Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * MMCIF eMMC driver.
   4 *
   5 * Copyright (C) 2010 Renesas Solutions Corp.
   6 * Yusuke Goda <yusuke.goda.sx@renesas.com>
   7 */
   8
   9/*
  10 * The MMCIF driver is now processing MMC requests asynchronously, according
  11 * to the Linux MMC API requirement.
  12 *
  13 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
  14 * data, and optional stop. To achieve asynchronous processing each of these
  15 * stages is split into two halves: a top and a bottom half. The top half
  16 * initialises the hardware, installs a timeout handler to handle completion
  17 * timeouts, and returns. In case of the command stage this immediately returns
  18 * control to the caller, leaving all further processing to run asynchronously.
  19 * All further request processing is performed by the bottom halves.
  20 *
  21 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
  22 * thread, a DMA completion callback, if DMA is used, a timeout work, and
  23 * request- and stage-specific handler methods.
  24 *
  25 * Each bottom half run begins with either a hardware interrupt, a DMA callback
  26 * invocation, or a timeout work run. In case of an error or a successful
  27 * processing completion, the MMC core is informed and the request processing is
  28 * finished. In case processing has to continue, i.e., if data has to be read
  29 * from or written to the card, or if a stop command has to be sent, the next
  30 * top half is called, which performs the necessary hardware handling and
  31 * reschedules the timeout work. This returns the driver state machine into the
  32 * bottom half waiting state.
  33 */
  34
  35#include <linux/bitops.h>
  36#include <linux/clk.h>
  37#include <linux/completion.h>
  38#include <linux/delay.h>
  39#include <linux/dma-mapping.h>
  40#include <linux/dmaengine.h>
  41#include <linux/mmc/card.h>
  42#include <linux/mmc/core.h>
  43#include <linux/mmc/host.h>
  44#include <linux/mmc/mmc.h>
  45#include <linux/mmc/sdio.h>
 
  46#include <linux/mmc/slot-gpio.h>
  47#include <linux/mod_devicetable.h>
  48#include <linux/mutex.h>
  49#include <linux/of_device.h>
  50#include <linux/pagemap.h>
  51#include <linux/platform_data/sh_mmcif.h>
  52#include <linux/platform_device.h>
  53#include <linux/pm_qos.h>
  54#include <linux/pm_runtime.h>
  55#include <linux/sh_dma.h>
  56#include <linux/spinlock.h>
  57#include <linux/module.h>
  58
  59#define DRIVER_NAME	"sh_mmcif"
  60
  61/* CE_CMD_SET */
  62#define CMD_MASK		0x3f000000
  63#define CMD_SET_RTYP_NO		((0 << 23) | (0 << 22))
  64#define CMD_SET_RTYP_6B		((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
  65#define CMD_SET_RTYP_17B	((1 << 23) | (0 << 22)) /* R2 */
  66#define CMD_SET_RBSY		(1 << 21) /* R1b */
  67#define CMD_SET_CCSEN		(1 << 20)
  68#define CMD_SET_WDAT		(1 << 19) /* 1: on data, 0: no data */
  69#define CMD_SET_DWEN		(1 << 18) /* 1: write, 0: read */
  70#define CMD_SET_CMLTE		(1 << 17) /* 1: multi block trans, 0: single */
  71#define CMD_SET_CMD12EN		(1 << 16) /* 1: CMD12 auto issue */
  72#define CMD_SET_RIDXC_INDEX	((0 << 15) | (0 << 14)) /* index check */
  73#define CMD_SET_RIDXC_BITS	((0 << 15) | (1 << 14)) /* check bits check */
  74#define CMD_SET_RIDXC_NO	((1 << 15) | (0 << 14)) /* no check */
  75#define CMD_SET_CRC7C		((0 << 13) | (0 << 12)) /* CRC7 check*/
  76#define CMD_SET_CRC7C_BITS	((0 << 13) | (1 << 12)) /* check bits check*/
  77#define CMD_SET_CRC7C_INTERNAL	((1 << 13) | (0 << 12)) /* internal CRC7 check*/
  78#define CMD_SET_CRC16C		(1 << 10) /* 0: CRC16 check*/
  79#define CMD_SET_CRCSTE		(1 << 8) /* 1: not receive CRC status */
  80#define CMD_SET_TBIT		(1 << 7) /* 1: tran mission bit "Low" */
  81#define CMD_SET_OPDM		(1 << 6) /* 1: open/drain */
  82#define CMD_SET_CCSH		(1 << 5)
  83#define CMD_SET_DARS		(1 << 2) /* Dual Data Rate */
  84#define CMD_SET_DATW_1		((0 << 1) | (0 << 0)) /* 1bit */
  85#define CMD_SET_DATW_4		((0 << 1) | (1 << 0)) /* 4bit */
  86#define CMD_SET_DATW_8		((1 << 1) | (0 << 0)) /* 8bit */
  87
  88/* CE_CMD_CTRL */
  89#define CMD_CTRL_BREAK		(1 << 0)
  90
  91/* CE_BLOCK_SET */
  92#define BLOCK_SIZE_MASK		0x0000ffff
  93
  94/* CE_INT */
  95#define INT_CCSDE		(1 << 29)
  96#define INT_CMD12DRE		(1 << 26)
  97#define INT_CMD12RBE		(1 << 25)
  98#define INT_CMD12CRE		(1 << 24)
  99#define INT_DTRANE		(1 << 23)
 100#define INT_BUFRE		(1 << 22)
 101#define INT_BUFWEN		(1 << 21)
 102#define INT_BUFREN		(1 << 20)
 103#define INT_CCSRCV		(1 << 19)
 104#define INT_RBSYE		(1 << 17)
 105#define INT_CRSPE		(1 << 16)
 106#define INT_CMDVIO		(1 << 15)
 107#define INT_BUFVIO		(1 << 14)
 108#define INT_WDATERR		(1 << 11)
 109#define INT_RDATERR		(1 << 10)
 110#define INT_RIDXERR		(1 << 9)
 111#define INT_RSPERR		(1 << 8)
 112#define INT_CCSTO		(1 << 5)
 113#define INT_CRCSTO		(1 << 4)
 114#define INT_WDATTO		(1 << 3)
 115#define INT_RDATTO		(1 << 2)
 116#define INT_RBSYTO		(1 << 1)
 117#define INT_RSPTO		(1 << 0)
 118#define INT_ERR_STS		(INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
 119				 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
 120				 INT_CCSTO | INT_CRCSTO | INT_WDATTO |	  \
 121				 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
 122
 123#define INT_ALL			(INT_RBSYE | INT_CRSPE | INT_BUFREN |	 \
 124				 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
 125				 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
 126
 127#define INT_CCS			(INT_CCSTO | INT_CCSRCV | INT_CCSDE)
 128
 129/* CE_INT_MASK */
 130#define MASK_ALL		0x00000000
 131#define MASK_MCCSDE		(1 << 29)
 132#define MASK_MCMD12DRE		(1 << 26)
 133#define MASK_MCMD12RBE		(1 << 25)
 134#define MASK_MCMD12CRE		(1 << 24)
 135#define MASK_MDTRANE		(1 << 23)
 136#define MASK_MBUFRE		(1 << 22)
 137#define MASK_MBUFWEN		(1 << 21)
 138#define MASK_MBUFREN		(1 << 20)
 139#define MASK_MCCSRCV		(1 << 19)
 140#define MASK_MRBSYE		(1 << 17)
 141#define MASK_MCRSPE		(1 << 16)
 142#define MASK_MCMDVIO		(1 << 15)
 143#define MASK_MBUFVIO		(1 << 14)
 144#define MASK_MWDATERR		(1 << 11)
 145#define MASK_MRDATERR		(1 << 10)
 146#define MASK_MRIDXERR		(1 << 9)
 147#define MASK_MRSPERR		(1 << 8)
 148#define MASK_MCCSTO		(1 << 5)
 149#define MASK_MCRCSTO		(1 << 4)
 150#define MASK_MWDATTO		(1 << 3)
 151#define MASK_MRDATTO		(1 << 2)
 152#define MASK_MRBSYTO		(1 << 1)
 153#define MASK_MRSPTO		(1 << 0)
 154
 155#define MASK_START_CMD		(MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
 156				 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
 157				 MASK_MCRCSTO | MASK_MWDATTO | \
 158				 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
 159
 160#define MASK_CLEAN		(INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |	\
 161				 MASK_MBUFREN | MASK_MBUFWEN |			\
 162				 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |	\
 163				 MASK_MCMD12RBE | MASK_MCMD12CRE)
 164
 165/* CE_HOST_STS1 */
 166#define STS1_CMDSEQ		(1 << 31)
 167
 168/* CE_HOST_STS2 */
 169#define STS2_CRCSTE		(1 << 31)
 170#define STS2_CRC16E		(1 << 30)
 171#define STS2_AC12CRCE		(1 << 29)
 172#define STS2_RSPCRC7E		(1 << 28)
 173#define STS2_CRCSTEBE		(1 << 27)
 174#define STS2_RDATEBE		(1 << 26)
 175#define STS2_AC12REBE		(1 << 25)
 176#define STS2_RSPEBE		(1 << 24)
 177#define STS2_AC12IDXE		(1 << 23)
 178#define STS2_RSPIDXE		(1 << 22)
 179#define STS2_CCSTO		(1 << 15)
 180#define STS2_RDATTO		(1 << 14)
 181#define STS2_DATBSYTO		(1 << 13)
 182#define STS2_CRCSTTO		(1 << 12)
 183#define STS2_AC12BSYTO		(1 << 11)
 184#define STS2_RSPBSYTO		(1 << 10)
 185#define STS2_AC12RSPTO		(1 << 9)
 186#define STS2_RSPTO		(1 << 8)
 187#define STS2_CRC_ERR		(STS2_CRCSTE | STS2_CRC16E |		\
 188				 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
 189#define STS2_TIMEOUT_ERR	(STS2_CCSTO | STS2_RDATTO |		\
 190				 STS2_DATBSYTO | STS2_CRCSTTO |		\
 191				 STS2_AC12BSYTO | STS2_RSPBSYTO |	\
 192				 STS2_AC12RSPTO | STS2_RSPTO)
 193
 194#define CLKDEV_EMMC_DATA	52000000 /* 52 MHz */
 195#define CLKDEV_MMC_DATA		20000000 /* 20 MHz */
 196#define CLKDEV_INIT		400000   /* 400 kHz */
 197
 198enum sh_mmcif_state {
 199	STATE_IDLE,
 200	STATE_REQUEST,
 201	STATE_IOS,
 202	STATE_TIMEOUT,
 203};
 204
 205enum sh_mmcif_wait_for {
 206	MMCIF_WAIT_FOR_REQUEST,
 207	MMCIF_WAIT_FOR_CMD,
 208	MMCIF_WAIT_FOR_MREAD,
 209	MMCIF_WAIT_FOR_MWRITE,
 210	MMCIF_WAIT_FOR_READ,
 211	MMCIF_WAIT_FOR_WRITE,
 212	MMCIF_WAIT_FOR_READ_END,
 213	MMCIF_WAIT_FOR_WRITE_END,
 214	MMCIF_WAIT_FOR_STOP,
 215};
 216
 217/*
 218 * difference for each SoC
 219 */
 220struct sh_mmcif_host {
 221	struct mmc_host *mmc;
 222	struct mmc_request *mrq;
 223	struct platform_device *pd;
 224	struct clk *clk;
 225	int bus_width;
 226	unsigned char timing;
 227	bool sd_error;
 228	bool dying;
 229	long timeout;
 230	void __iomem *addr;
 231	u32 *pio_ptr;
 232	spinlock_t lock;		/* protect sh_mmcif_host::state */
 233	enum sh_mmcif_state state;
 234	enum sh_mmcif_wait_for wait_for;
 235	struct delayed_work timeout_work;
 236	size_t blocksize;
 237	int sg_idx;
 238	int sg_blkidx;
 239	bool power;
 240	bool ccs_enable;		/* Command Completion Signal support */
 241	bool clk_ctrl2_enable;
 242	struct mutex thread_lock;
 243	u32 clkdiv_map;         /* see CE_CLK_CTRL::CLKDIV */
 244
 245	/* DMA support */
 246	struct dma_chan		*chan_rx;
 247	struct dma_chan		*chan_tx;
 248	struct completion	dma_complete;
 249	bool			dma_active;
 250};
 251
 252static const struct of_device_id sh_mmcif_of_match[] = {
 253	{ .compatible = "renesas,sh-mmcif" },
 254	{ }
 255};
 256MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
 257
 258#define sh_mmcif_host_to_dev(host) (&host->pd->dev)
 259
 260static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
 261					unsigned int reg, u32 val)
 262{
 263	writel(val | readl(host->addr + reg), host->addr + reg);
 264}
 265
 266static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
 267					unsigned int reg, u32 val)
 268{
 269	writel(~val & readl(host->addr + reg), host->addr + reg);
 270}
 271
 272static void sh_mmcif_dma_complete(void *arg)
 273{
 274	struct sh_mmcif_host *host = arg;
 275	struct mmc_request *mrq = host->mrq;
 276	struct device *dev = sh_mmcif_host_to_dev(host);
 277
 278	dev_dbg(dev, "Command completed\n");
 279
 280	if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
 281		 dev_name(dev)))
 282		return;
 283
 284	complete(&host->dma_complete);
 285}
 286
 287static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
 288{
 289	struct mmc_data *data = host->mrq->data;
 290	struct scatterlist *sg = data->sg;
 291	struct dma_async_tx_descriptor *desc = NULL;
 292	struct dma_chan *chan = host->chan_rx;
 293	struct device *dev = sh_mmcif_host_to_dev(host);
 294	dma_cookie_t cookie = -EINVAL;
 295	int ret;
 296
 297	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
 298			 DMA_FROM_DEVICE);
 299	if (ret > 0) {
 300		host->dma_active = true;
 301		desc = dmaengine_prep_slave_sg(chan, sg, ret,
 302			DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 303	}
 304
 305	if (desc) {
 306		desc->callback = sh_mmcif_dma_complete;
 307		desc->callback_param = host;
 308		cookie = dmaengine_submit(desc);
 309		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
 310		dma_async_issue_pending(chan);
 311	}
 312	dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
 313		__func__, data->sg_len, ret, cookie);
 314
 315	if (!desc) {
 316		/* DMA failed, fall back to PIO */
 317		if (ret >= 0)
 318			ret = -EIO;
 319		host->chan_rx = NULL;
 320		host->dma_active = false;
 321		dma_release_channel(chan);
 322		/* Free the Tx channel too */
 323		chan = host->chan_tx;
 324		if (chan) {
 325			host->chan_tx = NULL;
 326			dma_release_channel(chan);
 327		}
 328		dev_warn(dev,
 329			 "DMA failed: %d, falling back to PIO\n", ret);
 330		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 331	}
 332
 333	dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
 334		desc, cookie, data->sg_len);
 335}
 336
 337static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
 338{
 339	struct mmc_data *data = host->mrq->data;
 340	struct scatterlist *sg = data->sg;
 341	struct dma_async_tx_descriptor *desc = NULL;
 342	struct dma_chan *chan = host->chan_tx;
 343	struct device *dev = sh_mmcif_host_to_dev(host);
 344	dma_cookie_t cookie = -EINVAL;
 345	int ret;
 346
 347	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
 348			 DMA_TO_DEVICE);
 349	if (ret > 0) {
 350		host->dma_active = true;
 351		desc = dmaengine_prep_slave_sg(chan, sg, ret,
 352			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 353	}
 354
 355	if (desc) {
 356		desc->callback = sh_mmcif_dma_complete;
 357		desc->callback_param = host;
 358		cookie = dmaengine_submit(desc);
 359		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
 360		dma_async_issue_pending(chan);
 361	}
 362	dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
 363		__func__, data->sg_len, ret, cookie);
 364
 365	if (!desc) {
 366		/* DMA failed, fall back to PIO */
 367		if (ret >= 0)
 368			ret = -EIO;
 369		host->chan_tx = NULL;
 370		host->dma_active = false;
 371		dma_release_channel(chan);
 372		/* Free the Rx channel too */
 373		chan = host->chan_rx;
 374		if (chan) {
 375			host->chan_rx = NULL;
 376			dma_release_channel(chan);
 377		}
 378		dev_warn(dev,
 379			 "DMA failed: %d, falling back to PIO\n", ret);
 380		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 381	}
 382
 383	dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
 384		desc, cookie);
 385}
 386
 387static struct dma_chan *
 388sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
