Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SuperH MSIOF SPI Controller Interface
   4 *
   5 * Copyright (c) 2009 Magnus Damm
   6 * Copyright (C) 2014 Renesas Electronics Corporation
   7 * Copyright (C) 2014-2017 Glider bvba
   8 */
   9
  10#include <linux/bitmap.h>
  11#include <linux/clk.h>
  12#include <linux/completion.h>
  13#include <linux/delay.h>
  14#include <linux/dma-mapping.h>
  15#include <linux/dmaengine.h>
  16#include <linux/err.h>
 
 
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/iopoll.h>
  20#include <linux/kernel.h>
  21#include <linux/module.h>
  22#include <linux/of.h>
  23#include <linux/of_device.h>
  24#include <linux/platform_device.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/sh_dma.h>
  27
  28#include <linux/spi/sh_msiof.h>
  29#include <linux/spi/spi.h>
  30
  31#include <asm/unaligned.h>
  32
  33struct sh_msiof_chipdata {
  34	u32 bits_per_word_mask;
  35	u16 tx_fifo_size;
  36	u16 rx_fifo_size;
  37	u16 ctlr_flags;
  38	u16 min_div_pow;
  39};
  40
  41struct sh_msiof_spi_priv {
  42	struct spi_controller *ctlr;
  43	void __iomem *mapbase;
  44	struct clk *clk;
  45	struct platform_device *pdev;
  46	struct sh_msiof_spi_info *info;
  47	struct completion done;
  48	struct completion done_txdma;
  49	unsigned int tx_fifo_size;
  50	unsigned int rx_fifo_size;
  51	unsigned int min_div_pow;
  52	void *tx_dma_page;
  53	void *rx_dma_page;
  54	dma_addr_t tx_dma_addr;
  55	dma_addr_t rx_dma_addr;
 
  56	bool native_cs_inited;
  57	bool native_cs_high;
  58	bool slave_aborted;
  59};
  60
  61#define MAX_SS	3	/* Maximum number of native chip selects */
  62
  63#define SITMDR1	0x00	/* Transmit Mode Register 1 */
  64#define SITMDR2	0x04	/* Transmit Mode Register 2 */
  65#define SITMDR3	0x08	/* Transmit Mode Register 3 */
  66#define SIRMDR1	0x10	/* Receive Mode Register 1 */
  67#define SIRMDR2	0x14	/* Receive Mode Register 2 */
  68#define SIRMDR3	0x18	/* Receive Mode Register 3 */
  69#define SITSCR	0x20	/* Transmit Clock Select Register */
  70#define SIRSCR	0x22	/* Receive Clock Select Register (SH, A1, APE6) */
  71#define SICTR	0x28	/* Control Register */
  72#define SIFCTR	0x30	/* FIFO Control Register */
  73#define SISTR	0x40	/* Status Register */
  74#define SIIER	0x44	/* Interrupt Enable Register */
  75#define SITDR1	0x48	/* Transmit Control Data Register 1 (SH, A1) */
  76#define SITDR2	0x4c	/* Transmit Control Data Register 2 (SH, A1) */
  77#define SITFDR	0x50	/* Transmit FIFO Data Register */
  78#define SIRDR1	0x58	/* Receive Control Data Register 1 (SH, A1) */
  79#define SIRDR2	0x5c	/* Receive Control Data Register 2 (SH, A1) */
  80#define SIRFDR	0x60	/* Receive FIFO Data Register */
  81
  82/* SITMDR1 and SIRMDR1 */
  83#define SIMDR1_TRMD		BIT(31)		/* Transfer Mode (1 = Master mode) */
  84#define SIMDR1_SYNCMD_MASK	GENMASK(29, 28)	/* SYNC Mode */
  85#define SIMDR1_SYNCMD_SPI	(2 << 28)	/*   Level mode/SPI */
  86#define SIMDR1_SYNCMD_LR	(3 << 28)	/*   L/R mode */
  87#define SIMDR1_SYNCAC_SHIFT	25		/* Sync Polarity (1 = Active-low) */
  88#define SIMDR1_BITLSB_SHIFT	24		/* MSB/LSB First (1 = LSB first) */
  89#define SIMDR1_DTDL_SHIFT	20		/* Data Pin Bit Delay for MSIOF_SYNC */
  90#define SIMDR1_SYNCDL_SHIFT	16		/* Frame Sync Signal Timing Delay */
  91#define SIMDR1_FLD_MASK		GENMASK(3, 2)	/* Frame Sync Signal Interval (0-3) */
  92#define SIMDR1_FLD_SHIFT	2
  93#define SIMDR1_XXSTP		BIT(0)		/* Transmission/Reception Stop on FIFO */
  94/* SITMDR1 */
  95#define SITMDR1_PCON		BIT(30)		/* Transfer Signal Connection */
  96#define SITMDR1_SYNCCH_MASK	GENMASK(27, 26)	/* Sync Signal Channel Select */
  97#define SITMDR1_SYNCCH_SHIFT	26		/* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */
  98
  99/* SITMDR2 and SIRMDR2 */
 100#define SIMDR2_BITLEN1(i)	(((i) - 1) << 24) /* Data Size (8-32 bits) */
 101#define SIMDR2_WDLEN1(i)	(((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
 102#define SIMDR2_GRPMASK1		BIT(0)		/* Group Output Mask 1 (SH, A1) */
 103
 104/* SITSCR and SIRSCR */
 105#define SISCR_BRPS_MASK		GENMASK(12, 8)	/* Prescaler Setting (1-32) */
 106#define SISCR_BRPS(i)		(((i) - 1) << 8)
 107#define SISCR_BRDV_MASK		GENMASK(2, 0)	/* Baud Rate Generator's Division Ratio */
 108#define SISCR_BRDV_DIV_2	0
 109#define SISCR_BRDV_DIV_4	1
 110#define SISCR_BRDV_DIV_8	2
 111#define SISCR_BRDV_DIV_16	3
 112#define SISCR_BRDV_DIV_32	4
 113#define SISCR_BRDV_DIV_1	7
 114
 115/* SICTR */
 116#define SICTR_TSCKIZ_MASK	GENMASK(31, 30)	/* Transmit Clock I/O Polarity Select */
 117#define SICTR_TSCKIZ_SCK	BIT(31)		/*   Disable SCK when TX disabled */
 118#define SICTR_TSCKIZ_POL_SHIFT	30		/*   Transmit Clock Polarity */
 119#define SICTR_RSCKIZ_MASK	GENMASK(29, 28) /* Receive Clock Polarity Select */
 120#define SICTR_RSCKIZ_SCK	BIT(29)		/*   Must match CTR_TSCKIZ_SCK */
 121#define SICTR_RSCKIZ_POL_SHIFT	28		/*   Receive Clock Polarity */
 122#define SICTR_TEDG_SHIFT	27		/* Transmit Timing (1 = falling edge) */
 123#define SICTR_REDG_SHIFT	26		/* Receive Timing (1 = falling edge) */
 124#define SICTR_TXDIZ_MASK	GENMASK(23, 22)	/* Pin Output When TX is Disabled */
 125#define SICTR_TXDIZ_LOW		(0 << 22)	/*   0 */
 126#define SICTR_TXDIZ_HIGH	(1 << 22)	/*   1 */
 127#define SICTR_TXDIZ_HIZ		(2 << 22)	/*   High-impedance */
 128#define SICTR_TSCKE		BIT(15)		/* Transmit Serial Clock Output Enable */
 129#define SICTR_TFSE		BIT(14)		/* Transmit Frame Sync Signal Output Enable */
 130#define SICTR_TXE		BIT(9)		/* Transmit Enable */
 131#define SICTR_RXE		BIT(8)		/* Receive Enable */
 132#define SICTR_TXRST		BIT(1)		/* Transmit Reset */
 133#define SICTR_RXRST		BIT(0)		/* Receive Reset */
 134
 135/* SIFCTR */
 136#define SIFCTR_TFWM_MASK	GENMASK(31, 29)	/* Transmit FIFO Watermark */
 137#define SIFCTR_TFWM_64		(0 << 29)	/*  Transfer Request when 64 empty stages */
 138#define SIFCTR_TFWM_32		(1 << 29)	/*  Transfer Request when 32 empty stages */
 139#define SIFCTR_TFWM_24		(2 << 29)	/*  Transfer Request when 24 empty stages */
 140#define SIFCTR_TFWM_16		(3 << 29)	/*  Transfer Request when 16 empty stages */
 141#define SIFCTR_TFWM_12		(4 << 29)	/*  Transfer Request when 12 empty stages */
 142#define SIFCTR_TFWM_8		(5 << 29)	/*  Transfer Request when 8 empty stages */
 143#define SIFCTR_TFWM_4		(6 << 29)	/*  Transfer Request when 4 empty stages */
 144#define SIFCTR_TFWM_1		(7 << 29)	/*  Transfer Request when 1 empty stage */
 145#define SIFCTR_TFUA_MASK	GENMASK(26, 20) /* Transmit FIFO Usable Area */
 146#define SIFCTR_TFUA_SHIFT	20
 147#define SIFCTR_TFUA(i)		((i) << SIFCTR_TFUA_SHIFT)
 148#define SIFCTR_RFWM_MASK	GENMASK(15, 13)	/* Receive FIFO Watermark */
 149#define SIFCTR_RFWM_1		(0 << 13)	/*  Transfer Request when 1 valid stages */
 150#define SIFCTR_RFWM_4		(1 << 13)	/*  Transfer Request when 4 valid stages */
 151#define SIFCTR_RFWM_8		(2 << 13)	/*  Transfer Request when 8 valid stages */
 152#define SIFCTR_RFWM_16		(3 << 13)	/*  Transfer Request when 16 valid stages */
 153#define SIFCTR_RFWM_32		(4 << 13)	/*  Transfer Request when 32 valid stages */
 154#define SIFCTR_RFWM_64		(5 << 13)	/*  Transfer Request when 64 valid stages */
 155#define SIFCTR_RFWM_128		(6 << 13)	/*  Transfer Request when 128 valid stages */
 156#define SIFCTR_RFWM_256		(7 << 13)	/*  Transfer Request when 256 valid stages */
 157#define SIFCTR_RFUA_MASK	GENMASK(12, 4)	/* Receive FIFO Usable Area (0x40 = full) */
 158#define SIFCTR_RFUA_SHIFT	4
 159#define SIFCTR_RFUA(i)		((i) << SIFCTR_RFUA_SHIFT)
 160
 161/* SISTR */
 162#define SISTR_TFEMP		BIT(29) /* Transmit FIFO Empty */
 163#define SISTR_TDREQ		BIT(28) /* Transmit Data Transfer Request */
 164#define SISTR_TEOF		BIT(23) /* Frame Transmission End */
 165#define SISTR_TFSERR		BIT(21) /* Transmit Frame Synchronization Error */
 166#define SISTR_TFOVF		BIT(20) /* Transmit FIFO Overflow */
 167#define SISTR_TFUDF		BIT(19) /* Transmit FIFO Underflow */
 168#define SISTR_RFFUL		BIT(13) /* Receive FIFO Full */
 169#define SISTR_RDREQ		BIT(12) /* Receive Data Transfer Request */
 170#define SISTR_REOF		BIT(7)  /* Frame Reception End */
 171#define SISTR_RFSERR		BIT(5)  /* Receive Frame Synchronization Error */
 172#define SISTR_RFUDF		BIT(4)  /* Receive FIFO Underflow */
 173#define SISTR_RFOVF		BIT(3)  /* Receive FIFO Overflow */
 174
 175/* SIIER */
 176#define SIIER_TDMAE		BIT(31) /* Transmit Data DMA Transfer Req. Enable */
 177#define SIIER_TFEMPE		BIT(29) /* Transmit FIFO Empty Enable */
 178#define SIIER_TDREQE		BIT(28) /* Transmit Data Transfer Request Enable */
 179#define SIIER_TEOFE		BIT(23) /* Frame Transmission End Enable */
 180#define SIIER_TFSERRE		BIT(21) /* Transmit Frame Sync Error Enable */
 181#define SIIER_TFOVFE		BIT(20) /* Transmit FIFO Overflow Enable */
 182#define SIIER_TFUDFE		BIT(19) /* Transmit FIFO Underflow Enable */
 183#define SIIER_RDMAE		BIT(15) /* Receive Data DMA Transfer Req. Enable */
 184#define SIIER_RFFULE		BIT(13) /* Receive FIFO Full Enable */
 185#define SIIER_RDREQE		BIT(12) /* Receive Data Transfer Request Enable */
 186#define SIIER_REOFE		BIT(7)  /* Frame Reception End Enable */
 187#define SIIER_RFSERRE		BIT(5)  /* Receive Frame Sync Error Enable */
 188#define SIIER_RFUDFE		BIT(4)  /* Receive FIFO Underflow Enable */
 189#define SIIER_RFOVFE		BIT(3)  /* Receive FIFO Overflow Enable */
 190
 191
 192static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
 193{
 194	switch (reg_offs) {
 195	case SITSCR:
 196	case SIRSCR:
 197		return ioread16(p->mapbase + reg_offs);
 198	default:
 199		return ioread32(p->mapbase + reg_offs);
 200	}
 201}
 202
 203static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
 204			   u32 value)
 205{
 206	switch (reg_offs) {
 207	case SITSCR:
 208	case SIRSCR:
 209		iowrite16(value, p->mapbase + reg_offs);
 210		break;
 211	default:
 212		iowrite32(value, p->mapbase + reg_offs);
 213		break;
 214	}
 215}
 216
 217static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
 218				    u32 clr, u32 set)
 219{
 220	u32 mask = clr | set;
 221	u32 data;
 222
 223	data = sh_msiof_read(p, SICTR);
 224	data &= ~clr;
 225	data |= set;
 226	sh_msiof_write(p, SICTR, data);
 227
 228	return readl_poll_timeout_atomic(p->mapbase + SICTR, data,
 229					 (data & mask) == set, 1, 100);
 230}
 231
 232static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
 233{
 234	struct sh_msiof_spi_priv *p = data;
 235
 236	/* just disable the interrupt and wake up */
 237	sh_msiof_write(p, SIIER, 0);
 238	complete(&p->done);
 239
 240	return IRQ_HANDLED;
 241}
 242
 243static void sh_msiof_spi_reset_regs(struct sh_msiof_spi_priv *p)
 244{
 245	u32 mask = SICTR_TXRST | SICTR_RXRST;
 246	u32 data;
 247
 248	data = sh_msiof_read(p, SICTR);
 249	data |= mask;
 250	sh_msiof_write(p, SICTR, data);
 251
 252	readl_poll_timeout_atomic(p->mapbase + SICTR, data, !(data & mask), 1,
 253				  100);
 254}
 255
 256static const u32 sh_msiof_spi_div_array[] = {
 257	SISCR_BRDV_DIV_1, SISCR_BRDV_DIV_2, SISCR_BRDV_DIV_4,
 258	SISCR_BRDV_DIV_8, SISCR_BRDV_DIV_16, SISCR_BRDV_DIV_32,
 259};
 260
 261static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
 262				      struct spi_transfer *t)
 263{
 264	unsigned long parent_rate = clk_get_rate(p->clk);
 265	unsigned int div_pow = p->min_div_pow;
 266	u32 spi_hz = t->speed_hz;
 267	unsigned long div;
 268	u32 brps, scr;
 
