Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Lantiq / Intel GSWIP switch driver for VRX200, xRX300 and xRX330 SoCs
   4 *
   5 * Copyright (C) 2010 Lantiq Deutschland
   6 * Copyright (C) 2012 John Crispin <john@phrozen.org>
   7 * Copyright (C) 2017 - 2019 Hauke Mehrtens <hauke@hauke-m.de>
   8 *
   9 * The VLAN and bridge model the GSWIP hardware uses does not directly
  10 * matches the model DSA uses.
  11 *
  12 * The hardware has 64 possible table entries for bridges with one VLAN
  13 * ID, one flow id and a list of ports for each bridge. All entries which
  14 * match the same flow ID are combined in the mac learning table, they
  15 * act as one global bridge.
  16 * The hardware does not support VLAN filter on the port, but on the
  17 * bridge, this driver converts the DSA model to the hardware.
  18 *
  19 * The CPU gets all the exception frames which do not match any forwarding
  20 * rule and the CPU port is also added to all bridges. This makes it possible
  21 * to handle all the special cases easily in software.
  22 * At the initialization the driver allocates one bridge table entry for
  23 * each switch port which is used when the port is used without an
  24 * explicit bridge. This prevents the frames from being forwarded
  25 * between all LAN ports by default.
  26 */
  27
  28#include <linux/clk.h>
  29#include <linux/delay.h>
  30#include <linux/etherdevice.h>
  31#include <linux/firmware.h>
  32#include <linux/if_bridge.h>
  33#include <linux/if_vlan.h>
  34#include <linux/iopoll.h>
  35#include <linux/mfd/syscon.h>
  36#include <linux/module.h>
  37#include <linux/of_mdio.h>
  38#include <linux/of_net.h>
  39#include <linux/of_platform.h>
  40#include <linux/phy.h>
  41#include <linux/phylink.h>
  42#include <linux/platform_device.h>
  43#include <linux/regmap.h>
  44#include <linux/reset.h>
  45#include <net/dsa.h>
  46#include <dt-bindings/mips/lantiq_rcu_gphy.h>
  47
  48#include "lantiq_pce.h"
  49
  50/* GSWIP MDIO Registers */
  51#define GSWIP_MDIO_GLOB			0x00
  52#define  GSWIP_MDIO_GLOB_ENABLE		BIT(15)
  53#define GSWIP_MDIO_CTRL			0x08
  54#define  GSWIP_MDIO_CTRL_BUSY		BIT(12)
  55#define  GSWIP_MDIO_CTRL_RD		BIT(11)
  56#define  GSWIP_MDIO_CTRL_WR		BIT(10)
  57#define  GSWIP_MDIO_CTRL_PHYAD_MASK	0x1f
  58#define  GSWIP_MDIO_CTRL_PHYAD_SHIFT	5
  59#define  GSWIP_MDIO_CTRL_REGAD_MASK	0x1f
  60#define GSWIP_MDIO_READ			0x09
  61#define GSWIP_MDIO_WRITE		0x0A
  62#define GSWIP_MDIO_MDC_CFG0		0x0B
  63#define GSWIP_MDIO_MDC_CFG1		0x0C
  64#define GSWIP_MDIO_PHYp(p)		(0x15 - (p))
  65#define  GSWIP_MDIO_PHY_LINK_MASK	0x6000
  66#define  GSWIP_MDIO_PHY_LINK_AUTO	0x0000
  67#define  GSWIP_MDIO_PHY_LINK_DOWN	0x4000
  68#define  GSWIP_MDIO_PHY_LINK_UP		0x2000
  69#define  GSWIP_MDIO_PHY_SPEED_MASK	0x1800
  70#define  GSWIP_MDIO_PHY_SPEED_AUTO	0x1800
  71#define  GSWIP_MDIO_PHY_SPEED_M10	0x0000
  72#define  GSWIP_MDIO_PHY_SPEED_M100	0x0800
  73#define  GSWIP_MDIO_PHY_SPEED_G1	0x1000
  74#define  GSWIP_MDIO_PHY_FDUP_MASK	0x0600
  75#define  GSWIP_MDIO_PHY_FDUP_AUTO	0x0000
  76#define  GSWIP_MDIO_PHY_FDUP_EN		0x0200
  77#define  GSWIP_MDIO_PHY_FDUP_DIS	0x0600
  78#define  GSWIP_MDIO_PHY_FCONTX_MASK	0x0180
  79#define  GSWIP_MDIO_PHY_FCONTX_AUTO	0x0000
  80#define  GSWIP_MDIO_PHY_FCONTX_EN	0x0100
  81#define  GSWIP_MDIO_PHY_FCONTX_DIS	0x0180
  82#define  GSWIP_MDIO_PHY_FCONRX_MASK	0x0060
  83#define  GSWIP_MDIO_PHY_FCONRX_AUTO	0x0000
  84#define  GSWIP_MDIO_PHY_FCONRX_EN	0x0020
  85#define  GSWIP_MDIO_PHY_FCONRX_DIS	0x0060
  86#define  GSWIP_MDIO_PHY_ADDR_MASK	0x001f
  87#define  GSWIP_MDIO_PHY_MASK		(GSWIP_MDIO_PHY_ADDR_MASK | \
  88					 GSWIP_MDIO_PHY_FCONRX_MASK | \
  89					 GSWIP_MDIO_PHY_FCONTX_MASK | \
  90					 GSWIP_MDIO_PHY_LINK_MASK | \
  91					 GSWIP_MDIO_PHY_SPEED_MASK | \
  92					 GSWIP_MDIO_PHY_FDUP_MASK)
  93
  94/* GSWIP MII Registers */
  95#define GSWIP_MII_CFGp(p)		(0x2 * (p))
  96#define  GSWIP_MII_CFG_RESET		BIT(15)
 
  97#define  GSWIP_MII_CFG_EN		BIT(14)
  98#define  GSWIP_MII_CFG_ISOLATE		BIT(13)
  99#define  GSWIP_MII_CFG_LDCLKDIS		BIT(12)
 100#define  GSWIP_MII_CFG_RGMII_IBS	BIT(8)
 101#define  GSWIP_MII_CFG_RMII_CLK		BIT(7)
 102#define  GSWIP_MII_CFG_MODE_MIIP	0x0
 103#define  GSWIP_MII_CFG_MODE_MIIM	0x1
 104#define  GSWIP_MII_CFG_MODE_RMIIP	0x2
 105#define  GSWIP_MII_CFG_MODE_RMIIM	0x3
 106#define  GSWIP_MII_CFG_MODE_RGMII	0x4
 107#define  GSWIP_MII_CFG_MODE_GMII	0x9
 108#define  GSWIP_MII_CFG_MODE_MASK	0xf
 109#define  GSWIP_MII_CFG_RATE_M2P5	0x00
 110#define  GSWIP_MII_CFG_RATE_M25	0x10
 111#define  GSWIP_MII_CFG_RATE_M125	0x20
 112#define  GSWIP_MII_CFG_RATE_M50	0x30
 113#define  GSWIP_MII_CFG_RATE_AUTO	0x40
 114#define  GSWIP_MII_CFG_RATE_MASK	0x70
 115#define GSWIP_MII_PCDU0			0x01
 116#define GSWIP_MII_PCDU1			0x03
 117#define GSWIP_MII_PCDU5			0x05
 118#define  GSWIP_MII_PCDU_TXDLY_MASK	GENMASK(2, 0)
 119#define  GSWIP_MII_PCDU_RXDLY_MASK	GENMASK(9, 7)
 120
 121/* GSWIP Core Registers */
 122#define GSWIP_SWRES			0x000
 123#define  GSWIP_SWRES_R1			BIT(1)	/* GSWIP Software reset */
 124#define  GSWIP_SWRES_R0			BIT(0)	/* GSWIP Hardware reset */
 125#define GSWIP_VERSION			0x013
 126#define  GSWIP_VERSION_REV_SHIFT	0
 127#define  GSWIP_VERSION_REV_MASK		GENMASK(7, 0)
 128#define  GSWIP_VERSION_MOD_SHIFT	8
 129#define  GSWIP_VERSION_MOD_MASK		GENMASK(15, 8)
 130#define   GSWIP_VERSION_2_0		0x100
 131#define   GSWIP_VERSION_2_1		0x021
 132#define   GSWIP_VERSION_2_2		0x122
 133#define   GSWIP_VERSION_2_2_ETC		0x022
 134
 135#define GSWIP_BM_RAM_VAL(x)		(0x043 - (x))
 136#define GSWIP_BM_RAM_ADDR		0x044
 137#define GSWIP_BM_RAM_CTRL		0x045
 138#define  GSWIP_BM_RAM_CTRL_BAS		BIT(15)
 139#define  GSWIP_BM_RAM_CTRL_OPMOD	BIT(5)
 140#define  GSWIP_BM_RAM_CTRL_ADDR_MASK	GENMASK(4, 0)
 141#define GSWIP_BM_QUEUE_GCTRL		0x04A
 142#define  GSWIP_BM_QUEUE_GCTRL_GL_MOD	BIT(10)
 143/* buffer management Port Configuration Register */
 144#define GSWIP_BM_PCFGp(p)		(0x080 + ((p) * 2))
 145#define  GSWIP_BM_PCFG_CNTEN		BIT(0)	/* RMON Counter Enable */
 146#define  GSWIP_BM_PCFG_IGCNT		BIT(1)	/* Ingres Special Tag RMON count */
 147/* buffer management Port Control Register */
 148#define GSWIP_BM_RMON_CTRLp(p)		(0x81 + ((p) * 2))
 149#define  GSWIP_BM_CTRL_RMON_RAM1_RES	BIT(0)	/* Software Reset for RMON RAM 1 */
 150#define  GSWIP_BM_CTRL_RMON_RAM2_RES	BIT(1)	/* Software Reset for RMON RAM 2 */
 151
 152/* PCE */
 153#define GSWIP_PCE_TBL_KEY(x)		(0x447 - (x))
 154#define GSWIP_PCE_TBL_MASK		0x448
 155#define GSWIP_PCE_TBL_VAL(x)		(0x44D - (x))
 156#define GSWIP_PCE_TBL_ADDR		0x44E
 157#define GSWIP_PCE_TBL_CTRL		0x44F
 158#define  GSWIP_PCE_TBL_CTRL_BAS		BIT(15)
 159#define  GSWIP_PCE_TBL_CTRL_TYPE	BIT(13)
 160#define  GSWIP_PCE_TBL_CTRL_VLD		BIT(12)
 161#define  GSWIP_PCE_TBL_CTRL_KEYFORM	BIT(11)
 162#define  GSWIP_PCE_TBL_CTRL_GMAP_MASK	GENMASK(10, 7)
 163#define  GSWIP_PCE_TBL_CTRL_OPMOD_MASK	GENMASK(6, 5)
 164#define  GSWIP_PCE_TBL_CTRL_OPMOD_ADRD	0x00
 165#define  GSWIP_PCE_TBL_CTRL_OPMOD_ADWR	0x20
 166#define  GSWIP_PCE_TBL_CTRL_OPMOD_KSRD	0x40
 167#define  GSWIP_PCE_TBL_CTRL_OPMOD_KSWR	0x60
 168#define  GSWIP_PCE_TBL_CTRL_ADDR_MASK	GENMASK(4, 0)
 169#define GSWIP_PCE_PMAP1			0x453	/* Monitoring port map */
 170#define GSWIP_PCE_PMAP2			0x454	/* Default Multicast port map */
 171#define GSWIP_PCE_PMAP3			0x455	/* Default Unknown Unicast port map */
 172#define GSWIP_PCE_GCTRL_0		0x456
 173#define  GSWIP_PCE_GCTRL_0_MTFL		BIT(0)  /* MAC Table Flushing */
 174#define  GSWIP_PCE_GCTRL_0_MC_VALID	BIT(3)
 175#define  GSWIP_PCE_GCTRL_0_VLAN		BIT(14) /* VLAN aware Switching */
 176#define GSWIP_PCE_GCTRL_1		0x457
 177#define  GSWIP_PCE_GCTRL_1_MAC_GLOCK	BIT(2)	/* MAC Address table lock */
 178#define  GSWIP_PCE_GCTRL_1_MAC_GLOCK_MOD	BIT(3) /* Mac address table lock forwarding mode */
 179#define GSWIP_PCE_PCTRL_0p(p)		(0x480 + ((p) * 0xA))
 180#define  GSWIP_PCE_PCTRL_0_TVM		BIT(5)	/* Transparent VLAN mode */
 181#define  GSWIP_PCE_PCTRL_0_VREP		BIT(6)	/* VLAN Replace Mode */
 182#define  GSWIP_PCE_PCTRL_0_INGRESS	BIT(11)	/* Accept special tag in ingress */
 183#define  GSWIP_PCE_PCTRL_0_PSTATE_LISTEN	0x0
 184#define  GSWIP_PCE_PCTRL_0_PSTATE_RX		0x1
 185#define  GSWIP_PCE_PCTRL_0_PSTATE_TX		0x2
 186#define  GSWIP_PCE_PCTRL_0_PSTATE_LEARNING	0x3
 187#define  GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING	0x7
 188#define  GSWIP_PCE_PCTRL_0_PSTATE_MASK	GENMASK(2, 0)
 189#define GSWIP_PCE_VCTRL(p)		(0x485 + ((p) * 0xA))
 190#define  GSWIP_PCE_VCTRL_UVR		BIT(0)	/* Unknown VLAN Rule */
 191#define  GSWIP_PCE_VCTRL_VIMR		BIT(3)	/* VLAN Ingress Member violation rule */
 192#define  GSWIP_PCE_VCTRL_VEMR		BIT(4)	/* VLAN Egress Member violation rule */
 193#define  GSWIP_PCE_VCTRL_VSR		BIT(5)	/* VLAN Security */
 194#define  GSWIP_PCE_VCTRL_VID0		BIT(6)	/* Priority Tagged Rule */
 195#define GSWIP_PCE_DEFPVID(p)		(0x486 + ((p) * 0xA))
 196
 197#define GSWIP_MAC_FLEN			0x8C5
 198#define GSWIP_MAC_CTRL_0p(p)		(0x903 + ((p) * 0xC))
 199#define  GSWIP_MAC_CTRL_0_PADEN		BIT(8)
 200#define  GSWIP_MAC_CTRL_0_FCS_EN	BIT(7)
 201#define  GSWIP_MAC_CTRL_0_FCON_MASK	0x0070
 202#define  GSWIP_MAC_CTRL_0_FCON_AUTO	0x0000
 203#define  GSWIP_MAC_CTRL_0_FCON_RX	0x0010
 204#define  GSWIP_MAC_CTRL_0_FCON_TX	0x0020
 205#define  GSWIP_MAC_CTRL_0_FCON_RXTX	0x0030
 206#define  GSWIP_MAC_CTRL_0_FCON_NONE	0x0040
 207#define  GSWIP_MAC_CTRL_0_FDUP_MASK	0x000C
 208#define  GSWIP_MAC_CTRL_0_FDUP_AUTO	0x0000
 209#define  GSWIP_MAC_CTRL_0_FDUP_EN	0x0004
 210#define  GSWIP_MAC_CTRL_0_FDUP_DIS	0x000C
 211#define  GSWIP_MAC_CTRL_0_GMII_MASK	0x0003
 212#define  GSWIP_MAC_CTRL_0_GMII_AUTO	0x0000
 213#define  GSWIP_MAC_CTRL_0_GMII_MII	0x0001
 214#define  GSWIP_MAC_CTRL_0_GMII_RGMII	0x0002
 215#define GSWIP_MAC_CTRL_2p(p)		(0x905 + ((p) * 0xC))
 216#define GSWIP_MAC_CTRL_2_LCHKL		BIT(2) /* Frame Length Check Long Enable */
 217#define GSWIP_MAC_CTRL_2_MLEN		BIT(3) /* Maximum Untagged Frame Lnegth */
 218
 219/* Ethernet Switch Fetch DMA Port Control Register */
 220#define GSWIP_FDMA_PCTRLp(p)		(0xA80 + ((p) * 0x6))
 221#define  GSWIP_FDMA_PCTRL_EN		BIT(0)	/* FDMA Port Enable */
 222#define  GSWIP_FDMA_PCTRL_STEN		BIT(1)	/* Special Tag Insertion Enable */
 223#define  GSWIP_FDMA_PCTRL_VLANMOD_MASK	GENMASK(4, 3)	/* VLAN Modification Control */
 224#define  GSWIP_FDMA_PCTRL_VLANMOD_SHIFT	3	/* VLAN Modification Control */
 225#define  GSWIP_FDMA_PCTRL_VLANMOD_DIS	(0x0 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
 226#define  GSWIP_FDMA_PCTRL_VLANMOD_PRIO	(0x1 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
 227#define  GSWIP_FDMA_PCTRL_VLANMOD_ID	(0x2 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
 228#define  GSWIP_FDMA_PCTRL_VLANMOD_BOTH	(0x3 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
 229
 230/* Ethernet Switch Store DMA Port Control Register */
 231#define GSWIP_SDMA_PCTRLp(p)		(0xBC0 + ((p) * 0x6))
 232#define  GSWIP_SDMA_PCTRL_EN		BIT(0)	/* SDMA Port Enable */
 233#define  GSWIP_SDMA_PCTRL_FCEN		BIT(1)	/* Flow Control Enable */
 234#define  GSWIP_SDMA_PCTRL_PAUFWD	BIT(3)	/* Pause Frame Forwarding */
 235
 236#define GSWIP_TABLE_ACTIVE_VLAN		0x01
 237#define GSWIP_TABLE_VLAN_MAPPING	0x02
 238#define GSWIP_TABLE_MAC_BRIDGE		0x0b
 239#define  GSWIP_TABLE_MAC_BRIDGE_STATIC	0x01	/* Static not, aging entry */
 240
 241#define XRX200_GPHY_FW_ALIGN	(16 * 1024)
 242
 243/* Maximum packet size supported by the switch. In theory this should be 10240,
 244 * but long packets currently cause lock-ups with an MTU of over 2526. Medium
 245 * packets are sometimes dropped (e.g. TCP over 2477, UDP over 2516-2519, ICMP
 246 * over 2526), hence an MTU value of 2400 seems safe. This issue only affects
 247 * packet reception. This is probably caused by the PPA engine, which is on the
 248 * RX part of the device. Packet transmission works properly up to 10240.
 249 */
 250#define GSWIP_MAX_PACKET_LENGTH	2400
 251
 252struct gswip_hw_info {
 253	int max_ports;
 254	int cpu_port;
 255	const struct dsa_switch_ops *ops;
 256};
 257
 258struct xway_gphy_match_data {
 259	char *fe_firmware_name;
 260	char *ge_firmware_name;
 261};
 262
 263struct gswip_gphy_fw {
 264	struct clk *clk_gate;
 265	struct reset_control *reset;
 266	u32 fw_addr_offset;
 267	char *fw_name;
 268};
 269
 270struct gswip_vlan {
 271	struct net_device *bridge;
 272	u16 vid;
 273	u8 fid;
 274};
 275
 276struct gswip_priv {
 277	__iomem void *gswip;
 278	__iomem void *mdio;
 279	__iomem void *mii;
 280	const struct gswip_hw_info *hw_info;
 281	const struct xway_gphy_match_data *gphy_fw_name_cfg;
 282	struct dsa_switch *ds;
 283	struct device *dev;
 284	struct regmap *rcu_regmap;
 285	struct gswip_vlan vlans[64];
 286	int num_gphy_fw;
 287	struct gswip_gphy_fw *gphy_fw;
 288	u32 port_vlan_filter;
 289	struct mutex pce_table_lock;
 290};
 291
 292struct gswip_pce_table_entry {
 293	u16 index;      // PCE_TBL_ADDR.ADDR = pData->table_index
 294	u16 table;      // PCE_TBL_CTRL.ADDR = pData->table
 295	u16 key[8];
 296	u16 val[5];
 297	u16 mask;
 298	u8 gmap;
 299	bool type;
 300	bool valid;
 301	bool key_mode;
 302};
 303
 304struct gswip_rmon_cnt_desc {
 305	unsigned int size;
 306	unsigned int offset;
 307	const char *name;
 308};
 309
 310#define MIB_DESC(_size, _offset, _name) {.size = _size, .offset = _offset, .name = _name}
 311
 312static const struct gswip_rmon_cnt_desc gswip_rmon_cnt[] = {
 313	/** Receive Packet Count (only packets that are accepted and not discarded). */
 314	MIB_DESC(1, 0x1F, "RxGoodPkts"),
 315	MIB_DESC(1, 0x23, "RxUnicastPkts"),
 316	MIB_DESC(1, 0x22, "RxMulticastPkts"),
 317	MIB_DESC(1, 0x21, "RxFCSErrorPkts"),
 318	MIB_DESC(1, 0x1D, "RxUnderSizeGoodPkts"),
 319	MIB_DESC(1, 0x1E, "RxUnderSizeErrorPkts"),
 320	MIB_DESC(1, 0x1B, "RxOversizeGoodPkts"),
 321	MIB_DESC(1, 0x1C, "RxOversizeErrorPkts"),
 322	MIB_DESC(1, 0x20, "RxGoodPausePkts"),
 323	MIB_DESC(1, 0x1A, "RxAlignErrorPkts"),
 324	MIB_DESC(1, 0x12, "Rx64BytePkts"),
 325	MIB_DESC(1, 0x13, "Rx127BytePkts"),
 326	MIB_DESC(1, 0x14, "Rx255BytePkts"),
 327	MIB_DESC(1, 0x15, "Rx511BytePkts"),
 328	MIB_DESC(1, 0x16, "Rx1023BytePkts"),
 329	/** Receive Size 1024-1522 (or more, if configured) Packet Count. */
 330	MIB_DESC(1, 0x17, "RxMaxBytePkts"),
 331	MIB_DESC(1, 0x18, "RxDroppedPkts"),
 332	MIB_DESC(1, 0x19, "RxFilteredPkts"),
 333	MIB_DESC(2, 0x24, "RxGoodBytes"),
 334	MIB_DESC(2, 0x26, "RxBadBytes"),
 335	MIB_DESC(1, 0x11, "TxAcmDroppedPkts"),
 336	MIB_DESC(1, 0x0C, "TxGoodPkts"),
 337	MIB_DESC(1, 0x06, "TxUnicastPkts"),
 338	MIB_DESC(1, 0x07, "TxMulticastPkts"),
 339	MIB_DESC(1, 0x00, "Tx64BytePkts"),
 340	MIB_DESC(1, 0x01, "Tx127BytePkts"),
 341	MIB_DESC(1, 0x02, "Tx255BytePkts"),
 342	MIB_DESC(1, 0x03, "Tx511BytePkts"),
 343	MIB_DESC(1, 0x04, "Tx1023BytePkts"),
 344	/** Transmit Size 1024-1522 (or more, if configured) Packet Count. */
 345	MIB_DESC(1, 0x05, "TxMaxBytePkts"),
 346	MIB_DESC(1, 0x08, "TxSingleCollCount"),
 347	MIB_DESC(1, 0x09, "TxMultCollCount"),
 348	MIB_DESC(1, 0x0A, "TxLateCollCount"),
 349	MIB_DESC(1, 0x0B, "TxExcessCollCount"),
 350	MIB_DESC(1, 0x0D, "TxPauseCount"),
 351	MIB_DESC(1, 0x10, "TxDroppedPkts"),
 352	MIB_DESC(2, 0x0E, "TxGoodBytes"),
 353};
 354
 355static u32 gswip_switch_r(struct gswip_priv *priv, u32 offset)
 356{
 357	return __raw_readl(priv->gswip + (offset * 4));
 358}
 359
 360static void gswip_switch_w(struct gswip_priv *priv, u32 val, u32 offset)
 361{
 362	__raw_writel(val, priv->gswip + (offset * 4));
 363}
 364
 365static void gswip_switch_mask(struct gswip_priv *priv, u32 clear, u32 set,
 366			      u32 offset)
 367{
 368	u32 val = gswip_switch_r(priv, offset);
 369
 370	val &= ~(clear);
 371	val |= set;
 372	gswip_switch_w(priv, val, offset);
 373}
 374
 375static u32 gswip_switch_r_timeout(struct gswip_priv *priv, u32 offset,
 376				  u32 cleared)
 377{
 378	u32 val;
 379
 380	return readx_poll_timeout(__raw_readl, priv->gswip + (offset * 4), val,
 381				  (val & cleared) == 0, 20, 50000);
 382}
 383
 384static u32 gswip_mdio_r(struct gswip_priv *priv, u32 offset)
 385{
 386	return __raw_readl(priv->mdio + (offset * 4));
 387}
 388
 389static void gswip_mdio_w(struct gswip_priv *priv, u32 val, u32 offset)
 390{
 391	__raw_writel(val, priv->mdio + (offset * 4));
 392}
 393
 394static void gswip_mdio_mask(struct gswip_priv *priv, u32 clear, u32 set,
 395			    u32 offset)
 396{
 397	u32 val = gswip_mdio_r(priv, offset);
 398
 399	val &= ~(clear);
 400	val |= set;
 401	gswip_mdio_w(priv, val, offset);
 402}
 403
 404static u32 gswip_mii_r(struct gswip_priv *priv, u32 offset)
 405{
 406	return __raw_readl(priv->mii + (offset * 4));
 407}
 408
 409static void gswip_mii_w(struct gswip_priv *priv, u32 val, u32 offset)
 410{
 411	__raw_writel(val, priv->mii + (offset * 4));
 412}
 413
 414static void gswip_mii_mask(struct gswip_priv *priv, u32 clear, u32 set,
 415			   u32 offset)
 416{
 417	u32 val = gswip_mii_r(priv, offset);
 418
 419	val &= ~(clear);
 420	val |= set;
 421	gswip_mii_w(priv, val, offset);
 422}
 423
 424static void gswip_mii_mask_cfg(struct gswip_priv *priv, u32 clear, u32 set,
 425			       int port)
 426{
 427	/* There's no MII_CFG register for the CPU port */
 428	if (!dsa_is_cpu_port(priv->ds, port))
 429		gswip_mii_mask(priv, clear, set, GSWIP_MII_CFGp(port));
 
