Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/net/sunrpc/svc_xprt.c
   4 *
   5 * Author: Tom Tucker <tom@opengridcomputing.com>
   6 */
   7
   8#include <linux/sched.h>
   9#include <linux/sched/mm.h>
  10#include <linux/errno.h>
  11#include <linux/freezer.h>
  12#include <linux/kthread.h>
  13#include <linux/slab.h>
  14#include <net/sock.h>
  15#include <linux/sunrpc/addr.h>
  16#include <linux/sunrpc/stats.h>
  17#include <linux/sunrpc/svc_xprt.h>
  18#include <linux/sunrpc/svcsock.h>
  19#include <linux/sunrpc/xprt.h>
  20#include <linux/module.h>
  21#include <linux/netdevice.h>
  22#include <trace/events/sunrpc.h>
  23
  24#define RPCDBG_FACILITY	RPCDBG_SVCXPRT
  25
  26static unsigned int svc_rpc_per_connection_limit __read_mostly;
  27module_param(svc_rpc_per_connection_limit, uint, 0644);
  28
  29
  30static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
  31static int svc_deferred_recv(struct svc_rqst *rqstp);
  32static struct cache_deferred_req *svc_defer(struct cache_req *req);
  33static void svc_age_temp_xprts(struct timer_list *t);
  34static void svc_delete_xprt(struct svc_xprt *xprt);
  35
  36/* apparently the "standard" is that clients close
  37 * idle connections after 5 minutes, servers after
  38 * 6 minutes
  39 *   http://nfsv4bat.org/Documents/ConnectAThon/1996/nfstcp.pdf
  40 */
  41static int svc_conn_age_period = 6*60;
  42
  43/* List of registered transport classes */
  44static DEFINE_SPINLOCK(svc_xprt_class_lock);
  45static LIST_HEAD(svc_xprt_class_list);
  46
  47/* SMP locking strategy:
  48 *
  49 *	svc_pool->sp_lock protects most of the fields of that pool.
  50 *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
  51 *	when both need to be taken (rare), svc_serv->sv_lock is first.
  52 *	The "service mutex" protects svc_serv->sv_nrthread.
  53 *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
  54 *             and the ->sk_info_authunix cache.
  55 *
  56 *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
  57 *	enqueued multiply. During normal transport processing this bit
  58 *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
  59 *	Providers should not manipulate this bit directly.
  60 *
  61 *	Some flags can be set to certain values at any time
  62 *	providing that certain rules are followed:
  63 *
  64 *	XPT_CONN, XPT_DATA:
  65 *		- Can be set or cleared at any time.
  66 *		- After a set, svc_xprt_enqueue must be called to enqueue
  67 *		  the transport for processing.
  68 *		- After a clear, the transport must be read/accepted.
  69 *		  If this succeeds, it must be set again.
  70 *	XPT_CLOSE:
  71 *		- Can set at any time. It is never cleared.
  72 *      XPT_DEAD:
  73 *		- Can only be set while XPT_BUSY is held which ensures
  74 *		  that no other thread will be using the transport or will
  75 *		  try to set XPT_DEAD.
  76 */
  77int svc_reg_xprt_class(struct svc_xprt_class *xcl)
  78{
  79	struct svc_xprt_class *cl;
  80	int res = -EEXIST;
  81
  82	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
  83
  84	INIT_LIST_HEAD(&xcl->xcl_list);
  85	spin_lock(&svc_xprt_class_lock);
  86	/* Make sure there isn't already a class with the same name */
  87	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
  88		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
  89			goto out;
  90	}
  91	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
  92	res = 0;
  93out:
  94	spin_unlock(&svc_xprt_class_lock);
  95	return res;
  96}
  97EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
  98
  99void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
 100{
 101	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
 102	spin_lock(&svc_xprt_class_lock);
 103	list_del_init(&xcl->xcl_list);
 104	spin_unlock(&svc_xprt_class_lock);
 105}
 106EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
 107
 108/**
 109 * svc_print_xprts - Format the transport list for printing
 110 * @buf: target buffer for formatted address
 111 * @maxlen: length of target buffer
 112 *
 113 * Fills in @buf with a string containing a list of transport names, each name
 114 * terminated with '\n'. If the buffer is too small, some entries may be
 115 * missing, but it is guaranteed that all lines in the output buffer are
 116 * complete.
 117 *
 118 * Returns positive length of the filled-in string.
 119 */
 120int svc_print_xprts(char *buf, int maxlen)
 121{
 122	struct svc_xprt_class *xcl;
 123	char tmpstr[80];
 124	int len = 0;
 125	buf[0] = '\0';
 126
 127	spin_lock(&svc_xprt_class_lock);
 128	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
 129		int slen;
 130
 131		slen = snprintf(tmpstr, sizeof(tmpstr), "%s %d\n",
 132				xcl->xcl_name, xcl->xcl_max_payload);
 133		if (slen >= sizeof(tmpstr) || len + slen >= maxlen)
 134			break;
 135		len += slen;
 136		strcat(buf, tmpstr);
 137	}
 138	spin_unlock(&svc_xprt_class_lock);
 139
 140	return len;
 141}
 142
 143/**
 144 * svc_xprt_deferred_close - Close a transport
 145 * @xprt: transport instance
 146 *
 147 * Used in contexts that need to defer the work of shutting down
 148 * the transport to an nfsd thread.
 149 */
 150void svc_xprt_deferred_close(struct svc_xprt *xprt)
 151{
 152	if (!test_and_set_bit(XPT_CLOSE, &xprt->xpt_flags))
 153		svc_xprt_enqueue(xprt);
 154}
 155EXPORT_SYMBOL_GPL(svc_xprt_deferred_close);
 156
 157static void svc_xprt_free(struct kref *kref)
 158{
 159	struct svc_xprt *xprt =
 160		container_of(kref, struct svc_xprt, xpt_ref);
 161	struct module *owner = xprt->xpt_class->xcl_owner;
 162	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
 163		svcauth_unix_info_release(xprt);
 164	put_cred(xprt->xpt_cred);
 165	put_net_track(xprt->xpt_net, &xprt->ns_tracker);
 166	/* See comment on corresponding get in xs_setup_bc_tcp(): */
 167	if (xprt->xpt_bc_xprt)
 168		xprt_put(xprt->xpt_bc_xprt);
 169	if (xprt->xpt_bc_xps)
 170		xprt_switch_put(xprt->xpt_bc_xps);
 171	trace_svc_xprt_free(xprt);
 172	xprt->xpt_ops->xpo_free(xprt);
 173	module_put(owner);
 174}
 175
 176void svc_xprt_put(struct svc_xprt *xprt)
 177{
 178	kref_put(&xprt->xpt_ref, svc_xprt_free);
 179}
 180EXPORT_SYMBOL_GPL(svc_xprt_put);
 181
 182/*
 183 * Called by transport drivers to initialize the transport independent
 184 * portion of the transport instance.
 185 */
 186void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
 187		   struct svc_xprt *xprt, struct svc_serv *serv)
 188{
 189	memset(xprt, 0, sizeof(*xprt));
 190	xprt->xpt_class = xcl;
 191	xprt->xpt_ops = xcl->xcl_ops;
 192	kref_init(&xprt->xpt_ref);
 193	xprt->xpt_server = serv;
 194	INIT_LIST_HEAD(&xprt->xpt_list);
 195	INIT_LIST_HEAD(&xprt->xpt_ready);
 196	INIT_LIST_HEAD(&xprt->xpt_deferred);
 197	INIT_LIST_HEAD(&xprt->xpt_users);
 198	mutex_init(&xprt->xpt_mutex);
 199	spin_lock_init(&xprt->xpt_lock);
 200	set_bit(XPT_BUSY, &xprt->xpt_flags);
 201	xprt->xpt_net = get_net_track(net, &xprt->ns_tracker, GFP_ATOMIC);
 202	strcpy(xprt->xpt_remotebuf, "uninitialized");
 203}
 204EXPORT_SYMBOL_GPL(svc_xprt_init);
 205
 206static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
 207					 struct svc_serv *serv,
 208					 struct net *net,
 209					 const int family,
 210					 const unsigned short port,
 211					 int flags)
 212{
 213	struct sockaddr_in sin = {
 214		.sin_family		= AF_INET,
 215		.sin_addr.s_addr	= htonl(INADDR_ANY),
 216		.sin_port		= htons(port),
 217	};
 218#if IS_ENABLED(CONFIG_IPV6)
 219	struct sockaddr_in6 sin6 = {
 220		.sin6_family		= AF_INET6,
 221		.sin6_addr		= IN6ADDR_ANY_INIT,
 222		.sin6_port		= htons(port),
 223	};
 224#endif
 225	struct svc_xprt *xprt;
 226	struct sockaddr *sap;
 227	size_t len;
 228
 229	switch (family) {
 230	case PF_INET:
 231		sap = (struct sockaddr *)&sin;
 232		len = sizeof(sin);
 233		break;
 234#if IS_ENABLED(CONFIG_IPV6)
 235	case PF_INET6:
 236		sap = (struct sockaddr *)&sin6;
 237		len = sizeof(sin6);
 238		break;
 239#endif
 240	default:
 241		return ERR_PTR(-EAFNOSUPPORT);
 242	}
 243
 244	xprt = xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
 245	if (IS_ERR(xprt))
 246		trace_svc_xprt_create_err(serv->sv_program->pg_name,
 247					  xcl->xcl_name, sap, len, xprt);
 248	return xprt;
 249}
 250
 251/**
 252 * svc_xprt_received - start next receiver thread
 253 * @xprt: controlling transport
 254 *
 255 * The caller must hold the XPT_BUSY bit and must
 256 * not thereafter touch transport data.
 257 *
 258 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
 259 * insufficient) data.
 260 */
 261void svc_xprt_received(struct svc_xprt *xprt)
 262{
 263	if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
 264		WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
 265		return;
 266	}
 267
 268	/* As soon as we clear busy, the xprt could be closed and
 269	 * 'put', so we need a reference to call svc_xprt_enqueue with:
 270	 */
 271	svc_xprt_get(xprt);
 272	smp_mb__before_atomic();
 273	clear_bit(XPT_BUSY, &xprt->xpt_flags);
 274	svc_xprt_enqueue(xprt);
 275	svc_xprt_put(xprt);
 276}
 277EXPORT_SYMBOL_GPL(svc_xprt_received);
 278
 279void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
 280{
 281	clear_bit(XPT_TEMP, &new->xpt_flags);
 282	spin_lock_bh(&serv->sv_lock);
 283	list_add(&new->xpt_list, &serv->sv_permsocks);
 284	spin_unlock_bh(&serv->sv_lock);
 285	svc_xprt_received(new);
 286}
 287
 288static int _svc_xprt_create(struct svc_serv *serv, const char *xprt_name,
 289			    struct net *net, const int family,
 290			    const unsigned short port, int flags,
 291			    const struct cred *cred)
 292{
 293	struct svc_xprt_class *xcl;
 294
 295	spin_lock(&svc_xprt_class_lock);
 296	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
 297		struct svc_xprt *newxprt;
 298		unsigned short newport;
 299
 300		if (strcmp(xprt_name, xcl->xcl_name))
 301			continue;
 302
 303		if (!try_module_get(xcl->xcl_owner))
 304			goto err;
 305
 306		spin_unlock(&svc_xprt_class_lock);
 307		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
 308		if (IS_ERR(newxprt)) {
 309			module_put(xcl->xcl_owner);
 310			return PTR_ERR(newxprt);
 311		}
 312		newxprt->xpt_cred = get_cred(cred);
 313		svc_add_new_perm_xprt(serv, newxprt);
 314		newport = svc_xprt_local_port(newxprt);
 315		return newport;
 316	}
 317 err:
 318	spin_unlock(&svc_xprt_class_lock);
 319	/* This errno is exposed to user space.  Provide a reasonable
 320	 * perror msg for a bad transport. */
 321	return -EPROTONOSUPPORT;
 322}
 323
 324/**
 325 * svc_xprt_create - Add a new listener to @serv
 326 * @serv: target RPC service
 327 * @xprt_name: transport class name
 328 * @net: network namespace
 329 * @family: network address family
 330 * @port: listener port
 331 * @flags: SVC_SOCK flags
 332 * @cred: credential to bind to this transport
 333 *
 334 * Return values:
 335 *   %0: New listener added successfully
 336 *   %-EPROTONOSUPPORT: Requested transport type not supported
 337 */
 338int svc_xprt_create(struct svc_serv *serv, const char *xprt_name,
 339		    struct net *net, const int family,
 340		    const unsigned short port, int flags,
 341		    const struct cred *cred)
 342{
 343	int err;
 344
 345	err = _svc_xprt_create(serv, xprt_name, net, family, port, flags, cred);
 