 269
 270	if (!spi_hz || !parent_rate) {
 271		WARN(1, "Invalid clock rate parameters %lu and %u\n",
 272		     parent_rate, spi_hz);
 273		return;
 274	}
 275
 276	div = DIV_ROUND_UP(parent_rate, spi_hz);
 277	if (div <= 1024) {
 278		/* SISCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
 279		if (!div_pow && div <= 32 && div > 2)
 280			div_pow = 1;
 281
 282		if (div_pow)
 283			brps = (div + 1) >> div_pow;
 284		else
 285			brps = div;
 286
 287		for (; brps > 32; div_pow++)
 288			brps = (brps + 1) >> 1;
 289	} else {
 290		/* Set transfer rate composite divisor to 2^5 * 32 = 1024 */
 291		dev_err(&p->pdev->dev,
 292			"Requested SPI transfer rate %d is too low\n", spi_hz);
 293		div_pow = 5;
 294		brps = 32;
 295	}
 296
 297	t->effective_speed_hz = parent_rate / (brps << div_pow);
 298
 299	scr = sh_msiof_spi_div_array[div_pow] | SISCR_BRPS(brps);
 300	sh_msiof_write(p, SITSCR, scr);
 301	if (!(p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
 302		sh_msiof_write(p, SIRSCR, scr);
 303}
 304
 305static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
 306{
 307	/*
 308	 * DTDL/SYNCDL bit	: p->info->dtdl or p->info->syncdl
 309	 * b'000		: 0
 310	 * b'001		: 100
 311	 * b'010		: 200
 312	 * b'011 (SYNCDL only)	: 300
 313	 * b'101		: 50
 314	 * b'110		: 150
 315	 */
 316	if (dtdl_or_syncdl % 100)
 317		return dtdl_or_syncdl / 100 + 5;
 318	else
 319		return dtdl_or_syncdl / 100;
 320}
 321
 322static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
 323{
 324	u32 val;
 325
 326	if (!p->info)
 327		return 0;
 328
 329	/* check if DTDL and SYNCDL is allowed value */
 330	if (p->info->dtdl > 200 || p->info->syncdl > 300) {
 331		dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
 332		return 0;
 333	}
 334
 335	/* check if the sum of DTDL and SYNCDL becomes an integer value  */
 336	if ((p->info->dtdl + p->info->syncdl) % 100) {
 337		dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
 338		return 0;
 339	}
 340
 341	val = sh_msiof_get_delay_bit(p->info->dtdl) << SIMDR1_DTDL_SHIFT;
 342	val |= sh_msiof_get_delay_bit(p->info->syncdl) << SIMDR1_SYNCDL_SHIFT;
 343
 344	return val;
 345}
 346
 347static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss,
 348				      u32 cpol, u32 cpha,
 349				      u32 tx_hi_z, u32 lsb_first, u32 cs_high)
 350{
 351	u32 tmp;
 352	int edge;
 353
 354	/*
 355	 * CPOL CPHA     TSCKIZ RSCKIZ TEDG REDG
 356	 *    0    0         10     10    1    1
 357	 *    0    1         10     10    0    0
 358	 *    1    0         11     11    0    0
 359	 *    1    1         11     11    1    1
 360	 */
 361	tmp = SIMDR1_SYNCMD_SPI | 1 << SIMDR1_FLD_SHIFT | SIMDR1_XXSTP;
 362	tmp |= !cs_high << SIMDR1_SYNCAC_SHIFT;
 363	tmp |= lsb_first << SIMDR1_BITLSB_SHIFT;
 364	tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
 365	if (spi_controller_is_slave(p->ctlr)) {
 366		sh_msiof_write(p, SITMDR1, tmp | SITMDR1_PCON);
 367	} else {
 368		sh_msiof_write(p, SITMDR1,
 369			       tmp | SIMDR1_TRMD | SITMDR1_PCON |
 370			       (ss < MAX_SS ? ss : 0) << SITMDR1_SYNCCH_SHIFT);
 371	}
 372	if (p->ctlr->flags & SPI_CONTROLLER_MUST_TX) {
 373		/* These bits are reserved if RX needs TX */
 374		tmp &= ~0x0000ffff;
 375	}
 376	sh_msiof_write(p, SIRMDR1, tmp);
 377
 378	tmp = 0;
 379	tmp |= SICTR_TSCKIZ_SCK | cpol << SICTR_TSCKIZ_POL_SHIFT;
 380	tmp |= SICTR_RSCKIZ_SCK | cpol << SICTR_RSCKIZ_POL_SHIFT;
 381
 382	edge = cpol ^ !cpha;
 383
 384	tmp |= edge << SICTR_TEDG_SHIFT;
 385	tmp |= edge << SICTR_REDG_SHIFT;
 386	tmp |= tx_hi_z ? SICTR_TXDIZ_HIZ : SICTR_TXDIZ_LOW;
 387	sh_msiof_write(p, SICTR, tmp);
 388}
 389
 390static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
 391				       const void *tx_buf, void *rx_buf,
 392				       u32 bits, u32 words)
 393{
 394	u32 dr2 = SIMDR2_BITLEN1(bits) | SIMDR2_WDLEN1(words);
 395
 396	if (tx_buf || (p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
 397		sh_msiof_write(p, SITMDR2, dr2);
 398	else
 399		sh_msiof_write(p, SITMDR2, dr2 | SIMDR2_GRPMASK1);
 400
 401	if (rx_buf)
 402		sh_msiof_write(p, SIRMDR2, dr2);
 403}
 404
 405static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
 406{
 407	sh_msiof_write(p, SISTR,
 408		       sh_msiof_read(p, SISTR) & ~(SISTR_TDREQ | SISTR_RDREQ));
 409}
 410
 411static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
 412				      const void *tx_buf, int words, int fs)
 413{
 414	const u8 *buf_8 = tx_buf;
 415	int k;
 416
 417	for (k = 0; k < words; k++)
 418		sh_msiof_write(p, SITFDR, buf_8[k] << fs);
 419}
 420
 421static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
 422				       const void *tx_buf, int words, int fs)
 423{
 424	const u16 *buf_16 = tx_buf;
 425	int k;
 426
 427	for (k = 0; k < words; k++)
 428		sh_msiof_write(p, SITFDR, buf_16[k] << fs);
 429}
 430
 431static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
 432					const void *tx_buf, int words, int fs)
 433{
 434	const u16 *buf_16 = tx_buf;
 435	int k;
 436
 437	for (k = 0; k < words; k++)
 438		sh_msiof_write(p, SITFDR, get_unaligned(&buf_16[k]) << fs);
 439}
 440
 441static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
 442				       const void *tx_buf, int words, int fs)
 443{
 444	const u32 *buf_32 = tx_buf;
 445	int k;
 446
 447	for (k = 0; k < words; k++)
 448		sh_msiof_write(p, SITFDR, buf_32[k] << fs);
 449}
 450
 451static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
 452					const void *tx_buf, int words, int fs)
 453{
 454	const u32 *buf_32 = tx_buf;
 455	int k;
 456
 457	for (k = 0; k < words; k++)
 458		sh_msiof_write(p, SITFDR, get_unaligned(&buf_32[k]) << fs);
 459}
 460
 461static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
 462					const void *tx_buf, int words, int fs)
 463{
 464	const u32 *buf_32 = tx_buf;
 465	int k;
 466
 467	for (k = 0; k < words; k++)
 468		sh_msiof_write(p, SITFDR, swab32(buf_32[k] << fs));
 469}
 470
 471static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
 472					 const void *tx_buf, int words, int fs)
 473{
 474	const u32 *buf_32 = tx_buf;
 475	int k;
 476
 477	for (k = 0; k < words; k++)
 478		sh_msiof_write(p, SITFDR, swab32(get_unaligned(&buf_32[k]) << fs));
 479}
 480
 481static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
 482				     void *rx_buf, int words, int fs)
 483{
 484	u8 *buf_8 = rx_buf;
 485	int k;
 486
 487	for (k = 0; k < words; k++)
 488		buf_8[k] = sh_msiof_read(p, SIRFDR) >> fs;
 489}
 490
 491static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
 492				      void *rx_buf, int words, int fs)
 493{
 494	u16 *buf_16 = rx_buf;
 495	int k;
 496
 497	for (k = 0; k < words; k++)
 498		buf_16[k] = sh_msiof_read(p, SIRFDR) >> fs;
 499}
 500
 501static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
 502				       void *rx_buf, int words, int fs)
 503{
 504	u16 *buf_16 = rx_buf;
 505	int k;
 506
 507	for (k = 0; k < words; k++)
 508		put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_16[k]);
 509}
 510
 511static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
 512				      void *rx_buf, int words, int fs)
 513{
 514	u32 *buf_32 = rx_buf;
 515	int k;
 516
 517	for (k = 0; k < words; k++)
 518		buf_32[k] = sh_msiof_read(p, SIRFDR) >> fs;
 519}
 520
 521static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
 522				       void *rx_buf, int words, int fs)
 523{
 524	u32 *buf_32 = rx_buf;
 525	int k;
 526
 527	for (k = 0; k < words; k++)
 528		put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_32[k]);
 529}
 530
 531static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
 532				       void *rx_buf, int words, int fs)
 533{
 534	u32 *buf_32 = rx_buf;
 535	int k;
 536
 537	for (k = 0; k < words; k++)
 538		buf_32[k] = swab32(sh_msiof_read(p, SIRFDR) >> fs);
 539}
 540
 541static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
 542				       void *rx_buf, int words, int fs)
 543{
 544	u32 *buf_32 = rx_buf;
 545	int k;
 546
 547	for (k = 0; k < words; k++)
 548		put_unaligned(swab32(sh_msiof_read(p, SIRFDR) >> fs), &buf_32[k]);
 549}
 550
 551static int sh_msiof_spi_setup(struct spi_device *spi)
 552{
 553	struct sh_msiof_spi_priv *p =
 554		spi_controller_get_devdata(spi->controller);
 555	u32 clr, set, tmp;
 556
 557	if (spi->cs_gpiod || spi_controller_is_slave(p->ctlr))
 558		return 0;
 559
 560	if (p->native_cs_inited &&
 561	    (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
 562		return 0;
 563
 564	/* Configure native chip select mode/polarity early */
 565	clr = SIMDR1_SYNCMD_MASK;
 566	set = SIMDR1_SYNCMD_SPI;
 567	if (spi->mode & SPI_CS_HIGH)
 568		clr |= BIT(SIMDR1_SYNCAC_SHIFT);
 569	else
 570		set |= BIT(SIMDR1_SYNCAC_SHIFT);
 571	pm_runtime_get_sync(&p->pdev->dev);
 572	tmp = sh_msiof_read(p, SITMDR1) & ~clr;
 573	sh_msiof_write(p, SITMDR1, tmp | set | SIMDR1_TRMD | SITMDR1_PCON);
 574	tmp = sh_msiof_read(p, SIRMDR1) & ~clr;
 575	sh_msiof_write(p, SIRMDR1, tmp | set);
 576	pm_runtime_put(&p->pdev->dev);
 577	p->native_cs_high = spi->mode & SPI_CS_HIGH;
 578	p->native_cs_inited = true;
 579	return 0;
 580}
 581
 582static int sh_msiof_prepare_message(struct spi_controller *ctlr,
 583				    struct spi_message *msg)
 584{
 585	struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
 586	const struct spi_device *spi = msg->spi;
 587	u32 ss, cs_high;
 588
 589	/* Configure pins before asserting CS */
 590	if (spi->cs_gpiod) {
 591		ss = ctlr->unused_native_cs;
 592		cs_high = p->native_cs_high;
 593	} else {
 594		ss = spi->chip_select;
 595		cs_high = !!(spi->mode & SPI_CS_HIGH);
 596	}
 597	sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL),
 598				  !!(spi->mode & SPI_CPHA),
 599				  !!(spi->mode & SPI_3WIRE),
 600				  !!(spi->mode & SPI_LSB_FIRST), cs_high);
 601	return 0;
 602}
 603
 604static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
 605{
 606	bool slave = spi_controller_is_slave(p->ctlr);
 607	int ret = 0;
 608
 609	/* setup clock and rx/tx signals */
 610	if (!slave)
 611		ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TSCKE);
 612	if (rx_buf && !ret)
 613		ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_RXE);
 614	if (!ret)
 615		ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TXE);
 616
 617	/* start by setting frame bit */
 618	if (!ret && !slave)
 619		ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TFSE);
 620
