc->l4_hash |= HV_TCP6_L4HASH;
1579			break;
1580
1581		case UDP_V4_FLOW:
1582			ndc->l4_hash |= HV_UDP4_L4HASH;
1583			break;
1584
1585		case UDP_V6_FLOW:
1586			ndc->l4_hash |= HV_UDP6_L4HASH;
1587			break;
1588
1589		default:
1590			return -EOPNOTSUPP;
1591		}
1592
1593		return 0;
1594	}
1595
1596	if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1597		switch (info->flow_type) {
1598		case TCP_V4_FLOW:
1599			ndc->l4_hash &= ~HV_TCP4_L4HASH;
1600			break;
1601
1602		case TCP_V6_FLOW:
1603			ndc->l4_hash &= ~HV_TCP6_L4HASH;
1604			break;
1605
1606		case UDP_V4_FLOW:
1607			ndc->l4_hash &= ~HV_UDP4_L4HASH;
1608			break;
1609
1610		case UDP_V6_FLOW:
1611			ndc->l4_hash &= ~HV_UDP6_L4HASH;
1612			break;
1613
1614		default:
1615			return -EOPNOTSUPP;
1616		}
1617
1618		return 0;
1619	}
1620
1621	return -EOPNOTSUPP;
1622}
1623
1624static int
1625netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1626{
1627	struct net_device_context *ndc = netdev_priv(ndev);
1628
1629	if (info->cmd == ETHTOOL_SRXFH)
1630		return netvsc_set_rss_hash_opts(ndc, info);
1631
1632	return -EOPNOTSUPP;
1633}
1634
1635static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1636{
1637	return NETVSC_HASH_KEYLEN;
1638}
1639
1640static u32 netvsc_rss_indir_size(struct net_device *dev)
1641{
1642	return ITAB_NUM;
1643}
1644
1645static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1646			   u8 *hfunc)
1647{
1648	struct net_device_context *ndc = netdev_priv(dev);
1649	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1650	struct rndis_device *rndis_dev;
1651	int i;
1652
1653	if (!ndev)
1654		return -ENODEV;
1655
1656	if (hfunc)
1657		*hfunc = ETH_RSS_HASH_TOP;	/* Toeplitz */
1658
1659	rndis_dev = ndev->extension;
1660	if (indir) {
1661		for (i = 0; i < ITAB_NUM; i++)
1662			indir[i] = rndis_dev->rx_table[i];
1663	}
1664
1665	if (key)
1666		memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1667
1668	return 0;
1669}
1670
1671static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1672			   const u8 *key, const u8 hfunc)
1673{
1674	struct net_device_context *ndc = netdev_priv(dev);
1675	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1676	struct rndis_device *rndis_dev;
1677	int i;
1678
1679	if (!ndev)
1680		return -ENODEV;
1681
1682	if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1683		return -EOPNOTSUPP;
1684
1685	rndis_dev = ndev->extension;
1686	if (indir) {
1687		for (i = 0; i < ITAB_NUM; i++)
1688			if (indir[i] >= ndev->num_chn)
1689				return -EINVAL;
1690
1691		for (i = 0; i < ITAB_NUM; i++)
1692			rndis_dev->rx_table[i] = indir[i];
1693	}
1694
1695	if (!key) {
1696		if (!indir)
1697			return 0;
1698
1699		key = rndis_dev->rss_key;
1700	}
1701
1702	return rndis_filter_set_rss_param(rndis_dev, key);
1703}
1704
1705/* Hyper-V RNDIS protocol does not have ring in the HW sense.
1706 * It does have pre-allocated receive area which is divided into sections.
1707 */
1708static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1709				   struct ethtool_ringparam *ring)
1710{
1711	u32 max_buf_size;
1712
1713	ring->rx_pending = nvdev->recv_section_cnt;
1714	ring->tx_pending = nvdev->send_section_cnt;
1715
1716	if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1717		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1718	else
1719		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1720
1721	ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1722	ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1723		/ nvdev->send_section_size;
1724}
1725
1726static void netvsc_get_ringparam(struct net_device *ndev,
1727				 struct ethtool_ringparam *ring)
 
