Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/net/sunrpc/svc_xprt.c
4 *
5 * Author: Tom Tucker <tom@opengridcomputing.com>
6 */
7
8#include <linux/sched.h>
9#include <linux/sched/mm.h>
10#include <linux/errno.h>
11#include <linux/freezer.h>
12#include <linux/kthread.h>
13#include <linux/slab.h>
14#include <net/sock.h>
15#include <linux/sunrpc/addr.h>
16#include <linux/sunrpc/stats.h>
17#include <linux/sunrpc/svc_xprt.h>
18#include <linux/sunrpc/svcsock.h>
19#include <linux/sunrpc/xprt.h>
20#include <linux/module.h>
21#include <linux/netdevice.h>
22#include <trace/events/sunrpc.h>
23
24#define RPCDBG_FACILITY RPCDBG_SVCXPRT
25
26static unsigned int svc_rpc_per_connection_limit __read_mostly;
27module_param(svc_rpc_per_connection_limit, uint, 0644);
28
29
30static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
31static int svc_deferred_recv(struct svc_rqst *rqstp);
32static struct cache_deferred_req *svc_defer(struct cache_req *req);
33static void svc_age_temp_xprts(struct timer_list *t);
34static void svc_delete_xprt(struct svc_xprt *xprt);
35
36/* apparently the "standard" is that clients close
37 * idle connections after 5 minutes, servers after
38 * 6 minutes
39 * http://nfsv4bat.org/Documents/ConnectAThon/1996/nfstcp.pdf
40 */
41static int svc_conn_age_period = 6*60;
42
43/* List of registered transport classes */
44static DEFINE_SPINLOCK(svc_xprt_class_lock);
45static LIST_HEAD(svc_xprt_class_list);
46
47/* SMP locking strategy:
48 *
49 * svc_pool->sp_lock protects most of the fields of that pool.
50 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
51 * when both need to be taken (rare), svc_serv->sv_lock is first.
52 * The "service mutex" protects svc_serv->sv_nrthread.
53 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
54 * and the ->sk_info_authunix cache.
55 *
56 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
57 * enqueued multiply. During normal transport processing this bit
58 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
59 * Providers should not manipulate this bit directly.
60 *
61 * Some flags can be set to certain values at any time
62 * providing that certain rules are followed:
63 *
64 * XPT_CONN, XPT_DATA:
65 * - Can be set or cleared at any time.
66 * - After a set, svc_xprt_enqueue must be called to enqueue
67 * the transport for processing.
68 * - After a clear, the transport must be read/accepted.
69 * If this succeeds, it must be set again.
70 * XPT_CLOSE:
71 * - Can set at any time. It is never cleared.
72 * XPT_DEAD:
73 * - Can only be set while XPT_BUSY is held which ensures
74 * that no other thread will be using the transport or will
75 * try to set XPT_DEAD.
76 */
77int svc_reg_xprt_class(struct svc_xprt_class *xcl)
78{
79 struct svc_xprt_class *cl;
80 int res = -EEXIST;
81
82 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
83
84 INIT_LIST_HEAD(&xcl->xcl_list);
85 spin_lock(&svc_xprt_class_lock);
86 /* Make sure there isn't already a class with the same name */
87 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
88 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
89 goto out;
90 }
91 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
92 res = 0;
93out:
94 spin_unlock(&svc_xprt_class_lock);
95 return res;
96}
97EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
98
99void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
100{
101 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
102 spin_lock(&svc_xprt_class_lock);
103 list_del_init(&xcl->xcl_list);
104 spin_unlock(&svc_xprt_class_lock);
105}
106EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
107
108/**
109 * svc_print_xprts - Format the transport list for printing
110 * @buf: target buffer for formatted address
111 * @maxlen: length of target buffer
112 *
113 * Fills in @buf with a string containing a list of transport names, each name
114 * terminated with '\n'. If the buffer is too small, some entries may be
115 * missing, but it is guaranteed that all lines in the output buffer are
116 * complete.
117 *
118 * Returns positive length of the filled-in string.
119 */
120int svc_print_xprts(char *buf, int maxlen)
121{
122 struct svc_xprt_class *xcl;
123 char tmpstr[80];
124 int len = 0;
125 buf[0] = '\0';
126
127 spin_lock(&svc_xprt_class_lock);
128 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
129 int slen;
130
131 slen = snprintf(tmpstr, sizeof(tmpstr), "%s %d\n",
132 xcl->xcl_name, xcl->xcl_max_payload);
133 if (slen >= sizeof(tmpstr) || len + slen >= maxlen)
134 break;
135 len += slen;
136 strcat(buf, tmpstr);
137 }
138 spin_unlock(&svc_xprt_class_lock);
139
140 return len;
141}
142
143/**
144 * svc_xprt_deferred_close - Close a transport
145 * @xprt: transport instance
146 *
147 * Used in contexts that need to defer the work of shutting down
148 * the transport to an nfsd thread.
149 */
150void svc_xprt_deferred_close(struct svc_xprt *xprt)
151{
152 if (!test_and_set_bit(XPT_CLOSE, &xprt->xpt_flags))
153 svc_xprt_enqueue(xprt);
154}
155EXPORT_SYMBOL_GPL(svc_xprt_deferred_close);
156
157static void svc_xprt_free(struct kref *kref)
158{
159 struct svc_xprt *xprt =
160 container_of(kref, struct svc_xprt, xpt_ref);
161 struct module *owner = xprt->xpt_class->xcl_owner;
162 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
163 svcauth_unix_info_release(xprt);
164 put_cred(xprt->xpt_cred);
165 put_net_track(xprt->xpt_net, &xprt->ns_tracker);
166 /* See comment on corresponding get in xs_setup_bc_tcp(): */
167 if (xprt->xpt_bc_xprt)
168 xprt_put(xprt->xpt_bc_xprt);
169 if (xprt->xpt_bc_xps)
170 xprt_switch_put(xprt->xpt_bc_xps);
171 trace_svc_xprt_free(xprt);
172 xprt->xpt_ops->xpo_free(xprt);
173 module_put(owner);
174}
175
176void svc_xprt_put(struct svc_xprt *xprt)
177{
178 kref_put(&xprt->xpt_ref, svc_xprt_free);
179}
180EXPORT_SYMBOL_GPL(svc_xprt_put);
181
182/*
183 * Called by transport drivers to initialize the transport independent
184 * portion of the transport instance.
185 */
186void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
187 struct svc_xprt *xprt, struct svc_serv *serv)
188{
189 memset(xprt, 0, sizeof(*xprt));
190 xprt->xpt_class = xcl;
191 xprt->xpt_ops = xcl->xcl_ops;
192 kref_init(&xprt->xpt_ref);
193 xprt->xpt_server = serv;
194 INIT_LIST_HEAD(&xprt->xpt_list);
195 INIT_LIST_HEAD(&xprt->xpt_ready);
196 INIT_LIST_HEAD(&xprt->xpt_deferred);
197 INIT_LIST_HEAD(&xprt->xpt_users);
198 mutex_init(&xprt->xpt_mutex);
199 spin_lock_init(&xprt->xpt_lock);
200 set_bit(XPT_BUSY, &xprt->xpt_flags);
201 xprt->xpt_net = get_net_track(net, &xprt->ns_tracker, GFP_ATOMIC);
202 strcpy(xprt->xpt_remotebuf, "uninitialized");
203}
204EXPORT_SYMBOL_GPL(svc_xprt_init);
205
206static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
207 struct svc_serv *serv,
208 struct net *net,
209 const int family,
210 const unsigned short port,
211 int flags)
212{
213 struct sockaddr_in sin = {
214 .sin_family = AF_INET,
215 .sin_addr.s_addr = htonl(INADDR_ANY),
216 .sin_port = htons(port),
217 };
218#if IS_ENABLED(CONFIG_IPV6)
219 struct sockaddr_in6 sin6 = {
220 .sin6_family = AF_INET6,
221 .sin6_addr = IN6ADDR_ANY_INIT,
222 .sin6_port = htons(port),
223 };
224#endif
225 struct svc_xprt *xprt;
226 struct sockaddr *sap;
227 size_t len;
228
229 switch (family) {
230 case PF_INET:
231 sap = (struct sockaddr *)&sin;
232 len = sizeof(sin);
233 break;
234#if IS_ENABLED(CONFIG_IPV6)
235 case PF_INET6:
236 sap = (struct sockaddr *)&sin6;
237 len = sizeof(sin6);
238 break;
239#endif
240 default:
241 return ERR_PTR(-EAFNOSUPPORT);
242 }
243
244 xprt = xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
245 if (IS_ERR(xprt))
246 trace_svc_xprt_create_err(serv->sv_program->pg_name,
247 xcl->xcl_name, sap, len, xprt);
248 return xprt;
249}
250
251/**
252 * svc_xprt_received - start next receiver thread
253 * @xprt: controlling transport
254 *
255 * The caller must hold the XPT_BUSY bit and must
256 * not thereafter touch transport data.
257 *
258 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
259 * insufficient) data.
260 */
261void svc_xprt_received(struct svc_xprt *xprt)
262{
263 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
264 WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
265 return;
266 }
267
268 /* As soon as we clear busy, the xprt could be closed and
269 * 'put', so we need a reference to call svc_xprt_enqueue with:
270 */
271 svc_xprt_get(xprt);
272 smp_mb__before_atomic();
273 clear_bit(XPT_BUSY, &xprt->xpt_flags);
274 svc_xprt_enqueue(xprt);
275 svc_xprt_put(xprt);
276}
277EXPORT_SYMBOL_GPL(svc_xprt_received);
278
279void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
280{
281 clear_bit(XPT_TEMP, &new->xpt_flags);
282 spin_lock_bh(&serv->sv_lock);
283 list_add(&new->xpt_list, &serv->sv_permsocks);
284 spin_unlock_bh(&serv->sv_lock);
285 svc_xprt_received(new);
286}
287
288static int _svc_xprt_create(struct svc_serv *serv, const char *xprt_name,
289 struct net *net, const int family,
290 const unsigned short port, int flags,
291 const struct cred *cred)
292{
293 struct svc_xprt_class *xcl;
294
295 spin_lock(&svc_xprt_class_lock);
296 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
297 struct svc_xprt *newxprt;
298 unsigned short newport;
299
300 if (strcmp(xprt_name, xcl->xcl_name))
301 continue;
302
303 if (!try_module_get(xcl->xcl_owner))
304 goto err;
305
306 spin_unlock(&svc_xprt_class_lock);
307 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
308 if (IS_ERR(newxprt)) {
309 module_put(xcl->xcl_owner);
310 return PTR_ERR(newxprt);
311 }
312 newxprt->xpt_cred = get_cred(cred);
313 svc_add_new_perm_xprt(serv, newxprt);
314 newport = svc_xprt_local_port(newxprt);
315 return newport;
316 }
317 err:
318 spin_unlock(&svc_xprt_class_lock);
319 /* This errno is exposed to user space. Provide a reasonable
320 * perror msg for a bad transport. */
321 return -EPROTONOSUPPORT;
322}
323
324/**
325 * svc_xprt_create - Add a new listener to @serv
326 * @serv: target RPC service
327 * @xprt_name: transport class name
328 * @net: network namespace
329 * @family: network address family
330 * @port: listener port
331 * @flags: SVC_SOCK flags
332 * @cred: credential to bind to this transport
333 *
334 * Return values:
335 * %0: New listener added successfully
336 * %-EPROTONOSUPPORT: Requested transport type not supported
337 */
338int svc_xprt_create(struct svc_serv *serv, const char *xprt_name,
339 struct net *net, const int family,
340 const unsigned short port, int flags,
341 const struct cred *cred)
342{
343 int err;
344
345 err = _svc_xprt_create(serv, xprt_name, net, family, port, flags, cred);
346 if (err == -EPROTONOSUPPORT) {
347 request_module("svc%s", xprt_name);
348 err = _svc_xprt_create(serv, xprt_name, net, family, port, flags, cred);
349 }
350 return err;
351}
352EXPORT_SYMBOL_GPL(svc_xprt_create);
353
354/*
355 * Copy the local and remote xprt addresses to the rqstp structure
356 */
357void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
358{
359 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
360 rqstp->rq_addrlen = xprt->xpt_remotelen;
361
362 /*
363 * Destination address in request is needed for binding the
364 * source address in RPC replies/callbacks later.