 346	if (err == -EPROTONOSUPPORT) {
 347		request_module("svc%s", xprt_name);
 348		err = _svc_xprt_create(serv, xprt_name, net, family, port, flags, cred);
 349	}
 
 
 
 350	return err;
 351}
 352EXPORT_SYMBOL_GPL(svc_xprt_create);
 353
 354/*
 355 * Copy the local and remote xprt addresses to the rqstp structure
 356 */
 357void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
 358{
 359	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
 360	rqstp->rq_addrlen = xprt->xpt_remotelen;
 361
 362	/*
 363	 * Destination address in request is needed for binding the
 364	 * source address in RPC replies/callbacks later.
 365	 */
 366	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
 367	rqstp->rq_daddrlen = xprt->xpt_locallen;
 368}
 369EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
 370
 371/**
 372 * svc_print_addr - Format rq_addr field for printing
 373 * @rqstp: svc_rqst struct containing address to print
 374 * @buf: target buffer for formatted address
 375 * @len: length of target buffer
 376 *
 377 */
 378char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
 379{
 380	return __svc_print_addr(svc_addr(rqstp), buf, len);
 381}
 382EXPORT_SYMBOL_GPL(svc_print_addr);
 383
 384static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
 385{
 386	unsigned int limit = svc_rpc_per_connection_limit;
 387	int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
 388
 389	return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
 390}
 391
 392static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
 393{
 394	if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
 395		if (!svc_xprt_slots_in_range(xprt))
 396			return false;
 397		atomic_inc(&xprt->xpt_nr_rqsts);
 398		set_bit(RQ_DATA, &rqstp->rq_flags);
 399	}
 400	return true;
 401}
 402
 403static void svc_xprt_release_slot(struct svc_rqst *rqstp)
 404{
 405	struct svc_xprt	*xprt = rqstp->rq_xprt;
 406	if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
 407		atomic_dec(&xprt->xpt_nr_rqsts);
 408		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
 409		svc_xprt_enqueue(xprt);
 410	}
 411}
 412
 413static bool svc_xprt_ready(struct svc_xprt *xprt)
 414{
 415	unsigned long xpt_flags;
 416
 417	/*
 418	 * If another cpu has recently updated xpt_flags,
 419	 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to
 420	 * know about it; otherwise it's possible that both that cpu and
 421	 * this one could call svc_xprt_enqueue() without either
 422	 * svc_xprt_enqueue() recognizing that the conditions below
 423	 * are satisfied, and we could stall indefinitely:
 424	 */
 425	smp_rmb();
 426	xpt_flags = READ_ONCE(xprt->xpt_flags);
 427
 428	if (xpt_flags & BIT(XPT_BUSY))
 429		return false;
 430	if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE)))
 431		return true;
 432	if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) {
 433		if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
 434		    svc_xprt_slots_in_range(xprt))
 435			return true;
 436		trace_svc_xprt_no_write_space(xprt);
 437		return false;
 438	}
 439	return false;
 440}
 441
 442/**
 443 * svc_xprt_enqueue - Queue a transport on an idle nfsd thread
 444 * @xprt: transport with data pending
 445 *
 446 */
 447void svc_xprt_enqueue(struct svc_xprt *xprt)
 448{
 449	struct svc_pool *pool;
 450	struct svc_rqst	*rqstp = NULL;
 
 451
 452	if (!svc_xprt_ready(xprt))
 453		return;
 454
 455	/* Mark transport as busy. It will remain in this state until
 456	 * the provider calls svc_xprt_received. We update XPT_BUSY
 457	 * atomically because it also guards against trying to enqueue
 458	 * the transport twice.
 459	 */
 460	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
 461		return;
 462
 463	pool = svc_pool_for_cpu(xprt->xpt_server);
 
 464
 465	atomic_long_inc(&pool->sp_stats.packets);
 466
 467	spin_lock_bh(&pool->sp_lock);
 468	list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
 469	pool->sp_stats.sockets_queued++;
 470	spin_unlock_bh(&pool->sp_lock);
 471
 472	/* find a thread for this xprt */
 473	rcu_read_lock();
 474	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
 475		if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags))
 476			continue;
 477		atomic_long_inc(&pool->sp_stats.threads_woken);
 478		rqstp->rq_qtime = ktime_get();
 479		wake_up_process(rqstp->rq_task);
 480		goto out_unlock;
 481	}
 482	set_bit(SP_CONGESTED, &pool->sp_flags);
 483	rqstp = NULL;
 484out_unlock:
 485	rcu_read_unlock();
 486	trace_svc_xprt_enqueue(xprt, rqstp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 487}
 488EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
 489
 490/*
 491 * Dequeue the first transport, if there is one.
 492 */
 493static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
 494{
 495	struct svc_xprt	*xprt = NULL;
 496
 497	if (list_empty(&pool->sp_sockets))
 498		goto out;
 499
 500	spin_lock_bh(&pool->sp_lock);
 501	if (likely(!list_empty(&pool->sp_sockets))) {
 502		xprt = list_first_entry(&pool->sp_sockets,
 503					struct svc_xprt, xpt_ready);
 504		list_del_init(&xprt->xpt_ready);
 505		svc_xprt_get(xprt);
 506	}
 507	spin_unlock_bh(&pool->sp_lock);
 508out:
 509	return xprt;
 510}
 511
 512/**
 513 * svc_reserve - change the space reserved for the reply to a request.
 514 * @rqstp:  The request in question
 515 * @space: new max space to reserve
 516 *
 517 * Each request reserves some space on the output queue of the transport
 518 * to make sure the reply fits.  This function reduces that reserved
 519 * space to be the amount of space used already, plus @space.
 520 *
 521 */
 522void svc_reserve(struct svc_rqst *rqstp, int space)
 523{
 524	struct svc_xprt *xprt = rqstp->rq_xprt;
 525
 526	space += rqstp->rq_res.head[0].iov_len;
 527
 528	if (xprt && space < rqstp->rq_reserved) {
 529		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
 530		rqstp->rq_reserved = space;
 531		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
 532		svc_xprt_enqueue(xprt);
 533	}
 534}
 535EXPORT_SYMBOL_GPL(svc_reserve);
 536
 537static void svc_xprt_release(struct svc_rqst *rqstp)
 538{
 539	struct svc_xprt	*xprt = rqstp->rq_xprt;
 540
 541	xprt->xpt_ops->xpo_release_rqst(rqstp);
 542
 543	kfree(rqstp->rq_deferred);
 544	rqstp->rq_deferred = NULL;
 545
 546	pagevec_release(&rqstp->rq_pvec);
 547	svc_free_res_pages(rqstp);
 548	rqstp->rq_res.page_len = 0;
 549	rqstp->rq_res.page_base = 0;
 550
 551	/* Reset response buffer and release
 552	 * the reservation.
 553	 * But first, check that enough space was reserved
 554	 * for the reply, otherwise we have a bug!
 555	 */
 556	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
 557		printk(KERN_ERR "RPC request reserved %d but used %d\n",
 558		       rqstp->rq_reserved,
 559		       rqstp->rq_res.len);
 560
 561	rqstp->rq_res.head[0].iov_len = 0;
 562	svc_reserve(rqstp, 0);
 563	svc_xprt_release_slot(rqstp);
 564	rqstp->rq_xprt = NULL;
 565	svc_xprt_put(xprt);
 566}
 567
 568/*
 569 * Some svc_serv's will have occasional work to do, even when a xprt is not
 570 * waiting to be serviced. This function is there to "kick" a task in one of
 571 * those services so that it can wake up and do that work. Note that we only
 572 * bother with pool 0 as we don't need to wake up more than one thread for
 573 * this purpose.
 574 */
 575void svc_wake_up(struct svc_serv *serv)
 576{
 577	struct svc_rqst	*rqstp;
 578	struct svc_pool *pool;
 579
 580	pool = &serv->sv_pools[0];
 581
 582	rcu_read_lock();
 583	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
 584		/* skip any that aren't queued */
 585		if (test_bit(RQ_BUSY, &rqstp->rq_flags))
 586			continue;
 587		rcu_read_unlock();
 588		wake_up_process(rqstp->rq_task);
 589		trace_svc_wake_up(rqstp->rq_task->pid);
 590		return;
 591	}
 592	rcu_read_unlock();
 593
 594	/* No free entries available */
 595	set_bit(SP_TASK_PENDING, &pool->sp_flags);
 596	smp_wmb();
 597	trace_svc_wake_up(0);
 598}
 599EXPORT_SYMBOL_GPL(svc_wake_up);
 600
 601int svc_port_is_privileged(struct sockaddr *sin)
 602{
 603	switch (sin->sa_family) {
 604	case AF_INET:
 605		return ntohs(((struct sockaddr_in *)sin)->sin_port)
 606			< PROT_SOCK;
 607	case AF_INET6:
 608		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
 609			< PROT_SOCK;
 610	default:
 611		return 0;
 612	}
 613}
 614
 615/*
 616 * Make sure that we don't have too many active connections. If we have,
 617 * something must be dropped. It's not clear what will happen if we allow
 618 * "too many" connections, but when dealing with network-facing software,
 619 * we have to code defensively. Here we do that by imposing hard limits.
 620 *
 621 * There's no point in trying to do random drop here for DoS
 622 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
 623 * attacker can easily beat that.
 624 *
 625 * The only somewhat efficient mechanism would be if drop old
 626 * connections from the same IP first. But right now we don't even
 627 * record the client IP in svc_sock.
 628 *
 629 * single-threaded services that expect a lot of clients will probably
 630 * need to set sv_maxconn to override the default value which is based
 631 * on the number of threads
 632 */
 633static void svc_check_conn_limits(struct svc_serv *serv)
 634{
 635	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
 636				(serv->sv_nrthreads+3) * 20;
 637
 638	if (serv->sv_tmpcnt > limit) {
 639		struct svc_xprt *xprt = NULL;
 640		spin_lock_bh(&serv->sv_lock);
 641		if (!list_empty(&serv->sv_tempsocks)) {
 642			/* Try to help the admin */
 643			net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
 644					       serv->sv_name, serv->sv_maxconn ?
 645					       "max number of connections" :
 646					       "number of threads");
 647			/*
 648			 * Always select the oldest connection. It's not fair,
 649			 * but so is life
 650			 */
 651			xprt = list_entry(serv->sv_tempsocks.prev,
 652					  struct svc_xprt,
 653					  xpt_list);
 654			set_bit(XPT_CLOSE, &xprt->xpt_flags);
 655			svc_xprt_get(xprt);
 656		}
 657		spin_unlock_bh(&serv->sv_lock);
 658
 659		if (xprt) {
 660			svc_xprt_enqueue(xprt);
 661			svc_xprt_put(xprt);
 662		}
 663	}
 664}
 665
 666static int svc_alloc_arg(struct svc_rqst *rqstp)
 667{
 668	struct svc_serv *serv = rqstp->rq_server;
 669	struct xdr_buf *arg = &rqstp->rq_arg;
 670	unsigned long pages, filled, ret;
 671
 672	pagevec_init(&rqstp->rq_pvec);
 673
 
 674	pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
 675	if (pages > RPCSVC_MAXPAGES) {
 676		pr_warn_once("svc: warning: pages=%lu > RPCSVC_MAXPAGES=%lu\n",
 677			     pages, RPCSVC_MAXPAGES);
 678		/* use as many pages as possible */
 679		pages = RPCSVC_MAXPAGES;
 680	}
 681
 682	for (filled = 0; filled < pages; filled = ret) {
 683		ret = alloc_pages_bulk_array(GFP_KERNEL, pages,
 684					     rqstp->rq_pages);
 685		if (ret > filled)
 686			/* Made progress, don't sleep yet */
 687			continue;
 688
 689		set_current_state(TASK_INTERRUPTIBLE);
 690		if (signalled() || kthread_should_stop()) {
 691			set_current_state(TASK_RUNNING);
 692			return -EINTR;
 693		}
 694		trace_svc_alloc_arg_err(pages, ret);
 695		memalloc_retry_wait(GFP_KERNEL);
 696	}
 697	rqstp->rq_page_end = &rqstp->rq_pages[pages];
 698	rqstp->rq_pages[pages] = NULL; /* this might be seen in nfsd_splice_actor() */
 699
 700	/* Make arg->head point to first page and arg->pages point to rest */
 
