Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * linux/drivers/mmc/core/mmc_ops.h
4 *
5 * Copyright 2006-2007 Pierre Ossman
6 */
7
8#include <linux/slab.h>
9#include <linux/export.h>
10#include <linux/types.h>
11#include <linux/scatterlist.h>
12
13#include <linux/mmc/host.h>
14#include <linux/mmc/card.h>
15#include <linux/mmc/mmc.h>
16
17#include "core.h"
18#include "card.h"
19#include "host.h"
20#include "mmc_ops.h"
21
22#define MMC_BKOPS_TIMEOUT_MS (120 * 1000) /* 120s */
23#define MMC_SANITIZE_TIMEOUT_MS (240 * 1000) /* 240s */
24#define MMC_OP_COND_PERIOD_US (4 * 1000) /* 4ms */
25#define MMC_OP_COND_TIMEOUT_MS 1000 /* 1s */
26
27static const u8 tuning_blk_pattern_4bit[] = {
28 0xff, 0x0f, 0xff, 0x00, 0xff, 0xcc, 0xc3, 0xcc,
29 0xc3, 0x3c, 0xcc, 0xff, 0xfe, 0xff, 0xfe, 0xef,
30 0xff, 0xdf, 0xff, 0xdd, 0xff, 0xfb, 0xff, 0xfb,
31 0xbf, 0xff, 0x7f, 0xff, 0x77, 0xf7, 0xbd, 0xef,
32 0xff, 0xf0, 0xff, 0xf0, 0x0f, 0xfc, 0xcc, 0x3c,
33 0xcc, 0x33, 0xcc, 0xcf, 0xff, 0xef, 0xff, 0xee,
34 0xff, 0xfd, 0xff, 0xfd, 0xdf, 0xff, 0xbf, 0xff,
35 0xbb, 0xff, 0xf7, 0xff, 0xf7, 0x7f, 0x7b, 0xde,
36};
37
38static const u8 tuning_blk_pattern_8bit[] = {
39 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00,
40 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc,
41 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff,
42 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff,
43 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd,
44 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb,
45 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff,
46 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff,
47 0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00,
48 0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc,
49 0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff,
50 0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee,
51 0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd,
52 0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff,
53 0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff,
54 0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee,
55};
56
57struct mmc_busy_data {
58 struct mmc_card *card;
59 bool retry_crc_err;
60 enum mmc_busy_cmd busy_cmd;
61};
62
63struct mmc_op_cond_busy_data {
64 struct mmc_host *host;
65 u32 ocr;
66 struct mmc_command *cmd;
67};
68
69int __mmc_send_status(struct mmc_card *card, u32 *status, unsigned int retries)
70{
71 int err;
72 struct mmc_command cmd = {};
73
74 cmd.opcode = MMC_SEND_STATUS;
75 if (!mmc_host_is_spi(card->host))
76 cmd.arg = card->rca << 16;
77 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
78
79 err = mmc_wait_for_cmd(card->host, &cmd, retries);
80 if (err)
81 return err;
82
83 /* NOTE: callers are required to understand the difference
84 * between "native" and SPI format status words!
85 */
86 if (status)
87 *status = cmd.resp[0];
88
89 return 0;
90}
91EXPORT_SYMBOL_GPL(__mmc_send_status);
92
93int mmc_send_status(struct mmc_card *card, u32 *status)
94{
95 return __mmc_send_status(card, status, MMC_CMD_RETRIES);
96}
97EXPORT_SYMBOL_GPL(mmc_send_status);
98
99static int _mmc_select_card(struct mmc_host *host, struct mmc_card *card)
100{
101 struct mmc_command cmd = {};
102
103 cmd.opcode = MMC_SELECT_CARD;
104
105 if (card) {
106 cmd.arg = card->rca << 16;
107 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
108 } else {
109 cmd.arg = 0;
110 cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
111 }
112
113 return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
114}
115
116int mmc_select_card(struct mmc_card *card)
117{
118
119 return _mmc_select_card(card->host, card);
120}
121
122int mmc_deselect_cards(struct mmc_host *host)
123{
124 return _mmc_select_card(host, NULL);
125}
126
127/*
128 * Write the value specified in the device tree or board code into the optional
129 * 16 bit Driver Stage Register. This can be used to tune raise/fall times and
130 * drive strength of the DAT and CMD outputs. The actual meaning of a given
131 * value is hardware dependant.
132 * The presence of the DSR register can be determined from the CSD register,
133 * bit 76.
134 */
135int mmc_set_dsr(struct mmc_host *host)
136{
137 struct mmc_command cmd = {};
138
139 cmd.opcode = MMC_SET_DSR;
140
141 cmd.arg = (host->dsr << 16) | 0xffff;
142 cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
143
144 return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
145}
146
147int mmc_go_idle(struct mmc_host *host)
148{
149 int err;
150 struct mmc_command cmd = {};
151
152 /*
153 * Non-SPI hosts need to prevent chipselect going active during
154 * GO_IDLE; that would put chips into SPI mode. Remind them of
155 * that in case of hardware that won't pull up DAT3/nCS otherwise.
156 *
157 * SPI hosts ignore ios.chip_select; it's managed according to
158 * rules that must accommodate non-MMC slaves which this layer
159 * won't even know about.
160 */
161 if (!mmc_host_is_spi(host)) {
162 mmc_set_chip_select(host, MMC_CS_HIGH);
163 mmc_delay(1);
164 }
165
166 cmd.opcode = MMC_GO_IDLE_STATE;
167 cmd.arg = 0;
168 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_NONE | MMC_CMD_BC;
169
170 err = mmc_wait_for_cmd(host, &cmd, 0);
171
172 mmc_delay(1);
173
174 if (!mmc_host_is_spi(host)) {
175 mmc_set_chip_select(host, MMC_CS_DONTCARE);
176 mmc_delay(1);
177 }
178
179 host->use_spi_crc = 0;
180
181 return err;
182}
183
184static int __mmc_send_op_cond_cb(void *cb_data, bool *busy)
185{
186 struct mmc_op_cond_busy_data *data = cb_data;
187 struct mmc_host *host = data->host;
188 struct mmc_command *cmd = data->cmd;
189 u32 ocr = data->ocr;
190 int err = 0;
191
192 err = mmc_wait_for_cmd(host, cmd, 0);
193 if (err)
194 return err;
195
196 if (mmc_host_is_spi(host)) {
197 if (!(cmd->resp[0] & R1_SPI_IDLE)) {
198 *busy = false;
199 return 0;
200 }
201 } else {
202 if (cmd->resp[0] & MMC_CARD_BUSY) {
203 *busy = false;
204 return 0;
205 }
206 }
207
208 *busy = true;
209
210 /*
211 * According to eMMC specification v5.1 section 6.4.3, we
212 * should issue CMD1 repeatedly in the idle state until
213 * the eMMC is ready. Otherwise some eMMC devices seem to enter
214 * the inactive mode after mmc_init_card() issued CMD0 when
215 * the eMMC device is busy.
216 */
217 if (!ocr && !mmc_host_is_spi(host))
218 cmd->arg = cmd->resp[0] | BIT(30);
219
220 return 0;
221}
222
223int mmc_send_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr)
224{
225 struct mmc_command cmd = {};
226 int err = 0;
227 struct mmc_op_cond_busy_data cb_data = {
228 .host = host,
229 .ocr = ocr,
230 .cmd = &cmd
231 };
232
233 cmd.opcode = MMC_SEND_OP_COND;
234 cmd.arg = mmc_host_is_spi(host) ? 0 : ocr;
235 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R3 | MMC_CMD_BCR;
236
237 err = __mmc_poll_for_busy(host, MMC_OP_COND_PERIOD_US,
238 MMC_OP_COND_TIMEOUT_MS,
239 &__mmc_send_op_cond_cb, &cb_data);
240 if (err)
241 return err;
242
243 if (rocr && !mmc_host_is_spi(host))
244 *rocr = cmd.resp[0];
245
246 return err;
247}
248
249int mmc_set_relative_addr(struct mmc_card *card)
250{
251 struct mmc_command cmd = {};
252
253 cmd.opcode = MMC_SET_RELATIVE_ADDR;
254 cmd.arg = card->rca << 16;
255 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
256
257 return mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES);
258}
259
260static int
261mmc_send_cxd_native(struct mmc_host *host, u32 arg, u32 *cxd, int opcode)
262{
263 int err;
264 struct mmc_command cmd = {};
265
266 cmd.opcode = opcode;
267 cmd.arg = arg;
268 cmd.flags = MMC_RSP_R2 | MMC_CMD_AC;
269
270 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
271 if (err)
272 return err;
273
274 memcpy(cxd, cmd.resp, sizeof(u32) * 4);
275
276 return 0;
277}
278
279/*
280 * NOTE: void *buf, caller for the buf is required to use DMA-capable
281 * buffer or on-stack buffer (with some overhead in callee).