 
1728{
1729	struct net_device_context *ndevctx = netdev_priv(ndev);
1730	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1731
1732	if (!nvdev)
1733		return;
1734
1735	__netvsc_get_ringparam(nvdev, ring);
1736}
1737
1738static int netvsc_set_ringparam(struct net_device *ndev,
1739				struct ethtool_ringparam *ring)
 
 
1740{
1741	struct net_device_context *ndevctx = netdev_priv(ndev);
1742	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1743	struct netvsc_device_info *device_info;
1744	struct ethtool_ringparam orig;
1745	u32 new_tx, new_rx;
1746	int ret = 0;
1747
1748	if (!nvdev || nvdev->destroy)
1749		return -ENODEV;
1750
1751	memset(&orig, 0, sizeof(orig));
1752	__netvsc_get_ringparam(nvdev, &orig);
1753
1754	new_tx = clamp_t(u32, ring->tx_pending,
1755			 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1756	new_rx = clamp_t(u32, ring->rx_pending,
1757			 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1758
1759	if (new_tx == orig.tx_pending &&
1760	    new_rx == orig.rx_pending)
1761		return 0;	 /* no change */
1762
1763	device_info = netvsc_devinfo_get(nvdev);
1764
1765	if (!device_info)
1766		return -ENOMEM;
1767
1768	device_info->send_sections = new_tx;
1769	device_info->recv_sections = new_rx;
1770
1771	ret = netvsc_detach(ndev, nvdev);
1772	if (ret)
1773		goto out;
1774
1775	ret = netvsc_attach(ndev, device_info);
1776	if (ret) {
1777		device_info->send_sections = orig.tx_pending;
1778		device_info->recv_sections = orig.rx_pending;
1779
1780		if (netvsc_attach(ndev, device_info))
1781			netdev_err(ndev, "restoring ringparam failed");
1782	}
1783
1784out:
1785	kfree(device_info);
1786	return ret;
1787}
1788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1789static int netvsc_set_features(struct net_device *ndev,
1790			       netdev_features_t features)
1791{
1792	netdev_features_t change = features ^ ndev->features;
1793	struct net_device_context *ndevctx = netdev_priv(ndev);
1794	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1795	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1796	struct ndis_offload_params offloads;
1797	int ret = 0;
1798
1799	if (!nvdev || nvdev->destroy)
1800		return -ENODEV;
1801
1802	if (!(change & NETIF_F_LRO))
1803		goto syncvf;
1804
1805	memset(&offloads, 0, sizeof(struct ndis_offload_params));
1806
1807	if (features & NETIF_F_LRO) {
1808		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1809		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1810	} else {
1811		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1812		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1813	}
1814
1815	ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1816
1817	if (ret) {
1818		features ^= NETIF_F_LRO;
1819		ndev->features = features;
1820	}
1821
1822syncvf:
1823	if (!vf_netdev)
1824		return ret;
1825
1826	vf_netdev->wanted_features = features;
1827	netdev_update_features(vf_netdev);
1828
1829	return ret;
1830}
1831
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1832static u32 netvsc_get_msglevel(struct net_device *ndev)
1833{
1834	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1835
1836	return ndev_ctx->msg_enable;
1837}
1838
1839static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1840{
1841	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1842
1843	ndev_ctx->msg_enable = val;
1844}
1845
1846static const struct ethtool_ops ethtool_ops = {
1847	.get_drvinfo	= netvsc_get_drvinfo,
 