 701	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
 702	arg->head[0].iov_len = PAGE_SIZE;
 703	arg->pages = rqstp->rq_pages + 1;
 704	arg->page_base = 0;
 705	/* save at least one page for response */
 706	arg->page_len = (pages-2)*PAGE_SIZE;
 707	arg->len = (pages-1)*PAGE_SIZE;
 708	arg->tail[0].iov_len = 0;
 709	return 0;
 710}
 711
 712static bool
 713rqst_should_sleep(struct svc_rqst *rqstp)
 714{
 715	struct svc_pool		*pool = rqstp->rq_pool;
 716
 717	/* did someone call svc_wake_up? */
 718	if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
 719		return false;
 720
 721	/* was a socket queued? */
 722	if (!list_empty(&pool->sp_sockets))
 723		return false;
 724
 725	/* are we shutting down? */
 726	if (signalled() || kthread_should_stop())
 727		return false;
 728
 729	/* are we freezing? */
 730	if (freezing(current))
 731		return false;
 732
 733	return true;
 734}
 735
 736static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
 737{
 738	struct svc_pool		*pool = rqstp->rq_pool;
 739	long			time_left = 0;
 740
 741	/* rq_xprt should be clear on entry */
 742	WARN_ON_ONCE(rqstp->rq_xprt);
 743
 744	rqstp->rq_xprt = svc_xprt_dequeue(pool);
 745	if (rqstp->rq_xprt)
 746		goto out_found;
 747
 748	/*
 749	 * We have to be able to interrupt this wait
 750	 * to bring down the daemons ...
 751	 */
 752	set_current_state(TASK_INTERRUPTIBLE);
 753	smp_mb__before_atomic();
 754	clear_bit(SP_CONGESTED, &pool->sp_flags);
 755	clear_bit(RQ_BUSY, &rqstp->rq_flags);
 756	smp_mb__after_atomic();
 757
 758	if (likely(rqst_should_sleep(rqstp)))
 759		time_left = schedule_timeout(timeout);
 760	else
 761		__set_current_state(TASK_RUNNING);
 762
 763	try_to_freeze();
 764
 765	set_bit(RQ_BUSY, &rqstp->rq_flags);
 766	smp_mb__after_atomic();
 767	rqstp->rq_xprt = svc_xprt_dequeue(pool);
 768	if (rqstp->rq_xprt)
 769		goto out_found;
 770
 771	if (!time_left)
 772		atomic_long_inc(&pool->sp_stats.threads_timedout);
 773
 774	if (signalled() || kthread_should_stop())
 775		return ERR_PTR(-EINTR);
 776	return ERR_PTR(-EAGAIN);
 777out_found:
 778	/* Normally we will wait up to 5 seconds for any required
 779	 * cache information to be provided.
 780	 */
 781	if (!test_bit(SP_CONGESTED, &pool->sp_flags))
 782		rqstp->rq_chandle.thread_wait = 5*HZ;
 783	else
 784		rqstp->rq_chandle.thread_wait = 1*HZ;
 785	trace_svc_xprt_dequeue(rqstp);
 786	return rqstp->rq_xprt;
 787}
 788
 789static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
 790{
 791	spin_lock_bh(&serv->sv_lock);
 792	set_bit(XPT_TEMP, &newxpt->xpt_flags);
 793	list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
 794	serv->sv_tmpcnt++;
 795	if (serv->sv_temptimer.function == NULL) {
 796		/* setup timer to age temp transports */
 797		serv->sv_temptimer.function = svc_age_temp_xprts;
 798		mod_timer(&serv->sv_temptimer,
 799			  jiffies + svc_conn_age_period * HZ);
 800	}
 801	spin_unlock_bh(&serv->sv_lock);
 802	svc_xprt_received(newxpt);
 803}
 804
 805static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
 806{
 807	struct svc_serv *serv = rqstp->rq_server;
 808	int len = 0;
 809
 810	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
 
 811		if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
 812			xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
 813		svc_delete_xprt(xprt);
 814		/* Leave XPT_BUSY set on the dead xprt: */
 815		goto out;
 816	}
 817	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
 818		struct svc_xprt *newxpt;
 819		/*
 820		 * We know this module_get will succeed because the
 821		 * listener holds a reference too
 822		 */
 823		__module_get(xprt->xpt_class->xcl_owner);
 824		svc_check_conn_limits(xprt->xpt_server);
 825		newxpt = xprt->xpt_ops->xpo_accept(xprt);
 826		if (newxpt) {
 827			newxpt->xpt_cred = get_cred(xprt->xpt_cred);
 828			svc_add_new_temp_xprt(serv, newxpt);
 829			trace_svc_xprt_accept(newxpt, serv->sv_name);
 830		} else {
 831			module_put(xprt->xpt_class->xcl_owner);
 832		}
 833		svc_xprt_received(xprt);
 834	} else if (svc_xprt_reserve_slot(rqstp, xprt)) {
 835		/* XPT_DATA|XPT_DEFERRED case: */
 836		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
 837			rqstp, rqstp->rq_pool->sp_id, xprt,
 838			kref_read(&xprt->xpt_ref));
 839		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
 840		if (rqstp->rq_deferred)
 841			len = svc_deferred_recv(rqstp);
 842		else
 843			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
 844		rqstp->rq_stime = ktime_get();
 845		rqstp->rq_reserved = serv->sv_max_mesg;
 846		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
 847	} else
 848		svc_xprt_received(xprt);
 849
 850out:
 
 851	return len;
 852}
 853
 854/*
 855 * Receive the next request on any transport.  This code is carefully
 856 * organised not to touch any cachelines in the shared svc_serv
 857 * structure, only cachelines in the local svc_pool.
 858 */
 859int svc_recv(struct svc_rqst *rqstp, long timeout)
 860{
 861	struct svc_xprt		*xprt = NULL;
 862	struct svc_serv		*serv = rqstp->rq_server;
 863	int			len, err;
 864
 
 
 
 
 
 
 
 
 865	err = svc_alloc_arg(rqstp);
 866	if (err)
 867		goto out;
 868
 869	try_to_freeze();
 870	cond_resched();
 871	err = -EINTR;
 872	if (signalled() || kthread_should_stop())
 873		goto out;
 874
 875	xprt = svc_get_next_xprt(rqstp, timeout);
 876	if (IS_ERR(xprt)) {
 877		err = PTR_ERR(xprt);
 878		goto out;
 879	}
 880
 881	len = svc_handle_xprt(rqstp, xprt);
 882
 883	/* No data, incomplete (TCP) read, or accept() */
 884	err = -EAGAIN;
 885	if (len <= 0)
 886		goto out_release;
 887	trace_svc_xdr_recvfrom(&rqstp->rq_arg);
 888
 889	clear_bit(XPT_OLD, &xprt->xpt_flags);
 890
 891	xprt->xpt_ops->xpo_secure_port(rqstp);
 892	rqstp->rq_chandle.defer = svc_defer;
 893	rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
 894
 895	if (serv->sv_stats)
 896		serv->sv_stats->netcnt++;
 
 897	return len;
 898out_release:
 899	rqstp->rq_res.len = 0;
 900	svc_xprt_release(rqstp);
 901out:
 902	return err;
 903}
 904EXPORT_SYMBOL_GPL(svc_recv);
 905
 906/*
 907 * Drop request
 908 */
 909void svc_drop(struct svc_rqst *rqstp)
 910{
 911	trace_svc_drop(rqstp);
 
 912	svc_xprt_release(rqstp);
 913}
 914EXPORT_SYMBOL_GPL(svc_drop);
 915
 916/*
 917 * Return reply to client.
 918 */
 919int svc_send(struct svc_rqst *rqstp)
 920{
 921	struct svc_xprt	*xprt;
 922	int		len = -EFAULT;
 923	struct xdr_buf	*xb;
 924
 925	xprt = rqstp->rq_xprt;
 926	if (!xprt)
 927		goto out;
 928
 
 
 
 929	/* calculate over-all length */
 930	xb = &rqstp->rq_res;
 931	xb->len = xb->head[0].iov_len +
 932		xb->page_len +
 933		xb->tail[0].iov_len;
 934	trace_svc_xdr_sendto(rqstp->rq_xid, xb);
 935	trace_svc_stats_latency(rqstp);
 936
 937	len = xprt->xpt_ops->xpo_sendto(rqstp);
 938
 
 
 
 
 
 
 
 
 
 939	trace_svc_send(rqstp, len);
 940	svc_xprt_release(rqstp);
 941
 942	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
 943		len = 0;
 944out:
 945	return len;
 946}
 947
 948/*
 949 * Timer function to close old temporary transports, using
 950 * a mark-and-sweep algorithm.
 951 */
 952static void svc_age_temp_xprts(struct timer_list *t)
 953{
 954	struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
 955	struct svc_xprt *xprt;
 956	struct list_head *le, *next;
 957
 958	dprintk("svc_age_temp_xprts\n");
 959
 960	if (!spin_trylock_bh(&serv->sv_lock)) {
 961		/* busy, try again 1 sec later */
 962		dprintk("svc_age_temp_xprts: busy\n");
 963		mod_timer(&serv->sv_temptimer, jiffies + HZ);
 964		return;
 965	}
 966
 967	list_for_each_safe(le, next, &serv->sv_tempsocks) {
 968		xprt = list_entry(le, struct svc_xprt, xpt_list);
 969
 970		/* First time through, just mark it OLD. Second time
 971		 * through, close it. */
 972		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
 973			continue;
 974		if (kref_read(&xprt->xpt_ref) > 1 ||
 975		    test_bit(XPT_BUSY, &xprt->xpt_flags))
 976			continue;
 977		list_del_init(le);
 978		set_bit(XPT_CLOSE, &xprt->xpt_flags);
 979		dprintk("queuing xprt %p for closing\n", xprt);
 980
 981		/* a thread will dequeue and close it soon */
 982		svc_xprt_enqueue(xprt);
 983	}
 984	spin_unlock_bh(&serv->sv_lock);
 985
 986	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
 987}
 988
 989/* Close temporary transports whose xpt_local matches server_addr immediately
 990 * instead of waiting for them to be picked up by the timer.
 991 *
 992 * This is meant to be called from a notifier_block that runs when an ip
 993 * address is deleted.
 994 */
 995void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
 996{
 997	struct svc_xprt *xprt;
 998	struct list_head *le, *next;
 999	LIST_HEAD(to_be_closed);
1000
1001	spin_lock_bh(&serv->sv_lock);
1002	list_for_each_safe(le, next, &serv->sv_tempsocks) {
1003		xprt = list_entry(le, struct svc_xprt, xpt_list);
1004		if (rpc_cmp_addr(server_addr, (struct sockaddr *)
1005				&xprt->xpt_local)) {
1006			dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
1007			list_move(le, &to_be_closed);
1008		}
1009	}
1010	spin_unlock_bh(&serv->sv_lock);
1011
1012	while (!list_empty(&to_be_closed)) {
1013		le = to_be_closed.next;
1014		list_del_init(le);
1015		xprt = list_entry(le, struct svc_xprt, xpt_list);
1016		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1017		set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
1018		dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
1019				xprt);
1020		svc_xprt_enqueue(xprt);
1021	}
1022}
1023EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
1024
1025static void call_xpt_users(struct svc_xprt *xprt)
1026{
1027	struct svc_xpt_user *u;
1028
1029	spin_lock(&xprt->xpt_lock);
1030	while (!list_empty(&xprt->xpt_users)) {
1031		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1032		list_del_init(&u->list);
1033		u->callback(u);
1034	}
1035	spin_unlock(&xprt->xpt_lock);
1036}
1037
1038/*
1039 * Remove a dead transport
1040 */
1041static void svc_delete_xprt(struct svc_xprt *xprt)
1042{
1043	struct svc_serv	*serv = xprt->xpt_server;
1044	struct svc_deferred_req *dr;
1045
 