282 */
283int mmc_send_adtc_data(struct mmc_card *card, struct mmc_host *host, u32 opcode,
284 u32 args, void *buf, unsigned len)
285{
286 struct mmc_request mrq = {};
287 struct mmc_command cmd = {};
288 struct mmc_data data = {};
289 struct scatterlist sg;
290
291 mrq.cmd = &cmd;
292 mrq.data = &data;
293
294 cmd.opcode = opcode;
295 cmd.arg = args;
296
297 /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we
298 * rely on callers to never use this with "native" calls for reading
299 * CSD or CID. Native versions of those commands use the R2 type,
300 * not R1 plus a data block.
301 */
302 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
303
304 data.blksz = len;
305 data.blocks = 1;
306 data.flags = MMC_DATA_READ;
307 data.sg = &sg;
308 data.sg_len = 1;
309
310 sg_init_one(&sg, buf, len);
311
312 if (opcode == MMC_SEND_CSD || opcode == MMC_SEND_CID) {
313 /*
314 * The spec states that CSR and CID accesses have a timeout
315 * of 64 clock cycles.
316 */
317 data.timeout_ns = 0;
318 data.timeout_clks = 64;
319 } else
320 mmc_set_data_timeout(&data, card);
321
322 mmc_wait_for_req(host, &mrq);
323
324 if (cmd.error)
325 return cmd.error;
326 if (data.error)
327 return data.error;
328
329 return 0;
330}
331
332static int mmc_spi_send_cxd(struct mmc_host *host, u32 *cxd, u32 opcode)
333{
334 int ret, i;
335 __be32 *cxd_tmp;
336
337 cxd_tmp = kzalloc(16, GFP_KERNEL);
338 if (!cxd_tmp)
339 return -ENOMEM;
340
341 ret = mmc_send_adtc_data(NULL, host, opcode, 0, cxd_tmp, 16);
342 if (ret)
343 goto err;
344
345 for (i = 0; i < 4; i++)
346 cxd[i] = be32_to_cpu(cxd_tmp[i]);
347
348err:
349 kfree(cxd_tmp);
350 return ret;
351}
352
353int mmc_send_csd(struct mmc_card *card, u32 *csd)
354{
355 if (mmc_host_is_spi(card->host))
356 return mmc_spi_send_cxd(card->host, csd, MMC_SEND_CSD);
357
358 return mmc_send_cxd_native(card->host, card->rca << 16, csd,
359 MMC_SEND_CSD);
360}
361
362int mmc_send_cid(struct mmc_host *host, u32 *cid)
363{
364 if (mmc_host_is_spi(host))
365 return mmc_spi_send_cxd(host, cid, MMC_SEND_CID);
366
367 return mmc_send_cxd_native(host, 0, cid, MMC_ALL_SEND_CID);
368}
369
370int mmc_get_ext_csd(struct mmc_card *card, u8 **new_ext_csd)
371{
372 int err;
373 u8 *ext_csd;
374
375 if (!card || !new_ext_csd)
376 return -EINVAL;
377
378 if (!mmc_can_ext_csd(card))
379 return -EOPNOTSUPP;
380
381 /*
382 * As the ext_csd is so large and mostly unused, we don't store the
383 * raw block in mmc_card.
384 */
385 ext_csd = kzalloc(512, GFP_KERNEL);
386 if (!ext_csd)
387 return -ENOMEM;
388
389 err = mmc_send_adtc_data(card, card->host, MMC_SEND_EXT_CSD, 0, ext_csd,
390 512);
391 if (err)
392 kfree(ext_csd);
393 else
394 *new_ext_csd = ext_csd;
395
396 return err;
397}
398EXPORT_SYMBOL_GPL(mmc_get_ext_csd);
399
400int mmc_spi_read_ocr(struct mmc_host *host, int highcap, u32 *ocrp)
401{
402 struct mmc_command cmd = {};
403 int err;
404
405 cmd.opcode = MMC_SPI_READ_OCR;
406 cmd.arg = highcap ? (1 << 30) : 0;
407 cmd.flags = MMC_RSP_SPI_R3;
408
409 err = mmc_wait_for_cmd(host, &cmd, 0);
410
411 *ocrp = cmd.resp[1];
412 return err;
413}
414
415int mmc_spi_set_crc(struct mmc_host *host, int use_crc)
416{
417 struct mmc_command cmd = {};
418 int err;
419
420 cmd.opcode = MMC_SPI_CRC_ON_OFF;
421 cmd.flags = MMC_RSP_SPI_R1;
422 cmd.arg = use_crc;
423
424 err = mmc_wait_for_cmd(host, &cmd, 0);
425 if (!err)
426 host->use_spi_crc = use_crc;
427 return err;
428}
429
430static int mmc_switch_status_error(struct mmc_host *host, u32 status)
431{
432 if (mmc_host_is_spi(host)) {
433 if (status & R1_SPI_ILLEGAL_COMMAND)
434 return -EBADMSG;
435 } else {
436 if (R1_STATUS(status))
437 pr_warn("%s: unexpected status %#x after switch\n",
438 mmc_hostname(host), status);
439 if (status & R1_SWITCH_ERROR)
440 return -EBADMSG;
441 }
442 return 0;
443}
444
445/* Caller must hold re-tuning */
446int mmc_switch_status(struct mmc_card *card, bool crc_err_fatal)
447{
448 u32 status;
449 int err;
450
451 err = mmc_send_status(card, &status);
452 if (!crc_err_fatal && err == -EILSEQ)
453 return 0;
454 if (err)
455 return err;
456
457 return mmc_switch_status_error(card->host, status);
458}
459
460static int mmc_busy_cb(void *cb_data, bool *busy)
461{
462 struct mmc_busy_data *data = cb_data;
463 struct mmc_host *host = data->card->host;
464 u32 status = 0;
465 int err;
466
467 if (data->busy_cmd != MMC_BUSY_IO && host->ops->card_busy) {
468 *busy = host->ops->card_busy(host);
469 return 0;
470 }
471
472 err = mmc_send_status(data->card, &status);
473 if (data->retry_crc_err && err == -EILSEQ) {
474 *busy = true;
475 return 0;
476 }
477 if (err)
478 return err;
479
480 switch (data->busy_cmd) {
481 case MMC_BUSY_CMD6:
482 err = mmc_switch_status_error(host, status);
483 break;
484 case MMC_BUSY_ERASE:
485 err = R1_STATUS(status) ? -EIO : 0;
486 break;
487 case MMC_BUSY_HPI:
488 case MMC_BUSY_EXTR_SINGLE:
489 case MMC_BUSY_IO:
490 break;
491 default:
492 err = -EINVAL;
493 }
494
495 if (err)
496 return err;
497
498 *busy = !mmc_ready_for_data(status);
499 return 0;
500}
501
502int __mmc_poll_for_busy(struct mmc_host *host, unsigned int period_us,
503 unsigned int timeout_ms,
504 int (*busy_cb)(void *cb_data, bool *busy),
505 void *cb_data)
506{
507 int err;
508 unsigned long timeout;
509 unsigned int udelay = period_us ? period_us : 32, udelay_max = 32768;
510 bool expired = false;
511 bool busy = false;
512
513 timeout = jiffies + msecs_to_jiffies(timeout_ms) + 1;
514 do {
515 /*
516 * Due to the possibility of being preempted while polling,
517 * check the expiration time first.
