Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * linux/arch/ia64/kernel/time.c
  4 *
  5 * Copyright (C) 1998-2003 Hewlett-Packard Co
  6 *	Stephane Eranian <eranian@hpl.hp.com>
  7 *	David Mosberger <davidm@hpl.hp.com>
  8 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
  9 * Copyright (C) 1999-2000 VA Linux Systems
 10 * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
 11 */
 12
 13#include <linux/cpu.h>
 14#include <linux/init.h>
 15#include <linux/kernel.h>
 16#include <linux/module.h>
 17#include <linux/profile.h>
 18#include <linux/sched.h>
 19#include <linux/time.h>
 20#include <linux/nmi.h>
 21#include <linux/interrupt.h>
 22#include <linux/efi.h>
 23#include <linux/timex.h>
 24#include <linux/timekeeper_internal.h>
 25#include <linux/platform_device.h>
 26#include <linux/sched/cputime.h>
 27
 28#include <asm/delay.h>
 29#include <asm/efi.h>
 30#include <asm/hw_irq.h>
 31#include <asm/ptrace.h>
 32#include <asm/sal.h>
 33#include <asm/sections.h>
 34
 35#include "fsyscall_gtod_data.h"
 36#include "irq.h"
 37
 38static u64 itc_get_cycles(struct clocksource *cs);
 39
 40struct fsyscall_gtod_data_t fsyscall_gtod_data;
 41
 42struct itc_jitter_data_t itc_jitter_data;
 43
 44volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
 45
 46#ifdef CONFIG_IA64_DEBUG_IRQ
 47
 48unsigned long last_cli_ip;
 49EXPORT_SYMBOL(last_cli_ip);
 50
 51#endif
 52
 53static struct clocksource clocksource_itc = {
 54	.name           = "itc",
 55	.rating         = 350,
 56	.read           = itc_get_cycles,
 57	.mask           = CLOCKSOURCE_MASK(64),
 58	.flags          = CLOCK_SOURCE_IS_CONTINUOUS,
 59};
 60static struct clocksource *itc_clocksource;
 61
 62#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 63
 64#include <linux/kernel_stat.h>
 65
 66extern u64 cycle_to_nsec(u64 cyc);
 67
 68void vtime_flush(struct task_struct *tsk)
 69{
 70	struct thread_info *ti = task_thread_info(tsk);
 71	u64 delta;
 72
 73	if (ti->utime)
 74		account_user_time(tsk, cycle_to_nsec(ti->utime));
 75
 76	if (ti->gtime)
 77		account_guest_time(tsk, cycle_to_nsec(ti->gtime));
 78
 79	if (ti->idle_time)
 80		account_idle_time(cycle_to_nsec(ti->idle_time));
 81
 82	if (ti->stime) {
 83		delta = cycle_to_nsec(ti->stime);
 84		account_system_index_time(tsk, delta, CPUTIME_SYSTEM);
 85	}
 86
 87	if (ti->hardirq_time) {
 88		delta = cycle_to_nsec(ti->hardirq_time);
 89		account_system_index_time(tsk, delta, CPUTIME_IRQ);
 90	}
 91
 92	if (ti->softirq_time) {
 93		delta = cycle_to_nsec(ti->softirq_time);
 94		account_system_index_time(tsk, delta, CPUTIME_SOFTIRQ);
 95	}
 96
 97	ti->utime = 0;
 98	ti->gtime = 0;
 99	ti->idle_time = 0;
100	ti->stime = 0;
101	ti->hardirq_time = 0;
102	ti->softirq_time = 0;
103}
104
105/*
106 * Called from the context switch with interrupts disabled, to charge all
107 * accumulated times to the current process, and to prepare accounting on
108 * the next process.
109 */
110void arch_vtime_task_switch(struct task_struct *prev)
111{
112	struct thread_info *pi = task_thread_info(prev);
113	struct thread_info *ni = task_thread_info(current);
114
115	ni->ac_stamp = pi->ac_stamp;
116	ni->ac_stime = ni->ac_utime = 0;
117}
118
119/*
120 * Account time for a transition between system, hard irq or soft irq state.
121 * Note that this function is called with interrupts enabled.