 
1848	.get_msglevel	= netvsc_get_msglevel,
1849	.set_msglevel	= netvsc_set_msglevel,
1850	.get_link	= ethtool_op_get_link,
1851	.get_ethtool_stats = netvsc_get_ethtool_stats,
1852	.get_sset_count = netvsc_get_sset_count,
1853	.get_strings	= netvsc_get_strings,
1854	.get_channels   = netvsc_get_channels,
1855	.set_channels   = netvsc_set_channels,
1856	.get_ts_info	= ethtool_op_get_ts_info,
1857	.get_rxnfc	= netvsc_get_rxnfc,
1858	.set_rxnfc	= netvsc_set_rxnfc,
1859	.get_rxfh_key_size = netvsc_get_rxfh_key_size,
1860	.get_rxfh_indir_size = netvsc_rss_indir_size,
1861	.get_rxfh	= netvsc_get_rxfh,
1862	.set_rxfh	= netvsc_set_rxfh,
1863	.get_link_ksettings = netvsc_get_link_ksettings,
1864	.set_link_ksettings = netvsc_set_link_ksettings,
1865	.get_ringparam	= netvsc_get_ringparam,
1866	.set_ringparam	= netvsc_set_ringparam,
1867};
1868
1869static const struct net_device_ops device_ops = {
1870	.ndo_open =			netvsc_open,
1871	.ndo_stop =			netvsc_close,
1872	.ndo_start_xmit =		netvsc_start_xmit,
1873	.ndo_change_rx_flags =		netvsc_change_rx_flags,
1874	.ndo_set_rx_mode =		netvsc_set_rx_mode,
 
1875	.ndo_set_features =		netvsc_set_features,
1876	.ndo_change_mtu =		netvsc_change_mtu,
1877	.ndo_validate_addr =		eth_validate_addr,
1878	.ndo_set_mac_address =		netvsc_set_mac_addr,
1879	.ndo_select_queue =		netvsc_select_queue,
1880	.ndo_get_stats64 =		netvsc_get_stats64,
 
 
1881};
1882
1883/*
1884 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1885 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1886 * present send GARP packet to network peers with netif_notify_peers().
1887 */
1888static void netvsc_link_change(struct work_struct *w)
1889{
1890	struct net_device_context *ndev_ctx =
1891		container_of(w, struct net_device_context, dwork.work);
1892	struct hv_device *device_obj = ndev_ctx->device_ctx;
1893	struct net_device *net = hv_get_drvdata(device_obj);
 