518 */
519 expired = time_after(jiffies, timeout);
520
521 err = (*busy_cb)(cb_data, &busy);
522 if (err)
523 return err;
524
525 /* Timeout if the device still remains busy. */
526 if (expired && busy) {
527 pr_err("%s: Card stuck being busy! %s\n",
528 mmc_hostname(host), __func__);
529 return -ETIMEDOUT;
530 }
531
532 /* Throttle the polling rate to avoid hogging the CPU. */
533 if (busy) {
534 usleep_range(udelay, udelay * 2);
535 if (udelay < udelay_max)
536 udelay *= 2;
537 }
538 } while (busy);
539
540 return 0;
541}
542EXPORT_SYMBOL_GPL(__mmc_poll_for_busy);
543
544int mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms,
545 bool retry_crc_err, enum mmc_busy_cmd busy_cmd)
546{
547 struct mmc_host *host = card->host;
548 struct mmc_busy_data cb_data;
549
550 cb_data.card = card;
551 cb_data.retry_crc_err = retry_crc_err;
552 cb_data.busy_cmd = busy_cmd;
553
554 return __mmc_poll_for_busy(host, 0, timeout_ms, &mmc_busy_cb, &cb_data);
555}
556EXPORT_SYMBOL_GPL(mmc_poll_for_busy);
557
558bool mmc_prepare_busy_cmd(struct mmc_host *host, struct mmc_command *cmd,
559 unsigned int timeout_ms)
560{
561 /*
562 * If the max_busy_timeout of the host is specified, make sure it's
563 * enough to fit the used timeout_ms. In case it's not, let's instruct
564 * the host to avoid HW busy detection, by converting to a R1 response
565 * instead of a R1B. Note, some hosts requires R1B, which also means
566 * they are on their own when it comes to deal with the busy timeout.
567 */
568 if (!(host->caps & MMC_CAP_NEED_RSP_BUSY) && host->max_busy_timeout &&
569 (timeout_ms > host->max_busy_timeout)) {
570 cmd->flags = MMC_CMD_AC | MMC_RSP_SPI_R1 | MMC_RSP_R1;
571 return false;
572 }
573
574 cmd->flags = MMC_CMD_AC | MMC_RSP_SPI_R1B | MMC_RSP_R1B;
575 cmd->busy_timeout = timeout_ms;
576 return true;
577}
578
579/**
580 * __mmc_switch - modify EXT_CSD register
581 * @card: the MMC card associated with the data transfer
582 * @set: cmd set values
583 * @index: EXT_CSD register index
584 * @value: value to program into EXT_CSD register
585 * @timeout_ms: timeout (ms) for operation performed by register write,
586 * timeout of zero implies maximum possible timeout
587 * @timing: new timing to change to
588 * @send_status: send status cmd to poll for busy
589 * @retry_crc_err: retry when CRC errors when polling with CMD13 for busy
590 * @retries: number of retries
591 *
592 * Modifies the EXT_CSD register for selected card.
593 */
594int __mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
595 unsigned int timeout_ms, unsigned char timing,
596 bool send_status, bool retry_crc_err, unsigned int retries)
597{
598 struct mmc_host *host = card->host;
599 int err;
600 struct mmc_command cmd = {};
601 bool use_r1b_resp;
602 unsigned char old_timing = host->ios.timing;
603
604 mmc_retune_hold(host);
605
606 if (!timeout_ms) {
607 pr_warn("%s: unspecified timeout for CMD6 - use generic\n",
608 mmc_hostname(host));
609 timeout_ms = card->ext_csd.generic_cmd6_time;
610 }
611
612 cmd.opcode = MMC_SWITCH;
613 cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
614 (index << 16) |
615 (value << 8) |
616 set;
617 use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms);
618
619 err = mmc_wait_for_cmd(host, &cmd, retries);
620 if (err)
621 goto out;
622
623 /*If SPI or used HW busy detection above, then we don't need to poll. */
624 if (((host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) ||
625 mmc_host_is_spi(host))
626 goto out_tim;
627
628 /*
629 * If the host doesn't support HW polling via the ->card_busy() ops and
630 * when it's not allowed to poll by using CMD13, then we need to rely on
631 * waiting the stated timeout to be sufficient.
632 */
633 if (!send_status && !host->ops->card_busy) {
634 mmc_delay(timeout_ms);
635 goto out_tim;
636 }
637
638 /* Let's try to poll to find out when the command is completed. */
639 err = mmc_poll_for_busy(card, timeout_ms, retry_crc_err, MMC_BUSY_CMD6);
640 if (err)
641 goto out;
642
643out_tim:
644 /* Switch to new timing before check switch status. */
645 if (timing)
646 mmc_set_timing(host, timing);
647
648 if (send_status) {
649 err = mmc_switch_status(card, true);
650 if (err && timing)
651 mmc_set_timing(host, old_timing);
652 }
653out:
654 mmc_retune_release(host);
655
656 return err;
657}
658
659int mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
660 unsigned int timeout_ms)
661{
662 return __mmc_switch(card, set, index, value, timeout_ms, 0,
663 true, false, MMC_CMD_RETRIES);
664}
665EXPORT_SYMBOL_GPL(mmc_switch);
666
667int mmc_send_tuning(struct mmc_host *host, u32 opcode, int *cmd_error)
668{
669 struct mmc_request mrq = {};
670 struct mmc_command cmd = {};
671 struct mmc_data data = {};
672 struct scatterlist sg;
673 struct mmc_ios *ios = &host->ios;
674 const u8 *tuning_block_pattern;
675 int size, err = 0;
676 u8 *data_buf;
677
678 if (ios->bus_width == MMC_BUS_WIDTH_8) {
679 tuning_block_pattern = tuning_blk_pattern_8bit;
680 size = sizeof(tuning_blk_pattern_8bit);
681 } else if (ios->bus_width == MMC_BUS_WIDTH_4) {
682 tuning_block_pattern = tuning_blk_pattern_4bit;
683 size = sizeof(tuning_blk_pattern_4bit);
684 } else
685 return -EINVAL;
686
687 data_buf = kzalloc(size, GFP_KERNEL);
688 if (!data_buf)
689 return -ENOMEM;
690
691 mrq.cmd = &cmd;
692 mrq.data = &data;
693
694 cmd.opcode = opcode;
695 cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
696
697 data.blksz = size;
698 data.blocks = 1;
699 data.flags = MMC_DATA_READ;
700
701 /*
702 * According to the tuning specs, Tuning process
703 * is normally shorter 40 executions of CMD19,
704 * and timeout value should be shorter than 150 ms
705 */
706 data.timeout_ns = 150 * NSEC_PER_MSEC;
707
708 data.sg = &sg;
709 data.sg_len = 1;
710 sg_init_one(&sg, data_buf, size);
711
712 mmc_wait_for_req(host, &mrq);
713
714 if (cmd_error)
715 *cmd_error = cmd.error;
716
717 if (cmd.error) {
718 err = cmd.error;
719 goto out;
720 }
721
722 if (data.error) {
723 err = data.error;
724 goto out;
725 }
726
727 if (memcmp(data_buf, tuning_block_pattern, size))
728 err = -EIO;
729
730out:
731 kfree(data_buf);
732 return err;
733}
734EXPORT_SYMBOL_GPL(mmc_send_tuning);
735
736int mmc_send_abort_tuning(struct mmc_host *host, u32 opcode)
737{
738 struct mmc_command cmd = {};
739
740 /*
741 * eMMC specification specifies that CMD12 can be used to stop a tuning
742 * command, but SD specification does not, so do nothing unless it is
743 * eMMC.
744 */
745 if (opcode != MMC_SEND_TUNING_BLOCK_HS200)
746 return 0;
747
748 cmd.opcode = MMC_STOP_TRANSMISSION;
749 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
750
751 /*
752 * For drivers that override R1 to R1b, set an arbitrary timeout based
753 * on the tuning timeout i.e. 150ms.
754 */
755 cmd.busy_timeout = 150;
756
757 return mmc_wait_for_cmd(host, &cmd, 0);
758}
759EXPORT_SYMBOL_GPL(mmc_send_abort_tuning);
760
761static int
762mmc_send_bus_test(struct mmc_card *card, struct mmc_host *host, u8 opcode,
763 u8 len)
764{
765 struct mmc_request mrq = {};
766 struct mmc_command cmd = {};
767 struct mmc_data data = {};
768 struct scatterlist sg;
769 u8 *data_buf;
770 u8 *test_buf;
771 int i, err;
772 static u8 testdata_8bit[8] = { 0x55, 0xaa, 0, 0, 0, 0, 0, 0 };
773 static u8 testdata_4bit[4] = { 0x5a, 0, 0, 0 };
774
775 /* dma onto stack is unsafe/nonportable, but callers to this
776 * routine normally provide temporary on-stack buffers ...
777 */
778 data_buf = kmalloc(len, GFP_KERNEL);
779 if (!data_buf)
780 return -ENOMEM;
781
782 if (len == 8)
783 test_buf = testdata_8bit;
784 else if (len == 4)
785 test_buf = testdata_4bit;
786 else {
787 pr_err("%s: Invalid bus_width %d\n",
788 mmc_hostname(host), len);
789 kfree(data_buf);
790 return -EINVAL;
791 }
792
793 if (opcode == MMC_BUS_TEST_W)
794 memcpy(data_buf, test_buf, len);
795
796 mrq.cmd = &cmd;
797 mrq.data = &data;
798 cmd.opcode = opcode;
799 cmd.arg = 0;
800
801 /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we
802 * rely on callers to never use this with "native" calls for reading
803 * CSD or CID. Native versions of those commands use the R2 type,
804 * not R1 plus a data block.