 621	return ret;
 622}
 623
 624static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
 625{
 626	bool slave = spi_controller_is_slave(p->ctlr);
 627	int ret = 0;
 628
 629	/* shut down frame, rx/tx and clock signals */
 630	if (!slave)
 631		ret = sh_msiof_modify_ctr_wait(p, SICTR_TFSE, 0);
 632	if (!ret)
 633		ret = sh_msiof_modify_ctr_wait(p, SICTR_TXE, 0);
 634	if (rx_buf && !ret)
 635		ret = sh_msiof_modify_ctr_wait(p, SICTR_RXE, 0);
 636	if (!ret && !slave)
 637		ret = sh_msiof_modify_ctr_wait(p, SICTR_TSCKE, 0);
 638
 639	return ret;
 640}
 641
 642static int sh_msiof_slave_abort(struct spi_controller *ctlr)
 643{
 644	struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
 645
 646	p->slave_aborted = true;
 647	complete(&p->done);
 648	complete(&p->done_txdma);
 649	return 0;
 650}
 651
 652static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p,
 653					struct completion *x)
 654{
 655	if (spi_controller_is_slave(p->ctlr)) {
 656		if (wait_for_completion_interruptible(x) ||
 657		    p->slave_aborted) {
 658			dev_dbg(&p->pdev->dev, "interrupted\n");
 659			return -EINTR;
 660		}
 661	} else {
 662		if (!wait_for_completion_timeout(x, HZ)) {
 663			dev_err(&p->pdev->dev, "timeout\n");
 664			return -ETIMEDOUT;
 665		}
 666	}
 667
 668	return 0;
 669}
 670
 671static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
 672				  void (*tx_fifo)(struct sh_msiof_spi_priv *,
 673						  const void *, int, int),
 674				  void (*rx_fifo)(struct sh_msiof_spi_priv *,
 675						  void *, int, int),
 676				  const void *tx_buf, void *rx_buf,
 677				  int words, int bits)
 678{
 679	int fifo_shift;
 680	int ret;
 681
 682	/* limit maximum word transfer to rx/tx fifo size */
 683	if (tx_buf)
 684		words = min_t(int, words, p->tx_fifo_size);
 685	if (rx_buf)
 686		words = min_t(int, words, p->rx_fifo_size);
 687
 688	/* the fifo contents need shifting */
 689	fifo_shift = 32 - bits;
 690
 691	/* default FIFO watermarks for PIO */
 692	sh_msiof_write(p, SIFCTR, 0);
 693
 694	/* setup msiof transfer mode registers */
 695	sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
 696	sh_msiof_write(p, SIIER, SIIER_TEOFE | SIIER_REOFE);
 697
 698	/* write tx fifo */
 699	if (tx_buf)
 700		tx_fifo(p, tx_buf, words, fifo_shift);
 701
 702	reinit_completion(&p->done);
 703	p->slave_aborted = false;
 704
 705	ret = sh_msiof_spi_start(p, rx_buf);
 706	if (ret) {
 707		dev_err(&p->pdev->dev, "failed to start hardware\n");
 708		goto stop_ier;
 709	}
 710
 711	/* wait for tx fifo to be emptied / rx fifo to be filled */
 712	ret = sh_msiof_wait_for_completion(p, &p->done);
 713	if (ret)
 714		goto stop_reset;
 715
 716	/* read rx fifo */
 717	if (rx_buf)
 718		rx_fifo(p, rx_buf, words, fifo_shift);
 719
 720	/* clear status bits */
 721	sh_msiof_reset_str(p);
 722
 723	ret = sh_msiof_spi_stop(p, rx_buf);
 724	if (ret) {
 725		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
 726		return ret;
 727	}
 728
 729	return words;
 730
 731stop_reset:
 732	sh_msiof_reset_str(p);
 733	sh_msiof_spi_stop(p, rx_buf);
 734stop_ier:
 735	sh_msiof_write(p, SIIER, 0);
 736	return ret;
 737}
 738
 739static void sh_msiof_dma_complete(void *arg)
 740{
 741	complete(arg);
 742}
 743
 744static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
 745			     void *rx, unsigned int len)
 746{
 747	u32 ier_bits = 0;
 748	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
 749	dma_cookie_t cookie;
 750	int ret;
 751
 752	/* First prepare and submit the DMA request(s), as this may fail */
 753	if (rx) {
 754		ier_bits |= SIIER_RDREQE | SIIER_RDMAE;
 755		desc_rx = dmaengine_prep_slave_single(p->ctlr->dma_rx,
 756					p->rx_dma_addr, len, DMA_DEV_TO_MEM,
 757					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 758		if (!desc_rx)
 759			return -EAGAIN;
 760
 761		desc_rx->callback = sh_msiof_dma_complete;
 762		desc_rx->callback_param = &p->done;
 763		cookie = dmaengine_submit(desc_rx);
 764		if (dma_submit_error(cookie))
 765			return cookie;
 766	}
 767
 768	if (tx) {
 769		ier_bits |= SIIER_TDREQE | SIIER_TDMAE;
 770		dma_sync_single_for_device(p->ctlr->dma_tx->device->dev,
 771					   p->tx_dma_addr, len, DMA_TO_DEVICE);
 772		desc_tx = dmaengine_prep_slave_single(p->ctlr->dma_tx,
 773					p->tx_dma_addr, len, DMA_MEM_TO_DEV,
 774					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 775		if (!desc_tx) {
 776			ret = -EAGAIN;
 777			goto no_dma_tx;
 778		}
 779
 780		desc_tx->callback = sh_msiof_dma_complete;
 781		desc_tx->callback_param = &p->done_txdma;
 782		cookie = dmaengine_submit(desc_tx);
 783		if (dma_submit_error(cookie)) {
 784			ret = cookie;
 785			goto no_dma_tx;
 786		}
 787	}
 788
 789	/* 1 stage FIFO watermarks for DMA */
 790	sh_msiof_write(p, SIFCTR, SIFCTR_TFWM_1 | SIFCTR_RFWM_1);
 791
 792	/* setup msiof transfer mode registers (32-bit words) */
 793	sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
 794
 795	sh_msiof_write(p, SIIER, ier_bits);
 796
 797	reinit_completion(&p->done);
 798	if (tx)
 799		reinit_completion(&p->done_txdma);
 800	p->slave_aborted = false;
 801
 802	/* Now start DMA */
 803	if (rx)
 804		dma_async_issue_pending(p->ctlr->dma_rx);
 805	if (tx)
 806		dma_async_issue_pending(p->ctlr->dma_tx);
 807
 808	ret = sh_msiof_spi_start(p, rx);
 809	if (ret) {
 810		dev_err(&p->pdev->dev, "failed to start hardware\n");
 811		goto stop_dma;
 812	}
 813
 814	if (tx) {
 815		/* wait for tx DMA completion */
 816		ret = sh_msiof_wait_for_completion(p, &p->done_txdma);
 817		if (ret)
 818			goto stop_reset;
 819	}
 820
 821	if (rx) {
 822		/* wait for rx DMA completion */
 823		ret = sh_msiof_wait_for_completion(p, &p->done);
 824		if (ret)
 825			goto stop_reset;
 826
 827		sh_msiof_write(p, SIIER, 0);
 828	} else {
 829		/* wait for tx fifo to be emptied */
 830		sh_msiof_write(p, SIIER, SIIER_TEOFE);
 831		ret = sh_msiof_wait_for_completion(p, &p->done);
 832		if (ret)
 833			goto stop_reset;
 834	}
 835
 836	/* clear status bits */
 837	sh_msiof_reset_str(p);
 838
 839	ret = sh_msiof_spi_stop(p, rx);
 840	if (ret) {
 841		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
 842		return ret;
 843	}
 844
 845	if (rx)
 846		dma_sync_single_for_cpu(p->ctlr->dma_rx->device->dev,
 847					p->rx_dma_addr, len, DMA_FROM_DEVICE);
 848
 849	return 0;
 850
 851stop_reset:
 852	sh_msiof_reset_str(p);
 853	sh_msiof_spi_stop(p, rx);
 854stop_dma:
 855	if (tx)
 856		dmaengine_terminate_sync(p->ctlr->dma_tx);
 857no_dma_tx:
 858	if (rx)
 859		dmaengine_terminate_sync(p->ctlr->dma_rx);
 860	sh_msiof_write(p, SIIER, 0);
 861	return ret;
 862}
 863
 864static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
 865{
 866	/* src or dst can be unaligned, but not both */
 867	if ((unsigned long)src & 3) {
 868		while (words--) {
 869			*dst++ = swab32(get_unaligned(src));
 870			src++;
 871		}
 872	} else if ((unsigned long)dst & 3) {
 873		while (words--) {
 874			put_unaligned(swab32(*src++), dst);
 875			dst++;
 876		}
 877	} else {
 878		while (words--)
 879			*dst++ = swab32(*src++);
 880	}
 881}
 882
 883static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
 884{
 885	/* src or dst can be unaligned, but not both */
 886	if ((unsigned long)src & 3) {
 887		while (words--) {
 888			*dst++ = swahw32(get_unaligned(src));
 889			src++;
 890		}
 891	} else if ((unsigned long)dst & 3) {
 892		while (words--) {
 893			put_unaligned(swahw32(*src++), dst);
 894			dst++;
 895		}
 896	} else {
 897		while (words--)
 898			*dst++ = swahw32(*src++);
 899	}
 900}
 901
 902static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
 903{
 904	memcpy(dst, src, words * 4);
 905}
 906
 907static int sh_msiof_transfer_one(struct spi_controller *ctlr,
 908				 struct spi_device *spi,
 909				 struct spi_transfer *t)
 910{
 911	struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
 912	void (*copy32)(u32 *, const u32 *, unsigned int);
 913	void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
 914	void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
 915	const void *tx_buf = t->tx_buf;
 916	void *rx_buf = t->rx_buf;
 917	unsigned int len = t->len;
 918	unsigned int bits = t->bits_per_word;
 919	unsigned int bytes_per_word;
 920	unsigned int words;
 921	int n;
 922	bool swab;
 923	int ret;
 924
 925	/* reset registers */
 926	sh_msiof_spi_reset_regs(p);
 927
 928	/* setup clocks (clock already enabled in chipselect()) */
 929	if (!spi_controller_is_slave(p->ctlr))
 930		sh_msiof_spi_set_clk_regs(p, t);
 931
 932	while (ctlr->dma_tx && len > 15) {
 933		/*
 934		 *  DMA supports 32-bit words only, hence pack 8-bit and 16-bit
 935		 *  words, with byte resp. word swapping.
 936		 */
 937		unsigned int l = 0;
 938
 939		if (tx_buf)
 940			l = min(round_down(len, 4), p->tx_fifo_size * 4);
 941		if (rx_buf)
 942			l = min(round_down(len, 4), p->rx_fifo_size * 4);
 943
 944		if (bits <= 8) {
 945			copy32 = copy_bswap32;
 946		} else if (bits <= 16) {
 947			copy32 = copy_wswap32;
 948		} else {
 949			copy32 = copy_plain32;
 950		}
 951
 952		if (tx_buf)
 953			copy32(p->tx_dma_page, tx_buf, l / 4);
 954
 955		ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
 956		if (ret == -EAGAIN) {
 957			dev_warn_once(&p->pdev->dev,
 958				"DMA not available, falling back to PIO\n");
 959			break;
 960		}
 961		if (ret)
 962			return ret;
 963
 964		if (rx_buf) {
 965			copy32(rx_buf, p->rx_dma_page, l / 4);
 966			rx_buf += l;
 967		}
 968		if (tx_buf)
 969			tx_buf += l;
 970
 971		len -= l;
 972		if (!len)
 973			return 0;
 974	}
 975
 976	if (bits <= 8 && len > 15) {
 977		bits = 32;
 978		swab = true;
 979	} else {
 980		swab = false;
 981	}
 982
 983	/* setup bytes per word and fifo read/write functions */
 984	if (bits <= 8) {
 985		bytes_per_word = 1;
 986		tx_fifo = sh_msiof_spi_write_fifo_8;
 987		rx_fifo = sh_msiof_spi_read_fifo_8;
 988	} else if (bits <= 16) {
 989		bytes_per_word = 2;
 990		if ((unsigned long)tx_buf & 0x01)
 991			tx_fifo = sh_msiof_spi_write_fifo_16u;
 992		else
 993			tx_fifo = sh_msiof_spi_write_fifo_16;
 994
 995		if ((unsigned long)rx_buf & 0x01)
 996			rx_fifo = sh_msiof_spi_read_fifo_16u;
 997		else
 998			rx_fifo = sh_msiof_spi_read_fifo_16;
 999	} else if (swab) {
1000		bytes_per_word = 4;
1001		if ((unsigned long)tx_buf & 0x03)
1002			tx_fifo = sh_msiof_spi_write_fifo_s32u;
1003		else