365 */
366 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
367 rqstp->rq_daddrlen = xprt->xpt_locallen;
368}
369EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
370
371/**
372 * svc_print_addr - Format rq_addr field for printing
373 * @rqstp: svc_rqst struct containing address to print
374 * @buf: target buffer for formatted address
375 * @len: length of target buffer
376 *
377 */
378char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
379{
380 return __svc_print_addr(svc_addr(rqstp), buf, len);
381}
382EXPORT_SYMBOL_GPL(svc_print_addr);
383
384static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
385{
386 unsigned int limit = svc_rpc_per_connection_limit;
387 int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
388
389 return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
390}
391
392static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
393{
394 if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
395 if (!svc_xprt_slots_in_range(xprt))
396 return false;
397 atomic_inc(&xprt->xpt_nr_rqsts);
398 set_bit(RQ_DATA, &rqstp->rq_flags);
399 }
400 return true;
401}
402
403static void svc_xprt_release_slot(struct svc_rqst *rqstp)
404{
405 struct svc_xprt *xprt = rqstp->rq_xprt;
406 if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
407 atomic_dec(&xprt->xpt_nr_rqsts);
408 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
409 svc_xprt_enqueue(xprt);
410 }
411}
412
413static bool svc_xprt_ready(struct svc_xprt *xprt)
414{
415 unsigned long xpt_flags;
416
417 /*
418 * If another cpu has recently updated xpt_flags,
419 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to
420 * know about it; otherwise it's possible that both that cpu and
421 * this one could call svc_xprt_enqueue() without either
422 * svc_xprt_enqueue() recognizing that the conditions below
423 * are satisfied, and we could stall indefinitely:
424 */
425 smp_rmb();
426 xpt_flags = READ_ONCE(xprt->xpt_flags);
427
428 if (xpt_flags & BIT(XPT_BUSY))
429 return false;
430 if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE)))
431 return true;
432 if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) {
433 if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
434 svc_xprt_slots_in_range(xprt))
435 return true;
436 trace_svc_xprt_no_write_space(xprt);
437 return false;
438 }
439 return false;
440}
441
442/**
443 * svc_xprt_enqueue - Queue a transport on an idle nfsd thread
444 * @xprt: transport with data pending
445 *
446 */
447void svc_xprt_enqueue(struct svc_xprt *xprt)
448{
449 struct svc_pool *pool;
450 struct svc_rqst *rqstp = NULL;
451
452 if (!svc_xprt_ready(xprt))
453 return;
454
455 /* Mark transport as busy. It will remain in this state until
456 * the provider calls svc_xprt_received. We update XPT_BUSY
457 * atomically because it also guards against trying to enqueue
458 * the transport twice.
459 */
460 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
461 return;
462
463 pool = svc_pool_for_cpu(xprt->xpt_server);
464
465 atomic_long_inc(&pool->sp_stats.packets);
466
467 spin_lock_bh(&pool->sp_lock);
468 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
469 pool->sp_stats.sockets_queued++;
470 spin_unlock_bh(&pool->sp_lock);
471
472 /* find a thread for this xprt */
473 rcu_read_lock();
474 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
475 if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags))
476 continue;
477 atomic_long_inc(&pool->sp_stats.threads_woken);
478 rqstp->rq_qtime = ktime_get();
479 wake_up_process(rqstp->rq_task);
480 goto out_unlock;
481 }
482 set_bit(SP_CONGESTED, &pool->sp_flags);
483 rqstp = NULL;
484out_unlock:
485 rcu_read_unlock();
486 trace_svc_xprt_enqueue(xprt, rqstp);
487}
488EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
489
490/*
491 * Dequeue the first transport, if there is one.
492 */
493static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
494{
495 struct svc_xprt *xprt = NULL;
496
497 if (list_empty(&pool->sp_sockets))
498 goto out;
499
500 spin_lock_bh(&pool->sp_lock);
501 if (likely(!list_empty(&pool->sp_sockets))) {
502 xprt = list_first_entry(&pool->sp_sockets,
503 struct svc_xprt, xpt_ready);
504 list_del_init(&xprt->xpt_ready);
505 svc_xprt_get(xprt);
506 }
507 spin_unlock_bh(&pool->sp_lock);
508out:
509 return xprt;
510}
511
512/**
513 * svc_reserve - change the space reserved for the reply to a request.
514 * @rqstp: The request in question
515 * @space: new max space to reserve
516 *
517 * Each request reserves some space on the output queue of the transport
518 * to make sure the reply fits. This function reduces that reserved
519 * space to be the amount of space used already, plus @space.
520 *
521 */
522void svc_reserve(struct svc_rqst *rqstp, int space)
523{
524 struct svc_xprt *xprt = rqstp->rq_xprt;
525
526 space += rqstp->rq_res.head[0].iov_len;
527
528 if (xprt && space < rqstp->rq_reserved) {
529 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
530 rqstp->rq_reserved = space;
531 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
532 svc_xprt_enqueue(xprt);
533 }
534}
535EXPORT_SYMBOL_GPL(svc_reserve);
536
537static void svc_xprt_release(struct svc_rqst *rqstp)
538{
539 struct svc_xprt *xprt = rqstp->rq_xprt;
540
541 xprt->xpt_ops->xpo_release_rqst(rqstp);
542
543 kfree(rqstp->rq_deferred);
544 rqstp->rq_deferred = NULL;
545
546 pagevec_release(&rqstp->rq_pvec);
547 svc_free_res_pages(rqstp);
548 rqstp->rq_res.page_len = 0;
549 rqstp->rq_res.page_base = 0;
550
551 /* Reset response buffer and release
552 * the reservation.
553 * But first, check that enough space was reserved
554 * for the reply, otherwise we have a bug!
555 */
556 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
557 printk(KERN_ERR "RPC request reserved %d but used %d\n",
558 rqstp->rq_reserved,
559 rqstp->rq_res.len);
560
561 rqstp->rq_res.head[0].iov_len = 0;
562 svc_reserve(rqstp, 0);
563 svc_xprt_release_slot(rqstp);
564 rqstp->rq_xprt = NULL;
565 svc_xprt_put(xprt);
566}
567
568/*
569 * Some svc_serv's will have occasional work to do, even when a xprt is not
570 * waiting to be serviced. This function is there to "kick" a task in one of
571 * those services so that it can wake up and do that work. Note that we only
572 * bother with pool 0 as we don't need to wake up more than one thread for
573 * this purpose.
574 */
575void svc_wake_up(struct svc_serv *serv)
576{
577 struct svc_rqst *rqstp;
578 struct svc_pool *pool;
579
580 pool = &serv->sv_pools[0];
581
582 rcu_read_lock();
583 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
584 /* skip any that aren't queued */
585 if (test_bit(RQ_BUSY, &rqstp->rq_flags))
586 continue;
587 rcu_read_unlock();
588 wake_up_process(rqstp->rq_task);
589 trace_svc_wake_up(rqstp->rq_task->pid);
590 return;
591 }
592 rcu_read_unlock();
593
594 /* No free entries available */
595 set_bit(SP_TASK_PENDING, &pool->sp_flags);
596 smp_wmb();
597 trace_svc_wake_up(0);
598}
599EXPORT_SYMBOL_GPL(svc_wake_up);
600
601int svc_port_is_privileged(struct sockaddr *sin)
602{
603 switch (sin->sa_family) {
604 case AF_INET:
605 return ntohs(((struct sockaddr_in *)sin)->sin_port)
606 < PROT_SOCK;
607 case AF_INET6:
608 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
609 < PROT_SOCK;
610 default:
611 return 0;
612 }
613}
614
615/*
616 * Make sure that we don't have too many active connections. If we have,
617 * something must be dropped. It's not clear what will happen if we allow
618 * "too many" connections, but when dealing with network-facing software,
619 * we have to code defensively. Here we do that by imposing hard limits.
620 *
621 * There's no point in trying to do random drop here for DoS
622 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
623 * attacker can easily beat that.
624 *
625 * The only somewhat efficient mechanism would be if drop old
626 * connections from the same IP first. But right now we don't even
627 * record the client IP in svc_sock.
628 *
629 * single-threaded services that expect a lot of clients will probably
630 * need to set sv_maxconn to override the default value which is based
631 * on the number of threads
632 */
633static void svc_check_conn_limits(struct svc_serv *serv)
634{
635 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
636 (serv->sv_nrthreads+3) * 20;
637
638 if (serv->sv_tmpcnt > limit) {
639 struct svc_xprt *xprt = NULL;
640 spin_lock_bh(&serv->sv_lock);
641 if (!list_empty(&serv->sv_tempsocks)) {
642 /* Try to help the admin */
643 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
644 serv->sv_name, serv->sv_maxconn ?
645 "max number of connections" :
646 "number of threads");
647 /*
648 * Always select the oldest connection. It's not fair,
649 * but so is life
650 */
651 xprt = list_entry(serv->sv_tempsocks.prev,
652 struct svc_xprt,
653 xpt_list);
654 set_bit(XPT_CLOSE, &xprt->xpt_flags);
655 svc_xprt_get(xprt);
656 }
657 spin_unlock_bh(&serv->sv_lock);
658
659 if (xprt) {
660 svc_xprt_enqueue(xprt);
661 svc_xprt_put(xprt);
662 }
663 }
664}
665
666static int svc_alloc_arg(struct svc_rqst *rqstp)
667{
668 struct svc_serv *serv = rqstp->rq_server;
669 struct xdr_buf *arg = &rqstp->rq_arg;
670 unsigned long pages, filled, ret;
671
672 pagevec_init(&rqstp->rq_pvec);
673
674 pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
675 if (pages > RPCSVC_MAXPAGES) {
676 pr_warn_once("svc: warning: pages=%lu > RPCSVC_MAXPAGES=%lu\n",
677 pages, RPCSVC_MAXPAGES);
678 /* use as many pages as possible */
679 pages = RPCSVC_MAXPAGES;
680 }
681
682 for (filled = 0; filled < pages; filled = ret) {
683 ret = alloc_pages_bulk_array(GFP_KERNEL, pages,
684 rqstp->rq_pages);
685 if (ret > filled)
686 /* Made progress, don't sleep yet */
687 continue;
688
689 set_current_state(TASK_INTERRUPTIBLE);
690 if (signalled() || kthread_should_stop()) {
691 set_current_state(TASK_RUNNING);
692 return -EINTR;
693 }
694 trace_svc_alloc_arg_err(pages, ret);
695 memalloc_retry_wait(GFP_KERNEL);
696 }
697 rqstp->rq_page_end = &rqstp->rq_pages[pages];
698 rqstp->rq_pages[pages] = NULL; /* this might be seen in nfsd_splice_actor() */
699
700 /* Make arg->head point to first page and arg->pages point to rest */
701 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
702 arg->head[0].iov_len = PAGE_SIZE;
703 arg->pages = rqstp->rq_pages + 1;
704 arg->page_base = 0;
705 /* save at least one page for response */
706 arg->page_len = (pages-2)*PAGE_SIZE;
707 arg->len = (pages-1)*PAGE_SIZE;
708 arg->tail[0].iov_len = 0;
709 return 0;
710}
711
712static bool
713rqst_should_sleep(struct svc_rqst *rqstp)
714{
715 struct svc_pool *pool = rqstp->rq_pool;
716
717 /* did someone call svc_wake_up? */
718 if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
719 return false;
720
721 /* was a socket queued? */
722 if (!list_empty(&pool->sp_sockets))
723 return false;
724
725 /* are we shutting down? */
726 if (signalled() || kthread_should_stop())
727 return false;
728
729 /* are we freezing? */
730 if (freezing(current))
731 return false;
732
733 return true;
734}
735
736static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
737{
738 struct svc_pool *pool = rqstp->rq_pool;
739 long time_left = 0;
740
741 /* rq_xprt should be clear on entry */
742 WARN_ON_ONCE(rqstp->rq_xprt);
743
744 rqstp->rq_xprt = svc_xprt_dequeue(pool);
745 if (rqstp->rq_xprt)
746 goto out_found;
747
748 /*
749 * We have to be able to interrupt this wait
750 * to bring down the daemons ...