805 */
806 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
807
808 data.blksz = len;
809 data.blocks = 1;
810 if (opcode == MMC_BUS_TEST_R)
811 data.flags = MMC_DATA_READ;
812 else
813 data.flags = MMC_DATA_WRITE;
814
815 data.sg = &sg;
816 data.sg_len = 1;
817 mmc_set_data_timeout(&data, card);
818 sg_init_one(&sg, data_buf, len);
819 mmc_wait_for_req(host, &mrq);
820 err = 0;
821 if (opcode == MMC_BUS_TEST_R) {
822 for (i = 0; i < len / 4; i++)
823 if ((test_buf[i] ^ data_buf[i]) != 0xff) {
824 err = -EIO;
825 break;
826 }
827 }
828 kfree(data_buf);
829
830 if (cmd.error)
831 return cmd.error;
832 if (data.error)
833 return data.error;
834
835 return err;
836}
837
838int mmc_bus_test(struct mmc_card *card, u8 bus_width)
839{
840 int width;
841
842 if (bus_width == MMC_BUS_WIDTH_8)
843 width = 8;
844 else if (bus_width == MMC_BUS_WIDTH_4)
845 width = 4;
846 else if (bus_width == MMC_BUS_WIDTH_1)
847 return 0; /* no need for test */
848 else
849 return -EINVAL;
850
851 /*
852 * Ignore errors from BUS_TEST_W. BUS_TEST_R will fail if there
853 * is a problem. This improves chances that the test will work.
854 */
855 mmc_send_bus_test(card, card->host, MMC_BUS_TEST_W, width);
856 return mmc_send_bus_test(card, card->host, MMC_BUS_TEST_R, width);
857}
858
859static int mmc_send_hpi_cmd(struct mmc_card *card)
860{
861 unsigned int busy_timeout_ms = card->ext_csd.out_of_int_time;
862 struct mmc_host *host = card->host;
863 bool use_r1b_resp = false;
864 struct mmc_command cmd = {};
865 int err;
866
867 cmd.opcode = card->ext_csd.hpi_cmd;
868 cmd.arg = card->rca << 16 | 1;
869 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
870
871 if (cmd.opcode == MMC_STOP_TRANSMISSION)
872 use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd,
873 busy_timeout_ms);
874
875 err = mmc_wait_for_cmd(host, &cmd, 0);
876 if (err) {
877 pr_warn("%s: HPI error %d. Command response %#x\n",
878 mmc_hostname(host), err, cmd.resp[0]);
879 return err;
880 }
881
882 /* No need to poll when using HW busy detection. */
883 if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp)
884 return 0;
885
886 /* Let's poll to find out when the HPI request completes. */
887 return mmc_poll_for_busy(card, busy_timeout_ms, false, MMC_BUSY_HPI);
888}
889
890/**
891 * mmc_interrupt_hpi - Issue for High priority Interrupt
892 * @card: the MMC card associated with the HPI transfer
893 *
894 * Issued High Priority Interrupt, and check for card status
895 * until out-of prg-state.
896 */
897static int mmc_interrupt_hpi(struct mmc_card *card)
898{
899 int err;
900 u32 status;
901
902 if (!card->ext_csd.hpi_en) {
903 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
904 return 1;
905 }
906
907 err = mmc_send_status(card, &status);
908 if (err) {
909 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
910 goto out;
911 }
912
913 switch (R1_CURRENT_STATE(status)) {
914 case R1_STATE_IDLE:
915 case R1_STATE_READY:
916 case R1_STATE_STBY:
917 case R1_STATE_TRAN:
918 /*
919 * In idle and transfer states, HPI is not needed and the caller
920 * can issue the next intended command immediately
921 */
922 goto out;
923 case R1_STATE_PRG:
924 break;
925 default:
926 /* In all other states, it's illegal to issue HPI */
927 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
928 mmc_hostname(card->host), R1_CURRENT_STATE(status));
929 err = -EINVAL;
930 goto out;
931 }
932
933 err = mmc_send_hpi_cmd(card);
934out:
935 return err;
936}
937
938int mmc_can_ext_csd(struct mmc_card *card)
939{
940 return (card && card->csd.mmca_vsn > CSD_SPEC_VER_3);
941}
942
943static int mmc_read_bkops_status(struct mmc_card *card)
944{
945 int err;
946 u8 *ext_csd;
947
948 err = mmc_get_ext_csd(card, &ext_csd);
949 if (err)
950 return err;
951
952 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
953 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
954 kfree(ext_csd);
955 return 0;
956}
957
958/**
959 * mmc_run_bkops - Run BKOPS for supported cards
960 * @card: MMC card to run BKOPS for
961 *
962 * Run background operations synchronously for cards having manual BKOPS
963 * enabled and in case it reports urgent BKOPS level.
964*/
965void mmc_run_bkops(struct mmc_card *card)
966{
967 int err;
968
969 if (!card->ext_csd.man_bkops_en)
970 return;
971
972 err = mmc_read_bkops_status(card);
973 if (err) {
974 pr_err("%s: Failed to read bkops status: %d\n",
975 mmc_hostname(card->host), err);
976 return;
977 }
978
979 if (!card->ext_csd.raw_bkops_status ||
980 card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2)
981 return;
982
983 mmc_retune_hold(card->host);
984
985 /*
986 * For urgent BKOPS status, LEVEL_2 and higher, let's execute
987 * synchronously. Future wise, we may consider to start BKOPS, for less
988 * urgent levels by using an asynchronous background task, when idle.
989 */
990 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
991 EXT_CSD_BKOPS_START, 1, MMC_BKOPS_TIMEOUT_MS);
992 /*
993 * If the BKOPS timed out, the card is probably still busy in the
994 * R1_STATE_PRG. Rather than continue to wait, let's try to abort
995 * it with a HPI command to get back into R1_STATE_TRAN.
996 */
997 if (err == -ETIMEDOUT && !mmc_interrupt_hpi(card))
998 pr_warn("%s: BKOPS aborted\n", mmc_hostname(card->host));
999 else if (err)
1000 pr_warn("%s: Error %d running bkops\n",
1001 mmc_hostname(card->host), err);
1002
1003 mmc_retune_release(card->host);
1004}
1005EXPORT_SYMBOL(mmc_run_bkops);
1006
1007static int mmc_cmdq_switch(struct mmc_card *card, bool enable)
1008{
1009 u8 val = enable ? EXT_CSD_CMDQ_MODE_ENABLED : 0;
1010 int err;
1011
1012 if (!card->ext_csd.cmdq_support)
1013 return -EOPNOTSUPP;
1014
1015 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ_MODE_EN,
1016 val, card->ext_csd.generic_cmd6_time);
1017 if (!err)
1018 card->ext_csd.cmdq_en = enable;
1019
1020 return err;
1021}
1022
1023int mmc_cmdq_enable(struct mmc_card *card)
1024{
1025 return mmc_cmdq_switch(card, true);
1026}
1027EXPORT_SYMBOL_GPL(mmc_cmdq_enable);
1028
1029int mmc_cmdq_disable(struct mmc_card *card)
1030{
1031 return mmc_cmdq_switch(card, false);
1032}
1033EXPORT_SYMBOL_GPL(mmc_cmdq_disable);
1034
1035int mmc_sanitize(struct mmc_card *card, unsigned int timeout_ms)
1036{
1037 struct mmc_host *host = card->host;
1038 int err;
1039
1040 if (!mmc_can_sanitize(card)) {
1041 pr_warn("%s: Sanitize not supported\n", mmc_hostname(host));
1042 return -EOPNOTSUPP;
1043 }
1044
1045 if (!timeout_ms)
1046 timeout_ms = MMC_SANITIZE_TIMEOUT_MS;
1047
1048 pr_debug("%s: Sanitize in progress...\n", mmc_hostname(host));
1049
1050 mmc_retune_hold(host);
1051
1052 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_SANITIZE_START,
1053 1, timeout_ms, 0, true, false, 0);
1054 if (err)
1055 pr_err("%s: Sanitize failed err=%d\n", mmc_hostname(host), err);
1056
1057 /*
1058 * If the sanitize operation timed out, the card is probably still busy
1059 * in the R1_STATE_PRG. Rather than continue to wait, let's try to abort
1060 * it with a HPI command to get back into R1_STATE_TRAN.
