Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * SuperH MSIOF SPI Controller Interface
4 *
5 * Copyright (c) 2009 Magnus Damm
6 * Copyright (C) 2014 Renesas Electronics Corporation
7 * Copyright (C) 2014-2017 Glider bvba
8 */
9
10#include <linux/bitmap.h>
11#include <linux/clk.h>
12#include <linux/completion.h>
13#include <linux/delay.h>
14#include <linux/dma-mapping.h>
15#include <linux/dmaengine.h>
16#include <linux/err.h>
17#include <linux/interrupt.h>
18#include <linux/io.h>
19#include <linux/iopoll.h>
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/of.h>
23#include <linux/of_device.h>
24#include <linux/platform_device.h>
25#include <linux/pm_runtime.h>
26#include <linux/sh_dma.h>
27
28#include <linux/spi/sh_msiof.h>
29#include <linux/spi/spi.h>
30
31#include <asm/unaligned.h>
32
33struct sh_msiof_chipdata {
34 u32 bits_per_word_mask;
35 u16 tx_fifo_size;
36 u16 rx_fifo_size;
37 u16 ctlr_flags;
38 u16 min_div_pow;
39};
40
41struct sh_msiof_spi_priv {
42 struct spi_controller *ctlr;
43 void __iomem *mapbase;
44 struct clk *clk;
45 struct platform_device *pdev;
46 struct sh_msiof_spi_info *info;
47 struct completion done;
48 struct completion done_txdma;
49 unsigned int tx_fifo_size;
50 unsigned int rx_fifo_size;
51 unsigned int min_div_pow;
52 void *tx_dma_page;
53 void *rx_dma_page;
54 dma_addr_t tx_dma_addr;
55 dma_addr_t rx_dma_addr;
56 bool native_cs_inited;
57 bool native_cs_high;
58 bool slave_aborted;
59};
60
61#define MAX_SS 3 /* Maximum number of native chip selects */
62
63#define SITMDR1 0x00 /* Transmit Mode Register 1 */
64#define SITMDR2 0x04 /* Transmit Mode Register 2 */
65#define SITMDR3 0x08 /* Transmit Mode Register 3 */
66#define SIRMDR1 0x10 /* Receive Mode Register 1 */
67#define SIRMDR2 0x14 /* Receive Mode Register 2 */
68#define SIRMDR3 0x18 /* Receive Mode Register 3 */
69#define SITSCR 0x20 /* Transmit Clock Select Register */
70#define SIRSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */
71#define SICTR 0x28 /* Control Register */
72#define SIFCTR 0x30 /* FIFO Control Register */
73#define SISTR 0x40 /* Status Register */
74#define SIIER 0x44 /* Interrupt Enable Register */
75#define SITDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */
76#define SITDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */
77#define SITFDR 0x50 /* Transmit FIFO Data Register */
78#define SIRDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */
79#define SIRDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */
80#define SIRFDR 0x60 /* Receive FIFO Data Register */
81
82/* SITMDR1 and SIRMDR1 */
83#define SIMDR1_TRMD BIT(31) /* Transfer Mode (1 = Master mode) */
84#define SIMDR1_SYNCMD_MASK GENMASK(29, 28) /* SYNC Mode */
85#define SIMDR1_SYNCMD_SPI (2 << 28) /* Level mode/SPI */
86#define SIMDR1_SYNCMD_LR (3 << 28) /* L/R mode */
87#define SIMDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */
88#define SIMDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */
89#define SIMDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */
90#define SIMDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */
91#define SIMDR1_FLD_MASK GENMASK(3, 2) /* Frame Sync Signal Interval (0-3) */
92#define SIMDR1_FLD_SHIFT 2
93#define SIMDR1_XXSTP BIT(0) /* Transmission/Reception Stop on FIFO */
94/* SITMDR1 */
95#define SITMDR1_PCON BIT(30) /* Transfer Signal Connection */
96#define SITMDR1_SYNCCH_MASK GENMASK(27, 26) /* Sync Signal Channel Select */
97#define SITMDR1_SYNCCH_SHIFT 26 /* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */
98
99/* SITMDR2 and SIRMDR2 */
100#define SIMDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
101#define SIMDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
102#define SIMDR2_GRPMASK1 BIT(0) /* Group Output Mask 1 (SH, A1) */
103
104/* SITSCR and SIRSCR */
105#define SISCR_BRPS_MASK GENMASK(12, 8) /* Prescaler Setting (1-32) */
106#define SISCR_BRPS(i) (((i) - 1) << 8)
107#define SISCR_BRDV_MASK GENMASK(2, 0) /* Baud Rate Generator's Division Ratio */
108#define SISCR_BRDV_DIV_2 0
109#define SISCR_BRDV_DIV_4 1
110#define SISCR_BRDV_DIV_8 2
111#define SISCR_BRDV_DIV_16 3
112#define SISCR_BRDV_DIV_32 4
113#define SISCR_BRDV_DIV_1 7
114
115/* SICTR */
116#define SICTR_TSCKIZ_MASK GENMASK(31, 30) /* Transmit Clock I/O Polarity Select */
117#define SICTR_TSCKIZ_SCK BIT(31) /* Disable SCK when TX disabled */
118#define SICTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */
119#define SICTR_RSCKIZ_MASK GENMASK(29, 28) /* Receive Clock Polarity Select */
120#define SICTR_RSCKIZ_SCK BIT(29) /* Must match CTR_TSCKIZ_SCK */
121#define SICTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */
122#define SICTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */
123#define SICTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */
124#define SICTR_TXDIZ_MASK GENMASK(23, 22) /* Pin Output When TX is Disabled */
125#define SICTR_TXDIZ_LOW (0 << 22) /* 0 */
126#define SICTR_TXDIZ_HIGH (1 << 22) /* 1 */
127#define SICTR_TXDIZ_HIZ (2 << 22) /* High-impedance */
128#define SICTR_TSCKE BIT(15) /* Transmit Serial Clock Output Enable */
129#define SICTR_TFSE BIT(14) /* Transmit Frame Sync Signal Output Enable */
130#define SICTR_TXE BIT(9) /* Transmit Enable */
131#define SICTR_RXE BIT(8) /* Receive Enable */
132#define SICTR_TXRST BIT(1) /* Transmit Reset */
133#define SICTR_RXRST BIT(0) /* Receive Reset */
134
135/* SIFCTR */
136#define SIFCTR_TFWM_MASK GENMASK(31, 29) /* Transmit FIFO Watermark */
137#define SIFCTR_TFWM_64 (0 << 29) /* Transfer Request when 64 empty stages */
138#define SIFCTR_TFWM_32 (1 << 29) /* Transfer Request when 32 empty stages */
139#define SIFCTR_TFWM_24 (2 << 29) /* Transfer Request when 24 empty stages */
140#define SIFCTR_TFWM_16 (3 << 29) /* Transfer Request when 16 empty stages */
141#define SIFCTR_TFWM_12 (4 << 29) /* Transfer Request when 12 empty stages */
142#define SIFCTR_TFWM_8 (5 << 29) /* Transfer Request when 8 empty stages */
143#define SIFCTR_TFWM_4 (6 << 29) /* Transfer Request when 4 empty stages */
144#define SIFCTR_TFWM_1 (7 << 29) /* Transfer Request when 1 empty stage */
145#define SIFCTR_TFUA_MASK GENMASK(26, 20) /* Transmit FIFO Usable Area */
146#define SIFCTR_TFUA_SHIFT 20
147#define SIFCTR_TFUA(i) ((i) << SIFCTR_TFUA_SHIFT)
148#define SIFCTR_RFWM_MASK GENMASK(15, 13) /* Receive FIFO Watermark */
149#define SIFCTR_RFWM_1 (0 << 13) /* Transfer Request when 1 valid stages */
150#define SIFCTR_RFWM_4 (1 << 13) /* Transfer Request when 4 valid stages */
151#define SIFCTR_RFWM_8 (2 << 13) /* Transfer Request when 8 valid stages */
152#define SIFCTR_RFWM_16 (3 << 13) /* Transfer Request when 16 valid stages */
153#define SIFCTR_RFWM_32 (4 << 13) /* Transfer Request when 32 valid stages */
154#define SIFCTR_RFWM_64 (5 << 13) /* Transfer Request when 64 valid stages */
155#define SIFCTR_RFWM_128 (6 << 13) /* Transfer Request when 128 valid stages */
156#define SIFCTR_RFWM_256 (7 << 13) /* Transfer Request when 256 valid stages */
157#define SIFCTR_RFUA_MASK GENMASK(12, 4) /* Receive FIFO Usable Area (0x40 = full) */
158#define SIFCTR_RFUA_SHIFT 4
159#define SIFCTR_RFUA(i) ((i) << SIFCTR_RFUA_SHIFT)
160
161/* SISTR */
162#define SISTR_TFEMP BIT(29) /* Transmit FIFO Empty */
163#define SISTR_TDREQ BIT(28) /* Transmit Data Transfer Request */
164#define SISTR_TEOF BIT(23) /* Frame Transmission End */
165#define SISTR_TFSERR BIT(21) /* Transmit Frame Synchronization Error */
166#define SISTR_TFOVF BIT(20) /* Transmit FIFO Overflow */
167#define SISTR_TFUDF BIT(19) /* Transmit FIFO Underflow */
168#define SISTR_RFFUL BIT(13) /* Receive FIFO Full */
169#define SISTR_RDREQ BIT(12) /* Receive Data Transfer Request */
170#define SISTR_REOF BIT(7) /* Frame Reception End */
171#define SISTR_RFSERR BIT(5) /* Receive Frame Synchronization Error */
172#define SISTR_RFUDF BIT(4) /* Receive FIFO Underflow */
173#define SISTR_RFOVF BIT(3) /* Receive FIFO Overflow */
174
175/* SIIER */
176#define SIIER_TDMAE BIT(31) /* Transmit Data DMA Transfer Req. Enable */
177#define SIIER_TFEMPE BIT(29) /* Transmit FIFO Empty Enable */
178#define SIIER_TDREQE BIT(28) /* Transmit Data Transfer Request Enable */
179#define SIIER_TEOFE BIT(23) /* Frame Transmission End Enable */
180#define SIIER_TFSERRE BIT(21) /* Transmit Frame Sync Error Enable */
181#define SIIER_TFOVFE BIT(20) /* Transmit FIFO Overflow Enable */
182#define SIIER_TFUDFE BIT(19) /* Transmit FIFO Underflow Enable */
183#define SIIER_RDMAE BIT(15) /* Receive Data DMA Transfer Req. Enable */
184#define SIIER_RFFULE BIT(13) /* Receive FIFO Full Enable */
185#define SIIER_RDREQE BIT(12) /* Receive Data Transfer Request Enable */
186#define SIIER_REOFE BIT(7) /* Frame Reception End Enable */
187#define SIIER_RFSERRE BIT(5) /* Receive Frame Sync Error Enable */
188#define SIIER_RFUDFE BIT(4) /* Receive FIFO Underflow Enable */
189#define SIIER_RFOVFE BIT(3) /* Receive FIFO Overflow Enable */
190
191
192static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
193{
194 switch (reg_offs) {
195 case SITSCR:
196 case SIRSCR:
197 return ioread16(p->mapbase + reg_offs);
198 default:
199 return ioread32(p->mapbase + reg_offs);
200 }
201}
202
203static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
204 u32 value)
205{
206 switch (reg_offs) {
207 case SITSCR:
208 case SIRSCR:
209 iowrite16(value, p->mapbase + reg_offs);
210 break;
211 default:
212 iowrite32(value, p->mapbase + reg_offs);
213 break;
214 }
215}
216
217static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
218 u32 clr, u32 set)