751 */
752 set_current_state(TASK_INTERRUPTIBLE);
753 smp_mb__before_atomic();
754 clear_bit(SP_CONGESTED, &pool->sp_flags);
755 clear_bit(RQ_BUSY, &rqstp->rq_flags);
756 smp_mb__after_atomic();
757
758 if (likely(rqst_should_sleep(rqstp)))
759 time_left = schedule_timeout(timeout);
760 else
761 __set_current_state(TASK_RUNNING);
762
763 try_to_freeze();
764
765 set_bit(RQ_BUSY, &rqstp->rq_flags);
766 smp_mb__after_atomic();
767 rqstp->rq_xprt = svc_xprt_dequeue(pool);
768 if (rqstp->rq_xprt)
769 goto out_found;
770
771 if (!time_left)
772 atomic_long_inc(&pool->sp_stats.threads_timedout);
773
774 if (signalled() || kthread_should_stop())
775 return ERR_PTR(-EINTR);
776 return ERR_PTR(-EAGAIN);
777out_found:
778 /* Normally we will wait up to 5 seconds for any required
779 * cache information to be provided.
780 */
781 if (!test_bit(SP_CONGESTED, &pool->sp_flags))
782 rqstp->rq_chandle.thread_wait = 5*HZ;
783 else
784 rqstp->rq_chandle.thread_wait = 1*HZ;
785 trace_svc_xprt_dequeue(rqstp);
786 return rqstp->rq_xprt;
787}
788
789static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
790{
791 spin_lock_bh(&serv->sv_lock);
792 set_bit(XPT_TEMP, &newxpt->xpt_flags);
793 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
794 serv->sv_tmpcnt++;
795 if (serv->sv_temptimer.function == NULL) {
796 /* setup timer to age temp transports */
797 serv->sv_temptimer.function = svc_age_temp_xprts;
798 mod_timer(&serv->sv_temptimer,
799 jiffies + svc_conn_age_period * HZ);
800 }
801 spin_unlock_bh(&serv->sv_lock);
802 svc_xprt_received(newxpt);
803}
804
805static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
806{
807 struct svc_serv *serv = rqstp->rq_server;
808 int len = 0;
809
810 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
811 if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
812 xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
813 svc_delete_xprt(xprt);
814 /* Leave XPT_BUSY set on the dead xprt: */
815 goto out;
816 }
817 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
818 struct svc_xprt *newxpt;
819 /*
820 * We know this module_get will succeed because the
821 * listener holds a reference too
822 */
823 __module_get(xprt->xpt_class->xcl_owner);
824 svc_check_conn_limits(xprt->xpt_server);
825 newxpt = xprt->xpt_ops->xpo_accept(xprt);
826 if (newxpt) {
827 newxpt->xpt_cred = get_cred(xprt->xpt_cred);
828 svc_add_new_temp_xprt(serv, newxpt);
829 trace_svc_xprt_accept(newxpt, serv->sv_name);
830 } else {
831 module_put(xprt->xpt_class->xcl_owner);
832 }
833 svc_xprt_received(xprt);
834 } else if (svc_xprt_reserve_slot(rqstp, xprt)) {
835 /* XPT_DATA|XPT_DEFERRED case: */
836 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
837 rqstp, rqstp->rq_pool->sp_id, xprt,
838 kref_read(&xprt->xpt_ref));
839 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
840 if (rqstp->rq_deferred)
841 len = svc_deferred_recv(rqstp);
842 else
843 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
844 rqstp->rq_stime = ktime_get();
845 rqstp->rq_reserved = serv->sv_max_mesg;
846 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
847 } else
848 svc_xprt_received(xprt);
849
850out:
851 return len;
852}
853
854/*
855 * Receive the next request on any transport. This code is carefully
856 * organised not to touch any cachelines in the shared svc_serv
857 * structure, only cachelines in the local svc_pool.
858 */
859int svc_recv(struct svc_rqst *rqstp, long timeout)
860{
861 struct svc_xprt *xprt = NULL;
862 struct svc_serv *serv = rqstp->rq_server;
863 int len, err;
864
865 err = svc_alloc_arg(rqstp);
866 if (err)
867 goto out;
868
869 try_to_freeze();
870 cond_resched();
871 err = -EINTR;
872 if (signalled() || kthread_should_stop())
873 goto out;
874
875 xprt = svc_get_next_xprt(rqstp, timeout);
876 if (IS_ERR(xprt)) {
877 err = PTR_ERR(xprt);
878 goto out;
879 }
880
881 len = svc_handle_xprt(rqstp, xprt);
882
883 /* No data, incomplete (TCP) read, or accept() */
884 err = -EAGAIN;
885 if (len <= 0)
886 goto out_release;
887 trace_svc_xdr_recvfrom(&rqstp->rq_arg);
888
889 clear_bit(XPT_OLD, &xprt->xpt_flags);
890
891 xprt->xpt_ops->xpo_secure_port(rqstp);
892 rqstp->rq_chandle.defer = svc_defer;
893 rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
894
895 if (serv->sv_stats)
896 serv->sv_stats->netcnt++;
897 return len;
898out_release:
899 rqstp->rq_res.len = 0;
900 svc_xprt_release(rqstp);
901out:
902 return err;
903}
904EXPORT_SYMBOL_GPL(svc_recv);
905
906/*
907 * Drop request
908 */
909void svc_drop(struct svc_rqst *rqstp)
910{
911 trace_svc_drop(rqstp);
912 svc_xprt_release(rqstp);
913}
914EXPORT_SYMBOL_GPL(svc_drop);
915
916/*
917 * Return reply to client.
918 */
919int svc_send(struct svc_rqst *rqstp)
920{
921 struct svc_xprt *xprt;
922 int len = -EFAULT;
923 struct xdr_buf *xb;
924
925 xprt = rqstp->rq_xprt;
926 if (!xprt)
927 goto out;
928
929 /* calculate over-all length */
930 xb = &rqstp->rq_res;
931 xb->len = xb->head[0].iov_len +
932 xb->page_len +
933 xb->tail[0].iov_len;
934 trace_svc_xdr_sendto(rqstp->rq_xid, xb);
935 trace_svc_stats_latency(rqstp);
936
937 len = xprt->xpt_ops->xpo_sendto(rqstp);
938
939 trace_svc_send(rqstp, len);
940 svc_xprt_release(rqstp);
941
942 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
943 len = 0;
944out:
945 return len;
946}
947
948/*
949 * Timer function to close old temporary transports, using
950 * a mark-and-sweep algorithm.
951 */
952static void svc_age_temp_xprts(struct timer_list *t)
953{
954 struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
955 struct svc_xprt *xprt;
956 struct list_head *le, *next;
957
958 dprintk("svc_age_temp_xprts\n");
959
960 if (!spin_trylock_bh(&serv->sv_lock)) {
961 /* busy, try again 1 sec later */
962 dprintk("svc_age_temp_xprts: busy\n");
963 mod_timer(&serv->sv_temptimer, jiffies + HZ);
964 return;
965 }
966
967 list_for_each_safe(le, next, &serv->sv_tempsocks) {
968 xprt = list_entry(le, struct svc_xprt, xpt_list);
969
970 /* First time through, just mark it OLD. Second time
971 * through, close it. */
972 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
973 continue;
974 if (kref_read(&xprt->xpt_ref) > 1 ||
975 test_bit(XPT_BUSY, &xprt->xpt_flags))
976 continue;
977 list_del_init(le);
978 set_bit(XPT_CLOSE, &xprt->xpt_flags);
979 dprintk("queuing xprt %p for closing\n", xprt);
980
981 /* a thread will dequeue and close it soon */
982 svc_xprt_enqueue(xprt);
983 }
984 spin_unlock_bh(&serv->sv_lock);
985
986 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
987}
988
989/* Close temporary transports whose xpt_local matches server_addr immediately
990 * instead of waiting for them to be picked up by the timer.
991 *
992 * This is meant to be called from a notifier_block that runs when an ip
993 * address is deleted.
994 */
995void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
996{
997 struct svc_xprt *xprt;
998 struct list_head *le, *next;
999 LIST_HEAD(to_be_closed);
1000
1001 spin_lock_bh(&serv->sv_lock);
1002 list_for_each_safe(le, next, &serv->sv_tempsocks) {
1003 xprt = list_entry(le, struct svc_xprt, xpt_list);
1004 if (rpc_cmp_addr(server_addr, (struct sockaddr *)
1005 &xprt->xpt_local)) {
1006 dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
1007 list_move(le, &to_be_closed);
1008 }
1009 }
1010 spin_unlock_bh(&serv->sv_lock);
1011
1012 while (!list_empty(&to_be_closed)) {
1013 le = to_be_closed.next;
1014 list_del_init(le);
1015 xprt = list_entry(le, struct svc_xprt, xpt_list);
1016 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1017 set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
1018 dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
1019 xprt);
1020 svc_xprt_enqueue(xprt);
1021 }
1022}
1023EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
1024
1025static void call_xpt_users(struct svc_xprt *xprt)
1026{
1027 struct svc_xpt_user *u;
1028
1029 spin_lock(&xprt->xpt_lock);
1030 while (!list_empty(&xprt->xpt_users)) {
1031 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1032 list_del_init(&u->list);
1033 u->callback(u);
1034 }
1035 spin_unlock(&xprt->xpt_lock);
1036}
1037
1038/*
1039 * Remove a dead transport
1040 */
1041static void svc_delete_xprt(struct svc_xprt *xprt)
1042{
1043 struct svc_serv *serv = xprt->xpt_server;
1044 struct svc_deferred_req *dr;
1045
1046 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1047 return;
1048
1049 trace_svc_xprt_detach(xprt);
1050 xprt->xpt_ops->xpo_detach(xprt);
1051 if (xprt->xpt_bc_xprt)
1052 xprt->xpt_bc_xprt->ops->close(xprt->xpt_bc_xprt);
1053
1054 spin_lock_bh(&serv->sv_lock);
1055 list_del_init(&xprt->xpt_list);
1056 WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1057 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1058 serv->sv_tmpcnt--;
1059 spin_unlock_bh(&serv->sv_lock);
1060
1061 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1062 kfree(dr);
1063
1064 call_xpt_users(xprt);
1065 svc_xprt_put(xprt);
1066}
1067
1068/**
1069 * svc_xprt_close - Close a client connection
1070 * @xprt: transport to disconnect
1071 *
1072 */
1073void svc_xprt_close(struct svc_xprt *xprt)
1074{
1075 trace_svc_xprt_close(xprt);
1076 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1077 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1078 /* someone else will have to effect the close */
1079 return;
1080 /*
1081 * We expect svc_close_xprt() to work even when no threads are
1082 * running (e.g., while configuring the server before starting
1083 * any threads), so if the transport isn't busy, we delete
1084 * it ourself:
1085 */
1086 svc_delete_xprt(xprt);
1087}
1088EXPORT_SYMBOL_GPL(svc_xprt_close);
1089
1090static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1091{
1092 struct svc_xprt *xprt;
1093 int ret = 0;
1094
1095 spin_lock_bh(&serv->sv_lock);
1096 list_for_each_entry(xprt, xprt_list, xpt_list) {
1097 if (xprt->xpt_net != net)
1098 continue;
1099 ret++;
1100 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1101 svc_xprt_enqueue(xprt);
1102 }
1103 spin_unlock_bh(&serv->sv_lock);
1104 return ret;
1105}
1106
1107static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1108{
1109 struct svc_pool *pool;
1110 struct svc_xprt *xprt;
1111 struct svc_xprt *tmp;
1112 int i;
1113
1114 for (i = 0; i < serv->sv_nrpools; i++) {
1115 pool = &serv->sv_pools[i];
1116
1117 spin_lock_bh(&pool->sp_lock);
1118 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1119 if (xprt->xpt_net != net)
1120 continue;
1121 list_del_init(&xprt->xpt_ready);
1122 spin_unlock_bh(&pool->sp_lock);
1123 return xprt;
1124 }
1125 spin_unlock_bh(&pool->sp_lock);
1126 }
1127 return NULL;
1128}
1129
1130static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1131{
1132 struct svc_xprt *xprt;
1133
1134 while ((xprt = svc_dequeue_net(serv, net))) {
1135 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1136 svc_delete_xprt(xprt);
1137 }
1138}
1139
1140/**
1141 * svc_xprt_destroy_all - Destroy transports associated with @serv
1142 * @serv: RPC service to be shut down
1143 * @net: target network namespace
1144 *
1145 * Server threads may still be running (especially in the case where the
1146 * service is still running in other network namespaces).