 
1894	struct netvsc_device *net_device;
1895	struct rndis_device *rdev;
1896	struct netvsc_reconfig *event = NULL;
1897	bool notify = false, reschedule = false;
1898	unsigned long flags, next_reconfig, delay;
1899
1900	/* if changes are happening, comeback later */
1901	if (!rtnl_trylock()) {
1902		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1903		return;
1904	}
1905
1906	net_device = rtnl_dereference(ndev_ctx->nvdev);
1907	if (!net_device)
1908		goto out_unlock;
1909
1910	rdev = net_device->extension;
1911
1912	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1913	if (time_is_after_jiffies(next_reconfig)) {
1914		/* link_watch only sends one notification with current state
1915		 * per second, avoid doing reconfig more frequently. Handle
1916		 * wrap around.
1917		 */
1918		delay = next_reconfig - jiffies;
1919		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1920		schedule_delayed_work(&ndev_ctx->dwork, delay);
1921		goto out_unlock;
1922	}
1923	ndev_ctx->last_reconfig = jiffies;
1924
1925	spin_lock_irqsave(&ndev_ctx->lock, flags);
1926	if (!list_empty(&ndev_ctx->reconfig_events)) {
1927		event = list_first_entry(&ndev_ctx->reconfig_events,
1928					 struct netvsc_reconfig, list);
1929		list_del(&event->list);
1930		reschedule = !list_empty(&ndev_ctx->reconfig_events);
1931	}
1932	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1933
1934	if (!event)
1935		goto out_unlock;
1936
1937	switch (event->event) {
1938		/* Only the following events are possible due to the check in
1939		 * netvsc_linkstatus_callback()
1940		 */
1941	case RNDIS_STATUS_MEDIA_CONNECT:
1942		if (rdev->link_state) {
1943			rdev->link_state = false;
1944			netif_carrier_on(net);
1945			netvsc_tx_enable(net_device, net);
1946		} else {
1947			notify = true;
1948		}
1949		kfree(event);
1950		break;
1951	case RNDIS_STATUS_MEDIA_DISCONNECT:
1952		if (!rdev->link_state) {
1953			rdev->link_state = true;
1954			netif_carrier_off(net);
1955			netvsc_tx_disable(net_device, net);
1956		}
1957		kfree(event);
1958		break;
1959	case RNDIS_STATUS_NETWORK_CHANGE:
1960		/* Only makes sense if carrier is present */
1961		if (!rdev->link_state) {
1962			rdev->link_state = true;
1963			netif_carrier_off(net);
1964			netvsc_tx_disable(net_device, net);
1965			event->event = RNDIS_STATUS_MEDIA_CONNECT;
1966			spin_lock_irqsave(&ndev_ctx->lock, flags);
1967			list_add(&event->list, &ndev_ctx->reconfig_events);
1968			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1969			reschedule = true;
1970		}
1971		break;
1972	}
1973
1974	rtnl_unlock();
1975
1976	if (notify)
1977		netdev_notify_peers(net);
1978
1979	/* link_watch only sends one notification with current state per
1980	 * second, handle next reconfig event in 2 seconds.
1981	 */
1982	if (reschedule)
1983		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1984
1985	return;
1986
1987out_unlock:
1988	rtnl_unlock();
1989}
1990
1991static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1992{
1993	struct net_device_context *net_device_ctx;
1994	struct net_device *dev;
1995
1996	dev = netdev_master_upper_dev_get(vf_netdev);
1997	if (!dev || dev->netdev_ops != &device_ops)
1998		return NULL;	/* not a netvsc device */
1999
2000	net_device_ctx = netdev_priv(dev);
2001	if (!rtnl_dereference(net_device_ctx->nvdev))
2002		return NULL;	/* device is removed */
2003
2004	return dev;
2005}
2006
2007/* Called when VF is injecting data into network stack.
2008 * Change the associated network device from VF to netvsc.
2009 * note: already called with rcu_read_lock
2010 */