 389{
 390	dma_cap_mask_t mask;
 391
 392	dma_cap_zero(mask);
 393	dma_cap_set(DMA_SLAVE, mask);
 394	if (slave_id <= 0)
 395		return NULL;
 396
 397	return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
 398}
 399
 400static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
 401				     struct dma_chan *chan,
 402				     enum dma_transfer_direction direction)
 403{
 404	struct resource *res;
 405	struct dma_slave_config cfg = { 0, };
 406
 407	res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
 408	if (!res)
 409		return -EINVAL;
 410
 411	cfg.direction = direction;
 412
 413	if (direction == DMA_DEV_TO_MEM) {
 414		cfg.src_addr = res->start + MMCIF_CE_DATA;
 415		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 416	} else {
 417		cfg.dst_addr = res->start + MMCIF_CE_DATA;
 418		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 419	}
 420
 421	return dmaengine_slave_config(chan, &cfg);
 422}
 423
 424static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
 425{
 426	struct device *dev = sh_mmcif_host_to_dev(host);
 427	host->dma_active = false;
 428
 429	/* We can only either use DMA for both Tx and Rx or not use it at all */
 430	if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
 431		struct sh_mmcif_plat_data *pdata = dev->platform_data;
 432
 433		host->chan_tx = sh_mmcif_request_dma_pdata(host,
 434							pdata->slave_id_tx);
 435		host->chan_rx = sh_mmcif_request_dma_pdata(host,
 436							pdata->slave_id_rx);
 437	} else {
 438		host->chan_tx = dma_request_chan(dev, "tx");
 439		if (IS_ERR(host->chan_tx))
 440			host->chan_tx = NULL;
 441		host->chan_rx = dma_request_chan(dev, "rx");
 442		if (IS_ERR(host->chan_rx))
 443			host->chan_rx = NULL;
 444	}
 445	dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
 446		host->chan_rx);
 447
 448	if (!host->chan_tx || !host->chan_rx ||
 449	    sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
 450	    sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
 451		goto error;
 452
 453	return;
 454
 455error:
 456	if (host->chan_tx)
 457		dma_release_channel(host->chan_tx);
 458	if (host->chan_rx)
 459		dma_release_channel(host->chan_rx);
 460	host->chan_tx = host->chan_rx = NULL;
 461}
 462
 463static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
 464{
 465	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 466	/* Descriptors are freed automatically */
 467	if (host->chan_tx) {
 468		struct dma_chan *chan = host->chan_tx;
 469		host->chan_tx = NULL;
 470		dma_release_channel(chan);
 471	}
 472	if (host->chan_rx) {
 473		struct dma_chan *chan = host->chan_rx;
 474		host->chan_rx = NULL;
 475		dma_release_channel(chan);
 476	}
 477
 478	host->dma_active = false;
 479}
 480
 481static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
 482{
 483	struct device *dev = sh_mmcif_host_to_dev(host);
 484	struct sh_mmcif_plat_data *p = dev->platform_data;
 485	bool sup_pclk = p ? p->sup_pclk : false;
 486	unsigned int current_clk = clk_get_rate(host->clk);
 487	unsigned int clkdiv;
 488
 489	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
 490	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
 491
 492	if (!clk)
 493		return;
 494
 495	if (host->clkdiv_map) {
 496		unsigned int freq, best_freq, myclk, div, diff_min, diff;
 497		int i;
 498
 499		clkdiv = 0;
 500		diff_min = ~0;
 501		best_freq = 0;
 502		for (i = 31; i >= 0; i--) {
 503			if (!((1 << i) & host->clkdiv_map))
 504				continue;
 505
 506			/*
 507			 * clk = parent_freq / div
 508			 * -> parent_freq = clk x div
 509			 */
 510
 511			div = 1 << (i + 1);
 512			freq = clk_round_rate(host->clk, clk * div);
 513			myclk = freq / div;
 514			diff = (myclk > clk) ? myclk - clk : clk - myclk;
 515
 516			if (diff <= diff_min) {
 517				best_freq = freq;
 518				clkdiv = i;
 519				diff_min = diff;
 520			}
 521		}
 522
 523		dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
 524			(best_freq >> (clkdiv + 1)), clk, best_freq, clkdiv);
 
 525
 526		clk_set_rate(host->clk, best_freq);
 527		clkdiv = clkdiv << 16;
 528	} else if (sup_pclk && clk == current_clk) {
 529		clkdiv = CLK_SUP_PCLK;
 530	} else {
 531		clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
 532	}
 533
 534	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
 535	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
 536}
 537
 538static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
 539{
 540	u32 tmp;
 541
 542	tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
 543
 544	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
 545	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
 546	if (host->ccs_enable)
 547		tmp |= SCCSTO_29;
 548	if (host->clk_ctrl2_enable)
 549		sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
 550	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
 551		SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
 552	/* byte swap on */
 553	sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
 554}
 555
 556static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
 557{
 558	struct device *dev = sh_mmcif_host_to_dev(host);
 559	u32 state1, state2;
 560	int ret, timeout;
 561
 562	host->sd_error = false;
 563
 564	state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
 565	state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
 566	dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
 567	dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
 568
 569	if (state1 & STS1_CMDSEQ) {
 570		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
 571		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
 572		for (timeout = 10000; timeout; timeout--) {
 573			if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
 574			      & STS1_CMDSEQ))
 575				break;
 576			mdelay(1);
 577		}
 578		if (!timeout) {
 579			dev_err(dev,
 580				"Forced end of command sequence timeout err\n");
 581			return -EIO;
 582		}
 583		sh_mmcif_sync_reset(host);
 584		dev_dbg(dev, "Forced end of command sequence\n");
 585		return -EIO;
 586	}
 587
 588	if (state2 & STS2_CRC_ERR) {
 589		dev_err(dev, " CRC error: state %u, wait %u\n",
 590			host->state, host->wait_for);
 591		ret = -EIO;
 592	} else if (state2 & STS2_TIMEOUT_ERR) {
 593		dev_err(dev, " Timeout: state %u, wait %u\n",
 594			host->state, host->wait_for);
 595		ret = -ETIMEDOUT;
 596	} else {
 597		dev_dbg(dev, " End/Index error: state %u, wait %u\n",
 598			host->state, host->wait_for);
 599		ret = -EIO;
 600	}
 601	return ret;
 602}
 603
 604static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
 605{
 606	struct mmc_data *data = host->mrq->data;
 607
 608	host->sg_blkidx += host->blocksize;
 609
 610	/* data->sg->length must be a multiple of host->blocksize? */
 611	BUG_ON(host->sg_blkidx > data->sg->length);
 612
 613	if (host->sg_blkidx == data->sg->length) {
 614		host->sg_blkidx = 0;
 615		if (++host->sg_idx < data->sg_len)
 616			host->pio_ptr = sg_virt(++data->sg);
 617	} else {
 618		host->pio_ptr = p;
 619	}
 620
 621	return host->sg_idx != data->sg_len;
 622}
 623
 624static void sh_mmcif_single_read(struct sh_mmcif_host *host,
 625				 struct mmc_request *mrq)
 626{
 627	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 628			   BLOCK_SIZE_MASK) + 3;
 629
 630	host->wait_for = MMCIF_WAIT_FOR_READ;
 631
 632	/* buf read enable */
 633	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 634}
 635
 636static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
 637{
 638	struct device *dev = sh_mmcif_host_to_dev(host);
 639	struct mmc_data *data = host->mrq->data;
 640	u32 *p = sg_virt(data->sg);
 641	int i;
 642
 643	if (host->sd_error) {
 644		data->error = sh_mmcif_error_manage(host);
 645		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 646		return false;
 647	}
 648
 649	for (i = 0; i < host->blocksize / 4; i++)
 650		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
 651
 652	/* buffer read end */
 653	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
 654	host->wait_for = MMCIF_WAIT_FOR_READ_END;
 655
 656	return true;
 657}
 658
 659static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
 660				struct mmc_request *mrq)
 661{
 662	struct mmc_data *data = mrq->data;
 663
 664	if (!data->sg_len || !data->sg->length)
 665		return;
 666
 667	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 668		BLOCK_SIZE_MASK;
 669
 670	host->wait_for = MMCIF_WAIT_FOR_MREAD;
 671	host->sg_idx = 0;
 672	host->sg_blkidx = 0;
 673	host->pio_ptr = sg_virt(data->sg);
 674
 675	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 676}
 677
 678static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
 679{
 680	struct device *dev = sh_mmcif_host_to_dev(host);
 681	struct mmc_data *data = host->mrq->data;
 682	u32 *p = host->pio_ptr;
 683	int i;
 684
 685	if (host->sd_error) {
 686		data->error = sh_mmcif_error_manage(host);
 687		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 688		return false;
 689	}
 690
 691	BUG_ON(!data->sg->length);
 692
 693	for (i = 0; i < host->blocksize / 4; i++)
 694		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
 695
 696	if (!sh_mmcif_next_block(host, p))
 697		return false;
 698
 699	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 700
 701	return true;
 702}
 703
 704static void sh_mmcif_single_write(struct sh_mmcif_host *host,
 705					struct mmc_request *mrq)
 706{
 707	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 708			   BLOCK_SIZE_MASK) + 3;
 709
 710	host->wait_for = MMCIF_WAIT_FOR_WRITE;
 711
 712	/* buf write enable */
 713	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 714}
 715
 716static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
 717{
 718	struct device *dev = sh_mmcif_host_to_dev(host);
 719	struct mmc_data *data = host->mrq->data;
 720	u32 *p = sg_virt(data->sg);
 721	int i;
 722
 723	if (host->sd_error) {
 724		data->error = sh_mmcif_error_manage(host);
 725		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 726		return false;
 727	}
 728
 729	for (i = 0; i < host->blocksize / 4; i++)
 730		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
 731
 732	/* buffer write end */
 733	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
 734	host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
 735
 736	return true;
 737}
 738
 739static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
 740				struct mmc_request *mrq)
 741{
 742	struct mmc_data *data = mrq->data;
 743
 744	if (!data->sg_len || !data->sg->length)
 745		return;
 746
 747	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 748		BLOCK_SIZE_MASK;
 749
 750	host->wait_for = MMCIF_WAIT_FOR_MWRITE;
 751	host->sg_idx = 0;
 752	host->sg_blkidx = 0;
 753	host->pio_ptr = sg_virt(data->sg);
 754
 755	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 756}
 757
 758static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
 759{
 760	struct device *dev = sh_mmcif_host_to_dev(host);
 761	struct mmc_data *data = host->mrq->data;
 762	u32 *p = host->pio_ptr;
 763	int i;
 764
 765	if (host->sd_error) {
 766		data->error = sh_mmcif_error_manage(host);
 767		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 768		return false;
 769	}
 770
 771	BUG_ON(!data->sg->length);
 772
 773	for (i = 0; i < host->blocksize / 4; i++)
 774		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
 775
 776	if (!sh_mmcif_next_block(host, p))
 777		return false;
 778
 779	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 780
 781	return true;
 782}
 783
 784static void sh_mmcif_get_response(struct sh_mmcif_host *host,
 785						struct mmc_command *cmd)
 786{
 787	if (cmd->flags & MMC_RSP_136) {
 788		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
 789		cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
 790		cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
 791		cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
 792	} else
 793		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
 794}
 795
 796static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
 797						struct mmc_command *cmd)
 798{
 799	cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
 800}
 801
 802static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
 803			    struct mmc_request *mrq)
 804{
 805	struct device *dev = sh_mmcif_host_to_dev(host);
 806	struct mmc_data *data = mrq->data;
 807	struct mmc_command *cmd = mrq->cmd;
 808	u32 opc = cmd->opcode;
 809	u32 tmp = 0;
 810
 811	/* Response Type check */
 812	switch (mmc_resp_type(cmd)) {
 813	case MMC_RSP_NONE:
 814		tmp |= CMD_SET_RTYP_NO;
 815		break;
 816	case MMC_RSP_R1:
 817	case MMC_RSP_R3:
 818		tmp |= CMD_SET_RTYP_6B;
 819		break;
 820	case MMC_RSP_R1B:
 821		tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
 822		break;
 823	case MMC_RSP_R2:
 824		tmp |= CMD_SET_RTYP_17B;
 825		break;
 826	default:
 827		dev_err(dev, "Unsupported response type.\n");
 828		break;
 829	}
 830
 831	/* WDAT / DATW */
 832	if (data) {
 833		tmp |= CMD_SET_WDAT;
 834		switch (host->bus_width) {
 835		case MMC_BUS_WIDTH_1:
 836			tmp |= CMD_SET_DATW_1;
 837			break;
 838		case MMC_BUS_WIDTH_4:
 839			tmp |= CMD_SET_DATW_4;
 840			break;
 841		case MMC_BUS_WIDTH_8:
 842			tmp |= CMD_SET_DATW_8;
 843			break;
 844		default:
 845			dev_err(dev, "Unsupported bus width.\n");
 846			break;
 847		}
 848		switch (host->timing) {
 849		case MMC_TIMING_MMC_DDR52:
 850			/*
 851			 * MMC core will only set this timing, if the host
 852			 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
 853			 * capability. MMCIF implementations with this
 854			 * capability, e.g. sh73a0, will have to set it
 855			 * in their platform data.