122 */
123static __u64 vtime_delta(struct task_struct *tsk)
124{
125	struct thread_info *ti = task_thread_info(tsk);
126	__u64 now, delta_stime;
127
128	WARN_ON_ONCE(!irqs_disabled());
129
130	now = ia64_get_itc();
131	delta_stime = now - ti->ac_stamp;
132	ti->ac_stamp = now;
133
134	return delta_stime;
135}
136
137void vtime_account_kernel(struct task_struct *tsk)
138{
139	struct thread_info *ti = task_thread_info(tsk);
140	__u64 stime = vtime_delta(tsk);
141
142	if (tsk->flags & PF_VCPU)
143		ti->gtime += stime;
 
 
 
 
144	else
145		ti->stime += stime;
146}
147EXPORT_SYMBOL_GPL(vtime_account_kernel);
148
149void vtime_account_idle(struct task_struct *tsk)
150{
151	struct thread_info *ti = task_thread_info(tsk);
152
153	ti->idle_time += vtime_delta(tsk);
154}
155
156void vtime_account_softirq(struct task_struct *tsk)
157{
158	struct thread_info *ti = task_thread_info(tsk);
159
160	ti->softirq_time += vtime_delta(tsk);
161}
162
163void vtime_account_hardirq(struct task_struct *tsk)
164{
165	struct thread_info *ti = task_thread_info(tsk);
166
167	ti->hardirq_time += vtime_delta(tsk);
168}
169
170#endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
171
172static irqreturn_t
173timer_interrupt (int irq, void *dev_id)
174{
175	unsigned long new_itm;
176
177	if (cpu_is_offline(smp_processor_id())) {
178		return IRQ_HANDLED;
179	}
180
181	new_itm = local_cpu_data->itm_next;
182
183	if (!time_after(ia64_get_itc(), new_itm))
184		printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
185		       ia64_get_itc(), new_itm);
186
 
 
187	while (1) {
 
 
188		new_itm += local_cpu_data->itm_delta;
189
190		legacy_timer_tick(smp_processor_id() == time_keeper_id);
 
191
192		local_cpu_data->itm_next = new_itm;
193
194		if (time_after(new_itm, ia64_get_itc()))
195			break;
196
197		/*
198		 * Allow IPIs to interrupt the timer loop.
199		 */
200		local_irq_enable();
201		local_irq_disable();
202	}
203
204	do {
205		/*
206		 * If we're too close to the next clock tick for
207		 * comfort, we increase the safety margin by
208		 * intentionally dropping the next tick(s).  We do NOT
209		 * update itm.next because that would force us to call
210		 * xtime_update() which in turn would let our clock run
211		 * too fast (with the potentially devastating effect
212		 * of losing monotony of time).
213		 */
214		while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
215			new_itm += local_cpu_data->itm_delta;
216		ia64_set_itm(new_itm);
217		/* double check, in case we got hit by a (slow) PMI: */
218	} while (time_after_eq(ia64_get_itc(), new_itm));
219	return IRQ_HANDLED;
220}
221
222/*
223 * Encapsulate access to the itm structure for SMP.
224 */
225void
226ia64_cpu_local_tick (void)
227{
228	int cpu = smp_processor_id();
229	unsigned long shift = 0, delta;
230
231	/* arrange for the cycle counter to generate a timer interrupt: */
232	ia64_set_itv(IA64_TIMER_VECTOR);
233
234	delta = local_cpu_data->itm_delta;
235	/*
236	 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
237	 * same time:
238	 */
239	if (cpu) {
240		unsigned long hi = 1UL << ia64_fls(cpu);
241		shift = (2*(cpu - hi) + 1) * delta/hi/2;
242	}
243	local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
244	ia64_set_itm(local_cpu_data->itm_next);
245}
246
247static int nojitter;
248
249static int __init nojitter_setup(char *str)
250{
251	nojitter = 1;
252	printk("Jitter checking for ITC timers disabled\n");
253	return 1;
254}
255
256__setup("nojitter", nojitter_setup);
257
258
259void ia64_init_itm(void)
260{
261	unsigned long platform_base_freq, itc_freq;
262	struct pal_freq_ratio itc_ratio, proc_ratio;
263	long status, platform_base_drift, itc_drift;
264
265	/*
266	 * According to SAL v2.6, we need to use a SAL call to determine the platform base
267	 * frequency and then a PAL call to determine the frequency ratio between the ITC
268	 * and the base frequency.