1147 *
1148 * So we shut down sockets the same way we would on a running server, by
1149 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1150 * the close. In the case there are no such other threads,
1151 * threads running, svc_clean_up_xprts() does a simple version of a
1152 * server's main event loop, and in the case where there are other
1153 * threads, we may need to wait a little while and then check again to
1154 * see if they're done.
1155 */
1156void svc_xprt_destroy_all(struct svc_serv *serv, struct net *net)
1157{
1158 int delay = 0;
1159
1160 while (svc_close_list(serv, &serv->sv_permsocks, net) +
1161 svc_close_list(serv, &serv->sv_tempsocks, net)) {
1162
1163 svc_clean_up_xprts(serv, net);
1164 msleep(delay++);
1165 }
1166}
1167EXPORT_SYMBOL_GPL(svc_xprt_destroy_all);
1168
1169/*
1170 * Handle defer and revisit of requests
1171 */
1172
1173static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1174{
1175 struct svc_deferred_req *dr =
1176 container_of(dreq, struct svc_deferred_req, handle);
1177 struct svc_xprt *xprt = dr->xprt;
1178
1179 spin_lock(&xprt->xpt_lock);
1180 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1181 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1182 spin_unlock(&xprt->xpt_lock);
1183 trace_svc_defer_drop(dr);
1184 svc_xprt_put(xprt);
1185 kfree(dr);
1186 return;
1187 }
1188 dr->xprt = NULL;
1189 list_add(&dr->handle.recent, &xprt->xpt_deferred);
1190 spin_unlock(&xprt->xpt_lock);
1191 trace_svc_defer_queue(dr);
1192 svc_xprt_enqueue(xprt);
1193 svc_xprt_put(xprt);
1194}
1195
1196/*
1197 * Save the request off for later processing. The request buffer looks
1198 * like this:
1199 *
1200 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1201 *
1202 * This code can only handle requests that consist of an xprt-header
1203 * and rpc-header.
1204 */
1205static struct cache_deferred_req *svc_defer(struct cache_req *req)
1206{
1207 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1208 struct svc_deferred_req *dr;
1209
1210 if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1211 return NULL; /* if more than a page, give up FIXME */
1212 if (rqstp->rq_deferred) {
1213 dr = rqstp->rq_deferred;
1214 rqstp->rq_deferred = NULL;
1215 } else {
1216 size_t skip;
1217 size_t size;
1218 /* FIXME maybe discard if size too large */
1219 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1220 dr = kmalloc(size, GFP_KERNEL);
1221 if (dr == NULL)
1222 return NULL;
1223
1224 dr->handle.owner = rqstp->rq_server;
1225 dr->prot = rqstp->rq_prot;
1226 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1227 dr->addrlen = rqstp->rq_addrlen;
1228 dr->daddr = rqstp->rq_daddr;
1229 dr->argslen = rqstp->rq_arg.len >> 2;
1230 dr->xprt_ctxt = rqstp->rq_xprt_ctxt;
1231 rqstp->rq_xprt_ctxt = NULL;
1232
1233 /* back up head to the start of the buffer and copy */
1234 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1235 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1236 dr->argslen << 2);
1237 }
1238 trace_svc_defer(rqstp);
1239 svc_xprt_get(rqstp->rq_xprt);
1240 dr->xprt = rqstp->rq_xprt;
1241 set_bit(RQ_DROPME, &rqstp->rq_flags);
1242
1243 dr->handle.revisit = svc_revisit;
1244 return &dr->handle;
1245}
1246
1247/*
1248 * recv data from a deferred request into an active one
1249 */
1250static noinline int svc_deferred_recv(struct svc_rqst *rqstp)
1251{
1252 struct svc_deferred_req *dr = rqstp->rq_deferred;
1253
1254 trace_svc_defer_recv(dr);
1255
1256 /* setup iov_base past transport header */
1257 rqstp->rq_arg.head[0].iov_base = dr->args;
1258 /* The iov_len does not include the transport header bytes */
1259 rqstp->rq_arg.head[0].iov_len = dr->argslen << 2;
1260 rqstp->rq_arg.page_len = 0;
1261 /* The rq_arg.len includes the transport header bytes */
1262 rqstp->rq_arg.len = dr->argslen << 2;
1263 rqstp->rq_prot = dr->prot;
1264 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1265 rqstp->rq_addrlen = dr->addrlen;
1266 /* Save off transport header len in case we get deferred again */
1267 rqstp->rq_daddr = dr->daddr;
1268 rqstp->rq_respages = rqstp->rq_pages;
1269 rqstp->rq_xprt_ctxt = dr->xprt_ctxt;
1270 svc_xprt_received(rqstp->rq_xprt);
1271 return dr->argslen << 2;
1272}
1273
1274
1275static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1276{
1277 struct svc_deferred_req *dr = NULL;
1278
1279 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1280 return NULL;
1281 spin_lock(&xprt->xpt_lock);
1282 if (!list_empty(&xprt->xpt_deferred)) {
1283 dr = list_entry(xprt->xpt_deferred.next,
1284 struct svc_deferred_req,
1285 handle.recent);
1286 list_del_init(&dr->handle.recent);
1287 } else
1288 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1289 spin_unlock(&xprt->xpt_lock);
1290 return dr;
1291}
1292
1293/**
1294 * svc_find_xprt - find an RPC transport instance
1295 * @serv: pointer to svc_serv to search
1296 * @xcl_name: C string containing transport's class name
1297 * @net: owner net pointer
1298 * @af: Address family of transport's local address
1299 * @port: transport's IP port number
1300 *
1301 * Return the transport instance pointer for the endpoint accepting
1302 * connections/peer traffic from the specified transport class,
1303 * address family and port.
1304 *
1305 * Specifying 0 for the address family or port is effectively a
1306 * wild-card, and will result in matching the first transport in the
1307 * service's list that has a matching class name.
1308 */
1309struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1310 struct net *net, const sa_family_t af,
1311 const unsigned short port)
1312{
1313 struct svc_xprt *xprt;
1314 struct svc_xprt *found = NULL;
1315
1316 /* Sanity check the args */
1317 if (serv == NULL || xcl_name == NULL)
1318 return found;
1319
1320 spin_lock_bh(&serv->sv_lock);
1321 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1322 if (xprt->xpt_net != net)
1323 continue;
1324 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1325 continue;
1326 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1327 continue;
1328 if (port != 0 && port != svc_xprt_local_port(xprt))
1329 continue;
1330 found = xprt;
1331 svc_xprt_get(xprt);
1332 break;
1333 }
1334 spin_unlock_bh(&serv->sv_lock);
1335 return found;
1336}
1337EXPORT_SYMBOL_GPL(svc_find_xprt);
1338
1339static int svc_one_xprt_name(const struct svc_xprt *xprt,
1340 char *pos, int remaining)
1341{
1342 int len;
1343
1344 len = snprintf(pos, remaining, "%s %u\n",
1345 xprt->xpt_class->xcl_name,
1346 svc_xprt_local_port(xprt));
1347 if (len >= remaining)
1348 return -ENAMETOOLONG;
1349 return len;
1350}
1351
1352/**
1353 * svc_xprt_names - format a buffer with a list of transport names
1354 * @serv: pointer to an RPC service
1355 * @buf: pointer to a buffer to be filled in
1356 * @buflen: length of buffer to be filled in
1357 *
1358 * Fills in @buf with a string containing a list of transport names,
1359 * each name terminated with '\n'.
1360 *
1361 * Returns positive length of the filled-in string on success; otherwise
1362 * a negative errno value is returned if an error occurs.