1061 */
1062 if (err == -ETIMEDOUT && !mmc_interrupt_hpi(card))
1063 pr_warn("%s: Sanitize aborted\n", mmc_hostname(host));
1064
1065 mmc_retune_release(host);
1066
1067 pr_debug("%s: Sanitize completed\n", mmc_hostname(host));
1068 return err;
1069}
1070EXPORT_SYMBOL_GPL(mmc_sanitize);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * linux/drivers/mmc/core/mmc_ops.h
4 *
5 * Copyright 2006-2007 Pierre Ossman
6 */
7
8#include <linux/slab.h>
9#include <linux/export.h>
10#include <linux/types.h>
11#include <linux/scatterlist.h>
12
13#include <linux/mmc/host.h>
14#include <linux/mmc/card.h>
15#include <linux/mmc/mmc.h>
16
17#include "core.h"
18#include "card.h"
19#include "host.h"
20#include "mmc_ops.h"
21
22#define MMC_BKOPS_TIMEOUT_MS (120 * 1000) /* 120s */
23#define MMC_CACHE_FLUSH_TIMEOUT_MS (30 * 1000) /* 30s */
24#define MMC_SANITIZE_TIMEOUT_MS (240 * 1000) /* 240s */
25
26static const u8 tuning_blk_pattern_4bit[] = {
27 0xff, 0x0f, 0xff, 0x00, 0xff, 0xcc, 0xc3, 0xcc,
28 0xc3, 0x3c, 0xcc, 0xff, 0xfe, 0xff, 0xfe, 0xef,
29 0xff, 0xdf, 0xff, 0xdd, 0xff, 0xfb, 0xff, 0xfb,
30 0xbf, 0xff, 0x7f, 0xff, 0x77, 0xf7, 0xbd, 0xef,
31 0xff, 0xf0, 0xff, 0xf0, 0x0f, 0xfc, 0xcc, 0x3c,
32 0xcc, 0x33, 0xcc, 0xcf, 0xff, 0xef, 0xff, 0xee,
33 0xff, 0xfd, 0xff, 0xfd, 0xdf, 0xff, 0xbf, 0xff,
34 0xbb, 0xff, 0xf7, 0xff, 0xf7, 0x7f, 0x7b, 0xde,
35};
36
37static const u8 tuning_blk_pattern_8bit[] = {
38 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00,
39 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc,
40 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff,
41 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff,
42 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd,
43 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb,
44 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff,
45 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff,
46 0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00,
47 0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc,
48 0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff,
49 0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee,
50 0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd,
51 0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff,
52 0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff,
53 0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee,
54};
55
56int __mmc_send_status(struct mmc_card *card, u32 *status, unsigned int retries)
57{
58 int err;
59 struct mmc_command cmd = {};
60
61 cmd.opcode = MMC_SEND_STATUS;
62 if (!mmc_host_is_spi(card->host))
63 cmd.arg = card->rca << 16;
64 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
65
66 err = mmc_wait_for_cmd(card->host, &cmd, retries);
67 if (err)
68 return err;
69
70 /* NOTE: callers are required to understand the difference
71 * between "native" and SPI format status words!
72 */
73 if (status)
74 *status = cmd.resp[0];
75
76 return 0;
77}
78EXPORT_SYMBOL_GPL(__mmc_send_status);
79
80int mmc_send_status(struct mmc_card *card, u32 *status)
81{
82 return __mmc_send_status(card, status, MMC_CMD_RETRIES);
83}
84EXPORT_SYMBOL_GPL(mmc_send_status);
85
86static int _mmc_select_card(struct mmc_host *host, struct mmc_card *card)
87{
88 struct mmc_command cmd = {};
89
90 cmd.opcode = MMC_SELECT_CARD;
91
92 if (card) {
93 cmd.arg = card->rca << 16;
94 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
95 } else {
96 cmd.arg = 0;
97 cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
98 }
99
100 return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
101}
102
103int mmc_select_card(struct mmc_card *card)
104{
105
106 return _mmc_select_card(card->host, card);
107}
108
109int mmc_deselect_cards(struct mmc_host *host)
110{
111 return _mmc_select_card(host, NULL);
112}
113
114/*
115 * Write the value specified in the device tree or board code into the optional
116 * 16 bit Driver Stage Register. This can be used to tune raise/fall times and
117 * drive strength of the DAT and CMD outputs. The actual meaning of a given
118 * value is hardware dependant.
119 * The presence of the DSR register can be determined from the CSD register,
120 * bit 76.
121 */
122int mmc_set_dsr(struct mmc_host *host)
123{
124 struct mmc_command cmd = {};
125
126 cmd.opcode = MMC_SET_DSR;
127
128 cmd.arg = (host->dsr << 16) | 0xffff;
129 cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
130
131 return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
132}
133
134int mmc_go_idle(struct mmc_host *host)
135{
136 int err;
137 struct mmc_command cmd = {};
138
139 /*
140 * Non-SPI hosts need to prevent chipselect going active during
141 * GO_IDLE; that would put chips into SPI mode. Remind them of
142 * that in case of hardware that won't pull up DAT3/nCS otherwise.
143 *
144 * SPI hosts ignore ios.chip_select; it's managed according to
145 * rules that must accommodate non-MMC slaves which this layer
146 * won't even know about.
147 */
148 if (!mmc_host_is_spi(host)) {
149 mmc_set_chip_select(host, MMC_CS_HIGH);
150 mmc_delay(1);
151 }
152
153 cmd.opcode = MMC_GO_IDLE_STATE;
154 cmd.arg = 0;
155 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_NONE | MMC_CMD_BC;
156
157 err = mmc_wait_for_cmd(host, &cmd, 0);
158
159 mmc_delay(1);
160
161 if (!mmc_host_is_spi(host)) {
162 mmc_set_chip_select(host, MMC_CS_DONTCARE);
163 mmc_delay(1);
164 }
165
166 host->use_spi_crc = 0;
167
168 return err;
169}
170
171int mmc_send_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr)
172{
173 struct mmc_command cmd = {};
174 int i, err = 0;
175
176 cmd.opcode = MMC_SEND_OP_COND;
177 cmd.arg = mmc_host_is_spi(host) ? 0 : ocr;
178 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R3 | MMC_CMD_BCR;
179
180 for (i = 100; i; i--) {
181 err = mmc_wait_for_cmd(host, &cmd, 0);
182 if (err)
183 break;
184
185 /* wait until reset completes */
186 if (mmc_host_is_spi(host)) {
187 if (!(cmd.resp[0] & R1_SPI_IDLE))
188 break;
189 } else {
190 if (cmd.resp[0] & MMC_CARD_BUSY)
191 break;
192 }
193
194 err = -ETIMEDOUT;
195
196 mmc_delay(10);
197
198 /*
199 * According to eMMC specification v5.1 section 6.4.3, we
200 * should issue CMD1 repeatedly in the idle state until
201 * the eMMC is ready. Otherwise some eMMC devices seem to enter
202 * the inactive mode after mmc_init_card() issued CMD0 when
203 * the eMMC device is busy.
204 */
205 if (!ocr && !mmc_host_is_spi(host))
206 cmd.arg = cmd.resp[0] | BIT(30);
207 }
208
209 if (rocr && !mmc_host_is_spi(host))
210 *rocr = cmd.resp[0];
211
212 return err;
213}
214
215int mmc_set_relative_addr(struct mmc_card *card)
216{
217 struct mmc_command cmd = {};
218
219 cmd.opcode = MMC_SET_RELATIVE_ADDR;
220 cmd.arg = card->rca << 16;
221 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
222
223 return mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES);
224}
225
226static int
227mmc_send_cxd_native(struct mmc_host *host, u32 arg, u32 *cxd, int opcode)
228{
229 int err;
230 struct mmc_command cmd = {};
231
232 cmd.opcode = opcode;
233 cmd.arg = arg;
234 cmd.flags = MMC_RSP_R2 | MMC_CMD_AC;
235
236 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
237 if (err)
238 return err;
239
240 memcpy(cxd, cmd.resp, sizeof(u32) * 4);
241
242 return 0;
243}
244
245/*
246 * NOTE: void *buf, caller for the buf is required to use DMA-capable
247 * buffer or on-stack buffer (with some overhead in callee).