 856			 */
 857			tmp |= CMD_SET_DARS;
 858			break;
 859		}
 860	}
 861	/* DWEN */
 862	if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
 863		tmp |= CMD_SET_DWEN;
 864	/* CMLTE/CMD12EN */
 865	if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
 866		tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
 867		sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
 868				data->blocks << 16);
 869	}
 870	/* RIDXC[1:0] check bits */
 871	if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
 872	    opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
 873		tmp |= CMD_SET_RIDXC_BITS;
 874	/* RCRC7C[1:0] check bits */
 875	if (opc == MMC_SEND_OP_COND)
 876		tmp |= CMD_SET_CRC7C_BITS;
 877	/* RCRC7C[1:0] internal CRC7 */
 878	if (opc == MMC_ALL_SEND_CID ||
 879		opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
 880		tmp |= CMD_SET_CRC7C_INTERNAL;
 881
 882	return (opc << 24) | tmp;
 883}
 884
 885static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
 886			       struct mmc_request *mrq, u32 opc)
 887{
 888	struct device *dev = sh_mmcif_host_to_dev(host);
 889
 890	switch (opc) {
 891	case MMC_READ_MULTIPLE_BLOCK:
 892		sh_mmcif_multi_read(host, mrq);
 893		return 0;
 894	case MMC_WRITE_MULTIPLE_BLOCK:
 895		sh_mmcif_multi_write(host, mrq);
 896		return 0;
 897	case MMC_WRITE_BLOCK:
 898		sh_mmcif_single_write(host, mrq);
 899		return 0;
 900	case MMC_READ_SINGLE_BLOCK:
 901	case MMC_SEND_EXT_CSD:
 902		sh_mmcif_single_read(host, mrq);
 903		return 0;
 904	default:
 905		dev_err(dev, "Unsupported CMD%d\n", opc);
 906		return -EINVAL;
 907	}
 908}
 909
 910static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
 911			       struct mmc_request *mrq)
 912{
 913	struct mmc_command *cmd = mrq->cmd;
 914	u32 opc;
 915	u32 mask = 0;
 916	unsigned long flags;
 917
 918	if (cmd->flags & MMC_RSP_BUSY)
 919		mask = MASK_START_CMD | MASK_MRBSYE;
 920	else
 921		mask = MASK_START_CMD | MASK_MCRSPE;
 922
 923	if (host->ccs_enable)
 924		mask |= MASK_MCCSTO;
 925
 926	if (mrq->data) {
 927		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
 928		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
 929				mrq->data->blksz);
 930	}
 931	opc = sh_mmcif_set_cmd(host, mrq);
 932
 933	if (host->ccs_enable)
 934		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
 935	else
 936		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
 937	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
 938	/* set arg */
 939	sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
 940	/* set cmd */
 941	spin_lock_irqsave(&host->lock, flags);
 942	sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
 943
 944	host->wait_for = MMCIF_WAIT_FOR_CMD;
 945	schedule_delayed_work(&host->timeout_work, host->timeout);
 946	spin_unlock_irqrestore(&host->lock, flags);
 947}
 948
 949static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
 950			      struct mmc_request *mrq)
 951{
 952	struct device *dev = sh_mmcif_host_to_dev(host);
 953
 954	switch (mrq->cmd->opcode) {
 955	case MMC_READ_MULTIPLE_BLOCK:
 956		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
 957		break;
 958	case MMC_WRITE_MULTIPLE_BLOCK:
 959		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
 960		break;
 961	default:
 962		dev_err(dev, "unsupported stop cmd\n");
 963		mrq->stop->error = sh_mmcif_error_manage(host);
 964		return;
 965	}
 966
 967	host->wait_for = MMCIF_WAIT_FOR_STOP;
 968}
 969
 970static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
 971{
 972	struct sh_mmcif_host *host = mmc_priv(mmc);
 973	struct device *dev = sh_mmcif_host_to_dev(host);
 974	unsigned long flags;
 975
 976	spin_lock_irqsave(&host->lock, flags);
 977	if (host->state != STATE_IDLE) {
 978		dev_dbg(dev, "%s() rejected, state %u\n",
 979			__func__, host->state);
 980		spin_unlock_irqrestore(&host->lock, flags);
 981		mrq->cmd->error = -EAGAIN;
 982		mmc_request_done(mmc, mrq);
 983		return;
 984	}
 985
 986	host->state = STATE_REQUEST;
 987	spin_unlock_irqrestore(&host->lock, flags);
 988
 989	host->mrq = mrq;
 990
 991	sh_mmcif_start_cmd(host, mrq);
 992}
 993
 994static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
 995{
 996	struct device *dev = sh_mmcif_host_to_dev(host);
 997
 998	if (host->mmc->f_max) {
 999		unsigned int f_max, f_min = 0, f_min_old;
1000
1001		f_max = host->mmc->f_max;
1002		for (f_min_old = f_max; f_min_old > 2;) {
1003			f_min = clk_round_rate(host->clk, f_min_old / 2);
1004			if (f_min == f_min_old)
1005				break;
1006			f_min_old = f_min;
1007		}
1008
1009		/*
1010		 * This driver assumes this SoC is R-Car Gen2 or later
1011		 */
1012		host->clkdiv_map = 0x3ff;
1013
1014		host->mmc->f_max = f_max >> ffs(host->clkdiv_map);
1015		host->mmc->f_min = f_min >> fls(host->clkdiv_map);
1016	} else {
1017		unsigned int clk = clk_get_rate(host->clk);
1018
1019		host->mmc->f_max = clk / 2;
1020		host->mmc->f_min = clk / 512;
1021	}
1022
1023	dev_dbg(dev, "clk max/min = %d/%d\n",
1024		host->mmc->f_max, host->mmc->f_min);
1025}
1026
1027static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1028{
1029	struct sh_mmcif_host *host = mmc_priv(mmc);
1030	struct device *dev = sh_mmcif_host_to_dev(host);
1031	unsigned long flags;
1032
1033	spin_lock_irqsave(&host->lock, flags);
1034	if (host->state != STATE_IDLE) {
1035		dev_dbg(dev, "%s() rejected, state %u\n",
1036			__func__, host->state);
1037		spin_unlock_irqrestore(&host->lock, flags);
1038		return;
1039	}
1040
1041	host->state = STATE_IOS;
1042	spin_unlock_irqrestore(&host->lock, flags);
1043
1044	switch (ios->power_mode) {
1045	case MMC_POWER_UP:
1046		if (!IS_ERR(mmc->supply.vmmc))
1047			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1048		if (!host->power) {
1049			clk_prepare_enable(host->clk);
1050			pm_runtime_get_sync(dev);
1051			sh_mmcif_sync_reset(host);
1052			sh_mmcif_request_dma(host);
1053			host->power = true;
1054		}
1055		break;
1056	case MMC_POWER_OFF:
1057		if (!IS_ERR(mmc->supply.vmmc))
1058			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1059		if (host->power) {
1060			sh_mmcif_clock_control(host, 0);
1061			sh_mmcif_release_dma(host);
1062			pm_runtime_put(dev);
1063			clk_disable_unprepare(host->clk);
1064			host->power = false;
1065		}
1066		break;
1067	case MMC_POWER_ON:
1068		sh_mmcif_clock_control(host, ios->clock);
1069		break;
1070	}
1071
1072	host->timing = ios->timing;
1073	host->bus_width = ios->bus_width;
1074	host->state = STATE_IDLE;
1075}
1076
1077static const struct mmc_host_ops sh_mmcif_ops = {
1078	.request	= sh_mmcif_request,
1079	.set_ios	= sh_mmcif_set_ios,
1080	.get_cd		= mmc_gpio_get_cd,
1081};
1082
1083static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1084{
1085	struct mmc_command *cmd = host->mrq->cmd;
1086	struct mmc_data *data = host->mrq->data;
1087	struct device *dev = sh_mmcif_host_to_dev(host);
1088	long time;
1089
1090	if (host->sd_error) {
1091		switch (cmd->opcode) {
1092		case MMC_ALL_SEND_CID:
1093		case MMC_SELECT_CARD:
1094		case MMC_APP_CMD:
1095			cmd->error = -ETIMEDOUT;
1096			break;
1097		default:
1098			cmd->error = sh_mmcif_error_manage(host);
1099			break;
1100		}
1101		dev_dbg(dev, "CMD%d error %d\n",
1102			cmd->opcode, cmd->error);
1103		host->sd_error = false;
1104		return false;
1105	}
1106	if (!(cmd->flags & MMC_RSP_PRESENT)) {
1107		cmd->error = 0;
1108		return false;
1109	}
1110
1111	sh_mmcif_get_response(host, cmd);
1112
1113	if (!data)
1114		return false;
1115
1116	/*
1117	 * Completion can be signalled from DMA callback and error, so, have to
1118	 * reset here, before setting .dma_active
1119	 */
1120	init_completion(&host->dma_complete);
1121
1122	if (data->flags & MMC_DATA_READ) {
1123		if (host->chan_rx)
1124			sh_mmcif_start_dma_rx(host);
1125	} else {
1126		if (host->chan_tx)
1127			sh_mmcif_start_dma_tx(host);
1128	}
1129
1130	if (!host->dma_active) {
1131		data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1132		return !data->error;
1133	}
1134
1135	/* Running in the IRQ thread, can sleep */
1136	time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1137							 host->timeout);
1138
1139	if (data->flags & MMC_DATA_READ)
1140		dma_unmap_sg(host->chan_rx->device->dev,
1141			     data->sg, data->sg_len,
1142			     DMA_FROM_DEVICE);
1143	else
1144		dma_unmap_sg(host->chan_tx->device->dev,
1145			     data->sg, data->sg_len,
1146			     DMA_TO_DEVICE);
1147
1148	if (host->sd_error) {
1149		dev_err(host->mmc->parent,
1150			"Error IRQ while waiting for DMA completion!\n");
1151		/* Woken up by an error IRQ: abort DMA */
1152		data->error = sh_mmcif_error_manage(host);
1153	} else if (!time) {
1154		dev_err(host->mmc->parent, "DMA timeout!\n");
1155		data->error = -ETIMEDOUT;
1156	} else if (time < 0) {
1157		dev_err(host->mmc->parent,
1158			"wait_for_completion_...() error %ld!\n", time);
1159		data->error = time;
1160	}
1161	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1162			BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1163	host->dma_active = false;
1164
1165	if (data->error) {
1166		data->bytes_xfered = 0;
1167		/* Abort DMA */
1168		if (data->flags & MMC_DATA_READ)
1169			dmaengine_terminate_sync(host->chan_rx);
1170		else
1171			dmaengine_terminate_sync(host->chan_tx);
1172	}
1173
1174	return false;
1175}
1176
1177static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1178{
1179	struct sh_mmcif_host *host = dev_id;
1180	struct mmc_request *mrq;
1181	struct device *dev = sh_mmcif_host_to_dev(host);
1182	bool wait = false;
1183	unsigned long flags;
1184	int wait_work;
1185
1186	spin_lock_irqsave(&host->lock, flags);
1187	wait_work = host->wait_for;
1188	spin_unlock_irqrestore(&host->lock, flags);
1189
1190	cancel_delayed_work_sync(&host->timeout_work);
1191
1192	mutex_lock(&host->thread_lock);
1193
1194	mrq = host->mrq;
1195	if (!mrq) {
1196		dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1197			host->state, host->wait_for);
1198		mutex_unlock(&host->thread_lock);
1199		return IRQ_HANDLED;
1200	}
1201
1202	/*
1203	 * All handlers return true, if processing continues, and false, if the
1204	 * request has to be completed - successfully or not
1205	 */
1206	switch (wait_work) {
1207	case MMCIF_WAIT_FOR_REQUEST:
1208		/* We're too late, the timeout has already kicked in */
1209		mutex_unlock(&host->thread_lock);
1210		return IRQ_HANDLED;
1211	case MMCIF_WAIT_FOR_CMD:
1212		/* Wait for data? */
1213		wait = sh_mmcif_end_cmd(host);