1004			tx_fifo = sh_msiof_spi_write_fifo_s32;
1005
1006		if ((unsigned long)rx_buf & 0x03)
1007			rx_fifo = sh_msiof_spi_read_fifo_s32u;
1008		else
1009			rx_fifo = sh_msiof_spi_read_fifo_s32;
1010	} else {
1011		bytes_per_word = 4;
1012		if ((unsigned long)tx_buf & 0x03)
1013			tx_fifo = sh_msiof_spi_write_fifo_32u;
1014		else
1015			tx_fifo = sh_msiof_spi_write_fifo_32;
1016
1017		if ((unsigned long)rx_buf & 0x03)
1018			rx_fifo = sh_msiof_spi_read_fifo_32u;
1019		else
1020			rx_fifo = sh_msiof_spi_read_fifo_32;
1021	}
1022
1023	/* transfer in fifo sized chunks */
1024	words = len / bytes_per_word;
1025
1026	while (words > 0) {
1027		n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
1028					   words, bits);
1029		if (n < 0)
1030			return n;
1031
1032		if (tx_buf)
1033			tx_buf += n * bytes_per_word;
1034		if (rx_buf)
1035			rx_buf += n * bytes_per_word;
1036		words -= n;
1037
1038		if (words == 0 && (len % bytes_per_word)) {
1039			words = len % bytes_per_word;
1040			bits = t->bits_per_word;
1041			bytes_per_word = 1;
1042			tx_fifo = sh_msiof_spi_write_fifo_8;
1043			rx_fifo = sh_msiof_spi_read_fifo_8;
1044		}
1045	}
1046
1047	return 0;
1048}
1049
1050static const struct sh_msiof_chipdata sh_data = {
1051	.bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32),
1052	.tx_fifo_size = 64,
1053	.rx_fifo_size = 64,
1054	.ctlr_flags = 0,
1055	.min_div_pow = 0,
1056};
1057
1058static const struct sh_msiof_chipdata rcar_gen2_data = {
1059	.bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1060			      SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1061	.tx_fifo_size = 64,
1062	.rx_fifo_size = 64,
1063	.ctlr_flags = SPI_CONTROLLER_MUST_TX,
1064	.min_div_pow = 0,
1065};
1066
1067static const struct sh_msiof_chipdata rcar_gen3_data = {
1068	.bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1069			      SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1070	.tx_fifo_size = 64,
1071	.rx_fifo_size = 64,
1072	.ctlr_flags = SPI_CONTROLLER_MUST_TX,
1073	.min_div_pow = 1,
1074};
1075
1076static const struct of_device_id sh_msiof_match[] = {
1077	{ .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
1078	{ .compatible = "renesas,msiof-r8a7743",   .data = &rcar_gen2_data },
1079	{ .compatible = "renesas,msiof-r8a7745",   .data = &rcar_gen2_data },
1080	{ .compatible = "renesas,msiof-r8a7790",   .data = &rcar_gen2_data },
1081	{ .compatible = "renesas,msiof-r8a7791",   .data = &rcar_gen2_data },
1082	{ .compatible = "renesas,msiof-r8a7792",   .data = &rcar_gen2_data },
1083	{ .compatible = "renesas,msiof-r8a7793",   .data = &rcar_gen2_data },
1084	{ .compatible = "renesas,msiof-r8a7794",   .data = &rcar_gen2_data },
1085	{ .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
1086	{ .compatible = "renesas,msiof-r8a7796",   .data = &rcar_gen3_data },
1087	{ .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
1088	{ .compatible = "renesas,rcar-gen4-msiof", .data = &rcar_gen3_data },
1089	{ .compatible = "renesas,sh-msiof",        .data = &sh_data }, /* Deprecated */
1090	{},
1091};
1092MODULE_DEVICE_TABLE(of, sh_msiof_match);
1093
1094#ifdef CONFIG_OF
1095static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1096{
1097	struct sh_msiof_spi_info *info;
1098	struct device_node *np = dev->of_node;
1099	u32 num_cs = 1;
1100
1101	info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1102	if (!info)
1103		return NULL;
1104
1105	info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE
1106							    : MSIOF_SPI_MASTER;
1107
1108	/* Parse the MSIOF properties */
1109	if (info->mode == MSIOF_SPI_MASTER)
1110		of_property_read_u32(np, "num-cs", &num_cs);
1111	of_property_read_u32(np, "renesas,tx-fifo-size",
1112					&info->tx_fifo_override);
1113	of_property_read_u32(np, "renesas,rx-fifo-size",
1114					&info->rx_fifo_override);
1115	of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1116	of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1117
1118	info->num_chipselect = num_cs;
1119
1120	return info;
1121}
1122#else
1123static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1124{
1125	return NULL;
1126}
1127#endif
1128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1129static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1130	enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1131{
1132	dma_cap_mask_t mask;
1133	struct dma_chan *chan;
1134	struct dma_slave_config cfg;
1135	int ret;
1136
1137	dma_cap_zero(mask);
1138	dma_cap_set(DMA_SLAVE, mask);
1139
1140	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1141				(void *)(unsigned long)id, dev,
1142				dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1143	if (!chan) {
1144		dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1145		return NULL;
1146	}
1147
1148	memset(&cfg, 0, sizeof(cfg));
1149	cfg.direction = dir;
1150	if (dir == DMA_MEM_TO_DEV) {
1151		cfg.dst_addr = port_addr;
1152		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1153	} else {
1154		cfg.src_addr = port_addr;
1155		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1156	}
1157
1158	ret = dmaengine_slave_config(chan, &cfg);
1159	if (ret) {
1160		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1161		dma_release_channel(chan);
1162		return NULL;
1163	}
1164
1165	return chan;
1166}
1167
1168static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1169{
1170	struct platform_device *pdev = p->pdev;
1171	struct device *dev = &pdev->dev;
1172	const struct sh_msiof_spi_info *info = p->info;
1173	unsigned int dma_tx_id, dma_rx_id;
1174	const struct resource *res;
1175	struct spi_controller *ctlr;
1176	struct device *tx_dev, *rx_dev;
1177
1178	if (dev->of_node) {
1179		/* In the OF case we will get the slave IDs from the DT */
1180		dma_tx_id = 0;
1181		dma_rx_id = 0;
1182	} else if (info && info->dma_tx_id && info->dma_rx_id) {
1183		dma_tx_id = info->dma_tx_id;
1184		dma_rx_id = info->dma_rx_id;
1185	} else {
1186		/* The driver assumes no error */
1187		return 0;
1188	}
1189
1190	/* The DMA engine uses the second register set, if present */
1191	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1192	if (!res)
1193		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1194
1195	ctlr = p->ctlr;
1196	ctlr->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1197						 dma_tx_id, res->start + SITFDR);
1198	if (!ctlr->dma_tx)
1199		return -ENODEV;
1200
1201	ctlr->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1202						 dma_rx_id, res->start + SIRFDR);
1203	if (!ctlr->dma_rx)
1204		goto free_tx_chan;
1205
1206	p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1207	if (!p->tx_dma_page)
1208		goto free_rx_chan;
1209
1210	p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1211	if (!p->rx_dma_page)
1212		goto free_tx_page;
1213
1214	tx_dev = ctlr->dma_tx->device->dev;
1215	p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1216					DMA_TO_DEVICE);
1217	if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1218		goto free_rx_page;
1219
1220	rx_dev = ctlr->dma_rx->device->dev;
1221	p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1222					DMA_FROM_DEVICE);
1223	if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1224		goto unmap_tx_page;
1225
1226	dev_info(dev, "DMA available");
1227	return 0;
1228
1229unmap_tx_page:
1230	dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1231free_rx_page:
1232	free_page((unsigned long)p->rx_dma_page);
1233free_tx_page:
1234	free_page((unsigned long)p->tx_dma_page);
1235free_rx_chan:
1236	dma_release_channel(ctlr->dma_rx);
1237free_tx_chan:
1238	dma_release_channel(ctlr->dma_tx);
1239	ctlr->dma_tx = NULL;
1240	return -ENODEV;
1241}
1242
1243static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1244{
1245	struct spi_controller *ctlr = p->ctlr;
1246
1247	if (!ctlr->dma_tx)
1248		return;
1249
1250	dma_unmap_single(ctlr->dma_rx->device->dev, p->rx_dma_addr, PAGE_SIZE,
1251			 DMA_FROM_DEVICE);
1252	dma_unmap_single(ctlr->dma_tx->device->dev, p->tx_dma_addr, PAGE_SIZE,
1253			 DMA_TO_DEVICE);
1254	free_page((unsigned long)p->rx_dma_page);
1255	free_page((unsigned long)p->tx_dma_page);
1256	dma_release_channel(ctlr->dma_rx);
1257	dma_release_channel(ctlr->dma_tx);
1258}
1259
1260static int sh_msiof_spi_probe(struct platform_device *pdev)
1261{
1262	struct spi_controller *ctlr;
1263	const struct sh_msiof_chipdata *chipdata;
1264	struct sh_msiof_spi_info *info;
1265	struct sh_msiof_spi_priv *p;
1266	unsigned long clksrc;
1267	int i;
1268	int ret;
1269
1270	chipdata = of_device_get_match_data(&pdev->dev);
1271	if (chipdata) {
1272		info = sh_msiof_spi_parse_dt(&pdev->dev);
1273	} else {
1274		chipdata = (const void *)pdev->id_entry->driver_data;
1275		info = dev_get_platdata(&pdev->dev);
1276	}
1277
1278	if (!info) {
1279		dev_err(&pdev->dev, "failed to obtain device info\n");
1280		return -ENXIO;
1281	}
1282
1283	if (info->mode == MSIOF_SPI_SLAVE)
1284		ctlr = spi_alloc_slave(&pdev->dev,
1285				       sizeof(struct sh_msiof_spi_priv));
1286	else
1287		ctlr = spi_alloc_master(&pdev->dev,
1288					sizeof(struct sh_msiof_spi_priv));
1289	if (ctlr == NULL)
1290		return -ENOMEM;
1291
1292	p = spi_controller_get_devdata(ctlr);
1293
1294	platform_set_drvdata(pdev, p);
1295	p->ctlr = ctlr;
1296	p->info = info;
1297	p->min_div_pow = chipdata->min_div_pow;
1298
1299	init_completion(&p->done);
1300	init_completion(&p->done_txdma);
1301
1302	p->clk = devm_clk_get(&pdev->dev, NULL);
1303	if (IS_ERR(p->clk)) {
1304		dev_err(&pdev->dev, "cannot get clock\n");
1305		ret = PTR_ERR(p->clk);
1306		goto err1;
1307	}
1308
1309	i = platform_get_irq(pdev, 0);
1310	if (i < 0) {
1311		ret = i;
1312		goto err1;
1313	}
1314
1315	p->mapbase = devm_platform_ioremap_resource(pdev, 0);
1316	if (IS_ERR(p->mapbase)) {
1317		ret = PTR_ERR(p->mapbase);
1318		goto err1;
1319	}
1320
1321	ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1322			       dev_name(&pdev->dev), p);
1323	if (ret) {
1324		dev_err(&pdev->dev, "unable to request irq\n");
1325		goto err1;
1326	}
1327
1328	p->pdev = pdev;
1329	pm_runtime_enable(&pdev->dev);
1330
1331	/* Platform data may override FIFO sizes */
1332	p->tx_fifo_size = chipdata->tx_fifo_size;
1333	p->rx_fifo_size = chipdata->rx_fifo_size;
1334	if (p->info->tx_fifo_override)
1335		p->tx_fifo_size = p->info->tx_fifo_override;
1336	if (p->info->rx_fifo_override)
1337		p->rx_fifo_size = p->info->rx_fifo_override;
1338
 