 
 
 
 
 
 
 
 430}
 431
 432static void gswip_mii_mask_pcdu(struct gswip_priv *priv, u32 clear, u32 set,
 433				int port)
 434{
 435	switch (port) {
 436	case 0:
 437		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU0);
 438		break;
 439	case 1:
 440		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU1);
 441		break;
 442	case 5:
 443		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU5);
 444		break;
 445	}
 446}
 447
 448static int gswip_mdio_poll(struct gswip_priv *priv)
 449{
 450	int cnt = 100;
 451
 452	while (likely(cnt--)) {
 453		u32 ctrl = gswip_mdio_r(priv, GSWIP_MDIO_CTRL);
 454
 455		if ((ctrl & GSWIP_MDIO_CTRL_BUSY) == 0)
 456			return 0;
 457		usleep_range(20, 40);
 458	}
 459
 460	return -ETIMEDOUT;
 461}
 462
 463static int gswip_mdio_wr(struct mii_bus *bus, int addr, int reg, u16 val)
 464{
 465	struct gswip_priv *priv = bus->priv;
 466	int err;
 467
 468	err = gswip_mdio_poll(priv);
 469	if (err) {
 470		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
 471		return err;
 472	}
 473
 474	gswip_mdio_w(priv, val, GSWIP_MDIO_WRITE);
 475	gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_WR |
 476		((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
 477		(reg & GSWIP_MDIO_CTRL_REGAD_MASK),
 478		GSWIP_MDIO_CTRL);
 479
 480	return 0;
 481}
 482
 483static int gswip_mdio_rd(struct mii_bus *bus, int addr, int reg)
 484{
 485	struct gswip_priv *priv = bus->priv;
 486	int err;
 487
 488	err = gswip_mdio_poll(priv);
 489	if (err) {
 490		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
 491		return err;
 492	}
 493
 494	gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_RD |
 495		((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
 496		(reg & GSWIP_MDIO_CTRL_REGAD_MASK),
 497		GSWIP_MDIO_CTRL);
 498
 499	err = gswip_mdio_poll(priv);
 500	if (err) {
 501		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
 502		return err;
 503	}
 504
 505	return gswip_mdio_r(priv, GSWIP_MDIO_READ);
 506}
 507
 508static int gswip_mdio(struct gswip_priv *priv, struct device_node *mdio_np)
 509{
 510	struct dsa_switch *ds = priv->ds;
 511	int err;
 512
 513	ds->slave_mii_bus = mdiobus_alloc();
 514	if (!ds->slave_mii_bus)
 515		return -ENOMEM;
 516
 517	ds->slave_mii_bus->priv = priv;
 518	ds->slave_mii_bus->read = gswip_mdio_rd;
 519	ds->slave_mii_bus->write = gswip_mdio_wr;
 520	ds->slave_mii_bus->name = "lantiq,xrx200-mdio";
 521	snprintf(ds->slave_mii_bus->id, MII_BUS_ID_SIZE, "%s-mii",
 522		 dev_name(priv->dev));
 523	ds->slave_mii_bus->parent = priv->dev;
 524	ds->slave_mii_bus->phy_mask = ~ds->phys_mii_mask;
 525
 526	err = of_mdiobus_register(ds->slave_mii_bus, mdio_np);
 527	if (err)
 528		mdiobus_free(ds->slave_mii_bus);
 529
 530	return err;
 531}
 532
 533static int gswip_pce_table_entry_read(struct gswip_priv *priv,
 534				      struct gswip_pce_table_entry *tbl)
 535{
 536	int i;
 537	int err;
 538	u16 crtl;
 539	u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSRD :
 540					GSWIP_PCE_TBL_CTRL_OPMOD_ADRD;
 541
 542	mutex_lock(&priv->pce_table_lock);
 543
 544	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
 545				     GSWIP_PCE_TBL_CTRL_BAS);
 546	if (err) {
 547		mutex_unlock(&priv->pce_table_lock);
 548		return err;
 549	}
 550
 551	gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
 552	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
 553				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
 554			  tbl->table | addr_mode | GSWIP_PCE_TBL_CTRL_BAS,
 555			  GSWIP_PCE_TBL_CTRL);
 556
 557	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
 558				     GSWIP_PCE_TBL_CTRL_BAS);
 559	if (err) {
 560		mutex_unlock(&priv->pce_table_lock);
 561		return err;
 562	}
 563
 564	for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
 565		tbl->key[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_KEY(i));
 566
 567	for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
 568		tbl->val[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_VAL(i));
 569
 570	tbl->mask = gswip_switch_r(priv, GSWIP_PCE_TBL_MASK);
 571
 572	crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
 573
 574	tbl->type = !!(crtl & GSWIP_PCE_TBL_CTRL_TYPE);
 575	tbl->valid = !!(crtl & GSWIP_PCE_TBL_CTRL_VLD);
 576	tbl->gmap = (crtl & GSWIP_PCE_TBL_CTRL_GMAP_MASK) >> 7;
 577
 578	mutex_unlock(&priv->pce_table_lock);
 579
 580	return 0;
 581}
 582
 583static int gswip_pce_table_entry_write(struct gswip_priv *priv,
 584				       struct gswip_pce_table_entry *tbl)
 585{
 586	int i;
 587	int err;
 588	u16 crtl;
 589	u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSWR :
 590					GSWIP_PCE_TBL_CTRL_OPMOD_ADWR;
 591
 592	mutex_lock(&priv->pce_table_lock);
 593
 594	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
 595				     GSWIP_PCE_TBL_CTRL_BAS);
 596	if (err) {
 597		mutex_unlock(&priv->pce_table_lock);
 598		return err;
 599	}
 600
 601	gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
 602	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
 603				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
 604			  tbl->table | addr_mode,
 605			  GSWIP_PCE_TBL_CTRL);
 606
 607	for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
 608		gswip_switch_w(priv, tbl->key[i], GSWIP_PCE_TBL_KEY(i));
 609
 610	for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
 611		gswip_switch_w(priv, tbl->val[i], GSWIP_PCE_TBL_VAL(i));
 612
 613	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
 614				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
 615			  tbl->table | addr_mode,
 616			  GSWIP_PCE_TBL_CTRL);
 617
 618	gswip_switch_w(priv, tbl->mask, GSWIP_PCE_TBL_MASK);
 619
 620	crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
 621	crtl &= ~(GSWIP_PCE_TBL_CTRL_TYPE | GSWIP_PCE_TBL_CTRL_VLD |
 622		  GSWIP_PCE_TBL_CTRL_GMAP_MASK);
 623	if (tbl->type)
 624		crtl |= GSWIP_PCE_TBL_CTRL_TYPE;
 625	if (tbl->valid)
 626		crtl |= GSWIP_PCE_TBL_CTRL_VLD;
 627	crtl |= (tbl->gmap << 7) & GSWIP_PCE_TBL_CTRL_GMAP_MASK;
 628	crtl |= GSWIP_PCE_TBL_CTRL_BAS;
 629	gswip_switch_w(priv, crtl, GSWIP_PCE_TBL_CTRL);
 630
 631	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
 632				     GSWIP_PCE_TBL_CTRL_BAS);
 633
 634	mutex_unlock(&priv->pce_table_lock);
 635
 636	return err;
 637}
 638
 639/* Add the LAN port into a bridge with the CPU port by
 640 * default. This prevents automatic forwarding of
 641 * packages between the LAN ports when no explicit
 642 * bridge is configured.
 643 */
 644static int gswip_add_single_port_br(struct gswip_priv *priv, int port, bool add)
 645{
 646	struct gswip_pce_table_entry vlan_active = {0,};
 647	struct gswip_pce_table_entry vlan_mapping = {0,};
 648	unsigned int cpu_port = priv->hw_info->cpu_port;
 649	unsigned int max_ports = priv->hw_info->max_ports;
 650	int err;
 651
 652	if (port >= max_ports) {
 653		dev_err(priv->dev, "single port for %i supported\n", port);
 654		return -EIO;
 655	}
 656
 657	vlan_active.index = port + 1;
 658	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
 659	vlan_active.key[0] = 0; /* vid */
 660	vlan_active.val[0] = port + 1 /* fid */;
 661	vlan_active.valid = add;
 662	err = gswip_pce_table_entry_write(priv, &vlan_active);
 663	if (err) {
 664		dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
 665		return err;
 666	}
 667
 668	if (!add)
 669		return 0;
 670
 671	vlan_mapping.index = port + 1;
 672	vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
 673	vlan_mapping.val[0] = 0 /* vid */;
 674	vlan_mapping.val[1] = BIT(port) | BIT(cpu_port);
 675	vlan_mapping.val[2] = 0;
 676	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
 677	if (err) {
 678		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
 679		return err;
 680	}
 681
 682	return 0;
 683}
 684
 685static int gswip_port_enable(struct dsa_switch *ds, int port,
 686			     struct phy_device *phydev)
 687{
 688	struct gswip_priv *priv = ds->priv;
 689	int err;
 690
 691	if (!dsa_is_user_port(ds, port))
 692		return 0;
 693
 694	if (!dsa_is_cpu_port(ds, port)) {
 695		err = gswip_add_single_port_br(priv, port, true);
 696		if (err)
 697			return err;
 698	}
 699
 700	/* RMON Counter Enable for port */
 701	gswip_switch_w(priv, GSWIP_BM_PCFG_CNTEN, GSWIP_BM_PCFGp(port));
 702
 703	/* enable port fetch/store dma & VLAN Modification */
 704	gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_EN |
 705				   GSWIP_FDMA_PCTRL_VLANMOD_BOTH,
 706			 GSWIP_FDMA_PCTRLp(port));
 707	gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
 708			  GSWIP_SDMA_PCTRLp(port));
 709
 710	if (!dsa_is_cpu_port(ds, port)) {
 711		u32 mdio_phy = 0;
 712
 713		if (phydev)
 714			mdio_phy = phydev->mdio.addr & GSWIP_MDIO_PHY_ADDR_MASK;
 715
 716		gswip_mdio_mask(priv, GSWIP_MDIO_PHY_ADDR_MASK, mdio_phy,
 717				GSWIP_MDIO_PHYp(port));
 
 
 
 718	}
 719
 720	return 0;
 721}
 722
 723static void gswip_port_disable(struct dsa_switch *ds, int port)
 724{
 725	struct gswip_priv *priv = ds->priv;
 726
 727	if (!dsa_is_user_port(ds, port))
 728		return;
 729
 
 
 
 
 
 
 
 
 730	gswip_switch_mask(priv, GSWIP_FDMA_PCTRL_EN, 0,
 731			  GSWIP_FDMA_PCTRLp(port));
 732	gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
 733			  GSWIP_SDMA_PCTRLp(port));
 734}
 735
 736static int gswip_pce_load_microcode(struct gswip_priv *priv)
 737{
 738	int i;
 739	int err;
 740
 741	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
 742				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
 743			  GSWIP_PCE_TBL_CTRL_OPMOD_ADWR, GSWIP_PCE_TBL_CTRL);
 744	gswip_switch_w(priv, 0, GSWIP_PCE_TBL_MASK);
 745
 746	for (i = 0; i < ARRAY_SIZE(gswip_pce_microcode); i++) {
 747		gswip_switch_w(priv, i, GSWIP_PCE_TBL_ADDR);
 748		gswip_switch_w(priv, gswip_pce_microcode[i].val_0,
 749			       GSWIP_PCE_TBL_VAL(0));
 750		gswip_switch_w(priv, gswip_pce_microcode[i].val_1,
 751			       GSWIP_PCE_TBL_VAL(1));
 752		gswip_switch_w(priv, gswip_pce_microcode[i].val_2,
 753			       GSWIP_PCE_TBL_VAL(2));
 754		gswip_switch_w(priv, gswip_pce_microcode[i].val_3,
 755			       GSWIP_PCE_TBL_VAL(3));
 756
 757		/* start the table access: */
 758		gswip_switch_mask(priv, 0, GSWIP_PCE_TBL_CTRL_BAS,
 759				  GSWIP_PCE_TBL_CTRL);
 760		err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
 761					     GSWIP_PCE_TBL_CTRL_BAS);
 762		if (err)
 763			return err;
 764	}
 765
 766	/* tell the switch that the microcode is loaded */
 767	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MC_VALID,
 768			  GSWIP_PCE_GCTRL_0);
 769
 770	return 0;
 771}
 772
 773static int gswip_port_vlan_filtering(struct dsa_switch *ds, int port,
 774				     bool vlan_filtering,
 775				     struct netlink_ext_ack *extack)
 776{
 777	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
 778	struct gswip_priv *priv = ds->priv;
 
 779
 780	/* Do not allow changing the VLAN filtering options while in bridge */
 781	if (bridge && !!(priv->port_vlan_filter & BIT(port)) != vlan_filtering) {
 782		NL_SET_ERR_MSG_MOD(extack,
 783				   "Dynamic toggling of vlan_filtering not supported");
 784		return -EIO;
 785	}
 786
 787	if (vlan_filtering) {
 788		/* Use port based VLAN tag */
 789		gswip_switch_mask(priv,
 790				  GSWIP_PCE_VCTRL_VSR,
 791				  GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
 792				  GSWIP_PCE_VCTRL_VEMR,
 793				  GSWIP_PCE_VCTRL(port));
 794		gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_TVM, 0,
 795				  GSWIP_PCE_PCTRL_0p(port));
 796	} else {
 797		/* Use port based VLAN tag */
 798		gswip_switch_mask(priv,
 799				  GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
 800				  GSWIP_PCE_VCTRL_VEMR,
 801				  GSWIP_PCE_VCTRL_VSR,
 802				  GSWIP_PCE_VCTRL(port));
 803		gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_TVM,
 804				  GSWIP_PCE_PCTRL_0p(port));
 805	}
 806
 807	return 0;
 808}
 809
 810static int gswip_setup(struct dsa_switch *ds)
 811{
 812	struct gswip_priv *priv = ds->priv;
 813	unsigned int cpu_port = priv->hw_info->cpu_port;
 814	int i;
 815	int err;
 816
 817	gswip_switch_w(priv, GSWIP_SWRES_R0, GSWIP_SWRES);
 818	usleep_range(5000, 10000);
 819	gswip_switch_w(priv, 0, GSWIP_SWRES);
 820
 821	/* disable port fetch/store dma on all ports */
 822	for (i = 0; i < priv->hw_info->max_ports; i++) {
 823		gswip_port_disable(ds, i);
 824		gswip_port_vlan_filtering(ds, i, false, NULL);
 825	}
 826
 827	/* enable Switch */
 828	gswip_mdio_mask(priv, 0, GSWIP_MDIO_GLOB_ENABLE, GSWIP_MDIO_GLOB);
 829
 830	err = gswip_pce_load_microcode(priv);
 831	if (err) {
 832		dev_err(priv->dev, "writing PCE microcode failed, %i", err);
 833		return err;
 834	}
 835
 836	/* Default unknown Broadcast/Multicast/Unicast port maps */
 837	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP1);
 838	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP2);
 839	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP3);
 840
 841	/* Deactivate MDIO PHY auto polling. Some PHYs as the AR8030 have an
 842	 * interoperability problem with this auto polling mechanism because
 843	 * their status registers think that the link is in a different state
 844	 * than it actually is. For the AR8030 it has the BMSR_ESTATEN bit set
 845	 * as well as ESTATUS_1000_TFULL and ESTATUS_1000_XFULL. This makes the
 846	 * auto polling state machine consider the link being negotiated with
 847	 * 1Gbit/s. Since the PHY itself is a Fast Ethernet RMII PHY this leads
 848	 * to the switch port being completely dead (RX and TX are both not
 849	 * working).
 850	 * Also with various other PHY / port combinations (PHY11G GPHY, PHY22F
 851	 * GPHY, external RGMII PEF7071/7072) any traffic would stop. Sometimes
 852	 * it would work fine for a few minutes to hours and then stop, on
 853	 * other device it would no traffic could be sent or received at all.
 854	 * Testing shows that when PHY auto polling is disabled these problems
 855	 * go away.
 856	 */
 857	gswip_mdio_w(priv, 0x0, GSWIP_MDIO_MDC_CFG0);
 858
 859	/* Configure the MDIO Clock 2.5 MHz */
 860	gswip_mdio_mask(priv, 0xff, 0x09, GSWIP_MDIO_MDC_CFG1);
 861
 862	/* Disable the xMII interface and clear it's isolation bit */
 863	for (i = 0; i < priv->hw_info->max_ports; i++)
 864		gswip_mii_mask_cfg(priv,
 865				   GSWIP_MII_CFG_EN | GSWIP_MII_CFG_ISOLATE,
 866				   0, i);
 867
 868	/* enable special tag insertion on cpu port */
 869	gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_STEN,
 870			  GSWIP_FDMA_PCTRLp(cpu_port));
 871
 872	/* accept special tag in ingress direction */
 873	gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_INGRESS,
 874			  GSWIP_PCE_PCTRL_0p(cpu_port));
 875
 
 
 