1214		break;
1215	case MMCIF_WAIT_FOR_MREAD:
1216		/* Wait for more data? */
1217		wait = sh_mmcif_mread_block(host);
1218		break;
1219	case MMCIF_WAIT_FOR_READ:
1220		/* Wait for data end? */
1221		wait = sh_mmcif_read_block(host);
1222		break;
1223	case MMCIF_WAIT_FOR_MWRITE:
1224		/* Wait data to write? */
1225		wait = sh_mmcif_mwrite_block(host);
1226		break;
1227	case MMCIF_WAIT_FOR_WRITE:
1228		/* Wait for data end? */
1229		wait = sh_mmcif_write_block(host);
1230		break;
1231	case MMCIF_WAIT_FOR_STOP:
1232		if (host->sd_error) {
1233			mrq->stop->error = sh_mmcif_error_manage(host);
1234			dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1235			break;
1236		}
1237		sh_mmcif_get_cmd12response(host, mrq->stop);
1238		mrq->stop->error = 0;
1239		break;
1240	case MMCIF_WAIT_FOR_READ_END:
1241	case MMCIF_WAIT_FOR_WRITE_END:
1242		if (host->sd_error) {
1243			mrq->data->error = sh_mmcif_error_manage(host);
1244			dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1245		}
1246		break;
1247	default:
1248		BUG();
1249	}
1250
1251	if (wait) {
1252		schedule_delayed_work(&host->timeout_work, host->timeout);
1253		/* Wait for more data */
1254		mutex_unlock(&host->thread_lock);
1255		return IRQ_HANDLED;
1256	}
1257
1258	if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1259		struct mmc_data *data = mrq->data;
1260		if (!mrq->cmd->error && data && !data->error)
1261			data->bytes_xfered =
1262				data->blocks * data->blksz;
1263
1264		if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1265			sh_mmcif_stop_cmd(host, mrq);
1266			if (!mrq->stop->error) {
1267				schedule_delayed_work(&host->timeout_work, host->timeout);
1268				mutex_unlock(&host->thread_lock);
1269				return IRQ_HANDLED;
1270			}
1271		}
1272	}
1273
1274	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1275	host->state = STATE_IDLE;
1276	host->mrq = NULL;
1277	mmc_request_done(host->mmc, mrq);
1278
1279	mutex_unlock(&host->thread_lock);
1280
1281	return IRQ_HANDLED;
1282}
1283
1284static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1285{
1286	struct sh_mmcif_host *host = dev_id;
1287	struct device *dev = sh_mmcif_host_to_dev(host);
1288	u32 state, mask;
1289
1290	state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1291	mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1292	if (host->ccs_enable)
1293		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1294	else
1295		sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1296	sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1297
1298	if (state & ~MASK_CLEAN)
1299		dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1300			state);
1301
1302	if (state & INT_ERR_STS || state & ~INT_ALL) {
1303		host->sd_error = true;
1304		dev_dbg(dev, "int err state = 0x%08x\n", state);
1305	}
1306	if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1307		if (!host->mrq)
1308			dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1309		if (!host->dma_active)
1310			return IRQ_WAKE_THREAD;
1311		else if (host->sd_error)
1312			sh_mmcif_dma_complete(host);
1313	} else {
1314		dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1315	}
1316
1317	return IRQ_HANDLED;
1318}
1319
1320static void sh_mmcif_timeout_work(struct work_struct *work)
1321{
1322	struct delayed_work *d = to_delayed_work(work);
1323	struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1324	struct mmc_request *mrq = host->mrq;
1325	struct device *dev = sh_mmcif_host_to_dev(host);
1326	unsigned long flags;
1327
1328	if (host->dying)
1329		/* Don't run after mmc_remove_host() */
1330		return;
1331
1332	spin_lock_irqsave(&host->lock, flags);
1333	if (host->state == STATE_IDLE) {
1334		spin_unlock_irqrestore(&host->lock, flags);
1335		return;
1336	}
1337
1338	dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1339		host->wait_for, mrq->cmd->opcode);
1340
1341	host->state = STATE_TIMEOUT;
1342	spin_unlock_irqrestore(&host->lock, flags);
1343
1344	/*
1345	 * Handle races with cancel_delayed_work(), unless
1346	 * cancel_delayed_work_sync() is used
1347	 */
1348	switch (host->wait_for) {
1349	case MMCIF_WAIT_FOR_CMD:
1350		mrq->cmd->error = sh_mmcif_error_manage(host);
1351		break;
1352	case MMCIF_WAIT_FOR_STOP:
1353		mrq->stop->error = sh_mmcif_error_manage(host);
1354		break;
1355	case MMCIF_WAIT_FOR_MREAD:
1356	case MMCIF_WAIT_FOR_MWRITE:
1357	case MMCIF_WAIT_FOR_READ:
1358	case MMCIF_WAIT_FOR_WRITE:
1359	case MMCIF_WAIT_FOR_READ_END:
1360	case MMCIF_WAIT_FOR_WRITE_END:
1361		mrq->data->error = sh_mmcif_error_manage(host);
1362		break;
1363	default:
1364		BUG();
1365	}
1366
1367	host->state = STATE_IDLE;
1368	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1369	host->mrq = NULL;
1370	mmc_request_done(host->mmc, mrq);
1371}
1372
1373static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1374{
1375	struct device *dev = sh_mmcif_host_to_dev(host);
1376	struct sh_mmcif_plat_data *pd = dev->platform_data;
1377	struct mmc_host *mmc = host->mmc;
1378
1379	mmc_regulator_get_supply(mmc);
1380
1381	if (!pd)
1382		return;
1383
1384	if (!mmc->ocr_avail)
1385		mmc->ocr_avail = pd->ocr;
1386	else if (pd->ocr)
1387		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1388}
1389
1390static int sh_mmcif_probe(struct platform_device *pdev)
1391{
1392	int ret = 0, irq[2];
1393	struct mmc_host *mmc;
1394	struct sh_mmcif_host *host;
1395	struct device *dev = &pdev->dev;
1396	struct sh_mmcif_plat_data *pd = dev->platform_data;
 
1397	void __iomem *reg;
1398	const char *name;
1399
1400	irq[0] = platform_get_irq(pdev, 0);
1401	irq[1] = platform_get_irq_optional(pdev, 1);
1402	if (irq[0] < 0)
1403		return -ENXIO;
1404
1405	reg = devm_platform_ioremap_resource(pdev, 0);
 
1406	if (IS_ERR(reg))
1407		return PTR_ERR(reg);
1408
1409	mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1410	if (!mmc)
1411		return -ENOMEM;
1412
1413	ret = mmc_of_parse(mmc);
1414	if (ret < 0)
1415		goto err_host;
1416
1417	host		= mmc_priv(mmc);
1418	host->mmc	= mmc;
1419	host->addr	= reg;
1420	host->timeout	= msecs_to_jiffies(10000);
1421	host->ccs_enable = true;
1422	host->clk_ctrl2_enable = false;
1423
1424	host->pd = pdev;
1425
1426	spin_lock_init(&host->lock);
1427
1428	mmc->ops = &sh_mmcif_ops;
1429	sh_mmcif_init_ocr(host);
1430
1431	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1432	mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
1433	mmc->max_busy_timeout = 10000;
1434
1435	if (pd && pd->caps)
1436		mmc->caps |= pd->caps;
1437	mmc->max_segs = 32;
1438	mmc->max_blk_size = 512;
1439	mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1440	mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1441	mmc->max_seg_size = mmc->max_req_size;
1442
1443	platform_set_drvdata(pdev, host);
1444
1445	host->clk = devm_clk_get(dev, NULL);
1446	if (IS_ERR(host->clk)) {
1447		ret = PTR_ERR(host->clk);
1448		dev_err(dev, "cannot get clock: %d\n", ret);
1449		goto err_host;
1450	}
1451
1452	ret = clk_prepare_enable(host->clk);
1453	if (ret < 0)
1454		goto err_host;
1455
1456	sh_mmcif_clk_setup(host);
1457
1458	pm_runtime_enable(dev);
1459	host->power = false;
1460
1461	ret = pm_runtime_get_sync(dev);
1462	if (ret < 0)
1463		goto err_clk;
1464
1465	INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1466
1467	sh_mmcif_sync_reset(host);
1468	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1469
1470	name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1471	ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1472					sh_mmcif_irqt, 0, name, host);
1473	if (ret) {
1474		dev_err(dev, "request_irq error (%s)\n", name);
1475		goto err_clk;
1476	}
1477	if (irq[1] >= 0) {
1478		ret = devm_request_threaded_irq(dev, irq[1],
1479						sh_mmcif_intr, sh_mmcif_irqt,
1480						0, "sh_mmc:int", host);
1481		if (ret) {
1482			dev_err(dev, "request_irq error (sh_mmc:int)\n");
1483			goto err_clk;
1484		}
1485	}
1486
1487	mutex_init(&host->thread_lock);
1488
1489	ret = mmc_add_host(mmc);
1490	if (ret < 0)
1491		goto err_clk;
1492
1493	dev_pm_qos_expose_latency_limit(dev, 100);
1494
1495	dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1496		 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1497		 clk_get_rate(host->clk) / 1000000UL);
1498
1499	pm_runtime_put(dev);
1500	clk_disable_unprepare(host->clk);
1501	return ret;
1502
1503err_clk:
1504	clk_disable_unprepare(host->clk);
1505	pm_runtime_put_sync(dev);
1506	pm_runtime_disable(dev);
1507err_host:
1508	mmc_free_host(mmc);
1509	return ret;
1510}
1511
1512static int sh_mmcif_remove(struct platform_device *pdev)
1513{
1514	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1515
1516	host->dying = true;
1517	clk_prepare_enable(host->clk);
1518	pm_runtime_get_sync(&pdev->dev);
1519
1520	dev_pm_qos_hide_latency_limit(&pdev->dev);
1521
1522	mmc_remove_host(host->mmc);
1523	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1524
1525	/*
1526	 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1527	 * mmc_remove_host() call above. But swapping order doesn't help either
1528	 * (a query on the linux-mmc mailing list didn't bring any replies).
1529	 */
1530	cancel_delayed_work_sync(&host->timeout_work);
1531
1532	clk_disable_unprepare(host->clk);
1533	mmc_free_host(host->mmc);
1534	pm_runtime_put_sync(&pdev->dev);
1535	pm_runtime_disable(&pdev->dev);
1536
1537	return 0;
1538}
1539
1540#ifdef CONFIG_PM_SLEEP
1541static int sh_mmcif_suspend(struct device *dev)
1542{
1543	struct sh_mmcif_host *host = dev_get_drvdata(dev);
1544
1545	pm_runtime_get_sync(dev);
1546	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1547	pm_runtime_put(dev);
1548
1549	return 0;
1550}
1551
1552static int sh_mmcif_resume(struct device *dev)
1553{
1554	return 0;
1555}
1556#endif
1557
1558static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1559	SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1560};
1561
1562static struct platform_driver sh_mmcif_driver = {
1563	.probe		= sh_mmcif_probe,
1564	.remove		= sh_mmcif_remove,
1565	.driver		= {
1566		.name	= DRIVER_NAME,
1567		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
1568		.pm	= &sh_mmcif_dev_pm_ops,
1569		.of_match_table = sh_mmcif_of_match,
1570	},
1571};
1572
1573module_platform_driver(sh_mmcif_driver);
1574
1575MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1576MODULE_LICENSE("GPL v2");
1577MODULE_ALIAS("platform:" DRIVER_NAME);
1578MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * MMCIF eMMC driver.