 
 
 
 
 
1339	/* init controller code */
1340	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1341	ctlr->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1342	clksrc = clk_get_rate(p->clk);
1343	ctlr->min_speed_hz = DIV_ROUND_UP(clksrc, 1024);
1344	ctlr->max_speed_hz = DIV_ROUND_UP(clksrc, 1 << p->min_div_pow);
1345	ctlr->flags = chipdata->ctlr_flags;
1346	ctlr->bus_num = pdev->id;
1347	ctlr->num_chipselect = p->info->num_chipselect;
1348	ctlr->dev.of_node = pdev->dev.of_node;
1349	ctlr->setup = sh_msiof_spi_setup;
1350	ctlr->prepare_message = sh_msiof_prepare_message;
1351	ctlr->slave_abort = sh_msiof_slave_abort;
1352	ctlr->bits_per_word_mask = chipdata->bits_per_word_mask;
1353	ctlr->auto_runtime_pm = true;
1354	ctlr->transfer_one = sh_msiof_transfer_one;
1355	ctlr->use_gpio_descriptors = true;
1356	ctlr->max_native_cs = MAX_SS;
1357
1358	ret = sh_msiof_request_dma(p);
1359	if (ret < 0)
1360		dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1361
1362	ret = devm_spi_register_controller(&pdev->dev, ctlr);
1363	if (ret < 0) {
1364		dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1365		goto err2;
1366	}
1367
1368	return 0;
1369
1370 err2:
1371	sh_msiof_release_dma(p);
1372	pm_runtime_disable(&pdev->dev);
1373 err1:
1374	spi_controller_put(ctlr);
1375	return ret;
1376}
1377
1378static int sh_msiof_spi_remove(struct platform_device *pdev)
1379{
1380	struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1381
1382	sh_msiof_release_dma(p);
1383	pm_runtime_disable(&pdev->dev);
1384	return 0;
1385}
1386
1387static const struct platform_device_id spi_driver_ids[] = {
1388	{ "spi_sh_msiof",	(kernel_ulong_t)&sh_data },
1389	{},
1390};
1391MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1392
1393#ifdef CONFIG_PM_SLEEP
1394static int sh_msiof_spi_suspend(struct device *dev)
1395{
1396	struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
1397
1398	return spi_controller_suspend(p->ctlr);
1399}
1400
1401static int sh_msiof_spi_resume(struct device *dev)
1402{
1403	struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
1404
1405	return spi_controller_resume(p->ctlr);
1406}
1407
1408static SIMPLE_DEV_PM_OPS(sh_msiof_spi_pm_ops, sh_msiof_spi_suspend,
1409			 sh_msiof_spi_resume);
1410#define DEV_PM_OPS	(&sh_msiof_spi_pm_ops)
1411#else
1412#define DEV_PM_OPS	NULL
1413#endif /* CONFIG_PM_SLEEP */
1414
1415static struct platform_driver sh_msiof_spi_drv = {
1416	.probe		= sh_msiof_spi_probe,
1417	.remove		= sh_msiof_spi_remove,
1418	.id_table	= spi_driver_ids,
1419	.driver		= {
1420		.name		= "spi_sh_msiof",
1421		.pm		= DEV_PM_OPS,
1422		.of_match_table = of_match_ptr(sh_msiof_match),
1423	},
1424};
1425module_platform_driver(sh_msiof_spi_drv);
1426
1427MODULE_DESCRIPTION("SuperH MSIOF SPI Controller Interface Driver");
1428MODULE_AUTHOR("Magnus Damm");
1429MODULE_LICENSE("GPL v2");
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SuperH MSIOF SPI Controller Interface
   4 *
   5 * Copyright (c) 2009 Magnus Damm
   6 * Copyright (C) 2014 Renesas Electronics Corporation
   7 * Copyright (C) 2014-2017 Glider bvba
   8 */
   9
  10#include <linux/bitmap.h>
  11#include <linux/clk.h>
  12#include <linux/completion.h>
  13#include <linux/delay.h>
  14#include <linux/dma-mapping.h>
  15#include <linux/dmaengine.h>
  16#include <linux/err.h>
  17#include <linux/gpio.h>
  18#include <linux/gpio/consumer.h>
  19#include <linux/interrupt.h>
  20#include <linux/io.h>
  21#include <linux/iopoll.h>
  22#include <linux/kernel.h>
  23#include <linux/module.h>
  24#include <linux/of.h>
  25#include <linux/of_device.h>
  26#include <linux/platform_device.h>
  27#include <linux/pm_runtime.h>
  28#include <linux/sh_dma.h>
  29
  30#include <linux/spi/sh_msiof.h>
  31#include <linux/spi/spi.h>
  32
  33#include <asm/unaligned.h>
  34
  35struct sh_msiof_chipdata {
  36	u32 bits_per_word_mask;
  37	u16 tx_fifo_size;
  38	u16 rx_fifo_size;
  39	u16 ctlr_flags;
  40	u16 min_div_pow;
  41};
  42
  43struct sh_msiof_spi_priv {
  44	struct spi_controller *ctlr;
  45	void __iomem *mapbase;
  46	struct clk *clk;
  47	struct platform_device *pdev;
  48	struct sh_msiof_spi_info *info;
  49	struct completion done;
  50	struct completion done_txdma;
  51	unsigned int tx_fifo_size;
  52	unsigned int rx_fifo_size;
  53	unsigned int min_div_pow;
  54	void *tx_dma_page;
  55	void *rx_dma_page;
  56	dma_addr_t tx_dma_addr;
  57	dma_addr_t rx_dma_addr;
  58	unsigned short unused_ss;
  59	bool native_cs_inited;
  60	bool native_cs_high;
  61	bool slave_aborted;
  62};
  63
  64#define MAX_SS	3	/* Maximum number of native chip selects */
  65
  66#define TMDR1	0x00	/* Transmit Mode Register 1 */
  67#define TMDR2	0x04	/* Transmit Mode Register 2 */
  68#define TMDR3	0x08	/* Transmit Mode Register 3 */
  69#define RMDR1	0x10	/* Receive Mode Register 1 */
  70#define RMDR2	0x14	/* Receive Mode Register 2 */
  71#define RMDR3	0x18	/* Receive Mode Register 3 */
  72#define TSCR	0x20	/* Transmit Clock Select Register */
  73#define RSCR	0x22	/* Receive Clock Select Register (SH, A1, APE6) */
  74#define CTR	0x28	/* Control Register */
  75#define FCTR	0x30	/* FIFO Control Register */
  76#define STR	0x40	/* Status Register */
  77#define IER	0x44	/* Interrupt Enable Register */
  78#define TDR1	0x48	/* Transmit Control Data Register 1 (SH, A1) */
  79#define TDR2	0x4c	/* Transmit Control Data Register 2 (SH, A1) */
  80#define TFDR	0x50	/* Transmit FIFO Data Register */
  81#define RDR1	0x58	/* Receive Control Data Register 1 (SH, A1) */
  82#define RDR2	0x5c	/* Receive Control Data Register 2 (SH, A1) */
  83#define RFDR	0x60	/* Receive FIFO Data Register */
  84
  85/* TMDR1 and RMDR1 */
  86#define MDR1_TRMD	   BIT(31)  /* Transfer Mode (1 = Master mode) */
  87#define MDR1_SYNCMD_MASK   GENMASK(29, 28) /* SYNC Mode */
  88#define MDR1_SYNCMD_SPI	   (2 << 28)/*   Level mode/SPI */
  89#define MDR1_SYNCMD_LR	   (3 << 28)/*   L/R mode */
  90#define MDR1_SYNCAC_SHIFT  25       /* Sync Polarity (1 = Active-low) */
  91#define MDR1_BITLSB_SHIFT  24       /* MSB/LSB First (1 = LSB first) */
  92#define MDR1_DTDL_SHIFT	   20       /* Data Pin Bit Delay for MSIOF_SYNC */
  93#define MDR1_SYNCDL_SHIFT  16       /* Frame Sync Signal Timing Delay */
  94#define MDR1_FLD_MASK	   GENMASK(3, 2) /* Frame Sync Signal Interval (0-3) */
  95#define MDR1_FLD_SHIFT	   2
  96#define MDR1_XXSTP	   BIT(0)   /* Transmission/Reception Stop on FIFO */
  97/* TMDR1 */
  98#define TMDR1_PCON	   BIT(30)  /* Transfer Signal Connection */
  99#define TMDR1_SYNCCH_MASK  GENMASK(27, 26) /* Sync Signal Channel Select */
 100#define TMDR1_SYNCCH_SHIFT 26       /* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */
 101
 102/* TMDR2 and RMDR2 */
 103#define MDR2_BITLEN1(i)	(((i) - 1) << 24) /* Data Size (8-32 bits) */
 104#define MDR2_WDLEN1(i)	(((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
 105#define MDR2_GRPMASK1	BIT(0)      /* Group Output Mask 1 (SH, A1) */
 106
 107/* TSCR and RSCR */
 108#define SCR_BRPS_MASK	GENMASK(12, 8) /* Prescaler Setting (1-32) */
 109#define SCR_BRPS(i)	(((i) - 1) << 8)
 110#define SCR_BRDV_MASK	GENMASK(2, 0) /* Baud Rate Generator's Division Ratio */
 111#define SCR_BRDV_DIV_2	0
 112#define SCR_BRDV_DIV_4	1
 113#define SCR_BRDV_DIV_8	2
 114#define SCR_BRDV_DIV_16	3
 115#define SCR_BRDV_DIV_32	4
 116#define SCR_BRDV_DIV_1	7
 117
 118/* CTR */
 119#define CTR_TSCKIZ_MASK	GENMASK(31, 30) /* Transmit Clock I/O Polarity Select */
 120#define CTR_TSCKIZ_SCK	BIT(31)   /*   Disable SCK when TX disabled */
 121#define CTR_TSCKIZ_POL_SHIFT 30   /*   Transmit Clock Polarity */
 122#define CTR_RSCKIZ_MASK	GENMASK(29, 28) /* Receive Clock Polarity Select */
 123#define CTR_RSCKIZ_SCK	BIT(29)   /*   Must match CTR_TSCKIZ_SCK */
 124#define CTR_RSCKIZ_POL_SHIFT 28   /*   Receive Clock Polarity */
 125#define CTR_TEDG_SHIFT	     27   /* Transmit Timing (1 = falling edge) */
 126#define CTR_REDG_SHIFT	     26   /* Receive Timing (1 = falling edge) */
 127#define CTR_TXDIZ_MASK	GENMASK(23, 22) /* Pin Output When TX is Disabled */
 128#define CTR_TXDIZ_LOW	(0 << 22) /*   0 */
 129#define CTR_TXDIZ_HIGH	(1 << 22) /*   1 */
 130#define CTR_TXDIZ_HIZ	(2 << 22) /*   High-impedance */
 131#define CTR_TSCKE	BIT(15)   /* Transmit Serial Clock Output Enable */
 132#define CTR_TFSE	BIT(14)   /* Transmit Frame Sync Signal Output Enable */
 133#define CTR_TXE		BIT(9)    /* Transmit Enable */
 134#define CTR_RXE		BIT(8)    /* Receive Enable */
 135#define CTR_TXRST	BIT(1)    /* Transmit Reset */
 136#define CTR_RXRST	BIT(0)    /* Receive Reset */
 137
 138/* FCTR */
 139#define FCTR_TFWM_MASK	GENMASK(31, 29) /* Transmit FIFO Watermark */
 140#define FCTR_TFWM_64	(0 << 29) /*  Transfer Request when 64 empty stages */
 141#define FCTR_TFWM_32	(1 << 29) /*  Transfer Request when 32 empty stages */
 142#define FCTR_TFWM_24	(2 << 29) /*  Transfer Request when 24 empty stages */
 143#define FCTR_TFWM_16	(3 << 29) /*  Transfer Request when 16 empty stages */
 144#define FCTR_TFWM_12	(4 << 29) /*  Transfer Request when 12 empty stages */
 145#define FCTR_TFWM_8	(5 << 29) /*  Transfer Request when 8 empty stages */
 146#define FCTR_TFWM_4	(6 << 29) /*  Transfer Request when 4 empty stages */
 147#define FCTR_TFWM_1	(7 << 29) /*  Transfer Request when 1 empty stage */
 148#define FCTR_TFUA_MASK	GENMASK(26, 20) /* Transmit FIFO Usable Area */
 149#define FCTR_TFUA_SHIFT	20
 150#define FCTR_TFUA(i)	((i) << FCTR_TFUA_SHIFT)
 151#define FCTR_RFWM_MASK	GENMASK(15, 13) /* Receive FIFO Watermark */
 152#define FCTR_RFWM_1	(0 << 13) /*  Transfer Request when 1 valid stages */
 153#define FCTR_RFWM_4	(1 << 13) /*  Transfer Request when 4 valid stages */
 154#define FCTR_RFWM_8	(2 << 13) /*  Transfer Request when 8 valid stages */
 155#define FCTR_RFWM_16	(3 << 13) /*  Transfer Request when 16 valid stages */
 156#define FCTR_RFWM_32	(4 << 13) /*  Transfer Request when 32 valid stages */
 157#define FCTR_RFWM_64	(5 << 13) /*  Transfer Request when 64 valid stages */
 158#define FCTR_RFWM_128	(6 << 13) /*  Transfer Request when 128 valid stages */
 159#define FCTR_RFWM_256	(7 << 13) /*  Transfer Request when 256 valid stages */
 160#define FCTR_RFUA_MASK	GENMASK(12, 4) /* Receive FIFO Usable Area (0x40 = full) */
 161#define FCTR_RFUA_SHIFT	4
 162#define FCTR_RFUA(i)	((i) << FCTR_RFUA_SHIFT)
 163
 164/* STR */
 165#define STR_TFEMP	BIT(29) /* Transmit FIFO Empty */
 166#define STR_TDREQ	BIT(28) /* Transmit Data Transfer Request */
 167#define STR_TEOF	BIT(23) /* Frame Transmission End */
 168#define STR_TFSERR	BIT(21) /* Transmit Frame Synchronization Error */
 169#define STR_TFOVF	BIT(20) /* Transmit FIFO Overflow */
 170#define STR_TFUDF	BIT(19) /* Transmit FIFO Underflow */
 171#define STR_RFFUL	BIT(13) /* Receive FIFO Full */
 172#define STR_RDREQ	BIT(12) /* Receive Data Transfer Request */
 173#define STR_REOF	BIT(7)  /* Frame Reception End */
 174#define STR_RFSERR	BIT(5)  /* Receive Frame Synchronization Error */
 175#define STR_RFUDF	BIT(4)  /* Receive FIFO Underflow */
 176#define STR_RFOVF	BIT(3)  /* Receive FIFO Overflow */
 177
 178/* IER */
 179#define IER_TDMAE	BIT(31) /* Transmit Data DMA Transfer Req. Enable */
 180#define IER_TFEMPE	BIT(29) /* Transmit FIFO Empty Enable */
 181#define IER_TDREQE	BIT(28) /* Transmit Data Transfer Request Enable */
 182#define IER_TEOFE	BIT(23) /* Frame Transmission End Enable */
 183#define IER_TFSERRE	BIT(21) /* Transmit Frame Sync Error Enable */
 184#define IER_TFOVFE	BIT(20) /* Transmit FIFO Overflow Enable */
 185#define IER_TFUDFE	BIT(19) /* Transmit FIFO Underflow Enable */
 186#define IER_RDMAE	BIT(15) /* Receive Data DMA Transfer Req. Enable */
 187#define IER_RFFULE	BIT(13) /* Receive FIFO Full Enable */
 188#define IER_RDREQE	BIT(12) /* Receive Data Transfer Request Enable */
 189#define IER_REOFE	BIT(7)  /* Frame Reception End Enable */
 190#define IER_RFSERRE	BIT(5)  /* Receive Frame Sync Error Enable */
 191#define IER_RFUDFE	BIT(4)  /* Receive FIFO Underflow Enable */
 192#define IER_RFOVFE	BIT(3)  /* Receive FIFO Overflow Enable */
 193
 194
 195static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
 196{
 197	switch (reg_offs) {
 198	case TSCR:
 199	case RSCR:
 200		return ioread16(p->mapbase + reg_offs);
 201	default:
 202		return ioread32(p->mapbase + reg_offs);
 203	}
 204}
 205
 206static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
 207			   u32 value)
 208{
 209	switch (reg_offs) {
 210	case TSCR:
 211	case RSCR:
 212		iowrite16(value, p->mapbase + reg_offs);
 213		break;
 214	default:
 215		iowrite32(value, p->mapbase + reg_offs);
 216		break;
 217	}
 218}
 219
 220static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
 221				    u32 clr, u32 set)
 222{
 223	u32 mask = clr | set;
 224	u32 data;
 225
 226	data = sh_msiof_read(p, CTR);
 227	data &= ~clr;
 228	data |= set;
 229	sh_msiof_write(p, CTR, data);
 230
 231	return readl_poll_timeout_atomic(p->mapbase + CTR, data,
 232					 (data & mask) == set, 1, 100);
 233}
 234
 235static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
 236{
 237	struct sh_msiof_spi_priv *p = data;
 238
 239	/* just disable the interrupt and wake up */
 240	sh_msiof_write(p, IER, 0);
 241	complete(&p->done);
 242
 243	return IRQ_HANDLED;
 244}
 245
 246static void sh_msiof_spi_reset_regs(struct sh_msiof_spi_priv *p)
 247{
 248	u32 mask = CTR_TXRST | CTR_RXRST;
 249	u32 data;
 250
 251	data = sh_msiof_read(p, CTR);
 252	data |= mask;
 253	sh_msiof_write(p, CTR, data);
 254
 255	readl_poll_timeout_atomic(p->mapbase + CTR, data, !(data & mask), 1,
 256				  100);
 257}
 258
 259static const u32 sh_msiof_spi_div_array[] = {
 260	SCR_BRDV_DIV_1, SCR_BRDV_DIV_2,	 SCR_BRDV_DIV_4,
 261	SCR_BRDV_DIV_8,	SCR_BRDV_DIV_16, SCR_BRDV_DIV_32,
 262};
 263
 264static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
 265				      unsigned long parent_rate, u32 spi_hz)
 266{
 