 876	gswip_switch_mask(priv, 0, GSWIP_BM_QUEUE_GCTRL_GL_MOD,
 877			  GSWIP_BM_QUEUE_GCTRL);
 878
 879	/* VLAN aware Switching */
 880	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_VLAN, GSWIP_PCE_GCTRL_0);
 881
 882	/* Flush MAC Table */
 883	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MTFL, GSWIP_PCE_GCTRL_0);
 884
 885	err = gswip_switch_r_timeout(priv, GSWIP_PCE_GCTRL_0,
 886				     GSWIP_PCE_GCTRL_0_MTFL);
 887	if (err) {
 888		dev_err(priv->dev, "MAC flushing didn't finish\n");
 889		return err;
 890	}
 891
 892	ds->mtu_enforcement_ingress = true;
 893
 894	gswip_port_enable(ds, cpu_port, NULL);
 895
 896	ds->configure_vlan_while_not_filtering = false;
 897
 898	return 0;
 899}
 900
 901static enum dsa_tag_protocol gswip_get_tag_protocol(struct dsa_switch *ds,
 902						    int port,
 903						    enum dsa_tag_protocol mp)
 904{
 905	return DSA_TAG_PROTO_GSWIP;
 906}
 907
 908static int gswip_vlan_active_create(struct gswip_priv *priv,
 909				    struct net_device *bridge,
 910				    int fid, u16 vid)
 911{
 912	struct gswip_pce_table_entry vlan_active = {0,};
 913	unsigned int max_ports = priv->hw_info->max_ports;
 914	int idx = -1;
 915	int err;
 916	int i;
 917
 918	/* Look for a free slot */
 919	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
 920		if (!priv->vlans[i].bridge) {
 921			idx = i;
 922			break;
 923		}
 924	}
 925
 926	if (idx == -1)
 927		return -ENOSPC;
 928
 929	if (fid == -1)
 930		fid = idx;
 931
 932	vlan_active.index = idx;
 933	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
 934	vlan_active.key[0] = vid;
 935	vlan_active.val[0] = fid;
 936	vlan_active.valid = true;
 937
 938	err = gswip_pce_table_entry_write(priv, &vlan_active);
 939	if (err) {
 940		dev_err(priv->dev, "failed to write active VLAN: %d\n",	err);
 941		return err;
 942	}
 943
 944	priv->vlans[idx].bridge = bridge;
 945	priv->vlans[idx].vid = vid;
 946	priv->vlans[idx].fid = fid;
 947
 948	return idx;
 949}
 950
 951static int gswip_vlan_active_remove(struct gswip_priv *priv, int idx)
 952{
 953	struct gswip_pce_table_entry vlan_active = {0,};
 954	int err;
 955
 956	vlan_active.index = idx;
 957	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
 958	vlan_active.valid = false;
 959	err = gswip_pce_table_entry_write(priv, &vlan_active);
 960	if (err)
 961		dev_err(priv->dev, "failed to delete active VLAN: %d\n", err);
 962	priv->vlans[idx].bridge = NULL;
 963
 964	return err;
 965}
 966
 967static int gswip_vlan_add_unaware(struct gswip_priv *priv,
 968				  struct net_device *bridge, int port)
 969{
 970	struct gswip_pce_table_entry vlan_mapping = {0,};
 971	unsigned int max_ports = priv->hw_info->max_ports;
 972	unsigned int cpu_port = priv->hw_info->cpu_port;
 973	bool active_vlan_created = false;
 974	int idx = -1;
 975	int i;
 976	int err;
 977
 978	/* Check if there is already a page for this bridge */
 979	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
 980		if (priv->vlans[i].bridge == bridge) {
 981			idx = i;
 982			break;
 983		}
 984	}
 985
 986	/* If this bridge is not programmed yet, add a Active VLAN table
 987	 * entry in a free slot and prepare the VLAN mapping table entry.
 988	 */
 989	if (idx == -1) {
 990		idx = gswip_vlan_active_create(priv, bridge, -1, 0);
 991		if (idx < 0)
 992			return idx;
 993		active_vlan_created = true;
 994
 995		vlan_mapping.index = idx;
 996		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
 997		/* VLAN ID byte, maps to the VLAN ID of vlan active table */
 998		vlan_mapping.val[0] = 0;
 999	} else {
1000		/* Read the existing VLAN mapping entry from the switch */
1001		vlan_mapping.index = idx;
1002		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1003		err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1004		if (err) {
1005			dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
1006				err);
1007			return err;
1008		}
1009	}
1010
1011	/* Update the VLAN mapping entry and write it to the switch */
1012	vlan_mapping.val[1] |= BIT(cpu_port);
1013	vlan_mapping.val[1] |= BIT(port);
1014	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1015	if (err) {
1016		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1017		/* In case an Active VLAN was creaetd delete it again */
1018		if (active_vlan_created)
1019			gswip_vlan_active_remove(priv, idx);
1020		return err;
1021	}
1022
1023	gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1024	return 0;
1025}
1026
1027static int gswip_vlan_add_aware(struct gswip_priv *priv,
1028				struct net_device *bridge, int port,
1029				u16 vid, bool untagged,
1030				bool pvid)
1031{
1032	struct gswip_pce_table_entry vlan_mapping = {0,};
1033	unsigned int max_ports = priv->hw_info->max_ports;
1034	unsigned int cpu_port = priv->hw_info->cpu_port;
1035	bool active_vlan_created = false;
1036	int idx = -1;
1037	int fid = -1;
1038	int i;
1039	int err;
1040
1041	/* Check if there is already a page for this bridge */
1042	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1043		if (priv->vlans[i].bridge == bridge) {
1044			if (fid != -1 && fid != priv->vlans[i].fid)
1045				dev_err(priv->dev, "one bridge with multiple flow ids\n");
1046			fid = priv->vlans[i].fid;
1047			if (priv->vlans[i].vid == vid) {
1048				idx = i;
1049				break;
1050			}
1051		}
1052	}
1053
1054	/* If this bridge is not programmed yet, add a Active VLAN table
1055	 * entry in a free slot and prepare the VLAN mapping table entry.
1056	 */
1057	if (idx == -1) {
1058		idx = gswip_vlan_active_create(priv, bridge, fid, vid);
1059		if (idx < 0)
1060			return idx;
1061		active_vlan_created = true;
1062
1063		vlan_mapping.index = idx;
1064		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1065		/* VLAN ID byte, maps to the VLAN ID of vlan active table */
1066		vlan_mapping.val[0] = vid;
1067	} else {
1068		/* Read the existing VLAN mapping entry from the switch */
1069		vlan_mapping.index = idx;
1070		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1071		err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1072		if (err) {
1073			dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
1074				err);
1075			return err;
1076		}
1077	}
1078
1079	vlan_mapping.val[0] = vid;
1080	/* Update the VLAN mapping entry and write it to the switch */
1081	vlan_mapping.val[1] |= BIT(cpu_port);
1082	vlan_mapping.val[2] |= BIT(cpu_port);
1083	vlan_mapping.val[1] |= BIT(port);
1084	if (untagged)
1085		vlan_mapping.val[2] &= ~BIT(port);
1086	else
1087		vlan_mapping.val[2] |= BIT(port);
1088	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1089	if (err) {
1090		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1091		/* In case an Active VLAN was creaetd delete it again */
1092		if (active_vlan_created)
1093			gswip_vlan_active_remove(priv, idx);
1094		return err;
1095	}
1096
1097	if (pvid)
1098		gswip_switch_w(priv, idx, GSWIP_PCE_DEFPVID(port));
1099
1100	return 0;
1101}
1102
1103static int gswip_vlan_remove(struct gswip_priv *priv,
1104			     struct net_device *bridge, int port,
1105			     u16 vid, bool pvid, bool vlan_aware)
1106{
1107	struct gswip_pce_table_entry vlan_mapping = {0,};
1108	unsigned int max_ports = priv->hw_info->max_ports;
1109	unsigned int cpu_port = priv->hw_info->cpu_port;
1110	int idx = -1;
1111	int i;
1112	int err;
1113
1114	/* Check if there is already a page for this bridge */
1115	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1116		if (priv->vlans[i].bridge == bridge &&
1117		    (!vlan_aware || priv->vlans[i].vid == vid)) {
1118			idx = i;
1119			break;
1120		}
1121	}
1122
1123	if (idx == -1) {
1124		dev_err(priv->dev, "bridge to leave does not exists\n");
1125		return -ENOENT;
1126	}
1127
1128	vlan_mapping.index = idx;
1129	vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1130	err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1131	if (err) {
1132		dev_err(priv->dev, "failed to read VLAN mapping: %d\n",	err);
1133		return err;
1134	}
1135
1136	vlan_mapping.val[1] &= ~BIT(port);
1137	vlan_mapping.val[2] &= ~BIT(port);
1138	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1139	if (err) {
1140		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1141		return err;
1142	}
1143
1144	/* In case all ports are removed from the bridge, remove the VLAN */
1145	if ((vlan_mapping.val[1] & ~BIT(cpu_port)) == 0) {
1146		err = gswip_vlan_active_remove(priv, idx);
1147		if (err) {
1148			dev_err(priv->dev, "failed to write active VLAN: %d\n",
1149				err);
1150			return err;
1151		}
1152	}
1153
1154	/* GSWIP 2.2 (GRX300) and later program here the VID directly. */
1155	if (pvid)
1156		gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1157
1158	return 0;
1159}
1160
1161static int gswip_port_bridge_join(struct dsa_switch *ds, int port,
1162				  struct dsa_bridge bridge,
1163				  bool *tx_fwd_offload,
1164				  struct netlink_ext_ack *extack)
1165{
1166	struct net_device *br = bridge.dev;
1167	struct gswip_priv *priv = ds->priv;
1168	int err;
1169
1170	/* When the bridge uses VLAN filtering we have to configure VLAN
1171	 * specific bridges. No bridge is configured here.
1172	 */
1173	if (!br_vlan_enabled(br)) {
1174		err = gswip_vlan_add_unaware(priv, br, port);
1175		if (err)
1176			return err;
1177		priv->port_vlan_filter &= ~BIT(port);
1178	} else {
1179		priv->port_vlan_filter |= BIT(port);
1180	}
1181	return gswip_add_single_port_br(priv, port, false);
1182}
1183
1184static void gswip_port_bridge_leave(struct dsa_switch *ds, int port,
1185				    struct dsa_bridge bridge)
1186{
1187	struct net_device *br = bridge.dev;
1188	struct gswip_priv *priv = ds->priv;
1189
1190	gswip_add_single_port_br(priv, port, true);
1191
1192	/* When the bridge uses VLAN filtering we have to configure VLAN
1193	 * specific bridges. No bridge is configured here.
1194	 */
1195	if (!br_vlan_enabled(br))
1196		gswip_vlan_remove(priv, br, port, 0, true, false);
1197}
1198
1199static int gswip_port_vlan_prepare(struct dsa_switch *ds, int port,
1200				   const struct switchdev_obj_port_vlan *vlan,
1201				   struct netlink_ext_ack *extack)
1202{
1203	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1204	struct gswip_priv *priv = ds->priv;
 
1205	unsigned int max_ports = priv->hw_info->max_ports;
 
 
1206	int pos = max_ports;
1207	int i, idx = -1;
1208
1209	/* We only support VLAN filtering on bridges */
1210	if (!dsa_is_cpu_port(ds, port) && !bridge)
1211		return -EOPNOTSUPP;
1212
1213	/* Check if there is already a page for this VLAN */
1214	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1215		if (priv->vlans[i].bridge == bridge &&
1216		    priv->vlans[i].vid == vlan->vid) {
1217			idx = i;
1218			break;
1219		}
1220	}
1221
1222	/* If this VLAN is not programmed yet, we have to reserve
1223	 * one entry in the VLAN table. Make sure we start at the
1224	 * next position round.
1225	 */
1226	if (idx == -1) {
1227		/* Look for a free slot */
1228		for (; pos < ARRAY_SIZE(priv->vlans); pos++) {
1229			if (!priv->vlans[pos].bridge) {
1230				idx = pos;
1231				pos++;
1232				break;
1233			}
1234		}
1235
 
 
 
 
1236		if (idx == -1) {
1237			NL_SET_ERR_MSG_MOD(extack, "No slot in VLAN table");
1238			return -ENOSPC;
 
 
 
 
 
 
 
 
 
1239		}
1240	}
1241
1242	return 0;
1243}
1244
1245static int gswip_port_vlan_add(struct dsa_switch *ds, int port,
1246			       const struct switchdev_obj_port_vlan *vlan,
1247			       struct netlink_ext_ack *extack)
1248{
1249	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1250	struct gswip_priv *priv = ds->priv;
 
1251	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1252	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1253	int err;
1254
1255	err = gswip_port_vlan_prepare(ds, port, vlan, extack);
1256	if (err)
1257		return err;
1258
1259	/* We have to receive all packets on the CPU port and should not
1260	 * do any VLAN filtering here. This is also called with bridge
1261	 * NULL and then we do not know for which bridge to configure
1262	 * this.
1263	 */
1264	if (dsa_is_cpu_port(ds, port))
1265		return 0;
1266
1267	return gswip_vlan_add_aware(priv, bridge, port, vlan->vid,
1268				    untagged, pvid);
1269}
1270
1271static int gswip_port_vlan_del(struct dsa_switch *ds, int port,
1272			       const struct switchdev_obj_port_vlan *vlan)
1273{
1274	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1275	struct gswip_priv *priv = ds->priv;
 
1276	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
 
 
1277
1278	/* We have to receive all packets on the CPU port and should not
1279	 * do any VLAN filtering here. This is also called with bridge
1280	 * NULL and then we do not know for which bridge to configure
1281	 * this.
1282	 */
1283	if (dsa_is_cpu_port(ds, port))
1284		return 0;
1285
1286	return gswip_vlan_remove(priv, bridge, port, vlan->vid, pvid, true);
 
 
 
 
 
 
1287}
1288
1289static void gswip_port_fast_age(struct dsa_switch *ds, int port)
1290{
1291	struct gswip_priv *priv = ds->priv;
1292	struct gswip_pce_table_entry mac_bridge = {0,};
1293	int i;
1294	int err;
1295
1296	for (i = 0; i < 2048; i++) {
1297		mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1298		mac_bridge.index = i;
1299
1300		err = gswip_pce_table_entry_read(priv, &mac_bridge);
1301		if (err) {
1302			dev_err(priv->dev, "failed to read mac bridge: %d\n",
1303				err);
1304			return;
1305		}
1306
1307		if (!mac_bridge.valid)
1308			continue;
1309
1310		if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC)
1311			continue;
1312
1313		if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) != port)
1314			continue;
1315
1316		mac_bridge.valid = false;
1317		err = gswip_pce_table_entry_write(priv, &mac_bridge);
1318		if (err) {
1319			dev_err(priv->dev, "failed to write mac bridge: %d\n",
1320				err);
1321			return;
1322		}
1323	}
1324}
1325
1326static void gswip_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1327{
1328	struct gswip_priv *priv = ds->priv;
1329	u32 stp_state;
1330
1331	switch (state) {
1332	case BR_STATE_DISABLED:
1333		gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
1334				  GSWIP_SDMA_PCTRLp(port));
1335		return;
1336	case BR_STATE_BLOCKING:
1337	case BR_STATE_LISTENING:
1338		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LISTEN;
1339		break;
1340	case BR_STATE_LEARNING:
1341		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LEARNING;
1342		break;
1343	case BR_STATE_FORWARDING:
1344		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING;
1345		break;
1346	default:
1347		dev_err(priv->dev, "invalid STP state: %d\n", state);
1348		return;
1349	}
1350
1351	gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
1352			  GSWIP_SDMA_PCTRLp(port));
1353	gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_PSTATE_MASK, stp_state,
1354			  GSWIP_PCE_PCTRL_0p(port));
1355}
1356
1357static int gswip_port_fdb(struct dsa_switch *ds, int port,
1358			  const unsigned char *addr, u16 vid, bool add)
1359{
1360	struct net_device *bridge = dsa_port_bridge_dev_get(dsa_to_port(ds, port));
1361	struct gswip_priv *priv = ds->priv;
 
1362	struct gswip_pce_table_entry mac_bridge = {0,};
1363	unsigned int max_ports = priv->hw_info->max_ports;
1364	int fid = -1;
1365	int i;
1366	int err;
1367
1368	if (!bridge)
1369		return -EINVAL;
1370
1371	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1372		if (priv->vlans[i].bridge == bridge) {
1373			fid = priv->vlans[i].fid;
1374			break;
1375		}
1376	}
1377
1378	if (fid == -1) {
1379		dev_err(priv->dev, "Port not part of a bridge\n");
1380		return -EINVAL;
1381	}
1382
1383	mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1384	mac_bridge.key_mode = true;
1385	mac_bridge.key[0] = addr[5] | (addr[4] << 8);
1386	mac_bridge.key[1] = addr[3] | (addr[2] << 8);
1387	mac_bridge.key[2] = addr[1] | (addr[0] << 8);
1388	mac_bridge.key[3] = fid;
1389	mac_bridge.val[0] = add ? BIT(port) : 0; /* port map */
1390	mac_bridge.val[1] = GSWIP_TABLE_MAC_BRIDGE_STATIC;
1391	mac_bridge.valid = add;
1392
1393	err = gswip_pce_table_entry_write(priv, &mac_bridge);
1394	if (err)
1395		dev_err(priv->dev, "failed to write mac bridge: %d\n", err);
1396
1397	return err;
1398}
1399
1400static int gswip_port_fdb_add(struct dsa_switch *ds, int port,
1401			      const unsigned char *addr, u16 vid,
1402			      struct dsa_db db)
1403{
1404	return gswip_port_fdb(ds, port, addr, vid, true);
1405}
1406
1407static int gswip_port_fdb_del(struct dsa_switch *ds, int port,
1408			      const unsigned char *addr, u16 vid,
1409			      struct dsa_db db)
1410{
1411	return gswip_port_fdb(ds, port, addr, vid, false);
1412}
1413
1414static int gswip_port_fdb_dump(struct dsa_switch *ds, int port,
1415			       dsa_fdb_dump_cb_t *cb, void *data)
1416{
1417	struct gswip_priv *priv = ds->priv;
1418	struct gswip_pce_table_entry mac_bridge = {0,};
1419	unsigned char addr[6];
1420	int i;
1421	int err;
1422
1423	for (i = 0; i < 2048; i++) {
1424		mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1425		mac_bridge.index = i;
1426
1427		err = gswip_pce_table_entry_read(priv, &mac_bridge);
1428		if (err) {
1429			dev_err(priv->dev,
1430				"failed to read mac bridge entry %d: %d\n",
1431				i, err);
1432			return err;
1433		}
1434
1435		if (!mac_bridge.valid)
1436			continue;
1437
1438		addr[5] = mac_bridge.key[0] & 0xff;
1439		addr[4] = (mac_bridge.key[0] >> 8) & 0xff;
1440		addr[3] = mac_bridge.key[1] & 0xff;
1441		addr[2] = (mac_bridge.key[1] >> 8) & 0xff;
1442		addr[1] = mac_bridge.key[2] & 0xff;
1443		addr[0] = (mac_bridge.key[2] >> 8) & 0xff;
1444		if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC) {
1445			if (mac_bridge.val[0] & BIT(port)) {
1446				err = cb(addr, 0, true, data);
1447				if (err)
1448					return err;
1449			}
1450		} else {
1451			if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) == port) {
1452				err = cb(addr, 0, false, data);
1453				if (err)
1454					return err;
1455			}
1456		}
1457	}
1458	return 0;
1459}
1460
1461static int gswip_port_max_mtu(struct dsa_switch *ds, int port)
 