1046	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1047		return;
1048
1049	trace_svc_xprt_detach(xprt);
1050	xprt->xpt_ops->xpo_detach(xprt);
1051	if (xprt->xpt_bc_xprt)
1052		xprt->xpt_bc_xprt->ops->close(xprt->xpt_bc_xprt);
1053
1054	spin_lock_bh(&serv->sv_lock);
1055	list_del_init(&xprt->xpt_list);
1056	WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1057	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1058		serv->sv_tmpcnt--;
1059	spin_unlock_bh(&serv->sv_lock);
1060
1061	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1062		kfree(dr);
1063
1064	call_xpt_users(xprt);
1065	svc_xprt_put(xprt);
1066}
1067
1068/**
1069 * svc_xprt_close - Close a client connection
1070 * @xprt: transport to disconnect
1071 *
1072 */
1073void svc_xprt_close(struct svc_xprt *xprt)
1074{
1075	trace_svc_xprt_close(xprt);
1076	set_bit(XPT_CLOSE, &xprt->xpt_flags);
1077	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1078		/* someone else will have to effect the close */
1079		return;
1080	/*
1081	 * We expect svc_close_xprt() to work even when no threads are
1082	 * running (e.g., while configuring the server before starting
1083	 * any threads), so if the transport isn't busy, we delete
1084	 * it ourself:
1085	 */
1086	svc_delete_xprt(xprt);
1087}
1088EXPORT_SYMBOL_GPL(svc_xprt_close);
1089
1090static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1091{
1092	struct svc_xprt *xprt;
1093	int ret = 0;
1094
1095	spin_lock_bh(&serv->sv_lock);
1096	list_for_each_entry(xprt, xprt_list, xpt_list) {
1097		if (xprt->xpt_net != net)
1098			continue;
1099		ret++;
1100		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1101		svc_xprt_enqueue(xprt);
1102	}
1103	spin_unlock_bh(&serv->sv_lock);
1104	return ret;
1105}
1106
1107static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1108{
1109	struct svc_pool *pool;
1110	struct svc_xprt *xprt;
1111	struct svc_xprt *tmp;
1112	int i;
1113
1114	for (i = 0; i < serv->sv_nrpools; i++) {
1115		pool = &serv->sv_pools[i];
1116
1117		spin_lock_bh(&pool->sp_lock);
1118		list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1119			if (xprt->xpt_net != net)
1120				continue;
1121			list_del_init(&xprt->xpt_ready);
1122			spin_unlock_bh(&pool->sp_lock);
1123			return xprt;
1124		}
1125		spin_unlock_bh(&pool->sp_lock);
1126	}
1127	return NULL;
1128}
1129
1130static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1131{
1132	struct svc_xprt *xprt;
1133
1134	while ((xprt = svc_dequeue_net(serv, net))) {
1135		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1136		svc_delete_xprt(xprt);
1137	}
1138}
1139
1140/**
1141 * svc_xprt_destroy_all - Destroy transports associated with @serv
1142 * @serv: RPC service to be shut down
1143 * @net: target network namespace
1144 *
1145 * Server threads may still be running (especially in the case where the
1146 * service is still running in other network namespaces).
1147 *
1148 * So we shut down sockets the same way we would on a running server, by
1149 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1150 * the close.  In the case there are no such other threads,
1151 * threads running, svc_clean_up_xprts() does a simple version of a
1152 * server's main event loop, and in the case where there are other
1153 * threads, we may need to wait a little while and then check again to
1154 * see if they're done.
1155 */
1156void svc_xprt_destroy_all(struct svc_serv *serv, struct net *net)
1157{
1158	int delay = 0;
1159
1160	while (svc_close_list(serv, &serv->sv_permsocks, net) +
1161	       svc_close_list(serv, &serv->sv_tempsocks, net)) {
1162
1163		svc_clean_up_xprts(serv, net);
1164		msleep(delay++);
1165	}
1166}
1167EXPORT_SYMBOL_GPL(svc_xprt_destroy_all);
1168
1169/*
1170 * Handle defer and revisit of requests
1171 */
1172
1173static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1174{
1175	struct svc_deferred_req *dr =
1176		container_of(dreq, struct svc_deferred_req, handle);
1177	struct svc_xprt *xprt = dr->xprt;
1178
1179	spin_lock(&xprt->xpt_lock);
1180	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1181	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1182		spin_unlock(&xprt->xpt_lock);
1183		trace_svc_defer_drop(dr);
1184		svc_xprt_put(xprt);
 
1185		kfree(dr);
1186		return;
1187	}
 
1188	dr->xprt = NULL;
1189	list_add(&dr->handle.recent, &xprt->xpt_deferred);
1190	spin_unlock(&xprt->xpt_lock);
1191	trace_svc_defer_queue(dr);
1192	svc_xprt_enqueue(xprt);
1193	svc_xprt_put(xprt);
1194}
1195
1196/*
1197 * Save the request off for later processing. The request buffer looks
1198 * like this:
1199 *
1200 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1201 *
1202 * This code can only handle requests that consist of an xprt-header
1203 * and rpc-header.
1204 */
1205static struct cache_deferred_req *svc_defer(struct cache_req *req)
1206{
1207	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1208	struct svc_deferred_req *dr;
1209
1210	if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1211		return NULL; /* if more than a page, give up FIXME */
1212	if (rqstp->rq_deferred) {
1213		dr = rqstp->rq_deferred;
1214		rqstp->rq_deferred = NULL;
1215	} else {
1216		size_t skip;
1217		size_t size;
1218		/* FIXME maybe discard if size too large */
1219		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1220		dr = kmalloc(size, GFP_KERNEL);
1221		if (dr == NULL)
1222			return NULL;
1223
1224		dr->handle.owner = rqstp->rq_server;
1225		dr->prot = rqstp->rq_prot;
1226		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1227		dr->addrlen = rqstp->rq_addrlen;
1228		dr->daddr = rqstp->rq_daddr;
1229		dr->argslen = rqstp->rq_arg.len >> 2;
1230		dr->xprt_ctxt = rqstp->rq_xprt_ctxt;
1231		rqstp->rq_xprt_ctxt = NULL;
1232
1233		/* back up head to the start of the buffer and copy */
1234		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1235		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1236		       dr->argslen << 2);
1237	}
1238	trace_svc_defer(rqstp);
1239	svc_xprt_get(rqstp->rq_xprt);
1240	dr->xprt = rqstp->rq_xprt;
1241	set_bit(RQ_DROPME, &rqstp->rq_flags);
1242
1243	dr->handle.revisit = svc_revisit;
 
1244	return &dr->handle;
1245}
1246
1247/*
1248 * recv data from a deferred request into an active one
1249 */
1250static noinline int svc_deferred_recv(struct svc_rqst *rqstp)
1251{
1252	struct svc_deferred_req *dr = rqstp->rq_deferred;
1253
1254	trace_svc_defer_recv(dr);
1255
1256	/* setup iov_base past transport header */
1257	rqstp->rq_arg.head[0].iov_base = dr->args;
1258	/* The iov_len does not include the transport header bytes */
1259	rqstp->rq_arg.head[0].iov_len = dr->argslen << 2;
1260	rqstp->rq_arg.page_len = 0;
1261	/* The rq_arg.len includes the transport header bytes */
1262	rqstp->rq_arg.len     = dr->argslen << 2;
1263	rqstp->rq_prot        = dr->prot;
1264	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1265	rqstp->rq_addrlen     = dr->addrlen;
1266	/* Save off transport header len in case we get deferred again */
 
1267	rqstp->rq_daddr       = dr->daddr;
1268	rqstp->rq_respages    = rqstp->rq_pages;
1269	rqstp->rq_xprt_ctxt   = dr->xprt_ctxt;
1270	svc_xprt_received(rqstp->rq_xprt);
1271	return dr->argslen << 2;
1272}
1273
1274
1275static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1276{
1277	struct svc_deferred_req *dr = NULL;
1278
1279	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1280		return NULL;
1281	spin_lock(&xprt->xpt_lock);
1282	if (!list_empty(&xprt->xpt_deferred)) {
1283		dr = list_entry(xprt->xpt_deferred.next,
1284				struct svc_deferred_req,
1285				handle.recent);
1286		list_del_init(&dr->handle.recent);
 
1287	} else
1288		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1289	spin_unlock(&xprt->xpt_lock);
1290	return dr;
1291}
1292
1293/**
1294 * svc_find_xprt - find an RPC transport instance
1295 * @serv: pointer to svc_serv to search
1296 * @xcl_name: C string containing transport's class name
1297 * @net: owner net pointer
1298 * @af: Address family of transport's local address
1299 * @port: transport's IP port number
1300 *
1301 * Return the transport instance pointer for the endpoint accepting
1302 * connections/peer traffic from the specified transport class,
1303 * address family and port.
1304 *
1305 * Specifying 0 for the address family or port is effectively a
1306 * wild-card, and will result in matching the first transport in the
1307 * service's list that has a matching class name.
1308 */
1309struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1310			       struct net *net, const sa_family_t af,
1311			       const unsigned short port)
1312{
1313	struct svc_xprt *xprt;
1314	struct svc_xprt *found = NULL;
1315
1316	/* Sanity check the args */
1317	if (serv == NULL || xcl_name == NULL)
1318		return found;
1319
1320	spin_lock_bh(&serv->sv_lock);
1321	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1322		if (xprt->xpt_net != net)
1323			continue;
1324		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1325			continue;
1326		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1327			continue;
1328		if (port != 0 && port != svc_xprt_local_port(xprt))
1329			continue;
1330		found = xprt;
1331		svc_xprt_get(xprt);
1332		break;
1333	}
1334	spin_unlock_bh(&serv->sv_lock);
1335	return found;
1336}
1337EXPORT_SYMBOL_GPL(svc_find_xprt);
1338
1339static int svc_one_xprt_name(const struct svc_xprt *xprt,
1340			     char *pos, int remaining)
1341{
1342	int len;
1343
1344	len = snprintf(pos, remaining, "%s %u\n",
1345			xprt->xpt_class->xcl_name,
1346			svc_xprt_local_port(xprt));
1347	if (len >= remaining)
1348		return -ENAMETOOLONG;
1349	return len;
1350}
1351
1352/**
1353 * svc_xprt_names - format a buffer with a list of transport names
1354 * @serv: pointer to an RPC service
1355 * @buf: pointer to a buffer to be filled in
1356 * @buflen: length of buffer to be filled in
1357 *
1358 * Fills in @buf with a string containing a list of transport names,
1359 * each name terminated with '\n'.
1360 *
1361 * Returns positive length of the filled-in string on success; otherwise
1362 * a negative errno value is returned if an error occurs.
1363 */
1364int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1365{
1366	struct svc_xprt *xprt;
1367	int len, totlen;
1368	char *pos;
1369
1370	/* Sanity check args */
1371	if (!serv)
1372		return 0;
1373
1374	spin_lock_bh(&serv->sv_lock);
1375
1376	pos = buf;
1377	totlen = 0;
1378	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1379		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1380		if (len < 0) {
1381			*buf = '\0';
1382			totlen = len;
1383		}
1384		if (len <= 0)
1385			break;
1386
1387		pos += len;
1388		totlen += len;
1389	}
1390
1391	spin_unlock_bh(&serv->sv_lock);
1392	return totlen;
1393}
1394EXPORT_SYMBOL_GPL(svc_xprt_names);
1395
1396
1397/*----------------------------------------------------------------------------*/
1398
1399static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1400{
1401	unsigned int pidx = (unsigned int)*pos;
1402	struct svc_serv *serv = m->private;
1403
1404	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1405
1406	if (!pidx)
1407		return SEQ_START_TOKEN;
1408	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1409}
1410
1411static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1412{
1413	struct svc_pool *pool = p;
1414	struct svc_serv *serv = m->private;
1415
1416	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1417
1418	if (p == SEQ_START_TOKEN) {
1419		pool = &serv->sv_pools[0];
1420	} else {
1421		unsigned int pidx = (pool - &serv->sv_pools[0]);
1422		if (pidx < serv->sv_nrpools-1)
1423			pool = &serv->sv_pools[pidx+1];
1424		else
1425			pool = NULL;
1426	}
1427	++*pos;
1428	return pool;
1429}
1430
1431static void svc_pool_stats_stop(struct seq_file *m, void *p)
1432{
1433}
1434
1435static int svc_pool_stats_show(struct seq_file *m, void *p)
1436{
1437	struct svc_pool *pool = p;
1438
1439	if (p == SEQ_START_TOKEN) {
1440		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1441		return 0;
1442	}
1443
1444	seq_printf(m, "%u %lu %lu %lu %lu\n",
1445		pool->sp_id,
1446		(unsigned long)atomic_long_read(&pool->sp_stats.packets),
1447		pool->sp_stats.sockets_queued,
1448		(unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1449		(unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1450
1451	return 0;
1452}
1453
1454static const struct seq_operations svc_pool_stats_seq_ops = {
1455	.start	= svc_pool_stats_start,
1456	.next	= svc_pool_stats_next,
1457	.stop	= svc_pool_stats_stop,
1458	.show	= svc_pool_stats_show,
1459};
1460
1461int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1462{
1463	int err;
1464
1465	err = seq_open(file, &svc_pool_stats_seq_ops);
1466	if (!err)
1467		((struct seq_file *) file->private_data)->private = serv;
1468	return err;
1469}
1470EXPORT_SYMBOL(svc_pool_stats_open);
1471
1472/*----------------------------------------------------------------------------*/
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/net/sunrpc/svc_xprt.c
   4 *
   5 * Author: Tom Tucker <tom@opengridcomputing.com>
   6 */
   7
   8#include <linux/sched.h>
 