269	 */
270	status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
271				    &platform_base_freq, &platform_base_drift);
272	if (status != 0) {
273		printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
274	} else {
275		status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
276		if (status != 0)
277			printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
278	}
279	if (status != 0) {
280		/* invent "random" values */
281		printk(KERN_ERR
282		       "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
283		platform_base_freq = 100000000;
284		platform_base_drift = -1;	/* no drift info */
285		itc_ratio.num = 3;
286		itc_ratio.den = 1;
287	}
288	if (platform_base_freq < 40000000) {
289		printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
290		       platform_base_freq);
291		platform_base_freq = 75000000;
292		platform_base_drift = -1;
293	}
294	if (!proc_ratio.den)
295		proc_ratio.den = 1;	/* avoid division by zero */
296	if (!itc_ratio.den)
297		itc_ratio.den = 1;	/* avoid division by zero */
298
299	itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
300
301	local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
302	printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
303	       "ITC freq=%lu.%03luMHz", smp_processor_id(),
304	       platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
305	       itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
306
307	if (platform_base_drift != -1) {
308		itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
309		printk("+/-%ldppm\n", itc_drift);
310	} else {
311		itc_drift = -1;
312		printk("\n");
313	}
314
315	local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
316	local_cpu_data->itc_freq = itc_freq;
317	local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
318	local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
319					+ itc_freq/2)/itc_freq;
320
321	if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
322#ifdef CONFIG_SMP
323		/* On IA64 in an SMP configuration ITCs are never accurately synchronized.
324		 * Jitter compensation requires a cmpxchg which may limit
325		 * the scalability of the syscalls for retrieving time.
326		 * The ITC synchronization is usually successful to within a few
327		 * ITC ticks but this is not a sure thing. If you need to improve
328		 * timer performance in SMP situations then boot the kernel with the
329		 * "nojitter" option. However, doing so may result in time fluctuating (maybe
330		 * even going backward) if the ITC offsets between the individual CPUs
331		 * are too large.
332		 */
333		if (!nojitter)
334			itc_jitter_data.itc_jitter = 1;
335#endif
336	} else
337		/*
338		 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
339		 * ITC values may fluctuate significantly between processors.
340		 * Clock should not be used for hrtimers. Mark itc as only
341		 * useful for boot and testing.
342		 *
343		 * Note that jitter compensation is off! There is no point of
344		 * synchronizing ITCs since they may be large differentials
345		 * that change over time.
346		 *
347		 * The only way to fix this would be to repeatedly sync the
348		 * ITCs. Until that time we have to avoid ITC.
349		 */
350		clocksource_itc.rating = 50;
351
352	/* avoid softlock up message when cpu is unplug and plugged again. */
353	touch_softlockup_watchdog();
354
355	/* Setup the CPU local timer tick */
356	ia64_cpu_local_tick();
357
358	if (!itc_clocksource) {
359		clocksource_register_hz(&clocksource_itc,
360						local_cpu_data->itc_freq);
361		itc_clocksource = &clocksource_itc;
362	}
363}
364
365static u64 itc_get_cycles(struct clocksource *cs)
366{
367	unsigned long lcycle, now, ret;
368
369	if (!itc_jitter_data.itc_jitter)
370		return get_cycles();
371
372	lcycle = itc_jitter_data.itc_lastcycle;
373	now = get_cycles();
374	if (lcycle && time_after(lcycle, now))
375		return lcycle;
376
377	/*
378	 * Keep track of the last timer value returned.
379	 * In an SMP environment, you could lose out in contention of
380	 * cmpxchg. If so, your cmpxchg returns new value which the
381	 * winner of contention updated to. Use the new value instead.
382	 */
383	ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
384	if (unlikely(ret != lcycle))
385		return ret;
386
387	return now;
388}
389
390void read_persistent_clock64(struct timespec64 *ts)
391{
392	efi_gettimeofday(ts);
393}
394
395void __init
396time_init (void)
397{
398	register_percpu_irq(IA64_TIMER_VECTOR, timer_interrupt, IRQF_IRQPOLL,
399			    "timer");
400	ia64_init_itm();
401}
402
403/*
404 * Generic udelay assumes that if preemption is allowed and the thread
405 * migrates to another CPU, that the ITC values are synchronized across
406 * all CPUs.
