Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Apr 14-17, 2025
Register
Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * linux/arch/ia64/kernel/time.c
  4 *
  5 * Copyright (C) 1998-2003 Hewlett-Packard Co
  6 *	Stephane Eranian <eranian@hpl.hp.com>
  7 *	David Mosberger <davidm@hpl.hp.com>
  8 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
  9 * Copyright (C) 1999-2000 VA Linux Systems
 10 * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
 11 */
 12
 13#include <linux/cpu.h>
 14#include <linux/init.h>
 15#include <linux/kernel.h>
 16#include <linux/module.h>
 17#include <linux/profile.h>
 18#include <linux/sched.h>
 19#include <linux/time.h>
 20#include <linux/nmi.h>
 21#include <linux/interrupt.h>
 22#include <linux/efi.h>
 23#include <linux/timex.h>
 24#include <linux/timekeeper_internal.h>
 25#include <linux/platform_device.h>
 26#include <linux/sched/cputime.h>
 27
 
 28#include <asm/delay.h>
 29#include <asm/efi.h>
 30#include <asm/hw_irq.h>
 
 31#include <asm/ptrace.h>
 32#include <asm/sal.h>
 33#include <asm/sections.h>
 34
 35#include "fsyscall_gtod_data.h"
 36#include "irq.h"
 37
 38static u64 itc_get_cycles(struct clocksource *cs);
 39
 40struct fsyscall_gtod_data_t fsyscall_gtod_data;
 41
 42struct itc_jitter_data_t itc_jitter_data;
 43
 44volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
 45
 46#ifdef CONFIG_IA64_DEBUG_IRQ
 47
 48unsigned long last_cli_ip;
 49EXPORT_SYMBOL(last_cli_ip);
 50
 51#endif
 52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 53static struct clocksource clocksource_itc = {
 54	.name           = "itc",
 55	.rating         = 350,
 56	.read           = itc_get_cycles,
 57	.mask           = CLOCKSOURCE_MASK(64),
 58	.flags          = CLOCK_SOURCE_IS_CONTINUOUS,
 
 
 
 59};
 60static struct clocksource *itc_clocksource;
 61
 62#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 63
 64#include <linux/kernel_stat.h>
 65
 66extern u64 cycle_to_nsec(u64 cyc);
 67
 68void vtime_flush(struct task_struct *tsk)
 69{
 
 70	struct thread_info *ti = task_thread_info(tsk);
 71	u64 delta;
 72
 73	if (ti->utime)
 74		account_user_time(tsk, cycle_to_nsec(ti->utime));
 75
 76	if (ti->gtime)
 77		account_guest_time(tsk, cycle_to_nsec(ti->gtime));
 78
 79	if (ti->idle_time)
 80		account_idle_time(cycle_to_nsec(ti->idle_time));
 81
 82	if (ti->stime) {
 83		delta = cycle_to_nsec(ti->stime);
 84		account_system_index_time(tsk, delta, CPUTIME_SYSTEM);
 85	}
 86
 87	if (ti->hardirq_time) {
 88		delta = cycle_to_nsec(ti->hardirq_time);
 89		account_system_index_time(tsk, delta, CPUTIME_IRQ);
 90	}
 91
 92	if (ti->softirq_time) {
 93		delta = cycle_to_nsec(ti->softirq_time);
 94		account_system_index_time(tsk, delta, CPUTIME_SOFTIRQ);
 95	}
 96
 97	ti->utime = 0;
 98	ti->gtime = 0;
 99	ti->idle_time = 0;
100	ti->stime = 0;
101	ti->hardirq_time = 0;
102	ti->softirq_time = 0;
103}
104
105/*
106 * Called from the context switch with interrupts disabled, to charge all
107 * accumulated times to the current process, and to prepare accounting on
108 * the next process.
109 */
110void arch_vtime_task_switch(struct task_struct *prev)
111{
112	struct thread_info *pi = task_thread_info(prev);
113	struct thread_info *ni = task_thread_info(current);
114
115	ni->ac_stamp = pi->ac_stamp;
116	ni->ac_stime = ni->ac_utime = 0;
117}
118
119/*
120 * Account time for a transition between system, hard irq or soft irq state.
121 * Note that this function is called with interrupts enabled.
122 */
123static __u64 vtime_delta(struct task_struct *tsk)
124{
125	struct thread_info *ti = task_thread_info(tsk);
126	__u64 now, delta_stime;
 
