Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2018 Red Hat. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include <linux/device-mapper.h>
   9#include <linux/module.h>
  10#include <linux/init.h>
  11#include <linux/vmalloc.h>
  12#include <linux/kthread.h>
  13#include <linux/dm-io.h>
  14#include <linux/dm-kcopyd.h>
  15#include <linux/dax.h>
  16#include <linux/pfn_t.h>
  17#include <linux/libnvdimm.h>
  18#include <linux/delay.h>
  19#include "dm-io-tracker.h"
  20
  21#define DM_MSG_PREFIX "writecache"
  22
  23#define HIGH_WATERMARK			50
  24#define LOW_WATERMARK			45
  25#define MAX_WRITEBACK_JOBS		min(0x10000000 / PAGE_SIZE, totalram_pages() / 16)
  26#define ENDIO_LATENCY			16
  27#define WRITEBACK_LATENCY		64
  28#define AUTOCOMMIT_BLOCKS_SSD		65536
  29#define AUTOCOMMIT_BLOCKS_PMEM		64
  30#define AUTOCOMMIT_MSEC			1000
  31#define MAX_AGE_DIV			16
  32#define MAX_AGE_UNSPECIFIED		-1UL
  33#define PAUSE_WRITEBACK			(HZ * 3)
  34
  35#define BITMAP_GRANULARITY	65536
  36#if BITMAP_GRANULARITY < PAGE_SIZE
  37#undef BITMAP_GRANULARITY
  38#define BITMAP_GRANULARITY	PAGE_SIZE
  39#endif
  40
  41#if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_FS_DAX)
  42#define DM_WRITECACHE_HAS_PMEM
  43#endif
  44
  45#ifdef DM_WRITECACHE_HAS_PMEM
  46#define pmem_assign(dest, src)					\
  47do {								\
  48	typeof(dest) uniq = (src);				\
  49	memcpy_flushcache(&(dest), &uniq, sizeof(dest));	\
  50} while (0)
  51#else
  52#define pmem_assign(dest, src)	((dest) = (src))
  53#endif
  54
  55#if IS_ENABLED(CONFIG_ARCH_HAS_COPY_MC) && defined(DM_WRITECACHE_HAS_PMEM)
  56#define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  57#endif
  58
  59#define MEMORY_SUPERBLOCK_MAGIC		0x23489321
  60#define MEMORY_SUPERBLOCK_VERSION	1
  61
  62struct wc_memory_entry {
  63	__le64 original_sector;
  64	__le64 seq_count;
  65};
  66
  67struct wc_memory_superblock {
  68	union {
  69		struct {
  70			__le32 magic;
  71			__le32 version;
  72			__le32 block_size;
  73			__le32 pad;
  74			__le64 n_blocks;
  75			__le64 seq_count;
  76		};
  77		__le64 padding[8];
  78	};
  79	struct wc_memory_entry entries[];
  80};
  81
  82struct wc_entry {
  83	struct rb_node rb_node;
  84	struct list_head lru;
  85	unsigned short wc_list_contiguous;
  86	bool write_in_progress
  87#if BITS_PER_LONG == 64
  88		:1
  89#endif
  90	;
  91	unsigned long index
  92#if BITS_PER_LONG == 64
  93		:47
  94#endif
  95	;
  96	unsigned long age;
  97#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  98	uint64_t original_sector;
  99	uint64_t seq_count;
 100#endif
 101};
 102
 103#ifdef DM_WRITECACHE_HAS_PMEM
 104#define WC_MODE_PMEM(wc)			((wc)->pmem_mode)
 105#define WC_MODE_FUA(wc)				((wc)->writeback_fua)
 106#else
 107#define WC_MODE_PMEM(wc)			false
 108#define WC_MODE_FUA(wc)				false
 109#endif
 110#define WC_MODE_SORT_FREELIST(wc)		(!WC_MODE_PMEM(wc))
 111
 112struct dm_writecache {
 113	struct mutex lock;
 114	struct list_head lru;
 115	union {
 116		struct list_head freelist;
 117		struct {
 118			struct rb_root freetree;
 119			struct wc_entry *current_free;
 120		};
 121	};
 122	struct rb_root tree;
 123
 124	size_t freelist_size;
 125	size_t writeback_size;
 126	size_t freelist_high_watermark;
 127	size_t freelist_low_watermark;
 128	unsigned long max_age;
 129	unsigned long pause;
 130
 131	unsigned uncommitted_blocks;
 132	unsigned autocommit_blocks;
 133	unsigned max_writeback_jobs;
 134
 135	int error;
 136
 137	unsigned long autocommit_jiffies;
 138	struct timer_list autocommit_timer;
 139	struct wait_queue_head freelist_wait;
 140
 141	struct timer_list max_age_timer;
 142
 143	atomic_t bio_in_progress[2];
 144	struct wait_queue_head bio_in_progress_wait[2];
 145