407 */
408static void
409ia64_itc_udelay (unsigned long usecs)
410{
411	unsigned long start = ia64_get_itc();
412	unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
413
414	while (time_before(ia64_get_itc(), end))
415		cpu_relax();
416}
417
418void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
419
420void
421udelay (unsigned long usecs)
422{
423	(*ia64_udelay)(usecs);
424}
425EXPORT_SYMBOL(udelay);
426
427/* IA64 doesn't cache the timezone */
428void update_vsyscall_tz(void)
429{
430}
431
432void update_vsyscall(struct timekeeper *tk)
433{
434	write_seqcount_begin(&fsyscall_gtod_data.seq);
435
436	/* copy vsyscall data */
437	fsyscall_gtod_data.clk_mask = tk->tkr_mono.mask;
438	fsyscall_gtod_data.clk_mult = tk->tkr_mono.mult;
439	fsyscall_gtod_data.clk_shift = tk->tkr_mono.shift;
440	fsyscall_gtod_data.clk_fsys_mmio = tk->tkr_mono.clock->archdata.fsys_mmio;
441	fsyscall_gtod_data.clk_cycle_last = tk->tkr_mono.cycle_last;
442
443	fsyscall_gtod_data.wall_time.sec = tk->xtime_sec;
444	fsyscall_gtod_data.wall_time.snsec = tk->tkr_mono.xtime_nsec;
445
446	fsyscall_gtod_data.monotonic_time.sec = tk->xtime_sec
447					      + tk->wall_to_monotonic.tv_sec;
448	fsyscall_gtod_data.monotonic_time.snsec = tk->tkr_mono.xtime_nsec
449						+ ((u64)tk->wall_to_monotonic.tv_nsec
450							<< tk->tkr_mono.shift);
451
452	/* normalize */
453	while (fsyscall_gtod_data.monotonic_time.snsec >=
454					(((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
455		fsyscall_gtod_data.monotonic_time.snsec -=
456					((u64)NSEC_PER_SEC) << tk->tkr_mono.shift;
457		fsyscall_gtod_data.monotonic_time.sec++;
458	}
459
460	write_seqcount_end(&fsyscall_gtod_data.seq);
461}
462
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * linux/arch/ia64/kernel/time.c
  4 *
  5 * Copyright (C) 1998-2003 Hewlett-Packard Co
  6 *	Stephane Eranian <eranian@hpl.hp.com>
  7 *	David Mosberger <davidm@hpl.hp.com>
  8 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
  9 * Copyright (C) 1999-2000 VA Linux Systems
 10 * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
 11 */
 12
 13#include <linux/cpu.h>
 14#include <linux/init.h>
 15#include <linux/kernel.h>
 16#include <linux/module.h>
 17#include <linux/profile.h>
 18#include <linux/sched.h>
 19#include <linux/time.h>
 20#include <linux/nmi.h>
 21#include <linux/interrupt.h>
 22#include <linux/efi.h>
 23#include <linux/timex.h>
 24#include <linux/timekeeper_internal.h>
 25#include <linux/platform_device.h>
 26#include <linux/sched/cputime.h>
 27
 28#include <asm/delay.h>
 
 29#include <asm/hw_irq.h>
 30#include <asm/ptrace.h>
 31#include <asm/sal.h>
 32#include <asm/sections.h>
 33
 34#include "fsyscall_gtod_data.h"
 35#include "irq.h"
 36
 37static u64 itc_get_cycles(struct clocksource *cs);
 38
 39struct fsyscall_gtod_data_t fsyscall_gtod_data;
 40
 41struct itc_jitter_data_t itc_jitter_data;
 42
 43volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
 44
 45#ifdef CONFIG_IA64_DEBUG_IRQ
 46
 47unsigned long last_cli_ip;
 48EXPORT_SYMBOL(last_cli_ip);
 49
 50#endif
 51
 52static struct clocksource clocksource_itc = {
 53	.name           = "itc",
 54	.rating         = 350,
 55	.read           = itc_get_cycles,
 56	.mask           = CLOCKSOURCE_MASK(64),
 57	.flags          = CLOCK_SOURCE_IS_CONTINUOUS,
 58};
 59static struct clocksource *itc_clocksource;
 60
 61#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 62