127
128	WARN_ON_ONCE(!irqs_disabled());
129
130	now = ia64_get_itc();
131	delta_stime = now - ti->ac_stamp;
 
 
132	ti->ac_stamp = now;
133
134	return delta_stime;
135}
136
137void vtime_account_kernel(struct task_struct *tsk)
138{
139	struct thread_info *ti = task_thread_info(tsk);
140	__u64 stime = vtime_delta(tsk);
141
142	if (tsk->flags & PF_VCPU)
143		ti->gtime += stime;
144	else
145		ti->stime += stime;
146}
147EXPORT_SYMBOL_GPL(vtime_account_kernel);
148
149void vtime_account_idle(struct task_struct *tsk)
150{
151	struct thread_info *ti = task_thread_info(tsk);
152
153	ti->idle_time += vtime_delta(tsk);
154}
155
156void vtime_account_softirq(struct task_struct *tsk)
157{
158	struct thread_info *ti = task_thread_info(tsk);
159
160	ti->softirq_time += vtime_delta(tsk);
161}
162
163void vtime_account_hardirq(struct task_struct *tsk)
164{
165	struct thread_info *ti = task_thread_info(tsk);
166
167	ti->hardirq_time += vtime_delta(tsk);
168}
169
170#endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
171
172static irqreturn_t
173timer_interrupt (int irq, void *dev_id)
174{
175	unsigned long new_itm;
176
177	if (cpu_is_offline(smp_processor_id())) {
178		return IRQ_HANDLED;
179	}
180
 
 
181	new_itm = local_cpu_data->itm_next;
182
183	if (!time_after(ia64_get_itc(), new_itm))
184		printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
185		       ia64_get_itc(), new_itm);
186
 
 
 
 
 
187	while (1) {
 
 
188		new_itm += local_cpu_data->itm_delta;
189
190		legacy_timer_tick(smp_processor_id() == time_keeper_id);
 
191
192		local_cpu_data->itm_next = new_itm;
193
194		if (time_after(new_itm, ia64_get_itc()))
195			break;
196
197		/*
198		 * Allow IPIs to interrupt the timer loop.
199		 */
200		local_irq_enable();
201		local_irq_disable();
202	}
203
 