 
1462{
1463	/* Includes 8 bytes for special header. */
1464	return GSWIP_MAX_PACKET_LENGTH - VLAN_ETH_HLEN - ETH_FCS_LEN;
1465}
1466
1467static int gswip_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1468{
1469	struct gswip_priv *priv = ds->priv;
1470	int cpu_port = priv->hw_info->cpu_port;
1471
1472	/* CPU port always has maximum mtu of user ports, so use it to set
1473	 * switch frame size, including 8 byte special header.
1474	 */
1475	if (port == cpu_port) {
1476		new_mtu += 8;
1477		gswip_switch_w(priv, VLAN_ETH_HLEN + new_mtu + ETH_FCS_LEN,
1478			       GSWIP_MAC_FLEN);
1479	}
1480
1481	/* Enable MLEN for ports with non-standard MTUs, including the special
1482	 * header on the CPU port added above.
1483	 */
1484	if (new_mtu != ETH_DATA_LEN)
1485		gswip_switch_mask(priv, 0, GSWIP_MAC_CTRL_2_MLEN,
1486				  GSWIP_MAC_CTRL_2p(port));
1487	else
1488		gswip_switch_mask(priv, GSWIP_MAC_CTRL_2_MLEN, 0,
1489				  GSWIP_MAC_CTRL_2p(port));
1490
1491	return 0;
1492}
1493
1494static void gswip_xrx200_phylink_get_caps(struct dsa_switch *ds, int port,
1495					  struct phylink_config *config)
1496{
1497	switch (port) {
1498	case 0:
1499	case 1:
1500		phy_interface_set_rgmii(config->supported_interfaces);
1501		__set_bit(PHY_INTERFACE_MODE_MII,
1502			  config->supported_interfaces);
1503		__set_bit(PHY_INTERFACE_MODE_REVMII,
1504			  config->supported_interfaces);
1505		__set_bit(PHY_INTERFACE_MODE_RMII,
1506			  config->supported_interfaces);
1507		break;
1508
1509	case 2:
1510	case 3:
1511	case 4:
1512		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1513			  config->supported_interfaces);
1514		break;
1515
1516	case 5:
1517		phy_interface_set_rgmii(config->supported_interfaces);
1518		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1519			  config->supported_interfaces);
1520		break;
1521	}
1522
1523	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1524		MAC_10 | MAC_100 | MAC_1000;
1525}
1526
1527static void gswip_xrx300_phylink_get_caps(struct dsa_switch *ds, int port,
1528					  struct phylink_config *config)
1529{
1530	switch (port) {
1531	case 0:
1532		phy_interface_set_rgmii(config->supported_interfaces);
1533		__set_bit(PHY_INTERFACE_MODE_GMII,
1534			  config->supported_interfaces);
1535		__set_bit(PHY_INTERFACE_MODE_RMII,
1536			  config->supported_interfaces);
1537		break;
1538
1539	case 1:
1540	case 2:
1541	case 3:
1542	case 4:
1543		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1544			  config->supported_interfaces);
1545		break;
1546
1547	case 5:
1548		phy_interface_set_rgmii(config->supported_interfaces);
1549		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
1550			  config->supported_interfaces);
1551		__set_bit(PHY_INTERFACE_MODE_RMII,
1552			  config->supported_interfaces);
1553		break;
1554	}
1555
1556	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1557		MAC_10 | MAC_100 | MAC_1000;
1558}
1559
1560static void gswip_port_set_link(struct gswip_priv *priv, int port, bool link)
1561{
1562	u32 mdio_phy;
1563
1564	if (link)
1565		mdio_phy = GSWIP_MDIO_PHY_LINK_UP;
1566	else
1567		mdio_phy = GSWIP_MDIO_PHY_LINK_DOWN;
1568
1569	gswip_mdio_mask(priv, GSWIP_MDIO_PHY_LINK_MASK, mdio_phy,
1570			GSWIP_MDIO_PHYp(port));
1571}
1572
1573static void gswip_port_set_speed(struct gswip_priv *priv, int port, int speed,
1574				 phy_interface_t interface)
1575{
1576	u32 mdio_phy = 0, mii_cfg = 0, mac_ctrl_0 = 0;
1577
1578	switch (speed) {
1579	case SPEED_10:
1580		mdio_phy = GSWIP_MDIO_PHY_SPEED_M10;
1581
1582		if (interface == PHY_INTERFACE_MODE_RMII)
1583			mii_cfg = GSWIP_MII_CFG_RATE_M50;
1584		else
1585			mii_cfg = GSWIP_MII_CFG_RATE_M2P5;
1586
1587		mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
1588		break;
1589
1590	case SPEED_100:
1591		mdio_phy = GSWIP_MDIO_PHY_SPEED_M100;
1592
1593		if (interface == PHY_INTERFACE_MODE_RMII)
1594			mii_cfg = GSWIP_MII_CFG_RATE_M50;
1595		else
1596			mii_cfg = GSWIP_MII_CFG_RATE_M25;
1597
1598		mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
1599		break;
1600
1601	case SPEED_1000:
1602		mdio_phy = GSWIP_MDIO_PHY_SPEED_G1;
1603
1604		mii_cfg = GSWIP_MII_CFG_RATE_M125;
1605
1606		mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_RGMII;
1607		break;
1608	}
1609
1610	gswip_mdio_mask(priv, GSWIP_MDIO_PHY_SPEED_MASK, mdio_phy,
1611			GSWIP_MDIO_PHYp(port));
1612	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_RATE_MASK, mii_cfg, port);
1613	gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_GMII_MASK, mac_ctrl_0,
1614			  GSWIP_MAC_CTRL_0p(port));
1615}
1616
1617static void gswip_port_set_duplex(struct gswip_priv *priv, int port, int duplex)
1618{
1619	u32 mac_ctrl_0, mdio_phy;
1620
1621	if (duplex == DUPLEX_FULL) {
1622		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_EN;
1623		mdio_phy = GSWIP_MDIO_PHY_FDUP_EN;
1624	} else {
1625		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_DIS;
1626		mdio_phy = GSWIP_MDIO_PHY_FDUP_DIS;
1627	}
1628
1629	gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FDUP_MASK, mac_ctrl_0,
1630			  GSWIP_MAC_CTRL_0p(port));
1631	gswip_mdio_mask(priv, GSWIP_MDIO_PHY_FDUP_MASK, mdio_phy,
1632			GSWIP_MDIO_PHYp(port));
1633}
1634
1635static void gswip_port_set_pause(struct gswip_priv *priv, int port,
1636				 bool tx_pause, bool rx_pause)
1637{
1638	u32 mac_ctrl_0, mdio_phy;
1639
1640	if (tx_pause && rx_pause) {
1641		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RXTX;
1642		mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
1643			   GSWIP_MDIO_PHY_FCONRX_EN;
1644	} else if (tx_pause) {
1645		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_TX;
1646		mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
1647			   GSWIP_MDIO_PHY_FCONRX_DIS;
1648	} else if (rx_pause) {
1649		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RX;
1650		mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
1651			   GSWIP_MDIO_PHY_FCONRX_EN;
1652	} else {
1653		mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_NONE;
1654		mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
1655			   GSWIP_MDIO_PHY_FCONRX_DIS;
1656	}
1657
1658	gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FCON_MASK,
1659			  mac_ctrl_0, GSWIP_MAC_CTRL_0p(port));
1660	gswip_mdio_mask(priv,
1661			GSWIP_MDIO_PHY_FCONTX_MASK |
1662			GSWIP_MDIO_PHY_FCONRX_MASK,
1663			mdio_phy, GSWIP_MDIO_PHYp(port));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1664}
1665
1666static void gswip_phylink_mac_config(struct dsa_switch *ds, int port,
1667				     unsigned int mode,
1668				     const struct phylink_link_state *state)
1669{
1670	struct gswip_priv *priv = ds->priv;
1671	u32 miicfg = 0;
1672
1673	miicfg |= GSWIP_MII_CFG_LDCLKDIS;
1674
1675	switch (state->interface) {
1676	case PHY_INTERFACE_MODE_MII:
1677	case PHY_INTERFACE_MODE_INTERNAL:
1678		miicfg |= GSWIP_MII_CFG_MODE_MIIM;
1679		break;
1680	case PHY_INTERFACE_MODE_REVMII:
1681		miicfg |= GSWIP_MII_CFG_MODE_MIIP;
1682		break;
1683	case PHY_INTERFACE_MODE_RMII:
1684		miicfg |= GSWIP_MII_CFG_MODE_RMIIM;
1685		break;
1686	case PHY_INTERFACE_MODE_RGMII:
1687	case PHY_INTERFACE_MODE_RGMII_ID:
1688	case PHY_INTERFACE_MODE_RGMII_RXID:
1689	case PHY_INTERFACE_MODE_RGMII_TXID:
1690		miicfg |= GSWIP_MII_CFG_MODE_RGMII;
1691		break;
1692	case PHY_INTERFACE_MODE_GMII:
1693		miicfg |= GSWIP_MII_CFG_MODE_GMII;
1694		break;
1695	default:
1696		dev_err(ds->dev,
1697			"Unsupported interface: %d\n", state->interface);
1698		return;
1699	}
1700
1701	gswip_mii_mask_cfg(priv,
1702			   GSWIP_MII_CFG_MODE_MASK | GSWIP_MII_CFG_RMII_CLK |
1703			   GSWIP_MII_CFG_RGMII_IBS | GSWIP_MII_CFG_LDCLKDIS,
1704			   miicfg, port);
1705
1706	switch (state->interface) {
1707	case PHY_INTERFACE_MODE_RGMII_ID:
1708		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK |
1709					  GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1710		break;
1711	case PHY_INTERFACE_MODE_RGMII_RXID:
1712		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1713		break;
1714	case PHY_INTERFACE_MODE_RGMII_TXID:
1715		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK, 0, port);
1716		break;
1717	default:
1718		break;
1719	}
1720}
1721
1722static void gswip_phylink_mac_link_down(struct dsa_switch *ds, int port,
1723					unsigned int mode,
1724					phy_interface_t interface)
1725{
1726	struct gswip_priv *priv = ds->priv;
1727
1728	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, port);
1729
1730	if (!dsa_is_cpu_port(ds, port))
1731		gswip_port_set_link(priv, port, false);
1732}
1733
1734static void gswip_phylink_mac_link_up(struct dsa_switch *ds, int port,
1735				      unsigned int mode,
1736				      phy_interface_t interface,
1737				      struct phy_device *phydev,
1738				      int speed, int duplex,
1739				      bool tx_pause, bool rx_pause)
1740{
1741	struct gswip_priv *priv = ds->priv;
1742
1743	if (!dsa_is_cpu_port(ds, port)) {
1744		gswip_port_set_link(priv, port, true);
1745		gswip_port_set_speed(priv, port, speed, interface);
1746		gswip_port_set_duplex(priv, port, duplex);
1747		gswip_port_set_pause(priv, port, tx_pause, rx_pause);
1748	}
1749
1750	gswip_mii_mask_cfg(priv, 0, GSWIP_MII_CFG_EN, port);
1751}
1752
1753static void gswip_get_strings(struct dsa_switch *ds, int port, u32 stringset,
1754			      uint8_t *data)
1755{
1756	int i;
1757
1758	if (stringset != ETH_SS_STATS)
1759		return;
1760
1761	for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++)
1762		strncpy(data + i * ETH_GSTRING_LEN, gswip_rmon_cnt[i].name,
1763			ETH_GSTRING_LEN);
1764}
1765
1766static u32 gswip_bcm_ram_entry_read(struct gswip_priv *priv, u32 table,
1767				    u32 index)
1768{
1769	u32 result;
1770	int err;
1771
1772	gswip_switch_w(priv, index, GSWIP_BM_RAM_ADDR);
1773	gswip_switch_mask(priv, GSWIP_BM_RAM_CTRL_ADDR_MASK |
1774				GSWIP_BM_RAM_CTRL_OPMOD,
1775			      table | GSWIP_BM_RAM_CTRL_BAS,
1776			      GSWIP_BM_RAM_CTRL);
1777
1778	err = gswip_switch_r_timeout(priv, GSWIP_BM_RAM_CTRL,
1779				     GSWIP_BM_RAM_CTRL_BAS);
1780	if (err) {
1781		dev_err(priv->dev, "timeout while reading table: %u, index: %u",
1782			table, index);
1783		return 0;
1784	}
1785
1786	result = gswip_switch_r(priv, GSWIP_BM_RAM_VAL(0));
1787	result |= gswip_switch_r(priv, GSWIP_BM_RAM_VAL(1)) << 16;
1788
1789	return result;
1790}
1791
1792static void gswip_get_ethtool_stats(struct dsa_switch *ds, int port,
1793				    uint64_t *data)
1794{
1795	struct gswip_priv *priv = ds->priv;
1796	const struct gswip_rmon_cnt_desc *rmon_cnt;
1797	int i;
1798	u64 high;
1799
1800	for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++) {
1801		rmon_cnt = &gswip_rmon_cnt[i];
1802
1803		data[i] = gswip_bcm_ram_entry_read(priv, port,
1804						   rmon_cnt->offset);
1805		if (rmon_cnt->size == 2) {
1806			high = gswip_bcm_ram_entry_read(priv, port,
1807							rmon_cnt->offset + 1);
1808			data[i] |= high << 32;
1809		}
1810	}
1811}
1812
1813static int gswip_get_sset_count(struct dsa_switch *ds, int port, int sset)
1814{
1815	if (sset != ETH_SS_STATS)
1816		return 0;
1817
1818	return ARRAY_SIZE(gswip_rmon_cnt);
1819}
1820
1821static const struct dsa_switch_ops gswip_xrx200_switch_ops = {
1822	.get_tag_protocol	= gswip_get_tag_protocol,
1823	.setup			= gswip_setup,
1824	.port_enable		= gswip_port_enable,
1825	.port_disable		= gswip_port_disable,
1826	.port_bridge_join	= gswip_port_bridge_join,
1827	.port_bridge_leave	= gswip_port_bridge_leave,
1828	.port_fast_age		= gswip_port_fast_age,
1829	.port_vlan_filtering	= gswip_port_vlan_filtering,
1830	.port_vlan_add		= gswip_port_vlan_add,
1831	.port_vlan_del		= gswip_port_vlan_del,
1832	.port_stp_state_set	= gswip_port_stp_state_set,
1833	.port_fdb_add		= gswip_port_fdb_add,
1834	.port_fdb_del		= gswip_port_fdb_del,
1835	.port_fdb_dump		= gswip_port_fdb_dump,
1836	.port_change_mtu	= gswip_port_change_mtu,
1837	.port_max_mtu		= gswip_port_max_mtu,
1838	.phylink_get_caps	= gswip_xrx200_phylink_get_caps,
1839	.phylink_mac_config	= gswip_phylink_mac_config,
1840	.phylink_mac_link_down	= gswip_phylink_mac_link_down,
1841	.phylink_mac_link_up	= gswip_phylink_mac_link_up,
1842	.get_strings		= gswip_get_strings,
1843	.get_ethtool_stats	= gswip_get_ethtool_stats,
1844	.get_sset_count		= gswip_get_sset_count,
1845};
1846
1847static const struct dsa_switch_ops gswip_xrx300_switch_ops = {
1848	.get_tag_protocol	= gswip_get_tag_protocol,
1849	.setup			= gswip_setup,
1850	.port_enable		= gswip_port_enable,
1851	.port_disable		= gswip_port_disable,
1852	.port_bridge_join	= gswip_port_bridge_join,
1853	.port_bridge_leave	= gswip_port_bridge_leave,
1854	.port_fast_age		= gswip_port_fast_age,
1855	.port_vlan_filtering	= gswip_port_vlan_filtering,
 
1856	.port_vlan_add		= gswip_port_vlan_add,
1857	.port_vlan_del		= gswip_port_vlan_del,
1858	.port_stp_state_set	= gswip_port_stp_state_set,
1859	.port_fdb_add		= gswip_port_fdb_add,
1860	.port_fdb_del		= gswip_port_fdb_del,
1861	.port_fdb_dump		= gswip_port_fdb_dump,
1862	.port_change_mtu	= gswip_port_change_mtu,
1863	.port_max_mtu		= gswip_port_max_mtu,
1864	.phylink_get_caps	= gswip_xrx300_phylink_get_caps,
1865	.phylink_mac_config	= gswip_phylink_mac_config,
1866	.phylink_mac_link_down	= gswip_phylink_mac_link_down,
1867	.phylink_mac_link_up	= gswip_phylink_mac_link_up,
1868	.get_strings		= gswip_get_strings,
1869	.get_ethtool_stats	= gswip_get_ethtool_stats,
1870	.get_sset_count		= gswip_get_sset_count,
1871};
1872
1873static const struct xway_gphy_match_data xrx200a1x_gphy_data = {
1874	.fe_firmware_name = "lantiq/xrx200_phy22f_a14.bin",
1875	.ge_firmware_name = "lantiq/xrx200_phy11g_a14.bin",
1876};
1877
1878static const struct xway_gphy_match_data xrx200a2x_gphy_data = {
1879	.fe_firmware_name = "lantiq/xrx200_phy22f_a22.bin",
1880	.ge_firmware_name = "lantiq/xrx200_phy11g_a22.bin",
1881};
1882
1883static const struct xway_gphy_match_data xrx300_gphy_data = {
1884	.fe_firmware_name = "lantiq/xrx300_phy22f_a21.bin",
1885	.ge_firmware_name = "lantiq/xrx300_phy11g_a21.bin",
1886};
1887
1888static const struct of_device_id xway_gphy_match[] = {
1889	{ .compatible = "lantiq,xrx200-gphy-fw", .data = NULL },
1890	{ .compatible = "lantiq,xrx200a1x-gphy-fw", .data = &xrx200a1x_gphy_data },
1891	{ .compatible = "lantiq,xrx200a2x-gphy-fw", .data = &xrx200a2x_gphy_data },
1892	{ .compatible = "lantiq,xrx300-gphy-fw", .data = &xrx300_gphy_data },
1893	{ .compatible = "lantiq,xrx330-gphy-fw", .data = &xrx300_gphy_data },
1894	{},
1895};
1896
1897static int gswip_gphy_fw_load(struct gswip_priv *priv, struct gswip_gphy_fw *gphy_fw)
1898{
1899	struct device *dev = priv->dev;
1900	const struct firmware *fw;
1901	void *fw_addr;
1902	dma_addr_t dma_addr;
1903	dma_addr_t dev_addr;
1904	size_t size;
1905	int ret;
1906
1907	ret = clk_prepare_enable(gphy_fw->clk_gate);
1908	if (ret)
1909		return ret;
1910
1911	reset_control_assert(gphy_fw->reset);
1912
1913	/* The vendor BSP uses a 200ms delay after asserting the reset line.
1914	 * Without this some users are observing that the PHY is not coming up
1915	 * on the MDIO bus.
1916	 */
1917	msleep(200);
1918
1919	ret = request_firmware(&fw, gphy_fw->fw_name, dev);
1920	if (ret) {
1921		dev_err(dev, "failed to load firmware: %s, error: %i\n",
1922			gphy_fw->fw_name, ret);
1923		return ret;
1924	}
1925
1926	/* GPHY cores need the firmware code in a persistent and contiguous
1927	 * memory area with a 16 kB boundary aligned start address.
1928	 */
1929	size = fw->size + XRX200_GPHY_FW_ALIGN;
1930
1931	fw_addr = dmam_alloc_coherent(dev, size, &dma_addr, GFP_KERNEL);
1932	if (fw_addr) {
1933		fw_addr = PTR_ALIGN(fw_addr, XRX200_GPHY_FW_ALIGN);
1934		dev_addr = ALIGN(dma_addr, XRX200_GPHY_FW_ALIGN);
1935		memcpy(fw_addr, fw->data, fw->size);
1936	} else {
1937		dev_err(dev, "failed to alloc firmware memory\n");
1938		release_firmware(fw);
1939		return -ENOMEM;
1940	}
1941
1942	release_firmware(fw);
1943
1944	ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, dev_addr);
1945	if (ret)
1946		return ret;
1947
1948	reset_control_deassert(gphy_fw->reset);
1949
1950	return ret;
1951}
1952
1953static int gswip_gphy_fw_probe(struct gswip_priv *priv,
1954			       struct gswip_gphy_fw *gphy_fw,
1955			       struct device_node *gphy_fw_np, int i)
1956{
1957	struct device *dev = priv->dev;
1958	u32 gphy_mode;
1959	int ret;
1960	char gphyname[10];
1961
1962	snprintf(gphyname, sizeof(gphyname), "gphy%d", i);
1963
1964	gphy_fw->clk_gate = devm_clk_get(dev, gphyname);
1965	if (IS_ERR(gphy_fw->clk_gate)) {
1966		dev_err(dev, "Failed to lookup gate clock\n");
1967		return PTR_ERR(gphy_fw->clk_gate);
1968	}
1969
1970	ret = of_property_read_u32(gphy_fw_np, "reg", &gphy_fw->fw_addr_offset);
1971	if (ret)
1972		return ret;
1973
1974	ret = of_property_read_u32(gphy_fw_np, "lantiq,gphy-mode", &gphy_mode);
1975	/* Default to GE mode */
1976	if (ret)
1977		gphy_mode = GPHY_MODE_GE;
1978
1979	switch (gphy_mode) {
1980	case GPHY_MODE_FE:
1981		gphy_fw->fw_name = priv->gphy_fw_name_cfg->fe_firmware_name;
1982		break;
1983	case GPHY_MODE_GE:
1984		gphy_fw->fw_name = priv->gphy_fw_name_cfg->ge_firmware_name;
1985		break;
1986	default:
1987		dev_err(dev, "Unknown GPHY mode %d\n", gphy_mode);
1988		return -EINVAL;
1989	}
1990
1991	gphy_fw->reset = of_reset_control_array_get_exclusive(gphy_fw_np);
1992	if (IS_ERR(gphy_fw->reset))
1993		return dev_err_probe(dev, PTR_ERR(gphy_fw->reset),
1994				     "Failed to lookup gphy reset\n");
 