219{
220 u32 mask = clr | set;
221 u32 data;
222
223 data = sh_msiof_read(p, SICTR);
224 data &= ~clr;
225 data |= set;
226 sh_msiof_write(p, SICTR, data);
227
228 return readl_poll_timeout_atomic(p->mapbase + SICTR, data,
229 (data & mask) == set, 1, 100);
230}
231
232static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
233{
234 struct sh_msiof_spi_priv *p = data;
235
236 /* just disable the interrupt and wake up */
237 sh_msiof_write(p, SIIER, 0);
238 complete(&p->done);
239
240 return IRQ_HANDLED;
241}
242
243static void sh_msiof_spi_reset_regs(struct sh_msiof_spi_priv *p)
244{
245 u32 mask = SICTR_TXRST | SICTR_RXRST;
246 u32 data;
247
248 data = sh_msiof_read(p, SICTR);
249 data |= mask;
250 sh_msiof_write(p, SICTR, data);
251
252 readl_poll_timeout_atomic(p->mapbase + SICTR, data, !(data & mask), 1,
253 100);
254}
255
256static const u32 sh_msiof_spi_div_array[] = {
257 SISCR_BRDV_DIV_1, SISCR_BRDV_DIV_2, SISCR_BRDV_DIV_4,
258 SISCR_BRDV_DIV_8, SISCR_BRDV_DIV_16, SISCR_BRDV_DIV_32,
259};
260
261static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
262 struct spi_transfer *t)
263{
264 unsigned long parent_rate = clk_get_rate(p->clk);
265 unsigned int div_pow = p->min_div_pow;
266 u32 spi_hz = t->speed_hz;
267 unsigned long div;
268 u32 brps, scr;
269
270 if (!spi_hz || !parent_rate) {
271 WARN(1, "Invalid clock rate parameters %lu and %u\n",
272 parent_rate, spi_hz);
273 return;
274 }
275
276 div = DIV_ROUND_UP(parent_rate, spi_hz);
277 if (div <= 1024) {
278 /* SISCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
279 if (!div_pow && div <= 32 && div > 2)
280 div_pow = 1;
281
282 if (div_pow)
283 brps = (div + 1) >> div_pow;
284 else
285 brps = div;
286
287 for (; brps > 32; div_pow++)
288 brps = (brps + 1) >> 1;
289 } else {
290 /* Set transfer rate composite divisor to 2^5 * 32 = 1024 */
291 dev_err(&p->pdev->dev,
292 "Requested SPI transfer rate %d is too low\n", spi_hz);
293 div_pow = 5;
294 brps = 32;
295 }
296
297 t->effective_speed_hz = parent_rate / (brps << div_pow);
298
299 scr = sh_msiof_spi_div_array[div_pow] | SISCR_BRPS(brps);
300 sh_msiof_write(p, SITSCR, scr);
301 if (!(p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
302 sh_msiof_write(p, SIRSCR, scr);
303}
304
305static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
306{
307 /*
308 * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl
309 * b'000 : 0
310 * b'001 : 100
311 * b'010 : 200
312 * b'011 (SYNCDL only) : 300
313 * b'101 : 50
314 * b'110 : 150
315 */
316 if (dtdl_or_syncdl % 100)
317 return dtdl_or_syncdl / 100 + 5;
318 else
319 return dtdl_or_syncdl / 100;
320}
321
322static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
323{
324 u32 val;
325
326 if (!p->info)
327 return 0;
328
329 /* check if DTDL and SYNCDL is allowed value */
330 if (p->info->dtdl > 200 || p->info->syncdl > 300) {
331 dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
332 return 0;
333 }
334
335 /* check if the sum of DTDL and SYNCDL becomes an integer value */
336 if ((p->info->dtdl + p->info->syncdl) % 100) {
337 dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
338 return 0;
339 }
340
341 val = sh_msiof_get_delay_bit(p->info->dtdl) << SIMDR1_DTDL_SHIFT;
342 val |= sh_msiof_get_delay_bit(p->info->syncdl) << SIMDR1_SYNCDL_SHIFT;
343
344 return val;
345}
346
347static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss,
348 u32 cpol, u32 cpha,
349 u32 tx_hi_z, u32 lsb_first, u32 cs_high)
350{
351 u32 tmp;
352 int edge;
353
354 /*
355 * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
356 * 0 0 10 10 1 1
357 * 0 1 10 10 0 0
358 * 1 0 11 11 0 0
359 * 1 1 11 11 1 1
360 */
361 tmp = SIMDR1_SYNCMD_SPI | 1 << SIMDR1_FLD_SHIFT | SIMDR1_XXSTP;
362 tmp |= !cs_high << SIMDR1_SYNCAC_SHIFT;
363 tmp |= lsb_first << SIMDR1_BITLSB_SHIFT;
364 tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
365 if (spi_controller_is_slave(p->ctlr)) {
366 sh_msiof_write(p, SITMDR1, tmp | SITMDR1_PCON);
367 } else {
368 sh_msiof_write(p, SITMDR1,
369 tmp | SIMDR1_TRMD | SITMDR1_PCON |
370 (ss < MAX_SS ? ss : 0) << SITMDR1_SYNCCH_SHIFT);
371 }
372 if (p->ctlr->flags & SPI_CONTROLLER_MUST_TX) {
373 /* These bits are reserved if RX needs TX */
374 tmp &= ~0x0000ffff;
375 }
376 sh_msiof_write(p, SIRMDR1, tmp);
377
378 tmp = 0;
379 tmp |= SICTR_TSCKIZ_SCK | cpol << SICTR_TSCKIZ_POL_SHIFT;
380 tmp |= SICTR_RSCKIZ_SCK | cpol << SICTR_RSCKIZ_POL_SHIFT;
381
382 edge = cpol ^ !cpha;
383
384 tmp |= edge << SICTR_TEDG_SHIFT;
385 tmp |= edge << SICTR_REDG_SHIFT;
386 tmp |= tx_hi_z ? SICTR_TXDIZ_HIZ : SICTR_TXDIZ_LOW;
387 sh_msiof_write(p, SICTR, tmp);
388}
389
390static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
391 const void *tx_buf, void *rx_buf,
392 u32 bits, u32 words)
393{
394 u32 dr2 = SIMDR2_BITLEN1(bits) | SIMDR2_WDLEN1(words);
395
396 if (tx_buf || (p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
397 sh_msiof_write(p, SITMDR2, dr2);
398 else
399 sh_msiof_write(p, SITMDR2, dr2 | SIMDR2_GRPMASK1);
400
401 if (rx_buf)
402 sh_msiof_write(p, SIRMDR2, dr2);
403}
404
405static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
406{
407 sh_msiof_write(p, SISTR,
408 sh_msiof_read(p, SISTR) & ~(SISTR_TDREQ | SISTR_RDREQ));
409}
410
411static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
412 const void *tx_buf, int words, int fs)
413{
414 const u8 *buf_8 = tx_buf;
415 int k;
416
417 for (k = 0; k < words; k++)
418 sh_msiof_write(p, SITFDR, buf_8[k] << fs);
419}
420
421static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
422 const void *tx_buf, int words, int fs)
423{
424 const u16 *buf_16 = tx_buf;
425 int k;
426
427 for (k = 0; k < words; k++)
428 sh_msiof_write(p, SITFDR, buf_16[k] << fs);
429}
430
431static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
432 const void *tx_buf, int words, int fs)
433{
434 const u16 *buf_16 = tx_buf;
435 int k;
436
437 for (k = 0; k < words; k++)
438 sh_msiof_write(p, SITFDR, get_unaligned(&buf_16[k]) << fs);
439}
440
441static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
442 const void *tx_buf, int words, int fs)
443{
444 const u32 *buf_32 = tx_buf;
445 int k;
446
447 for (k = 0; k < words; k++)
448 sh_msiof_write(p, SITFDR, buf_32[k] << fs);
449}
450
451static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
452 const void *tx_buf, int words, int fs)
453{
454 const u32 *buf_32 = tx_buf;
455 int k;
456
457 for (k = 0; k < words; k++)
458 sh_msiof_write(p, SITFDR, get_unaligned(&buf_32[k]) << fs);
459}
460
461static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
462 const void *tx_buf, int words, int fs)
463{
464 const u32 *buf_32 = tx_buf;
465 int k;
466
467 for (k = 0; k < words; k++)
468 sh_msiof_write(p, SITFDR, swab32(buf_32[k] << fs));
469}
470
471static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
472 const void *tx_buf, int words, int fs)
473{
474 const u32 *buf_32 = tx_buf;
475 int k;
476
477 for (k = 0; k < words; k++)
478 sh_msiof_write(p, SITFDR, swab32(get_unaligned(&buf_32[k]) << fs));
479}
480
481static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
482 void *rx_buf, int words, int fs)
483{
484 u8 *buf_8 = rx_buf;
485 int k;
486
487 for (k = 0; k < words; k++)
488 buf_8[k] = sh_msiof_read(p, SIRFDR) >> fs;
489}
490
491static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
492 void *rx_buf, int words, int fs)
493{
494 u16 *buf_16 = rx_buf;
495 int k;
496
497 for (k = 0; k < words; k++)
498 buf_16[k] = sh_msiof_read(p, SIRFDR) >> fs;
499}
500
501static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
502 void *rx_buf, int words, int fs)
503{
504 u16 *buf_16 = rx_buf;
505 int k;
506
507 for (k = 0; k < words; k++)
508 put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_16[k]);
509}
510
511static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
512 void *rx_buf, int words, int fs)
513{
514 u32 *buf_32 = rx_buf;
515 int k;
516
517 for (k = 0; k < words; k++)
518 buf_32[k] = sh_msiof_read(p, SIRFDR) >> fs;
519}
520
521static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
522 void *rx_buf, int words, int fs)
523{
524 u32 *buf_32 = rx_buf;
525 int k;
526
527 for (k = 0; k < words; k++)
528 put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_32[k]);
529}
530
531static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
532 void *rx_buf, int words, int fs)
533{
534 u32 *buf_32 = rx_buf;
535 int k;
536
537 for (k = 0; k < words; k++)
538 buf_32[k] = swab32(sh_msiof_read(p, SIRFDR) >> fs);
539}
540
541static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
542 void *rx_buf, int words, int fs)
543{
544 u32 *buf_32 = rx_buf;
545 int k;
546
547 for (k = 0; k < words; k++)
548 put_unaligned(swab32(sh_msiof_read(p, SIRFDR) >> fs), &buf_32[k]);
549}
550
551static int sh_msiof_spi_setup(struct spi_device *spi)
552{
553 struct sh_msiof_spi_priv *p =
554 spi_controller_get_devdata(spi->controller);
555 u32 clr, set, tmp;
556
557 if (spi->cs_gpiod || spi_controller_is_slave(p->ctlr))
558 return 0;
559
560 if (p->native_cs_inited &&
561 (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
562 return 0;
563
564 /* Configure native chip select mode/polarity early */
565 clr = SIMDR1_SYNCMD_MASK;
566 set = SIMDR1_SYNCMD_SPI;
567 if (spi->mode & SPI_CS_HIGH)
568 clr |= BIT(SIMDR1_SYNCAC_SHIFT);
569 else
570 set |= BIT(SIMDR1_SYNCAC_SHIFT);
571 pm_runtime_get_sync(&p->pdev->dev);
572 tmp = sh_msiof_read(p, SITMDR1) & ~clr;
573 sh_msiof_write(p, SITMDR1, tmp | set | SIMDR1_TRMD | SITMDR1_PCON);
574 tmp = sh_msiof_read(p, SIRMDR1) & ~clr;