 
204	do {
205		/*
206		 * If we're too close to the next clock tick for
207		 * comfort, we increase the safety margin by
208		 * intentionally dropping the next tick(s).  We do NOT
209		 * update itm.next because that would force us to call
210		 * xtime_update() which in turn would let our clock run
211		 * too fast (with the potentially devastating effect
212		 * of losing monotony of time).
213		 */
214		while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
215			new_itm += local_cpu_data->itm_delta;
216		ia64_set_itm(new_itm);
217		/* double check, in case we got hit by a (slow) PMI: */
218	} while (time_after_eq(ia64_get_itc(), new_itm));
219	return IRQ_HANDLED;
220}
221
222/*
223 * Encapsulate access to the itm structure for SMP.
224 */
225void
226ia64_cpu_local_tick (void)
227{
228	int cpu = smp_processor_id();
229	unsigned long shift = 0, delta;
230
231	/* arrange for the cycle counter to generate a timer interrupt: */
232	ia64_set_itv(IA64_TIMER_VECTOR);
233
234	delta = local_cpu_data->itm_delta;
235	/*
236	 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
237	 * same time:
238	 */
239	if (cpu) {
240		unsigned long hi = 1UL << ia64_fls(cpu);
241		shift = (2*(cpu - hi) + 1) * delta/hi/2;
242	}
243	local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
244	ia64_set_itm(local_cpu_data->itm_next);
245}
246
247static int nojitter;
248
249static int __init nojitter_setup(char *str)
250{
251	nojitter = 1;
252	printk("Jitter checking for ITC timers disabled\n");
253	return 1;
254}
255
256__setup("nojitter", nojitter_setup);
257
258
259void ia64_init_itm(void)
260{
261	unsigned long platform_base_freq, itc_freq;
262	struct pal_freq_ratio itc_ratio, proc_ratio;
263	long status, platform_base_drift, itc_drift;
264
265	/*
266	 * According to SAL v2.6, we need to use a SAL call to determine the platform base
267	 * frequency and then a PAL call to determine the frequency ratio between the ITC
268	 * and the base frequency.
269	 */
270	status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
271				    &platform_base_freq, &platform_base_drift);
272	if (status != 0) {
273		printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
274	} else {
275		status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
276		if (status != 0)
277			printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
278	}
279	if (status != 0) {
280		/* invent "random" values */
281		printk(KERN_ERR
282		       "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
283		platform_base_freq = 100000000;
284		platform_base_drift = -1;	/* no drift info */
285		itc_ratio.num = 3;
286		itc_ratio.den = 1;
287	}
288	if (platform_base_freq < 40000000) {
289		printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
290		       platform_base_freq);
291		platform_base_freq = 75000000;
292		platform_base_drift = -1;
293	}
294	if (!proc_ratio.den)
295		proc_ratio.den = 1;	/* avoid division by zero */
296	if (!itc_ratio.den)
297		itc_ratio.den = 1;	/* avoid division by zero */
298
299	itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
300
301	local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
302	printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
303	       "ITC freq=%lu.%03luMHz", smp_processor_id(),
304	       platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
305	       itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
306
307	if (platform_base_drift != -1) {
308		itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
309		printk("+/-%ldppm\n", itc_drift);
310	} else {
311		itc_drift = -1;
312		printk("\n");
313	}
314
315	local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
316	local_cpu_data->itc_freq = itc_freq;
317	local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
318	local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
319					+ itc_freq/2)/itc_freq;
320
321	if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
322#ifdef CONFIG_SMP
323		/* On IA64 in an SMP configuration ITCs are never accurately synchronized.
324		 * Jitter compensation requires a cmpxchg which may limit
325		 * the scalability of the syscalls for retrieving time.
326		 * The ITC synchronization is usually successful to within a few
327		 * ITC ticks but this is not a sure thing. If you need to improve
328		 * timer performance in SMP situations then boot the kernel with the
329		 * "nojitter" option. However, doing so may result in time fluctuating (maybe
330		 * even going backward) if the ITC offsets between the individual CPUs
331		 * are too large.
332		 */
333		if (!nojitter)
334			itc_jitter_data.itc_jitter = 1;
335#endif
336	} else
337		/*
338		 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
339		 * ITC values may fluctuate significantly between processors.
340		 * Clock should not be used for hrtimers. Mark itc as only
341		 * useful for boot and testing.
342		 *
343		 * Note that jitter compensation is off! There is no point of
344		 * synchronizing ITCs since they may be large differentials
345		 * that change over time.
346		 *
347		 * The only way to fix this would be to repeatedly sync the
348		 * ITCs. Until that time we have to avoid ITC.
349		 */
350		clocksource_itc.rating = 50;
351
 
 
352	/* avoid softlock up message when cpu is unplug and plugged again. */
353	touch_softlockup_watchdog();
354
355	/* Setup the CPU local timer tick */
356	ia64_cpu_local_tick();
357
358	if (!itc_clocksource) {
359		clocksource_register_hz(&clocksource_itc,
360						local_cpu_data->itc_freq);
361		itc_clocksource = &clocksource_itc;
362	}
363}
364
365static u64 itc_get_cycles(struct clocksource *cs)
366{
367	unsigned long lcycle, now, ret;
368
369	if (!itc_jitter_data.itc_jitter)
370		return get_cycles();
371
372	lcycle = itc_jitter_data.itc_lastcycle;
373	now = get_cycles();
374	if (lcycle && time_after(lcycle, now))
375		return lcycle;
376
377	/*
378	 * Keep track of the last timer value returned.
379	 * In an SMP environment, you could lose out in contention of
380	 * cmpxchg. If so, your cmpxchg returns new value which the
381	 * winner of contention updated to. Use the new value instead.
382	 */
383	ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
384	if (unlikely(ret != lcycle))
385		return ret;
386
387	return now;
388}
389
390void read_persistent_clock64(struct timespec64 *ts)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
391{
392	efi_gettimeofday(ts);
393}
394
395void __init
396time_init (void)
397{
398	register_percpu_irq(IA64_TIMER_VECTOR, timer_interrupt, IRQF_IRQPOLL,
399			    "timer");
400	ia64_init_itm();
401}
402
403/*
404 * Generic udelay assumes that if preemption is allowed and the thread
405 * migrates to another CPU, that the ITC values are synchronized across
406 * all CPUs.
407 */
408static void
409ia64_itc_udelay (unsigned long usecs)
410{
411	unsigned long start = ia64_get_itc();
412	unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
413
414	while (time_before(ia64_get_itc(), end))
415		cpu_relax();
416}
417
418void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
419
420void
421udelay (unsigned long usecs)
422{
423	(*ia64_udelay)(usecs);
424}
425EXPORT_SYMBOL(udelay);
426
427/* IA64 doesn't cache the timezone */
428void update_vsyscall_tz(void)
429{
430}
431
432void update_vsyscall(struct timekeeper *tk)
 