 
1995
1996	return gswip_gphy_fw_load(priv, gphy_fw);
1997}
1998
1999static void gswip_gphy_fw_remove(struct gswip_priv *priv,
2000				 struct gswip_gphy_fw *gphy_fw)
2001{
2002	int ret;
2003
2004	/* check if the device was fully probed */
2005	if (!gphy_fw->fw_name)
2006		return;
2007
2008	ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, 0);
2009	if (ret)
2010		dev_err(priv->dev, "can not reset GPHY FW pointer");
2011
2012	clk_disable_unprepare(gphy_fw->clk_gate);
2013
2014	reset_control_put(gphy_fw->reset);
2015}
2016
2017static int gswip_gphy_fw_list(struct gswip_priv *priv,
2018			      struct device_node *gphy_fw_list_np, u32 version)
2019{
2020	struct device *dev = priv->dev;
2021	struct device_node *gphy_fw_np;
2022	const struct of_device_id *match;
2023	int err;
2024	int i = 0;
2025
2026	/* The VRX200 rev 1.1 uses the GSWIP 2.0 and needs the older
2027	 * GPHY firmware. The VRX200 rev 1.2 uses the GSWIP 2.1 and also
2028	 * needs a different GPHY firmware.
2029	 */
2030	if (of_device_is_compatible(gphy_fw_list_np, "lantiq,xrx200-gphy-fw")) {
2031		switch (version) {
2032		case GSWIP_VERSION_2_0:
2033			priv->gphy_fw_name_cfg = &xrx200a1x_gphy_data;
2034			break;
2035		case GSWIP_VERSION_2_1:
2036			priv->gphy_fw_name_cfg = &xrx200a2x_gphy_data;
2037			break;
2038		default:
2039			dev_err(dev, "unknown GSWIP version: 0x%x", version);
2040			return -ENOENT;
2041		}
2042	}
2043
2044	match = of_match_node(xway_gphy_match, gphy_fw_list_np);
2045	if (match && match->data)
2046		priv->gphy_fw_name_cfg = match->data;
2047
2048	if (!priv->gphy_fw_name_cfg) {
2049		dev_err(dev, "GPHY compatible type not supported");
2050		return -ENOENT;
2051	}
2052
2053	priv->num_gphy_fw = of_get_available_child_count(gphy_fw_list_np);
2054	if (!priv->num_gphy_fw)
2055		return -ENOENT;
2056
2057	priv->rcu_regmap = syscon_regmap_lookup_by_phandle(gphy_fw_list_np,
2058							   "lantiq,rcu");
2059	if (IS_ERR(priv->rcu_regmap))
2060		return PTR_ERR(priv->rcu_regmap);
2061
2062	priv->gphy_fw = devm_kmalloc_array(dev, priv->num_gphy_fw,
2063					   sizeof(*priv->gphy_fw),
2064					   GFP_KERNEL | __GFP_ZERO);
2065	if (!priv->gphy_fw)
2066		return -ENOMEM;
2067
2068	for_each_available_child_of_node(gphy_fw_list_np, gphy_fw_np) {
2069		err = gswip_gphy_fw_probe(priv, &priv->gphy_fw[i],
2070					  gphy_fw_np, i);
2071		if (err) {
2072			of_node_put(gphy_fw_np);
2073			goto remove_gphy;
2074		}
2075		i++;
2076	}
2077
2078	/* The standalone PHY11G requires 300ms to be fully
2079	 * initialized and ready for any MDIO communication after being
2080	 * taken out of reset. For the SoC-internal GPHY variant there
2081	 * is no (known) documentation for the minimum time after a
2082	 * reset. Use the same value as for the standalone variant as
2083	 * some users have reported internal PHYs not being detected
2084	 * without any delay.
2085	 */
2086	msleep(300);
2087
2088	return 0;
2089
2090remove_gphy:
2091	for (i = 0; i < priv->num_gphy_fw; i++)
2092		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2093	return err;
2094}
2095
2096static int gswip_probe(struct platform_device *pdev)
2097{
2098	struct gswip_priv *priv;
2099	struct device_node *np, *mdio_np, *gphy_fw_np;
2100	struct device *dev = &pdev->dev;
2101	int err;
2102	int i;
2103	u32 version;
2104
2105	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2106	if (!priv)
2107		return -ENOMEM;
2108
2109	priv->gswip = devm_platform_ioremap_resource(pdev, 0);
2110	if (IS_ERR(priv->gswip))
2111		return PTR_ERR(priv->gswip);
2112
2113	priv->mdio = devm_platform_ioremap_resource(pdev, 1);
2114	if (IS_ERR(priv->mdio))
2115		return PTR_ERR(priv->mdio);
2116
2117	priv->mii = devm_platform_ioremap_resource(pdev, 2);
2118	if (IS_ERR(priv->mii))
2119		return PTR_ERR(priv->mii);
2120
2121	priv->hw_info = of_device_get_match_data(dev);
2122	if (!priv->hw_info)
2123		return -EINVAL;
2124
2125	priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
2126	if (!priv->ds)
2127		return -ENOMEM;
2128
2129	priv->ds->dev = dev;
2130	priv->ds->num_ports = priv->hw_info->max_ports;
2131	priv->ds->priv = priv;
2132	priv->ds->ops = priv->hw_info->ops;
2133	priv->dev = dev;
2134	mutex_init(&priv->pce_table_lock);
2135	version = gswip_switch_r(priv, GSWIP_VERSION);
2136
2137	np = dev->of_node;
2138	switch (version) {
2139	case GSWIP_VERSION_2_0:
2140	case GSWIP_VERSION_2_1:
2141		if (!of_device_is_compatible(np, "lantiq,xrx200-gswip"))
2142			return -EINVAL;
2143		break;
2144	case GSWIP_VERSION_2_2:
2145	case GSWIP_VERSION_2_2_ETC:
2146		if (!of_device_is_compatible(np, "lantiq,xrx300-gswip") &&
2147		    !of_device_is_compatible(np, "lantiq,xrx330-gswip"))
2148			return -EINVAL;
2149		break;
2150	default:
2151		dev_err(dev, "unknown GSWIP version: 0x%x", version);
2152		return -ENOENT;
2153	}
2154
2155	/* bring up the mdio bus */
2156	gphy_fw_np = of_get_compatible_child(dev->of_node, "lantiq,gphy-fw");
2157	if (gphy_fw_np) {
2158		err = gswip_gphy_fw_list(priv, gphy_fw_np, version);
2159		of_node_put(gphy_fw_np);
2160		if (err) {
2161			dev_err(dev, "gphy fw probe failed\n");
2162			return err;
2163		}
2164	}
2165
2166	/* bring up the mdio bus */
2167	mdio_np = of_get_compatible_child(dev->of_node, "lantiq,xrx200-mdio");
2168	if (mdio_np) {
2169		err = gswip_mdio(priv, mdio_np);
2170		if (err) {
2171			dev_err(dev, "mdio probe failed\n");
2172			goto put_mdio_node;
2173		}
2174	}
2175
2176	err = dsa_register_switch(priv->ds);
2177	if (err) {
2178		dev_err(dev, "dsa switch register failed: %i\n", err);
2179		goto mdio_bus;
2180	}
2181	if (!dsa_is_cpu_port(priv->ds, priv->hw_info->cpu_port)) {
2182		dev_err(dev, "wrong CPU port defined, HW only supports port: %i",
2183			priv->hw_info->cpu_port);
2184		err = -EINVAL;
2185		goto disable_switch;
2186	}
2187
2188	platform_set_drvdata(pdev, priv);
2189
2190	dev_info(dev, "probed GSWIP version %lx mod %lx\n",
2191		 (version & GSWIP_VERSION_REV_MASK) >> GSWIP_VERSION_REV_SHIFT,
2192		 (version & GSWIP_VERSION_MOD_MASK) >> GSWIP_VERSION_MOD_SHIFT);
2193	return 0;
2194
2195disable_switch:
2196	gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2197	dsa_unregister_switch(priv->ds);
2198mdio_bus:
2199	if (mdio_np) {
2200		mdiobus_unregister(priv->ds->slave_mii_bus);
2201		mdiobus_free(priv->ds->slave_mii_bus);
2202	}
2203put_mdio_node:
2204	of_node_put(mdio_np);
2205	for (i = 0; i < priv->num_gphy_fw; i++)
2206		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2207	return err;
2208}
2209
2210static int gswip_remove(struct platform_device *pdev)
2211{
2212	struct gswip_priv *priv = platform_get_drvdata(pdev);
2213	int i;
2214
2215	if (!priv)
2216		return 0;
2217
2218	/* disable the switch */
2219	gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2220
2221	dsa_unregister_switch(priv->ds);
2222
2223	if (priv->ds->slave_mii_bus) {
2224		mdiobus_unregister(priv->ds->slave_mii_bus);
2225		of_node_put(priv->ds->slave_mii_bus->dev.of_node);
2226		mdiobus_free(priv->ds->slave_mii_bus);
2227	}
2228
2229	for (i = 0; i < priv->num_gphy_fw; i++)
2230		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2231
2232	return 0;
2233}
2234
2235static void gswip_shutdown(struct platform_device *pdev)
2236{
2237	struct gswip_priv *priv = platform_get_drvdata(pdev);
2238
2239	if (!priv)
2240		return;
2241
2242	dsa_switch_shutdown(priv->ds);
2243
2244	platform_set_drvdata(pdev, NULL);
2245}
2246
2247static const struct gswip_hw_info gswip_xrx200 = {
2248	.max_ports = 7,
2249	.cpu_port = 6,
2250	.ops = &gswip_xrx200_switch_ops,
2251};
2252
2253static const struct gswip_hw_info gswip_xrx300 = {
2254	.max_ports = 7,
2255	.cpu_port = 6,
2256	.ops = &gswip_xrx300_switch_ops,
2257};
2258
2259static const struct of_device_id gswip_of_match[] = {
2260	{ .compatible = "lantiq,xrx200-gswip", .data = &gswip_xrx200 },
2261	{ .compatible = "lantiq,xrx300-gswip", .data = &gswip_xrx300 },
2262	{ .compatible = "lantiq,xrx330-gswip", .data = &gswip_xrx300 },
2263	{},
2264};
2265MODULE_DEVICE_TABLE(of, gswip_of_match);
2266
2267static struct platform_driver gswip_driver = {
2268	.probe = gswip_probe,
2269	.remove = gswip_remove,
2270	.shutdown = gswip_shutdown,
2271	.driver = {
2272		.name = "gswip",
2273		.of_match_table = gswip_of_match,
2274	},
2275};
2276
2277module_platform_driver(gswip_driver);
2278
2279MODULE_FIRMWARE("lantiq/xrx300_phy11g_a21.bin");
2280MODULE_FIRMWARE("lantiq/xrx300_phy22f_a21.bin");
2281MODULE_FIRMWARE("lantiq/xrx200_phy11g_a14.bin");
2282MODULE_FIRMWARE("lantiq/xrx200_phy11g_a22.bin");
2283MODULE_FIRMWARE("lantiq/xrx200_phy22f_a14.bin");
2284MODULE_FIRMWARE("lantiq/xrx200_phy22f_a22.bin");
2285MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
2286MODULE_DESCRIPTION("Lantiq / Intel GSWIP driver");
2287MODULE_LICENSE("GPL v2");
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Lantiq / Intel GSWIP switch driver for VRX200 SoCs
   4 *
   5 * Copyright (C) 2010 Lantiq Deutschland
   6 * Copyright (C) 2012 John Crispin <john@phrozen.org>
   7 * Copyright (C) 2017 - 2019 Hauke Mehrtens <hauke@hauke-m.de>
   8 *
   9 * The VLAN and bridge model the GSWIP hardware uses does not directly
  10 * matches the model DSA uses.
  11 *
  12 * The hardware has 64 possible table entries for bridges with one VLAN
  13 * ID, one flow id and a list of ports for each bridge. All entries which
  14 * match the same flow ID are combined in the mac learning table, they
  15 * act as one global bridge.
  16 * The hardware does not support VLAN filter on the port, but on the
  17 * bridge, this driver converts the DSA model to the hardware.
  18 *
  19 * The CPU gets all the exception frames which do not match any forwarding
  20 * rule and the CPU port is also added to all bridges. This makes it possible
  21 * to handle all the special cases easily in software.
  22 * At the initialization the driver allocates one bridge table entry for
  23 * each switch port which is used when the port is used without an
  24 * explicit bridge. This prevents the frames from being forwarded
  25 * between all LAN ports by default.
  26 */
  27
  28#include <linux/clk.h>
 
  29#include <linux/etherdevice.h>
  30#include <linux/firmware.h>
  31#include <linux/if_bridge.h>
  32#include <linux/if_vlan.h>
  33#include <linux/iopoll.h>
  34#include <linux/mfd/syscon.h>
  35#include <linux/module.h>
  36#include <linux/of_mdio.h>
  37#include <linux/of_net.h>
  38#include <linux/of_platform.h>
  39#include <linux/phy.h>
  40#include <linux/phylink.h>
  41#include <linux/platform_device.h>
  42#include <linux/regmap.h>
  43#include <linux/reset.h>
  44#include <net/dsa.h>
  45#include <dt-bindings/mips/lantiq_rcu_gphy.h>
  46
  47#include "lantiq_pce.h"
  48
  49/* GSWIP MDIO Registers */
  50#define GSWIP_MDIO_GLOB			0x00
  51#define  GSWIP_MDIO_GLOB_ENABLE		BIT(15)
  52#define GSWIP_MDIO_CTRL			0x08
  53#define  GSWIP_MDIO_CTRL_BUSY		BIT(12)
  54#define  GSWIP_MDIO_CTRL_RD		BIT(11)
  55#define  GSWIP_MDIO_CTRL_WR		BIT(10)
  56#define  GSWIP_MDIO_CTRL_PHYAD_MASK	0x1f
  57#define  GSWIP_MDIO_CTRL_PHYAD_SHIFT	5
  58#define  GSWIP_MDIO_CTRL_REGAD_MASK	0x1f
  59#define GSWIP_MDIO_READ			0x09
  60#define GSWIP_MDIO_WRITE		0x0A
  61#define GSWIP_MDIO_MDC_CFG0		0x0B
  62#define GSWIP_MDIO_MDC_CFG1		0x0C
  63#define GSWIP_MDIO_PHYp(p)		(0x15 - (p))
  64#define  GSWIP_MDIO_PHY_LINK_MASK	0x6000
  65#define  GSWIP_MDIO_PHY_LINK_AUTO	0x0000
  66#define  GSWIP_MDIO_PHY_LINK_DOWN	0x4000
  67#define  GSWIP_MDIO_PHY_LINK_UP		0x2000
  68#define  GSWIP_MDIO_PHY_SPEED_MASK	0x1800
  69#define  GSWIP_MDIO_PHY_SPEED_AUTO	0x1800
  70#define  GSWIP_MDIO_PHY_SPEED_M10	0x0000
  71#define  GSWIP_MDIO_PHY_SPEED_M100	0x0800
  72#define  GSWIP_MDIO_PHY_SPEED_G1	0x1000
  73#define  GSWIP_MDIO_PHY_FDUP_MASK	0x0600
  74#define  GSWIP_MDIO_PHY_FDUP_AUTO	0x0000
  75#define  GSWIP_MDIO_PHY_FDUP_EN		0x0200
  76#define  GSWIP_MDIO_PHY_FDUP_DIS	0x0600
  77#define  GSWIP_MDIO_PHY_FCONTX_MASK	0x0180
  78#define  GSWIP_MDIO_PHY_FCONTX_AUTO	0x0000
  79#define  GSWIP_MDIO_PHY_FCONTX_EN	0x0100
  80#define  GSWIP_MDIO_PHY_FCONTX_DIS	0x0180
  81#define  GSWIP_MDIO_PHY_FCONRX_MASK	0x0060
  82#define  GSWIP_MDIO_PHY_FCONRX_AUTO	0x0000
  83#define  GSWIP_MDIO_PHY_FCONRX_EN	0x0020
  84#define  GSWIP_MDIO_PHY_FCONRX_DIS	0x0060
  85#define  GSWIP_MDIO_PHY_ADDR_MASK	0x001f
  86#define  GSWIP_MDIO_PHY_MASK		(GSWIP_MDIO_PHY_ADDR_MASK | \
  87					 GSWIP_MDIO_PHY_FCONRX_MASK | \
  88					 GSWIP_MDIO_PHY_FCONTX_MASK | \
  89					 GSWIP_MDIO_PHY_LINK_MASK | \
  90					 GSWIP_MDIO_PHY_SPEED_MASK | \
  91					 GSWIP_MDIO_PHY_FDUP_MASK)
  92
  93/* GSWIP MII Registers */
  94#define GSWIP_MII_CFG0			0x00
  95#define GSWIP_MII_CFG1			0x02
  96#define GSWIP_MII_CFG5			0x04
  97#define  GSWIP_MII_CFG_EN		BIT(14)
 
  98#define  GSWIP_MII_CFG_LDCLKDIS		BIT(12)
 
 
  99#define  GSWIP_MII_CFG_MODE_MIIP	0x0
 100#define  GSWIP_MII_CFG_MODE_MIIM	0x1
 101#define  GSWIP_MII_CFG_MODE_RMIIP	0x2
 102#define  GSWIP_MII_CFG_MODE_RMIIM	0x3
 103#define  GSWIP_MII_CFG_MODE_RGMII	0x4
 
 104#define  GSWIP_MII_CFG_MODE_MASK	0xf
 105#define  GSWIP_MII_CFG_RATE_M2P5	0x00
 106#define  GSWIP_MII_CFG_RATE_M25	0x10
 107#define  GSWIP_MII_CFG_RATE_M125	0x20
 108#define  GSWIP_MII_CFG_RATE_M50	0x30
 109#define  GSWIP_MII_CFG_RATE_AUTO	0x40
 110#define  GSWIP_MII_CFG_RATE_MASK	0x70
 111#define GSWIP_MII_PCDU0			0x01
 112#define GSWIP_MII_PCDU1			0x03
 113#define GSWIP_MII_PCDU5			0x05
 114#define  GSWIP_MII_PCDU_TXDLY_MASK	GENMASK(2, 0)
 115#define  GSWIP_MII_PCDU_RXDLY_MASK	GENMASK(9, 7)
 116
 117/* GSWIP Core Registers */
 118#define GSWIP_SWRES			0x000
 119#define  GSWIP_SWRES_R1			BIT(1)	/* GSWIP Software reset */
 120#define  GSWIP_SWRES_R0			BIT(0)	/* GSWIP Hardware reset */
 121#define GSWIP_VERSION			0x013
 122#define  GSWIP_VERSION_REV_SHIFT	0
 123#define  GSWIP_VERSION_REV_MASK		GENMASK(7, 0)
 124#define  GSWIP_VERSION_MOD_SHIFT	8
 125#define  GSWIP_VERSION_MOD_MASK		GENMASK(15, 8)
 126#define   GSWIP_VERSION_2_0		0x100
 127#define   GSWIP_VERSION_2_1		0x021
 128#define   GSWIP_VERSION_2_2		0x122
 129#define   GSWIP_VERSION_2_2_ETC		0x022
 130
 131#define GSWIP_BM_RAM_VAL(x)		(0x043 - (x))
 132#define GSWIP_BM_RAM_ADDR		0x044
 133#define GSWIP_BM_RAM_CTRL		0x045
 134#define  GSWIP_BM_RAM_CTRL_BAS		BIT(15)
 135#define  GSWIP_BM_RAM_CTRL_OPMOD	BIT(5)
 136#define  GSWIP_BM_RAM_CTRL_ADDR_MASK	GENMASK(4, 0)
 137#define GSWIP_BM_QUEUE_GCTRL		0x04A
 138#define  GSWIP_BM_QUEUE_GCTRL_GL_MOD	BIT(10)
 139/* buffer management Port Configuration Register */
 140#define GSWIP_BM_PCFGp(p)		(0x080 + ((p) * 2))
 141#define  GSWIP_BM_PCFG_CNTEN		BIT(0)	/* RMON Counter Enable */
 142#define  GSWIP_BM_PCFG_IGCNT		BIT(1)	/* Ingres Special Tag RMON count */
 143/* buffer management Port Control Register */
 144#define GSWIP_BM_RMON_CTRLp(p)		(0x81 + ((p) * 2))
 145#define  GSWIP_BM_CTRL_RMON_RAM1_RES	BIT(0)	/* Software Reset for RMON RAM 1 */
 146#define  GSWIP_BM_CTRL_RMON_RAM2_RES	BIT(1)	/* Software Reset for RMON RAM 2 */
 147
 148/* PCE */
 149#define GSWIP_PCE_TBL_KEY(x)		(0x447 - (x))
 150#define GSWIP_PCE_TBL_MASK		0x448
 151#define GSWIP_PCE_TBL_VAL(x)		(0x44D - (x))
 152#define GSWIP_PCE_TBL_ADDR		0x44E
 153#define GSWIP_PCE_TBL_CTRL		0x44F
 154#define  GSWIP_PCE_TBL_CTRL_BAS		BIT(15)
 155#define  GSWIP_PCE_TBL_CTRL_TYPE	BIT(13)
 156#define  GSWIP_PCE_TBL_CTRL_VLD		BIT(12)
 157#define  GSWIP_PCE_TBL_CTRL_KEYFORM	BIT(11)
 158#define  GSWIP_PCE_TBL_CTRL_GMAP_MASK	GENMASK(10, 7)
 159#define  GSWIP_PCE_TBL_CTRL_OPMOD_MASK	GENMASK(6, 5)
 160#define  GSWIP_PCE_TBL_CTRL_OPMOD_ADRD	0x00
 161#define  GSWIP_PCE_TBL_CTRL_OPMOD_ADWR	0x20
 162#define  GSWIP_PCE_TBL_CTRL_OPMOD_KSRD	0x40
 163#define  GSWIP_PCE_TBL_CTRL_OPMOD_KSWR	0x60
 164#define  GSWIP_PCE_TBL_CTRL_ADDR_MASK	GENMASK(4, 0)
 165#define GSWIP_PCE_PMAP1			0x453	/* Monitoring port map */
 166#define GSWIP_PCE_PMAP2			0x454	/* Default Multicast port map */
 167#define GSWIP_PCE_PMAP3			0x455	/* Default Unknown Unicast port map */
 168#define GSWIP_PCE_GCTRL_0		0x456
 169#define  GSWIP_PCE_GCTRL_0_MTFL		BIT(0)  /* MAC Table Flushing */
 170#define  GSWIP_PCE_GCTRL_0_MC_VALID	BIT(3)
 171#define  GSWIP_PCE_GCTRL_0_VLAN		BIT(14) /* VLAN aware Switching */
 172#define GSWIP_PCE_GCTRL_1		0x457
 173#define  GSWIP_PCE_GCTRL_1_MAC_GLOCK	BIT(2)	/* MAC Address table lock */
 174#define  GSWIP_PCE_GCTRL_1_MAC_GLOCK_MOD	BIT(3) /* Mac address table lock forwarding mode */
 175#define GSWIP_PCE_PCTRL_0p(p)		(0x480 + ((p) * 0xA))
 176#define  GSWIP_PCE_PCTRL_0_TVM		BIT(5)	/* Transparent VLAN mode */
 177#define  GSWIP_PCE_PCTRL_0_VREP		BIT(6)	/* VLAN Replace Mode */
 178#define  GSWIP_PCE_PCTRL_0_INGRESS	BIT(11)	/* Accept special tag in ingress */
 179#define  GSWIP_PCE_PCTRL_0_PSTATE_LISTEN	0x0
 180#define  GSWIP_PCE_PCTRL_0_PSTATE_RX		0x1
 181#define  GSWIP_PCE_PCTRL_0_PSTATE_TX		0x2
 182#define  GSWIP_PCE_PCTRL_0_PSTATE_LEARNING	0x3
 183#define  GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING	0x7
 184#define  GSWIP_PCE_PCTRL_0_PSTATE_MASK	GENMASK(2, 0)
 185#define GSWIP_PCE_VCTRL(p)		(0x485 + ((p) * 0xA))
 186#define  GSWIP_PCE_VCTRL_UVR		BIT(0)	/* Unknown VLAN Rule */
 187#define  GSWIP_PCE_VCTRL_VIMR		BIT(3)	/* VLAN Ingress Member violation rule */
 188#define  GSWIP_PCE_VCTRL_VEMR		BIT(4)	/* VLAN Egress Member violation rule */
 189#define  GSWIP_PCE_VCTRL_VSR		BIT(5)	/* VLAN Security */
 190#define  GSWIP_PCE_VCTRL_VID0		BIT(6)	/* Priority Tagged Rule */
 191#define GSWIP_PCE_DEFPVID(p)		(0x486 + ((p) * 0xA))
 192
 193#define GSWIP_MAC_FLEN			0x8C5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 194#define GSWIP_MAC_CTRL_2p(p)		(0x905 + ((p) * 0xC))
 
 195#define GSWIP_MAC_CTRL_2_MLEN		BIT(3) /* Maximum Untagged Frame Lnegth */
 196
 197/* Ethernet Switch Fetch DMA Port Control Register */
 198#define GSWIP_FDMA_PCTRLp(p)		(0xA80 + ((p) * 0x6))
 199#define  GSWIP_FDMA_PCTRL_EN		BIT(0)	/* FDMA Port Enable */
 200#define  GSWIP_FDMA_PCTRL_STEN		BIT(1)	/* Special Tag Insertion Enable */
 201#define  GSWIP_FDMA_PCTRL_VLANMOD_MASK	GENMASK(4, 3)	/* VLAN Modification Control */
 202#define  GSWIP_FDMA_PCTRL_VLANMOD_SHIFT	3	/* VLAN Modification Control */
 203#define  GSWIP_FDMA_PCTRL_VLANMOD_DIS	(0x0 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
 204#define  GSWIP_FDMA_PCTRL_VLANMOD_PRIO	(0x1 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
 205#define  GSWIP_FDMA_PCTRL_VLANMOD_ID	(0x2 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
 206#define  GSWIP_FDMA_PCTRL_VLANMOD_BOTH	(0x3 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
 207
 208/* Ethernet Switch Store DMA Port Control Register */
 209#define GSWIP_SDMA_PCTRLp(p)		(0xBC0 + ((p) * 0x6))
 210#define  GSWIP_SDMA_PCTRL_EN		BIT(0)	/* SDMA Port Enable */
 211#define  GSWIP_SDMA_PCTRL_FCEN		BIT(1)	/* Flow Control Enable */
 212#define  GSWIP_SDMA_PCTRL_PAUFWD	BIT(1)	/* Pause Frame Forwarding */
 213
 214#define GSWIP_TABLE_ACTIVE_VLAN		0x01
 215#define GSWIP_TABLE_VLAN_MAPPING	0x02
 216#define GSWIP_TABLE_MAC_BRIDGE		0x0b
 217#define  GSWIP_TABLE_MAC_BRIDGE_STATIC	0x01	/* Static not, aging entry */
 218
 219#define XRX200_GPHY_FW_ALIGN	(16 * 1024)
 220
 