1363 */
1364int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1365{
1366 struct svc_xprt *xprt;
1367 int len, totlen;
1368 char *pos;
1369
1370 /* Sanity check args */
1371 if (!serv)
1372 return 0;
1373
1374 spin_lock_bh(&serv->sv_lock);
1375
1376 pos = buf;
1377 totlen = 0;
1378 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1379 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1380 if (len < 0) {
1381 *buf = '\0';
1382 totlen = len;
1383 }
1384 if (len <= 0)
1385 break;
1386
1387 pos += len;
1388 totlen += len;
1389 }
1390
1391 spin_unlock_bh(&serv->sv_lock);
1392 return totlen;
1393}
1394EXPORT_SYMBOL_GPL(svc_xprt_names);
1395
1396
1397/*----------------------------------------------------------------------------*/
1398
1399static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1400{
1401 unsigned int pidx = (unsigned int)*pos;
1402 struct svc_serv *serv = m->private;
1403
1404 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1405
1406 if (!pidx)
1407 return SEQ_START_TOKEN;
1408 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1409}
1410
1411static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1412{
1413 struct svc_pool *pool = p;
1414 struct svc_serv *serv = m->private;
1415
1416 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1417
1418 if (p == SEQ_START_TOKEN) {
1419 pool = &serv->sv_pools[0];
1420 } else {
1421 unsigned int pidx = (pool - &serv->sv_pools[0]);
1422 if (pidx < serv->sv_nrpools-1)
1423 pool = &serv->sv_pools[pidx+1];
1424 else
1425 pool = NULL;
1426 }
1427 ++*pos;
1428 return pool;
1429}
1430
1431static void svc_pool_stats_stop(struct seq_file *m, void *p)
1432{
1433}
1434
1435static int svc_pool_stats_show(struct seq_file *m, void *p)
1436{
1437 struct svc_pool *pool = p;
1438
1439 if (p == SEQ_START_TOKEN) {
1440 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1441 return 0;
1442 }
1443
1444 seq_printf(m, "%u %lu %lu %lu %lu\n",
1445 pool->sp_id,
1446 (unsigned long)atomic_long_read(&pool->sp_stats.packets),
1447 pool->sp_stats.sockets_queued,
1448 (unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1449 (unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1450
1451 return 0;
1452}
1453
1454static const struct seq_operations svc_pool_stats_seq_ops = {
1455 .start = svc_pool_stats_start,
1456 .next = svc_pool_stats_next,
1457 .stop = svc_pool_stats_stop,
1458 .show = svc_pool_stats_show,
1459};
1460
1461int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1462{
1463 int err;
1464
1465 err = seq_open(file, &svc_pool_stats_seq_ops);
1466 if (!err)
1467 ((struct seq_file *) file->private_data)->private = serv;
1468 return err;
1469}
1470EXPORT_SYMBOL(svc_pool_stats_open);
1471
1472/*----------------------------------------------------------------------------*/
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/net/sunrpc/svc_xprt.c
4 *
5 * Author: Tom Tucker <tom@opengridcomputing.com>
6 */
7
8#include <linux/sched.h>
9#include <linux/errno.h>
10#include <linux/freezer.h>
11#include <linux/kthread.h>
12#include <linux/slab.h>
13#include <net/sock.h>
14#include <linux/sunrpc/addr.h>
15#include <linux/sunrpc/stats.h>
16#include <linux/sunrpc/svc_xprt.h>
17#include <linux/sunrpc/svcsock.h>
18#include <linux/sunrpc/xprt.h>
19#include <linux/module.h>
20#include <linux/netdevice.h>
21#include <trace/events/sunrpc.h>
22
23#define RPCDBG_FACILITY RPCDBG_SVCXPRT
24
25static unsigned int svc_rpc_per_connection_limit __read_mostly;
26module_param(svc_rpc_per_connection_limit, uint, 0644);
27
28
29static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
30static int svc_deferred_recv(struct svc_rqst *rqstp);
31static struct cache_deferred_req *svc_defer(struct cache_req *req);
32static void svc_age_temp_xprts(struct timer_list *t);
33static void svc_delete_xprt(struct svc_xprt *xprt);
34
35/* apparently the "standard" is that clients close
36 * idle connections after 5 minutes, servers after
37 * 6 minutes
38 * http://nfsv4bat.org/Documents/ConnectAThon/1996/nfstcp.pdf
39 */
40static int svc_conn_age_period = 6*60;
41
42/* List of registered transport classes */
43static DEFINE_SPINLOCK(svc_xprt_class_lock);
44static LIST_HEAD(svc_xprt_class_list);
45
46/* SMP locking strategy:
47 *
48 * svc_pool->sp_lock protects most of the fields of that pool.
49 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
50 * when both need to be taken (rare), svc_serv->sv_lock is first.
51 * The "service mutex" protects svc_serv->sv_nrthread.
52 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
53 * and the ->sk_info_authunix cache.
54 *
55 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
56 * enqueued multiply. During normal transport processing this bit
57 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
58 * Providers should not manipulate this bit directly.
59 *
60 * Some flags can be set to certain values at any time
61 * providing that certain rules are followed:
62 *
63 * XPT_CONN, XPT_DATA:
64 * - Can be set or cleared at any time.
65 * - After a set, svc_xprt_enqueue must be called to enqueue
66 * the transport for processing.
67 * - After a clear, the transport must be read/accepted.
68 * If this succeeds, it must be set again.
69 * XPT_CLOSE:
70 * - Can set at any time. It is never cleared.
71 * XPT_DEAD:
72 * - Can only be set while XPT_BUSY is held which ensures
73 * that no other thread will be using the transport or will
74 * try to set XPT_DEAD.
75 */
76int svc_reg_xprt_class(struct svc_xprt_class *xcl)
77{
78 struct svc_xprt_class *cl;
79 int res = -EEXIST;
80
81 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
82
83 INIT_LIST_HEAD(&xcl->xcl_list);
84 spin_lock(&svc_xprt_class_lock);
85 /* Make sure there isn't already a class with the same name */
86 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
87 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
88 goto out;
89 }
90 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
91 res = 0;
92out:
93 spin_unlock(&svc_xprt_class_lock);
94 return res;
95}
96EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
97
98void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
99{
100 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
101 spin_lock(&svc_xprt_class_lock);
102 list_del_init(&xcl->xcl_list);
103 spin_unlock(&svc_xprt_class_lock);
104}
105EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
106
107/*
108 * Format the transport list for printing
109 */
110int svc_print_xprts(char *buf, int maxlen)
111{
112 struct svc_xprt_class *xcl;
113 char tmpstr[80];
114 int len = 0;
115 buf[0] = '\0';
116
117 spin_lock(&svc_xprt_class_lock);
118 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
119 int slen;
120
121 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
122 slen = strlen(tmpstr);
123 if (len + slen > maxlen)
124 break;
125 len += slen;
126 strcat(buf, tmpstr);
127 }
128 spin_unlock(&svc_xprt_class_lock);
129
130 return len;
131}
132
133static void svc_xprt_free(struct kref *kref)
134{
135 struct svc_xprt *xprt =
136 container_of(kref, struct svc_xprt, xpt_ref);
137 struct module *owner = xprt->xpt_class->xcl_owner;
138 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
139 svcauth_unix_info_release(xprt);
140 put_cred(xprt->xpt_cred);
141 put_net(xprt->xpt_net);
142 /* See comment on corresponding get in xs_setup_bc_tcp(): */
143 if (xprt->xpt_bc_xprt)
144 xprt_put(xprt->xpt_bc_xprt);
145 if (xprt->xpt_bc_xps)
146 xprt_switch_put(xprt->xpt_bc_xps);
147 xprt->xpt_ops->xpo_free(xprt);
148 module_put(owner);
149}
150
151void svc_xprt_put(struct svc_xprt *xprt)
152{
153 kref_put(&xprt->xpt_ref, svc_xprt_free);
154}
155EXPORT_SYMBOL_GPL(svc_xprt_put);
156
157/*
158 * Called by transport drivers to initialize the transport independent
159 * portion of the transport instance.
160 */
161void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
162 struct svc_xprt *xprt, struct svc_serv *serv)
163{
164 memset(xprt, 0, sizeof(*xprt));
165 xprt->xpt_class = xcl;
166 xprt->xpt_ops = xcl->xcl_ops;
167 kref_init(&xprt->xpt_ref);
168 xprt->xpt_server = serv;
169 INIT_LIST_HEAD(&xprt->xpt_list);
170 INIT_LIST_HEAD(&xprt->xpt_ready);
171 INIT_LIST_HEAD(&xprt->xpt_deferred);
172 INIT_LIST_HEAD(&xprt->xpt_users);
173 mutex_init(&xprt->xpt_mutex);
174 spin_lock_init(&xprt->xpt_lock);
175 set_bit(XPT_BUSY, &xprt->xpt_flags);
176 xprt->xpt_net = get_net(net);
177 strcpy(xprt->xpt_remotebuf, "uninitialized");
178}
179EXPORT_SYMBOL_GPL(svc_xprt_init);
180
181static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
182 struct svc_serv *serv,
183 struct net *net,
184 const int family,
185 const unsigned short port,
186 int flags)
187{
188 struct sockaddr_in sin = {
189 .sin_family = AF_INET,
190 .sin_addr.s_addr = htonl(INADDR_ANY),
191 .sin_port = htons(port),
192 };
193#if IS_ENABLED(CONFIG_IPV6)
194 struct sockaddr_in6 sin6 = {
195 .sin6_family = AF_INET6,
196 .sin6_addr = IN6ADDR_ANY_INIT,
197 .sin6_port = htons(port),
198 };
199#endif
200 struct sockaddr *sap;
201 size_t len;
202
203 switch (family) {
204 case PF_INET:
205 sap = (struct sockaddr *)&sin;
206 len = sizeof(sin);
207 break;
208#if IS_ENABLED(CONFIG_IPV6)
209 case PF_INET6:
210 sap = (struct sockaddr *)&sin6;
211 len = sizeof(sin6);
212 break;
213#endif
214 default:
215 return ERR_PTR(-EAFNOSUPPORT);
216 }
217
218 return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
219}
220
221/*
222 * svc_xprt_received conditionally queues the transport for processing
223 * by another thread. The caller must hold the XPT_BUSY bit and must
224 * not thereafter touch transport data.
225 *
226 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
227 * insufficient) data.
228 */
229static void svc_xprt_received(struct svc_xprt *xprt)
230{
231 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
232 WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
233 return;
234 }
235
236 /* As soon as we clear busy, the xprt could be closed and
237 * 'put', so we need a reference to call svc_enqueue_xprt with:
238 */
239 svc_xprt_get(xprt);
240 smp_mb__before_atomic();
241 clear_bit(XPT_BUSY, &xprt->xpt_flags);
242 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
243 svc_xprt_put(xprt);
244}
245
246void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
247{
248 clear_bit(XPT_TEMP, &new->xpt_flags);
249 spin_lock_bh(&serv->sv_lock);
250 list_add(&new->xpt_list, &serv->sv_permsocks);
251 spin_unlock_bh(&serv->sv_lock);
252 svc_xprt_received(new);
253}
254
255static int _svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
256 struct net *net, const int family,
257 const unsigned short port, int flags,
258 const struct cred *cred)
259{
260 struct svc_xprt_class *xcl;
261
262 spin_lock(&svc_xprt_class_lock);
263 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
264 struct svc_xprt *newxprt;
265 unsigned short newport;
266
267 if (strcmp(xprt_name, xcl->xcl_name))
268 continue;
269
270 if (!try_module_get(xcl->xcl_owner))
271 goto err;
272
273 spin_unlock(&svc_xprt_class_lock);
274 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
275 if (IS_ERR(newxprt)) {
276 module_put(xcl->xcl_owner);
277 return PTR_ERR(newxprt);
278 }
279 newxprt->xpt_cred = get_cred(cred);
280 svc_add_new_perm_xprt(serv, newxprt);
281 newport = svc_xprt_local_port(newxprt);
282 return newport;
283 }
284 err:
285 spin_unlock(&svc_xprt_class_lock);
286 /* This errno is exposed to user space. Provide a reasonable
287 * perror msg for a bad transport. */
288 return -EPROTONOSUPPORT;
289}
290
291int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
292 struct net *net, const int family,
293 const unsigned short port, int flags,
294 const struct cred *cred)
295{
296 int err;
297
298 dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
299 err = _svc_create_xprt(serv, xprt_name, net, family, port, flags, cred);
300 if (err == -EPROTONOSUPPORT) {
301 request_module("svc%s", xprt_name);
302 err = _svc_create_xprt(serv, xprt_name, net, family, port, flags, cred);
303 }
304 if (err < 0)
305 dprintk("svc: transport %s not found, err %d\n",
306 xprt_name, -err);
307 return err;
308}
309EXPORT_SYMBOL_GPL(svc_create_xprt);
310
311/*
312 * Copy the local and remote xprt addresses to the rqstp structure
313 */
314void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
315{
316 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
317 rqstp->rq_addrlen = xprt->xpt_remotelen;
318
319 /*
320 * Destination address in request is needed for binding the
321 * source address in RPC replies/callbacks later.