433{
434	write_seqcount_begin(&fsyscall_gtod_data.seq);
435
436	/* copy vsyscall data */
437	fsyscall_gtod_data.clk_mask = tk->tkr_mono.mask;
438	fsyscall_gtod_data.clk_mult = tk->tkr_mono.mult;
439	fsyscall_gtod_data.clk_shift = tk->tkr_mono.shift;
440	fsyscall_gtod_data.clk_fsys_mmio = tk->tkr_mono.clock->archdata.fsys_mmio;
441	fsyscall_gtod_data.clk_cycle_last = tk->tkr_mono.cycle_last;
442
443	fsyscall_gtod_data.wall_time.sec = tk->xtime_sec;
444	fsyscall_gtod_data.wall_time.snsec = tk->tkr_mono.xtime_nsec;
445
446	fsyscall_gtod_data.monotonic_time.sec = tk->xtime_sec
447					      + tk->wall_to_monotonic.tv_sec;
448	fsyscall_gtod_data.monotonic_time.snsec = tk->tkr_mono.xtime_nsec
449						+ ((u64)tk->wall_to_monotonic.tv_nsec
450							<< tk->tkr_mono.shift);
451
452	/* normalize */
453	while (fsyscall_gtod_data.monotonic_time.snsec >=
454					(((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
455		fsyscall_gtod_data.monotonic_time.snsec -=
456					((u64)NSEC_PER_SEC) << tk->tkr_mono.shift;
457		fsyscall_gtod_data.monotonic_time.sec++;
458	}
459
460	write_seqcount_end(&fsyscall_gtod_data.seq);
461}
462
v3.15
 
  1/*
  2 * linux/arch/ia64/kernel/time.c
  3 *
  4 * Copyright (C) 1998-2003 Hewlett-Packard Co
  5 *	Stephane Eranian <eranian@hpl.hp.com>
  6 *	David Mosberger <davidm@hpl.hp.com>
  7 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
  8 * Copyright (C) 1999-2000 VA Linux Systems
  9 * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
 10 */
 11
 12#include <linux/cpu.h>
 13#include <linux/init.h>
 14#include <linux/kernel.h>
 15#include <linux/module.h>
 16#include <linux/profile.h>
 17#include <linux/sched.h>
 18#include <linux/time.h>
 
 19#include <linux/interrupt.h>
 20#include <linux/efi.h>
 21#include <linux/timex.h>
 22#include <linux/timekeeper_internal.h>
 23#include <linux/platform_device.h>
 
 24
 25#include <asm/machvec.h>
 26#include <asm/delay.h>
 
 27#include <asm/hw_irq.h>
 28#include <asm/paravirt.h>
 29#include <asm/ptrace.h>
 30#include <asm/sal.h>
 31#include <asm/sections.h>
 32
 33#include "fsyscall_gtod_data.h"
 
 34
 35static cycle_t itc_get_cycles(struct clocksource *cs);
 36
 37struct fsyscall_gtod_data_t fsyscall_gtod_data;
 38
 39struct itc_jitter_data_t itc_jitter_data;
 40
 41volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
 42
 43#ifdef CONFIG_IA64_DEBUG_IRQ
 44
 45unsigned long last_cli_ip;
 46EXPORT_SYMBOL(last_cli_ip);
 47
 48#endif
 49
 50#ifdef CONFIG_PARAVIRT
 51/* We need to define a real function for sched_clock, to override the
 52   weak default version */
 53unsigned long long sched_clock(void)
 54{
 55        return paravirt_sched_clock();
 56}
 57#endif
 58
 59#ifdef CONFIG_PARAVIRT
 60static void
 61paravirt_clocksource_resume(struct clocksource *cs)
 62{
 63	if (pv_time_ops.clocksource_resume)
 64		pv_time_ops.clocksource_resume();
 65}
 66#endif
 67
 68static struct clocksource clocksource_itc = {
 69	.name           = "itc",
 70	.rating         = 350,
 71	.read           = itc_get_cycles,
 72	.mask           = CLOCKSOURCE_MASK(64),
 73	.flags          = CLOCK_SOURCE_IS_CONTINUOUS,
 74#ifdef CONFIG_PARAVIRT
 75	.resume		= paravirt_clocksource_resume,
 76#endif
 77};
 78static struct clocksource *itc_clocksource;
 79
 80#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 81
 82#include <linux/kernel_stat.h>
 83
 84extern cputime_t cycle_to_cputime(u64 cyc);
 85
 86void vtime_account_user(struct task_struct *tsk)
 87{
 88	cputime_t delta_utime;
 89	struct thread_info *ti = task_thread_info(tsk);
 