   4 *
   5 * Copyright (C) 2010 Renesas Solutions Corp.
   6 * Yusuke Goda <yusuke.goda.sx@renesas.com>
   7 */
   8
   9/*
  10 * The MMCIF driver is now processing MMC requests asynchronously, according
  11 * to the Linux MMC API requirement.
  12 *
  13 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
  14 * data, and optional stop. To achieve asynchronous processing each of these
  15 * stages is split into two halves: a top and a bottom half. The top half
  16 * initialises the hardware, installs a timeout handler to handle completion
  17 * timeouts, and returns. In case of the command stage this immediately returns
  18 * control to the caller, leaving all further processing to run asynchronously.
  19 * All further request processing is performed by the bottom halves.
  20 *
  21 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
  22 * thread, a DMA completion callback, if DMA is used, a timeout work, and
  23 * request- and stage-specific handler methods.
  24 *
  25 * Each bottom half run begins with either a hardware interrupt, a DMA callback
  26 * invocation, or a timeout work run. In case of an error or a successful
  27 * processing completion, the MMC core is informed and the request processing is
  28 * finished. In case processing has to continue, i.e., if data has to be read
  29 * from or written to the card, or if a stop command has to be sent, the next
  30 * top half is called, which performs the necessary hardware handling and
  31 * reschedules the timeout work. This returns the driver state machine into the
  32 * bottom half waiting state.
  33 */
  34
  35#include <linux/bitops.h>
  36#include <linux/clk.h>
  37#include <linux/completion.h>
  38#include <linux/delay.h>
  39#include <linux/dma-mapping.h>
  40#include <linux/dmaengine.h>
  41#include <linux/mmc/card.h>
  42#include <linux/mmc/core.h>
  43#include <linux/mmc/host.h>
  44#include <linux/mmc/mmc.h>
  45#include <linux/mmc/sdio.h>
  46#include <linux/mmc/sh_mmcif.h>
  47#include <linux/mmc/slot-gpio.h>
  48#include <linux/mod_devicetable.h>
  49#include <linux/mutex.h>
  50#include <linux/of_device.h>
  51#include <linux/pagemap.h>
 
  52#include <linux/platform_device.h>
  53#include <linux/pm_qos.h>
  54#include <linux/pm_runtime.h>
  55#include <linux/sh_dma.h>
  56#include <linux/spinlock.h>
  57#include <linux/module.h>
  58
  59#define DRIVER_NAME	"sh_mmcif"
  60
  61/* CE_CMD_SET */
  62#define CMD_MASK		0x3f000000
  63#define CMD_SET_RTYP_NO		((0 << 23) | (0 << 22))
  64#define CMD_SET_RTYP_6B		((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
  65#define CMD_SET_RTYP_17B	((1 << 23) | (0 << 22)) /* R2 */
  66#define CMD_SET_RBSY		(1 << 21) /* R1b */
  67#define CMD_SET_CCSEN		(1 << 20)
  68#define CMD_SET_WDAT		(1 << 19) /* 1: on data, 0: no data */
  69#define CMD_SET_DWEN		(1 << 18) /* 1: write, 0: read */
  70#define CMD_SET_CMLTE		(1 << 17) /* 1: multi block trans, 0: single */
  71#define CMD_SET_CMD12EN		(1 << 16) /* 1: CMD12 auto issue */
  72#define CMD_SET_RIDXC_INDEX	((0 << 15) | (0 << 14)) /* index check */
  73#define CMD_SET_RIDXC_BITS	((0 << 15) | (1 << 14)) /* check bits check */
  74#define CMD_SET_RIDXC_NO	((1 << 15) | (0 << 14)) /* no check */
  75#define CMD_SET_CRC7C		((0 << 13) | (0 << 12)) /* CRC7 check*/
  76#define CMD_SET_CRC7C_BITS	((0 << 13) | (1 << 12)) /* check bits check*/
  77#define CMD_SET_CRC7C_INTERNAL	((1 << 13) | (0 << 12)) /* internal CRC7 check*/
  78#define CMD_SET_CRC16C		(1 << 10) /* 0: CRC16 check*/
  79#define CMD_SET_CRCSTE		(1 << 8) /* 1: not receive CRC status */
  80#define CMD_SET_TBIT		(1 << 7) /* 1: tran mission bit "Low" */
  81#define CMD_SET_OPDM		(1 << 6) /* 1: open/drain */
  82#define CMD_SET_CCSH		(1 << 5)
  83#define CMD_SET_DARS		(1 << 2) /* Dual Data Rate */
  84#define CMD_SET_DATW_1		((0 << 1) | (0 << 0)) /* 1bit */
  85#define CMD_SET_DATW_4		((0 << 1) | (1 << 0)) /* 4bit */
  86#define CMD_SET_DATW_8		((1 << 1) | (0 << 0)) /* 8bit */
  87
  88/* CE_CMD_CTRL */
  89#define CMD_CTRL_BREAK		(1 << 0)
  90
  91/* CE_BLOCK_SET */
  92#define BLOCK_SIZE_MASK		0x0000ffff
  93
  94/* CE_INT */
  95#define INT_CCSDE		(1 << 29)
  96#define INT_CMD12DRE		(1 << 26)
  97#define INT_CMD12RBE		(1 << 25)
  98#define INT_CMD12CRE		(1 << 24)
  99#define INT_DTRANE		(1 << 23)
 100#define INT_BUFRE		(1 << 22)
 101#define INT_BUFWEN		(1 << 21)
 102#define INT_BUFREN		(1 << 20)
 103#define INT_CCSRCV		(1 << 19)
 104#define INT_RBSYE		(1 << 17)
 105#define INT_CRSPE		(1 << 16)
 106#define INT_CMDVIO		(1 << 15)
 107#define INT_BUFVIO		(1 << 14)
 108#define INT_WDATERR		(1 << 11)
 109#define INT_RDATERR		(1 << 10)
 110#define INT_RIDXERR		(1 << 9)
 111#define INT_RSPERR		(1 << 8)
 112#define INT_CCSTO		(1 << 5)
 113#define INT_CRCSTO		(1 << 4)
 114#define INT_WDATTO		(1 << 3)
 115#define INT_RDATTO		(1 << 2)
 116#define INT_RBSYTO		(1 << 1)
 117#define INT_RSPTO		(1 << 0)
 118#define INT_ERR_STS		(INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
 119				 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
 120				 INT_CCSTO | INT_CRCSTO | INT_WDATTO |	  \
 121				 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
 122
 123#define INT_ALL			(INT_RBSYE | INT_CRSPE | INT_BUFREN |	 \
 124				 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
 125				 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
 126
 127#define INT_CCS			(INT_CCSTO | INT_CCSRCV | INT_CCSDE)
 128
 129/* CE_INT_MASK */
 130#define MASK_ALL		0x00000000
 131#define MASK_MCCSDE		(1 << 29)
 132#define MASK_MCMD12DRE		(1 << 26)
 133#define MASK_MCMD12RBE		(1 << 25)
 134#define MASK_MCMD12CRE		(1 << 24)
 135#define MASK_MDTRANE		(1 << 23)
 136#define MASK_MBUFRE		(1 << 22)
 137#define MASK_MBUFWEN		(1 << 21)
 138#define MASK_MBUFREN		(1 << 20)
 139#define MASK_MCCSRCV		(1 << 19)
 140#define MASK_MRBSYE		(1 << 17)
 141#define MASK_MCRSPE		(1 << 16)
 142#define MASK_MCMDVIO		(1 << 15)
 143#define MASK_MBUFVIO		(1 << 14)
 144#define MASK_MWDATERR		(1 << 11)
 145#define MASK_MRDATERR		(1 << 10)
 146#define MASK_MRIDXERR		(1 << 9)
 147#define MASK_MRSPERR		(1 << 8)
 148#define MASK_MCCSTO		(1 << 5)
 149#define MASK_MCRCSTO		(1 << 4)
 150#define MASK_MWDATTO		(1 << 3)
 151#define MASK_MRDATTO		(1 << 2)
 152#define MASK_MRBSYTO		(1 << 1)
 153#define MASK_MRSPTO		(1 << 0)
 154
 155#define MASK_START_CMD		(MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
 156				 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
 157				 MASK_MCRCSTO | MASK_MWDATTO | \
 158				 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
 159
 160#define MASK_CLEAN		(INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |	\
 161				 MASK_MBUFREN | MASK_MBUFWEN |			\
 162				 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |	\
 163				 MASK_MCMD12RBE | MASK_MCMD12CRE)
 164
 165/* CE_HOST_STS1 */
 166#define STS1_CMDSEQ		(1 << 31)
 167
 168/* CE_HOST_STS2 */
 169#define STS2_CRCSTE		(1 << 31)
 170#define STS2_CRC16E		(1 << 30)
 171#define STS2_AC12CRCE		(1 << 29)
 172#define STS2_RSPCRC7E		(1 << 28)
 173#define STS2_CRCSTEBE		(1 << 27)
 174#define STS2_RDATEBE		(1 << 26)
 175#define STS2_AC12REBE		(1 << 25)
 176#define STS2_RSPEBE		(1 << 24)
 177#define STS2_AC12IDXE		(1 << 23)
 178#define STS2_RSPIDXE		(1 << 22)
 179#define STS2_CCSTO		(1 << 15)
 180#define STS2_RDATTO		(1 << 14)
 181#define STS2_DATBSYTO		(1 << 13)
 182#define STS2_CRCSTTO		(1 << 12)
 183#define STS2_AC12BSYTO		(1 << 11)
 184#define STS2_RSPBSYTO		(1 << 10)
 185#define STS2_AC12RSPTO		(1 << 9)
 186#define STS2_RSPTO		(1 << 8)
 187#define STS2_CRC_ERR		(STS2_CRCSTE | STS2_CRC16E |		\
 188				 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
 189#define STS2_TIMEOUT_ERR	(STS2_CCSTO | STS2_RDATTO |		\
 190				 STS2_DATBSYTO | STS2_CRCSTTO |		\
 191				 STS2_AC12BSYTO | STS2_RSPBSYTO |	\
 192				 STS2_AC12RSPTO | STS2_RSPTO)
 193
 194#define CLKDEV_EMMC_DATA	52000000 /* 52MHz */
 195#define CLKDEV_MMC_DATA		20000000 /* 20MHz */
 196#define CLKDEV_INIT		400000   /* 400 KHz */
 197
 198enum sh_mmcif_state {
 199	STATE_IDLE,
 200	STATE_REQUEST,
 201	STATE_IOS,
 202	STATE_TIMEOUT,
 203};
 204
 205enum sh_mmcif_wait_for {
 206	MMCIF_WAIT_FOR_REQUEST,
 207	MMCIF_WAIT_FOR_CMD,
 208	MMCIF_WAIT_FOR_MREAD,
 209	MMCIF_WAIT_FOR_MWRITE,
 210	MMCIF_WAIT_FOR_READ,
 211	MMCIF_WAIT_FOR_WRITE,
 212	MMCIF_WAIT_FOR_READ_END,
 213	MMCIF_WAIT_FOR_WRITE_END,
 214	MMCIF_WAIT_FOR_STOP,
 215};
 216
 217/*
 218 * difference for each SoC
 219 */
 220struct sh_mmcif_host {
 221	struct mmc_host *mmc;
 222	struct mmc_request *mrq;
 223	struct platform_device *pd;
 224	struct clk *clk;
 225	int bus_width;
 226	unsigned char timing;
 227	bool sd_error;
 228	bool dying;
 229	long timeout;
 230	void __iomem *addr;
 231	u32 *pio_ptr;
 232	spinlock_t lock;		/* protect sh_mmcif_host::state */
 233	enum sh_mmcif_state state;
 234	enum sh_mmcif_wait_for wait_for;
 235	struct delayed_work timeout_work;
 236	size_t blocksize;
 237	int sg_idx;
 238	int sg_blkidx;
 239	bool power;
 240	bool ccs_enable;		/* Command Completion Signal support */
 241	bool clk_ctrl2_enable;
 242	struct mutex thread_lock;
 243	u32 clkdiv_map;         /* see CE_CLK_CTRL::CLKDIV */
 244
 245	/* DMA support */
 246	struct dma_chan		*chan_rx;
 247	struct dma_chan		*chan_tx;
 248	struct completion	dma_complete;
 249	bool			dma_active;
 250};
 251
 252static const struct of_device_id sh_mmcif_of_match[] = {
 253	{ .compatible = "renesas,sh-mmcif" },
 254	{ }
 255};
 256MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
 257
 258#define sh_mmcif_host_to_dev(host) (&host->pd->dev)
 259
 260static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
 261					unsigned int reg, u32 val)
 262{
 263	writel(val | readl(host->addr + reg), host->addr + reg);
 264}
 265
 266static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
 267					unsigned int reg, u32 val)
 268{
 269	writel(~val & readl(host->addr + reg), host->addr + reg);
 270}
 271
 272static void sh_mmcif_dma_complete(void *arg)
 273{
 274	struct sh_mmcif_host *host = arg;
 275	struct mmc_request *mrq = host->mrq;
 276	struct device *dev = sh_mmcif_host_to_dev(host);
 277
 278	dev_dbg(dev, "Command completed\n");
 279
 280	if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
 281		 dev_name(dev)))
 282		return;
 283
 284	complete(&host->dma_complete);
 285}
 286
 287static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
 288{
 289	struct mmc_data *data = host->mrq->data;
 290	struct scatterlist *sg = data->sg;
 291	struct dma_async_tx_descriptor *desc = NULL;
 292	struct dma_chan *chan = host->chan_rx;
 293	struct device *dev = sh_mmcif_host_to_dev(host);
 294	dma_cookie_t cookie = -EINVAL;
 295	int ret;
 296
 297	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
 298			 DMA_FROM_DEVICE);
 299	if (ret > 0) {
 300		host->dma_active = true;
 301		desc = dmaengine_prep_slave_sg(chan, sg, ret,
 302			DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 303	}
 304
 305	if (desc) {
 306		desc->callback = sh_mmcif_dma_complete;
 307		desc->callback_param = host;
 308		cookie = dmaengine_submit(desc);
 309		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
 310		dma_async_issue_pending(chan);
 311	}
 312	dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
 313		__func__, data->sg_len, ret, cookie);
 314
 315	if (!desc) {
 316		/* DMA failed, fall back to PIO */
 317		if (ret >= 0)
 318			ret = -EIO;
 319		host->chan_rx = NULL;
 320		host->dma_active = false;
 321		dma_release_channel(chan);
 322		/* Free the Tx channel too */
 323		chan = host->chan_tx;
 324		if (chan) {
 325			host->chan_tx = NULL;
 326			dma_release_channel(chan);
 327		}
 328		dev_warn(dev,
 329			 "DMA failed: %d, falling back to PIO\n", ret);
 330		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 331	}
 332
 333	dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
 334		desc, cookie, data->sg_len);
 335}
 336
 337static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
 338{
 339	struct mmc_data *data = host->mrq->data;
 340	struct scatterlist *sg = data->sg;
 341	struct dma_async_tx_descriptor *desc = NULL;
 342	struct dma_chan *chan = host->chan_tx;
 343	struct device *dev = sh_mmcif_host_to_dev(host);
 344	dma_cookie_t cookie = -EINVAL;
 345	int ret;
 346
 347	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
 348			 DMA_TO_DEVICE);
 349	if (ret > 0) {
 350		host->dma_active = true;
 351		desc = dmaengine_prep_slave_sg(chan, sg, ret,
 352			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 353	}
 354
 355	if (desc) {
 356		desc->callback = sh_mmcif_dma_complete;
 357		desc->callback_param = host;
 358		cookie = dmaengine_submit(desc);
 359		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
 360		dma_async_issue_pending(chan);
 361	}
 362	dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
 363		__func__, data->sg_len, ret, cookie);
 364
 365	if (!desc) {
 366		/* DMA failed, fall back to PIO */
 367		if (ret >= 0)
 368			ret = -EIO;
 369		host->chan_tx = NULL;
 370		host->dma_active = false;
 371		dma_release_channel(chan);
 372		/* Free the Rx channel too */
 373		chan = host->chan_rx;
 374		if (chan) {
 375			host->chan_rx = NULL;
 376			dma_release_channel(chan);
 377		}
 378		dev_warn(dev,
 379			 "DMA failed: %d, falling back to PIO\n", ret);
 380		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 381	}
 382
 383	dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
 384		desc, cookie);
 385}
 386
 387static struct dma_chan *
 388sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