2011static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2012{
2013	struct sk_buff *skb = *pskb;
2014	struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2015	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2016	struct netvsc_vf_pcpu_stats *pcpu_stats
2017		 = this_cpu_ptr(ndev_ctx->vf_stats);
2018
2019	skb = skb_share_check(skb, GFP_ATOMIC);
2020	if (unlikely(!skb))
2021		return RX_HANDLER_CONSUMED;
2022
2023	*pskb = skb;
2024
2025	skb->dev = ndev;
2026
2027	u64_stats_update_begin(&pcpu_stats->syncp);
2028	pcpu_stats->rx_packets++;
2029	pcpu_stats->rx_bytes += skb->len;
2030	u64_stats_update_end(&pcpu_stats->syncp);
2031
2032	return RX_HANDLER_ANOTHER;
2033}
2034
2035static int netvsc_vf_join(struct net_device *vf_netdev,
2036			  struct net_device *ndev)
2037{
2038	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2039	int ret;
2040
2041	ret = netdev_rx_handler_register(vf_netdev,
2042					 netvsc_vf_handle_frame, ndev);
2043	if (ret != 0) {
2044		netdev_err(vf_netdev,
2045			   "can not register netvsc VF receive handler (err = %d)\n",
2046			   ret);
2047		goto rx_handler_failed;
2048	}
2049
2050	ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2051					   NULL, NULL, NULL);
2052	if (ret != 0) {
2053		netdev_err(vf_netdev,
2054			   "can not set master device %s (err = %d)\n",
2055			   ndev->name, ret);
2056		goto upper_link_failed;
2057	}
2058
2059	/* set slave flag before open to prevent IPv6 addrconf */
2060	vf_netdev->flags |= IFF_SLAVE;
2061
2062	schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2063
2064	call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2065
2066	netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2067	return 0;
2068
2069upper_link_failed:
2070	netdev_rx_handler_unregister(vf_netdev);
2071rx_handler_failed:
2072	return ret;
2073}
2074
2075static void __netvsc_vf_setup(struct net_device *ndev,
2076			      struct net_device *vf_netdev)
2077{
2078	int ret;
2079
2080	/* Align MTU of VF with master */
2081	ret = dev_set_mtu(vf_netdev, ndev->mtu);
2082	if (ret)
2083		netdev_warn(vf_netdev,
2084			    "unable to change mtu to %u\n", ndev->mtu);
2085
2086	/* set multicast etc flags on VF */
2087	dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2088
2089	/* sync address list from ndev to VF */
2090	netif_addr_lock_bh(ndev);
2091	dev_uc_sync(vf_netdev, ndev);
2092	dev_mc_sync(vf_netdev, ndev);
2093	netif_addr_unlock_bh(ndev);
2094
2095	if (netif_running(ndev)) {
2096		ret = dev_open(vf_netdev, NULL);
2097		if (ret)
2098			netdev_warn(vf_netdev,
2099				    "unable to open: %d\n", ret);
2100	}
2101}
2102
2103/* Setup VF as slave of the synthetic device.
2104 * Runs in workqueue to avoid recursion in netlink callbacks.
2105 */
2106static void netvsc_vf_setup(struct work_struct *w)
2107{
2108	struct net_device_context *ndev_ctx
2109		= container_of(w, struct net_device_context, vf_takeover.work);
2110	struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2111	struct net_device *vf_netdev;
2112
2113	if (!rtnl_trylock()) {
2114		schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2115		return;
2116	}
2117
2118	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2119	if (vf_netdev)
2120		__netvsc_vf_setup(ndev, vf_netdev);
2121
2122	rtnl_unlock();
2123}
2124
2125/* Find netvsc by VF serial number.
2126 * The PCI hyperv controller records the serial number as the slot kobj name.
2127 */
2128static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2129{
2130	struct device *parent = vf_netdev->dev.parent;
2131	struct net_device_context *ndev_ctx;
 