322 */
323 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
324 rqstp->rq_daddrlen = xprt->xpt_locallen;
325}
326EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
327
328/**
329 * svc_print_addr - Format rq_addr field for printing
330 * @rqstp: svc_rqst struct containing address to print
331 * @buf: target buffer for formatted address
332 * @len: length of target buffer
333 *
334 */
335char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
336{
337 return __svc_print_addr(svc_addr(rqstp), buf, len);
338}
339EXPORT_SYMBOL_GPL(svc_print_addr);
340
341static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
342{
343 unsigned int limit = svc_rpc_per_connection_limit;
344 int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
345
346 return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
347}
348
349static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
350{
351 if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
352 if (!svc_xprt_slots_in_range(xprt))
353 return false;
354 atomic_inc(&xprt->xpt_nr_rqsts);
355 set_bit(RQ_DATA, &rqstp->rq_flags);
356 }
357 return true;
358}
359
360static void svc_xprt_release_slot(struct svc_rqst *rqstp)
361{
362 struct svc_xprt *xprt = rqstp->rq_xprt;
363 if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
364 atomic_dec(&xprt->xpt_nr_rqsts);
365 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
366 svc_xprt_enqueue(xprt);
367 }
368}
369
370static bool svc_xprt_ready(struct svc_xprt *xprt)
371{
372 unsigned long xpt_flags;
373
374 /*
375 * If another cpu has recently updated xpt_flags,
376 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to
377 * know about it; otherwise it's possible that both that cpu and
378 * this one could call svc_xprt_enqueue() without either
379 * svc_xprt_enqueue() recognizing that the conditions below
380 * are satisfied, and we could stall indefinitely:
381 */
382 smp_rmb();
383 xpt_flags = READ_ONCE(xprt->xpt_flags);
384
385 if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE)))
386 return true;
387 if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) {
388 if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
389 svc_xprt_slots_in_range(xprt))
390 return true;
391 trace_svc_xprt_no_write_space(xprt);
392 return false;
393 }
394 return false;
395}
396
397void svc_xprt_do_enqueue(struct svc_xprt *xprt)
398{
399 struct svc_pool *pool;
400 struct svc_rqst *rqstp = NULL;
401 int cpu;
402
403 if (!svc_xprt_ready(xprt))
404 return;
405
406 /* Mark transport as busy. It will remain in this state until
407 * the provider calls svc_xprt_received. We update XPT_BUSY
408 * atomically because it also guards against trying to enqueue
409 * the transport twice.
410 */
411 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
412 return;
413
414 cpu = get_cpu();
415 pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
416
417 atomic_long_inc(&pool->sp_stats.packets);
418
419 spin_lock_bh(&pool->sp_lock);
420 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
421 pool->sp_stats.sockets_queued++;
422 spin_unlock_bh(&pool->sp_lock);
423
424 /* find a thread for this xprt */
425 rcu_read_lock();
426 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
427 if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags))
428 continue;
429 atomic_long_inc(&pool->sp_stats.threads_woken);
430 rqstp->rq_qtime = ktime_get();
431 wake_up_process(rqstp->rq_task);
432 goto out_unlock;
433 }
434 set_bit(SP_CONGESTED, &pool->sp_flags);
435 rqstp = NULL;
436out_unlock:
437 rcu_read_unlock();
438 put_cpu();
439 trace_svc_xprt_do_enqueue(xprt, rqstp);
440}
441EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue);
442
443/*
444 * Queue up a transport with data pending. If there are idle nfsd
445 * processes, wake 'em up.
446 *
447 */
448void svc_xprt_enqueue(struct svc_xprt *xprt)
449{
450 if (test_bit(XPT_BUSY, &xprt->xpt_flags))
451 return;
452 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
453}
454EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
455
456/*
457 * Dequeue the first transport, if there is one.
458 */
459static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
460{
461 struct svc_xprt *xprt = NULL;
462
463 if (list_empty(&pool->sp_sockets))
464 goto out;
465
466 spin_lock_bh(&pool->sp_lock);
467 if (likely(!list_empty(&pool->sp_sockets))) {
468 xprt = list_first_entry(&pool->sp_sockets,
469 struct svc_xprt, xpt_ready);
470 list_del_init(&xprt->xpt_ready);
471 svc_xprt_get(xprt);
472 }
473 spin_unlock_bh(&pool->sp_lock);
474out:
475 return xprt;
476}
477
478/**
479 * svc_reserve - change the space reserved for the reply to a request.
480 * @rqstp: The request in question
481 * @space: new max space to reserve
482 *
483 * Each request reserves some space on the output queue of the transport
484 * to make sure the reply fits. This function reduces that reserved
485 * space to be the amount of space used already, plus @space.
486 *
487 */
488void svc_reserve(struct svc_rqst *rqstp, int space)
489{
490 struct svc_xprt *xprt = rqstp->rq_xprt;
491
492 space += rqstp->rq_res.head[0].iov_len;
493
494 if (xprt && space < rqstp->rq_reserved) {
495 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
496 rqstp->rq_reserved = space;
497 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
498 svc_xprt_enqueue(xprt);
499 }
500}
501EXPORT_SYMBOL_GPL(svc_reserve);
502
503static void svc_xprt_release(struct svc_rqst *rqstp)
504{
505 struct svc_xprt *xprt = rqstp->rq_xprt;
506
507 xprt->xpt_ops->xpo_release_rqst(rqstp);
508
509 kfree(rqstp->rq_deferred);
510 rqstp->rq_deferred = NULL;
511
512 svc_free_res_pages(rqstp);
513 rqstp->rq_res.page_len = 0;
514 rqstp->rq_res.page_base = 0;
515
516 /* Reset response buffer and release
517 * the reservation.
518 * But first, check that enough space was reserved
519 * for the reply, otherwise we have a bug!
520 */
521 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
522 printk(KERN_ERR "RPC request reserved %d but used %d\n",
523 rqstp->rq_reserved,
524 rqstp->rq_res.len);
525
526 rqstp->rq_res.head[0].iov_len = 0;
527 svc_reserve(rqstp, 0);
528 svc_xprt_release_slot(rqstp);
529 rqstp->rq_xprt = NULL;
530 svc_xprt_put(xprt);
531}
532
533/*
534 * Some svc_serv's will have occasional work to do, even when a xprt is not
535 * waiting to be serviced. This function is there to "kick" a task in one of
536 * those services so that it can wake up and do that work. Note that we only
537 * bother with pool 0 as we don't need to wake up more than one thread for
538 * this purpose.
539 */
540void svc_wake_up(struct svc_serv *serv)
541{
542 struct svc_rqst *rqstp;
543 struct svc_pool *pool;
544
545 pool = &serv->sv_pools[0];
546
547 rcu_read_lock();
548 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
549 /* skip any that aren't queued */
550 if (test_bit(RQ_BUSY, &rqstp->rq_flags))
551 continue;
552 rcu_read_unlock();
553 wake_up_process(rqstp->rq_task);
554 trace_svc_wake_up(rqstp->rq_task->pid);
555 return;
556 }
557 rcu_read_unlock();
558
559 /* No free entries available */
560 set_bit(SP_TASK_PENDING, &pool->sp_flags);
561 smp_wmb();
562 trace_svc_wake_up(0);
563}
564EXPORT_SYMBOL_GPL(svc_wake_up);
565
566int svc_port_is_privileged(struct sockaddr *sin)
567{
568 switch (sin->sa_family) {
569 case AF_INET:
570 return ntohs(((struct sockaddr_in *)sin)->sin_port)
571 < PROT_SOCK;
572 case AF_INET6:
573 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
574 < PROT_SOCK;
575 default:
576 return 0;
577 }
578}
579
580/*
581 * Make sure that we don't have too many active connections. If we have,
582 * something must be dropped. It's not clear what will happen if we allow
583 * "too many" connections, but when dealing with network-facing software,
584 * we have to code defensively. Here we do that by imposing hard limits.
585 *
586 * There's no point in trying to do random drop here for DoS
587 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
588 * attacker can easily beat that.
589 *
590 * The only somewhat efficient mechanism would be if drop old
591 * connections from the same IP first. But right now we don't even
592 * record the client IP in svc_sock.
593 *
594 * single-threaded services that expect a lot of clients will probably
595 * need to set sv_maxconn to override the default value which is based
596 * on the number of threads
597 */
598static void svc_check_conn_limits(struct svc_serv *serv)
599{
600 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
601 (serv->sv_nrthreads+3) * 20;
602
603 if (serv->sv_tmpcnt > limit) {
604 struct svc_xprt *xprt = NULL;
605 spin_lock_bh(&serv->sv_lock);
606 if (!list_empty(&serv->sv_tempsocks)) {
607 /* Try to help the admin */
608 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
609 serv->sv_name, serv->sv_maxconn ?
610 "max number of connections" :
611 "number of threads");
612 /*
613 * Always select the oldest connection. It's not fair,
614 * but so is life
615 */
616 xprt = list_entry(serv->sv_tempsocks.prev,
617 struct svc_xprt,
618 xpt_list);
619 set_bit(XPT_CLOSE, &xprt->xpt_flags);
620 svc_xprt_get(xprt);
621 }
622 spin_unlock_bh(&serv->sv_lock);
623
624 if (xprt) {
625 svc_xprt_enqueue(xprt);
626 svc_xprt_put(xprt);
627 }
628 }
629}
630
631static int svc_alloc_arg(struct svc_rqst *rqstp)
632{
633 struct svc_serv *serv = rqstp->rq_server;
634 struct xdr_buf *arg;
635 int pages;
636 int i;
637
638 /* now allocate needed pages. If we get a failure, sleep briefly */
639 pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
640 if (pages > RPCSVC_MAXPAGES) {
641 pr_warn_once("svc: warning: pages=%u > RPCSVC_MAXPAGES=%lu\n",
642 pages, RPCSVC_MAXPAGES);
643 /* use as many pages as possible */
644 pages = RPCSVC_MAXPAGES;
645 }
646 for (i = 0; i < pages ; i++)
647 while (rqstp->rq_pages[i] == NULL) {
648 struct page *p = alloc_page(GFP_KERNEL);
649 if (!p) {
650 set_current_state(TASK_INTERRUPTIBLE);
651 if (signalled() || kthread_should_stop()) {
652 set_current_state(TASK_RUNNING);
653 return -EINTR;
654 }
655 schedule_timeout(msecs_to_jiffies(500));
656 }
657 rqstp->rq_pages[i] = p;
658 }
659 rqstp->rq_page_end = &rqstp->rq_pages[i];
660 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
661
662 /* Make arg->head point to first page and arg->pages point to rest */
663 arg = &rqstp->rq_arg;
664 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
665 arg->head[0].iov_len = PAGE_SIZE;
666 arg->pages = rqstp->rq_pages + 1;
667 arg->page_base = 0;
668 /* save at least one page for response */
669 arg->page_len = (pages-2)*PAGE_SIZE;
670 arg->len = (pages-1)*PAGE_SIZE;
671 arg->tail[0].iov_len = 0;
672 return 0;
673}
674
675static bool
676rqst_should_sleep(struct svc_rqst *rqstp)
677{
678 struct svc_pool *pool = rqstp->rq_pool;
679
680 /* did someone call svc_wake_up? */
681 if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
682 return false;
683
684 /* was a socket queued? */
685 if (!list_empty(&pool->sp_sockets))
686 return false;
687
688 /* are we shutting down? */
689 if (signalled() || kthread_should_stop())
690 return false;
691
692 /* are we freezing? */
693 if (freezing(current))
694 return false;
695
696 return true;
697}
698
699static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
700{
701 struct svc_pool *pool = rqstp->rq_pool;
702 long time_left = 0;
703
704 /* rq_xprt should be clear on entry */
705 WARN_ON_ONCE(rqstp->rq_xprt);
706
707 rqstp->rq_xprt = svc_xprt_dequeue(pool);
708 if (rqstp->rq_xprt)
709 goto out_found;
710
711 /*
712 * We have to be able to interrupt this wait
713 * to bring down the daemons ...