 389{
 390	dma_cap_mask_t mask;
 391
 392	dma_cap_zero(mask);
 393	dma_cap_set(DMA_SLAVE, mask);
 394	if (slave_id <= 0)
 395		return NULL;
 396
 397	return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
 398}
 399
 400static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
 401				     struct dma_chan *chan,
 402				     enum dma_transfer_direction direction)
 403{
 404	struct resource *res;
 405	struct dma_slave_config cfg = { 0, };
 406
 407	res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
 
 
 
 408	cfg.direction = direction;
 409
 410	if (direction == DMA_DEV_TO_MEM) {
 411		cfg.src_addr = res->start + MMCIF_CE_DATA;
 412		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 413	} else {
 414		cfg.dst_addr = res->start + MMCIF_CE_DATA;
 415		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 416	}
 417
 418	return dmaengine_slave_config(chan, &cfg);
 419}
 420
 421static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
 422{
 423	struct device *dev = sh_mmcif_host_to_dev(host);
 424	host->dma_active = false;
 425
 426	/* We can only either use DMA for both Tx and Rx or not use it at all */
 427	if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
 428		struct sh_mmcif_plat_data *pdata = dev->platform_data;
 429
 430		host->chan_tx = sh_mmcif_request_dma_pdata(host,
 431							pdata->slave_id_tx);
 432		host->chan_rx = sh_mmcif_request_dma_pdata(host,
 433							pdata->slave_id_rx);
 434	} else {
 435		host->chan_tx = dma_request_slave_channel(dev, "tx");
 436		host->chan_rx = dma_request_slave_channel(dev, "rx");
 
 
 
 
 437	}
 438	dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
 439		host->chan_rx);
 440
 441	if (!host->chan_tx || !host->chan_rx ||
 442	    sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
 443	    sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
 444		goto error;
 445
 446	return;
 447
 448error:
 449	if (host->chan_tx)
 450		dma_release_channel(host->chan_tx);
 451	if (host->chan_rx)
 452		dma_release_channel(host->chan_rx);
 453	host->chan_tx = host->chan_rx = NULL;
 454}
 455
 456static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
 457{
 458	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
 459	/* Descriptors are freed automatically */
 460	if (host->chan_tx) {
 461		struct dma_chan *chan = host->chan_tx;
 462		host->chan_tx = NULL;
 463		dma_release_channel(chan);
 464	}
 465	if (host->chan_rx) {
 466		struct dma_chan *chan = host->chan_rx;
 467		host->chan_rx = NULL;
 468		dma_release_channel(chan);
 469	}
 470
 471	host->dma_active = false;
 472}
 473
 474static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
 475{
 476	struct device *dev = sh_mmcif_host_to_dev(host);
 477	struct sh_mmcif_plat_data *p = dev->platform_data;
 478	bool sup_pclk = p ? p->sup_pclk : false;
 479	unsigned int current_clk = clk_get_rate(host->clk);
 480	unsigned int clkdiv;
 481
 482	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
 483	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
 484
 485	if (!clk)
 486		return;
 487
 488	if (host->clkdiv_map) {
 489		unsigned int freq, best_freq, myclk, div, diff_min, diff;
 490		int i;
 491
 492		clkdiv = 0;
 493		diff_min = ~0;
 494		best_freq = 0;
 495		for (i = 31; i >= 0; i--) {
 496			if (!((1 << i) & host->clkdiv_map))
 497				continue;
 498
 499			/*
 500			 * clk = parent_freq / div
 501			 * -> parent_freq = clk x div
 502			 */
 503
 504			div = 1 << (i + 1);
 505			freq = clk_round_rate(host->clk, clk * div);
 506			myclk = freq / div;
 507			diff = (myclk > clk) ? myclk - clk : clk - myclk;
 508
 509			if (diff <= diff_min) {
 510				best_freq = freq;
 511				clkdiv = i;
 512				diff_min = diff;
 513			}
 514		}
 515
 516		dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
 517			(best_freq / (1 << (clkdiv + 1))), clk,
 518			best_freq, clkdiv);
 519
 520		clk_set_rate(host->clk, best_freq);
 521		clkdiv = clkdiv << 16;
 522	} else if (sup_pclk && clk == current_clk) {
 523		clkdiv = CLK_SUP_PCLK;
 524	} else {
 525		clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
 526	}
 527
 528	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
 529	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
 530}
 531
 532static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
 533{
 534	u32 tmp;
 535
 536	tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
 537
 538	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
 539	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
 540	if (host->ccs_enable)
 541		tmp |= SCCSTO_29;
 542	if (host->clk_ctrl2_enable)
 543		sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
 544	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
 545		SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
 546	/* byte swap on */
 547	sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
 548}
 549
 550static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
 551{
 552	struct device *dev = sh_mmcif_host_to_dev(host);
 553	u32 state1, state2;
 554	int ret, timeout;
 555
 556	host->sd_error = false;
 557
 558	state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
 559	state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
 560	dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
 561	dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
 562
 563	if (state1 & STS1_CMDSEQ) {
 564		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
 565		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
 566		for (timeout = 10000; timeout; timeout--) {
 567			if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
 568			      & STS1_CMDSEQ))
 569				break;
 570			mdelay(1);
 571		}
 572		if (!timeout) {
 573			dev_err(dev,
 574				"Forced end of command sequence timeout err\n");
 575			return -EIO;
 576		}
 577		sh_mmcif_sync_reset(host);
 578		dev_dbg(dev, "Forced end of command sequence\n");
 579		return -EIO;
 580	}
 581
 582	if (state2 & STS2_CRC_ERR) {
 583		dev_err(dev, " CRC error: state %u, wait %u\n",
 584			host->state, host->wait_for);
 585		ret = -EIO;
 586	} else if (state2 & STS2_TIMEOUT_ERR) {
 587		dev_err(dev, " Timeout: state %u, wait %u\n",
 588			host->state, host->wait_for);
 589		ret = -ETIMEDOUT;
 590	} else {
 591		dev_dbg(dev, " End/Index error: state %u, wait %u\n",
 592			host->state, host->wait_for);
 593		ret = -EIO;
 594	}
 595	return ret;
 596}
 597
 598static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
 599{
 600	struct mmc_data *data = host->mrq->data;
 601
 602	host->sg_blkidx += host->blocksize;
 603
 604	/* data->sg->length must be a multiple of host->blocksize? */
 605	BUG_ON(host->sg_blkidx > data->sg->length);
 606
 607	if (host->sg_blkidx == data->sg->length) {
 608		host->sg_blkidx = 0;
 609		if (++host->sg_idx < data->sg_len)
 610			host->pio_ptr = sg_virt(++data->sg);
 611	} else {
 612		host->pio_ptr = p;
 613	}
 614
 615	return host->sg_idx != data->sg_len;
 616}
 617
 618static void sh_mmcif_single_read(struct sh_mmcif_host *host,
 619				 struct mmc_request *mrq)
 620{
 621	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 622			   BLOCK_SIZE_MASK) + 3;
 623
 624	host->wait_for = MMCIF_WAIT_FOR_READ;
 625
 626	/* buf read enable */
 627	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 628}
 629
 630static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
 631{
 632	struct device *dev = sh_mmcif_host_to_dev(host);
 633	struct mmc_data *data = host->mrq->data;
 634	u32 *p = sg_virt(data->sg);
 635	int i;
 636
 637	if (host->sd_error) {
 638		data->error = sh_mmcif_error_manage(host);
 639		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 640		return false;
 641	}
 642
 643	for (i = 0; i < host->blocksize / 4; i++)
 644		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
 645
 646	/* buffer read end */
 647	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
 648	host->wait_for = MMCIF_WAIT_FOR_READ_END;
 649
 650	return true;
 651}
 652
 653static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
 654				struct mmc_request *mrq)
 655{
 656	struct mmc_data *data = mrq->data;
 657
 658	if (!data->sg_len || !data->sg->length)
 659		return;
 660
 661	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 662		BLOCK_SIZE_MASK;
 663
 664	host->wait_for = MMCIF_WAIT_FOR_MREAD;
 665	host->sg_idx = 0;
 666	host->sg_blkidx = 0;
 667	host->pio_ptr = sg_virt(data->sg);
 668
 669	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 670}
 671
 672static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
 673{
 674	struct device *dev = sh_mmcif_host_to_dev(host);
 675	struct mmc_data *data = host->mrq->data;
 676	u32 *p = host->pio_ptr;
 677	int i;
 678
 679	if (host->sd_error) {
 680		data->error = sh_mmcif_error_manage(host);
 681		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 682		return false;
 683	}
 684
 685	BUG_ON(!data->sg->length);
 686
 687	for (i = 0; i < host->blocksize / 4; i++)
 688		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
 689
 690	if (!sh_mmcif_next_block(host, p))
 691		return false;
 692
 693	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
 694
 695	return true;
 696}
 697
 698static void sh_mmcif_single_write(struct sh_mmcif_host *host,
 699					struct mmc_request *mrq)
 700{
 701	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 702			   BLOCK_SIZE_MASK) + 3;
 703
 704	host->wait_for = MMCIF_WAIT_FOR_WRITE;
 705
 706	/* buf write enable */
 707	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 708}
 709
 710static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
 711{
 712	struct device *dev = sh_mmcif_host_to_dev(host);
 713	struct mmc_data *data = host->mrq->data;
 714	u32 *p = sg_virt(data->sg);
 715	int i;
 716
 717	if (host->sd_error) {
 718		data->error = sh_mmcif_error_manage(host);
 719		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 720		return false;
 721	}
 722
 723	for (i = 0; i < host->blocksize / 4; i++)
 724		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
 725
 726	/* buffer write end */
 727	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
 728	host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
 729
 730	return true;
 731}
 732
 733static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
 734				struct mmc_request *mrq)
 735{
 736	struct mmc_data *data = mrq->data;
 737
 738	if (!data->sg_len || !data->sg->length)
 739		return;
 740
 741	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
 742		BLOCK_SIZE_MASK;
 743
 744	host->wait_for = MMCIF_WAIT_FOR_MWRITE;
 745	host->sg_idx = 0;
 746	host->sg_blkidx = 0;
 747	host->pio_ptr = sg_virt(data->sg);
 748
 749	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 750}
 751
 752static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
 753{
 754	struct device *dev = sh_mmcif_host_to_dev(host);
 755	struct mmc_data *data = host->mrq->data;
 756	u32 *p = host->pio_ptr;
 757	int i;
 758
 759	if (host->sd_error) {
 760		data->error = sh_mmcif_error_manage(host);
 761		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
 762		return false;
 763	}
 764
 765	BUG_ON(!data->sg->length);
 766
 767	for (i = 0; i < host->blocksize / 4; i++)
 768		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
 769
 770	if (!sh_mmcif_next_block(host, p))
 771		return false;
 772
 773	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
 774
 775	return true;
 776}
 777
 778static void sh_mmcif_get_response(struct sh_mmcif_host *host,
 779						struct mmc_command *cmd)
 780{
 781	if (cmd->flags & MMC_RSP_136) {
 782		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
 783		cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
 784		cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
 785		cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
 786	} else
 787		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
 788}
 789
 790static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
 791						struct mmc_command *cmd)
 792{
 793	cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
 794}
 795
 796static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
 797			    struct mmc_request *mrq)
 798{
 799	struct device *dev = sh_mmcif_host_to_dev(host);
 800	struct mmc_data *data = mrq->data;
 801	struct mmc_command *cmd = mrq->cmd;
 802	u32 opc = cmd->opcode;
 803	u32 tmp = 0;
 804
 805	/* Response Type check */
 806	switch (mmc_resp_type(cmd)) {
 807	case MMC_RSP_NONE:
 808		tmp |= CMD_SET_RTYP_NO;
 809		break;
 810	case MMC_RSP_R1:
 811	case MMC_RSP_R3:
 812		tmp |= CMD_SET_RTYP_6B;
 813		break;
 814	case MMC_RSP_R1B:
 815		tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B;
 816		break;
 817	case MMC_RSP_R2:
 818		tmp |= CMD_SET_RTYP_17B;
 819		break;
 820	default:
 821		dev_err(dev, "Unsupported response type.\n");
 822		break;
 823	}
 824
 825	/* WDAT / DATW */
 826	if (data) {
 827		tmp |= CMD_SET_WDAT;
 828		switch (host->bus_width) {
 829		case MMC_BUS_WIDTH_1:
 830			tmp |= CMD_SET_DATW_1;
 831			break;
 832		case MMC_BUS_WIDTH_4:
 833			tmp |= CMD_SET_DATW_4;
 834			break;
 835		case MMC_BUS_WIDTH_8:
 836			tmp |= CMD_SET_DATW_8;
 837			break;
 838		default:
 839			dev_err(dev, "Unsupported bus width.\n");
 840			break;
 841		}
 842		switch (host->timing) {
 843		case MMC_TIMING_MMC_DDR52:
 844			/*
 845			 * MMC core will only set this timing, if the host
 846			 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
 847			 * capability. MMCIF implementations with this
 848			 * capability, e.g. sh73a0, will have to set it
 849			 * in their platform data.