2132	struct pci_dev *pdev;
2133	u32 serial;
2134
2135	if (!parent || !dev_is_pci(parent))
2136		return NULL; /* not a PCI device */
2137
2138	pdev = to_pci_dev(parent);
2139	if (!pdev->slot) {
2140		netdev_notice(vf_netdev, "no PCI slot information\n");
2141		return NULL;
2142	}
2143
2144	if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2145		netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2146			      pci_slot_name(pdev->slot));
2147		return NULL;
2148	}
2149
2150	list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2151		if (!ndev_ctx->vf_alloc)
2152			continue;
2153
2154		if (ndev_ctx->vf_serial == serial)
2155			return hv_get_drvdata(ndev_ctx->device_ctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2156	}
2157
2158	netdev_notice(vf_netdev,
2159		      "no netdev found for vf serial:%u\n", serial);
2160	return NULL;
2161}
2162
2163static int netvsc_register_vf(struct net_device *vf_netdev)
2164{
2165	struct net_device_context *net_device_ctx;
2166	struct netvsc_device *netvsc_dev;
 
2167	struct net_device *ndev;
2168	int ret;
2169
2170	if (vf_netdev->addr_len != ETH_ALEN)
2171		return NOTIFY_DONE;
2172
2173	ndev = get_netvsc_byslot(vf_netdev);
2174	if (!ndev)
2175		return NOTIFY_DONE;
2176
2177	net_device_ctx = netdev_priv(ndev);
2178	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2179	if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2180		return NOTIFY_DONE;
2181
2182	/* if synthetic interface is a different namespace,
2183	 * then move the VF to that namespace; join will be
2184	 * done again in that context.
2185	 */
2186	if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2187		ret = dev_change_net_namespace(vf_netdev,
2188					       dev_net(ndev), "eth%d");
2189		if (ret)
2190			netdev_err(vf_netdev,
2191				   "could not move to same namespace as %s: %d\n",
2192				   ndev->name, ret);
2193		else
2194			netdev_info(vf_netdev,
2195				    "VF moved to namespace with: %s\n",
2196				    ndev->name);
2197		return NOTIFY_DONE;
2198	}
2199
2200	netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2201
2202	if (netvsc_vf_join(vf_netdev, ndev) != 0)
2203		return NOTIFY_DONE;
2204
2205	dev_hold(vf_netdev);
2206	rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2207
 
 
 
2208	vf_netdev->wanted_features = ndev->features;
2209	netdev_update_features(vf_netdev);
2210
 
 
 
2211	return NOTIFY_OK;
2212}
2213
2214/* VF up/down change detected, schedule to change data path */
2215static int netvsc_vf_changed(struct net_device *vf_netdev)
 
 
 
 
 
 
 
 
 
2216{
2217	struct net_device_context *net_device_ctx;
2218	struct netvsc_device *netvsc_dev;
2219	struct net_device *ndev;
2220	bool vf_is_up = netif_running(vf_netdev);
 
 
 
 
2221
2222	ndev = get_netvsc_byref(vf_netdev);
2223	if (!ndev)
2224		return NOTIFY_DONE;
2225
2226	net_device_ctx = netdev_priv(ndev);
2227	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2228	if (!netvsc_dev)
2229		return NOTIFY_DONE;
2230
2231	netvsc_switch_datapath(ndev, vf_is_up);
2232	netdev_info(ndev, "Data path switched %s VF: %s\n",
2233		    vf_is_up ? "to" : "from", vf_netdev->name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2234
2235	return NOTIFY_OK;
2236}
2237
2238static int netvsc_unregister_vf(struct net_device *vf_netdev)
2239{
2240	struct net_device *ndev;
2241	struct net_device_context *net_device_ctx;
2242
2243	ndev = get_netvsc_byref(vf_netdev);
2244	if (!ndev)
2245		return NOTIFY_DONE;
2246
2247	net_device_ctx = netdev_priv(ndev);
2248	cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2249
2250	netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2251
 
 
 
2252	netdev_rx_handler_unregister(vf_netdev);
2253	netdev_upper_dev_unlink(vf_netdev, ndev);
2254	RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2255	dev_put(vf_netdev);
2256
 
 
2257	return NOTIFY_OK;
2258}
2259
2260static int netvsc_probe(struct hv_device *dev,
2261			const struct hv_vmbus_device_id *dev_id)
2262{
2263	struct net_device *net = NULL;
2264	struct net_device_context *net_device_ctx;
2265	struct netvsc_device_info *device_info = NULL;
2266	struct netvsc_device *nvdev;
2267	int ret = -ENOMEM;
2268
2269	net = alloc_etherdev_mq(sizeof(struct net_device_context),
2270				VRSS_CHANNEL_MAX);
2271	if (!net)
2272		goto no_net;
2273
2274	netif_carrier_off(net);
2275
2276	netvsc_init_settings(net);
2277
2278	net_device_ctx = netdev_priv(net);
2279	net_device_ctx->device_ctx = dev;
2280	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2281	if (netif_msg_probe(net_device_ctx))
2282		netdev_dbg(net, "netvsc msg_enable: %d\n",
2283			   net_device_ctx->msg_enable);
2284
2285	hv_set_drvdata(dev, net);
2286
2287	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2288
 