 63#include <linux/kernel_stat.h>
 64
 65extern u64 cycle_to_nsec(u64 cyc);
 66
 67void vtime_flush(struct task_struct *tsk)
 68{
 69	struct thread_info *ti = task_thread_info(tsk);
 70	u64 delta;
 71
 72	if (ti->utime)
 73		account_user_time(tsk, cycle_to_nsec(ti->utime));
 74
 75	if (ti->gtime)
 76		account_guest_time(tsk, cycle_to_nsec(ti->gtime));
 77
 78	if (ti->idle_time)
 79		account_idle_time(cycle_to_nsec(ti->idle_time));
 80
 81	if (ti->stime) {
 82		delta = cycle_to_nsec(ti->stime);
 83		account_system_index_time(tsk, delta, CPUTIME_SYSTEM);
 84	}
 85
 86	if (ti->hardirq_time) {
 87		delta = cycle_to_nsec(ti->hardirq_time);
 88		account_system_index_time(tsk, delta, CPUTIME_IRQ);
 89	}
 90
 91	if (ti->softirq_time) {
 92		delta = cycle_to_nsec(ti->softirq_time);
 93		account_system_index_time(tsk, delta, CPUTIME_SOFTIRQ);
 94	}
 95
 96	ti->utime = 0;
 97	ti->gtime = 0;
 98	ti->idle_time = 0;
 99	ti->stime = 0;
100	ti->hardirq_time = 0;
101	ti->softirq_time = 0;
102}
103
104/*
105 * Called from the context switch with interrupts disabled, to charge all
106 * accumulated times to the current process, and to prepare accounting on
107 * the next process.
108 */
109void arch_vtime_task_switch(struct task_struct *prev)
110{
111	struct thread_info *pi = task_thread_info(prev);
112	struct thread_info *ni = task_thread_info(current);
113
114	ni->ac_stamp = pi->ac_stamp;
115	ni->ac_stime = ni->ac_utime = 0;
116}
117
118/*
119 * Account time for a transition between system, hard irq or soft irq state.
120 * Note that this function is called with interrupts enabled.
121 */
122static __u64 vtime_delta(struct task_struct *tsk)
123{
124	struct thread_info *ti = task_thread_info(tsk);
125	__u64 now, delta_stime;
126
127	WARN_ON_ONCE(!irqs_disabled());
128
129	now = ia64_get_itc();
130	delta_stime = now - ti->ac_stamp;
131	ti->ac_stamp = now;
132
133	return delta_stime;
134}
135
136void vtime_account_kernel(struct task_struct *tsk)
137{
138	struct thread_info *ti = task_thread_info(tsk);
139	__u64 stime = vtime_delta(tsk);
140
141	if ((tsk->flags & PF_VCPU) && !irq_count())
142		ti->gtime += stime;
143	else if (hardirq_count())
144		ti->hardirq_time += stime;
145	else if (in_serving_softirq())
146		ti->softirq_time += stime;
147	else
148		ti->stime += stime;
149}
150EXPORT_SYMBOL_GPL(vtime_account_kernel);
151
152void vtime_account_idle(struct task_struct *tsk)
153{
154	struct thread_info *ti = task_thread_info(tsk);
155
156	ti->idle_time += vtime_delta(tsk);
157}
158
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159#endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
160
161static irqreturn_t
162timer_interrupt (int irq, void *dev_id)
163{
164	unsigned long new_itm;
165
166	if (cpu_is_offline(smp_processor_id())) {
167		return IRQ_HANDLED;
168	}
169
170	new_itm = local_cpu_data->itm_next;
171
172	if (!time_after(ia64_get_itc(), new_itm))
173		printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
174		       ia64_get_itc(), new_itm);
175
176	profile_tick(CPU_PROFILING);
177
178	while (1) {
179		update_process_times(user_mode(get_irq_regs()));
180
181		new_itm += local_cpu_data->itm_delta;
182
183		if (smp_processor_id() == time_keeper_id)
184			xtime_update(1);
185
186		local_cpu_data->itm_next = new_itm;
187
188		if (time_after(new_itm, ia64_get_itc()))
189			break;
190
191		/*
192		 * Allow IPIs to interrupt the timer loop.