575 sh_msiof_write(p, SIRMDR1, tmp | set);
576 pm_runtime_put(&p->pdev->dev);
577 p->native_cs_high = spi->mode & SPI_CS_HIGH;
578 p->native_cs_inited = true;
579 return 0;
580}
581
582static int sh_msiof_prepare_message(struct spi_controller *ctlr,
583 struct spi_message *msg)
584{
585 struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
586 const struct spi_device *spi = msg->spi;
587 u32 ss, cs_high;
588
589 /* Configure pins before asserting CS */
590 if (spi->cs_gpiod) {
591 ss = ctlr->unused_native_cs;
592 cs_high = p->native_cs_high;
593 } else {
594 ss = spi->chip_select;
595 cs_high = !!(spi->mode & SPI_CS_HIGH);
596 }
597 sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL),
598 !!(spi->mode & SPI_CPHA),
599 !!(spi->mode & SPI_3WIRE),
600 !!(spi->mode & SPI_LSB_FIRST), cs_high);
601 return 0;
602}
603
604static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
605{
606 bool slave = spi_controller_is_slave(p->ctlr);
607 int ret = 0;
608
609 /* setup clock and rx/tx signals */
610 if (!slave)
611 ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TSCKE);
612 if (rx_buf && !ret)
613 ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_RXE);
614 if (!ret)
615 ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TXE);
616
617 /* start by setting frame bit */
618 if (!ret && !slave)
619 ret = sh_msiof_modify_ctr_wait(p, 0, SICTR_TFSE);
620
621 return ret;
622}
623
624static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
625{
626 bool slave = spi_controller_is_slave(p->ctlr);
627 int ret = 0;
628
629 /* shut down frame, rx/tx and clock signals */
630 if (!slave)
631 ret = sh_msiof_modify_ctr_wait(p, SICTR_TFSE, 0);
632 if (!ret)
633 ret = sh_msiof_modify_ctr_wait(p, SICTR_TXE, 0);
634 if (rx_buf && !ret)
635 ret = sh_msiof_modify_ctr_wait(p, SICTR_RXE, 0);
636 if (!ret && !slave)
637 ret = sh_msiof_modify_ctr_wait(p, SICTR_TSCKE, 0);
638
639 return ret;
640}
641
642static int sh_msiof_slave_abort(struct spi_controller *ctlr)
643{
644 struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
645
646 p->slave_aborted = true;
647 complete(&p->done);
648 complete(&p->done_txdma);
649 return 0;
650}
651
652static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p,
653 struct completion *x)
654{
655 if (spi_controller_is_slave(p->ctlr)) {
656 if (wait_for_completion_interruptible(x) ||
657 p->slave_aborted) {
658 dev_dbg(&p->pdev->dev, "interrupted\n");
659 return -EINTR;
660 }
661 } else {
662 if (!wait_for_completion_timeout(x, HZ)) {
663 dev_err(&p->pdev->dev, "timeout\n");
664 return -ETIMEDOUT;
665 }
666 }
667
668 return 0;
669}
670
671static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
672 void (*tx_fifo)(struct sh_msiof_spi_priv *,
673 const void *, int, int),
674 void (*rx_fifo)(struct sh_msiof_spi_priv *,
675 void *, int, int),
676 const void *tx_buf, void *rx_buf,
677 int words, int bits)
678{
679 int fifo_shift;
680 int ret;
681
682 /* limit maximum word transfer to rx/tx fifo size */
683 if (tx_buf)
684 words = min_t(int, words, p->tx_fifo_size);
685 if (rx_buf)
686 words = min_t(int, words, p->rx_fifo_size);
687
688 /* the fifo contents need shifting */
689 fifo_shift = 32 - bits;
690
691 /* default FIFO watermarks for PIO */
692 sh_msiof_write(p, SIFCTR, 0);
693
694 /* setup msiof transfer mode registers */
695 sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
696 sh_msiof_write(p, SIIER, SIIER_TEOFE | SIIER_REOFE);
697
698 /* write tx fifo */
699 if (tx_buf)
700 tx_fifo(p, tx_buf, words, fifo_shift);
701
702 reinit_completion(&p->done);
703 p->slave_aborted = false;
704
705 ret = sh_msiof_spi_start(p, rx_buf);
706 if (ret) {
707 dev_err(&p->pdev->dev, "failed to start hardware\n");
708 goto stop_ier;
709 }
710
711 /* wait for tx fifo to be emptied / rx fifo to be filled */
712 ret = sh_msiof_wait_for_completion(p, &p->done);
713 if (ret)
714 goto stop_reset;
715
716 /* read rx fifo */
717 if (rx_buf)
718 rx_fifo(p, rx_buf, words, fifo_shift);
719
720 /* clear status bits */
721 sh_msiof_reset_str(p);
722
723 ret = sh_msiof_spi_stop(p, rx_buf);
724 if (ret) {
725 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
726 return ret;
727 }
728
729 return words;
730
731stop_reset:
732 sh_msiof_reset_str(p);
733 sh_msiof_spi_stop(p, rx_buf);
734stop_ier:
735 sh_msiof_write(p, SIIER, 0);
736 return ret;
737}
738
739static void sh_msiof_dma_complete(void *arg)
740{
741 complete(arg);
742}
743
744static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
745 void *rx, unsigned int len)
746{
747 u32 ier_bits = 0;
748 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
749 dma_cookie_t cookie;
750 int ret;
751
752 /* First prepare and submit the DMA request(s), as this may fail */
753 if (rx) {
754 ier_bits |= SIIER_RDREQE | SIIER_RDMAE;
755 desc_rx = dmaengine_prep_slave_single(p->ctlr->dma_rx,
756 p->rx_dma_addr, len, DMA_DEV_TO_MEM,
757 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
758 if (!desc_rx)
759 return -EAGAIN;
760
761 desc_rx->callback = sh_msiof_dma_complete;
762 desc_rx->callback_param = &p->done;
763 cookie = dmaengine_submit(desc_rx);
764 if (dma_submit_error(cookie))
765 return cookie;
766 }
767
768 if (tx) {
769 ier_bits |= SIIER_TDREQE | SIIER_TDMAE;
770 dma_sync_single_for_device(p->ctlr->dma_tx->device->dev,
771 p->tx_dma_addr, len, DMA_TO_DEVICE);
772 desc_tx = dmaengine_prep_slave_single(p->ctlr->dma_tx,
773 p->tx_dma_addr, len, DMA_MEM_TO_DEV,
774 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
775 if (!desc_tx) {
776 ret = -EAGAIN;
777 goto no_dma_tx;
778 }
779
780 desc_tx->callback = sh_msiof_dma_complete;
781 desc_tx->callback_param = &p->done_txdma;
782 cookie = dmaengine_submit(desc_tx);
783 if (dma_submit_error(cookie)) {
784 ret = cookie;
785 goto no_dma_tx;
786 }
787 }
788
789 /* 1 stage FIFO watermarks for DMA */
790 sh_msiof_write(p, SIFCTR, SIFCTR_TFWM_1 | SIFCTR_RFWM_1);
791
792 /* setup msiof transfer mode registers (32-bit words) */
793 sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
794
795 sh_msiof_write(p, SIIER, ier_bits);
796
797 reinit_completion(&p->done);
798 if (tx)
799 reinit_completion(&p->done_txdma);
800 p->slave_aborted = false;
801
802 /* Now start DMA */
803 if (rx)
804 dma_async_issue_pending(p->ctlr->dma_rx);
805 if (tx)
806 dma_async_issue_pending(p->ctlr->dma_tx);
807
808 ret = sh_msiof_spi_start(p, rx);
809 if (ret) {
810 dev_err(&p->pdev->dev, "failed to start hardware\n");
811 goto stop_dma;
812 }
813
814 if (tx) {
815 /* wait for tx DMA completion */
816 ret = sh_msiof_wait_for_completion(p, &p->done_txdma);
817 if (ret)
818 goto stop_reset;
819 }
820
821 if (rx) {
822 /* wait for rx DMA completion */
823 ret = sh_msiof_wait_for_completion(p, &p->done);
824 if (ret)
825 goto stop_reset;
826
827 sh_msiof_write(p, SIIER, 0);
828 } else {
829 /* wait for tx fifo to be emptied */
830 sh_msiof_write(p, SIIER, SIIER_TEOFE);
831 ret = sh_msiof_wait_for_completion(p, &p->done);
832 if (ret)
833 goto stop_reset;
834 }
835
836 /* clear status bits */
837 sh_msiof_reset_str(p);
838
839 ret = sh_msiof_spi_stop(p, rx);
840 if (ret) {
841 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
842 return ret;
843 }
844
845 if (rx)
846 dma_sync_single_for_cpu(p->ctlr->dma_rx->device->dev,
847 p->rx_dma_addr, len, DMA_FROM_DEVICE);
848
849 return 0;
850
851stop_reset:
852 sh_msiof_reset_str(p);
853 sh_msiof_spi_stop(p, rx);
854stop_dma:
855 if (tx)
856 dmaengine_terminate_sync(p->ctlr->dma_tx);
857no_dma_tx:
858 if (rx)
859 dmaengine_terminate_sync(p->ctlr->dma_rx);
860 sh_msiof_write(p, SIIER, 0);
861 return ret;
862}
863
864static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
865{
866 /* src or dst can be unaligned, but not both */
867 if ((unsigned long)src & 3) {
868 while (words--) {
869 *dst++ = swab32(get_unaligned(src));
870 src++;
871 }
872 } else if ((unsigned long)dst & 3) {
873 while (words--) {
874 put_unaligned(swab32(*src++), dst);
875 dst++;
876 }
877 } else {
878 while (words--)
879 *dst++ = swab32(*src++);
880 }
881}
882
883static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
884{
885 /* src or dst can be unaligned, but not both */
886 if ((unsigned long)src & 3) {
887 while (words--) {
888 *dst++ = swahw32(get_unaligned(src));
889 src++;
890 }
891 } else if ((unsigned long)dst & 3) {
892 while (words--) {
893 put_unaligned(swahw32(*src++), dst);
894 dst++;
895 }
896 } else {
897 while (words--)
898 *dst++ = swahw32(*src++);
899 }
900}
901
902static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
903{
904 memcpy(dst, src, words * 4);
905}
906
907static int sh_msiof_transfer_one(struct spi_controller *ctlr,
908 struct spi_device *spi,
909 struct spi_transfer *t)
910{
911 struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
912 void (*copy32)(u32 *, const u32 *, unsigned int);
913 void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
914 void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
915 const void *tx_buf = t->tx_buf;
916 void *rx_buf = t->rx_buf;
917 unsigned int len = t->len;
918 unsigned int bits = t->bits_per_word;
919 unsigned int bytes_per_word;
920 unsigned int words;
921 int n;
922 bool swab;
923 int ret;
924
925 /* reset registers */
926 sh_msiof_spi_reset_regs(p);
927
928 /* setup clocks (clock already enabled in chipselect()) */
929 if (!spi_controller_is_slave(p->ctlr))
930 sh_msiof_spi_set_clk_regs(p, t);
931
932 while (ctlr->dma_tx && len > 15) {
933 /*
934 * DMA supports 32-bit words only, hence pack 8-bit and 16-bit
935 * words, with byte resp. word swapping.