2289	spin_lock_init(&net_device_ctx->lock);
2290	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2291	INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2292
2293	net_device_ctx->vf_stats
2294		= netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2295	if (!net_device_ctx->vf_stats)
2296		goto no_stats;
2297
2298	net->netdev_ops = &device_ops;
2299	net->ethtool_ops = &ethtool_ops;
2300	SET_NETDEV_DEV(net, &dev->device);
 
2301
2302	/* We always need headroom for rndis header */
2303	net->needed_headroom = RNDIS_AND_PPI_SIZE;
2304
2305	/* Initialize the number of queues to be 1, we may change it if more
2306	 * channels are offered later.
2307	 */
2308	netif_set_real_num_tx_queues(net, 1);
2309	netif_set_real_num_rx_queues(net, 1);
2310
2311	/* Notify the netvsc driver of the new device */
2312	device_info = netvsc_devinfo_get(NULL);
2313
2314	if (!device_info) {
2315		ret = -ENOMEM;
2316		goto devinfo_failed;
2317	}
2318
2319	nvdev = rndis_filter_device_add(dev, device_info);
2320	if (IS_ERR(nvdev)) {
2321		ret = PTR_ERR(nvdev);
2322		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2323		goto rndis_failed;
2324	}
2325
2326	memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN);
2327
2328	/* We must get rtnl lock before scheduling nvdev->subchan_work,
2329	 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2330	 * all subchannels to show up, but that may not happen because
2331	 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2332	 * -> ... -> device_add() -> ... -> __device_attach() can't get
2333	 * the device lock, so all the subchannels can't be processed --
2334	 * finally netvsc_subchan_work() hangs forever.
2335	 */
2336	rtnl_lock();
2337
2338	if (nvdev->num_chn > 1)
2339		schedule_work(&nvdev->subchan_work);
2340
2341	/* hw_features computed in rndis_netdev_set_hwcaps() */
2342	net->features = net->hw_features |
2343		NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2344		NETIF_F_HW_VLAN_CTAG_RX;
2345	net->vlan_features = net->features;
2346
 
 
2347	/* MTU range: 68 - 1500 or 65521 */
2348	net->min_mtu = NETVSC_MTU_MIN;
2349	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2350		net->max_mtu = NETVSC_MTU - ETH_HLEN;
2351	else
2352		net->max_mtu = ETH_DATA_LEN;
2353
 
 
2354	ret = register_netdevice(net);
2355	if (ret != 0) {
2356		pr_err("Unable to register netdev.\n");
2357		goto register_failed;
2358	}
2359
2360	list_add(&net_device_ctx->list, &netvsc_dev_list);
2361	rtnl_unlock();
2362
2363	kfree(device_info);
2364	return 0;
2365
2366register_failed:
2367	rtnl_unlock();
2368	rndis_filter_device_remove(dev, nvdev);
2369rndis_failed:
2370	kfree(device_info);
2371devinfo_failed:
2372	free_percpu(net_device_ctx->vf_stats);
2373no_stats:
2374	hv_set_drvdata(dev, NULL);
2375	free_netdev(net);
2376no_net:
2377	return ret;
2378}
2379
2380static int netvsc_remove(struct hv_device *dev)
2381{
2382	struct net_device_context *ndev_ctx;
2383	struct net_device *vf_netdev, *net;
2384	struct netvsc_device *nvdev;
2385
2386	net = hv_get_drvdata(dev);
2387	if (net == NULL) {
2388		dev_err(&dev->device, "No net device to remove\n");
2389		return 0;
2390	}
2391
2392	ndev_ctx = netdev_priv(net);
2393
2394	cancel_delayed_work_sync(&ndev_ctx->dwork);
2395
2396	rtnl_lock();
2397	nvdev = rtnl_dereference(ndev_ctx->nvdev);
2398	if (nvdev)
2399		cancel_work_sync(&nvdev->subchan_work);
 