193		 */
194		local_irq_enable();
195		local_irq_disable();
196	}
197
198	do {
199		/*
200		 * If we're too close to the next clock tick for
201		 * comfort, we increase the safety margin by
202		 * intentionally dropping the next tick(s).  We do NOT
203		 * update itm.next because that would force us to call
204		 * xtime_update() which in turn would let our clock run
205		 * too fast (with the potentially devastating effect
206		 * of losing monotony of time).
207		 */
208		while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
209			new_itm += local_cpu_data->itm_delta;
210		ia64_set_itm(new_itm);
211		/* double check, in case we got hit by a (slow) PMI: */
212	} while (time_after_eq(ia64_get_itc(), new_itm));
213	return IRQ_HANDLED;
214}
215
216/*
217 * Encapsulate access to the itm structure for SMP.
218 */
219void
220ia64_cpu_local_tick (void)
221{
222	int cpu = smp_processor_id();
223	unsigned long shift = 0, delta;
224
225	/* arrange for the cycle counter to generate a timer interrupt: */
226	ia64_set_itv(IA64_TIMER_VECTOR);
227
228	delta = local_cpu_data->itm_delta;
229	/*
230	 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
231	 * same time:
232	 */
233	if (cpu) {
234		unsigned long hi = 1UL << ia64_fls(cpu);
235		shift = (2*(cpu - hi) + 1) * delta/hi/2;
236	}
237	local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
238	ia64_set_itm(local_cpu_data->itm_next);
239}
240
241static int nojitter;
242
243static int __init nojitter_setup(char *str)
244{
245	nojitter = 1;
246	printk("Jitter checking for ITC timers disabled\n");
247	return 1;
248}
249
250__setup("nojitter", nojitter_setup);
251
252
253void ia64_init_itm(void)
254{
255	unsigned long platform_base_freq, itc_freq;
256	struct pal_freq_ratio itc_ratio, proc_ratio;
257	long status, platform_base_drift, itc_drift;
258
259	/*
260	 * According to SAL v2.6, we need to use a SAL call to determine the platform base
261	 * frequency and then a PAL call to determine the frequency ratio between the ITC
262	 * and the base frequency.
263	 */
264	status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
265				    &platform_base_freq, &platform_base_drift);
266	if (status != 0) {
267		printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
268	} else {
269		status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
270		if (status != 0)
271			printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
272	}
273	if (status != 0) {
274		/* invent "random" values */
275		printk(KERN_ERR
276		       "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
277		platform_base_freq = 100000000;
278		platform_base_drift = -1;	/* no drift info */
279		itc_ratio.num = 3;
280		itc_ratio.den = 1;
281	}
282	if (platform_base_freq < 40000000) {
283		printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
284		       platform_base_freq);
285		platform_base_freq = 75000000;
286		platform_base_drift = -1;
287	}
288	if (!proc_ratio.den)
289		proc_ratio.den = 1;	/* avoid division by zero */
290	if (!itc_ratio.den)
291		itc_ratio.den = 1;	/* avoid division by zero */
292
293	itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
294
295	local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
296	printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
297	       "ITC freq=%lu.%03luMHz", smp_processor_id(),
298	       platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
299	       itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
300
301	if (platform_base_drift != -1) {
302		itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
303		printk("+/-%ldppm\n", itc_drift);
304	} else {
305		itc_drift = -1;
306		printk("\n");
307	}
308
309	local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
310	local_cpu_data->itc_freq = itc_freq;
311	local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
312	local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
313					+ itc_freq/2)/itc_freq;
314
315	if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
316#ifdef CONFIG_SMP
317		/* On IA64 in an SMP configuration ITCs are never accurately synchronized.
318		 * Jitter compensation requires a cmpxchg which may limit
319		 * the scalability of the syscalls for retrieving time.
320		 * The ITC synchronization is usually successful to within a few
321		 * ITC ticks but this is not a sure thing. If you need to improve
322		 * timer performance in SMP situations then boot the kernel with the
323		 * "nojitter" option. However, doing so may result in time fluctuating (maybe
324		 * even going backward) if the ITC offsets between the individual CPUs
325		 * are too large.
326		 */
327		if (!nojitter)
328			itc_jitter_data.itc_jitter = 1;
329#endif
330	} else
331		/*
332		 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
333		 * ITC values may fluctuate significantly between processors.