   9#include <linux/errno.h>
  10#include <linux/freezer.h>
  11#include <linux/kthread.h>
  12#include <linux/slab.h>
  13#include <net/sock.h>
  14#include <linux/sunrpc/addr.h>
  15#include <linux/sunrpc/stats.h>
  16#include <linux/sunrpc/svc_xprt.h>
  17#include <linux/sunrpc/svcsock.h>
  18#include <linux/sunrpc/xprt.h>
  19#include <linux/module.h>
  20#include <linux/netdevice.h>
  21#include <trace/events/sunrpc.h>
  22
  23#define RPCDBG_FACILITY	RPCDBG_SVCXPRT
  24
  25static unsigned int svc_rpc_per_connection_limit __read_mostly;
  26module_param(svc_rpc_per_connection_limit, uint, 0644);
  27
  28
  29static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
  30static int svc_deferred_recv(struct svc_rqst *rqstp);
  31static struct cache_deferred_req *svc_defer(struct cache_req *req);
  32static void svc_age_temp_xprts(struct timer_list *t);
  33static void svc_delete_xprt(struct svc_xprt *xprt);
  34
  35/* apparently the "standard" is that clients close
  36 * idle connections after 5 minutes, servers after
  37 * 6 minutes
  38 *   http://nfsv4bat.org/Documents/ConnectAThon/1996/nfstcp.pdf
  39 */
  40static int svc_conn_age_period = 6*60;
  41
  42/* List of registered transport classes */
  43static DEFINE_SPINLOCK(svc_xprt_class_lock);
  44static LIST_HEAD(svc_xprt_class_list);
  45
  46/* SMP locking strategy:
  47 *
  48 *	svc_pool->sp_lock protects most of the fields of that pool.
  49 *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
  50 *	when both need to be taken (rare), svc_serv->sv_lock is first.
  51 *	The "service mutex" protects svc_serv->sv_nrthread.
  52 *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
  53 *             and the ->sk_info_authunix cache.
  54 *
  55 *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
  56 *	enqueued multiply. During normal transport processing this bit
  57 *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
  58 *	Providers should not manipulate this bit directly.
  59 *
  60 *	Some flags can be set to certain values at any time
  61 *	providing that certain rules are followed:
  62 *
  63 *	XPT_CONN, XPT_DATA:
  64 *		- Can be set or cleared at any time.
  65 *		- After a set, svc_xprt_enqueue must be called to enqueue
  66 *		  the transport for processing.
  67 *		- After a clear, the transport must be read/accepted.
  68 *		  If this succeeds, it must be set again.
  69 *	XPT_CLOSE:
  70 *		- Can set at any time. It is never cleared.
  71 *      XPT_DEAD:
  72 *		- Can only be set while XPT_BUSY is held which ensures
  73 *		  that no other thread will be using the transport or will
  74 *		  try to set XPT_DEAD.
  75 */
  76int svc_reg_xprt_class(struct svc_xprt_class *xcl)
  77{
  78	struct svc_xprt_class *cl;
  79	int res = -EEXIST;
  80
  81	dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
  82
  83	INIT_LIST_HEAD(&xcl->xcl_list);
  84	spin_lock(&svc_xprt_class_lock);
  85	/* Make sure there isn't already a class with the same name */
  86	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
  87		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
  88			goto out;
  89	}
  90	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
  91	res = 0;
  92out:
  93	spin_unlock(&svc_xprt_class_lock);
  94	return res;
  95}
  96EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
  97
  98void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
  99{
 100	dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
 101	spin_lock(&svc_xprt_class_lock);
 102	list_del_init(&xcl->xcl_list);
 103	spin_unlock(&svc_xprt_class_lock);
 104}
 105EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
 106
 107/*
 108 * Format the transport list for printing
 
 
 
 
 
 
 
 
 
 109 */
 110int svc_print_xprts(char *buf, int maxlen)
 111{
 112	struct svc_xprt_class *xcl;
 113	char tmpstr[80];
 114	int len = 0;
 115	buf[0] = '\0';
 116
 117	spin_lock(&svc_xprt_class_lock);
 118	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
 119		int slen;
 120
 121		sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
 122		slen = strlen(tmpstr);
 123		if (len + slen > maxlen)
 124			break;
 125		len += slen;
 126		strcat(buf, tmpstr);
 127	}
 128	spin_unlock(&svc_xprt_class_lock);
 129
 130	return len;
 131}
 132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 133static void svc_xprt_free(struct kref *kref)
 134{
 135	struct svc_xprt *xprt =
 136		container_of(kref, struct svc_xprt, xpt_ref);
 137	struct module *owner = xprt->xpt_class->xcl_owner;
 138	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
 139		svcauth_unix_info_release(xprt);
 140	put_cred(xprt->xpt_cred);
 141	put_net(xprt->xpt_net);
 142	/* See comment on corresponding get in xs_setup_bc_tcp(): */
 143	if (xprt->xpt_bc_xprt)
 144		xprt_put(xprt->xpt_bc_xprt);
 145	if (xprt->xpt_bc_xps)
 146		xprt_switch_put(xprt->xpt_bc_xps);
 
 147	xprt->xpt_ops->xpo_free(xprt);
 148	module_put(owner);
 149}
 150
 151void svc_xprt_put(struct svc_xprt *xprt)
 152{
 153	kref_put(&xprt->xpt_ref, svc_xprt_free);
 154}
 155EXPORT_SYMBOL_GPL(svc_xprt_put);
 156
 157/*
 158 * Called by transport drivers to initialize the transport independent
 159 * portion of the transport instance.
 160 */
 161void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
 162		   struct svc_xprt *xprt, struct svc_serv *serv)
 163{
 164	memset(xprt, 0, sizeof(*xprt));
 165	xprt->xpt_class = xcl;
 166	xprt->xpt_ops = xcl->xcl_ops;
 167	kref_init(&xprt->xpt_ref);
 168	xprt->xpt_server = serv;
 169	INIT_LIST_HEAD(&xprt->xpt_list);
 170	INIT_LIST_HEAD(&xprt->xpt_ready);
 171	INIT_LIST_HEAD(&xprt->xpt_deferred);
 172	INIT_LIST_HEAD(&xprt->xpt_users);
 173	mutex_init(&xprt->xpt_mutex);
 174	spin_lock_init(&xprt->xpt_lock);
 175	set_bit(XPT_BUSY, &xprt->xpt_flags);
 176	xprt->xpt_net = get_net(net);
 177	strcpy(xprt->xpt_remotebuf, "uninitialized");
 178}
 179EXPORT_SYMBOL_GPL(svc_xprt_init);
 180
 181static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
 182					 struct svc_serv *serv,
 183					 struct net *net,
 184					 const int family,
 185					 const unsigned short port,
 186					 int flags)
 187{
 188	struct sockaddr_in sin = {
 189		.sin_family		= AF_INET,
 190		.sin_addr.s_addr	= htonl(INADDR_ANY),
 191		.sin_port		= htons(port),
 192	};
 193#if IS_ENABLED(CONFIG_IPV6)
 194	struct sockaddr_in6 sin6 = {
 195		.sin6_family		= AF_INET6,
 196		.sin6_addr		= IN6ADDR_ANY_INIT,
 197		.sin6_port		= htons(port),
 198	};
 199#endif
 
 200	struct sockaddr *sap;
 201	size_t len;
 202
 203	switch (family) {
 204	case PF_INET:
 205		sap = (struct sockaddr *)&sin;
 206		len = sizeof(sin);
 207		break;
 208#if IS_ENABLED(CONFIG_IPV6)
 209	case PF_INET6:
 210		sap = (struct sockaddr *)&sin6;
 211		len = sizeof(sin6);
 212		break;
 213#endif
 214	default:
 215		return ERR_PTR(-EAFNOSUPPORT);
 216	}
 217
 218	return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
 
 
 
 
 219}
 220
 221/*
 222 * svc_xprt_received conditionally queues the transport for processing
 223 * by another thread. The caller must hold the XPT_BUSY bit and must
 
 
 224 * not thereafter touch transport data.
 225 *
 226 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
 227 * insufficient) data.
 228 */
 229static void svc_xprt_received(struct svc_xprt *xprt)
 230{
 231	if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
 232		WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
 233		return;
 234	}
 235
 236	/* As soon as we clear busy, the xprt could be closed and
 237	 * 'put', so we need a reference to call svc_enqueue_xprt with:
 238	 */
 239	svc_xprt_get(xprt);
 240	smp_mb__before_atomic();
 241	clear_bit(XPT_BUSY, &xprt->xpt_flags);
 242	xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
 243	svc_xprt_put(xprt);
 244}
 
 245
 246void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
 247{
 248	clear_bit(XPT_TEMP, &new->xpt_flags);
 249	spin_lock_bh(&serv->sv_lock);
 250	list_add(&new->xpt_list, &serv->sv_permsocks);
 251	spin_unlock_bh(&serv->sv_lock);
 252	svc_xprt_received(new);
 253}
 254
 255static int _svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
 256			    struct net *net, const int family,
 257			    const unsigned short port, int flags,
 258			    const struct cred *cred)
 259{
 260	struct svc_xprt_class *xcl;
 261
 262	spin_lock(&svc_xprt_class_lock);
 263	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
 264		struct svc_xprt *newxprt;
 265		unsigned short newport;
 266
 267		if (strcmp(xprt_name, xcl->xcl_name))
 268			continue;
 269
 270		if (!try_module_get(xcl->xcl_owner))
 271			goto err;
 272
 273		spin_unlock(&svc_xprt_class_lock);
 274		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
 275		if (IS_ERR(newxprt)) {
 276			module_put(xcl->xcl_owner);
 277			return PTR_ERR(newxprt);
 278		}
 279		newxprt->xpt_cred = get_cred(cred);
 280		svc_add_new_perm_xprt(serv, newxprt);
 281		newport = svc_xprt_local_port(newxprt);
 282		return newport;
 283	}
 284 err:
 285	spin_unlock(&svc_xprt_class_lock);
 286	/* This errno is exposed to user space.  Provide a reasonable
 287	 * perror msg for a bad transport. */
 288	return -EPROTONOSUPPORT;
 289}
 290
 291int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 292		    struct net *net, const int family,
 293		    const unsigned short port, int flags,
 294		    const struct cred *cred)
 295{
 296	int err;
 297
 298	dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
 299	err = _svc_create_xprt(serv, xprt_name, net, family, port, flags, cred);
 300	if (err == -EPROTONOSUPPORT) {
 301		request_module("svc%s", xprt_name);
 302		err = _svc_create_xprt(serv, xprt_name, net, family, port, flags, cred);
 303	}
 304	if (err < 0)
 305		dprintk("svc: transport %s not found, err %d\n",
 306			xprt_name, -err);
 307	return err;
 308}
 309EXPORT_SYMBOL_GPL(svc_create_xprt);
 310
 311/*
 312 * Copy the local and remote xprt addresses to the rqstp structure
 313 */
 314void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
 315{
 316	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
 317	rqstp->rq_addrlen = xprt->xpt_remotelen;
 318
 319	/*
 320	 * Destination address in request is needed for binding the
 321	 * source address in RPC replies/callbacks later.
 322	 */
 323	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
 324	rqstp->rq_daddrlen = xprt->xpt_locallen;
 325}
 326EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
 327
 328/**
 329 * svc_print_addr - Format rq_addr field for printing
 330 * @rqstp: svc_rqst struct containing address to print
 331 * @buf: target buffer for formatted address
 332 * @len: length of target buffer
 333 *
 334 */
 335char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
 336{
 337	return __svc_print_addr(svc_addr(rqstp), buf, len);
 338}
 339EXPORT_SYMBOL_GPL(svc_print_addr);
 340
 341static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
 342{
 343	unsigned int limit = svc_rpc_per_connection_limit;
 344	int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
 345
 346	return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
 347}
 348
 349static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
 350{
 351	if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
 352		if (!svc_xprt_slots_in_range(xprt))
 353			return false;
 354		atomic_inc(&xprt->xpt_nr_rqsts);
 355		set_bit(RQ_DATA, &rqstp->rq_flags);
 356	}
 357	return true;
 358}
 359
 360static void svc_xprt_release_slot(struct svc_rqst *rqstp)
 361{
 362	struct svc_xprt	*xprt = rqstp->rq_xprt;
 363	if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
 364		atomic_dec(&xprt->xpt_nr_rqsts);
 365		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
 366		svc_xprt_enqueue(xprt);
 367	}
 368}
 369
 370static bool svc_xprt_ready(struct svc_xprt *xprt)
 371{
 372	unsigned long xpt_flags;
 373
 374	/*
 375	 * If another cpu has recently updated xpt_flags,
 376	 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to
 377	 * know about it; otherwise it's possible that both that cpu and
 378	 * this one could call svc_xprt_enqueue() without either
 379	 * svc_xprt_enqueue() recognizing that the conditions below
 380	 * are satisfied, and we could stall indefinitely:
 381	 */
 382	smp_rmb();
 383	xpt_flags = READ_ONCE(xprt->xpt_flags);
 384
 