 
 
 267	unsigned long div;
 268	u32 brps, scr;
 269	unsigned int div_pow = p->min_div_pow;
 270
 271	if (!spi_hz || !parent_rate) {
 272		WARN(1, "Invalid clock rate parameters %lu and %u\n",
 273		     parent_rate, spi_hz);
 274		return;
 275	}
 276
 277	div = DIV_ROUND_UP(parent_rate, spi_hz);
 278	if (div <= 1024) {
 279		/* SCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
 280		if (!div_pow && div <= 32 && div > 2)
 281			div_pow = 1;
 282
 283		if (div_pow)
 284			brps = (div + 1) >> div_pow;
 285		else
 286			brps = div;
 287
 288		for (; brps > 32; div_pow++)
 289			brps = (brps + 1) >> 1;
 290	} else {
 291		/* Set transfer rate composite divisor to 2^5 * 32 = 1024 */
 292		dev_err(&p->pdev->dev,
 293			"Requested SPI transfer rate %d is too low\n", spi_hz);
 294		div_pow = 5;
 295		brps = 32;
 296	}
 297
 298	scr = sh_msiof_spi_div_array[div_pow] | SCR_BRPS(brps);
 299	sh_msiof_write(p, TSCR, scr);
 
 
 300	if (!(p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
 301		sh_msiof_write(p, RSCR, scr);
 302}
 303
 304static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
 305{
 306	/*
 307	 * DTDL/SYNCDL bit	: p->info->dtdl or p->info->syncdl
 308	 * b'000		: 0
 309	 * b'001		: 100
 310	 * b'010		: 200
 311	 * b'011 (SYNCDL only)	: 300
 312	 * b'101		: 50
 313	 * b'110		: 150
 314	 */
 315	if (dtdl_or_syncdl % 100)
 316		return dtdl_or_syncdl / 100 + 5;
 317	else
 318		return dtdl_or_syncdl / 100;
 319}
 320
 321static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
 322{
 323	u32 val;
 324
 325	if (!p->info)
 326		return 0;
 327
 328	/* check if DTDL and SYNCDL is allowed value */
 329	if (p->info->dtdl > 200 || p->info->syncdl > 300) {
 330		dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
 331		return 0;
 332	}
 333
 334	/* check if the sum of DTDL and SYNCDL becomes an integer value  */
 335	if ((p->info->dtdl + p->info->syncdl) % 100) {
 336		dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
 337		return 0;
 338	}
 339
 340	val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
 341	val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;
 342
 343	return val;
 344}
 345
 346static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss,
 347				      u32 cpol, u32 cpha,
 348				      u32 tx_hi_z, u32 lsb_first, u32 cs_high)
 349{
 350	u32 tmp;
 351	int edge;
 352
 353	/*
 354	 * CPOL CPHA     TSCKIZ RSCKIZ TEDG REDG
 355	 *    0    0         10     10    1    1
 356	 *    0    1         10     10    0    0
 357	 *    1    0         11     11    0    0
 358	 *    1    1         11     11    1    1
 359	 */
 360	tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
 361	tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
 362	tmp |= lsb_first << MDR1_BITLSB_SHIFT;
 363	tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
 364	if (spi_controller_is_slave(p->ctlr)) {
 365		sh_msiof_write(p, TMDR1, tmp | TMDR1_PCON);
 366	} else {
 367		sh_msiof_write(p, TMDR1,
 368			       tmp | MDR1_TRMD | TMDR1_PCON |
 369			       (ss < MAX_SS ? ss : 0) << TMDR1_SYNCCH_SHIFT);
 370	}
 371	if (p->ctlr->flags & SPI_CONTROLLER_MUST_TX) {
 372		/* These bits are reserved if RX needs TX */
 373		tmp &= ~0x0000ffff;
 374	}
 375	sh_msiof_write(p, RMDR1, tmp);
 376
 377	tmp = 0;
 378	tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
 379	tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
 380
 381	edge = cpol ^ !cpha;
 382
 383	tmp |= edge << CTR_TEDG_SHIFT;
 384	tmp |= edge << CTR_REDG_SHIFT;
 385	tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
 386	sh_msiof_write(p, CTR, tmp);
 387}
 388
 389static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
 390				       const void *tx_buf, void *rx_buf,
 391				       u32 bits, u32 words)
 392{
 393	u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
 394
 395	if (tx_buf || (p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
 396		sh_msiof_write(p, TMDR2, dr2);
 397	else
 398		sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
 399
 400	if (rx_buf)
 401		sh_msiof_write(p, RMDR2, dr2);
 402}
 403
 404static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
 405{
 406	sh_msiof_write(p, STR,
 407		       sh_msiof_read(p, STR) & ~(STR_TDREQ | STR_RDREQ));
 408}
 409
 410static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
 411				      const void *tx_buf, int words, int fs)
 412{
 413	const u8 *buf_8 = tx_buf;
 414	int k;
 415
 416	for (k = 0; k < words; k++)
 417		sh_msiof_write(p, TFDR, buf_8[k] << fs);
 418}
 419
 420static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
 421				       const void *tx_buf, int words, int fs)
 422{
 423	const u16 *buf_16 = tx_buf;
 424	int k;
 425
 426	for (k = 0; k < words; k++)
 427		sh_msiof_write(p, TFDR, buf_16[k] << fs);
 428}
 429
 430static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
 431					const void *tx_buf, int words, int fs)
 432{
 433	const u16 *buf_16 = tx_buf;
 434	int k;
 435
 436	for (k = 0; k < words; k++)
 437		sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
 438}
 439
 440static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
 441				       const void *tx_buf, int words, int fs)
 442{
 443	const u32 *buf_32 = tx_buf;
 444	int k;
 445
 446	for (k = 0; k < words; k++)
 447		sh_msiof_write(p, TFDR, buf_32[k] << fs);
 448}
 449
 450static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
 451					const void *tx_buf, int words, int fs)
 452{
 453	const u32 *buf_32 = tx_buf;
 454	int k;
 455
 456	for (k = 0; k < words; k++)
 457		sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
 458}
 459
 460static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
 461					const void *tx_buf, int words, int fs)
 462{
 463	const u32 *buf_32 = tx_buf;
 464	int k;
 465
 466	for (k = 0; k < words; k++)
 467		sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
 468}
 469
 470static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
 471					 const void *tx_buf, int words, int fs)
 472{
 473	const u32 *buf_32 = tx_buf;
 474	int k;
 475
 476	for (k = 0; k < words; k++)
 477		sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
 478}
 479
 480static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
 481				     void *rx_buf, int words, int fs)
 482{
 483	u8 *buf_8 = rx_buf;
 484	int k;
 485
 486	for (k = 0; k < words; k++)
 487		buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
 488}
 489
 490static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
 491				      void *rx_buf, int words, int fs)
 492{
 493	u16 *buf_16 = rx_buf;
 494	int k;
 495
 496	for (k = 0; k < words; k++)
 497		buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
 498}
 499
 500static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
 501				       void *rx_buf, int words, int fs)
 502{
 503	u16 *buf_16 = rx_buf;
 504	int k;
 505
 506	for (k = 0; k < words; k++)
 507		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
 508}
 509
 510static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
 511				      void *rx_buf, int words, int fs)
 512{
 513	u32 *buf_32 = rx_buf;
 514	int k;
 515
 516	for (k = 0; k < words; k++)
 517		buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
 518}
 519
 520static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
 521				       void *rx_buf, int words, int fs)
 522{
 523	u32 *buf_32 = rx_buf;
 524	int k;
 525
 526	for (k = 0; k < words; k++)
 527		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
 528}
 529
 530static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
 531				       void *rx_buf, int words, int fs)
 532{
 533	u32 *buf_32 = rx_buf;
 534	int k;
 535
 536	for (k = 0; k < words; k++)
 537		buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
 538}
 539
 540static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
 541				       void *rx_buf, int words, int fs)
 542{
 543	u32 *buf_32 = rx_buf;
 544	int k;
 545
 546	for (k = 0; k < words; k++)
 547		put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
 548}
 549
 550static int sh_msiof_spi_setup(struct spi_device *spi)
 551{
 552	struct sh_msiof_spi_priv *p =
 553		spi_controller_get_devdata(spi->controller);
 554	u32 clr, set, tmp;
 555
 556	if (spi->cs_gpiod || spi_controller_is_slave(p->ctlr))
 557		return 0;
 558
 559	if (p->native_cs_inited &&
 560	    (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
 561		return 0;
 562
 563	/* Configure native chip select mode/polarity early */
 564	clr = MDR1_SYNCMD_MASK;
 565	set = MDR1_SYNCMD_SPI;
 566	if (spi->mode & SPI_CS_HIGH)
 567		clr |= BIT(MDR1_SYNCAC_SHIFT);
 568	else
 569		set |= BIT(MDR1_SYNCAC_SHIFT);
 570	pm_runtime_get_sync(&p->pdev->dev);
 571	tmp = sh_msiof_read(p, TMDR1) & ~clr;
 572	sh_msiof_write(p, TMDR1, tmp | set | MDR1_TRMD | TMDR1_PCON);
 573	tmp = sh_msiof_read(p, RMDR1) & ~clr;
 574	sh_msiof_write(p, RMDR1, tmp | set);
 575	pm_runtime_put(&p->pdev->dev);
 576	p->native_cs_high = spi->mode & SPI_CS_HIGH;
 577	p->native_cs_inited = true;
 578	return 0;
 579}
 580
 581static int sh_msiof_prepare_message(struct spi_controller *ctlr,
 582				    struct spi_message *msg)
 583{
 584	struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
 585	const struct spi_device *spi = msg->spi;
 586	u32 ss, cs_high;
 587
 588	/* Configure pins before asserting CS */
 589	if (spi->cs_gpiod) {
 590		ss = p->unused_ss;
 591		cs_high = p->native_cs_high;
 592	} else {
 593		ss = spi->chip_select;
 594		cs_high = !!(spi->mode & SPI_CS_HIGH);
 595	}
 596	sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL),
 597				  !!(spi->mode & SPI_CPHA),
 598				  !!(spi->mode & SPI_3WIRE),
 599				  !!(spi->mode & SPI_LSB_FIRST), cs_high);
 600	return 0;
 601}
 602
 603static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
 604{
 605	bool slave = spi_controller_is_slave(p->ctlr);
 606	int ret = 0;
 607
 608	/* setup clock and rx/tx signals */
 609	if (!slave)
 610		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
 611	if (rx_buf && !ret)
 612		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
 613	if (!ret)
 614		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
 615
 616	/* start by setting frame bit */
 617	if (!ret && !slave)
 618		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
 619
 620	return ret;
 621}
 622
 623static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
 624{
 625	bool slave = spi_controller_is_slave(p->ctlr);
 626	int ret = 0;
 627
 628	/* shut down frame, rx/tx and clock signals */
 629	if (!slave)
 630		ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
 631	if (!ret)
 632		ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
 633	if (rx_buf && !ret)
 634		ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
 635	if (!ret && !slave)
 636		ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
 637
 638	return ret;
 639}
 640
 641static int sh_msiof_slave_abort(struct spi_controller *ctlr)
 642{
 643	struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
 644
 645	p->slave_aborted = true;
 646	complete(&p->done);
 647	complete(&p->done_txdma);
 648	return 0;
 649}
 650
 651static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p,
 652					struct completion *x)
 653{
 654	if (spi_controller_is_slave(p->ctlr)) {
 655		if (wait_for_completion_interruptible(x) ||
 656		    p->slave_aborted) {
 657			dev_dbg(&p->pdev->dev, "interrupted\n");
 658			return -EINTR;
 659		}
 660	} else {
 661		if (!wait_for_completion_timeout(x, HZ)) {
 662			dev_err(&p->pdev->dev, "timeout\n");
 663			return -ETIMEDOUT;
 664		}
 665	}
 666
 667	return 0;
 668}
 669
 670static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
 671				  void (*tx_fifo)(struct sh_msiof_spi_priv *,
 672						  const void *, int, int),