248 */
249static int
250mmc_send_cxd_data(struct mmc_card *card, struct mmc_host *host,
251 u32 opcode, void *buf, unsigned len)
252{
253 struct mmc_request mrq = {};
254 struct mmc_command cmd = {};
255 struct mmc_data data = {};
256 struct scatterlist sg;
257
258 mrq.cmd = &cmd;
259 mrq.data = &data;
260
261 cmd.opcode = opcode;
262 cmd.arg = 0;
263
264 /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we
265 * rely on callers to never use this with "native" calls for reading
266 * CSD or CID. Native versions of those commands use the R2 type,
267 * not R1 plus a data block.
268 */
269 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
270
271 data.blksz = len;
272 data.blocks = 1;
273 data.flags = MMC_DATA_READ;
274 data.sg = &sg;
275 data.sg_len = 1;
276
277 sg_init_one(&sg, buf, len);
278
279 if (opcode == MMC_SEND_CSD || opcode == MMC_SEND_CID) {
280 /*
281 * The spec states that CSR and CID accesses have a timeout
282 * of 64 clock cycles.
283 */
284 data.timeout_ns = 0;
285 data.timeout_clks = 64;
286 } else
287 mmc_set_data_timeout(&data, card);
288
289 mmc_wait_for_req(host, &mrq);
290
291 if (cmd.error)
292 return cmd.error;
293 if (data.error)
294 return data.error;
295
296 return 0;
297}
298
299static int mmc_spi_send_csd(struct mmc_card *card, u32 *csd)
300{
301 int ret, i;
302 __be32 *csd_tmp;
303
304 csd_tmp = kzalloc(16, GFP_KERNEL);
305 if (!csd_tmp)
306 return -ENOMEM;
307
308 ret = mmc_send_cxd_data(card, card->host, MMC_SEND_CSD, csd_tmp, 16);
309 if (ret)
310 goto err;
311
312 for (i = 0; i < 4; i++)
313 csd[i] = be32_to_cpu(csd_tmp[i]);
314
315err:
316 kfree(csd_tmp);
317 return ret;
318}
319
320int mmc_send_csd(struct mmc_card *card, u32 *csd)
321{
322 if (mmc_host_is_spi(card->host))
323 return mmc_spi_send_csd(card, csd);
324
325 return mmc_send_cxd_native(card->host, card->rca << 16, csd,
326 MMC_SEND_CSD);
327}
328
329static int mmc_spi_send_cid(struct mmc_host *host, u32 *cid)
330{
331 int ret, i;
332 __be32 *cid_tmp;
333
334 cid_tmp = kzalloc(16, GFP_KERNEL);
335 if (!cid_tmp)
336 return -ENOMEM;
337
338 ret = mmc_send_cxd_data(NULL, host, MMC_SEND_CID, cid_tmp, 16);
339 if (ret)
340 goto err;
341
342 for (i = 0; i < 4; i++)
343 cid[i] = be32_to_cpu(cid_tmp[i]);
344
345err:
346 kfree(cid_tmp);
347 return ret;
348}
349
350int mmc_send_cid(struct mmc_host *host, u32 *cid)
351{
352 if (mmc_host_is_spi(host))
353 return mmc_spi_send_cid(host, cid);
354
355 return mmc_send_cxd_native(host, 0, cid, MMC_ALL_SEND_CID);
356}
357
358int mmc_get_ext_csd(struct mmc_card *card, u8 **new_ext_csd)
359{
360 int err;
361 u8 *ext_csd;
362
363 if (!card || !new_ext_csd)
364 return -EINVAL;
365
366 if (!mmc_can_ext_csd(card))
367 return -EOPNOTSUPP;
368
369 /*
370 * As the ext_csd is so large and mostly unused, we don't store the
371 * raw block in mmc_card.
372 */
373 ext_csd = kzalloc(512, GFP_KERNEL);
374 if (!ext_csd)
375 return -ENOMEM;
376
377 err = mmc_send_cxd_data(card, card->host, MMC_SEND_EXT_CSD, ext_csd,
378 512);
379 if (err)
380 kfree(ext_csd);
381 else
382 *new_ext_csd = ext_csd;
383
384 return err;
385}
386EXPORT_SYMBOL_GPL(mmc_get_ext_csd);
387
388int mmc_spi_read_ocr(struct mmc_host *host, int highcap, u32 *ocrp)
389{
390 struct mmc_command cmd = {};
391 int err;
392
393 cmd.opcode = MMC_SPI_READ_OCR;
394 cmd.arg = highcap ? (1 << 30) : 0;
395 cmd.flags = MMC_RSP_SPI_R3;
396
397 err = mmc_wait_for_cmd(host, &cmd, 0);
398
399 *ocrp = cmd.resp[1];
400 return err;
401}
402
403int mmc_spi_set_crc(struct mmc_host *host, int use_crc)
404{
405 struct mmc_command cmd = {};
406 int err;
407
408 cmd.opcode = MMC_SPI_CRC_ON_OFF;
409 cmd.flags = MMC_RSP_SPI_R1;
410 cmd.arg = use_crc;
411
412 err = mmc_wait_for_cmd(host, &cmd, 0);
413 if (!err)
414 host->use_spi_crc = use_crc;
415 return err;
416}
417
418static int mmc_switch_status_error(struct mmc_host *host, u32 status)
419{
420 if (mmc_host_is_spi(host)) {
421 if (status & R1_SPI_ILLEGAL_COMMAND)
422 return -EBADMSG;
423 } else {
424 if (R1_STATUS(status))
425 pr_warn("%s: unexpected status %#x after switch\n",
426 mmc_hostname(host), status);
427 if (status & R1_SWITCH_ERROR)
428 return -EBADMSG;
429 }
430 return 0;
431}
432
433/* Caller must hold re-tuning */
434int mmc_switch_status(struct mmc_card *card, bool crc_err_fatal)
435{
436 u32 status;
437 int err;
438
439 err = mmc_send_status(card, &status);
440 if (!crc_err_fatal && err == -EILSEQ)
441 return 0;
442 if (err)
443 return err;
444
445 return mmc_switch_status_error(card->host, status);
446}
447
448static int mmc_busy_status(struct mmc_card *card, bool retry_crc_err,
449 enum mmc_busy_cmd busy_cmd, bool *busy)
450{
451 struct mmc_host *host = card->host;
452 u32 status = 0;
453 int err;
454
455 if (host->ops->card_busy) {
456 *busy = host->ops->card_busy(host);
457 return 0;
458 }
459
460 err = mmc_send_status(card, &status);
461 if (retry_crc_err && err == -EILSEQ) {
462 *busy = true;
463 return 0;
464 }
465 if (err)
466 return err;
467
468 switch (busy_cmd) {
469 case MMC_BUSY_CMD6:
470 err = mmc_switch_status_error(card->host, status);
471 break;
472 case MMC_BUSY_ERASE:
473 err = R1_STATUS(status) ? -EIO : 0;
474 break;
475 case MMC_BUSY_HPI:
476 break;
477 default:
478 err = -EINVAL;
479 }
480
481 if (err)
482 return err;
483
484 *busy = !mmc_ready_for_data(status);
485 return 0;
486}
487
488static int __mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms,
489 bool send_status, bool retry_crc_err,
490 enum mmc_busy_cmd busy_cmd)
491{
492 struct mmc_host *host = card->host;
493 int err;
494 unsigned long timeout;
495 unsigned int udelay = 32, udelay_max = 32768;
496 bool expired = false;
497 bool busy = false;
498
499 /*
500 * In cases when not allowed to poll by using CMD13 or because we aren't
501 * capable of polling by using ->card_busy(), then rely on waiting the
502 * stated timeout to be sufficient.
503 */
504 if (!send_status && !host->ops->card_busy) {
505 mmc_delay(timeout_ms);
506 return 0;
507 }
508
509 timeout = jiffies + msecs_to_jiffies(timeout_ms) + 1;
510 do {
511 /*
512 * Due to the possibility of being preempted while polling,
513 * check the expiration time first.
514 */
515 expired = time_after(jiffies, timeout);
516
517 err = mmc_busy_status(card, retry_crc_err, busy_cmd, &busy);
518 if (err)
519 return err;
520
521 /* Timeout if the device still remains busy. */
522 if (expired && busy) {
523 pr_err("%s: Card stuck being busy! %s\n",
524 mmc_hostname(host), __func__);
525 return -ETIMEDOUT;
526 }
527
528 /* Throttle the polling rate to avoid hogging the CPU. */
529 if (busy) {
530 usleep_range(udelay, udelay * 2);
531 if (udelay < udelay_max)
532 udelay *= 2;
533 }
534 } while (busy);
535
536 return 0;
537}
538
539int mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms,
540 enum mmc_busy_cmd busy_cmd)
541{
542 return __mmc_poll_for_busy(card, timeout_ms, true, false, busy_cmd);
543}
544
545/**
546 * __mmc_switch - modify EXT_CSD register
547 * @card: the MMC card associated with the data transfer
548 * @set: cmd set values
549 * @index: EXT_CSD register index
550 * @value: value to program into EXT_CSD register
551 * @timeout_ms: timeout (ms) for operation performed by register write,
552 * timeout of zero implies maximum possible timeout
553 * @timing: new timing to change to
554 * @send_status: send status cmd to poll for busy
555 * @retry_crc_err: retry when CRC errors when polling with CMD13 for busy
556 *
557 * Modifies the EXT_CSD register for selected card.