 
 385	if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE)))
 386		return true;
 387	if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) {
 388		if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
 389		    svc_xprt_slots_in_range(xprt))
 390			return true;
 391		trace_svc_xprt_no_write_space(xprt);
 392		return false;
 393	}
 394	return false;
 395}
 396
 397void svc_xprt_do_enqueue(struct svc_xprt *xprt)
 
 
 
 
 
 398{
 399	struct svc_pool *pool;
 400	struct svc_rqst	*rqstp = NULL;
 401	int cpu;
 402
 403	if (!svc_xprt_ready(xprt))
 404		return;
 405
 406	/* Mark transport as busy. It will remain in this state until
 407	 * the provider calls svc_xprt_received. We update XPT_BUSY
 408	 * atomically because it also guards against trying to enqueue
 409	 * the transport twice.
 410	 */
 411	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
 412		return;
 413
 414	cpu = get_cpu();
 415	pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
 416
 417	atomic_long_inc(&pool->sp_stats.packets);
 418
 419	spin_lock_bh(&pool->sp_lock);
 420	list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
 421	pool->sp_stats.sockets_queued++;
 422	spin_unlock_bh(&pool->sp_lock);
 423
 424	/* find a thread for this xprt */
 425	rcu_read_lock();
 426	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
 427		if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags))
 428			continue;
 429		atomic_long_inc(&pool->sp_stats.threads_woken);
 430		rqstp->rq_qtime = ktime_get();
 431		wake_up_process(rqstp->rq_task);
 432		goto out_unlock;
 433	}
 434	set_bit(SP_CONGESTED, &pool->sp_flags);
 435	rqstp = NULL;
 436out_unlock:
 437	rcu_read_unlock();
 438	put_cpu();
 439	trace_svc_xprt_do_enqueue(xprt, rqstp);
 440}
 441EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue);
 442
 443/*
 444 * Queue up a transport with data pending. If there are idle nfsd
 445 * processes, wake 'em up.
 446 *
 447 */
 448void svc_xprt_enqueue(struct svc_xprt *xprt)
 449{
 450	if (test_bit(XPT_BUSY, &xprt->xpt_flags))
 451		return;
 452	xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
 453}
 454EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
 455
 456/*
 457 * Dequeue the first transport, if there is one.
 458 */
 459static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
 460{
 461	struct svc_xprt	*xprt = NULL;
 462
 463	if (list_empty(&pool->sp_sockets))
 464		goto out;
 465
 466	spin_lock_bh(&pool->sp_lock);
 467	if (likely(!list_empty(&pool->sp_sockets))) {
 468		xprt = list_first_entry(&pool->sp_sockets,
 469					struct svc_xprt, xpt_ready);
 470		list_del_init(&xprt->xpt_ready);
 471		svc_xprt_get(xprt);
 472	}
 473	spin_unlock_bh(&pool->sp_lock);
 474out:
 475	return xprt;
 476}
 477
 478/**
 479 * svc_reserve - change the space reserved for the reply to a request.
 480 * @rqstp:  The request in question
 481 * @space: new max space to reserve
 482 *
 483 * Each request reserves some space on the output queue of the transport
 484 * to make sure the reply fits.  This function reduces that reserved
 485 * space to be the amount of space used already, plus @space.
 486 *
 487 */
 488void svc_reserve(struct svc_rqst *rqstp, int space)
 489{
 490	struct svc_xprt *xprt = rqstp->rq_xprt;
 491
 492	space += rqstp->rq_res.head[0].iov_len;
 493
 494	if (xprt && space < rqstp->rq_reserved) {
 495		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
 496		rqstp->rq_reserved = space;
 497		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
 498		svc_xprt_enqueue(xprt);
 499	}
 500}
 501EXPORT_SYMBOL_GPL(svc_reserve);
 502
 503static void svc_xprt_release(struct svc_rqst *rqstp)
 504{
 505	struct svc_xprt	*xprt = rqstp->rq_xprt;
 506
 507	xprt->xpt_ops->xpo_release_rqst(rqstp);
 508
 509	kfree(rqstp->rq_deferred);
 510	rqstp->rq_deferred = NULL;
 511
 
 512	svc_free_res_pages(rqstp);
 513	rqstp->rq_res.page_len = 0;
 514	rqstp->rq_res.page_base = 0;
 515
 516	/* Reset response buffer and release
 517	 * the reservation.
 518	 * But first, check that enough space was reserved
 519	 * for the reply, otherwise we have a bug!
 520	 */
 521	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
 522		printk(KERN_ERR "RPC request reserved %d but used %d\n",
 523		       rqstp->rq_reserved,
 524		       rqstp->rq_res.len);
 525
 526	rqstp->rq_res.head[0].iov_len = 0;
 527	svc_reserve(rqstp, 0);
 528	svc_xprt_release_slot(rqstp);
 529	rqstp->rq_xprt = NULL;
 530	svc_xprt_put(xprt);
 531}
 532
 533/*
 534 * Some svc_serv's will have occasional work to do, even when a xprt is not
 535 * waiting to be serviced. This function is there to "kick" a task in one of
 536 * those services so that it can wake up and do that work. Note that we only
 537 * bother with pool 0 as we don't need to wake up more than one thread for
 538 * this purpose.
 539 */
 540void svc_wake_up(struct svc_serv *serv)
 541{
 542	struct svc_rqst	*rqstp;
 543	struct svc_pool *pool;
 544
 545	pool = &serv->sv_pools[0];
 546
 547	rcu_read_lock();
 548	list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
 549		/* skip any that aren't queued */
 550		if (test_bit(RQ_BUSY, &rqstp->rq_flags))
 551			continue;
 552		rcu_read_unlock();
 553		wake_up_process(rqstp->rq_task);
 554		trace_svc_wake_up(rqstp->rq_task->pid);
 555		return;
 556	}
 557	rcu_read_unlock();
 558
 559	/* No free entries available */
 560	set_bit(SP_TASK_PENDING, &pool->sp_flags);
 561	smp_wmb();
 562	trace_svc_wake_up(0);
 563}
 564EXPORT_SYMBOL_GPL(svc_wake_up);
 565
 566int svc_port_is_privileged(struct sockaddr *sin)
 567{
 568	switch (sin->sa_family) {
 569	case AF_INET:
 570		return ntohs(((struct sockaddr_in *)sin)->sin_port)
 571			< PROT_SOCK;
 572	case AF_INET6:
 573		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
 574			< PROT_SOCK;
 575	default:
 576		return 0;
 577	}
 578}
 579
 580/*
 581 * Make sure that we don't have too many active connections. If we have,
 582 * something must be dropped. It's not clear what will happen if we allow
 583 * "too many" connections, but when dealing with network-facing software,
 584 * we have to code defensively. Here we do that by imposing hard limits.
 585 *
 586 * There's no point in trying to do random drop here for DoS
 587 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
 588 * attacker can easily beat that.
 589 *
 590 * The only somewhat efficient mechanism would be if drop old
 591 * connections from the same IP first. But right now we don't even
 592 * record the client IP in svc_sock.
 593 *
 594 * single-threaded services that expect a lot of clients will probably
 595 * need to set sv_maxconn to override the default value which is based
 596 * on the number of threads
 597 */
 598static void svc_check_conn_limits(struct svc_serv *serv)
 599{
 600	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
 601				(serv->sv_nrthreads+3) * 20;
 602
 603	if (serv->sv_tmpcnt > limit) {
 604		struct svc_xprt *xprt = NULL;
 605		spin_lock_bh(&serv->sv_lock);
 606		if (!list_empty(&serv->sv_tempsocks)) {
 607			/* Try to help the admin */
 608			net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
 609					       serv->sv_name, serv->sv_maxconn ?
 610					       "max number of connections" :
 611					       "number of threads");
 612			/*
 613			 * Always select the oldest connection. It's not fair,
 614			 * but so is life
 615			 */
 616			xprt = list_entry(serv->sv_tempsocks.prev,
 617					  struct svc_xprt,
 618					  xpt_list);
 619			set_bit(XPT_CLOSE, &xprt->xpt_flags);
 620			svc_xprt_get(xprt);
 621		}
 622		spin_unlock_bh(&serv->sv_lock);
 623
 624		if (xprt) {
 625			svc_xprt_enqueue(xprt);
 626			svc_xprt_put(xprt);
 627		}
 628	}
 629}
 630
 631static int svc_alloc_arg(struct svc_rqst *rqstp)
 632{
 633	struct svc_serv *serv = rqstp->rq_server;
 634	struct xdr_buf *arg;
 635	int pages;
 636	int i;
 
 637
 638	/* now allocate needed pages.  If we get a failure, sleep briefly */
 639	pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
 640	if (pages > RPCSVC_MAXPAGES) {
 641		pr_warn_once("svc: warning: pages=%u > RPCSVC_MAXPAGES=%lu\n",
 642			     pages, RPCSVC_MAXPAGES);
 643		/* use as many pages as possible */
 644		pages = RPCSVC_MAXPAGES;
 645	}
 646	for (i = 0; i < pages ; i++)
 647		while (rqstp->rq_pages[i] == NULL) {
 648			struct page *p = alloc_page(GFP_KERNEL);
 649			if (!p) {
 650				set_current_state(TASK_INTERRUPTIBLE);
 651				if (signalled() || kthread_should_stop()) {
 652					set_current_state(TASK_RUNNING);
 653					return -EINTR;
 654				}
 655				schedule_timeout(msecs_to_jiffies(500));
 656			}
 657			rqstp->rq_pages[i] = p;
 658		}
 659	rqstp->rq_page_end = &rqstp->rq_pages[i];
 660	rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
 
 
 