334		 * Clock should not be used for hrtimers. Mark itc as only
335		 * useful for boot and testing.
336		 *
337		 * Note that jitter compensation is off! There is no point of
338		 * synchronizing ITCs since they may be large differentials
339		 * that change over time.
340		 *
341		 * The only way to fix this would be to repeatedly sync the
342		 * ITCs. Until that time we have to avoid ITC.
343		 */
344		clocksource_itc.rating = 50;
345
346	/* avoid softlock up message when cpu is unplug and plugged again. */
347	touch_softlockup_watchdog();
348
349	/* Setup the CPU local timer tick */
350	ia64_cpu_local_tick();
351
352	if (!itc_clocksource) {
353		clocksource_register_hz(&clocksource_itc,
354						local_cpu_data->itc_freq);
355		itc_clocksource = &clocksource_itc;
356	}
357}
358
359static u64 itc_get_cycles(struct clocksource *cs)
360{
361	unsigned long lcycle, now, ret;
362
363	if (!itc_jitter_data.itc_jitter)
364		return get_cycles();
365
366	lcycle = itc_jitter_data.itc_lastcycle;
367	now = get_cycles();
368	if (lcycle && time_after(lcycle, now))
369		return lcycle;
370
371	/*
372	 * Keep track of the last timer value returned.
373	 * In an SMP environment, you could lose out in contention of
374	 * cmpxchg. If so, your cmpxchg returns new value which the
375	 * winner of contention updated to. Use the new value instead.
376	 */
377	ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
378	if (unlikely(ret != lcycle))
379		return ret;
380
381	return now;
382}
383
384void read_persistent_clock64(struct timespec64 *ts)
385{
386	efi_gettimeofday(ts);
387}
388
389void __init
390time_init (void)
391{
392	register_percpu_irq(IA64_TIMER_VECTOR, timer_interrupt, IRQF_IRQPOLL,
393			    "timer");
394	ia64_init_itm();
395}
396
397/*
398 * Generic udelay assumes that if preemption is allowed and the thread
399 * migrates to another CPU, that the ITC values are synchronized across
400 * all CPUs.
401 */
402static void
403ia64_itc_udelay (unsigned long usecs)
404{
405	unsigned long start = ia64_get_itc();
406	unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
407
408	while (time_before(ia64_get_itc(), end))
409		cpu_relax();
410}
411
412void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
413
414void
415udelay (unsigned long usecs)
416{
417	(*ia64_udelay)(usecs);
418}
419EXPORT_SYMBOL(udelay);
420
421/* IA64 doesn't cache the timezone */
422void update_vsyscall_tz(void)
423{
424}
425
426void update_vsyscall(struct timekeeper *tk)
427{
428	write_seqcount_begin(&fsyscall_gtod_data.seq);
429
430	/* copy vsyscall data */
431	fsyscall_gtod_data.clk_mask = tk->tkr_mono.mask;
432	fsyscall_gtod_data.clk_mult = tk->tkr_mono.mult;
433	fsyscall_gtod_data.clk_shift = tk->tkr_mono.shift;
434	fsyscall_gtod_data.clk_fsys_mmio = tk->tkr_mono.clock->archdata.fsys_mmio;
435	fsyscall_gtod_data.clk_cycle_last = tk->tkr_mono.cycle_last;
436
437	fsyscall_gtod_data.wall_time.sec = tk->xtime_sec;
438	fsyscall_gtod_data.wall_time.snsec = tk->tkr_mono.xtime_nsec;
439
440	fsyscall_gtod_data.monotonic_time.sec = tk->xtime_sec
441					      + tk->wall_to_monotonic.tv_sec;
442	fsyscall_gtod_data.monotonic_time.snsec = tk->tkr_mono.xtime_nsec
443						+ ((u64)tk->wall_to_monotonic.tv_nsec
444							<< tk->tkr_mono.shift);
445
446	/* normalize */
447	while (fsyscall_gtod_data.monotonic_time.snsec >=
448					(((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
449		fsyscall_gtod_data.monotonic_time.snsec -=
450					((u64)NSEC_PER_SEC) << tk->tkr_mono.shift;
451		fsyscall_gtod_data.monotonic_time.sec++;
452	}
453
454	write_seqcount_end(&fsyscall_gtod_data.seq);
455}
456