936 */
937 unsigned int l = 0;
938
939 if (tx_buf)
940 l = min(round_down(len, 4), p->tx_fifo_size * 4);
941 if (rx_buf)
942 l = min(round_down(len, 4), p->rx_fifo_size * 4);
943
944 if (bits <= 8) {
945 copy32 = copy_bswap32;
946 } else if (bits <= 16) {
947 copy32 = copy_wswap32;
948 } else {
949 copy32 = copy_plain32;
950 }
951
952 if (tx_buf)
953 copy32(p->tx_dma_page, tx_buf, l / 4);
954
955 ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
956 if (ret == -EAGAIN) {
957 dev_warn_once(&p->pdev->dev,
958 "DMA not available, falling back to PIO\n");
959 break;
960 }
961 if (ret)
962 return ret;
963
964 if (rx_buf) {
965 copy32(rx_buf, p->rx_dma_page, l / 4);
966 rx_buf += l;
967 }
968 if (tx_buf)
969 tx_buf += l;
970
971 len -= l;
972 if (!len)
973 return 0;
974 }
975
976 if (bits <= 8 && len > 15) {
977 bits = 32;
978 swab = true;
979 } else {
980 swab = false;
981 }
982
983 /* setup bytes per word and fifo read/write functions */
984 if (bits <= 8) {
985 bytes_per_word = 1;
986 tx_fifo = sh_msiof_spi_write_fifo_8;
987 rx_fifo = sh_msiof_spi_read_fifo_8;
988 } else if (bits <= 16) {
989 bytes_per_word = 2;
990 if ((unsigned long)tx_buf & 0x01)
991 tx_fifo = sh_msiof_spi_write_fifo_16u;
992 else
993 tx_fifo = sh_msiof_spi_write_fifo_16;
994
995 if ((unsigned long)rx_buf & 0x01)
996 rx_fifo = sh_msiof_spi_read_fifo_16u;
997 else
998 rx_fifo = sh_msiof_spi_read_fifo_16;
999 } else if (swab) {
1000 bytes_per_word = 4;
1001 if ((unsigned long)tx_buf & 0x03)
1002 tx_fifo = sh_msiof_spi_write_fifo_s32u;
1003 else
1004 tx_fifo = sh_msiof_spi_write_fifo_s32;
1005
1006 if ((unsigned long)rx_buf & 0x03)
1007 rx_fifo = sh_msiof_spi_read_fifo_s32u;
1008 else
1009 rx_fifo = sh_msiof_spi_read_fifo_s32;
1010 } else {
1011 bytes_per_word = 4;
1012 if ((unsigned long)tx_buf & 0x03)
1013 tx_fifo = sh_msiof_spi_write_fifo_32u;
1014 else
1015 tx_fifo = sh_msiof_spi_write_fifo_32;
1016
1017 if ((unsigned long)rx_buf & 0x03)
1018 rx_fifo = sh_msiof_spi_read_fifo_32u;
1019 else
1020 rx_fifo = sh_msiof_spi_read_fifo_32;
1021 }
1022
1023 /* transfer in fifo sized chunks */
1024 words = len / bytes_per_word;
1025
1026 while (words > 0) {
1027 n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
1028 words, bits);
1029 if (n < 0)
1030 return n;
1031
1032 if (tx_buf)
1033 tx_buf += n * bytes_per_word;
1034 if (rx_buf)
1035 rx_buf += n * bytes_per_word;
1036 words -= n;
1037
1038 if (words == 0 && (len % bytes_per_word)) {
1039 words = len % bytes_per_word;
1040 bits = t->bits_per_word;
1041 bytes_per_word = 1;
1042 tx_fifo = sh_msiof_spi_write_fifo_8;
1043 rx_fifo = sh_msiof_spi_read_fifo_8;
1044 }
1045 }
1046
1047 return 0;
1048}
1049
1050static const struct sh_msiof_chipdata sh_data = {
1051 .bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32),
1052 .tx_fifo_size = 64,
1053 .rx_fifo_size = 64,
1054 .ctlr_flags = 0,
1055 .min_div_pow = 0,
1056};
1057
1058static const struct sh_msiof_chipdata rcar_gen2_data = {
1059 .bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1060 SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1061 .tx_fifo_size = 64,
1062 .rx_fifo_size = 64,
1063 .ctlr_flags = SPI_CONTROLLER_MUST_TX,
1064 .min_div_pow = 0,
1065};
1066
1067static const struct sh_msiof_chipdata rcar_gen3_data = {
1068 .bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1069 SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1070 .tx_fifo_size = 64,
1071 .rx_fifo_size = 64,
1072 .ctlr_flags = SPI_CONTROLLER_MUST_TX,
1073 .min_div_pow = 1,
1074};
1075
1076static const struct of_device_id sh_msiof_match[] = {
1077 { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
1078 { .compatible = "renesas,msiof-r8a7743", .data = &rcar_gen2_data },
1079 { .compatible = "renesas,msiof-r8a7745", .data = &rcar_gen2_data },
1080 { .compatible = "renesas,msiof-r8a7790", .data = &rcar_gen2_data },
1081 { .compatible = "renesas,msiof-r8a7791", .data = &rcar_gen2_data },
1082 { .compatible = "renesas,msiof-r8a7792", .data = &rcar_gen2_data },
1083 { .compatible = "renesas,msiof-r8a7793", .data = &rcar_gen2_data },
1084 { .compatible = "renesas,msiof-r8a7794", .data = &rcar_gen2_data },
1085 { .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
1086 { .compatible = "renesas,msiof-r8a7796", .data = &rcar_gen3_data },
1087 { .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
1088 { .compatible = "renesas,rcar-gen4-msiof", .data = &rcar_gen3_data },
1089 { .compatible = "renesas,sh-msiof", .data = &sh_data }, /* Deprecated */
1090 {},
1091};
1092MODULE_DEVICE_TABLE(of, sh_msiof_match);
1093
1094#ifdef CONFIG_OF
1095static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1096{
1097 struct sh_msiof_spi_info *info;
1098 struct device_node *np = dev->of_node;
1099 u32 num_cs = 1;
1100
1101 info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1102 if (!info)
1103 return NULL;
1104
1105 info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE
1106 : MSIOF_SPI_MASTER;
1107
1108 /* Parse the MSIOF properties */
1109 if (info->mode == MSIOF_SPI_MASTER)
1110 of_property_read_u32(np, "num-cs", &num_cs);
1111 of_property_read_u32(np, "renesas,tx-fifo-size",
1112 &info->tx_fifo_override);
1113 of_property_read_u32(np, "renesas,rx-fifo-size",
1114 &info->rx_fifo_override);
1115 of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1116 of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1117
1118 info->num_chipselect = num_cs;
1119
1120 return info;
1121}
1122#else
1123static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1124{
1125 return NULL;
1126}
1127#endif
1128
1129static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1130 enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1131{
1132 dma_cap_mask_t mask;
1133 struct dma_chan *chan;
1134 struct dma_slave_config cfg;
1135 int ret;
1136
1137 dma_cap_zero(mask);
1138 dma_cap_set(DMA_SLAVE, mask);
1139
1140 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1141 (void *)(unsigned long)id, dev,
1142 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1143 if (!chan) {
1144 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1145 return NULL;
1146 }
1147
1148 memset(&cfg, 0, sizeof(cfg));
1149 cfg.direction = dir;
1150 if (dir == DMA_MEM_TO_DEV) {
1151 cfg.dst_addr = port_addr;
1152 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1153 } else {
1154 cfg.src_addr = port_addr;
1155 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1156 }
1157
1158 ret = dmaengine_slave_config(chan, &cfg);
1159 if (ret) {
1160 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1161 dma_release_channel(chan);
1162 return NULL;
1163 }
1164
1165 return chan;
1166}
1167
1168static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1169{
1170 struct platform_device *pdev = p->pdev;
1171 struct device *dev = &pdev->dev;
1172 const struct sh_msiof_spi_info *info = p->info;
1173 unsigned int dma_tx_id, dma_rx_id;
1174 const struct resource *res;
1175 struct spi_controller *ctlr;
1176 struct device *tx_dev, *rx_dev;
1177
1178 if (dev->of_node) {
1179 /* In the OF case we will get the slave IDs from the DT */
1180 dma_tx_id = 0;
1181 dma_rx_id = 0;
1182 } else if (info && info->dma_tx_id && info->dma_rx_id) {
1183 dma_tx_id = info->dma_tx_id;
1184 dma_rx_id = info->dma_rx_id;
1185 } else {
1186 /* The driver assumes no error */
1187 return 0;
1188 }
1189
1190 /* The DMA engine uses the second register set, if present */
1191 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1192 if (!res)
1193 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1194
1195 ctlr = p->ctlr;
1196 ctlr->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1197 dma_tx_id, res->start + SITFDR);
1198 if (!ctlr->dma_tx)
1199 return -ENODEV;
1200
1201 ctlr->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1202 dma_rx_id, res->start + SIRFDR);
1203 if (!ctlr->dma_rx)
1204 goto free_tx_chan;
1205
1206 p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1207 if (!p->tx_dma_page)
1208 goto free_rx_chan;
1209
1210 p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1211 if (!p->rx_dma_page)
1212 goto free_tx_page;
1213
1214 tx_dev = ctlr->dma_tx->device->dev;
1215 p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1216 DMA_TO_DEVICE);
1217 if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1218 goto free_rx_page;
1219
1220 rx_dev = ctlr->dma_rx->device->dev;
1221 p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1222 DMA_FROM_DEVICE);
1223 if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1224 goto unmap_tx_page;
1225
1226 dev_info(dev, "DMA available");
1227 return 0;
1228
1229unmap_tx_page:
1230 dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1231free_rx_page:
1232 free_page((unsigned long)p->rx_dma_page);
1233free_tx_page:
1234 free_page((unsigned long)p->tx_dma_page);
1235free_rx_chan:
1236 dma_release_channel(ctlr->dma_rx);
1237free_tx_chan:
1238 dma_release_channel(ctlr->dma_tx);
1239 ctlr->dma_tx = NULL;
1240 return -ENODEV;
1241}
1242
1243static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1244{
1245 struct spi_controller *ctlr = p->ctlr;
1246
1247 if (!ctlr->dma_tx)
1248 return;
1249
1250 dma_unmap_single(ctlr->dma_rx->device->dev, p->rx_dma_addr, PAGE_SIZE,
1251 DMA_FROM_DEVICE);
1252 dma_unmap_single(ctlr->dma_tx->device->dev, p->tx_dma_addr, PAGE_SIZE,
1253 DMA_TO_DEVICE);
1254 free_page((unsigned long)p->rx_dma_page);
1255 free_page((unsigned long)p->tx_dma_page);
1256 dma_release_channel(ctlr->dma_rx);
1257 dma_release_channel(ctlr->dma_tx);
1258}
1259
1260static int sh_msiof_spi_probe(struct platform_device *pdev)
1261{
1262 struct spi_controller *ctlr;
1263 const struct sh_msiof_chipdata *chipdata;
1264 struct sh_msiof_spi_info *info;
1265 struct sh_msiof_spi_priv *p;
1266 unsigned long clksrc;
1267 int i;
1268 int ret;
1269
1270 chipdata = of_device_get_match_data(&pdev->dev);
1271 if (chipdata) {
1272 info = sh_msiof_spi_parse_dt(&pdev->dev);
1273 } else {
1274 chipdata = (const void *)pdev->id_entry->driver_data;
1275 info = dev_get_platdata(&pdev->dev);
1276 }
1277