 661
 662	/* Make arg->head point to first page and arg->pages point to rest */
 663	arg = &rqstp->rq_arg;
 664	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
 665	arg->head[0].iov_len = PAGE_SIZE;
 666	arg->pages = rqstp->rq_pages + 1;
 667	arg->page_base = 0;
 668	/* save at least one page for response */
 669	arg->page_len = (pages-2)*PAGE_SIZE;
 670	arg->len = (pages-1)*PAGE_SIZE;
 671	arg->tail[0].iov_len = 0;
 672	return 0;
 673}
 674
 675static bool
 676rqst_should_sleep(struct svc_rqst *rqstp)
 677{
 678	struct svc_pool		*pool = rqstp->rq_pool;
 679
 680	/* did someone call svc_wake_up? */
 681	if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
 682		return false;
 683
 684	/* was a socket queued? */
 685	if (!list_empty(&pool->sp_sockets))
 686		return false;
 687
 688	/* are we shutting down? */
 689	if (signalled() || kthread_should_stop())
 690		return false;
 691
 692	/* are we freezing? */
 693	if (freezing(current))
 694		return false;
 695
 696	return true;
 697}
 698
 699static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
 700{
 701	struct svc_pool		*pool = rqstp->rq_pool;
 702	long			time_left = 0;
 703
 704	/* rq_xprt should be clear on entry */
 705	WARN_ON_ONCE(rqstp->rq_xprt);
 706
 707	rqstp->rq_xprt = svc_xprt_dequeue(pool);
 708	if (rqstp->rq_xprt)
 709		goto out_found;
 710
 711	/*
 712	 * We have to be able to interrupt this wait
 713	 * to bring down the daemons ...
 714	 */
 715	set_current_state(TASK_INTERRUPTIBLE);
 716	smp_mb__before_atomic();
 717	clear_bit(SP_CONGESTED, &pool->sp_flags);
 718	clear_bit(RQ_BUSY, &rqstp->rq_flags);
 719	smp_mb__after_atomic();
 720
 721	if (likely(rqst_should_sleep(rqstp)))
 722		time_left = schedule_timeout(timeout);
 723	else
 724		__set_current_state(TASK_RUNNING);
 725
 726	try_to_freeze();
 727
 728	set_bit(RQ_BUSY, &rqstp->rq_flags);
 729	smp_mb__after_atomic();
 730	rqstp->rq_xprt = svc_xprt_dequeue(pool);
 731	if (rqstp->rq_xprt)
 732		goto out_found;
 733
 734	if (!time_left)
 735		atomic_long_inc(&pool->sp_stats.threads_timedout);
 736
 737	if (signalled() || kthread_should_stop())
 738		return ERR_PTR(-EINTR);
 739	return ERR_PTR(-EAGAIN);
 740out_found:
 741	/* Normally we will wait up to 5 seconds for any required
 742	 * cache information to be provided.
 743	 */
 744	if (!test_bit(SP_CONGESTED, &pool->sp_flags))
 745		rqstp->rq_chandle.thread_wait = 5*HZ;
 746	else
 747		rqstp->rq_chandle.thread_wait = 1*HZ;
 748	trace_svc_xprt_dequeue(rqstp);
 749	return rqstp->rq_xprt;
 750}
 751
 752static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
 753{
 754	spin_lock_bh(&serv->sv_lock);
 755	set_bit(XPT_TEMP, &newxpt->xpt_flags);
 756	list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
 757	serv->sv_tmpcnt++;
 758	if (serv->sv_temptimer.function == NULL) {
 759		/* setup timer to age temp transports */
 760		serv->sv_temptimer.function = svc_age_temp_xprts;
 761		mod_timer(&serv->sv_temptimer,
 762			  jiffies + svc_conn_age_period * HZ);
 763	}
 764	spin_unlock_bh(&serv->sv_lock);
 765	svc_xprt_received(newxpt);
 766}
 767
 768static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
 769{
 770	struct svc_serv *serv = rqstp->rq_server;
 771	int len = 0;
 772
 773	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
 774		dprintk("svc_recv: found XPT_CLOSE\n");
 775		if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
 776			xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
 777		svc_delete_xprt(xprt);
 778		/* Leave XPT_BUSY set on the dead xprt: */
 779		goto out;
 780	}
 781	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
 782		struct svc_xprt *newxpt;
 783		/*
 784		 * We know this module_get will succeed because the
 785		 * listener holds a reference too
 786		 */
 787		__module_get(xprt->xpt_class->xcl_owner);
 788		svc_check_conn_limits(xprt->xpt_server);
 789		newxpt = xprt->xpt_ops->xpo_accept(xprt);
 790		if (newxpt) {
 791			newxpt->xpt_cred = get_cred(xprt->xpt_cred);
 792			svc_add_new_temp_xprt(serv, newxpt);
 793		} else
 
 794			module_put(xprt->xpt_class->xcl_owner);
 
 
 795	} else if (svc_xprt_reserve_slot(rqstp, xprt)) {
 796		/* XPT_DATA|XPT_DEFERRED case: */
 797		dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
 798			rqstp, rqstp->rq_pool->sp_id, xprt,
 799			kref_read(&xprt->xpt_ref));
 800		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
 801		if (rqstp->rq_deferred)
 802			len = svc_deferred_recv(rqstp);
 803		else
 804			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
 805		rqstp->rq_stime = ktime_get();
 806		rqstp->rq_reserved = serv->sv_max_mesg;
 807		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
 808	}
 809	/* clear XPT_BUSY: */
 810	svc_xprt_received(xprt);
 811out:
 812	trace_svc_handle_xprt(xprt, len);
 813	return len;
 814}
 815
 816/*
 817 * Receive the next request on any transport.  This code is carefully
 818 * organised not to touch any cachelines in the shared svc_serv
 819 * structure, only cachelines in the local svc_pool.
 820 */
 821int svc_recv(struct svc_rqst *rqstp, long timeout)
 822{
 823	struct svc_xprt		*xprt = NULL;
 824	struct svc_serv		*serv = rqstp->rq_server;
 825	int			len, err;
 826
 827	dprintk("svc: server %p waiting for data (to = %ld)\n",
 828		rqstp, timeout);
 829
 830	if (rqstp->rq_xprt)
 831		printk(KERN_ERR
 832			"svc_recv: service %p, transport not NULL!\n",
 833			 rqstp);
 834
 835	err = svc_alloc_arg(rqstp);
 836	if (err)
 837		goto out;
 838
 839	try_to_freeze();
 840	cond_resched();
 841	err = -EINTR;
 842	if (signalled() || kthread_should_stop())
 843		goto out;
 844
 845	xprt = svc_get_next_xprt(rqstp, timeout);
 846	if (IS_ERR(xprt)) {
 847		err = PTR_ERR(xprt);
 848		goto out;
 849	}
 850
 851	len = svc_handle_xprt(rqstp, xprt);
 852
 853	/* No data, incomplete (TCP) read, or accept() */
 854	err = -EAGAIN;
 855	if (len <= 0)
 856		goto out_release;
 
 857
 858	clear_bit(XPT_OLD, &xprt->xpt_flags);
 859
 860	xprt->xpt_ops->xpo_secure_port(rqstp);
 861	rqstp->rq_chandle.defer = svc_defer;
 862	rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
 863
 864	if (serv->sv_stats)
 865		serv->sv_stats->netcnt++;
 866	trace_svc_recv(rqstp, len);
 867	return len;
 868out_release:
 869	rqstp->rq_res.len = 0;
 870	svc_xprt_release(rqstp);
 871out:
 872	return err;
 873}
 874EXPORT_SYMBOL_GPL(svc_recv);
 875
 876/*
 877 * Drop request
 878 */
 879void svc_drop(struct svc_rqst *rqstp)
 880{
 881	trace_svc_drop(rqstp);
 882	dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
 883	svc_xprt_release(rqstp);
 884}
 885EXPORT_SYMBOL_GPL(svc_drop);
 886
 887/*
 888 * Return reply to client.
 889 */
 890int svc_send(struct svc_rqst *rqstp)
 891{
 892	struct svc_xprt	*xprt;
 893	int		len = -EFAULT;
 894	struct xdr_buf	*xb;
 895
 896	xprt = rqstp->rq_xprt;
 897	if (!xprt)
 898		goto out;
 899
 900	/* release the receive skb before sending the reply */
 901	xprt->xpt_ops->xpo_release_rqst(rqstp);
 902
 903	/* calculate over-all length */
 904	xb = &rqstp->rq_res;
 905	xb->len = xb->head[0].iov_len +
 906		xb->page_len +
 907		xb->tail[0].iov_len;
 
 
 
 
 908
 909	/* Grab mutex to serialize outgoing data. */
 910	mutex_lock(&xprt->xpt_mutex);
 911	trace_svc_stats_latency(rqstp);
 912	if (test_bit(XPT_DEAD, &xprt->xpt_flags)
 913			|| test_bit(XPT_CLOSE, &xprt->xpt_flags))
 914		len = -ENOTCONN;
 915	else
 916		len = xprt->xpt_ops->xpo_sendto(rqstp);
 917	mutex_unlock(&xprt->xpt_mutex);
 918	trace_svc_send(rqstp, len);
 919	svc_xprt_release(rqstp);
 920
 921	if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
 922		len = 0;
 923out:
 924	return len;
 925}
 926
 927/*
 928 * Timer function to close old temporary transports, using
 929 * a mark-and-sweep algorithm.
 930 */
 931static void svc_age_temp_xprts(struct timer_list *t)
 932{
 933	struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
 934	struct svc_xprt *xprt;
 935	struct list_head *le, *next;
 936
 937	dprintk("svc_age_temp_xprts\n");
 938
 939	if (!spin_trylock_bh(&serv->sv_lock)) {
 940		/* busy, try again 1 sec later */
 941		dprintk("svc_age_temp_xprts: busy\n");
 942		mod_timer(&serv->sv_temptimer, jiffies + HZ);
 943		return;
 944	}
 945
 946	list_for_each_safe(le, next, &serv->sv_tempsocks) {
 947		xprt = list_entry(le, struct svc_xprt, xpt_list);
 948
 949		/* First time through, just mark it OLD. Second time
 950		 * through, close it. */
 951		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
 952			continue;
 953		if (kref_read(&xprt->xpt_ref) > 1 ||
 954		    test_bit(XPT_BUSY, &xprt->xpt_flags))
 955			continue;
 956		list_del_init(le);
 957		set_bit(XPT_CLOSE, &xprt->xpt_flags);
 958		dprintk("queuing xprt %p for closing\n", xprt);
 959
 960		/* a thread will dequeue and close it soon */
 961		svc_xprt_enqueue(xprt);
 962	}
 963	spin_unlock_bh(&serv->sv_lock);
 964
 965	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
 966}
 967
 968/* Close temporary transports whose xpt_local matches server_addr immediately
 969 * instead of waiting for them to be picked up by the timer.
 970 *
 971 * This is meant to be called from a notifier_block that runs when an ip
 972 * address is deleted.
 973 */
 974void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
 975{
 976	struct svc_xprt *xprt;
 977	struct list_head *le, *next;
 978	LIST_HEAD(to_be_closed);
 979
 980	spin_lock_bh(&serv->sv_lock);
 981	list_for_each_safe(le, next, &serv->sv_tempsocks) {
 982		xprt = list_entry(le, struct svc_xprt, xpt_list);
 983		if (rpc_cmp_addr(server_addr, (struct sockaddr *)
 984				&xprt->xpt_local)) {
 985			dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
 986			list_move(le, &to_be_closed);
 987		}
 988	}
 989	spin_unlock_bh(&serv->sv_lock);
 990
 991	while (!list_empty(&to_be_closed)) {
 992		le = to_be_closed.next;
 993		list_del_init(le);
 994		xprt = list_entry(le, struct svc_xprt, xpt_list);
 995		set_bit(XPT_CLOSE, &xprt->xpt_flags);
 996		set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
 997		dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
 998				xprt);
 999		svc_xprt_enqueue(xprt);
1000	}
1001}
1002EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
1003
1004static void call_xpt_users(struct svc_xprt *xprt)
1005{
1006	struct svc_xpt_user *u;
1007
1008	spin_lock(&xprt->xpt_lock);
1009	while (!list_empty(&xprt->xpt_users)) {
1010		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1011		list_del_init(&u->list);
1012		u->callback(u);
1013	}
1014	spin_unlock(&xprt->xpt_lock);
1015}
1016
1017/*
1018 * Remove a dead transport
1019 */
1020static void svc_delete_xprt(struct svc_xprt *xprt)
1021{
1022	struct svc_serv	*serv = xprt->xpt_server;
1023	struct svc_deferred_req *dr;
1024
1025	/* Only do this once */
1026	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1027		BUG();
1028
1029	dprintk("svc: svc_delete_xprt(%p)\n", xprt);
1030	xprt->xpt_ops->xpo_detach(xprt);
 
 
1031
1032	spin_lock_bh(&serv->sv_lock);
1033	list_del_init(&xprt->xpt_list);
1034	WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1035	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1036		serv->sv_tmpcnt--;
1037	spin_unlock_bh(&serv->sv_lock);
1038
1039	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1040		kfree(dr);
1041
1042	call_xpt_users(xprt);
1043	svc_xprt_put(xprt);
1044}
1045
1046void svc_close_xprt(struct svc_xprt *xprt)
 