 
 
 
 
 
 
 
 
 221struct gswip_hw_info {
 222	int max_ports;
 223	int cpu_port;
 
 224};
 225
 226struct xway_gphy_match_data {
 227	char *fe_firmware_name;
 228	char *ge_firmware_name;
 229};
 230
 231struct gswip_gphy_fw {
 232	struct clk *clk_gate;
 233	struct reset_control *reset;
 234	u32 fw_addr_offset;
 235	char *fw_name;
 236};
 237
 238struct gswip_vlan {
 239	struct net_device *bridge;
 240	u16 vid;
 241	u8 fid;
 242};
 243
 244struct gswip_priv {
 245	__iomem void *gswip;
 246	__iomem void *mdio;
 247	__iomem void *mii;
 248	const struct gswip_hw_info *hw_info;
 249	const struct xway_gphy_match_data *gphy_fw_name_cfg;
 250	struct dsa_switch *ds;
 251	struct device *dev;
 252	struct regmap *rcu_regmap;
 253	struct gswip_vlan vlans[64];
 254	int num_gphy_fw;
 255	struct gswip_gphy_fw *gphy_fw;
 256	u32 port_vlan_filter;
 
 257};
 258
 259struct gswip_pce_table_entry {
 260	u16 index;      // PCE_TBL_ADDR.ADDR = pData->table_index
 261	u16 table;      // PCE_TBL_CTRL.ADDR = pData->table
 262	u16 key[8];
 263	u16 val[5];
 264	u16 mask;
 265	u8 gmap;
 266	bool type;
 267	bool valid;
 268	bool key_mode;
 269};
 270
 271struct gswip_rmon_cnt_desc {
 272	unsigned int size;
 273	unsigned int offset;
 274	const char *name;
 275};
 276
 277#define MIB_DESC(_size, _offset, _name) {.size = _size, .offset = _offset, .name = _name}
 278
 279static const struct gswip_rmon_cnt_desc gswip_rmon_cnt[] = {
 280	/** Receive Packet Count (only packets that are accepted and not discarded). */
 281	MIB_DESC(1, 0x1F, "RxGoodPkts"),
 282	MIB_DESC(1, 0x23, "RxUnicastPkts"),
 283	MIB_DESC(1, 0x22, "RxMulticastPkts"),
 284	MIB_DESC(1, 0x21, "RxFCSErrorPkts"),
 285	MIB_DESC(1, 0x1D, "RxUnderSizeGoodPkts"),
 286	MIB_DESC(1, 0x1E, "RxUnderSizeErrorPkts"),
 287	MIB_DESC(1, 0x1B, "RxOversizeGoodPkts"),
 288	MIB_DESC(1, 0x1C, "RxOversizeErrorPkts"),
 289	MIB_DESC(1, 0x20, "RxGoodPausePkts"),
 290	MIB_DESC(1, 0x1A, "RxAlignErrorPkts"),
 291	MIB_DESC(1, 0x12, "Rx64BytePkts"),
 292	MIB_DESC(1, 0x13, "Rx127BytePkts"),
 293	MIB_DESC(1, 0x14, "Rx255BytePkts"),
 294	MIB_DESC(1, 0x15, "Rx511BytePkts"),
 295	MIB_DESC(1, 0x16, "Rx1023BytePkts"),
 296	/** Receive Size 1024-1522 (or more, if configured) Packet Count. */
 297	MIB_DESC(1, 0x17, "RxMaxBytePkts"),
 298	MIB_DESC(1, 0x18, "RxDroppedPkts"),
 299	MIB_DESC(1, 0x19, "RxFilteredPkts"),
 300	MIB_DESC(2, 0x24, "RxGoodBytes"),
 301	MIB_DESC(2, 0x26, "RxBadBytes"),
 302	MIB_DESC(1, 0x11, "TxAcmDroppedPkts"),
 303	MIB_DESC(1, 0x0C, "TxGoodPkts"),
 304	MIB_DESC(1, 0x06, "TxUnicastPkts"),
 305	MIB_DESC(1, 0x07, "TxMulticastPkts"),
 306	MIB_DESC(1, 0x00, "Tx64BytePkts"),
 307	MIB_DESC(1, 0x01, "Tx127BytePkts"),
 308	MIB_DESC(1, 0x02, "Tx255BytePkts"),
 309	MIB_DESC(1, 0x03, "Tx511BytePkts"),
 310	MIB_DESC(1, 0x04, "Tx1023BytePkts"),
 311	/** Transmit Size 1024-1522 (or more, if configured) Packet Count. */
 312	MIB_DESC(1, 0x05, "TxMaxBytePkts"),
 313	MIB_DESC(1, 0x08, "TxSingleCollCount"),
 314	MIB_DESC(1, 0x09, "TxMultCollCount"),
 315	MIB_DESC(1, 0x0A, "TxLateCollCount"),
 316	MIB_DESC(1, 0x0B, "TxExcessCollCount"),
 317	MIB_DESC(1, 0x0D, "TxPauseCount"),
 318	MIB_DESC(1, 0x10, "TxDroppedPkts"),
 319	MIB_DESC(2, 0x0E, "TxGoodBytes"),
 320};
 321
 322static u32 gswip_switch_r(struct gswip_priv *priv, u32 offset)
 323{
 324	return __raw_readl(priv->gswip + (offset * 4));
 325}
 326
 327static void gswip_switch_w(struct gswip_priv *priv, u32 val, u32 offset)
 328{
 329	__raw_writel(val, priv->gswip + (offset * 4));
 330}
 331
 332static void gswip_switch_mask(struct gswip_priv *priv, u32 clear, u32 set,
 333			      u32 offset)
 334{
 335	u32 val = gswip_switch_r(priv, offset);
 336
 337	val &= ~(clear);
 338	val |= set;
 339	gswip_switch_w(priv, val, offset);
 340}
 341
 342static u32 gswip_switch_r_timeout(struct gswip_priv *priv, u32 offset,
 343				  u32 cleared)
 344{
 345	u32 val;
 346
 347	return readx_poll_timeout(__raw_readl, priv->gswip + (offset * 4), val,
 348				  (val & cleared) == 0, 20, 50000);
 349}
 350
 351static u32 gswip_mdio_r(struct gswip_priv *priv, u32 offset)
 352{
 353	return __raw_readl(priv->mdio + (offset * 4));
 354}
 355
 356static void gswip_mdio_w(struct gswip_priv *priv, u32 val, u32 offset)
 357{
 358	__raw_writel(val, priv->mdio + (offset * 4));
 359}
 360
 361static void gswip_mdio_mask(struct gswip_priv *priv, u32 clear, u32 set,
 362			    u32 offset)
 363{
 364	u32 val = gswip_mdio_r(priv, offset);
 365
 366	val &= ~(clear);
 367	val |= set;
 368	gswip_mdio_w(priv, val, offset);
 369}
 370
 371static u32 gswip_mii_r(struct gswip_priv *priv, u32 offset)
 372{
 373	return __raw_readl(priv->mii + (offset * 4));
 374}
 375
 376static void gswip_mii_w(struct gswip_priv *priv, u32 val, u32 offset)
 377{
 378	__raw_writel(val, priv->mii + (offset * 4));
 379}
 380
 381static void gswip_mii_mask(struct gswip_priv *priv, u32 clear, u32 set,
 382			   u32 offset)
 383{
 384	u32 val = gswip_mii_r(priv, offset);
 385
 386	val &= ~(clear);
 387	val |= set;
 388	gswip_mii_w(priv, val, offset);
 389}
 390
 391static void gswip_mii_mask_cfg(struct gswip_priv *priv, u32 clear, u32 set,
 392			       int port)
 393{
 394	switch (port) {
 395	case 0:
 396		gswip_mii_mask(priv, clear, set, GSWIP_MII_CFG0);
 397		break;
 398	case 1:
 399		gswip_mii_mask(priv, clear, set, GSWIP_MII_CFG1);
 400		break;
 401	case 5:
 402		gswip_mii_mask(priv, clear, set, GSWIP_MII_CFG5);
 403		break;
 404	}
 405}
 406
 407static void gswip_mii_mask_pcdu(struct gswip_priv *priv, u32 clear, u32 set,
 408				int port)
 409{
 410	switch (port) {
 411	case 0:
 412		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU0);
 413		break;
 414	case 1:
 415		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU1);
 416		break;
 417	case 5:
 418		gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU5);
 419		break;
 420	}
 421}
 422
 423static int gswip_mdio_poll(struct gswip_priv *priv)
 424{
 425	int cnt = 100;
 426
 427	while (likely(cnt--)) {
 428		u32 ctrl = gswip_mdio_r(priv, GSWIP_MDIO_CTRL);
 429
 430		if ((ctrl & GSWIP_MDIO_CTRL_BUSY) == 0)
 431			return 0;
 432		usleep_range(20, 40);
 433	}
 434
 435	return -ETIMEDOUT;
 436}
 437
 438static int gswip_mdio_wr(struct mii_bus *bus, int addr, int reg, u16 val)
 439{
 440	struct gswip_priv *priv = bus->priv;
 441	int err;
 442
 443	err = gswip_mdio_poll(priv);
 444	if (err) {
 445		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
 446		return err;
 447	}
 448
 449	gswip_mdio_w(priv, val, GSWIP_MDIO_WRITE);
 450	gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_WR |
 451		((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
 452		(reg & GSWIP_MDIO_CTRL_REGAD_MASK),
 453		GSWIP_MDIO_CTRL);
 454
 455	return 0;
 456}
 457
 458static int gswip_mdio_rd(struct mii_bus *bus, int addr, int reg)
 459{
 460	struct gswip_priv *priv = bus->priv;
 461	int err;
 462
 463	err = gswip_mdio_poll(priv);
 464	if (err) {
 465		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
 466		return err;
 467	}
 468
 469	gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_RD |
 470		((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
 471		(reg & GSWIP_MDIO_CTRL_REGAD_MASK),
 472		GSWIP_MDIO_CTRL);
 473
 474	err = gswip_mdio_poll(priv);
 475	if (err) {
 476		dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
 477		return err;
 478	}
 479
 480	return gswip_mdio_r(priv, GSWIP_MDIO_READ);
 481}
 482
 483static int gswip_mdio(struct gswip_priv *priv, struct device_node *mdio_np)
 484{
 485	struct dsa_switch *ds = priv->ds;
 
 486
 487	ds->slave_mii_bus = devm_mdiobus_alloc(priv->dev);
 488	if (!ds->slave_mii_bus)
 489		return -ENOMEM;
 490
 491	ds->slave_mii_bus->priv = priv;
 492	ds->slave_mii_bus->read = gswip_mdio_rd;
 493	ds->slave_mii_bus->write = gswip_mdio_wr;
 494	ds->slave_mii_bus->name = "lantiq,xrx200-mdio";
 495	snprintf(ds->slave_mii_bus->id, MII_BUS_ID_SIZE, "%s-mii",
 496		 dev_name(priv->dev));
 497	ds->slave_mii_bus->parent = priv->dev;
 498	ds->slave_mii_bus->phy_mask = ~ds->phys_mii_mask;
 499
 500	return of_mdiobus_register(ds->slave_mii_bus, mdio_np);
 
 
 
 
 501}
 502
 503static int gswip_pce_table_entry_read(struct gswip_priv *priv,
 504				      struct gswip_pce_table_entry *tbl)
 505{
 506	int i;
 507	int err;
 508	u16 crtl;
 509	u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSRD :
 510					GSWIP_PCE_TBL_CTRL_OPMOD_ADRD;
 511
 
 
 512	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
 513				     GSWIP_PCE_TBL_CTRL_BAS);
 514	if (err)
 
 515		return err;
 
 516
 517	gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
 518	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
 519				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
 520			  tbl->table | addr_mode | GSWIP_PCE_TBL_CTRL_BAS,
 521			  GSWIP_PCE_TBL_CTRL);
 522
 523	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
 524				     GSWIP_PCE_TBL_CTRL_BAS);
 525	if (err)
 
 526		return err;
 
 527
 528	for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
 529		tbl->key[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_KEY(i));
 530
 531	for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
 532		tbl->val[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_VAL(i));
 533
 534	tbl->mask = gswip_switch_r(priv, GSWIP_PCE_TBL_MASK);
 535
 536	crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
 537
 538	tbl->type = !!(crtl & GSWIP_PCE_TBL_CTRL_TYPE);
 539	tbl->valid = !!(crtl & GSWIP_PCE_TBL_CTRL_VLD);
 540	tbl->gmap = (crtl & GSWIP_PCE_TBL_CTRL_GMAP_MASK) >> 7;
 541
 
 
 542	return 0;
 543}
 544
 545static int gswip_pce_table_entry_write(struct gswip_priv *priv,
 546				       struct gswip_pce_table_entry *tbl)
 547{
 548	int i;
 549	int err;
 550	u16 crtl;
 551	u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSWR :
 552					GSWIP_PCE_TBL_CTRL_OPMOD_ADWR;
 553
 
 
 554	err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
 555				     GSWIP_PCE_TBL_CTRL_BAS);
 556	if (err)
 
 557		return err;
 
 558
 559	gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
 560	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
 561				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
 562			  tbl->table | addr_mode,
 563			  GSWIP_PCE_TBL_CTRL);
 564
 565	for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
 566		gswip_switch_w(priv, tbl->key[i], GSWIP_PCE_TBL_KEY(i));
 567
 568	for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
 569		gswip_switch_w(priv, tbl->val[i], GSWIP_PCE_TBL_VAL(i));
 570
 571	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
 572				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
 573			  tbl->table | addr_mode,
 574			  GSWIP_PCE_TBL_CTRL);
 575
 576	gswip_switch_w(priv, tbl->mask, GSWIP_PCE_TBL_MASK);
 577
 578	crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
 579	crtl &= ~(GSWIP_PCE_TBL_CTRL_TYPE | GSWIP_PCE_TBL_CTRL_VLD |
 580		  GSWIP_PCE_TBL_CTRL_GMAP_MASK);
 581	if (tbl->type)
 582		crtl |= GSWIP_PCE_TBL_CTRL_TYPE;
 583	if (tbl->valid)
 584		crtl |= GSWIP_PCE_TBL_CTRL_VLD;
 585	crtl |= (tbl->gmap << 7) & GSWIP_PCE_TBL_CTRL_GMAP_MASK;
 586	crtl |= GSWIP_PCE_TBL_CTRL_BAS;
 587	gswip_switch_w(priv, crtl, GSWIP_PCE_TBL_CTRL);
 588
 589	return gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
 590				      GSWIP_PCE_TBL_CTRL_BAS);
 
 
 
 
 591}
 592
 593/* Add the LAN port into a bridge with the CPU port by
 594 * default. This prevents automatic forwarding of
 595 * packages between the LAN ports when no explicit
 596 * bridge is configured.
 597 */
 598static int gswip_add_single_port_br(struct gswip_priv *priv, int port, bool add)
 599{
 600	struct gswip_pce_table_entry vlan_active = {0,};
 601	struct gswip_pce_table_entry vlan_mapping = {0,};
 602	unsigned int cpu_port = priv->hw_info->cpu_port;
 603	unsigned int max_ports = priv->hw_info->max_ports;
 604	int err;
 605
 606	if (port >= max_ports) {
 607		dev_err(priv->dev, "single port for %i supported\n", port);
 608		return -EIO;
 609	}
 610
 611	vlan_active.index = port + 1;
 612	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
 613	vlan_active.key[0] = 0; /* vid */
 614	vlan_active.val[0] = port + 1 /* fid */;
 615	vlan_active.valid = add;
 616	err = gswip_pce_table_entry_write(priv, &vlan_active);
 617	if (err) {
 618		dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
 619		return err;
 620	}
 621
 622	if (!add)
 623		return 0;
 624
 625	vlan_mapping.index = port + 1;
 626	vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
 627	vlan_mapping.val[0] = 0 /* vid */;
 628	vlan_mapping.val[1] = BIT(port) | BIT(cpu_port);
 629	vlan_mapping.val[2] = 0;
 630	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
 631	if (err) {
 632		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
 633		return err;
 634	}
 635
 636	return 0;
 637}
 638
 639static int gswip_port_enable(struct dsa_switch *ds, int port,
 640			     struct phy_device *phydev)
 641{
 642	struct gswip_priv *priv = ds->priv;
 643	int err;
 644
 645	if (!dsa_is_user_port(ds, port))
 646		return 0;
 647
 648	if (!dsa_is_cpu_port(ds, port)) {
 649		err = gswip_add_single_port_br(priv, port, true);
 650		if (err)
 651			return err;
 652	}
 653
 654	/* RMON Counter Enable for port */
 655	gswip_switch_w(priv, GSWIP_BM_PCFG_CNTEN, GSWIP_BM_PCFGp(port));
 656
 657	/* enable port fetch/store dma & VLAN Modification */
 658	gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_EN |
 659				   GSWIP_FDMA_PCTRL_VLANMOD_BOTH,
 660			 GSWIP_FDMA_PCTRLp(port));
 661	gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
 662			  GSWIP_SDMA_PCTRLp(port));
 663
 664	if (!dsa_is_cpu_port(ds, port)) {
 665		u32 macconf = GSWIP_MDIO_PHY_LINK_AUTO |
 666			      GSWIP_MDIO_PHY_SPEED_AUTO |
 667			      GSWIP_MDIO_PHY_FDUP_AUTO |
 668			      GSWIP_MDIO_PHY_FCONTX_AUTO |
 669			      GSWIP_MDIO_PHY_FCONRX_AUTO |
 670			      (phydev->mdio.addr & GSWIP_MDIO_PHY_ADDR_MASK);
 671
 672		gswip_mdio_w(priv, macconf, GSWIP_MDIO_PHYp(port));
 673		/* Activate MDIO auto polling */
 674		gswip_mdio_mask(priv, 0, BIT(port), GSWIP_MDIO_MDC_CFG0);
 675	}
 676
 677	return 0;
 678}
 679
 680static void gswip_port_disable(struct dsa_switch *ds, int port)
 681{
 682	struct gswip_priv *priv = ds->priv;
 683
 684	if (!dsa_is_user_port(ds, port))
 685		return;
 686
 687	if (!dsa_is_cpu_port(ds, port)) {
 688		gswip_mdio_mask(priv, GSWIP_MDIO_PHY_LINK_DOWN,
 689				GSWIP_MDIO_PHY_LINK_MASK,
 690				GSWIP_MDIO_PHYp(port));
 691		/* Deactivate MDIO auto polling */
 692		gswip_mdio_mask(priv, BIT(port), 0, GSWIP_MDIO_MDC_CFG0);
 693	}
 694
 695	gswip_switch_mask(priv, GSWIP_FDMA_PCTRL_EN, 0,
 696			  GSWIP_FDMA_PCTRLp(port));
 697	gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
 698			  GSWIP_SDMA_PCTRLp(port));
 699}
 700
 701static int gswip_pce_load_microcode(struct gswip_priv *priv)
 702{
 703	int i;
 704	int err;
 705
 706	gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
 707				GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
 708			  GSWIP_PCE_TBL_CTRL_OPMOD_ADWR, GSWIP_PCE_TBL_CTRL);
 709	gswip_switch_w(priv, 0, GSWIP_PCE_TBL_MASK);
 710
 711	for (i = 0; i < ARRAY_SIZE(gswip_pce_microcode); i++) {
 712		gswip_switch_w(priv, i, GSWIP_PCE_TBL_ADDR);
 713		gswip_switch_w(priv, gswip_pce_microcode[i].val_0,
 714			       GSWIP_PCE_TBL_VAL(0));
 715		gswip_switch_w(priv, gswip_pce_microcode[i].val_1,
 716			       GSWIP_PCE_TBL_VAL(1));
 717		gswip_switch_w(priv, gswip_pce_microcode[i].val_2,
 718			       GSWIP_PCE_TBL_VAL(2));
 719		gswip_switch_w(priv, gswip_pce_microcode[i].val_3,
 720			       GSWIP_PCE_TBL_VAL(3));
 721
 722		/* start the table access: */
 723		gswip_switch_mask(priv, 0, GSWIP_PCE_TBL_CTRL_BAS,
 724				  GSWIP_PCE_TBL_CTRL);
 725		err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
 726					     GSWIP_PCE_TBL_CTRL_BAS);
 727		if (err)
 728			return err;
 729	}
 730
 731	/* tell the switch that the microcode is loaded */
 732	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MC_VALID,
 733			  GSWIP_PCE_GCTRL_0);
 734
 735	return 0;
 736}
 737
 738static int gswip_port_vlan_filtering(struct dsa_switch *ds, int port,
 739				     bool vlan_filtering)
 
 740{
 
 741	struct gswip_priv *priv = ds->priv;
 742	struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
 743
 744	/* Do not allow changing the VLAN filtering options while in bridge */
 745	if (!!(priv->port_vlan_filter & BIT(port)) != vlan_filtering && bridge)
 
 
 746		return -EIO;
 