1278 if (!info) {
1279 dev_err(&pdev->dev, "failed to obtain device info\n");
1280 return -ENXIO;
1281 }
1282
1283 if (info->mode == MSIOF_SPI_SLAVE)
1284 ctlr = spi_alloc_slave(&pdev->dev,
1285 sizeof(struct sh_msiof_spi_priv));
1286 else
1287 ctlr = spi_alloc_master(&pdev->dev,
1288 sizeof(struct sh_msiof_spi_priv));
1289 if (ctlr == NULL)
1290 return -ENOMEM;
1291
1292 p = spi_controller_get_devdata(ctlr);
1293
1294 platform_set_drvdata(pdev, p);
1295 p->ctlr = ctlr;
1296 p->info = info;
1297 p->min_div_pow = chipdata->min_div_pow;
1298
1299 init_completion(&p->done);
1300 init_completion(&p->done_txdma);
1301
1302 p->clk = devm_clk_get(&pdev->dev, NULL);
1303 if (IS_ERR(p->clk)) {
1304 dev_err(&pdev->dev, "cannot get clock\n");
1305 ret = PTR_ERR(p->clk);
1306 goto err1;
1307 }
1308
1309 i = platform_get_irq(pdev, 0);
1310 if (i < 0) {
1311 ret = i;
1312 goto err1;
1313 }
1314
1315 p->mapbase = devm_platform_ioremap_resource(pdev, 0);
1316 if (IS_ERR(p->mapbase)) {
1317 ret = PTR_ERR(p->mapbase);
1318 goto err1;
1319 }
1320
1321 ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1322 dev_name(&pdev->dev), p);
1323 if (ret) {
1324 dev_err(&pdev->dev, "unable to request irq\n");
1325 goto err1;
1326 }
1327
1328 p->pdev = pdev;
1329 pm_runtime_enable(&pdev->dev);
1330
1331 /* Platform data may override FIFO sizes */
1332 p->tx_fifo_size = chipdata->tx_fifo_size;
1333 p->rx_fifo_size = chipdata->rx_fifo_size;
1334 if (p->info->tx_fifo_override)
1335 p->tx_fifo_size = p->info->tx_fifo_override;
1336 if (p->info->rx_fifo_override)
1337 p->rx_fifo_size = p->info->rx_fifo_override;
1338
1339 /* init controller code */
1340 ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1341 ctlr->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1342 clksrc = clk_get_rate(p->clk);
1343 ctlr->min_speed_hz = DIV_ROUND_UP(clksrc, 1024);
1344 ctlr->max_speed_hz = DIV_ROUND_UP(clksrc, 1 << p->min_div_pow);
1345 ctlr->flags = chipdata->ctlr_flags;
1346 ctlr->bus_num = pdev->id;
1347 ctlr->num_chipselect = p->info->num_chipselect;
1348 ctlr->dev.of_node = pdev->dev.of_node;
1349 ctlr->setup = sh_msiof_spi_setup;
1350 ctlr->prepare_message = sh_msiof_prepare_message;
1351 ctlr->slave_abort = sh_msiof_slave_abort;
1352 ctlr->bits_per_word_mask = chipdata->bits_per_word_mask;
1353 ctlr->auto_runtime_pm = true;
1354 ctlr->transfer_one = sh_msiof_transfer_one;
1355 ctlr->use_gpio_descriptors = true;
1356 ctlr->max_native_cs = MAX_SS;
1357
1358 ret = sh_msiof_request_dma(p);
1359 if (ret < 0)
1360 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1361
1362 ret = devm_spi_register_controller(&pdev->dev, ctlr);
1363 if (ret < 0) {
1364 dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1365 goto err2;
1366 }
1367
1368 return 0;
1369
1370 err2:
1371 sh_msiof_release_dma(p);
1372 pm_runtime_disable(&pdev->dev);
1373 err1:
1374 spi_controller_put(ctlr);
1375 return ret;
1376}
1377
1378static int sh_msiof_spi_remove(struct platform_device *pdev)
1379{
1380 struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1381
1382 sh_msiof_release_dma(p);
1383 pm_runtime_disable(&pdev->dev);
1384 return 0;
1385}
1386
1387static const struct platform_device_id spi_driver_ids[] = {
1388 { "spi_sh_msiof", (kernel_ulong_t)&sh_data },
1389 {},
1390};
1391MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1392
1393#ifdef CONFIG_PM_SLEEP
1394static int sh_msiof_spi_suspend(struct device *dev)
1395{
1396 struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
1397
1398 return spi_controller_suspend(p->ctlr);
1399}
1400
1401static int sh_msiof_spi_resume(struct device *dev)
1402{
1403 struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
1404
1405 return spi_controller_resume(p->ctlr);
1406}
1407
1408static SIMPLE_DEV_PM_OPS(sh_msiof_spi_pm_ops, sh_msiof_spi_suspend,
1409 sh_msiof_spi_resume);
1410#define DEV_PM_OPS (&sh_msiof_spi_pm_ops)
1411#else
1412#define DEV_PM_OPS NULL
1413#endif /* CONFIG_PM_SLEEP */
1414
1415static struct platform_driver sh_msiof_spi_drv = {
1416 .probe = sh_msiof_spi_probe,
1417 .remove = sh_msiof_spi_remove,
1418 .id_table = spi_driver_ids,
1419 .driver = {
1420 .name = "spi_sh_msiof",
1421 .pm = DEV_PM_OPS,
1422 .of_match_table = of_match_ptr(sh_msiof_match),
1423 },
1424};
1425module_platform_driver(sh_msiof_spi_drv);
1426
1427MODULE_DESCRIPTION("SuperH MSIOF SPI Controller Interface Driver");
1428MODULE_AUTHOR("Magnus Damm");
1429MODULE_LICENSE("GPL v2");
1/*
2 * SuperH MSIOF SPI Master Interface
3 *
4 * Copyright (c) 2009 Magnus Damm
5 * Copyright (C) 2014 Glider bvba
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 */
12
13#include <linux/bitmap.h>
14#include <linux/clk.h>
15#include <linux/completion.h>
16#include <linux/delay.h>
17#include <linux/dma-mapping.h>
18#include <linux/dmaengine.h>
19#include <linux/err.h>
20#include <linux/gpio.h>
21#include <linux/interrupt.h>
22#include <linux/io.h>
23#include <linux/kernel.h>
24#include <linux/module.h>
25#include <linux/of.h>
26#include <linux/of_device.h>
27#include <linux/platform_device.h>
28#include <linux/pm_runtime.h>
29#include <linux/sh_dma.h>
30
31#include <linux/spi/sh_msiof.h>
32#include <linux/spi/spi.h>
33
34#include <asm/unaligned.h>
35
36
37struct sh_msiof_chipdata {
38 u16 tx_fifo_size;
39 u16 rx_fifo_size;
40 u16 master_flags;
41};
42
43struct sh_msiof_spi_priv {
44 struct spi_master *master;
45 void __iomem *mapbase;
46 struct clk *clk;
47 struct platform_device *pdev;
48 struct sh_msiof_spi_info *info;
49 struct completion done;
50 unsigned int tx_fifo_size;
51 unsigned int rx_fifo_size;
52 void *tx_dma_page;
53 void *rx_dma_page;
54 dma_addr_t tx_dma_addr;
55 dma_addr_t rx_dma_addr;
56};
57
58#define TMDR1 0x00 /* Transmit Mode Register 1 */
59#define TMDR2 0x04 /* Transmit Mode Register 2 */
60#define TMDR3 0x08 /* Transmit Mode Register 3 */
61#define RMDR1 0x10 /* Receive Mode Register 1 */
62#define RMDR2 0x14 /* Receive Mode Register 2 */
63#define RMDR3 0x18 /* Receive Mode Register 3 */
64#define TSCR 0x20 /* Transmit Clock Select Register */
65#define RSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */
66#define CTR 0x28 /* Control Register */
67#define FCTR 0x30 /* FIFO Control Register */
68#define STR 0x40 /* Status Register */
69#define IER 0x44 /* Interrupt Enable Register */
70#define TDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */
71#define TDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */
72#define TFDR 0x50 /* Transmit FIFO Data Register */
73#define RDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */
74#define RDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */
75#define RFDR 0x60 /* Receive FIFO Data Register */
76
77/* TMDR1 and RMDR1 */
78#define MDR1_TRMD 0x80000000 /* Transfer Mode (1 = Master mode) */
79#define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
80#define MDR1_SYNCMD_SPI 0x20000000 /* Level mode/SPI */
81#define MDR1_SYNCMD_LR 0x30000000 /* L/R mode */
82#define MDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */
83#define MDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */
84#define MDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */
85#define MDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */
86#define MDR1_FLD_MASK 0x0000000c /* Frame Sync Signal Interval (0-3) */
87#define MDR1_FLD_SHIFT 2
88#define MDR1_XXSTP 0x00000001 /* Transmission/Reception Stop on FIFO */
89/* TMDR1 */
90#define TMDR1_PCON 0x40000000 /* Transfer Signal Connection */
91
92/* TMDR2 and RMDR2 */
93#define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
94#define MDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
95#define MDR2_GRPMASK1 0x00000001 /* Group Output Mask 1 (SH, A1) */
96
97/* TSCR and RSCR */
98#define SCR_BRPS_MASK 0x1f00 /* Prescaler Setting (1-32) */
99#define SCR_BRPS(i) (((i) - 1) << 8)
100#define SCR_BRDV_MASK 0x0007 /* Baud Rate Generator's Division Ratio */
101#define SCR_BRDV_DIV_2 0x0000
102#define SCR_BRDV_DIV_4 0x0001
103#define SCR_BRDV_DIV_8 0x0002
104#define SCR_BRDV_DIV_16 0x0003
105#define SCR_BRDV_DIV_32 0x0004
106#define SCR_BRDV_DIV_1 0x0007
107
108/* CTR */
109#define CTR_TSCKIZ_MASK 0xc0000000 /* Transmit Clock I/O Polarity Select */
110#define CTR_TSCKIZ_SCK 0x80000000 /* Disable SCK when TX disabled */
111#define CTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */
112#define CTR_RSCKIZ_MASK 0x30000000 /* Receive Clock Polarity Select */
113#define CTR_RSCKIZ_SCK 0x20000000 /* Must match CTR_TSCKIZ_SCK */
114#define CTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */
115#define CTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */
116#define CTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */
117#define CTR_TXDIZ_MASK 0x00c00000 /* Pin Output When TX is Disabled */
118#define CTR_TXDIZ_LOW 0x00000000 /* 0 */
119#define CTR_TXDIZ_HIGH 0x00400000 /* 1 */
120#define CTR_TXDIZ_HIZ 0x00800000 /* High-impedance */
121#define CTR_TSCKE 0x00008000 /* Transmit Serial Clock Output Enable */
122#define CTR_TFSE 0x00004000 /* Transmit Frame Sync Signal Output Enable */
123#define CTR_TXE 0x00000200 /* Transmit Enable */
124#define CTR_RXE 0x00000100 /* Receive Enable */
125
126/* FCTR */
127#define FCTR_TFWM_MASK 0xe0000000 /* Transmit FIFO Watermark */
128#define FCTR_TFWM_64 0x00000000 /* Transfer Request when 64 empty stages */
129#define FCTR_TFWM_32 0x20000000 /* Transfer Request when 32 empty stages */
130#define FCTR_TFWM_24 0x40000000 /* Transfer Request when 24 empty stages */
131#define FCTR_TFWM_16 0x60000000 /* Transfer Request when 16 empty stages */
132#define FCTR_TFWM_12 0x80000000 /* Transfer Request when 12 empty stages */
133#define FCTR_TFWM_8 0xa0000000 /* Transfer Request when 8 empty stages */
134#define FCTR_TFWM_4 0xc0000000 /* Transfer Request when 4 empty stages */
135#define FCTR_TFWM_1 0xe0000000 /* Transfer Request when 1 empty stage */
136#define FCTR_TFUA_MASK 0x07f00000 /* Transmit FIFO Usable Area */
137#define FCTR_TFUA_SHIFT 20
138#define FCTR_TFUA(i) ((i) << FCTR_TFUA_SHIFT)