 
 
 
 
 
 
 90
 91	if (ti->ac_utime) {
 92		delta_utime = cycle_to_cputime(ti->ac_utime);
 93		account_user_time(tsk, delta_utime, delta_utime);
 94		ti->ac_utime = 0;
 
 
 
 
 
 
 
 95	}
 
 
 
 
 
 
 
 
 
 
 
 
 96}
 97
 98/*
 99 * Called from the context switch with interrupts disabled, to charge all
100 * accumulated times to the current process, and to prepare accounting on
101 * the next process.
102 */
103void arch_vtime_task_switch(struct task_struct *prev)
104{
105	struct thread_info *pi = task_thread_info(prev);
106	struct thread_info *ni = task_thread_info(current);
107
108	pi->ac_stamp = ni->ac_stamp;
109	ni->ac_stime = ni->ac_utime = 0;
110}
111
112/*
113 * Account time for a transition between system, hard irq or soft irq state.
114 * Note that this function is called with interrupts enabled.
115 */
116static cputime_t vtime_delta(struct task_struct *tsk)
117{
118	struct thread_info *ti = task_thread_info(tsk);
119	cputime_t delta_stime;
120	__u64 now;
121
122	WARN_ON_ONCE(!irqs_disabled());
123
124	now = ia64_get_itc();
125
126	delta_stime = cycle_to_cputime(ti->ac_stime + (now - ti->ac_stamp));
127	ti->ac_stime = 0;
128	ti->ac_stamp = now;
129
130	return delta_stime;
131}
132
133void vtime_account_system(struct task_struct *tsk)
134{
135	cputime_t delta = vtime_delta(tsk);
 
136
137	account_system_time(tsk, 0, delta, delta);
 
 
 