 
 
 
 
1047{
 
1048	set_bit(XPT_CLOSE, &xprt->xpt_flags);
1049	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1050		/* someone else will have to effect the close */
1051		return;
1052	/*
1053	 * We expect svc_close_xprt() to work even when no threads are
1054	 * running (e.g., while configuring the server before starting
1055	 * any threads), so if the transport isn't busy, we delete
1056	 * it ourself:
1057	 */
1058	svc_delete_xprt(xprt);
1059}
1060EXPORT_SYMBOL_GPL(svc_close_xprt);
1061
1062static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1063{
1064	struct svc_xprt *xprt;
1065	int ret = 0;
1066
1067	spin_lock(&serv->sv_lock);
1068	list_for_each_entry(xprt, xprt_list, xpt_list) {
1069		if (xprt->xpt_net != net)
1070			continue;
1071		ret++;
1072		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1073		svc_xprt_enqueue(xprt);
1074	}
1075	spin_unlock(&serv->sv_lock);
1076	return ret;
1077}
1078
1079static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1080{
1081	struct svc_pool *pool;
1082	struct svc_xprt *xprt;
1083	struct svc_xprt *tmp;
1084	int i;
1085
1086	for (i = 0; i < serv->sv_nrpools; i++) {
1087		pool = &serv->sv_pools[i];
1088
1089		spin_lock_bh(&pool->sp_lock);
1090		list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1091			if (xprt->xpt_net != net)
1092				continue;
1093			list_del_init(&xprt->xpt_ready);
1094			spin_unlock_bh(&pool->sp_lock);
1095			return xprt;
1096		}
1097		spin_unlock_bh(&pool->sp_lock);
1098	}
1099	return NULL;
1100}
1101
1102static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1103{
1104	struct svc_xprt *xprt;
1105
1106	while ((xprt = svc_dequeue_net(serv, net))) {
1107		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1108		svc_delete_xprt(xprt);
1109	}
1110}
1111
1112/*
 
 
 
 
1113 * Server threads may still be running (especially in the case where the
1114 * service is still running in other network namespaces).
1115 *
1116 * So we shut down sockets the same way we would on a running server, by
1117 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1118 * the close.  In the case there are no such other threads,
1119 * threads running, svc_clean_up_xprts() does a simple version of a
1120 * server's main event loop, and in the case where there are other
1121 * threads, we may need to wait a little while and then check again to
1122 * see if they're done.
1123 */
1124void svc_close_net(struct svc_serv *serv, struct net *net)
1125{
1126	int delay = 0;
1127
1128	while (svc_close_list(serv, &serv->sv_permsocks, net) +
1129	       svc_close_list(serv, &serv->sv_tempsocks, net)) {
1130
1131		svc_clean_up_xprts(serv, net);
1132		msleep(delay++);
1133	}
1134}
 
1135
1136/*
1137 * Handle defer and revisit of requests
1138 */
1139
1140static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1141{
1142	struct svc_deferred_req *dr =
1143		container_of(dreq, struct svc_deferred_req, handle);
1144	struct svc_xprt *xprt = dr->xprt;
1145
1146	spin_lock(&xprt->xpt_lock);
1147	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1148	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1149		spin_unlock(&xprt->xpt_lock);
1150		dprintk("revisit canceled\n");
1151		svc_xprt_put(xprt);
1152		trace_svc_drop_deferred(dr);
1153		kfree(dr);
1154		return;
1155	}
1156	dprintk("revisit queued\n");
1157	dr->xprt = NULL;
1158	list_add(&dr->handle.recent, &xprt->xpt_deferred);
1159	spin_unlock(&xprt->xpt_lock);
 
1160	svc_xprt_enqueue(xprt);
1161	svc_xprt_put(xprt);
1162}
1163
1164/*
1165 * Save the request off for later processing. The request buffer looks
1166 * like this:
1167 *
1168 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1169 *
1170 * This code can only handle requests that consist of an xprt-header
1171 * and rpc-header.
1172 */
1173static struct cache_deferred_req *svc_defer(struct cache_req *req)
1174{
1175	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1176	struct svc_deferred_req *dr;
1177
1178	if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1179		return NULL; /* if more than a page, give up FIXME */
1180	if (rqstp->rq_deferred) {
1181		dr = rqstp->rq_deferred;
1182		rqstp->rq_deferred = NULL;
1183	} else {
1184		size_t skip;
1185		size_t size;
1186		/* FIXME maybe discard if size too large */
1187		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1188		dr = kmalloc(size, GFP_KERNEL);
1189		if (dr == NULL)
1190			return NULL;
1191
1192		dr->handle.owner = rqstp->rq_server;
1193		dr->prot = rqstp->rq_prot;
1194		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1195		dr->addrlen = rqstp->rq_addrlen;
1196		dr->daddr = rqstp->rq_daddr;
1197		dr->argslen = rqstp->rq_arg.len >> 2;
1198		dr->xprt_hlen = rqstp->rq_xprt_hlen;
 
1199
1200		/* back up head to the start of the buffer and copy */
1201		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1202		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1203		       dr->argslen << 2);
1204	}
 
1205	svc_xprt_get(rqstp->rq_xprt);
1206	dr->xprt = rqstp->rq_xprt;
1207	set_bit(RQ_DROPME, &rqstp->rq_flags);
1208
1209	dr->handle.revisit = svc_revisit;
1210	trace_svc_defer(rqstp);
1211	return &dr->handle;
1212}
1213
1214/*
1215 * recv data from a deferred request into an active one
1216 */
1217static int svc_deferred_recv(struct svc_rqst *rqstp)
1218{
1219	struct svc_deferred_req *dr = rqstp->rq_deferred;
1220
 
 
1221	/* setup iov_base past transport header */
1222	rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1223	/* The iov_len does not include the transport header bytes */
1224	rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1225	rqstp->rq_arg.page_len = 0;
1226	/* The rq_arg.len includes the transport header bytes */
1227	rqstp->rq_arg.len     = dr->argslen<<2;
1228	rqstp->rq_prot        = dr->prot;
1229	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1230	rqstp->rq_addrlen     = dr->addrlen;
1231	/* Save off transport header len in case we get deferred again */
1232	rqstp->rq_xprt_hlen   = dr->xprt_hlen;
1233	rqstp->rq_daddr       = dr->daddr;
1234	rqstp->rq_respages    = rqstp->rq_pages;
1235	return (dr->argslen<<2) - dr->xprt_hlen;
 
 
1236}
1237
1238
1239static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1240{
1241	struct svc_deferred_req *dr = NULL;
1242
1243	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1244		return NULL;
1245	spin_lock(&xprt->xpt_lock);
1246	if (!list_empty(&xprt->xpt_deferred)) {
1247		dr = list_entry(xprt->xpt_deferred.next,
1248				struct svc_deferred_req,
1249				handle.recent);
1250		list_del_init(&dr->handle.recent);
1251		trace_svc_revisit_deferred(dr);
1252	} else
1253		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1254	spin_unlock(&xprt->xpt_lock);
1255	return dr;
1256}
1257
1258/**
1259 * svc_find_xprt - find an RPC transport instance
1260 * @serv: pointer to svc_serv to search
1261 * @xcl_name: C string containing transport's class name
1262 * @net: owner net pointer
1263 * @af: Address family of transport's local address
1264 * @port: transport's IP port number
1265 *
1266 * Return the transport instance pointer for the endpoint accepting
1267 * connections/peer traffic from the specified transport class,
1268 * address family and port.
1269 *
1270 * Specifying 0 for the address family or port is effectively a
1271 * wild-card, and will result in matching the first transport in the
1272 * service's list that has a matching class name.
1273 */
1274struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1275			       struct net *net, const sa_family_t af,
1276			       const unsigned short port)
1277{
1278	struct svc_xprt *xprt;
1279	struct svc_xprt *found = NULL;
1280
1281	/* Sanity check the args */
1282	if (serv == NULL || xcl_name == NULL)
1283		return found;
1284
1285	spin_lock_bh(&serv->sv_lock);
1286	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1287		if (xprt->xpt_net != net)
1288			continue;
1289		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1290			continue;
1291		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1292			continue;
1293		if (port != 0 && port != svc_xprt_local_port(xprt))
1294			continue;
1295		found = xprt;
1296		svc_xprt_get(xprt);
1297		break;
1298	}
1299	spin_unlock_bh(&serv->sv_lock);
1300	return found;
1301}
1302EXPORT_SYMBOL_GPL(svc_find_xprt);
1303
1304static int svc_one_xprt_name(const struct svc_xprt *xprt,
1305			     char *pos, int remaining)
1306{
1307	int len;
1308
1309	len = snprintf(pos, remaining, "%s %u\n",
1310			xprt->xpt_class->xcl_name,
1311			svc_xprt_local_port(xprt));
1312	if (len >= remaining)
1313		return -ENAMETOOLONG;
1314	return len;
1315}
1316
1317/**
1318 * svc_xprt_names - format a buffer with a list of transport names
1319 * @serv: pointer to an RPC service
1320 * @buf: pointer to a buffer to be filled in
1321 * @buflen: length of buffer to be filled in
1322 *
1323 * Fills in @buf with a string containing a list of transport names,
1324 * each name terminated with '\n'.
1325 *
1326 * Returns positive length of the filled-in string on success; otherwise
1327 * a negative errno value is returned if an error occurs.
1328 */
1329int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1330{
1331	struct svc_xprt *xprt;
1332	int len, totlen;
1333	char *pos;
1334
1335	/* Sanity check args */
1336	if (!serv)
1337		return 0;
1338
1339	spin_lock_bh(&serv->sv_lock);
1340
1341	pos = buf;
1342	totlen = 0;
1343	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1344		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1345		if (len < 0) {
1346			*buf = '\0';
1347			totlen = len;
1348		}
1349		if (len <= 0)
1350			break;
1351
1352		pos += len;
1353		totlen += len;
1354	}
1355
1356	spin_unlock_bh(&serv->sv_lock);
1357	return totlen;
1358}
1359EXPORT_SYMBOL_GPL(svc_xprt_names);
1360
1361
1362/*----------------------------------------------------------------------------*/
1363
1364static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1365{
1366	unsigned int pidx = (unsigned int)*pos;
1367	struct svc_serv *serv = m->private;
1368
1369	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1370
1371	if (!pidx)
1372		return SEQ_START_TOKEN;
1373	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1374}
1375
1376static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1377{
1378	struct svc_pool *pool = p;
1379	struct svc_serv *serv = m->private;
1380
1381	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1382
1383	if (p == SEQ_START_TOKEN) {
1384		pool = &serv->sv_pools[0];
1385	} else {
1386		unsigned int pidx = (pool - &serv->sv_pools[0]);
1387		if (pidx < serv->sv_nrpools-1)
1388			pool = &serv->sv_pools[pidx+1];
1389		else
1390			pool = NULL;
1391	}
1392	++*pos;
1393	return pool;
1394}
1395
1396static void svc_pool_stats_stop(struct seq_file *m, void *p)
1397{
1398}
1399
1400static int svc_pool_stats_show(struct seq_file *m, void *p)
1401{
1402	struct svc_pool *pool = p;
1403
1404	if (p == SEQ_START_TOKEN) {
1405		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1406		return 0;
1407	}
1408
1409	seq_printf(m, "%u %lu %lu %lu %lu\n",
1410		pool->sp_id,
1411		(unsigned long)atomic_long_read(&pool->sp_stats.packets),
1412		pool->sp_stats.sockets_queued,
1413		(unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1414		(unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1415
1416	return 0;
1417}
1418
1419static const struct seq_operations svc_pool_stats_seq_ops = {
1420	.start	= svc_pool_stats_start,
1421	.next	= svc_pool_stats_next,
1422	.stop	= svc_pool_stats_stop,
1423	.show	= svc_pool_stats_show,
1424};
1425
1426int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1427{
1428	int err;
1429
1430	err = seq_open(file, &svc_pool_stats_seq_ops);
1431	if (!err)
1432		((struct seq_file *) file->private_data)->private = serv;
1433	return err;
1434}
1435EXPORT_SYMBOL(svc_pool_stats_open);
1436
1437/*----------------------------------------------------------------------------*/