139#define FCTR_RFWM_MASK 0x0000e000 /* Receive FIFO Watermark */
140#define FCTR_RFWM_1 0x00000000 /* Transfer Request when 1 valid stages */
141#define FCTR_RFWM_4 0x00002000 /* Transfer Request when 4 valid stages */
142#define FCTR_RFWM_8 0x00004000 /* Transfer Request when 8 valid stages */
143#define FCTR_RFWM_16 0x00006000 /* Transfer Request when 16 valid stages */
144#define FCTR_RFWM_32 0x00008000 /* Transfer Request when 32 valid stages */
145#define FCTR_RFWM_64 0x0000a000 /* Transfer Request when 64 valid stages */
146#define FCTR_RFWM_128 0x0000c000 /* Transfer Request when 128 valid stages */
147#define FCTR_RFWM_256 0x0000e000 /* Transfer Request when 256 valid stages */
148#define FCTR_RFUA_MASK 0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
149#define FCTR_RFUA_SHIFT 4
150#define FCTR_RFUA(i) ((i) << FCTR_RFUA_SHIFT)
151
152/* STR */
153#define STR_TFEMP 0x20000000 /* Transmit FIFO Empty */
154#define STR_TDREQ 0x10000000 /* Transmit Data Transfer Request */
155#define STR_TEOF 0x00800000 /* Frame Transmission End */
156#define STR_TFSERR 0x00200000 /* Transmit Frame Synchronization Error */
157#define STR_TFOVF 0x00100000 /* Transmit FIFO Overflow */
158#define STR_TFUDF 0x00080000 /* Transmit FIFO Underflow */
159#define STR_RFFUL 0x00002000 /* Receive FIFO Full */
160#define STR_RDREQ 0x00001000 /* Receive Data Transfer Request */
161#define STR_REOF 0x00000080 /* Frame Reception End */
162#define STR_RFSERR 0x00000020 /* Receive Frame Synchronization Error */
163#define STR_RFUDF 0x00000010 /* Receive FIFO Underflow */
164#define STR_RFOVF 0x00000008 /* Receive FIFO Overflow */
165
166/* IER */
167#define IER_TDMAE 0x80000000 /* Transmit Data DMA Transfer Req. Enable */
168#define IER_TFEMPE 0x20000000 /* Transmit FIFO Empty Enable */
169#define IER_TDREQE 0x10000000 /* Transmit Data Transfer Request Enable */
170#define IER_TEOFE 0x00800000 /* Frame Transmission End Enable */
171#define IER_TFSERRE 0x00200000 /* Transmit Frame Sync Error Enable */
172#define IER_TFOVFE 0x00100000 /* Transmit FIFO Overflow Enable */
173#define IER_TFUDFE 0x00080000 /* Transmit FIFO Underflow Enable */
174#define IER_RDMAE 0x00008000 /* Receive Data DMA Transfer Req. Enable */
175#define IER_RFFULE 0x00002000 /* Receive FIFO Full Enable */
176#define IER_RDREQE 0x00001000 /* Receive Data Transfer Request Enable */
177#define IER_REOFE 0x00000080 /* Frame Reception End Enable */
178#define IER_RFSERRE 0x00000020 /* Receive Frame Sync Error Enable */
179#define IER_RFUDFE 0x00000010 /* Receive FIFO Underflow Enable */
180#define IER_RFOVFE 0x00000008 /* Receive FIFO Overflow Enable */
181
182
183static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
184{
185 switch (reg_offs) {
186 case TSCR:
187 case RSCR:
188 return ioread16(p->mapbase + reg_offs);
189 default:
190 return ioread32(p->mapbase + reg_offs);
191 }
192}
193
194static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
195 u32 value)
196{
197 switch (reg_offs) {
198 case TSCR:
199 case RSCR:
200 iowrite16(value, p->mapbase + reg_offs);
201 break;
202 default:
203 iowrite32(value, p->mapbase + reg_offs);
204 break;
205 }
206}
207
208static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
209 u32 clr, u32 set)
210{
211 u32 mask = clr | set;
212 u32 data;
213 int k;
214
215 data = sh_msiof_read(p, CTR);
216 data &= ~clr;
217 data |= set;
218 sh_msiof_write(p, CTR, data);
219
220 for (k = 100; k > 0; k--) {
221 if ((sh_msiof_read(p, CTR) & mask) == set)
222 break;
223
224 udelay(10);
225 }
226
227 return k > 0 ? 0 : -ETIMEDOUT;
228}
229
230static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
231{
232 struct sh_msiof_spi_priv *p = data;
233
234 /* just disable the interrupt and wake up */
235 sh_msiof_write(p, IER, 0);
236 complete(&p->done);
237
238 return IRQ_HANDLED;
239}
240
241static struct {
242 unsigned short div;
243 unsigned short brdv;
244} const sh_msiof_spi_div_table[] = {
245 { 1, SCR_BRDV_DIV_1 },
246 { 2, SCR_BRDV_DIV_2 },
247 { 4, SCR_BRDV_DIV_4 },
248 { 8, SCR_BRDV_DIV_8 },
249 { 16, SCR_BRDV_DIV_16 },
250 { 32, SCR_BRDV_DIV_32 },
251};
252
253static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
254 unsigned long parent_rate, u32 spi_hz)
255{
256 unsigned long div = 1024;
257 u32 brps, scr;
258 size_t k;
259
260 if (!WARN_ON(!spi_hz || !parent_rate))
261 div = DIV_ROUND_UP(parent_rate, spi_hz);
262
263 for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_div_table); k++) {
264 brps = DIV_ROUND_UP(div, sh_msiof_spi_div_table[k].div);
265 /* SCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
266 if (sh_msiof_spi_div_table[k].div == 1 && brps > 2)
267 continue;
268 if (brps <= 32) /* max of brdv is 32 */
269 break;
270 }
271
272 k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_div_table) - 1);
273
274 scr = sh_msiof_spi_div_table[k].brdv | SCR_BRPS(brps);
275 sh_msiof_write(p, TSCR, scr);
276 if (!(p->master->flags & SPI_MASTER_MUST_TX))
277 sh_msiof_write(p, RSCR, scr);
278}
279
280static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
281{
282 /*
283 * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl
284 * b'000 : 0
285 * b'001 : 100
286 * b'010 : 200
287 * b'011 (SYNCDL only) : 300
288 * b'101 : 50
289 * b'110 : 150
290 */
291 if (dtdl_or_syncdl % 100)
292 return dtdl_or_syncdl / 100 + 5;
293 else
294 return dtdl_or_syncdl / 100;
295}
296
297static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
298{
299 u32 val;
300
301 if (!p->info)
302 return 0;
303
304 /* check if DTDL and SYNCDL is allowed value */
305 if (p->info->dtdl > 200 || p->info->syncdl > 300) {
306 dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
307 return 0;
308 }
309
310 /* check if the sum of DTDL and SYNCDL becomes an integer value */
311 if ((p->info->dtdl + p->info->syncdl) % 100) {
312 dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
313 return 0;
314 }
315
316 val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
317 val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;
318
319 return val;
320}
321
322static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p,
323 u32 cpol, u32 cpha,
324 u32 tx_hi_z, u32 lsb_first, u32 cs_high)
325{
326 u32 tmp;
327 int edge;
328
329 /*
330 * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
331 * 0 0 10 10 1 1
332 * 0 1 10 10 0 0
333 * 1 0 11 11 0 0
334 * 1 1 11 11 1 1
335 */
336 tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
337 tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
338 tmp |= lsb_first << MDR1_BITLSB_SHIFT;
339 tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
340 sh_msiof_write(p, TMDR1, tmp | MDR1_TRMD | TMDR1_PCON);
341 if (p->master->flags & SPI_MASTER_MUST_TX) {
342 /* These bits are reserved if RX needs TX */
343 tmp &= ~0x0000ffff;
344 }
345 sh_msiof_write(p, RMDR1, tmp);
346
347 tmp = 0;
348 tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
349 tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
350
351 edge = cpol ^ !cpha;
352
353 tmp |= edge << CTR_TEDG_SHIFT;
354 tmp |= edge << CTR_REDG_SHIFT;
355 tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
356 sh_msiof_write(p, CTR, tmp);
357}
358
359static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
360 const void *tx_buf, void *rx_buf,
361 u32 bits, u32 words)
362{
363 u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
364
365 if (tx_buf || (p->master->flags & SPI_MASTER_MUST_TX))
366 sh_msiof_write(p, TMDR2, dr2);
367 else
368 sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
369
370 if (rx_buf)
371 sh_msiof_write(p, RMDR2, dr2);
372}
373
374static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
375{
376 sh_msiof_write(p, STR, sh_msiof_read(p, STR));
377}
378
379static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
380 const void *tx_buf, int words, int fs)
381{
382 const u8 *buf_8 = tx_buf;
383 int k;
384
385 for (k = 0; k < words; k++)
386 sh_msiof_write(p, TFDR, buf_8[k] << fs);
387}
388
389static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
390 const void *tx_buf, int words, int fs)
391{
392 const u16 *buf_16 = tx_buf;
393 int k;
394
395 for (k = 0; k < words; k++)
396 sh_msiof_write(p, TFDR, buf_16[k] << fs);
397}
398
399static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
400 const void *tx_buf, int words, int fs)
401{
402 const u16 *buf_16 = tx_buf;
403 int k;
404
405 for (k = 0; k < words; k++)
406 sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
407}
408
409static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
410 const void *tx_buf, int words, int fs)
411{
412 const u32 *buf_32 = tx_buf;
413 int k;
414
415 for (k = 0; k < words; k++)
416 sh_msiof_write(p, TFDR, buf_32[k] << fs);
417}
418
419static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
420 const void *tx_buf, int words, int fs)
421{
422 const u32 *buf_32 = tx_buf;
423 int k;
424
425 for (k = 0; k < words; k++)
426 sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
427}
428
429static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
430 const void *tx_buf, int words, int fs)
431{
432 const u32 *buf_32 = tx_buf;
433 int k;
434
435 for (k = 0; k < words; k++)
436 sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
437}
438
439static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
440 const void *tx_buf, int words, int fs)
441{
442 const u32 *buf_32 = tx_buf;
443 int k;
444
445 for (k = 0; k < words; k++)
446 sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
447}
448
449static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
450 void *rx_buf, int words, int fs)
451{
452 u8 *buf_8 = rx_buf;
453 int k;
454
455 for (k = 0; k < words; k++)
456 buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
457}
458
459static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
460 void *rx_buf, int words, int fs)
461{
462 u16 *buf_16 = rx_buf;
463 int k;
464
465 for (k = 0; k < words; k++)
466 buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
467}
468
469static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