 673				  void (*rx_fifo)(struct sh_msiof_spi_priv *,
 674						  void *, int, int),
 675				  const void *tx_buf, void *rx_buf,
 676				  int words, int bits)
 677{
 678	int fifo_shift;
 679	int ret;
 680
 681	/* limit maximum word transfer to rx/tx fifo size */
 682	if (tx_buf)
 683		words = min_t(int, words, p->tx_fifo_size);
 684	if (rx_buf)
 685		words = min_t(int, words, p->rx_fifo_size);
 686
 687	/* the fifo contents need shifting */
 688	fifo_shift = 32 - bits;
 689
 690	/* default FIFO watermarks for PIO */
 691	sh_msiof_write(p, FCTR, 0);
 692
 693	/* setup msiof transfer mode registers */
 694	sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
 695	sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
 696
 697	/* write tx fifo */
 698	if (tx_buf)
 699		tx_fifo(p, tx_buf, words, fifo_shift);
 700
 701	reinit_completion(&p->done);
 702	p->slave_aborted = false;
 703
 704	ret = sh_msiof_spi_start(p, rx_buf);
 705	if (ret) {
 706		dev_err(&p->pdev->dev, "failed to start hardware\n");
 707		goto stop_ier;
 708	}
 709
 710	/* wait for tx fifo to be emptied / rx fifo to be filled */
 711	ret = sh_msiof_wait_for_completion(p, &p->done);
 712	if (ret)
 713		goto stop_reset;
 714
 715	/* read rx fifo */
 716	if (rx_buf)
 717		rx_fifo(p, rx_buf, words, fifo_shift);
 718
 719	/* clear status bits */
 720	sh_msiof_reset_str(p);
 721
 722	ret = sh_msiof_spi_stop(p, rx_buf);
 723	if (ret) {
 724		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
 725		return ret;
 726	}
 727
 728	return words;
 729
 730stop_reset:
 731	sh_msiof_reset_str(p);
 732	sh_msiof_spi_stop(p, rx_buf);
 733stop_ier:
 734	sh_msiof_write(p, IER, 0);
 735	return ret;
 736}
 737
 738static void sh_msiof_dma_complete(void *arg)
 739{
 740	complete(arg);
 741}
 742
 743static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
 744			     void *rx, unsigned int len)
 745{
 746	u32 ier_bits = 0;
 747	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
 748	dma_cookie_t cookie;
 749	int ret;
 750
 751	/* First prepare and submit the DMA request(s), as this may fail */
 752	if (rx) {
 753		ier_bits |= IER_RDREQE | IER_RDMAE;
 754		desc_rx = dmaengine_prep_slave_single(p->ctlr->dma_rx,
 755					p->rx_dma_addr, len, DMA_DEV_TO_MEM,
 756					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 757		if (!desc_rx)
 758			return -EAGAIN;
 759
 760		desc_rx->callback = sh_msiof_dma_complete;
 761		desc_rx->callback_param = &p->done;
 762		cookie = dmaengine_submit(desc_rx);
 763		if (dma_submit_error(cookie))
 764			return cookie;
 765	}
 766
 767	if (tx) {
 768		ier_bits |= IER_TDREQE | IER_TDMAE;
 769		dma_sync_single_for_device(p->ctlr->dma_tx->device->dev,
 770					   p->tx_dma_addr, len, DMA_TO_DEVICE);
 771		desc_tx = dmaengine_prep_slave_single(p->ctlr->dma_tx,
 772					p->tx_dma_addr, len, DMA_MEM_TO_DEV,
 773					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 774		if (!desc_tx) {
 775			ret = -EAGAIN;
 776			goto no_dma_tx;
 777		}
 778
 779		desc_tx->callback = sh_msiof_dma_complete;
 780		desc_tx->callback_param = &p->done_txdma;
 781		cookie = dmaengine_submit(desc_tx);
 782		if (dma_submit_error(cookie)) {
 783			ret = cookie;
 784			goto no_dma_tx;
 785		}
 786	}
 787
 788	/* 1 stage FIFO watermarks for DMA */
 789	sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
 790
 791	/* setup msiof transfer mode registers (32-bit words) */
 792	sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
 793
 794	sh_msiof_write(p, IER, ier_bits);
 795
 796	reinit_completion(&p->done);
 797	if (tx)
 798		reinit_completion(&p->done_txdma);
 799	p->slave_aborted = false;
 800
 801	/* Now start DMA */
 802	if (rx)
 803		dma_async_issue_pending(p->ctlr->dma_rx);
 804	if (tx)
 805		dma_async_issue_pending(p->ctlr->dma_tx);
 806
 807	ret = sh_msiof_spi_start(p, rx);
 808	if (ret) {
 809		dev_err(&p->pdev->dev, "failed to start hardware\n");
 810		goto stop_dma;
 811	}
 812
 813	if (tx) {
 814		/* wait for tx DMA completion */
 815		ret = sh_msiof_wait_for_completion(p, &p->done_txdma);
 816		if (ret)
 817			goto stop_reset;
 818	}
 819
 820	if (rx) {
 821		/* wait for rx DMA completion */
 822		ret = sh_msiof_wait_for_completion(p, &p->done);
 823		if (ret)
 824			goto stop_reset;
 825
 826		sh_msiof_write(p, IER, 0);
 827	} else {
 828		/* wait for tx fifo to be emptied */
 829		sh_msiof_write(p, IER, IER_TEOFE);
 830		ret = sh_msiof_wait_for_completion(p, &p->done);
 831		if (ret)
 832			goto stop_reset;
 833	}
 834
 835	/* clear status bits */
 836	sh_msiof_reset_str(p);
 837
 838	ret = sh_msiof_spi_stop(p, rx);
 839	if (ret) {
 840		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
 841		return ret;
 842	}
 843
 844	if (rx)
 845		dma_sync_single_for_cpu(p->ctlr->dma_rx->device->dev,
 846					p->rx_dma_addr, len, DMA_FROM_DEVICE);
 847
 848	return 0;
 849
 850stop_reset:
 851	sh_msiof_reset_str(p);
 852	sh_msiof_spi_stop(p, rx);
 853stop_dma:
 854	if (tx)
 855		dmaengine_terminate_all(p->ctlr->dma_tx);
 856no_dma_tx:
 857	if (rx)
 858		dmaengine_terminate_all(p->ctlr->dma_rx);
 859	sh_msiof_write(p, IER, 0);
 860	return ret;
 861}
 862
 863static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
 864{
 865	/* src or dst can be unaligned, but not both */
 866	if ((unsigned long)src & 3) {
 867		while (words--) {
 868			*dst++ = swab32(get_unaligned(src));
 869			src++;
 870		}
 871	} else if ((unsigned long)dst & 3) {
 872		while (words--) {
 873			put_unaligned(swab32(*src++), dst);
 874			dst++;
 875		}
 876	} else {
 877		while (words--)
 878			*dst++ = swab32(*src++);
 879	}
 880}
 881
 882static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
 883{
 884	/* src or dst can be unaligned, but not both */
 885	if ((unsigned long)src & 3) {
 886		while (words--) {
 887			*dst++ = swahw32(get_unaligned(src));
 888			src++;
 889		}
 890	} else if ((unsigned long)dst & 3) {
 891		while (words--) {
 892			put_unaligned(swahw32(*src++), dst);
 893			dst++;
 894		}
 895	} else {
 896		while (words--)
 897			*dst++ = swahw32(*src++);
 898	}
 899}
 900
 901static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
 902{
 903	memcpy(dst, src, words * 4);
 904}
 905
 906static int sh_msiof_transfer_one(struct spi_controller *ctlr,
 907				 struct spi_device *spi,
 908				 struct spi_transfer *t)
 909{
 910	struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
 911	void (*copy32)(u32 *, const u32 *, unsigned int);
 912	void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
 913	void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
 914	const void *tx_buf = t->tx_buf;
 915	void *rx_buf = t->rx_buf;
 916	unsigned int len = t->len;
 917	unsigned int bits = t->bits_per_word;
 918	unsigned int bytes_per_word;
 919	unsigned int words;
 920	int n;
 921	bool swab;
 922	int ret;
 923
 924	/* reset registers */
 925	sh_msiof_spi_reset_regs(p);
 926
 927	/* setup clocks (clock already enabled in chipselect()) */
 928	if (!spi_controller_is_slave(p->ctlr))
 929		sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
 930
 931	while (ctlr->dma_tx && len > 15) {
 932		/*
 933		 *  DMA supports 32-bit words only, hence pack 8-bit and 16-bit
 934		 *  words, with byte resp. word swapping.
 935		 */
 936		unsigned int l = 0;
 937
 938		if (tx_buf)
 939			l = min(round_down(len, 4), p->tx_fifo_size * 4);
 940		if (rx_buf)
 941			l = min(round_down(len, 4), p->rx_fifo_size * 4);
 942
 943		if (bits <= 8) {
 944			copy32 = copy_bswap32;
 945		} else if (bits <= 16) {
 946			copy32 = copy_wswap32;
 947		} else {
 948			copy32 = copy_plain32;
 949		}
 950
 951		if (tx_buf)
 952			copy32(p->tx_dma_page, tx_buf, l / 4);
 953
 954		ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
 955		if (ret == -EAGAIN) {
 956			dev_warn_once(&p->pdev->dev,
 957				"DMA not available, falling back to PIO\n");
 958			break;
 959		}
 960		if (ret)
 961			return ret;
 962
 963		if (rx_buf) {
 964			copy32(rx_buf, p->rx_dma_page, l / 4);
 965			rx_buf += l;
 966		}
 967		if (tx_buf)
 968			tx_buf += l;
 969
 970		len -= l;
 971		if (!len)
 972			return 0;
 973	}
 974
 975	if (bits <= 8 && len > 15) {
 976		bits = 32;
 977		swab = true;
 978	} else {
 979		swab = false;
 980	}
 981
 982	/* setup bytes per word and fifo read/write functions */
 983	if (bits <= 8) {
 984		bytes_per_word = 1;
 985		tx_fifo = sh_msiof_spi_write_fifo_8;
 986		rx_fifo = sh_msiof_spi_read_fifo_8;
 987	} else if (bits <= 16) {
 988		bytes_per_word = 2;
 989		if ((unsigned long)tx_buf & 0x01)
 990			tx_fifo = sh_msiof_spi_write_fifo_16u;
 991		else
 992			tx_fifo = sh_msiof_spi_write_fifo_16;
 993
 994		if ((unsigned long)rx_buf & 0x01)
 995			rx_fifo = sh_msiof_spi_read_fifo_16u;
 996		else
 997			rx_fifo = sh_msiof_spi_read_fifo_16;
 998	} else if (swab) {
 999		bytes_per_word = 4;
1000		if ((unsigned long)tx_buf & 0x03)
1001			tx_fifo = sh_msiof_spi_write_fifo_s32u;
1002		else
1003			tx_fifo = sh_msiof_spi_write_fifo_s32;
1004
1005		if ((unsigned long)rx_buf & 0x03)
1006			rx_fifo = sh_msiof_spi_read_fifo_s32u;
1007		else
1008			rx_fifo = sh_msiof_spi_read_fifo_s32;
1009	} else {
1010		bytes_per_word = 4;
1011		if ((unsigned long)tx_buf & 0x03)
1012			tx_fifo = sh_msiof_spi_write_fifo_32u;
1013		else
1014			tx_fifo = sh_msiof_spi_write_fifo_32;
1015
1016		if ((unsigned long)rx_buf & 0x03)
1017			rx_fifo = sh_msiof_spi_read_fifo_32u;
1018		else
1019			rx_fifo = sh_msiof_spi_read_fifo_32;
1020	}
1021
1022	/* transfer in fifo sized chunks */
1023	words = len / bytes_per_word;
1024
1025	while (words > 0) {
1026		n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
1027					   words, bits);
1028		if (n < 0)
1029			return n;
1030
1031		if (tx_buf)
1032			tx_buf += n * bytes_per_word;
1033		if (rx_buf)
1034			rx_buf += n * bytes_per_word;
1035		words -= n;
1036
1037		if (words == 0 && (len % bytes_per_word)) {
1038			words = len % bytes_per_word;
1039			bits = t->bits_per_word;
1040			bytes_per_word = 1;
1041			tx_fifo = sh_msiof_spi_write_fifo_8;
1042			rx_fifo = sh_msiof_spi_read_fifo_8;
1043		}
1044	}
1045
1046	return 0;
1047}
1048
1049static const struct sh_msiof_chipdata sh_data = {
1050	.bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32),
1051	.tx_fifo_size = 64,
1052	.rx_fifo_size = 64,
1053	.ctlr_flags = 0,
1054	.min_div_pow = 0,
1055};
1056
1057static const struct sh_msiof_chipdata rcar_gen2_data = {
1058	.bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1059			      SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1060	.tx_fifo_size = 64,
1061	.rx_fifo_size = 64,
1062	.ctlr_flags = SPI_CONTROLLER_MUST_TX,
1063	.min_div_pow = 0,
1064};
1065
1066static const struct sh_msiof_chipdata rcar_gen3_data = {
1067	.bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1068			      SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1069	.tx_fifo_size = 64,
1070	.rx_fifo_size = 64,
1071	.ctlr_flags = SPI_CONTROLLER_MUST_TX,
1072	.min_div_pow = 1,
1073};
1074
1075static const struct of_device_id sh_msiof_match[] = {
1076	{ .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
1077	{ .compatible = "renesas,msiof-r8a7743",   .data = &rcar_gen2_data },
1078	{ .compatible = "renesas,msiof-r8a7745",   .data = &rcar_gen2_data },
1079	{ .compatible = "renesas,msiof-r8a7790",   .data = &rcar_gen2_data },
1080	{ .compatible = "renesas,msiof-r8a7791",   .data = &rcar_gen2_data },
1081	{ .compatible = "renesas,msiof-r8a7792",   .data = &rcar_gen2_data },
1082	{ .compatible = "renesas,msiof-r8a7793",   .data = &rcar_gen2_data },
1083	{ .compatible = "renesas,msiof-r8a7794",   .data = &rcar_gen2_data },
1084	{ .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
1085	{ .compatible = "renesas,msiof-r8a7796",   .data = &rcar_gen3_data },
1086	{ .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
 