714 */
715 set_current_state(TASK_INTERRUPTIBLE);
716 smp_mb__before_atomic();
717 clear_bit(SP_CONGESTED, &pool->sp_flags);
718 clear_bit(RQ_BUSY, &rqstp->rq_flags);
719 smp_mb__after_atomic();
720
721 if (likely(rqst_should_sleep(rqstp)))
722 time_left = schedule_timeout(timeout);
723 else
724 __set_current_state(TASK_RUNNING);
725
726 try_to_freeze();
727
728 set_bit(RQ_BUSY, &rqstp->rq_flags);
729 smp_mb__after_atomic();
730 rqstp->rq_xprt = svc_xprt_dequeue(pool);
731 if (rqstp->rq_xprt)
732 goto out_found;
733
734 if (!time_left)
735 atomic_long_inc(&pool->sp_stats.threads_timedout);
736
737 if (signalled() || kthread_should_stop())
738 return ERR_PTR(-EINTR);
739 return ERR_PTR(-EAGAIN);
740out_found:
741 /* Normally we will wait up to 5 seconds for any required
742 * cache information to be provided.
743 */
744 if (!test_bit(SP_CONGESTED, &pool->sp_flags))
745 rqstp->rq_chandle.thread_wait = 5*HZ;
746 else
747 rqstp->rq_chandle.thread_wait = 1*HZ;
748 trace_svc_xprt_dequeue(rqstp);
749 return rqstp->rq_xprt;
750}
751
752static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
753{
754 spin_lock_bh(&serv->sv_lock);
755 set_bit(XPT_TEMP, &newxpt->xpt_flags);
756 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
757 serv->sv_tmpcnt++;
758 if (serv->sv_temptimer.function == NULL) {
759 /* setup timer to age temp transports */
760 serv->sv_temptimer.function = svc_age_temp_xprts;
761 mod_timer(&serv->sv_temptimer,
762 jiffies + svc_conn_age_period * HZ);
763 }
764 spin_unlock_bh(&serv->sv_lock);
765 svc_xprt_received(newxpt);
766}
767
768static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
769{
770 struct svc_serv *serv = rqstp->rq_server;
771 int len = 0;
772
773 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
774 dprintk("svc_recv: found XPT_CLOSE\n");
775 if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
776 xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
777 svc_delete_xprt(xprt);
778 /* Leave XPT_BUSY set on the dead xprt: */
779 goto out;
780 }
781 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
782 struct svc_xprt *newxpt;
783 /*
784 * We know this module_get will succeed because the
785 * listener holds a reference too
786 */
787 __module_get(xprt->xpt_class->xcl_owner);
788 svc_check_conn_limits(xprt->xpt_server);
789 newxpt = xprt->xpt_ops->xpo_accept(xprt);
790 if (newxpt) {
791 newxpt->xpt_cred = get_cred(xprt->xpt_cred);
792 svc_add_new_temp_xprt(serv, newxpt);
793 } else
794 module_put(xprt->xpt_class->xcl_owner);
795 } else if (svc_xprt_reserve_slot(rqstp, xprt)) {
796 /* XPT_DATA|XPT_DEFERRED case: */
797 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
798 rqstp, rqstp->rq_pool->sp_id, xprt,
799 kref_read(&xprt->xpt_ref));
800 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
801 if (rqstp->rq_deferred)
802 len = svc_deferred_recv(rqstp);
803 else
804 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
805 rqstp->rq_stime = ktime_get();
806 rqstp->rq_reserved = serv->sv_max_mesg;
807 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
808 }
809 /* clear XPT_BUSY: */
810 svc_xprt_received(xprt);
811out:
812 trace_svc_handle_xprt(xprt, len);
813 return len;
814}
815
816/*
817 * Receive the next request on any transport. This code is carefully
818 * organised not to touch any cachelines in the shared svc_serv
819 * structure, only cachelines in the local svc_pool.
820 */
821int svc_recv(struct svc_rqst *rqstp, long timeout)
822{
823 struct svc_xprt *xprt = NULL;
824 struct svc_serv *serv = rqstp->rq_server;
825 int len, err;
826
827 dprintk("svc: server %p waiting for data (to = %ld)\n",
828 rqstp, timeout);
829
830 if (rqstp->rq_xprt)
831 printk(KERN_ERR
832 "svc_recv: service %p, transport not NULL!\n",
833 rqstp);
834
835 err = svc_alloc_arg(rqstp);
836 if (err)
837 goto out;
838
839 try_to_freeze();
840 cond_resched();
841 err = -EINTR;
842 if (signalled() || kthread_should_stop())
843 goto out;
844
845 xprt = svc_get_next_xprt(rqstp, timeout);
846 if (IS_ERR(xprt)) {
847 err = PTR_ERR(xprt);
848 goto out;
849 }
850
851 len = svc_handle_xprt(rqstp, xprt);
852
853 /* No data, incomplete (TCP) read, or accept() */
854 err = -EAGAIN;
855 if (len <= 0)
856 goto out_release;
857
858 clear_bit(XPT_OLD, &xprt->xpt_flags);
859
860 xprt->xpt_ops->xpo_secure_port(rqstp);
861 rqstp->rq_chandle.defer = svc_defer;
862 rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
863
864 if (serv->sv_stats)
865 serv->sv_stats->netcnt++;
866 trace_svc_recv(rqstp, len);
867 return len;
868out_release:
869 rqstp->rq_res.len = 0;
870 svc_xprt_release(rqstp);
871out:
872 return err;
873}
874EXPORT_SYMBOL_GPL(svc_recv);
875
876/*
877 * Drop request
878 */
879void svc_drop(struct svc_rqst *rqstp)
880{
881 trace_svc_drop(rqstp);
882 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
883 svc_xprt_release(rqstp);
884}
885EXPORT_SYMBOL_GPL(svc_drop);
886
887/*
888 * Return reply to client.
889 */
890int svc_send(struct svc_rqst *rqstp)
891{
892 struct svc_xprt *xprt;
893 int len = -EFAULT;
894 struct xdr_buf *xb;
895
896 xprt = rqstp->rq_xprt;
897 if (!xprt)
898 goto out;
899
900 /* release the receive skb before sending the reply */
901 xprt->xpt_ops->xpo_release_rqst(rqstp);
902
903 /* calculate over-all length */
904 xb = &rqstp->rq_res;
905 xb->len = xb->head[0].iov_len +
906 xb->page_len +
907 xb->tail[0].iov_len;
908
909 /* Grab mutex to serialize outgoing data. */
910 mutex_lock(&xprt->xpt_mutex);
911 trace_svc_stats_latency(rqstp);
912 if (test_bit(XPT_DEAD, &xprt->xpt_flags)
913 || test_bit(XPT_CLOSE, &xprt->xpt_flags))
914 len = -ENOTCONN;
915 else
916 len = xprt->xpt_ops->xpo_sendto(rqstp);
917 mutex_unlock(&xprt->xpt_mutex);
918 trace_svc_send(rqstp, len);
919 svc_xprt_release(rqstp);
920
921 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
922 len = 0;
923out:
924 return len;
925}
926
927/*
928 * Timer function to close old temporary transports, using
929 * a mark-and-sweep algorithm.
930 */
931static void svc_age_temp_xprts(struct timer_list *t)
932{
933 struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
934 struct svc_xprt *xprt;
935 struct list_head *le, *next;
936
937 dprintk("svc_age_temp_xprts\n");
938
939 if (!spin_trylock_bh(&serv->sv_lock)) {
940 /* busy, try again 1 sec later */
941 dprintk("svc_age_temp_xprts: busy\n");
942 mod_timer(&serv->sv_temptimer, jiffies + HZ);
943 return;
944 }
945
946 list_for_each_safe(le, next, &serv->sv_tempsocks) {
947 xprt = list_entry(le, struct svc_xprt, xpt_list);
948
949 /* First time through, just mark it OLD. Second time
950 * through, close it. */
951 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
952 continue;
953 if (kref_read(&xprt->xpt_ref) > 1 ||
954 test_bit(XPT_BUSY, &xprt->xpt_flags))
955 continue;
956 list_del_init(le);
957 set_bit(XPT_CLOSE, &xprt->xpt_flags);
958 dprintk("queuing xprt %p for closing\n", xprt);
959
960 /* a thread will dequeue and close it soon */
961 svc_xprt_enqueue(xprt);
962 }
963 spin_unlock_bh(&serv->sv_lock);
964
965 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
966}
967
968/* Close temporary transports whose xpt_local matches server_addr immediately
969 * instead of waiting for them to be picked up by the timer.
970 *
971 * This is meant to be called from a notifier_block that runs when an ip
972 * address is deleted.
973 */
974void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
975{
976 struct svc_xprt *xprt;
977 struct list_head *le, *next;
978 LIST_HEAD(to_be_closed);
979
980 spin_lock_bh(&serv->sv_lock);
981 list_for_each_safe(le, next, &serv->sv_tempsocks) {
982 xprt = list_entry(le, struct svc_xprt, xpt_list);
983 if (rpc_cmp_addr(server_addr, (struct sockaddr *)
984 &xprt->xpt_local)) {
985 dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
986 list_move(le, &to_be_closed);
987 }
988 }
989 spin_unlock_bh(&serv->sv_lock);
990
991 while (!list_empty(&to_be_closed)) {
992 le = to_be_closed.next;
993 list_del_init(le);
994 xprt = list_entry(le, struct svc_xprt, xpt_list);
995 set_bit(XPT_CLOSE, &xprt->xpt_flags);
996 set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
997 dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
998 xprt);
999 svc_xprt_enqueue(xprt);
1000 }
1001}
1002EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
1003
1004static void call_xpt_users(struct svc_xprt *xprt)
1005{
1006 struct svc_xpt_user *u;
1007
1008 spin_lock(&xprt->xpt_lock);
1009 while (!list_empty(&xprt->xpt_users)) {
1010 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1011 list_del_init(&u->list);
1012 u->callback(u);
1013 }
1014 spin_unlock(&xprt->xpt_lock);
1015}
1016
1017/*
1018 * Remove a dead transport
1019 */
1020static void svc_delete_xprt(struct svc_xprt *xprt)
1021{
1022 struct svc_serv *serv = xprt->xpt_server;
1023 struct svc_deferred_req *dr;
1024
1025 /* Only do this once */
1026 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1027 BUG();
1028
1029 dprintk("svc: svc_delete_xprt(%p)\n", xprt);
1030 xprt->xpt_ops->xpo_detach(xprt);
1031
1032 spin_lock_bh(&serv->sv_lock);
1033 list_del_init(&xprt->xpt_list);
1034 WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1035 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1036 serv->sv_tmpcnt--;
1037 spin_unlock_bh(&serv->sv_lock);
1038
1039 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1040 kfree(dr);
1041
1042 call_xpt_users(xprt);
1043 svc_xprt_put(xprt);
1044}
1045
1046void svc_close_xprt(struct svc_xprt *xprt)
1047{
1048 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1049 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1050 /* someone else will have to effect the close */
1051 return;
1052 /*
1053 * We expect svc_close_xprt() to work even when no threads are
1054 * running (e.g., while configuring the server before starting
1055 * any threads), so if the transport isn't busy, we delete
1056 * it ourself:
1057 */
1058 svc_delete_xprt(xprt);
1059}
1060EXPORT_SYMBOL_GPL(svc_close_xprt);
1061
1062static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1063{
1064 struct svc_xprt *xprt;
1065 int ret = 0;
1066
1067 spin_lock(&serv->sv_lock);
1068 list_for_each_entry(xprt, xprt_list, xpt_list) {
1069 if (xprt->xpt_net != net)
1070 continue;
1071 ret++;
1072 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1073 svc_xprt_enqueue(xprt);
1074 }
1075 spin_unlock(&serv->sv_lock);
1076 return ret;
1077}
1078
1079static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1080{
1081 struct svc_pool *pool;
1082 struct svc_xprt *xprt;
1083 struct svc_xprt *tmp;
1084 int i;
1085
1086 for (i = 0; i < serv->sv_nrpools; i++) {
1087 pool = &serv->sv_pools[i];
1088
1089 spin_lock_bh(&pool->sp_lock);
1090 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1091 if (xprt->xpt_net != net)
1092 continue;
1093 list_del_init(&xprt->xpt_ready);
1094 spin_unlock_bh(&pool->sp_lock);
1095 return xprt;
1096 }
1097 spin_unlock_bh(&pool->sp_lock);
1098 }
1099 return NULL;
1100}
1101
1102static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1103{
1104 struct svc_xprt *xprt;
1105
1106 while ((xprt = svc_dequeue_net(serv, net))) {
1107 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1108 svc_delete_xprt(xprt);
1109 }
1110}
1111
1112/*
1113 * Server threads may still be running (especially in the case where the
1114 * service is still running in other network namespaces).