558 */
559int __mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
560 unsigned int timeout_ms, unsigned char timing,
561 bool send_status, bool retry_crc_err)
562{
563 struct mmc_host *host = card->host;
564 int err;
565 struct mmc_command cmd = {};
566 bool use_r1b_resp = true;
567 unsigned char old_timing = host->ios.timing;
568
569 mmc_retune_hold(host);
570
571 if (!timeout_ms) {
572 pr_warn("%s: unspecified timeout for CMD6 - use generic\n",
573 mmc_hostname(host));
574 timeout_ms = card->ext_csd.generic_cmd6_time;
575 }
576
577 /*
578 * If the max_busy_timeout of the host is specified, make sure it's
579 * enough to fit the used timeout_ms. In case it's not, let's instruct
580 * the host to avoid HW busy detection, by converting to a R1 response
581 * instead of a R1B. Note, some hosts requires R1B, which also means
582 * they are on their own when it comes to deal with the busy timeout.
583 */
584 if (!(host->caps & MMC_CAP_NEED_RSP_BUSY) && host->max_busy_timeout &&
585 (timeout_ms > host->max_busy_timeout))
586 use_r1b_resp = false;
587
588 cmd.opcode = MMC_SWITCH;
589 cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
590 (index << 16) |
591 (value << 8) |
592 set;
593 cmd.flags = MMC_CMD_AC;
594 if (use_r1b_resp) {
595 cmd.flags |= MMC_RSP_SPI_R1B | MMC_RSP_R1B;
596 cmd.busy_timeout = timeout_ms;
597 } else {
598 cmd.flags |= MMC_RSP_SPI_R1 | MMC_RSP_R1;
599 }
600
601 err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
602 if (err)
603 goto out;
604
605 /*If SPI or used HW busy detection above, then we don't need to poll. */
606 if (((host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) ||
607 mmc_host_is_spi(host))
608 goto out_tim;
609
610 /* Let's try to poll to find out when the command is completed. */
611 err = __mmc_poll_for_busy(card, timeout_ms, send_status, retry_crc_err,
612 MMC_BUSY_CMD6);
613 if (err)
614 goto out;
615
616out_tim:
617 /* Switch to new timing before check switch status. */
618 if (timing)
619 mmc_set_timing(host, timing);
620
621 if (send_status) {
622 err = mmc_switch_status(card, true);
623 if (err && timing)
624 mmc_set_timing(host, old_timing);
625 }
626out:
627 mmc_retune_release(host);
628
629 return err;
630}
631
632int mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
633 unsigned int timeout_ms)
634{
635 return __mmc_switch(card, set, index, value, timeout_ms, 0,
636 true, false);
637}
638EXPORT_SYMBOL_GPL(mmc_switch);
639
640int mmc_send_tuning(struct mmc_host *host, u32 opcode, int *cmd_error)
641{
642 struct mmc_request mrq = {};
643 struct mmc_command cmd = {};
644 struct mmc_data data = {};
645 struct scatterlist sg;
646 struct mmc_ios *ios = &host->ios;
647 const u8 *tuning_block_pattern;
648 int size, err = 0;
649 u8 *data_buf;
650
651 if (ios->bus_width == MMC_BUS_WIDTH_8) {
652 tuning_block_pattern = tuning_blk_pattern_8bit;
653 size = sizeof(tuning_blk_pattern_8bit);
654 } else if (ios->bus_width == MMC_BUS_WIDTH_4) {
655 tuning_block_pattern = tuning_blk_pattern_4bit;
656 size = sizeof(tuning_blk_pattern_4bit);
657 } else
658 return -EINVAL;
659
660 data_buf = kzalloc(size, GFP_KERNEL);
661 if (!data_buf)
662 return -ENOMEM;
663
664 mrq.cmd = &cmd;
665 mrq.data = &data;
666
667 cmd.opcode = opcode;
668 cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
669
670 data.blksz = size;
671 data.blocks = 1;
672 data.flags = MMC_DATA_READ;
673
674 /*
675 * According to the tuning specs, Tuning process
676 * is normally shorter 40 executions of CMD19,
677 * and timeout value should be shorter than 150 ms
678 */
679 data.timeout_ns = 150 * NSEC_PER_MSEC;
680
681 data.sg = &sg;
682 data.sg_len = 1;
683 sg_init_one(&sg, data_buf, size);
684
685 mmc_wait_for_req(host, &mrq);
686
687 if (cmd_error)
688 *cmd_error = cmd.error;
689
690 if (cmd.error) {
691 err = cmd.error;
692 goto out;
693 }
694
695 if (data.error) {
696 err = data.error;
697 goto out;
698 }
699
700 if (memcmp(data_buf, tuning_block_pattern, size))
701 err = -EIO;
702
703out:
704 kfree(data_buf);
705 return err;
706}
707EXPORT_SYMBOL_GPL(mmc_send_tuning);
708
709int mmc_abort_tuning(struct mmc_host *host, u32 opcode)
710{
711 struct mmc_command cmd = {};
712
713 /*
714 * eMMC specification specifies that CMD12 can be used to stop a tuning
715 * command, but SD specification does not, so do nothing unless it is
716 * eMMC.
717 */
718 if (opcode != MMC_SEND_TUNING_BLOCK_HS200)
719 return 0;
720
721 cmd.opcode = MMC_STOP_TRANSMISSION;
722 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
723
724 /*
725 * For drivers that override R1 to R1b, set an arbitrary timeout based
726 * on the tuning timeout i.e. 150ms.
727 */
728 cmd.busy_timeout = 150;
729
730 return mmc_wait_for_cmd(host, &cmd, 0);
731}
732EXPORT_SYMBOL_GPL(mmc_abort_tuning);
733
734static int
735mmc_send_bus_test(struct mmc_card *card, struct mmc_host *host, u8 opcode,
736 u8 len)
737{
738 struct mmc_request mrq = {};
739 struct mmc_command cmd = {};
740 struct mmc_data data = {};
741 struct scatterlist sg;
742 u8 *data_buf;
743 u8 *test_buf;
744 int i, err;
745 static u8 testdata_8bit[8] = { 0x55, 0xaa, 0, 0, 0, 0, 0, 0 };
746 static u8 testdata_4bit[4] = { 0x5a, 0, 0, 0 };
747
748 /* dma onto stack is unsafe/nonportable, but callers to this
749 * routine normally provide temporary on-stack buffers ...
750 */
751 data_buf = kmalloc(len, GFP_KERNEL);
752 if (!data_buf)
753 return -ENOMEM;
754
755 if (len == 8)
756 test_buf = testdata_8bit;
757 else if (len == 4)
758 test_buf = testdata_4bit;
759 else {
760 pr_err("%s: Invalid bus_width %d\n",
761 mmc_hostname(host), len);
762 kfree(data_buf);
763 return -EINVAL;
764 }
765
766 if (opcode == MMC_BUS_TEST_W)
767 memcpy(data_buf, test_buf, len);
768
769 mrq.cmd = &cmd;
770 mrq.data = &data;
771 cmd.opcode = opcode;
772 cmd.arg = 0;
773
774 /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we
775 * rely on callers to never use this with "native" calls for reading
776 * CSD or CID. Native versions of those commands use the R2 type,
777 * not R1 plus a data block.
778 */
779 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
780
781 data.blksz = len;
782 data.blocks = 1;
783 if (opcode == MMC_BUS_TEST_R)
784 data.flags = MMC_DATA_READ;
785 else
786 data.flags = MMC_DATA_WRITE;
787
788 data.sg = &sg;
789 data.sg_len = 1;
790 mmc_set_data_timeout(&data, card);
791 sg_init_one(&sg, data_buf, len);
792 mmc_wait_for_req(host, &mrq);
793 err = 0;
794 if (opcode == MMC_BUS_TEST_R) {
795 for (i = 0; i < len / 4; i++)
796 if ((test_buf[i] ^ data_buf[i]) != 0xff) {
797 err = -EIO;
798 break;
799 }
800 }
801 kfree(data_buf);
802
803 if (cmd.error)
804 return cmd.error;
805 if (data.error)
806 return data.error;
807
808 return err;
809}
810
811int mmc_bus_test(struct mmc_card *card, u8 bus_width)
812{
813 int width;
814
815 if (bus_width == MMC_BUS_WIDTH_8)
816 width = 8;
817 else if (bus_width == MMC_BUS_WIDTH_4)
818 width = 4;
819 else if (bus_width == MMC_BUS_WIDTH_1)
820 return 0; /* no need for test */
821 else
822 return -EINVAL;
823
824 /*
825 * Ignore errors from BUS_TEST_W. BUS_TEST_R will fail if there
826 * is a problem. This improves chances that the test will work.