1087	{ .compatible = "renesas,sh-msiof",        .data = &sh_data }, /* Deprecated */
1088	{},
1089};
1090MODULE_DEVICE_TABLE(of, sh_msiof_match);
1091
1092#ifdef CONFIG_OF
1093static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1094{
1095	struct sh_msiof_spi_info *info;
1096	struct device_node *np = dev->of_node;
1097	u32 num_cs = 1;
1098
1099	info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1100	if (!info)
1101		return NULL;
1102
1103	info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE
1104							    : MSIOF_SPI_MASTER;
1105
1106	/* Parse the MSIOF properties */
1107	if (info->mode == MSIOF_SPI_MASTER)
1108		of_property_read_u32(np, "num-cs", &num_cs);
1109	of_property_read_u32(np, "renesas,tx-fifo-size",
1110					&info->tx_fifo_override);
1111	of_property_read_u32(np, "renesas,rx-fifo-size",
1112					&info->rx_fifo_override);
1113	of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1114	of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1115
1116	info->num_chipselect = num_cs;
1117
1118	return info;
1119}
1120#else
1121static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1122{
1123	return NULL;
1124}
1125#endif
1126
1127static int sh_msiof_get_cs_gpios(struct sh_msiof_spi_priv *p)
1128{
1129	struct device *dev = &p->pdev->dev;
1130	unsigned int used_ss_mask = 0;
1131	unsigned int cs_gpios = 0;
1132	unsigned int num_cs, i;
1133	int ret;
1134
1135	ret = gpiod_count(dev, "cs");
1136	if (ret <= 0)
1137		return 0;
1138
1139	num_cs = max_t(unsigned int, ret, p->ctlr->num_chipselect);
1140	for (i = 0; i < num_cs; i++) {
1141		struct gpio_desc *gpiod;
1142
1143		gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1144		if (!IS_ERR(gpiod)) {
1145			devm_gpiod_put(dev, gpiod);
1146			cs_gpios++;
1147			continue;
1148		}
1149
1150		if (PTR_ERR(gpiod) != -ENOENT)
1151			return PTR_ERR(gpiod);
1152
1153		if (i >= MAX_SS) {
1154			dev_err(dev, "Invalid native chip select %d\n", i);
1155			return -EINVAL;
1156		}
1157		used_ss_mask |= BIT(i);
1158	}
1159	p->unused_ss = ffz(used_ss_mask);
1160	if (cs_gpios && p->unused_ss >= MAX_SS) {
1161		dev_err(dev, "No unused native chip select available\n");
1162		return -EINVAL;
1163	}
1164	return 0;
1165}
1166
1167static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1168	enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1169{
1170	dma_cap_mask_t mask;
1171	struct dma_chan *chan;
1172	struct dma_slave_config cfg;
1173	int ret;
1174
1175	dma_cap_zero(mask);
1176	dma_cap_set(DMA_SLAVE, mask);
1177
1178	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1179				(void *)(unsigned long)id, dev,
1180				dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1181	if (!chan) {
1182		dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1183		return NULL;
1184	}
1185
1186	memset(&cfg, 0, sizeof(cfg));
1187	cfg.direction = dir;
1188	if (dir == DMA_MEM_TO_DEV) {
1189		cfg.dst_addr = port_addr;
1190		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1191	} else {
1192		cfg.src_addr = port_addr;
1193		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1194	}
1195
1196	ret = dmaengine_slave_config(chan, &cfg);
1197	if (ret) {
1198		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1199		dma_release_channel(chan);
1200		return NULL;
1201	}
1202
1203	return chan;
1204}
1205
1206static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1207{
1208	struct platform_device *pdev = p->pdev;
1209	struct device *dev = &pdev->dev;
1210	const struct sh_msiof_spi_info *info = p->info;
1211	unsigned int dma_tx_id, dma_rx_id;
1212	const struct resource *res;
1213	struct spi_controller *ctlr;
1214	struct device *tx_dev, *rx_dev;
1215
1216	if (dev->of_node) {
1217		/* In the OF case we will get the slave IDs from the DT */
1218		dma_tx_id = 0;
1219		dma_rx_id = 0;
1220	} else if (info && info->dma_tx_id && info->dma_rx_id) {
1221		dma_tx_id = info->dma_tx_id;
1222		dma_rx_id = info->dma_rx_id;
1223	} else {
1224		/* The driver assumes no error */
1225		return 0;
1226	}
1227
1228	/* The DMA engine uses the second register set, if present */
1229	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1230	if (!res)
1231		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1232
1233	ctlr = p->ctlr;
1234	ctlr->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1235						 dma_tx_id, res->start + TFDR);
1236	if (!ctlr->dma_tx)
1237		return -ENODEV;
1238
1239	ctlr->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1240						 dma_rx_id, res->start + RFDR);
1241	if (!ctlr->dma_rx)
1242		goto free_tx_chan;
1243
1244	p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1245	if (!p->tx_dma_page)
1246		goto free_rx_chan;
1247
1248	p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1249	if (!p->rx_dma_page)
1250		goto free_tx_page;
1251
1252	tx_dev = ctlr->dma_tx->device->dev;
1253	p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1254					DMA_TO_DEVICE);
1255	if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1256		goto free_rx_page;
1257
1258	rx_dev = ctlr->dma_rx->device->dev;
1259	p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1260					DMA_FROM_DEVICE);
1261	if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1262		goto unmap_tx_page;
1263
1264	dev_info(dev, "DMA available");
1265	return 0;
1266
1267unmap_tx_page:
1268	dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1269free_rx_page:
1270	free_page((unsigned long)p->rx_dma_page);
1271free_tx_page:
1272	free_page((unsigned long)p->tx_dma_page);
1273free_rx_chan:
1274	dma_release_channel(ctlr->dma_rx);
1275free_tx_chan:
1276	dma_release_channel(ctlr->dma_tx);
1277	ctlr->dma_tx = NULL;
1278	return -ENODEV;
1279}
1280
1281static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1282{
1283	struct spi_controller *ctlr = p->ctlr;
1284
1285	if (!ctlr->dma_tx)
1286		return;
1287
1288	dma_unmap_single(ctlr->dma_rx->device->dev, p->rx_dma_addr, PAGE_SIZE,
1289			 DMA_FROM_DEVICE);
1290	dma_unmap_single(ctlr->dma_tx->device->dev, p->tx_dma_addr, PAGE_SIZE,
1291			 DMA_TO_DEVICE);
1292	free_page((unsigned long)p->rx_dma_page);
1293	free_page((unsigned long)p->tx_dma_page);
1294	dma_release_channel(ctlr->dma_rx);
1295	dma_release_channel(ctlr->dma_tx);
1296}
1297
1298static int sh_msiof_spi_probe(struct platform_device *pdev)
1299{
1300	struct spi_controller *ctlr;
1301	const struct sh_msiof_chipdata *chipdata;
1302	struct sh_msiof_spi_info *info;
1303	struct sh_msiof_spi_priv *p;
 
1304	int i;
1305	int ret;
1306
1307	chipdata = of_device_get_match_data(&pdev->dev);
1308	if (chipdata) {
1309		info = sh_msiof_spi_parse_dt(&pdev->dev);
1310	} else {
1311		chipdata = (const void *)pdev->id_entry->driver_data;
1312		info = dev_get_platdata(&pdev->dev);
1313	}
1314
1315	if (!info) {
1316		dev_err(&pdev->dev, "failed to obtain device info\n");
1317		return -ENXIO;
1318	}
1319
1320	if (info->mode == MSIOF_SPI_SLAVE)
1321		ctlr = spi_alloc_slave(&pdev->dev,
1322				       sizeof(struct sh_msiof_spi_priv));
1323	else
1324		ctlr = spi_alloc_master(&pdev->dev,
1325					sizeof(struct sh_msiof_spi_priv));
1326	if (ctlr == NULL)
1327		return -ENOMEM;
1328
1329	p = spi_controller_get_devdata(ctlr);
1330
1331	platform_set_drvdata(pdev, p);
1332	p->ctlr = ctlr;
1333	p->info = info;
1334	p->min_div_pow = chipdata->min_div_pow;
1335
1336	init_completion(&p->done);
1337	init_completion(&p->done_txdma);
1338
1339	p->clk = devm_clk_get(&pdev->dev, NULL);
1340	if (IS_ERR(p->clk)) {
1341		dev_err(&pdev->dev, "cannot get clock\n");
1342		ret = PTR_ERR(p->clk);
1343		goto err1;
1344	}
1345
1346	i = platform_get_irq(pdev, 0);
1347	if (i < 0) {
1348		ret = i;
1349		goto err1;
1350	}
1351
1352	p->mapbase = devm_platform_ioremap_resource(pdev, 0);
1353	if (IS_ERR(p->mapbase)) {
1354		ret = PTR_ERR(p->mapbase);
1355		goto err1;
1356	}
1357
1358	ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1359			       dev_name(&pdev->dev), p);
1360	if (ret) {
1361		dev_err(&pdev->dev, "unable to request irq\n");
1362		goto err1;
1363	}
1364
1365	p->pdev = pdev;
1366	pm_runtime_enable(&pdev->dev);
1367
1368	/* Platform data may override FIFO sizes */
1369	p->tx_fifo_size = chipdata->tx_fifo_size;
1370	p->rx_fifo_size = chipdata->rx_fifo_size;
1371	if (p->info->tx_fifo_override)
1372		p->tx_fifo_size = p->info->tx_fifo_override;
1373	if (p->info->rx_fifo_override)
1374		p->rx_fifo_size = p->info->rx_fifo_override;
1375
1376	/* Setup GPIO chip selects */
1377	ctlr->num_chipselect = p->info->num_chipselect;
1378	ret = sh_msiof_get_cs_gpios(p);
1379	if (ret)
1380		goto err1;
1381
1382	/* init controller code */
1383	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1384	ctlr->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
 
 
 
1385	ctlr->flags = chipdata->ctlr_flags;
1386	ctlr->bus_num = pdev->id;
 
1387	ctlr->dev.of_node = pdev->dev.of_node;
1388	ctlr->setup = sh_msiof_spi_setup;
1389	ctlr->prepare_message = sh_msiof_prepare_message;
1390	ctlr->slave_abort = sh_msiof_slave_abort;
1391	ctlr->bits_per_word_mask = chipdata->bits_per_word_mask;
1392	ctlr->auto_runtime_pm = true;
1393	ctlr->transfer_one = sh_msiof_transfer_one;
1394	ctlr->use_gpio_descriptors = true;
 
1395
1396	ret = sh_msiof_request_dma(p);
1397	if (ret < 0)
1398		dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1399
1400	ret = devm_spi_register_controller(&pdev->dev, ctlr);
1401	if (ret < 0) {
1402		dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1403		goto err2;
1404	}
1405
1406	return 0;
1407
1408 err2:
1409	sh_msiof_release_dma(p);
1410	pm_runtime_disable(&pdev->dev);
1411 err1:
1412	spi_controller_put(ctlr);
1413	return ret;
1414}
1415
1416static int sh_msiof_spi_remove(struct platform_device *pdev)
1417{
1418	struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1419
1420	sh_msiof_release_dma(p);
1421	pm_runtime_disable(&pdev->dev);
1422	return 0;
1423}
1424
1425static const struct platform_device_id spi_driver_ids[] = {
1426	{ "spi_sh_msiof",	(kernel_ulong_t)&sh_data },
1427	{},
1428};
1429MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1430
1431#ifdef CONFIG_PM_SLEEP
1432static int sh_msiof_spi_suspend(struct device *dev)
1433{
1434	struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
1435
1436	return spi_controller_suspend(p->ctlr);
1437}
1438
1439static int sh_msiof_spi_resume(struct device *dev)
1440{
1441	struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
1442
1443	return spi_controller_resume(p->ctlr);
1444}
1445
1446static SIMPLE_DEV_PM_OPS(sh_msiof_spi_pm_ops, sh_msiof_spi_suspend,
1447			 sh_msiof_spi_resume);
1448#define DEV_PM_OPS	&sh_msiof_spi_pm_ops
1449#else
1450#define DEV_PM_OPS	NULL
1451#endif /* CONFIG_PM_SLEEP */
1452
1453static struct platform_driver sh_msiof_spi_drv = {
1454	.probe		= sh_msiof_spi_probe,
1455	.remove		= sh_msiof_spi_remove,
1456	.id_table	= spi_driver_ids,
1457	.driver		= {
1458		.name		= "spi_sh_msiof",
1459		.pm		= DEV_PM_OPS,
1460		.of_match_table = of_match_ptr(sh_msiof_match),
1461	},
1462};
1463module_platform_driver(sh_msiof_spi_drv);
1464
1465MODULE_DESCRIPTION("SuperH MSIOF SPI Controller Interface Driver");
1466MODULE_AUTHOR("Magnus Damm");
1467MODULE_LICENSE("GPL v2");
1468MODULE_ALIAS("platform:spi_sh_msiof");