1115 *
1116 * So we shut down sockets the same way we would on a running server, by
1117 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1118 * the close. In the case there are no such other threads,
1119 * threads running, svc_clean_up_xprts() does a simple version of a
1120 * server's main event loop, and in the case where there are other
1121 * threads, we may need to wait a little while and then check again to
1122 * see if they're done.
1123 */
1124void svc_close_net(struct svc_serv *serv, struct net *net)
1125{
1126 int delay = 0;
1127
1128 while (svc_close_list(serv, &serv->sv_permsocks, net) +
1129 svc_close_list(serv, &serv->sv_tempsocks, net)) {
1130
1131 svc_clean_up_xprts(serv, net);
1132 msleep(delay++);
1133 }
1134}
1135
1136/*
1137 * Handle defer and revisit of requests
1138 */
1139
1140static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1141{
1142 struct svc_deferred_req *dr =
1143 container_of(dreq, struct svc_deferred_req, handle);
1144 struct svc_xprt *xprt = dr->xprt;
1145
1146 spin_lock(&xprt->xpt_lock);
1147 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1148 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1149 spin_unlock(&xprt->xpt_lock);
1150 dprintk("revisit canceled\n");
1151 svc_xprt_put(xprt);
1152 trace_svc_drop_deferred(dr);
1153 kfree(dr);
1154 return;
1155 }
1156 dprintk("revisit queued\n");
1157 dr->xprt = NULL;
1158 list_add(&dr->handle.recent, &xprt->xpt_deferred);
1159 spin_unlock(&xprt->xpt_lock);
1160 svc_xprt_enqueue(xprt);
1161 svc_xprt_put(xprt);
1162}
1163
1164/*
1165 * Save the request off for later processing. The request buffer looks
1166 * like this:
1167 *
1168 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1169 *
1170 * This code can only handle requests that consist of an xprt-header
1171 * and rpc-header.
1172 */
1173static struct cache_deferred_req *svc_defer(struct cache_req *req)
1174{
1175 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1176 struct svc_deferred_req *dr;
1177
1178 if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1179 return NULL; /* if more than a page, give up FIXME */
1180 if (rqstp->rq_deferred) {
1181 dr = rqstp->rq_deferred;
1182 rqstp->rq_deferred = NULL;
1183 } else {
1184 size_t skip;
1185 size_t size;
1186 /* FIXME maybe discard if size too large */
1187 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1188 dr = kmalloc(size, GFP_KERNEL);
1189 if (dr == NULL)
1190 return NULL;
1191
1192 dr->handle.owner = rqstp->rq_server;
1193 dr->prot = rqstp->rq_prot;
1194 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1195 dr->addrlen = rqstp->rq_addrlen;
1196 dr->daddr = rqstp->rq_daddr;
1197 dr->argslen = rqstp->rq_arg.len >> 2;
1198 dr->xprt_hlen = rqstp->rq_xprt_hlen;
1199
1200 /* back up head to the start of the buffer and copy */
1201 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1202 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1203 dr->argslen << 2);
1204 }
1205 svc_xprt_get(rqstp->rq_xprt);
1206 dr->xprt = rqstp->rq_xprt;
1207 set_bit(RQ_DROPME, &rqstp->rq_flags);
1208
1209 dr->handle.revisit = svc_revisit;
1210 trace_svc_defer(rqstp);
1211 return &dr->handle;
1212}
1213
1214/*
1215 * recv data from a deferred request into an active one
1216 */
1217static int svc_deferred_recv(struct svc_rqst *rqstp)
1218{
1219 struct svc_deferred_req *dr = rqstp->rq_deferred;
1220
1221 /* setup iov_base past transport header */
1222 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1223 /* The iov_len does not include the transport header bytes */
1224 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1225 rqstp->rq_arg.page_len = 0;
1226 /* The rq_arg.len includes the transport header bytes */
1227 rqstp->rq_arg.len = dr->argslen<<2;
1228 rqstp->rq_prot = dr->prot;
1229 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1230 rqstp->rq_addrlen = dr->addrlen;
1231 /* Save off transport header len in case we get deferred again */
1232 rqstp->rq_xprt_hlen = dr->xprt_hlen;
1233 rqstp->rq_daddr = dr->daddr;
1234 rqstp->rq_respages = rqstp->rq_pages;
1235 return (dr->argslen<<2) - dr->xprt_hlen;
1236}
1237
1238
1239static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1240{
1241 struct svc_deferred_req *dr = NULL;
1242
1243 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1244 return NULL;
1245 spin_lock(&xprt->xpt_lock);
1246 if (!list_empty(&xprt->xpt_deferred)) {
1247 dr = list_entry(xprt->xpt_deferred.next,
1248 struct svc_deferred_req,
1249 handle.recent);
1250 list_del_init(&dr->handle.recent);
1251 trace_svc_revisit_deferred(dr);
1252 } else
1253 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1254 spin_unlock(&xprt->xpt_lock);
1255 return dr;
1256}
1257
1258/**
1259 * svc_find_xprt - find an RPC transport instance
1260 * @serv: pointer to svc_serv to search
1261 * @xcl_name: C string containing transport's class name
1262 * @net: owner net pointer
1263 * @af: Address family of transport's local address
1264 * @port: transport's IP port number
1265 *
1266 * Return the transport instance pointer for the endpoint accepting
1267 * connections/peer traffic from the specified transport class,
1268 * address family and port.
1269 *
1270 * Specifying 0 for the address family or port is effectively a
1271 * wild-card, and will result in matching the first transport in the
1272 * service's list that has a matching class name.
1273 */
1274struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1275 struct net *net, const sa_family_t af,
1276 const unsigned short port)
1277{
1278 struct svc_xprt *xprt;
1279 struct svc_xprt *found = NULL;
1280
1281 /* Sanity check the args */
1282 if (serv == NULL || xcl_name == NULL)
1283 return found;
1284
1285 spin_lock_bh(&serv->sv_lock);
1286 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1287 if (xprt->xpt_net != net)
1288 continue;
1289 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1290 continue;
1291 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1292 continue;
1293 if (port != 0 && port != svc_xprt_local_port(xprt))
1294 continue;
1295 found = xprt;
1296 svc_xprt_get(xprt);
1297 break;
1298 }
1299 spin_unlock_bh(&serv->sv_lock);
1300 return found;
1301}
1302EXPORT_SYMBOL_GPL(svc_find_xprt);
1303
1304static int svc_one_xprt_name(const struct svc_xprt *xprt,
1305 char *pos, int remaining)
1306{
1307 int len;
1308
1309 len = snprintf(pos, remaining, "%s %u\n",
1310 xprt->xpt_class->xcl_name,
1311 svc_xprt_local_port(xprt));
1312 if (len >= remaining)
1313 return -ENAMETOOLONG;
1314 return len;
1315}
1316
1317/**
1318 * svc_xprt_names - format a buffer with a list of transport names
1319 * @serv: pointer to an RPC service
1320 * @buf: pointer to a buffer to be filled in
1321 * @buflen: length of buffer to be filled in
1322 *
1323 * Fills in @buf with a string containing a list of transport names,
1324 * each name terminated with '\n'.
1325 *
1326 * Returns positive length of the filled-in string on success; otherwise
1327 * a negative errno value is returned if an error occurs.
1328 */
1329int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1330{
1331 struct svc_xprt *xprt;
1332 int len, totlen;
1333 char *pos;
1334
1335 /* Sanity check args */
1336 if (!serv)
1337 return 0;
1338
1339 spin_lock_bh(&serv->sv_lock);
1340
1341 pos = buf;
1342 totlen = 0;
1343 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1344 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1345 if (len < 0) {
1346 *buf = '\0';
1347 totlen = len;
1348 }
1349 if (len <= 0)
1350 break;
1351
1352 pos += len;
1353 totlen += len;
1354 }
1355
1356 spin_unlock_bh(&serv->sv_lock);
1357 return totlen;
1358}
1359EXPORT_SYMBOL_GPL(svc_xprt_names);
1360
1361
1362/*----------------------------------------------------------------------------*/
1363
1364static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1365{
1366 unsigned int pidx = (unsigned int)*pos;
1367 struct svc_serv *serv = m->private;
1368
1369 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1370
1371 if (!pidx)
1372 return SEQ_START_TOKEN;
1373 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1374}
1375
1376static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1377{
1378 struct svc_pool *pool = p;
1379 struct svc_serv *serv = m->private;
1380
1381 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1382
1383 if (p == SEQ_START_TOKEN) {
1384 pool = &serv->sv_pools[0];
1385 } else {
1386 unsigned int pidx = (pool - &serv->sv_pools[0]);
1387 if (pidx < serv->sv_nrpools-1)
1388 pool = &serv->sv_pools[pidx+1];
1389 else
1390 pool = NULL;
1391 }
1392 ++*pos;
1393 return pool;
1394}
1395
1396static void svc_pool_stats_stop(struct seq_file *m, void *p)
1397{
1398}
1399
1400static int svc_pool_stats_show(struct seq_file *m, void *p)
1401{
1402 struct svc_pool *pool = p;
1403
1404 if (p == SEQ_START_TOKEN) {
1405 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1406 return 0;
1407 }
1408
1409 seq_printf(m, "%u %lu %lu %lu %lu\n",
1410 pool->sp_id,
1411 (unsigned long)atomic_long_read(&pool->sp_stats.packets),
1412 pool->sp_stats.sockets_queued,
1413 (unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1414 (unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1415
1416 return 0;
1417}
1418
1419static const struct seq_operations svc_pool_stats_seq_ops = {
1420 .start = svc_pool_stats_start,
1421 .next = svc_pool_stats_next,
1422 .stop = svc_pool_stats_stop,
1423 .show = svc_pool_stats_show,
1424};
1425
1426int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1427{
1428 int err;
1429
1430 err = seq_open(file, &svc_pool_stats_seq_ops);
1431 if (!err)
1432 ((struct seq_file *) file->private_data)->private = serv;
1433 return err;
1434}
1435EXPORT_SYMBOL(svc_pool_stats_open);
1436
1437/*----------------------------------------------------------------------------*/