470 void *rx_buf, int words, int fs)
471{
472 u16 *buf_16 = rx_buf;
473 int k;
474
475 for (k = 0; k < words; k++)
476 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
477}
478
479static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
480 void *rx_buf, int words, int fs)
481{
482 u32 *buf_32 = rx_buf;
483 int k;
484
485 for (k = 0; k < words; k++)
486 buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
487}
488
489static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
490 void *rx_buf, int words, int fs)
491{
492 u32 *buf_32 = rx_buf;
493 int k;
494
495 for (k = 0; k < words; k++)
496 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
497}
498
499static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
500 void *rx_buf, int words, int fs)
501{
502 u32 *buf_32 = rx_buf;
503 int k;
504
505 for (k = 0; k < words; k++)
506 buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
507}
508
509static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
510 void *rx_buf, int words, int fs)
511{
512 u32 *buf_32 = rx_buf;
513 int k;
514
515 for (k = 0; k < words; k++)
516 put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
517}
518
519static int sh_msiof_spi_setup(struct spi_device *spi)
520{
521 struct device_node *np = spi->master->dev.of_node;
522 struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
523
524 pm_runtime_get_sync(&p->pdev->dev);
525
526 if (!np) {
527 /*
528 * Use spi->controller_data for CS (same strategy as spi_gpio),
529 * if any. otherwise let HW control CS
530 */
531 spi->cs_gpio = (uintptr_t)spi->controller_data;
532 }
533
534 /* Configure pins before deasserting CS */
535 sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
536 !!(spi->mode & SPI_CPHA),
537 !!(spi->mode & SPI_3WIRE),
538 !!(spi->mode & SPI_LSB_FIRST),
539 !!(spi->mode & SPI_CS_HIGH));
540
541 if (spi->cs_gpio >= 0)
542 gpio_set_value(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
543
544
545 pm_runtime_put(&p->pdev->dev);
546
547 return 0;
548}
549
550static int sh_msiof_prepare_message(struct spi_master *master,
551 struct spi_message *msg)
552{
553 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
554 const struct spi_device *spi = msg->spi;
555
556 /* Configure pins before asserting CS */
557 sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
558 !!(spi->mode & SPI_CPHA),
559 !!(spi->mode & SPI_3WIRE),
560 !!(spi->mode & SPI_LSB_FIRST),
561 !!(spi->mode & SPI_CS_HIGH));
562 return 0;
563}
564
565static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
566{
567 int ret;
568
569 /* setup clock and rx/tx signals */
570 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
571 if (rx_buf && !ret)
572 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
573 if (!ret)
574 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
575
576 /* start by setting frame bit */
577 if (!ret)
578 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
579
580 return ret;
581}
582
583static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
584{
585 int ret;
586
587 /* shut down frame, rx/tx and clock signals */
588 ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
589 if (!ret)
590 ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
591 if (rx_buf && !ret)
592 ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
593 if (!ret)
594 ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
595
596 return ret;
597}
598
599static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
600 void (*tx_fifo)(struct sh_msiof_spi_priv *,
601 const void *, int, int),
602 void (*rx_fifo)(struct sh_msiof_spi_priv *,
603 void *, int, int),
604 const void *tx_buf, void *rx_buf,
605 int words, int bits)
606{
607 int fifo_shift;
608 int ret;
609
610 /* limit maximum word transfer to rx/tx fifo size */
611 if (tx_buf)
612 words = min_t(int, words, p->tx_fifo_size);
613 if (rx_buf)
614 words = min_t(int, words, p->rx_fifo_size);
615
616 /* the fifo contents need shifting */
617 fifo_shift = 32 - bits;
618
619 /* default FIFO watermarks for PIO */
620 sh_msiof_write(p, FCTR, 0);
621
622 /* setup msiof transfer mode registers */
623 sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
624 sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
625
626 /* write tx fifo */
627 if (tx_buf)
628 tx_fifo(p, tx_buf, words, fifo_shift);
629
630 reinit_completion(&p->done);
631
632 ret = sh_msiof_spi_start(p, rx_buf);
633 if (ret) {
634 dev_err(&p->pdev->dev, "failed to start hardware\n");
635 goto stop_ier;
636 }
637
638 /* wait for tx fifo to be emptied / rx fifo to be filled */
639 if (!wait_for_completion_timeout(&p->done, HZ)) {
640 dev_err(&p->pdev->dev, "PIO timeout\n");
641 ret = -ETIMEDOUT;
642 goto stop_reset;
643 }
644
645 /* read rx fifo */
646 if (rx_buf)
647 rx_fifo(p, rx_buf, words, fifo_shift);
648
649 /* clear status bits */
650 sh_msiof_reset_str(p);
651
652 ret = sh_msiof_spi_stop(p, rx_buf);
653 if (ret) {
654 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
655 return ret;
656 }
657
658 return words;
659
660stop_reset:
661 sh_msiof_reset_str(p);
662 sh_msiof_spi_stop(p, rx_buf);
663stop_ier:
664 sh_msiof_write(p, IER, 0);
665 return ret;
666}
667
668static void sh_msiof_dma_complete(void *arg)
669{
670 struct sh_msiof_spi_priv *p = arg;
671
672 sh_msiof_write(p, IER, 0);
673 complete(&p->done);
674}
675
676static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
677 void *rx, unsigned int len)
678{
679 u32 ier_bits = 0;
680 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
681 dma_cookie_t cookie;
682 int ret;
683
684 /* First prepare and submit the DMA request(s), as this may fail */
685 if (rx) {
686 ier_bits |= IER_RDREQE | IER_RDMAE;
687 desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
688 p->rx_dma_addr, len, DMA_FROM_DEVICE,
689 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
690 if (!desc_rx)
691 return -EAGAIN;
692
693 desc_rx->callback = sh_msiof_dma_complete;
694 desc_rx->callback_param = p;
695 cookie = dmaengine_submit(desc_rx);
696 if (dma_submit_error(cookie))
697 return cookie;
698 }
699
700 if (tx) {
701 ier_bits |= IER_TDREQE | IER_TDMAE;
702 dma_sync_single_for_device(p->master->dma_tx->device->dev,
703 p->tx_dma_addr, len, DMA_TO_DEVICE);
704 desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
705 p->tx_dma_addr, len, DMA_TO_DEVICE,
706 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
707 if (!desc_tx) {
708 ret = -EAGAIN;
709 goto no_dma_tx;
710 }
711
712 if (rx) {
713 /* No callback */
714 desc_tx->callback = NULL;
715 } else {
716 desc_tx->callback = sh_msiof_dma_complete;
717 desc_tx->callback_param = p;
718 }
719 cookie = dmaengine_submit(desc_tx);
720 if (dma_submit_error(cookie)) {
721 ret = cookie;
722 goto no_dma_tx;
723 }
724 }
725
726 /* 1 stage FIFO watermarks for DMA */
727 sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
728
729 /* setup msiof transfer mode registers (32-bit words) */
730 sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
731
732 sh_msiof_write(p, IER, ier_bits);
733
734 reinit_completion(&p->done);
735
736 /* Now start DMA */
737 if (rx)
738 dma_async_issue_pending(p->master->dma_rx);
739 if (tx)
740 dma_async_issue_pending(p->master->dma_tx);
741
742 ret = sh_msiof_spi_start(p, rx);
743 if (ret) {
744 dev_err(&p->pdev->dev, "failed to start hardware\n");
745 goto stop_dma;
746 }
747
748 /* wait for tx fifo to be emptied / rx fifo to be filled */
749 if (!wait_for_completion_timeout(&p->done, HZ)) {
750 dev_err(&p->pdev->dev, "DMA timeout\n");
751 ret = -ETIMEDOUT;
752 goto stop_reset;
753 }
754
755 /* clear status bits */
756 sh_msiof_reset_str(p);
757
758 ret = sh_msiof_spi_stop(p, rx);
759 if (ret) {
760 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
761 return ret;
762 }
763
764 if (rx)
765 dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
766 p->rx_dma_addr, len,
767 DMA_FROM_DEVICE);
768
769 return 0;
770
771stop_reset:
772 sh_msiof_reset_str(p);
773 sh_msiof_spi_stop(p, rx);
774stop_dma:
775 if (tx)
776 dmaengine_terminate_all(p->master->dma_tx);
777no_dma_tx:
778 if (rx)
779 dmaengine_terminate_all(p->master->dma_rx);
780 sh_msiof_write(p, IER, 0);
781 return ret;
782}
783
784static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
785{
786 /* src or dst can be unaligned, but not both */
787 if ((unsigned long)src & 3) {
788 while (words--) {
789 *dst++ = swab32(get_unaligned(src));
790 src++;
791 }
792 } else if ((unsigned long)dst & 3) {
793 while (words--) {
794 put_unaligned(swab32(*src++), dst);
795 dst++;
796 }
797 } else {
798 while (words--)
799 *dst++ = swab32(*src++);
800 }
801}
802
803static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
804{
805 /* src or dst can be unaligned, but not both */
806 if ((unsigned long)src & 3) {
807 while (words--) {
808 *dst++ = swahw32(get_unaligned(src));
809 src++;
810 }
811 } else if ((unsigned long)dst & 3) {
812 while (words--) {
813 put_unaligned(swahw32(*src++), dst);
814 dst++;
815 }
816 } else {
817 while (words--)
818 *dst++ = swahw32(*src++);
819 }
820}
821
822static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
823{
824 memcpy(dst, src, words * 4);
825}
826
827static int sh_msiof_transfer_one(struct spi_master *master,
828 struct spi_device *spi,
829 struct spi_transfer *t)
830{
831 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
832 void (*copy32)(u32 *, const u32 *, unsigned int);
833 void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
834 void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
835 const void *tx_buf = t->tx_buf;
836 void *rx_buf = t->rx_buf;
837 unsigned int len = t->len;
838 unsigned int bits = t->bits_per_word;
839 unsigned int bytes_per_word;
840 unsigned int words;
841 int n;
842 bool swab;
843 int ret;
844
845 /* setup clocks (clock already enabled in chipselect()) */
846 sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
847
848 while (master->dma_tx && len > 15) {
849 /*
850 * DMA supports 32-bit words only, hence pack 8-bit and 16-bit
851 * words, with byte resp. word swapping.