 747
 748	if (vlan_filtering) {
 749		/* Use port based VLAN tag */
 750		gswip_switch_mask(priv,
 751				  GSWIP_PCE_VCTRL_VSR,
 752				  GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
 753				  GSWIP_PCE_VCTRL_VEMR,
 754				  GSWIP_PCE_VCTRL(port));
 755		gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_TVM, 0,
 756				  GSWIP_PCE_PCTRL_0p(port));
 757	} else {
 758		/* Use port based VLAN tag */
 759		gswip_switch_mask(priv,
 760				  GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
 761				  GSWIP_PCE_VCTRL_VEMR,
 762				  GSWIP_PCE_VCTRL_VSR,
 763				  GSWIP_PCE_VCTRL(port));
 764		gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_TVM,
 765				  GSWIP_PCE_PCTRL_0p(port));
 766	}
 767
 768	return 0;
 769}
 770
 771static int gswip_setup(struct dsa_switch *ds)
 772{
 773	struct gswip_priv *priv = ds->priv;
 774	unsigned int cpu_port = priv->hw_info->cpu_port;
 775	int i;
 776	int err;
 777
 778	gswip_switch_w(priv, GSWIP_SWRES_R0, GSWIP_SWRES);
 779	usleep_range(5000, 10000);
 780	gswip_switch_w(priv, 0, GSWIP_SWRES);
 781
 782	/* disable port fetch/store dma on all ports */
 783	for (i = 0; i < priv->hw_info->max_ports; i++) {
 784		gswip_port_disable(ds, i);
 785		gswip_port_vlan_filtering(ds, i, false);
 786	}
 787
 788	/* enable Switch */
 789	gswip_mdio_mask(priv, 0, GSWIP_MDIO_GLOB_ENABLE, GSWIP_MDIO_GLOB);
 790
 791	err = gswip_pce_load_microcode(priv);
 792	if (err) {
 793		dev_err(priv->dev, "writing PCE microcode failed, %i", err);
 794		return err;
 795	}
 796
 797	/* Default unknown Broadcast/Multicast/Unicast port maps */
 798	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP1);
 799	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP2);
 800	gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP3);
 801
 802	/* disable PHY auto polling */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 803	gswip_mdio_w(priv, 0x0, GSWIP_MDIO_MDC_CFG0);
 
 804	/* Configure the MDIO Clock 2.5 MHz */
 805	gswip_mdio_mask(priv, 0xff, 0x09, GSWIP_MDIO_MDC_CFG1);
 806
 807	/* Disable the xMII link */
 808	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, 0);
 809	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, 1);
 810	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, 5);
 
 811
 812	/* enable special tag insertion on cpu port */
 813	gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_STEN,
 814			  GSWIP_FDMA_PCTRLp(cpu_port));
 815
 816	/* accept special tag in ingress direction */
 817	gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_INGRESS,
 818			  GSWIP_PCE_PCTRL_0p(cpu_port));
 819
 820	gswip_switch_mask(priv, 0, GSWIP_MAC_CTRL_2_MLEN,
 821			  GSWIP_MAC_CTRL_2p(cpu_port));
 822	gswip_switch_w(priv, VLAN_ETH_FRAME_LEN + 8, GSWIP_MAC_FLEN);
 823	gswip_switch_mask(priv, 0, GSWIP_BM_QUEUE_GCTRL_GL_MOD,
 824			  GSWIP_BM_QUEUE_GCTRL);
 825
 826	/* VLAN aware Switching */
 827	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_VLAN, GSWIP_PCE_GCTRL_0);
 828
 829	/* Flush MAC Table */
 830	gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MTFL, GSWIP_PCE_GCTRL_0);
 831
 832	err = gswip_switch_r_timeout(priv, GSWIP_PCE_GCTRL_0,
 833				     GSWIP_PCE_GCTRL_0_MTFL);
 834	if (err) {
 835		dev_err(priv->dev, "MAC flushing didn't finish\n");
 836		return err;
 837	}
 838
 
 
 839	gswip_port_enable(ds, cpu_port, NULL);
 
 
 
 840	return 0;
 841}
 842
 843static enum dsa_tag_protocol gswip_get_tag_protocol(struct dsa_switch *ds,
 844						    int port)
 
 845{
 846	return DSA_TAG_PROTO_GSWIP;
 847}
 848
 849static int gswip_vlan_active_create(struct gswip_priv *priv,
 850				    struct net_device *bridge,
 851				    int fid, u16 vid)
 852{
 853	struct gswip_pce_table_entry vlan_active = {0,};
 854	unsigned int max_ports = priv->hw_info->max_ports;
 855	int idx = -1;
 856	int err;
 857	int i;
 858
 859	/* Look for a free slot */
 860	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
 861		if (!priv->vlans[i].bridge) {
 862			idx = i;
 863			break;
 864		}
 865	}
 866
 867	if (idx == -1)
 868		return -ENOSPC;
 869
 870	if (fid == -1)
 871		fid = idx;
 872
 873	vlan_active.index = idx;
 874	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
 875	vlan_active.key[0] = vid;
 876	vlan_active.val[0] = fid;
 877	vlan_active.valid = true;
 878
 879	err = gswip_pce_table_entry_write(priv, &vlan_active);
 880	if (err) {
 881		dev_err(priv->dev, "failed to write active VLAN: %d\n",	err);
 882		return err;
 883	}
 884
 885	priv->vlans[idx].bridge = bridge;
 886	priv->vlans[idx].vid = vid;
 887	priv->vlans[idx].fid = fid;
 888
 889	return idx;
 890}
 891
 892static int gswip_vlan_active_remove(struct gswip_priv *priv, int idx)
 893{
 894	struct gswip_pce_table_entry vlan_active = {0,};
 895	int err;
 896
 897	vlan_active.index = idx;
 898	vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
 899	vlan_active.valid = false;
 900	err = gswip_pce_table_entry_write(priv, &vlan_active);
 901	if (err)
 902		dev_err(priv->dev, "failed to delete active VLAN: %d\n", err);
 903	priv->vlans[idx].bridge = NULL;
 904
 905	return err;
 906}
 907
 908static int gswip_vlan_add_unaware(struct gswip_priv *priv,
 909				  struct net_device *bridge, int port)
 910{
 911	struct gswip_pce_table_entry vlan_mapping = {0,};
 912	unsigned int max_ports = priv->hw_info->max_ports;
 913	unsigned int cpu_port = priv->hw_info->cpu_port;
 914	bool active_vlan_created = false;
 915	int idx = -1;
 916	int i;
 917	int err;
 918
 919	/* Check if there is already a page for this bridge */
 920	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
 921		if (priv->vlans[i].bridge == bridge) {
 922			idx = i;
 923			break;
 924		}
 925	}
 926
 927	/* If this bridge is not programmed yet, add a Active VLAN table
 928	 * entry in a free slot and prepare the VLAN mapping table entry.
 929	 */
 930	if (idx == -1) {
 931		idx = gswip_vlan_active_create(priv, bridge, -1, 0);
 932		if (idx < 0)
 933			return idx;
 934		active_vlan_created = true;
 935
 936		vlan_mapping.index = idx;
 937		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
 938		/* VLAN ID byte, maps to the VLAN ID of vlan active table */
 939		vlan_mapping.val[0] = 0;
 940	} else {
 941		/* Read the existing VLAN mapping entry from the switch */
 942		vlan_mapping.index = idx;
 943		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
 944		err = gswip_pce_table_entry_read(priv, &vlan_mapping);
 945		if (err) {
 946			dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
 947				err);
 948			return err;
 949		}
 950	}
 951
 952	/* Update the VLAN mapping entry and write it to the switch */
 953	vlan_mapping.val[1] |= BIT(cpu_port);
 954	vlan_mapping.val[1] |= BIT(port);
 955	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
 956	if (err) {
 957		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
 958		/* In case an Active VLAN was creaetd delete it again */
 959		if (active_vlan_created)
 960			gswip_vlan_active_remove(priv, idx);
 961		return err;
 962	}
 963
 964	gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
 965	return 0;
 966}
 967
 968static int gswip_vlan_add_aware(struct gswip_priv *priv,
 969				struct net_device *bridge, int port,
 970				u16 vid, bool untagged,
 971				bool pvid)
 972{
 973	struct gswip_pce_table_entry vlan_mapping = {0,};
 974	unsigned int max_ports = priv->hw_info->max_ports;
 975	unsigned int cpu_port = priv->hw_info->cpu_port;
 976	bool active_vlan_created = false;
 977	int idx = -1;
 978	int fid = -1;
 979	int i;
 980	int err;
 981
 982	/* Check if there is already a page for this bridge */
 983	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
 984		if (priv->vlans[i].bridge == bridge) {
 985			if (fid != -1 && fid != priv->vlans[i].fid)
 986				dev_err(priv->dev, "one bridge with multiple flow ids\n");
 987			fid = priv->vlans[i].fid;
 988			if (priv->vlans[i].vid == vid) {
 989				idx = i;
 990				break;
 991			}
 992		}
 993	}
 994
 995	/* If this bridge is not programmed yet, add a Active VLAN table
 996	 * entry in a free slot and prepare the VLAN mapping table entry.
 997	 */
 998	if (idx == -1) {
 999		idx = gswip_vlan_active_create(priv, bridge, fid, vid);
1000		if (idx < 0)
1001			return idx;
1002		active_vlan_created = true;
1003
1004		vlan_mapping.index = idx;
1005		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1006		/* VLAN ID byte, maps to the VLAN ID of vlan active table */
1007		vlan_mapping.val[0] = vid;
1008	} else {
1009		/* Read the existing VLAN mapping entry from the switch */
1010		vlan_mapping.index = idx;
1011		vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1012		err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1013		if (err) {
1014			dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
1015				err);
1016			return err;
1017		}
1018	}
1019
1020	vlan_mapping.val[0] = vid;
1021	/* Update the VLAN mapping entry and write it to the switch */
1022	vlan_mapping.val[1] |= BIT(cpu_port);
1023	vlan_mapping.val[2] |= BIT(cpu_port);
1024	vlan_mapping.val[1] |= BIT(port);
1025	if (untagged)
1026		vlan_mapping.val[2] &= ~BIT(port);
1027	else
1028		vlan_mapping.val[2] |= BIT(port);
1029	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1030	if (err) {
1031		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1032		/* In case an Active VLAN was creaetd delete it again */
1033		if (active_vlan_created)
1034			gswip_vlan_active_remove(priv, idx);
1035		return err;
1036	}
1037
1038	if (pvid)
1039		gswip_switch_w(priv, idx, GSWIP_PCE_DEFPVID(port));
1040
1041	return 0;
1042}
1043
1044static int gswip_vlan_remove(struct gswip_priv *priv,
1045			     struct net_device *bridge, int port,
1046			     u16 vid, bool pvid, bool vlan_aware)
1047{
1048	struct gswip_pce_table_entry vlan_mapping = {0,};
1049	unsigned int max_ports = priv->hw_info->max_ports;
1050	unsigned int cpu_port = priv->hw_info->cpu_port;
1051	int idx = -1;
1052	int i;
1053	int err;
1054
1055	/* Check if there is already a page for this bridge */
1056	for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1057		if (priv->vlans[i].bridge == bridge &&
1058		    (!vlan_aware || priv->vlans[i].vid == vid)) {
1059			idx = i;
1060			break;
1061		}
1062	}
1063
1064	if (idx == -1) {
1065		dev_err(priv->dev, "bridge to leave does not exists\n");
1066		return -ENOENT;
1067	}
1068
1069	vlan_mapping.index = idx;
1070	vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1071	err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1072	if (err) {
1073		dev_err(priv->dev, "failed to read VLAN mapping: %d\n",	err);
1074		return err;
1075	}
1076
1077	vlan_mapping.val[1] &= ~BIT(port);
1078	vlan_mapping.val[2] &= ~BIT(port);
1079	err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1080	if (err) {
1081		dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1082		return err;
1083	}
1084
1085	/* In case all ports are removed from the bridge, remove the VLAN */
1086	if ((vlan_mapping.val[1] & ~BIT(cpu_port)) == 0) {
1087		err = gswip_vlan_active_remove(priv, idx);
1088		if (err) {
1089			dev_err(priv->dev, "failed to write active VLAN: %d\n",
1090				err);
1091			return err;
1092		}
1093	}
1094
1095	/* GSWIP 2.2 (GRX300) and later program here the VID directly. */
1096	if (pvid)
1097		gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1098
1099	return 0;
1100}
1101
1102static int gswip_port_bridge_join(struct dsa_switch *ds, int port,
1103				  struct net_device *bridge)
 
 
1104{
 
1105	struct gswip_priv *priv = ds->priv;
1106	int err;
1107
1108	/* When the bridge uses VLAN filtering we have to configure VLAN
1109	 * specific bridges. No bridge is configured here.
1110	 */
1111	if (!br_vlan_enabled(bridge)) {
1112		err = gswip_vlan_add_unaware(priv, bridge, port);
1113		if (err)
1114			return err;
1115		priv->port_vlan_filter &= ~BIT(port);
1116	} else {
1117		priv->port_vlan_filter |= BIT(port);
1118	}
1119	return gswip_add_single_port_br(priv, port, false);
1120}
1121
1122static void gswip_port_bridge_leave(struct dsa_switch *ds, int port,
1123				    struct net_device *bridge)
1124{
 
1125	struct gswip_priv *priv = ds->priv;
1126
1127	gswip_add_single_port_br(priv, port, true);
1128
1129	/* When the bridge uses VLAN filtering we have to configure VLAN
1130	 * specific bridges. No bridge is configured here.
1131	 */
1132	if (!br_vlan_enabled(bridge))
1133		gswip_vlan_remove(priv, bridge, port, 0, true, false);
1134}
1135
1136static int gswip_port_vlan_prepare(struct dsa_switch *ds, int port,
1137				   const struct switchdev_obj_port_vlan *vlan)
 
1138{
 
1139	struct gswip_priv *priv = ds->priv;
1140	struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1141	unsigned int max_ports = priv->hw_info->max_ports;
1142	u16 vid;
1143	int i;
1144	int pos = max_ports;
 
1145
1146	/* We only support VLAN filtering on bridges */
1147	if (!dsa_is_cpu_port(ds, port) && !bridge)
1148		return -EOPNOTSUPP;
1149
1150	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1151		int idx = -1;
 
 
 
 
 
 
1152
1153		/* Check if there is already a page for this VLAN */
1154		for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1155			if (priv->vlans[i].bridge == bridge &&
1156			    priv->vlans[i].vid == vid) {
1157				idx = i;
 
 
 
 
 
1158				break;
1159			}
1160		}
1161
1162		/* If this VLAN is not programmed yet, we have to reserve
1163		 * one entry in the VLAN table. Make sure we start at the
1164		 * next position round.
1165		 */
1166		if (idx == -1) {
1167			/* Look for a free slot */
1168			for (; pos < ARRAY_SIZE(priv->vlans); pos++) {
1169				if (!priv->vlans[pos].bridge) {
1170					idx = pos;
1171					pos++;
1172					break;
1173				}
1174			}
1175
1176			if (idx == -1)
1177				return -ENOSPC;
1178		}
1179	}
1180
1181	return 0;
1182}
1183
1184static void gswip_port_vlan_add(struct dsa_switch *ds, int port,
1185				const struct switchdev_obj_port_vlan *vlan)
 
1186{
 
1187	struct gswip_priv *priv = ds->priv;
1188	struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1189	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1190	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1191	u16 vid;
 
 
 
 
1192
1193	/* We have to receive all packets on the CPU port and should not
1194	 * do any VLAN filtering here. This is also called with bridge
1195	 * NULL and then we do not know for which bridge to configure
1196	 * this.
1197	 */
1198	if (dsa_is_cpu_port(ds, port))
1199		return;
1200
1201	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid)
1202		gswip_vlan_add_aware(priv, bridge, port, vid, untagged, pvid);
1203}
1204
1205static int gswip_port_vlan_del(struct dsa_switch *ds, int port,
1206			       const struct switchdev_obj_port_vlan *vlan)
1207{
 
1208	struct gswip_priv *priv = ds->priv;
1209	struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1210	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1211	u16 vid;
1212	int err;
1213
1214	/* We have to receive all packets on the CPU port and should not
1215	 * do any VLAN filtering here. This is also called with bridge
1216	 * NULL and then we do not know for which bridge to configure
1217	 * this.
1218	 */
1219	if (dsa_is_cpu_port(ds, port))
1220		return 0;
1221
1222	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1223		err = gswip_vlan_remove(priv, bridge, port, vid, pvid, true);
1224		if (err)
1225			return err;
1226	}
1227
1228	return 0;
1229}
1230
1231static void gswip_port_fast_age(struct dsa_switch *ds, int port)
1232{
1233	struct gswip_priv *priv = ds->priv;
1234	struct gswip_pce_table_entry mac_bridge = {0,};
1235	int i;
1236	int err;
1237
1238	for (i = 0; i < 2048; i++) {
1239		mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1240		mac_bridge.index = i;
1241
1242		err = gswip_pce_table_entry_read(priv, &mac_bridge);
1243		if (err) {
1244			dev_err(priv->dev, "failed to read mac bridge: %d\n",
1245				err);
1246			return;
1247		}
1248
1249		if (!mac_bridge.valid)
1250			continue;
1251
1252		if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC)
1253			continue;
1254
1255		if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) != port)
1256			continue;
1257
1258		mac_bridge.valid = false;
1259		err = gswip_pce_table_entry_write(priv, &mac_bridge);
1260		if (err) {
1261			dev_err(priv->dev, "failed to write mac bridge: %d\n",
1262				err);
1263			return;
1264		}
1265	}
1266}
1267
1268static void gswip_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1269{
1270	struct gswip_priv *priv = ds->priv;
1271	u32 stp_state;
1272
1273	switch (state) {
1274	case BR_STATE_DISABLED:
1275		gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
1276				  GSWIP_SDMA_PCTRLp(port));
1277		return;
1278	case BR_STATE_BLOCKING:
1279	case BR_STATE_LISTENING:
1280		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LISTEN;
1281		break;
1282	case BR_STATE_LEARNING:
1283		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LEARNING;
1284		break;
1285	case BR_STATE_FORWARDING:
1286		stp_state = GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING;
1287		break;
1288	default:
1289		dev_err(priv->dev, "invalid STP state: %d\n", state);
1290		return;
1291	}
1292
1293	gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
1294			  GSWIP_SDMA_PCTRLp(port));
1295	gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_PSTATE_MASK, stp_state,
1296			  GSWIP_PCE_PCTRL_0p(port));
1297}
1298
1299static int gswip_port_fdb(struct dsa_switch *ds, int port,
1300			  const unsigned char *addr, u16 vid, bool add)
1301{
 
1302	struct gswip_priv *priv = ds->priv;
1303	struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1304	struct gswip_pce_table_entry mac_bridge = {0,};
1305	unsigned int cpu_port = priv->hw_info->cpu_port;
1306	int fid = -1;
1307	int i;
1308	int err;
1309
1310	if (!bridge)
1311		return -EINVAL;
1312
1313	for (i = cpu_port; i < ARRAY_SIZE(priv->vlans); i++) {
1314		if (priv->vlans[i].bridge == bridge) {
1315			fid = priv->vlans[i].fid;
1316			break;
1317		}
1318	}
1319
1320	if (fid == -1) {
1321		dev_err(priv->dev, "Port not part of a bridge\n");
1322		return -EINVAL;
1323	}
1324
1325	mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1326	mac_bridge.key_mode = true;
1327	mac_bridge.key[0] = addr[5] | (addr[4] << 8);
1328	mac_bridge.key[1] = addr[3] | (addr[2] << 8);
1329	mac_bridge.key[2] = addr[1] | (addr[0] << 8);
1330	mac_bridge.key[3] = fid;
1331	mac_bridge.val[0] = add ? BIT(port) : 0; /* port map */
1332	mac_bridge.val[1] = GSWIP_TABLE_MAC_BRIDGE_STATIC;
1333	mac_bridge.valid = add;
1334
1335	err = gswip_pce_table_entry_write(priv, &mac_bridge);
1336	if (err)
1337		dev_err(priv->dev, "failed to write mac bridge: %d\n", err);
1338
1339	return err;
1340}
1341
1342static int gswip_port_fdb_add(struct dsa_switch *ds, int port,
1343			      const unsigned char *addr, u16 vid)
 
1344{
1345	return gswip_port_fdb(ds, port, addr, vid, true);
1346}
1347
1348static int gswip_port_fdb_del(struct dsa_switch *ds, int port,
1349			      const unsigned char *addr, u16 vid)
 
1350{
1351	return gswip_port_fdb(ds, port, addr, vid, false);
1352}
1353
1354static int gswip_port_fdb_dump(struct dsa_switch *ds, int port,
1355			       dsa_fdb_dump_cb_t *cb, void *data)
1356{
1357	struct gswip_priv *priv = ds->priv;
1358	struct gswip_pce_table_entry mac_bridge = {0,};
1359	unsigned char addr[6];
1360	int i;
1361	int err;
1362
1363	for (i = 0; i < 2048; i++) {
1364		mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1365		mac_bridge.index = i;
1366
1367		err = gswip_pce_table_entry_read(priv, &mac_bridge);
1368		if (err) {
1369			dev_err(priv->dev, "failed to write mac bridge: %d\n",
1370				err);
 
1371			return err;
1372		}
1373
1374		if (!mac_bridge.valid)
1375			continue;
1376
1377		addr[5] = mac_bridge.key[0] & 0xff;
1378		addr[4] = (mac_bridge.key[0] >> 8) & 0xff;
1379		addr[3] = mac_bridge.key[1] & 0xff;
1380		addr[2] = (mac_bridge.key[1] >> 8) & 0xff;
1381		addr[1] = mac_bridge.key[2] & 0xff;
1382		addr[0] = (mac_bridge.key[2] >> 8) & 0xff;
1383		if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC) {
1384			if (mac_bridge.val[0] & BIT(port))
1385				cb(addr, 0, true, data);
 
 
 
1386		} else {
1387			if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) == port)
1388				cb(addr, 0, false, data);
 
 
 
1389		}
1390	}
1391	return 0;
1392}
1393
1394static void gswip_phylink_validate(struct dsa_switch *ds, int port,
1395				   unsigned long *supported,
1396				   struct phylink_link_state *state)
1397{
1398	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1399
 
 
 
1400	switch (port) {
1401	case 0:
1402	case 1:
1403		if (!phy_interface_mode_is_rgmii(state->interface) &&
1404		    state->interface != PHY_INTERFACE_MODE_MII &&
1405		    state->interface != PHY_INTERFACE_MODE_REVMII &&
1406		    state->interface != PHY_INTERFACE_MODE_RMII)
1407			goto unsupported;
 
 
1408		break;
 
1409	case 2:
1410	case 3:
1411	case 4:
1412		if (state->interface != PHY_INTERFACE_MODE_INTERNAL)
1413			goto unsupported;
1414		break;
 