138}
139EXPORT_SYMBOL_GPL(vtime_account_system);
140
141void vtime_account_idle(struct task_struct *tsk)
142{
143	account_idle_time(vtime_delta(tsk));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144}
145
146#endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
147
148static irqreturn_t
149timer_interrupt (int irq, void *dev_id)
150{
151	unsigned long new_itm;
152
153	if (cpu_is_offline(smp_processor_id())) {
154		return IRQ_HANDLED;
155	}
156
157	platform_timer_interrupt(irq, dev_id);
158
159	new_itm = local_cpu_data->itm_next;
160
161	if (!time_after(ia64_get_itc(), new_itm))
162		printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
163		       ia64_get_itc(), new_itm);
164
165	profile_tick(CPU_PROFILING);
166
167	if (paravirt_do_steal_accounting(&new_itm))
168		goto skip_process_time_accounting;
169
170	while (1) {
171		update_process_times(user_mode(get_irq_regs()));
172
173		new_itm += local_cpu_data->itm_delta;
174
175		if (smp_processor_id() == time_keeper_id)
176			xtime_update(1);
177
178		local_cpu_data->itm_next = new_itm;
179
180		if (time_after(new_itm, ia64_get_itc()))
181			break;
182
183		/*
184		 * Allow IPIs to interrupt the timer loop.
185		 */
186		local_irq_enable();
187		local_irq_disable();
188	}
189
190skip_process_time_accounting:
191
192	do {
193		/*
194		 * If we're too close to the next clock tick for
195		 * comfort, we increase the safety margin by
196		 * intentionally dropping the next tick(s).  We do NOT
197		 * update itm.next because that would force us to call
198		 * xtime_update() which in turn would let our clock run
199		 * too fast (with the potentially devastating effect
200		 * of losing monotony of time).
201		 */
202		while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
203			new_itm += local_cpu_data->itm_delta;
204		ia64_set_itm(new_itm);
205		/* double check, in case we got hit by a (slow) PMI: */
206	} while (time_after_eq(ia64_get_itc(), new_itm));
207	return IRQ_HANDLED;
208}
209
210/*
211 * Encapsulate access to the itm structure for SMP.
212 */
213void
214ia64_cpu_local_tick (void)
215{
216	int cpu = smp_processor_id();
217	unsigned long shift = 0, delta;
218
219	/* arrange for the cycle counter to generate a timer interrupt: */
220	ia64_set_itv(IA64_TIMER_VECTOR);
221
222	delta = local_cpu_data->itm_delta;
223	/*
224	 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
225	 * same time:
226	 */
227	if (cpu) {
228		unsigned long hi = 1UL << ia64_fls(cpu);
229		shift = (2*(cpu - hi) + 1) * delta/hi/2;
230	}
231	local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
232	ia64_set_itm(local_cpu_data->itm_next);
233}
234
235static int nojitter;
236
237static int __init nojitter_setup(char *str)
238{
239	nojitter = 1;
240	printk("Jitter checking for ITC timers disabled\n");
241	return 1;
242}
243
244__setup("nojitter", nojitter_setup);
245
246
247void ia64_init_itm(void)
248{
249	unsigned long platform_base_freq, itc_freq;
250	struct pal_freq_ratio itc_ratio, proc_ratio;
251	long status, platform_base_drift, itc_drift;
252
253	/*
254	 * According to SAL v2.6, we need to use a SAL call to determine the platform base
255	 * frequency and then a PAL call to determine the frequency ratio between the ITC
256	 * and the base frequency.
257	 */
258	status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
259				    &platform_base_freq, &platform_base_drift);
260	if (status != 0) {
261		printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
262	} else {
263		status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
264		if (status != 0)
265			printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
266	}
267	if (status != 0) {
268		/* invent "random" values */
269		printk(KERN_ERR
270		       "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
271		platform_base_freq = 100000000;
272		platform_base_drift = -1;	/* no drift info */
273		itc_ratio.num = 3;
274		itc_ratio.den = 1;
275	}
276	if (platform_base_freq < 40000000) {
277		printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
278		       platform_base_freq);
279		platform_base_freq = 75000000;
280		platform_base_drift = -1;
281	}
282	if (!proc_ratio.den)
283		proc_ratio.den = 1;	/* avoid division by zero */
284	if (!itc_ratio.den)
285		itc_ratio.den = 1;	/* avoid division by zero */
286
287	itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
288
289	local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
290	printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
291	       "ITC freq=%lu.%03luMHz", smp_processor_id(),
292	       platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
293	       itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
294
295	if (platform_base_drift != -1) {
296		itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
297		printk("+/-%ldppm\n", itc_drift);
298	} else {
299		itc_drift = -1;
300		printk("\n");
301	}
302
303	local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
304	local_cpu_data->itc_freq = itc_freq;
305	local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
306	local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
307					+ itc_freq/2)/itc_freq;
308
309	if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
310#ifdef CONFIG_SMP
311		/* On IA64 in an SMP configuration ITCs are never accurately synchronized.
312		 * Jitter compensation requires a cmpxchg which may limit
313		 * the scalability of the syscalls for retrieving time.
314		 * The ITC synchronization is usually successful to within a few
315		 * ITC ticks but this is not a sure thing. If you need to improve
316		 * timer performance in SMP situations then boot the kernel with the
317		 * "nojitter" option. However, doing so may result in time fluctuating (maybe
318		 * even going backward) if the ITC offsets between the individual CPUs
319		 * are too large.
320		 */
321		if (!nojitter)
322			itc_jitter_data.itc_jitter = 1;
323#endif
324	} else
325		/*
326		 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
327		 * ITC values may fluctuate significantly between processors.
328		 * Clock should not be used for hrtimers. Mark itc as only
329		 * useful for boot and testing.
330		 *
331		 * Note that jitter compensation is off! There is no point of
332		 * synchronizing ITCs since they may be large differentials
333		 * that change over time.
334		 *
335		 * The only way to fix this would be to repeatedly sync the
336		 * ITCs. Until that time we have to avoid ITC.
337		 */
338		clocksource_itc.rating = 50;
339
340	paravirt_init_missing_ticks_accounting(smp_processor_id());
341
342	/* avoid softlock up message when cpu is unplug and plugged again. */
343	touch_softlockup_watchdog();
344
345	/* Setup the CPU local timer tick */
346	ia64_cpu_local_tick();
347
348	if (!itc_clocksource) {
349		clocksource_register_hz(&clocksource_itc,
350						local_cpu_data->itc_freq);
351		itc_clocksource = &clocksource_itc;
352	}
353}
354
355static cycle_t itc_get_cycles(struct clocksource *cs)
356{
357	unsigned long lcycle, now, ret;
358
359	if (!itc_jitter_data.itc_jitter)
360		return get_cycles();
361
362	lcycle = itc_jitter_data.itc_lastcycle;
363	now = get_cycles();
364	if (lcycle && time_after(lcycle, now))
365		return lcycle;
366
367	/*
368	 * Keep track of the last timer value returned.
369	 * In an SMP environment, you could lose out in contention of
370	 * cmpxchg. If so, your cmpxchg returns new value which the
371	 * winner of contention updated to. Use the new value instead.
372	 */
373	ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
374	if (unlikely(ret != lcycle))
375		return ret;
376
377	return now;
378}
379
380
381static struct irqaction timer_irqaction = {
382	.handler =	timer_interrupt,
383	.flags =	IRQF_IRQPOLL,
384	.name =		"timer"
385};
386
387static struct platform_device rtc_efi_dev = {
388	.name = "rtc-efi",
389	.id = -1,
390};
391
392static int __init rtc_init(void)
393{
394	if (platform_device_register(&rtc_efi_dev) < 0)
395		printk(KERN_ERR "unable to register rtc device...\n");
396
397	/* not necessarily an error */
398	return 0;
399}
400module_init(rtc_init);
401
402void read_persistent_clock(struct timespec *ts)
403{
404	efi_gettimeofday(ts);
405}
406
407void __init
408time_init (void)
409{
410	register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
 