 850			 */
 851			tmp |= CMD_SET_DARS;
 852			break;
 853		}
 854	}
 855	/* DWEN */
 856	if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
 857		tmp |= CMD_SET_DWEN;
 858	/* CMLTE/CMD12EN */
 859	if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
 860		tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
 861		sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
 862				data->blocks << 16);
 863	}
 864	/* RIDXC[1:0] check bits */
 865	if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
 866	    opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
 867		tmp |= CMD_SET_RIDXC_BITS;
 868	/* RCRC7C[1:0] check bits */
 869	if (opc == MMC_SEND_OP_COND)
 870		tmp |= CMD_SET_CRC7C_BITS;
 871	/* RCRC7C[1:0] internal CRC7 */
 872	if (opc == MMC_ALL_SEND_CID ||
 873		opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
 874		tmp |= CMD_SET_CRC7C_INTERNAL;
 875
 876	return (opc << 24) | tmp;
 877}
 878
 879static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
 880			       struct mmc_request *mrq, u32 opc)
 881{
 882	struct device *dev = sh_mmcif_host_to_dev(host);
 883
 884	switch (opc) {
 885	case MMC_READ_MULTIPLE_BLOCK:
 886		sh_mmcif_multi_read(host, mrq);
 887		return 0;
 888	case MMC_WRITE_MULTIPLE_BLOCK:
 889		sh_mmcif_multi_write(host, mrq);
 890		return 0;
 891	case MMC_WRITE_BLOCK:
 892		sh_mmcif_single_write(host, mrq);
 893		return 0;
 894	case MMC_READ_SINGLE_BLOCK:
 895	case MMC_SEND_EXT_CSD:
 896		sh_mmcif_single_read(host, mrq);
 897		return 0;
 898	default:
 899		dev_err(dev, "Unsupported CMD%d\n", opc);
 900		return -EINVAL;
 901	}
 902}
 903
 904static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
 905			       struct mmc_request *mrq)
 906{
 907	struct mmc_command *cmd = mrq->cmd;
 908	u32 opc;
 909	u32 mask = 0;
 910	unsigned long flags;
 911
 912	if (cmd->flags & MMC_RSP_BUSY)
 913		mask = MASK_START_CMD | MASK_MRBSYE;
 914	else
 915		mask = MASK_START_CMD | MASK_MCRSPE;
 916
 917	if (host->ccs_enable)
 918		mask |= MASK_MCCSTO;
 919
 920	if (mrq->data) {
 921		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
 922		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
 923				mrq->data->blksz);
 924	}
 925	opc = sh_mmcif_set_cmd(host, mrq);
 926
 927	if (host->ccs_enable)
 928		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
 929	else
 930		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
 931	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
 932	/* set arg */
 933	sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
 934	/* set cmd */
 935	spin_lock_irqsave(&host->lock, flags);
 936	sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
 937
 938	host->wait_for = MMCIF_WAIT_FOR_CMD;
 939	schedule_delayed_work(&host->timeout_work, host->timeout);
 940	spin_unlock_irqrestore(&host->lock, flags);
 941}
 942
 943static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
 944			      struct mmc_request *mrq)
 945{
 946	struct device *dev = sh_mmcif_host_to_dev(host);
 947
 948	switch (mrq->cmd->opcode) {
 949	case MMC_READ_MULTIPLE_BLOCK:
 950		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
 951		break;
 952	case MMC_WRITE_MULTIPLE_BLOCK:
 953		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
 954		break;
 955	default:
 956		dev_err(dev, "unsupported stop cmd\n");
 957		mrq->stop->error = sh_mmcif_error_manage(host);
 958		return;
 959	}
 960
 961	host->wait_for = MMCIF_WAIT_FOR_STOP;
 962}
 963
 964static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
 965{
 966	struct sh_mmcif_host *host = mmc_priv(mmc);
 967	struct device *dev = sh_mmcif_host_to_dev(host);
 968	unsigned long flags;
 969
 970	spin_lock_irqsave(&host->lock, flags);
 971	if (host->state != STATE_IDLE) {
 972		dev_dbg(dev, "%s() rejected, state %u\n",
 973			__func__, host->state);
 974		spin_unlock_irqrestore(&host->lock, flags);
 975		mrq->cmd->error = -EAGAIN;
 976		mmc_request_done(mmc, mrq);
 977		return;
 978	}
 979
 980	host->state = STATE_REQUEST;
 981	spin_unlock_irqrestore(&host->lock, flags);
 982
 983	host->mrq = mrq;
 984
 985	sh_mmcif_start_cmd(host, mrq);
 986}
 987
 988static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
 989{
 990	struct device *dev = sh_mmcif_host_to_dev(host);
 991
 992	if (host->mmc->f_max) {
 993		unsigned int f_max, f_min = 0, f_min_old;
 994
 995		f_max = host->mmc->f_max;
 996		for (f_min_old = f_max; f_min_old > 2;) {
 997			f_min = clk_round_rate(host->clk, f_min_old / 2);
 998			if (f_min == f_min_old)
 999				break;
1000			f_min_old = f_min;
1001		}
1002
1003		/*
1004		 * This driver assumes this SoC is R-Car Gen2 or later
1005		 */
1006		host->clkdiv_map = 0x3ff;
1007
1008		host->mmc->f_max = f_max / (1 << ffs(host->clkdiv_map));
1009		host->mmc->f_min = f_min / (1 << fls(host->clkdiv_map));
1010	} else {
1011		unsigned int clk = clk_get_rate(host->clk);
1012
1013		host->mmc->f_max = clk / 2;
1014		host->mmc->f_min = clk / 512;
1015	}
1016
1017	dev_dbg(dev, "clk max/min = %d/%d\n",
1018		host->mmc->f_max, host->mmc->f_min);
1019}
1020
1021static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1022{
1023	struct sh_mmcif_host *host = mmc_priv(mmc);
1024	struct device *dev = sh_mmcif_host_to_dev(host);
1025	unsigned long flags;
1026
1027	spin_lock_irqsave(&host->lock, flags);
1028	if (host->state != STATE_IDLE) {
1029		dev_dbg(dev, "%s() rejected, state %u\n",
1030			__func__, host->state);
1031		spin_unlock_irqrestore(&host->lock, flags);
1032		return;
1033	}
1034
1035	host->state = STATE_IOS;
1036	spin_unlock_irqrestore(&host->lock, flags);
1037
1038	switch (ios->power_mode) {
1039	case MMC_POWER_UP:
1040		if (!IS_ERR(mmc->supply.vmmc))
1041			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1042		if (!host->power) {
1043			clk_prepare_enable(host->clk);
1044			pm_runtime_get_sync(dev);
1045			sh_mmcif_sync_reset(host);
1046			sh_mmcif_request_dma(host);
1047			host->power = true;
1048		}
1049		break;
1050	case MMC_POWER_OFF:
1051		if (!IS_ERR(mmc->supply.vmmc))
1052			mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1053		if (host->power) {
1054			sh_mmcif_clock_control(host, 0);
1055			sh_mmcif_release_dma(host);
1056			pm_runtime_put(dev);
1057			clk_disable_unprepare(host->clk);
1058			host->power = false;
1059		}
1060		break;
1061	case MMC_POWER_ON:
1062		sh_mmcif_clock_control(host, ios->clock);
1063		break;
1064	}
1065
1066	host->timing = ios->timing;
1067	host->bus_width = ios->bus_width;
1068	host->state = STATE_IDLE;
1069}
1070
1071static const struct mmc_host_ops sh_mmcif_ops = {
1072	.request	= sh_mmcif_request,
1073	.set_ios	= sh_mmcif_set_ios,
1074	.get_cd		= mmc_gpio_get_cd,
1075};
1076
1077static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1078{
1079	struct mmc_command *cmd = host->mrq->cmd;
1080	struct mmc_data *data = host->mrq->data;
1081	struct device *dev = sh_mmcif_host_to_dev(host);
1082	long time;
1083
1084	if (host->sd_error) {
1085		switch (cmd->opcode) {
1086		case MMC_ALL_SEND_CID:
1087		case MMC_SELECT_CARD:
1088		case MMC_APP_CMD:
1089			cmd->error = -ETIMEDOUT;
1090			break;
1091		default:
1092			cmd->error = sh_mmcif_error_manage(host);
1093			break;
1094		}
1095		dev_dbg(dev, "CMD%d error %d\n",
1096			cmd->opcode, cmd->error);
1097		host->sd_error = false;
1098		return false;
1099	}
1100	if (!(cmd->flags & MMC_RSP_PRESENT)) {
1101		cmd->error = 0;
1102		return false;
1103	}
1104
1105	sh_mmcif_get_response(host, cmd);
1106
1107	if (!data)
1108		return false;
1109
1110	/*
1111	 * Completion can be signalled from DMA callback and error, so, have to
1112	 * reset here, before setting .dma_active
1113	 */
1114	init_completion(&host->dma_complete);
1115
1116	if (data->flags & MMC_DATA_READ) {
1117		if (host->chan_rx)
1118			sh_mmcif_start_dma_rx(host);
1119	} else {
1120		if (host->chan_tx)
1121			sh_mmcif_start_dma_tx(host);
1122	}
1123
1124	if (!host->dma_active) {
1125		data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1126		return !data->error;
1127	}
1128
1129	/* Running in the IRQ thread, can sleep */
1130	time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1131							 host->timeout);
1132
1133	if (data->flags & MMC_DATA_READ)
1134		dma_unmap_sg(host->chan_rx->device->dev,
1135			     data->sg, data->sg_len,
1136			     DMA_FROM_DEVICE);
1137	else
1138		dma_unmap_sg(host->chan_tx->device->dev,
1139			     data->sg, data->sg_len,
1140			     DMA_TO_DEVICE);
1141
1142	if (host->sd_error) {
1143		dev_err(host->mmc->parent,
1144			"Error IRQ while waiting for DMA completion!\n");
1145		/* Woken up by an error IRQ: abort DMA */
1146		data->error = sh_mmcif_error_manage(host);
1147	} else if (!time) {
1148		dev_err(host->mmc->parent, "DMA timeout!\n");
1149		data->error = -ETIMEDOUT;
1150	} else if (time < 0) {
1151		dev_err(host->mmc->parent,
1152			"wait_for_completion_...() error %ld!\n", time);
1153		data->error = time;
1154	}
1155	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1156			BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1157	host->dma_active = false;
1158
1159	if (data->error) {
1160		data->bytes_xfered = 0;
1161		/* Abort DMA */
1162		if (data->flags & MMC_DATA_READ)
1163			dmaengine_terminate_all(host->chan_rx);
1164		else
1165			dmaengine_terminate_all(host->chan_tx);
1166	}
1167
1168	return false;
1169}
1170
1171static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1172{
1173	struct sh_mmcif_host *host = dev_id;
1174	struct mmc_request *mrq;
1175	struct device *dev = sh_mmcif_host_to_dev(host);
1176	bool wait = false;
1177	unsigned long flags;
1178	int wait_work;
1179
1180	spin_lock_irqsave(&host->lock, flags);
1181	wait_work = host->wait_for;
1182	spin_unlock_irqrestore(&host->lock, flags);
1183
1184	cancel_delayed_work_sync(&host->timeout_work);
1185
1186	mutex_lock(&host->thread_lock);
1187
1188	mrq = host->mrq;
1189	if (!mrq) {
1190		dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1191			host->state, host->wait_for);
1192		mutex_unlock(&host->thread_lock);
1193		return IRQ_HANDLED;
1194	}
1195
1196	/*
1197	 * All handlers return true, if processing continues, and false, if the
1198	 * request has to be completed - successfully or not
1199	 */
1200	switch (wait_work) {
1201	case MMCIF_WAIT_FOR_REQUEST:
1202		/* We're too late, the timeout has already kicked in */
1203		mutex_unlock(&host->thread_lock);
1204		return IRQ_HANDLED;
1205	case MMCIF_WAIT_FOR_CMD:
1206		/* Wait for data? */