852 */
853 unsigned int l = 0;
854
855 if (tx_buf)
856 l = min(len, p->tx_fifo_size * 4);
857 if (rx_buf)
858 l = min(len, p->rx_fifo_size * 4);
859
860 if (bits <= 8) {
861 if (l & 3)
862 break;
863 copy32 = copy_bswap32;
864 } else if (bits <= 16) {
865 if (l & 1)
866 break;
867 copy32 = copy_wswap32;
868 } else {
869 copy32 = copy_plain32;
870 }
871
872 if (tx_buf)
873 copy32(p->tx_dma_page, tx_buf, l / 4);
874
875 ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
876 if (ret == -EAGAIN) {
877 pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
878 dev_driver_string(&p->pdev->dev),
879 dev_name(&p->pdev->dev));
880 break;
881 }
882 if (ret)
883 return ret;
884
885 if (rx_buf) {
886 copy32(rx_buf, p->rx_dma_page, l / 4);
887 rx_buf += l;
888 }
889 if (tx_buf)
890 tx_buf += l;
891
892 len -= l;
893 if (!len)
894 return 0;
895 }
896
897 if (bits <= 8 && len > 15 && !(len & 3)) {
898 bits = 32;
899 swab = true;
900 } else {
901 swab = false;
902 }
903
904 /* setup bytes per word and fifo read/write functions */
905 if (bits <= 8) {
906 bytes_per_word = 1;
907 tx_fifo = sh_msiof_spi_write_fifo_8;
908 rx_fifo = sh_msiof_spi_read_fifo_8;
909 } else if (bits <= 16) {
910 bytes_per_word = 2;
911 if ((unsigned long)tx_buf & 0x01)
912 tx_fifo = sh_msiof_spi_write_fifo_16u;
913 else
914 tx_fifo = sh_msiof_spi_write_fifo_16;
915
916 if ((unsigned long)rx_buf & 0x01)
917 rx_fifo = sh_msiof_spi_read_fifo_16u;
918 else
919 rx_fifo = sh_msiof_spi_read_fifo_16;
920 } else if (swab) {
921 bytes_per_word = 4;
922 if ((unsigned long)tx_buf & 0x03)
923 tx_fifo = sh_msiof_spi_write_fifo_s32u;
924 else
925 tx_fifo = sh_msiof_spi_write_fifo_s32;
926
927 if ((unsigned long)rx_buf & 0x03)
928 rx_fifo = sh_msiof_spi_read_fifo_s32u;
929 else
930 rx_fifo = sh_msiof_spi_read_fifo_s32;
931 } else {
932 bytes_per_word = 4;
933 if ((unsigned long)tx_buf & 0x03)
934 tx_fifo = sh_msiof_spi_write_fifo_32u;
935 else
936 tx_fifo = sh_msiof_spi_write_fifo_32;
937
938 if ((unsigned long)rx_buf & 0x03)
939 rx_fifo = sh_msiof_spi_read_fifo_32u;
940 else
941 rx_fifo = sh_msiof_spi_read_fifo_32;
942 }
943
944 /* transfer in fifo sized chunks */
945 words = len / bytes_per_word;
946
947 while (words > 0) {
948 n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
949 words, bits);
950 if (n < 0)
951 return n;
952
953 if (tx_buf)
954 tx_buf += n * bytes_per_word;
955 if (rx_buf)
956 rx_buf += n * bytes_per_word;
957 words -= n;
958 }
959
960 return 0;
961}
962
963static const struct sh_msiof_chipdata sh_data = {
964 .tx_fifo_size = 64,
965 .rx_fifo_size = 64,
966 .master_flags = 0,
967};
968
969static const struct sh_msiof_chipdata r8a779x_data = {
970 .tx_fifo_size = 64,
971 .rx_fifo_size = 64,
972 .master_flags = SPI_MASTER_MUST_TX,
973};
974
975static const struct of_device_id sh_msiof_match[] = {
976 { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
977 { .compatible = "renesas,msiof-r8a7790", .data = &r8a779x_data },
978 { .compatible = "renesas,msiof-r8a7791", .data = &r8a779x_data },
979 { .compatible = "renesas,msiof-r8a7792", .data = &r8a779x_data },
980 { .compatible = "renesas,msiof-r8a7793", .data = &r8a779x_data },
981 { .compatible = "renesas,msiof-r8a7794", .data = &r8a779x_data },
982 { .compatible = "renesas,rcar-gen2-msiof", .data = &r8a779x_data },
983 { .compatible = "renesas,msiof-r8a7796", .data = &r8a779x_data },
984 { .compatible = "renesas,rcar-gen3-msiof", .data = &r8a779x_data },
985 { .compatible = "renesas,sh-msiof", .data = &sh_data }, /* Deprecated */
986 {},
987};
988MODULE_DEVICE_TABLE(of, sh_msiof_match);
989
990#ifdef CONFIG_OF
991static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
992{
993 struct sh_msiof_spi_info *info;
994 struct device_node *np = dev->of_node;
995 u32 num_cs = 1;
996
997 info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
998 if (!info)
999 return NULL;
1000
1001 /* Parse the MSIOF properties */
1002 of_property_read_u32(np, "num-cs", &num_cs);
1003 of_property_read_u32(np, "renesas,tx-fifo-size",
1004 &info->tx_fifo_override);
1005 of_property_read_u32(np, "renesas,rx-fifo-size",
1006 &info->rx_fifo_override);
1007 of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1008 of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1009
1010 info->num_chipselect = num_cs;
1011
1012 return info;
1013}
1014#else
1015static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1016{
1017 return NULL;
1018}
1019#endif
1020
1021static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1022 enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1023{
1024 dma_cap_mask_t mask;
1025 struct dma_chan *chan;
1026 struct dma_slave_config cfg;
1027 int ret;
1028
1029 dma_cap_zero(mask);
1030 dma_cap_set(DMA_SLAVE, mask);
1031
1032 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1033 (void *)(unsigned long)id, dev,
1034 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1035 if (!chan) {
1036 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1037 return NULL;
1038 }
1039
1040 memset(&cfg, 0, sizeof(cfg));
1041 cfg.direction = dir;
1042 if (dir == DMA_MEM_TO_DEV) {
1043 cfg.dst_addr = port_addr;
1044 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1045 } else {
1046 cfg.src_addr = port_addr;
1047 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1048 }
1049
1050 ret = dmaengine_slave_config(chan, &cfg);
1051 if (ret) {
1052 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1053 dma_release_channel(chan);
1054 return NULL;
1055 }
1056
1057 return chan;
1058}
1059
1060static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1061{
1062 struct platform_device *pdev = p->pdev;
1063 struct device *dev = &pdev->dev;
1064 const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
1065 unsigned int dma_tx_id, dma_rx_id;
1066 const struct resource *res;
1067 struct spi_master *master;
1068 struct device *tx_dev, *rx_dev;
1069
1070 if (dev->of_node) {
1071 /* In the OF case we will get the slave IDs from the DT */
1072 dma_tx_id = 0;
1073 dma_rx_id = 0;
1074 } else if (info && info->dma_tx_id && info->dma_rx_id) {
1075 dma_tx_id = info->dma_tx_id;
1076 dma_rx_id = info->dma_rx_id;
1077 } else {
1078 /* The driver assumes no error */
1079 return 0;
1080 }
1081
1082 /* The DMA engine uses the second register set, if present */
1083 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1084 if (!res)
1085 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1086
1087 master = p->master;
1088 master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1089 dma_tx_id,
1090 res->start + TFDR);
1091 if (!master->dma_tx)
1092 return -ENODEV;
1093
1094 master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1095 dma_rx_id,
1096 res->start + RFDR);
1097 if (!master->dma_rx)
1098 goto free_tx_chan;
1099
1100 p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1101 if (!p->tx_dma_page)
1102 goto free_rx_chan;
1103
1104 p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1105 if (!p->rx_dma_page)
1106 goto free_tx_page;
1107
1108 tx_dev = master->dma_tx->device->dev;
1109 p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1110 DMA_TO_DEVICE);
1111 if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1112 goto free_rx_page;
1113
1114 rx_dev = master->dma_rx->device->dev;
1115 p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1116 DMA_FROM_DEVICE);
1117 if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1118 goto unmap_tx_page;
1119
1120 dev_info(dev, "DMA available");
1121 return 0;
1122
1123unmap_tx_page:
1124 dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1125free_rx_page:
1126 free_page((unsigned long)p->rx_dma_page);
1127free_tx_page:
1128 free_page((unsigned long)p->tx_dma_page);
1129free_rx_chan:
1130 dma_release_channel(master->dma_rx);
1131free_tx_chan:
1132 dma_release_channel(master->dma_tx);
1133 master->dma_tx = NULL;
1134 return -ENODEV;
1135}
1136
1137static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1138{
1139 struct spi_master *master = p->master;
1140 struct device *dev;
1141
1142 if (!master->dma_tx)
1143 return;
1144
1145 dev = &p->pdev->dev;
1146 dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
1147 PAGE_SIZE, DMA_FROM_DEVICE);
1148 dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
1149 PAGE_SIZE, DMA_TO_DEVICE);
1150 free_page((unsigned long)p->rx_dma_page);
1151 free_page((unsigned long)p->tx_dma_page);
1152 dma_release_channel(master->dma_rx);
1153 dma_release_channel(master->dma_tx);
1154}
1155
1156static int sh_msiof_spi_probe(struct platform_device *pdev)
1157{
1158 struct resource *r;
1159 struct spi_master *master;
1160 const struct sh_msiof_chipdata *chipdata;
1161 const struct of_device_id *of_id;
1162 struct sh_msiof_spi_priv *p;
1163 int i;
1164 int ret;
1165
1166 master = spi_alloc_master(&pdev->dev, sizeof(struct sh_msiof_spi_priv));
1167 if (master == NULL) {
1168 dev_err(&pdev->dev, "failed to allocate spi master\n");
1169 return -ENOMEM;
1170 }
1171
1172 p = spi_master_get_devdata(master);
1173
1174 platform_set_drvdata(pdev, p);
1175 p->master = master;
1176
1177 of_id = of_match_device(sh_msiof_match, &pdev->dev);
1178 if (of_id) {
1179 chipdata = of_id->data;
1180 p->info = sh_msiof_spi_parse_dt(&pdev->dev);
1181 } else {
1182 chipdata = (const void *)pdev->id_entry->driver_data;
1183 p->info = dev_get_platdata(&pdev->dev);
1184 }
1185
1186 if (!p->info) {
1187 dev_err(&pdev->dev, "failed to obtain device info\n");
1188 ret = -ENXIO;
1189 goto err1;
1190 }
1191
1192 init_completion(&p->done);
1193
1194 p->clk = devm_clk_get(&pdev->dev, NULL);
1195 if (IS_ERR(p->clk)) {
1196 dev_err(&pdev->dev, "cannot get clock\n");
1197 ret = PTR_ERR(p->clk);
1198 goto err1;
1199 }
1200
1201 i = platform_get_irq(pdev, 0);
1202 if (i < 0) {
1203 dev_err(&pdev->dev, "cannot get platform IRQ\n");
1204 ret = -ENOENT;
1205 goto err1;
1206 }
1207
1208 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1209 p->mapbase = devm_ioremap_resource(&pdev->dev, r);
1210 if (IS_ERR(p->mapbase)) {
1211 ret = PTR_ERR(p->mapbase);
1212 goto err1;
1213 }
1214
1215 ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1216 dev_name(&pdev->dev), p);
1217 if (ret) {
1218 dev_err(&pdev->dev, "unable to request irq\n");
1219 goto err1;
1220 }
1221
1222 p->pdev = pdev;
1223 pm_runtime_enable(&pdev->dev);
1224
1225 /* Platform data may override FIFO sizes */
1226 p->tx_fifo_size = chipdata->tx_fifo_size;
1227 p->rx_fifo_size = chipdata->rx_fifo_size;
1228 if (p->info->tx_fifo_override)
1229 p->tx_fifo_size = p->info->tx_fifo_override;
1230 if (p->info->rx_fifo_override)
1231 p->rx_fifo_size = p->info->rx_fifo_override;
1232
1233 /* init master code */
1234 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1235 master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1236 master->flags = chipdata->master_flags;
1237 master->bus_num = pdev->id;
1238 master->dev.of_node = pdev->dev.of_node;
1239 master->num_chipselect = p->info->num_chipselect;
1240 master->setup = sh_msiof_spi_setup;
1241 master->prepare_message = sh_msiof_prepare_message;
1242 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
1243 master->auto_runtime_pm = true;
1244 master->transfer_one = sh_msiof_transfer_one;
1245
1246 ret = sh_msiof_request_dma(p);
1247 if (ret < 0)
1248 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1249
1250 ret = devm_spi_register_master(&pdev->dev, master);
1251 if (ret < 0) {
1252 dev_err(&pdev->dev, "spi_register_master error.\n");
1253 goto err2;
1254 }
1255
1256 return 0;
1257
1258 err2:
1259 sh_msiof_release_dma(p);
1260 pm_runtime_disable(&pdev->dev);
1261 err1:
1262 spi_master_put(master);
1263 return ret;
1264}
1265
1266static int sh_msiof_spi_remove(struct platform_device *pdev)
1267{
1268 struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1269
1270 sh_msiof_release_dma(p);
1271 pm_runtime_disable(&pdev->dev);
1272 return 0;
1273}
1274
1275static const struct platform_device_id spi_driver_ids[] = {
1276 { "spi_sh_msiof", (kernel_ulong_t)&sh_data },
1277 {},
1278};
1279MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1280
1281static struct platform_driver sh_msiof_spi_drv = {
1282 .probe = sh_msiof_spi_probe,
1283 .remove = sh_msiof_spi_remove,
1284 .id_table = spi_driver_ids,
1285 .driver = {
1286 .name = "spi_sh_msiof",
1287 .of_match_table = of_match_ptr(sh_msiof_match),
1288 },
1289};
1290module_platform_driver(sh_msiof_spi_drv);
1291
1292MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
1293MODULE_AUTHOR("Magnus Damm");
1294MODULE_LICENSE("GPL v2");
1295MODULE_ALIAS("platform:spi_sh_msiof");