 
2400
2401	/*
2402	 * Call to the vsc driver to let it know that the device is being
2403	 * removed. Also blocks mtu and channel changes.
2404	 */
2405	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2406	if (vf_netdev)
2407		netvsc_unregister_vf(vf_netdev);
2408
2409	if (nvdev)
2410		rndis_filter_device_remove(dev, nvdev);
2411
2412	unregister_netdevice(net);
2413	list_del(&ndev_ctx->list);
2414
2415	rtnl_unlock();
2416
2417	hv_set_drvdata(dev, NULL);
2418
2419	free_percpu(ndev_ctx->vf_stats);
2420	free_netdev(net);
2421	return 0;
2422}
2423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2424static const struct hv_vmbus_device_id id_table[] = {
2425	/* Network guid */
2426	{ HV_NIC_GUID, },
2427	{ },
2428};
2429
2430MODULE_DEVICE_TABLE(vmbus, id_table);
2431
2432/* The one and only one */
2433static struct  hv_driver netvsc_drv = {
2434	.name = KBUILD_MODNAME,
2435	.id_table = id_table,
2436	.probe = netvsc_probe,
2437	.remove = netvsc_remove,
 
 
2438	.driver = {
2439		.probe_type = PROBE_FORCE_SYNCHRONOUS,
2440	},
2441};
2442
2443/*
2444 * On Hyper-V, every VF interface is matched with a corresponding
2445 * synthetic interface. The synthetic interface is presented first
2446 * to the guest. When the corresponding VF instance is registered,
2447 * we will take care of switching the data path.
2448 */
2449static int netvsc_netdev_event(struct notifier_block *this,
2450			       unsigned long event, void *ptr)
2451{
2452	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2453
2454	/* Skip our own events */
2455	if (event_dev->netdev_ops == &device_ops)
2456		return NOTIFY_DONE;
2457
2458	/* Avoid non-Ethernet type devices */
2459	if (event_dev->type != ARPHRD_ETHER)
2460		return NOTIFY_DONE;
2461
2462	/* Avoid Vlan dev with same MAC registering as VF */
2463	if (is_vlan_dev(event_dev))
2464		return NOTIFY_DONE;
2465
2466	/* Avoid Bonding master dev with same MAC registering as VF */
2467	if ((event_dev->priv_flags & IFF_BONDING) &&
2468	    (event_dev->flags & IFF_MASTER))
2469		return NOTIFY_DONE;
2470
2471	switch (event) {
2472	case NETDEV_REGISTER:
2473		return netvsc_register_vf(event_dev);
2474	case NETDEV_UNREGISTER:
2475		return netvsc_unregister_vf(event_dev);
2476	case NETDEV_UP:
2477	case NETDEV_DOWN:
2478		return netvsc_vf_changed(event_dev);
 
 
2479	default:
2480		return NOTIFY_DONE;
2481	}
2482}
2483
2484static struct notifier_block netvsc_netdev_notifier = {
2485	.notifier_call = netvsc_netdev_event,
2486};
2487
2488static void __exit netvsc_drv_exit(void)
2489{
2490	unregister_netdevice_notifier(&netvsc_netdev_notifier);
2491	vmbus_driver_unregister(&netvsc_drv);
2492}
2493
2494static int __init netvsc_drv_init(void)
2495{
2496	int ret;
2497
2498	if (ring_size < RING_SIZE_MIN) {
2499		ring_size = RING_SIZE_MIN;
2500		pr_info("Increased ring_size to %u (min allowed)\n",
2501			ring_size);
2502	}
2503	netvsc_ring_bytes = ring_size * PAGE_SIZE;
2504
2505	ret = vmbus_driver_register(&netvsc_drv);
2506	if (ret)
2507		return ret;
2508
2509	register_netdevice_notifier(&netvsc_netdev_notifier);
2510	return 0;
2511}
2512
2513MODULE_LICENSE("GPL");
2514MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2515
2516module_init(netvsc_drv_init);
2517module_exit(netvsc_drv_exit);