1207		wait = sh_mmcif_end_cmd(host);
1208		break;
1209	case MMCIF_WAIT_FOR_MREAD:
1210		/* Wait for more data? */
1211		wait = sh_mmcif_mread_block(host);
1212		break;
1213	case MMCIF_WAIT_FOR_READ:
1214		/* Wait for data end? */
1215		wait = sh_mmcif_read_block(host);
1216		break;
1217	case MMCIF_WAIT_FOR_MWRITE:
1218		/* Wait data to write? */
1219		wait = sh_mmcif_mwrite_block(host);
1220		break;
1221	case MMCIF_WAIT_FOR_WRITE:
1222		/* Wait for data end? */
1223		wait = sh_mmcif_write_block(host);
1224		break;
1225	case MMCIF_WAIT_FOR_STOP:
1226		if (host->sd_error) {
1227			mrq->stop->error = sh_mmcif_error_manage(host);
1228			dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1229			break;
1230		}
1231		sh_mmcif_get_cmd12response(host, mrq->stop);
1232		mrq->stop->error = 0;
1233		break;
1234	case MMCIF_WAIT_FOR_READ_END:
1235	case MMCIF_WAIT_FOR_WRITE_END:
1236		if (host->sd_error) {
1237			mrq->data->error = sh_mmcif_error_manage(host);
1238			dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1239		}
1240		break;
1241	default:
1242		BUG();
1243	}
1244
1245	if (wait) {
1246		schedule_delayed_work(&host->timeout_work, host->timeout);
1247		/* Wait for more data */
1248		mutex_unlock(&host->thread_lock);
1249		return IRQ_HANDLED;
1250	}
1251
1252	if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1253		struct mmc_data *data = mrq->data;
1254		if (!mrq->cmd->error && data && !data->error)
1255			data->bytes_xfered =
1256				data->blocks * data->blksz;
1257
1258		if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1259			sh_mmcif_stop_cmd(host, mrq);
1260			if (!mrq->stop->error) {
1261				schedule_delayed_work(&host->timeout_work, host->timeout);
1262				mutex_unlock(&host->thread_lock);
1263				return IRQ_HANDLED;
1264			}
1265		}
1266	}
1267
1268	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1269	host->state = STATE_IDLE;
1270	host->mrq = NULL;
1271	mmc_request_done(host->mmc, mrq);
1272
1273	mutex_unlock(&host->thread_lock);
1274
1275	return IRQ_HANDLED;
1276}
1277
1278static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1279{
1280	struct sh_mmcif_host *host = dev_id;
1281	struct device *dev = sh_mmcif_host_to_dev(host);
1282	u32 state, mask;
1283
1284	state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1285	mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1286	if (host->ccs_enable)
1287		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1288	else
1289		sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1290	sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1291
1292	if (state & ~MASK_CLEAN)
1293		dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1294			state);
1295
1296	if (state & INT_ERR_STS || state & ~INT_ALL) {
1297		host->sd_error = true;
1298		dev_dbg(dev, "int err state = 0x%08x\n", state);
1299	}
1300	if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1301		if (!host->mrq)
1302			dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1303		if (!host->dma_active)
1304			return IRQ_WAKE_THREAD;
1305		else if (host->sd_error)
1306			sh_mmcif_dma_complete(host);
1307	} else {
1308		dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1309	}
1310
1311	return IRQ_HANDLED;
1312}
1313
1314static void sh_mmcif_timeout_work(struct work_struct *work)
1315{
1316	struct delayed_work *d = to_delayed_work(work);
1317	struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1318	struct mmc_request *mrq = host->mrq;
1319	struct device *dev = sh_mmcif_host_to_dev(host);
1320	unsigned long flags;
1321
1322	if (host->dying)
1323		/* Don't run after mmc_remove_host() */
1324		return;
1325
1326	spin_lock_irqsave(&host->lock, flags);
1327	if (host->state == STATE_IDLE) {
1328		spin_unlock_irqrestore(&host->lock, flags);
1329		return;
1330	}
1331
1332	dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1333		host->wait_for, mrq->cmd->opcode);
1334
1335	host->state = STATE_TIMEOUT;
1336	spin_unlock_irqrestore(&host->lock, flags);
1337
1338	/*
1339	 * Handle races with cancel_delayed_work(), unless
1340	 * cancel_delayed_work_sync() is used
1341	 */
1342	switch (host->wait_for) {
1343	case MMCIF_WAIT_FOR_CMD:
1344		mrq->cmd->error = sh_mmcif_error_manage(host);
1345		break;
1346	case MMCIF_WAIT_FOR_STOP:
1347		mrq->stop->error = sh_mmcif_error_manage(host);
1348		break;
1349	case MMCIF_WAIT_FOR_MREAD:
1350	case MMCIF_WAIT_FOR_MWRITE:
1351	case MMCIF_WAIT_FOR_READ:
1352	case MMCIF_WAIT_FOR_WRITE:
1353	case MMCIF_WAIT_FOR_READ_END:
1354	case MMCIF_WAIT_FOR_WRITE_END:
1355		mrq->data->error = sh_mmcif_error_manage(host);
1356		break;
1357	default:
1358		BUG();
1359	}
1360
1361	host->state = STATE_IDLE;
1362	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1363	host->mrq = NULL;
1364	mmc_request_done(host->mmc, mrq);
1365}
1366
1367static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1368{
1369	struct device *dev = sh_mmcif_host_to_dev(host);
1370	struct sh_mmcif_plat_data *pd = dev->platform_data;
1371	struct mmc_host *mmc = host->mmc;
1372
1373	mmc_regulator_get_supply(mmc);
1374
1375	if (!pd)
1376		return;
1377
1378	if (!mmc->ocr_avail)
1379		mmc->ocr_avail = pd->ocr;
1380	else if (pd->ocr)
1381		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1382}
1383
1384static int sh_mmcif_probe(struct platform_device *pdev)
1385{
1386	int ret = 0, irq[2];
1387	struct mmc_host *mmc;
1388	struct sh_mmcif_host *host;
1389	struct device *dev = &pdev->dev;
1390	struct sh_mmcif_plat_data *pd = dev->platform_data;
1391	struct resource *res;
1392	void __iomem *reg;
1393	const char *name;
1394
1395	irq[0] = platform_get_irq(pdev, 0);
1396	irq[1] = platform_get_irq_optional(pdev, 1);
1397	if (irq[0] < 0)
1398		return -ENXIO;
1399
1400	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1401	reg = devm_ioremap_resource(dev, res);
1402	if (IS_ERR(reg))
1403		return PTR_ERR(reg);
1404
1405	mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1406	if (!mmc)
1407		return -ENOMEM;
1408
1409	ret = mmc_of_parse(mmc);
1410	if (ret < 0)
1411		goto err_host;
1412
1413	host		= mmc_priv(mmc);
1414	host->mmc	= mmc;
1415	host->addr	= reg;
1416	host->timeout	= msecs_to_jiffies(10000);
1417	host->ccs_enable = true;
1418	host->clk_ctrl2_enable = false;
1419
1420	host->pd = pdev;
1421
1422	spin_lock_init(&host->lock);
1423
1424	mmc->ops = &sh_mmcif_ops;
1425	sh_mmcif_init_ocr(host);
1426
1427	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1428	mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO;
1429	mmc->max_busy_timeout = 10000;
1430
1431	if (pd && pd->caps)
1432		mmc->caps |= pd->caps;
1433	mmc->max_segs = 32;
1434	mmc->max_blk_size = 512;
1435	mmc->max_req_size = PAGE_SIZE * mmc->max_segs;
1436	mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1437	mmc->max_seg_size = mmc->max_req_size;
1438
1439	platform_set_drvdata(pdev, host);
1440
1441	host->clk = devm_clk_get(dev, NULL);
1442	if (IS_ERR(host->clk)) {
1443		ret = PTR_ERR(host->clk);
1444		dev_err(dev, "cannot get clock: %d\n", ret);
1445		goto err_host;
1446	}
1447
1448	ret = clk_prepare_enable(host->clk);
1449	if (ret < 0)
1450		goto err_host;
1451
1452	sh_mmcif_clk_setup(host);
1453
1454	pm_runtime_enable(dev);
1455	host->power = false;
1456
1457	ret = pm_runtime_get_sync(dev);
1458	if (ret < 0)
1459		goto err_clk;
1460
1461	INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1462
1463	sh_mmcif_sync_reset(host);
1464	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1465
1466	name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1467	ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1468					sh_mmcif_irqt, 0, name, host);
1469	if (ret) {
1470		dev_err(dev, "request_irq error (%s)\n", name);
1471		goto err_clk;
1472	}
1473	if (irq[1] >= 0) {
1474		ret = devm_request_threaded_irq(dev, irq[1],
1475						sh_mmcif_intr, sh_mmcif_irqt,
1476						0, "sh_mmc:int", host);
1477		if (ret) {
1478			dev_err(dev, "request_irq error (sh_mmc:int)\n");
1479			goto err_clk;
1480		}
1481	}
1482
1483	mutex_init(&host->thread_lock);
1484
1485	ret = mmc_add_host(mmc);
1486	if (ret < 0)
1487		goto err_clk;
1488
1489	dev_pm_qos_expose_latency_limit(dev, 100);
1490
1491	dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1492		 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1493		 clk_get_rate(host->clk) / 1000000UL);
1494
1495	pm_runtime_put(dev);
1496	clk_disable_unprepare(host->clk);
1497	return ret;
1498
1499err_clk:
1500	clk_disable_unprepare(host->clk);
1501	pm_runtime_put_sync(dev);
1502	pm_runtime_disable(dev);
1503err_host:
1504	mmc_free_host(mmc);
1505	return ret;
1506}
1507
1508static int sh_mmcif_remove(struct platform_device *pdev)
1509{
1510	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1511
1512	host->dying = true;
1513	clk_prepare_enable(host->clk);
1514	pm_runtime_get_sync(&pdev->dev);
1515
1516	dev_pm_qos_hide_latency_limit(&pdev->dev);
1517
1518	mmc_remove_host(host->mmc);
1519	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1520
1521	/*
1522	 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1523	 * mmc_remove_host() call above. But swapping order doesn't help either
1524	 * (a query on the linux-mmc mailing list didn't bring any replies).
1525	 */
1526	cancel_delayed_work_sync(&host->timeout_work);
1527
1528	clk_disable_unprepare(host->clk);
1529	mmc_free_host(host->mmc);
1530	pm_runtime_put_sync(&pdev->dev);
1531	pm_runtime_disable(&pdev->dev);
1532
1533	return 0;
1534}
1535
1536#ifdef CONFIG_PM_SLEEP
1537static int sh_mmcif_suspend(struct device *dev)
1538{
1539	struct sh_mmcif_host *host = dev_get_drvdata(dev);
1540
1541	pm_runtime_get_sync(dev);
1542	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1543	pm_runtime_put(dev);
1544
1545	return 0;
1546}
1547
1548static int sh_mmcif_resume(struct device *dev)
1549{
1550	return 0;
1551}
1552#endif
1553
1554static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1555	SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1556};
1557
1558static struct platform_driver sh_mmcif_driver = {
1559	.probe		= sh_mmcif_probe,
1560	.remove		= sh_mmcif_remove,
1561	.driver		= {
1562		.name	= DRIVER_NAME,
 
1563		.pm	= &sh_mmcif_dev_pm_ops,
1564		.of_match_table = sh_mmcif_of_match,
1565	},
1566};
1567
1568module_platform_driver(sh_mmcif_driver);
1569
1570MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1571MODULE_LICENSE("GPL v2");
1572MODULE_ALIAS("platform:" DRIVER_NAME);
1573MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");