1415	case 5:
1416		if (!phy_interface_mode_is_rgmii(state->interface) &&
1417		    state->interface != PHY_INTERFACE_MODE_INTERNAL)
1418			goto unsupported;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1419		break;
1420	default:
1421		bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1422		dev_err(ds->dev, "Unsupported port: %i\n", port);
1423		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1424	}
1425
1426	/* Allow all the expected bits */
1427	phylink_set(mask, Autoneg);
1428	phylink_set_port_modes(mask);
1429	phylink_set(mask, Pause);
1430	phylink_set(mask, Asym_Pause);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1431
1432	/* With the exclusion of MII and Reverse MII, we support Gigabit,
1433	 * including Half duplex
1434	 */
1435	if (state->interface != PHY_INTERFACE_MODE_MII &&
1436	    state->interface != PHY_INTERFACE_MODE_REVMII) {
1437		phylink_set(mask, 1000baseT_Full);
1438		phylink_set(mask, 1000baseT_Half);
1439	}
1440
1441	phylink_set(mask, 10baseT_Half);
1442	phylink_set(mask, 10baseT_Full);
1443	phylink_set(mask, 100baseT_Half);
1444	phylink_set(mask, 100baseT_Full);
1445
1446	bitmap_and(supported, supported, mask,
1447		   __ETHTOOL_LINK_MODE_MASK_NBITS);
1448	bitmap_and(state->advertising, state->advertising, mask,
1449		   __ETHTOOL_LINK_MODE_MASK_NBITS);
1450	return;
1451
1452unsupported:
1453	bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1454	dev_err(ds->dev, "Unsupported interface: %d\n", state->interface);
1455	return;
1456}
1457
1458static void gswip_phylink_mac_config(struct dsa_switch *ds, int port,
1459				     unsigned int mode,
1460				     const struct phylink_link_state *state)
1461{
1462	struct gswip_priv *priv = ds->priv;
1463	u32 miicfg = 0;
1464
1465	miicfg |= GSWIP_MII_CFG_LDCLKDIS;
1466
1467	switch (state->interface) {
1468	case PHY_INTERFACE_MODE_MII:
1469	case PHY_INTERFACE_MODE_INTERNAL:
1470		miicfg |= GSWIP_MII_CFG_MODE_MIIM;
1471		break;
1472	case PHY_INTERFACE_MODE_REVMII:
1473		miicfg |= GSWIP_MII_CFG_MODE_MIIP;
1474		break;
1475	case PHY_INTERFACE_MODE_RMII:
1476		miicfg |= GSWIP_MII_CFG_MODE_RMIIM;
1477		break;
1478	case PHY_INTERFACE_MODE_RGMII:
1479	case PHY_INTERFACE_MODE_RGMII_ID:
1480	case PHY_INTERFACE_MODE_RGMII_RXID:
1481	case PHY_INTERFACE_MODE_RGMII_TXID:
1482		miicfg |= GSWIP_MII_CFG_MODE_RGMII;
1483		break;
 
 
 
1484	default:
1485		dev_err(ds->dev,
1486			"Unsupported interface: %d\n", state->interface);
1487		return;
1488	}
1489	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_MODE_MASK, miicfg, port);
 
 
 
 
1490
1491	switch (state->interface) {
1492	case PHY_INTERFACE_MODE_RGMII_ID:
1493		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK |
1494					  GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1495		break;
1496	case PHY_INTERFACE_MODE_RGMII_RXID:
1497		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1498		break;
1499	case PHY_INTERFACE_MODE_RGMII_TXID:
1500		gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK, 0, port);
1501		break;
1502	default:
1503		break;
1504	}
1505}
1506
1507static void gswip_phylink_mac_link_down(struct dsa_switch *ds, int port,
1508					unsigned int mode,
1509					phy_interface_t interface)
1510{
1511	struct gswip_priv *priv = ds->priv;
1512
1513	gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, port);
 
 
 
1514}
1515
1516static void gswip_phylink_mac_link_up(struct dsa_switch *ds, int port,
1517				      unsigned int mode,
1518				      phy_interface_t interface,
1519				      struct phy_device *phydev)
 
 
1520{
1521	struct gswip_priv *priv = ds->priv;
1522
1523	/* Enable the xMII interface only for the external PHY */
1524	if (interface != PHY_INTERFACE_MODE_INTERNAL)
1525		gswip_mii_mask_cfg(priv, 0, GSWIP_MII_CFG_EN, port);
 
 
 
 
 
1526}
1527
1528static void gswip_get_strings(struct dsa_switch *ds, int port, u32 stringset,
1529			      uint8_t *data)
1530{
1531	int i;
1532
1533	if (stringset != ETH_SS_STATS)
1534		return;
1535
1536	for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++)
1537		strncpy(data + i * ETH_GSTRING_LEN, gswip_rmon_cnt[i].name,
1538			ETH_GSTRING_LEN);
1539}
1540
1541static u32 gswip_bcm_ram_entry_read(struct gswip_priv *priv, u32 table,
1542				    u32 index)
1543{
1544	u32 result;
1545	int err;
1546
1547	gswip_switch_w(priv, index, GSWIP_BM_RAM_ADDR);
1548	gswip_switch_mask(priv, GSWIP_BM_RAM_CTRL_ADDR_MASK |
1549				GSWIP_BM_RAM_CTRL_OPMOD,
1550			      table | GSWIP_BM_RAM_CTRL_BAS,
1551			      GSWIP_BM_RAM_CTRL);
1552
1553	err = gswip_switch_r_timeout(priv, GSWIP_BM_RAM_CTRL,
1554				     GSWIP_BM_RAM_CTRL_BAS);
1555	if (err) {
1556		dev_err(priv->dev, "timeout while reading table: %u, index: %u",
1557			table, index);
1558		return 0;
1559	}
1560
1561	result = gswip_switch_r(priv, GSWIP_BM_RAM_VAL(0));
1562	result |= gswip_switch_r(priv, GSWIP_BM_RAM_VAL(1)) << 16;
1563
1564	return result;
1565}
1566
1567static void gswip_get_ethtool_stats(struct dsa_switch *ds, int port,
1568				    uint64_t *data)
1569{
1570	struct gswip_priv *priv = ds->priv;
1571	const struct gswip_rmon_cnt_desc *rmon_cnt;
1572	int i;
1573	u64 high;
1574
1575	for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++) {
1576		rmon_cnt = &gswip_rmon_cnt[i];
1577
1578		data[i] = gswip_bcm_ram_entry_read(priv, port,
1579						   rmon_cnt->offset);
1580		if (rmon_cnt->size == 2) {
1581			high = gswip_bcm_ram_entry_read(priv, port,
1582							rmon_cnt->offset + 1);
1583			data[i] |= high << 32;
1584		}
1585	}
1586}
1587
1588static int gswip_get_sset_count(struct dsa_switch *ds, int port, int sset)
1589{
1590	if (sset != ETH_SS_STATS)
1591		return 0;
1592
1593	return ARRAY_SIZE(gswip_rmon_cnt);
1594}
1595
1596static const struct dsa_switch_ops gswip_switch_ops = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1597	.get_tag_protocol	= gswip_get_tag_protocol,
1598	.setup			= gswip_setup,
1599	.port_enable		= gswip_port_enable,
1600	.port_disable		= gswip_port_disable,
1601	.port_bridge_join	= gswip_port_bridge_join,
1602	.port_bridge_leave	= gswip_port_bridge_leave,
1603	.port_fast_age		= gswip_port_fast_age,
1604	.port_vlan_filtering	= gswip_port_vlan_filtering,
1605	.port_vlan_prepare	= gswip_port_vlan_prepare,
1606	.port_vlan_add		= gswip_port_vlan_add,
1607	.port_vlan_del		= gswip_port_vlan_del,
1608	.port_stp_state_set	= gswip_port_stp_state_set,
1609	.port_fdb_add		= gswip_port_fdb_add,
1610	.port_fdb_del		= gswip_port_fdb_del,
1611	.port_fdb_dump		= gswip_port_fdb_dump,
1612	.phylink_validate	= gswip_phylink_validate,
 
 
1613	.phylink_mac_config	= gswip_phylink_mac_config,
1614	.phylink_mac_link_down	= gswip_phylink_mac_link_down,
1615	.phylink_mac_link_up	= gswip_phylink_mac_link_up,
1616	.get_strings		= gswip_get_strings,
1617	.get_ethtool_stats	= gswip_get_ethtool_stats,
1618	.get_sset_count		= gswip_get_sset_count,
1619};
1620
1621static const struct xway_gphy_match_data xrx200a1x_gphy_data = {
1622	.fe_firmware_name = "lantiq/xrx200_phy22f_a14.bin",
1623	.ge_firmware_name = "lantiq/xrx200_phy11g_a14.bin",
1624};
1625
1626static const struct xway_gphy_match_data xrx200a2x_gphy_data = {
1627	.fe_firmware_name = "lantiq/xrx200_phy22f_a22.bin",
1628	.ge_firmware_name = "lantiq/xrx200_phy11g_a22.bin",
1629};
1630
1631static const struct xway_gphy_match_data xrx300_gphy_data = {
1632	.fe_firmware_name = "lantiq/xrx300_phy22f_a21.bin",
1633	.ge_firmware_name = "lantiq/xrx300_phy11g_a21.bin",
1634};
1635
1636static const struct of_device_id xway_gphy_match[] = {
1637	{ .compatible = "lantiq,xrx200-gphy-fw", .data = NULL },
1638	{ .compatible = "lantiq,xrx200a1x-gphy-fw", .data = &xrx200a1x_gphy_data },
1639	{ .compatible = "lantiq,xrx200a2x-gphy-fw", .data = &xrx200a2x_gphy_data },
1640	{ .compatible = "lantiq,xrx300-gphy-fw", .data = &xrx300_gphy_data },
1641	{ .compatible = "lantiq,xrx330-gphy-fw", .data = &xrx300_gphy_data },
1642	{},
1643};
1644
1645static int gswip_gphy_fw_load(struct gswip_priv *priv, struct gswip_gphy_fw *gphy_fw)
1646{
1647	struct device *dev = priv->dev;
1648	const struct firmware *fw;
1649	void *fw_addr;
1650	dma_addr_t dma_addr;
1651	dma_addr_t dev_addr;
1652	size_t size;
1653	int ret;
1654
1655	ret = clk_prepare_enable(gphy_fw->clk_gate);
1656	if (ret)
1657		return ret;
1658
1659	reset_control_assert(gphy_fw->reset);
1660
 
 
 
 
 
 
1661	ret = request_firmware(&fw, gphy_fw->fw_name, dev);
1662	if (ret) {
1663		dev_err(dev, "failed to load firmware: %s, error: %i\n",
1664			gphy_fw->fw_name, ret);
1665		return ret;
1666	}
1667
1668	/* GPHY cores need the firmware code in a persistent and contiguous
1669	 * memory area with a 16 kB boundary aligned start address.
1670	 */
1671	size = fw->size + XRX200_GPHY_FW_ALIGN;
1672
1673	fw_addr = dmam_alloc_coherent(dev, size, &dma_addr, GFP_KERNEL);
1674	if (fw_addr) {
1675		fw_addr = PTR_ALIGN(fw_addr, XRX200_GPHY_FW_ALIGN);
1676		dev_addr = ALIGN(dma_addr, XRX200_GPHY_FW_ALIGN);
1677		memcpy(fw_addr, fw->data, fw->size);
1678	} else {
1679		dev_err(dev, "failed to alloc firmware memory\n");
1680		release_firmware(fw);
1681		return -ENOMEM;
1682	}
1683
1684	release_firmware(fw);
1685
1686	ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, dev_addr);
1687	if (ret)
1688		return ret;
1689
1690	reset_control_deassert(gphy_fw->reset);
1691
1692	return ret;
1693}
1694
1695static int gswip_gphy_fw_probe(struct gswip_priv *priv,
1696			       struct gswip_gphy_fw *gphy_fw,
1697			       struct device_node *gphy_fw_np, int i)
1698{
1699	struct device *dev = priv->dev;
1700	u32 gphy_mode;
1701	int ret;
1702	char gphyname[10];
1703
1704	snprintf(gphyname, sizeof(gphyname), "gphy%d", i);
1705
1706	gphy_fw->clk_gate = devm_clk_get(dev, gphyname);
1707	if (IS_ERR(gphy_fw->clk_gate)) {
1708		dev_err(dev, "Failed to lookup gate clock\n");
1709		return PTR_ERR(gphy_fw->clk_gate);
1710	}
1711
1712	ret = of_property_read_u32(gphy_fw_np, "reg", &gphy_fw->fw_addr_offset);
1713	if (ret)
1714		return ret;
1715
1716	ret = of_property_read_u32(gphy_fw_np, "lantiq,gphy-mode", &gphy_mode);
1717	/* Default to GE mode */
1718	if (ret)
1719		gphy_mode = GPHY_MODE_GE;
1720
1721	switch (gphy_mode) {
1722	case GPHY_MODE_FE:
1723		gphy_fw->fw_name = priv->gphy_fw_name_cfg->fe_firmware_name;
1724		break;
1725	case GPHY_MODE_GE:
1726		gphy_fw->fw_name = priv->gphy_fw_name_cfg->ge_firmware_name;
1727		break;
1728	default:
1729		dev_err(dev, "Unknown GPHY mode %d\n", gphy_mode);
1730		return -EINVAL;
1731	}
1732
1733	gphy_fw->reset = of_reset_control_array_get_exclusive(gphy_fw_np);
1734	if (IS_ERR(gphy_fw->reset)) {
1735		if (PTR_ERR(gphy_fw->reset) != -EPROBE_DEFER)
1736			dev_err(dev, "Failed to lookup gphy reset\n");
1737		return PTR_ERR(gphy_fw->reset);
1738	}
1739
1740	return gswip_gphy_fw_load(priv, gphy_fw);
1741}
1742
1743static void gswip_gphy_fw_remove(struct gswip_priv *priv,
1744				 struct gswip_gphy_fw *gphy_fw)
1745{
1746	int ret;
1747
1748	/* check if the device was fully probed */
1749	if (!gphy_fw->fw_name)
1750		return;
1751
1752	ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, 0);
1753	if (ret)
1754		dev_err(priv->dev, "can not reset GPHY FW pointer");
1755
1756	clk_disable_unprepare(gphy_fw->clk_gate);
1757
1758	reset_control_put(gphy_fw->reset);
1759}
1760
1761static int gswip_gphy_fw_list(struct gswip_priv *priv,
1762			      struct device_node *gphy_fw_list_np, u32 version)
1763{
1764	struct device *dev = priv->dev;
1765	struct device_node *gphy_fw_np;
1766	const struct of_device_id *match;
1767	int err;
1768	int i = 0;
1769
1770	/* The VRX200 rev 1.1 uses the GSWIP 2.0 and needs the older
1771	 * GPHY firmware. The VRX200 rev 1.2 uses the GSWIP 2.1 and also
1772	 * needs a different GPHY firmware.
1773	 */
1774	if (of_device_is_compatible(gphy_fw_list_np, "lantiq,xrx200-gphy-fw")) {
1775		switch (version) {
1776		case GSWIP_VERSION_2_0:
1777			priv->gphy_fw_name_cfg = &xrx200a1x_gphy_data;
1778			break;
1779		case GSWIP_VERSION_2_1:
1780			priv->gphy_fw_name_cfg = &xrx200a2x_gphy_data;
1781			break;
1782		default:
1783			dev_err(dev, "unknown GSWIP version: 0x%x", version);
1784			return -ENOENT;
1785		}
1786	}
1787
1788	match = of_match_node(xway_gphy_match, gphy_fw_list_np);
1789	if (match && match->data)
1790		priv->gphy_fw_name_cfg = match->data;
1791
1792	if (!priv->gphy_fw_name_cfg) {
1793		dev_err(dev, "GPHY compatible type not supported");
1794		return -ENOENT;
1795	}
1796
1797	priv->num_gphy_fw = of_get_available_child_count(gphy_fw_list_np);
1798	if (!priv->num_gphy_fw)
1799		return -ENOENT;
1800
1801	priv->rcu_regmap = syscon_regmap_lookup_by_phandle(gphy_fw_list_np,
1802							   "lantiq,rcu");
1803	if (IS_ERR(priv->rcu_regmap))
1804		return PTR_ERR(priv->rcu_regmap);
1805
1806	priv->gphy_fw = devm_kmalloc_array(dev, priv->num_gphy_fw,
1807					   sizeof(*priv->gphy_fw),
1808					   GFP_KERNEL | __GFP_ZERO);
1809	if (!priv->gphy_fw)
1810		return -ENOMEM;
1811
1812	for_each_available_child_of_node(gphy_fw_list_np, gphy_fw_np) {
1813		err = gswip_gphy_fw_probe(priv, &priv->gphy_fw[i],
1814					  gphy_fw_np, i);
1815		if (err)
 
1816			goto remove_gphy;
 
1817		i++;
1818	}
1819
 
 
 
 
 
 
 
 
 
 
1820	return 0;
1821
1822remove_gphy:
1823	for (i = 0; i < priv->num_gphy_fw; i++)
1824		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
1825	return err;
1826}
1827
1828static int gswip_probe(struct platform_device *pdev)
1829{
1830	struct gswip_priv *priv;
1831	struct device_node *mdio_np, *gphy_fw_np;
1832	struct device *dev = &pdev->dev;
1833	int err;
1834	int i;
1835	u32 version;
1836
1837	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
1838	if (!priv)
1839		return -ENOMEM;
1840
1841	priv->gswip = devm_platform_ioremap_resource(pdev, 0);
1842	if (IS_ERR(priv->gswip))
1843		return PTR_ERR(priv->gswip);
1844
1845	priv->mdio = devm_platform_ioremap_resource(pdev, 1);
1846	if (IS_ERR(priv->mdio))
1847		return PTR_ERR(priv->mdio);
1848
1849	priv->mii = devm_platform_ioremap_resource(pdev, 2);
1850	if (IS_ERR(priv->mii))
1851		return PTR_ERR(priv->mii);
1852
1853	priv->hw_info = of_device_get_match_data(dev);
1854	if (!priv->hw_info)
1855		return -EINVAL;
1856
1857	priv->ds = dsa_switch_alloc(dev, priv->hw_info->max_ports);
1858	if (!priv->ds)
1859		return -ENOMEM;
1860
 
 
1861	priv->ds->priv = priv;
1862	priv->ds->ops = &gswip_switch_ops;
1863	priv->dev = dev;
 
1864	version = gswip_switch_r(priv, GSWIP_VERSION);
1865
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1866	/* bring up the mdio bus */
1867	gphy_fw_np = of_get_compatible_child(dev->of_node, "lantiq,gphy-fw");
1868	if (gphy_fw_np) {
1869		err = gswip_gphy_fw_list(priv, gphy_fw_np, version);
1870		of_node_put(gphy_fw_np);
1871		if (err) {
1872			dev_err(dev, "gphy fw probe failed\n");
1873			return err;
1874		}
1875	}
1876
1877	/* bring up the mdio bus */
1878	mdio_np = of_get_compatible_child(dev->of_node, "lantiq,xrx200-mdio");
1879	if (mdio_np) {
1880		err = gswip_mdio(priv, mdio_np);
1881		if (err) {
1882			dev_err(dev, "mdio probe failed\n");
1883			goto put_mdio_node;
1884		}
1885	}
1886
1887	err = dsa_register_switch(priv->ds);
1888	if (err) {
1889		dev_err(dev, "dsa switch register failed: %i\n", err);
1890		goto mdio_bus;
1891	}
1892	if (!dsa_is_cpu_port(priv->ds, priv->hw_info->cpu_port)) {
1893		dev_err(dev, "wrong CPU port defined, HW only supports port: %i",
1894			priv->hw_info->cpu_port);
1895		err = -EINVAL;
1896		goto disable_switch;
1897	}
1898
1899	platform_set_drvdata(pdev, priv);
1900
1901	dev_info(dev, "probed GSWIP version %lx mod %lx\n",
1902		 (version & GSWIP_VERSION_REV_MASK) >> GSWIP_VERSION_REV_SHIFT,
1903		 (version & GSWIP_VERSION_MOD_MASK) >> GSWIP_VERSION_MOD_SHIFT);
1904	return 0;
1905
1906disable_switch:
1907	gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
1908	dsa_unregister_switch(priv->ds);
1909mdio_bus:
1910	if (mdio_np)
1911		mdiobus_unregister(priv->ds->slave_mii_bus);
 
 
1912put_mdio_node:
1913	of_node_put(mdio_np);
1914	for (i = 0; i < priv->num_gphy_fw; i++)
1915		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
1916	return err;
1917}
1918
1919static int gswip_remove(struct platform_device *pdev)
1920{
1921	struct gswip_priv *priv = platform_get_drvdata(pdev);
1922	int i;
1923
 
 
 
1924	/* disable the switch */
1925	gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
1926
1927	dsa_unregister_switch(priv->ds);
1928
1929	if (priv->ds->slave_mii_bus) {
1930		mdiobus_unregister(priv->ds->slave_mii_bus);
1931		of_node_put(priv->ds->slave_mii_bus->dev.of_node);
 
1932	}
1933
1934	for (i = 0; i < priv->num_gphy_fw; i++)
1935		gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
1936
1937	return 0;
1938}
1939
 
 
 
 
 
 
 
 
 
 
 
 
1940static const struct gswip_hw_info gswip_xrx200 = {
1941	.max_ports = 7,
1942	.cpu_port = 6,
 
 
 
 
 
 
 
1943};
1944
1945static const struct of_device_id gswip_of_match[] = {
1946	{ .compatible = "lantiq,xrx200-gswip", .data = &gswip_xrx200 },
 
 
1947	{},
1948};
1949MODULE_DEVICE_TABLE(of, gswip_of_match);
1950
1951static struct platform_driver gswip_driver = {
1952	.probe = gswip_probe,
1953	.remove = gswip_remove,
 
1954	.driver = {
1955		.name = "gswip",
1956		.of_match_table = gswip_of_match,
1957	},
1958};
1959
1960module_platform_driver(gswip_driver);
1961
1962MODULE_FIRMWARE("lantiq/xrx300_phy11g_a21.bin");
1963MODULE_FIRMWARE("lantiq/xrx300_phy22f_a21.bin");
1964MODULE_FIRMWARE("lantiq/xrx200_phy11g_a14.bin");
1965MODULE_FIRMWARE("lantiq/xrx200_phy11g_a22.bin");
1966MODULE_FIRMWARE("lantiq/xrx200_phy22f_a14.bin");
1967MODULE_FIRMWARE("lantiq/xrx200_phy22f_a22.bin");
1968MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
1969MODULE_DESCRIPTION("Lantiq / Intel GSWIP driver");
1970MODULE_LICENSE("GPL v2");