411	ia64_init_itm();
412}
413
414/*
415 * Generic udelay assumes that if preemption is allowed and the thread
416 * migrates to another CPU, that the ITC values are synchronized across
417 * all CPUs.
418 */
419static void
420ia64_itc_udelay (unsigned long usecs)
421{
422	unsigned long start = ia64_get_itc();
423	unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
424
425	while (time_before(ia64_get_itc(), end))
426		cpu_relax();
427}
428
429void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
430
431void
432udelay (unsigned long usecs)
433{
434	(*ia64_udelay)(usecs);
435}
436EXPORT_SYMBOL(udelay);
437
438/* IA64 doesn't cache the timezone */
439void update_vsyscall_tz(void)
440{
441}
442
443void update_vsyscall_old(struct timespec *wall, struct timespec *wtm,
444			struct clocksource *c, u32 mult)
445{
446	write_seqcount_begin(&fsyscall_gtod_data.seq);
447
448        /* copy fsyscall clock data */
449        fsyscall_gtod_data.clk_mask = c->mask;
450        fsyscall_gtod_data.clk_mult = mult;
451        fsyscall_gtod_data.clk_shift = c->shift;
452        fsyscall_gtod_data.clk_fsys_mmio = c->archdata.fsys_mmio;
453        fsyscall_gtod_data.clk_cycle_last = c->cycle_last;
454
455	/* copy kernel time structures */
456        fsyscall_gtod_data.wall_time.tv_sec = wall->tv_sec;
457        fsyscall_gtod_data.wall_time.tv_nsec = wall->tv_nsec;
458	fsyscall_gtod_data.monotonic_time.tv_sec = wtm->tv_sec
459							+ wall->tv_sec;
460	fsyscall_gtod_data.monotonic_time.tv_nsec = wtm->tv_nsec
461							+ wall->tv_nsec;
 
462
463	/* normalize */
464	while (fsyscall_gtod_data.monotonic_time.tv_nsec >= NSEC_PER_SEC) {
465		fsyscall_gtod_data.monotonic_time.tv_nsec -= NSEC_PER_SEC;
466		fsyscall_gtod_data.monotonic_time.tv_sec++;
 
 
467	}
468
469	write_seqcount_end(&fsyscall_gtod_data.seq);
470}
471