827 */
828 mmc_send_bus_test(card, card->host, MMC_BUS_TEST_W, width);
829 return mmc_send_bus_test(card, card->host, MMC_BUS_TEST_R, width);
830}
831
832static int mmc_send_hpi_cmd(struct mmc_card *card)
833{
834 unsigned int busy_timeout_ms = card->ext_csd.out_of_int_time;
835 struct mmc_host *host = card->host;
836 bool use_r1b_resp = true;
837 struct mmc_command cmd = {};
838 int err;
839
840 cmd.opcode = card->ext_csd.hpi_cmd;
841 cmd.arg = card->rca << 16 | 1;
842
843 /*
844 * Make sure the host's max_busy_timeout fit the needed timeout for HPI.
845 * In case it doesn't, let's instruct the host to avoid HW busy
846 * detection, by using a R1 response instead of R1B.
847 */
848 if (host->max_busy_timeout && busy_timeout_ms > host->max_busy_timeout)
849 use_r1b_resp = false;
850
851 if (cmd.opcode == MMC_STOP_TRANSMISSION && use_r1b_resp) {
852 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
853 cmd.busy_timeout = busy_timeout_ms;
854 } else {
855 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
856 use_r1b_resp = false;
857 }
858
859 err = mmc_wait_for_cmd(host, &cmd, 0);
860 if (err) {
861 pr_warn("%s: HPI error %d. Command response %#x\n",
862 mmc_hostname(host), err, cmd.resp[0]);
863 return err;
864 }
865
866 /* No need to poll when using HW busy detection. */
867 if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp)
868 return 0;
869
870 /* Let's poll to find out when the HPI request completes. */
871 return mmc_poll_for_busy(card, busy_timeout_ms, MMC_BUSY_HPI);
872}
873
874/**
875 * mmc_interrupt_hpi - Issue for High priority Interrupt
876 * @card: the MMC card associated with the HPI transfer
877 *
878 * Issued High Priority Interrupt, and check for card status
879 * until out-of prg-state.
880 */
881static int mmc_interrupt_hpi(struct mmc_card *card)
882{
883 int err;
884 u32 status;
885
886 if (!card->ext_csd.hpi_en) {
887 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
888 return 1;
889 }
890
891 err = mmc_send_status(card, &status);
892 if (err) {
893 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
894 goto out;
895 }
896
897 switch (R1_CURRENT_STATE(status)) {
898 case R1_STATE_IDLE:
899 case R1_STATE_READY:
900 case R1_STATE_STBY:
901 case R1_STATE_TRAN:
902 /*
903 * In idle and transfer states, HPI is not needed and the caller
904 * can issue the next intended command immediately
905 */
906 goto out;
907 case R1_STATE_PRG:
908 break;
909 default:
910 /* In all other states, it's illegal to issue HPI */
911 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
912 mmc_hostname(card->host), R1_CURRENT_STATE(status));
913 err = -EINVAL;
914 goto out;
915 }
916
917 err = mmc_send_hpi_cmd(card);
918out:
919 return err;
920}
921
922int mmc_can_ext_csd(struct mmc_card *card)
923{
924 return (card && card->csd.mmca_vsn > CSD_SPEC_VER_3);
925}
926
927static int mmc_read_bkops_status(struct mmc_card *card)
928{
929 int err;
930 u8 *ext_csd;
931
932 err = mmc_get_ext_csd(card, &ext_csd);
933 if (err)
934 return err;
935
936 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
937 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
938 kfree(ext_csd);
939 return 0;
940}
941
942/**
943 * mmc_run_bkops - Run BKOPS for supported cards
944 * @card: MMC card to run BKOPS for
945 *
946 * Run background operations synchronously for cards having manual BKOPS
947 * enabled and in case it reports urgent BKOPS level.
948*/
949void mmc_run_bkops(struct mmc_card *card)
950{
951 int err;
952
953 if (!card->ext_csd.man_bkops_en)
954 return;
955
956 err = mmc_read_bkops_status(card);
957 if (err) {
958 pr_err("%s: Failed to read bkops status: %d\n",
959 mmc_hostname(card->host), err);
960 return;
961 }
962
963 if (!card->ext_csd.raw_bkops_status ||
964 card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2)
965 return;
966
967 mmc_retune_hold(card->host);
968
969 /*
970 * For urgent BKOPS status, LEVEL_2 and higher, let's execute
971 * synchronously. Future wise, we may consider to start BKOPS, for less
972 * urgent levels by using an asynchronous background task, when idle.
973 */
974 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
975 EXT_CSD_BKOPS_START, 1, MMC_BKOPS_TIMEOUT_MS);
976 if (err)
977 pr_warn("%s: Error %d starting bkops\n",
978 mmc_hostname(card->host), err);
979
980 mmc_retune_release(card->host);
981}
982EXPORT_SYMBOL(mmc_run_bkops);
983
984/*
985 * Flush the cache to the non-volatile storage.
986 */
987int mmc_flush_cache(struct mmc_card *card)
988{
989 int err = 0;
990
991 if (mmc_card_mmc(card) &&
992 (card->ext_csd.cache_size > 0) &&
993 (card->ext_csd.cache_ctrl & 1)) {
994 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
995 EXT_CSD_FLUSH_CACHE, 1,
996 MMC_CACHE_FLUSH_TIMEOUT_MS);
997 if (err)
998 pr_err("%s: cache flush error %d\n",
999 mmc_hostname(card->host), err);
1000 }
1001
1002 return err;
1003}
1004EXPORT_SYMBOL(mmc_flush_cache);
1005
1006static int mmc_cmdq_switch(struct mmc_card *card, bool enable)
1007{
1008 u8 val = enable ? EXT_CSD_CMDQ_MODE_ENABLED : 0;
1009 int err;
1010
1011 if (!card->ext_csd.cmdq_support)
1012 return -EOPNOTSUPP;
1013
1014 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ_MODE_EN,
1015 val, card->ext_csd.generic_cmd6_time);
1016 if (!err)
1017 card->ext_csd.cmdq_en = enable;
1018
1019 return err;
1020}
1021
1022int mmc_cmdq_enable(struct mmc_card *card)
1023{
1024 return mmc_cmdq_switch(card, true);
1025}
1026EXPORT_SYMBOL_GPL(mmc_cmdq_enable);
1027
1028int mmc_cmdq_disable(struct mmc_card *card)
1029{
1030 return mmc_cmdq_switch(card, false);
1031}
1032EXPORT_SYMBOL_GPL(mmc_cmdq_disable);
1033
1034int mmc_sanitize(struct mmc_card *card)
1035{
1036 struct mmc_host *host = card->host;
1037 int err;
1038
1039 if (!mmc_can_sanitize(card)) {
1040 pr_warn("%s: Sanitize not supported\n", mmc_hostname(host));
1041 return -EOPNOTSUPP;
1042 }
1043
1044 pr_debug("%s: Sanitize in progress...\n", mmc_hostname(host));
1045
1046 mmc_retune_hold(host);
1047
1048 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_SANITIZE_START,
1049 1, MMC_SANITIZE_TIMEOUT_MS);
1050 if (err)
1051 pr_err("%s: Sanitize failed err=%d\n", mmc_hostname(host), err);
1052
1053 /*
1054 * If the sanitize operation timed out, the card is probably still busy
1055 * in the R1_STATE_PRG. Rather than continue to wait, let's try to abort
1056 * it with a HPI command to get back into R1_STATE_TRAN.
1057 */
1058 if (err == -ETIMEDOUT && !mmc_interrupt_hpi(card))
1059 pr_warn("%s: Sanitize aborted\n", mmc_hostname(host));
1060
1061 mmc_retune_release(host);
1062
1063 pr_debug("%s: Sanitize completed\n", mmc_hostname(host));
1064 return err;
1065}
1066EXPORT_SYMBOL_GPL(mmc_sanitize);