 146	struct dm_target *ti;
 147	struct dm_dev *dev;
 148	struct dm_dev *ssd_dev;
 149	sector_t start_sector;
 150	void *memory_map;
 151	uint64_t memory_map_size;
 152	size_t metadata_sectors;
 153	size_t n_blocks;
 154	uint64_t seq_count;
 155	sector_t data_device_sectors;
 156	void *block_start;
 157	struct wc_entry *entries;
 158	unsigned block_size;
 159	unsigned char block_size_bits;
 160
 161	bool pmem_mode:1;
 162	bool writeback_fua:1;
 163
 164	bool overwrote_committed:1;
 165	bool memory_vmapped:1;
 166
 167	bool start_sector_set:1;
 168	bool high_wm_percent_set:1;
 169	bool low_wm_percent_set:1;
 170	bool max_writeback_jobs_set:1;
 171	bool autocommit_blocks_set:1;
 172	bool autocommit_time_set:1;
 173	bool max_age_set:1;
 174	bool writeback_fua_set:1;
 175	bool flush_on_suspend:1;
 176	bool cleaner:1;
 177	bool cleaner_set:1;
 178	bool metadata_only:1;
 179	bool pause_set:1;
 180
 181	unsigned high_wm_percent_value;
 182	unsigned low_wm_percent_value;
 183	unsigned autocommit_time_value;
 184	unsigned max_age_value;
 185	unsigned pause_value;
 186
 187	unsigned writeback_all;
 188	struct workqueue_struct *writeback_wq;
 189	struct work_struct writeback_work;
 190	struct work_struct flush_work;
 191
 192	struct dm_io_tracker iot;
 193
 194	struct dm_io_client *dm_io;
 195
 196	raw_spinlock_t endio_list_lock;
 197	struct list_head endio_list;
 198	struct task_struct *endio_thread;
 199
 200	struct task_struct *flush_thread;
 201	struct bio_list flush_list;
 202
 203	struct dm_kcopyd_client *dm_kcopyd;
 204	unsigned long *dirty_bitmap;
 205	unsigned dirty_bitmap_size;
 206
 207	struct bio_set bio_set;
 208	mempool_t copy_pool;
 209
 210	struct {
 211		unsigned long long reads;
 212		unsigned long long read_hits;
 213		unsigned long long writes;
 214		unsigned long long write_hits_uncommitted;
 215		unsigned long long write_hits_committed;
 216		unsigned long long writes_around;
 217		unsigned long long writes_allocate;
 218		unsigned long long writes_blocked_on_freelist;
 219		unsigned long long flushes;
 220		unsigned long long discards;
 221	} stats;
 222};
 223
 224#define WB_LIST_INLINE		16
 225
 226struct writeback_struct {
 227	struct list_head endio_entry;
 228	struct dm_writecache *wc;
 229	struct wc_entry **wc_list;
 230	unsigned wc_list_n;
 231	struct wc_entry *wc_list_inline[WB_LIST_INLINE];
 232	struct bio bio;
 233};
 234
 235struct copy_struct {
 236	struct list_head endio_entry;
 237	struct dm_writecache *wc;
 238	struct wc_entry *e;
 239	unsigned n_entries;
 240	int error;
 241};
 242
 243DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle,
 244					    "A percentage of time allocated for data copying");
 245
 246static void wc_lock(struct dm_writecache *wc)
 247{
 248	mutex_lock(&wc->lock);
 249}
 250
 251static void wc_unlock(struct dm_writecache *wc)
 252{
 253	mutex_unlock(&wc->lock);
 254}
 255
 256#ifdef DM_WRITECACHE_HAS_PMEM
 257static int persistent_memory_claim(struct dm_writecache *wc)
 258{
 259	int r;
 260	loff_t s;
 261	long p, da;
 262	pfn_t pfn;
 263	int id;
 264	struct page **pages;
 265	sector_t offset;
 266
 267	wc->memory_vmapped = false;
 268
 
 
 
 
 269	s = wc->memory_map_size;
 270	p = s >> PAGE_SHIFT;
 271	if (!p) {
 272		r = -EINVAL;
 273		goto err1;
 274	}
 275	if (p != s >> PAGE_SHIFT) {
 276		r = -EOVERFLOW;
 277		goto err1;
 278	}
 279
 280	offset = get_start_sect(wc->ssd_dev->bdev);
 281	if (offset & (PAGE_SIZE / 512 - 1)) {
 282		r = -EINVAL;
 283		goto err1;
 284	}
 285	offset >>= PAGE_SHIFT - 9;
 286
 287	id = dax_read_lock();
 288
 289	da = dax_direct_access(wc->ssd_dev->dax_dev, offset, p, DAX_ACCESS,
 290			&wc->memory_map, &pfn);
 291	if (da < 0) {
 292		wc->memory_map = NULL;
 293		r = da;
 294		goto err2;
 295	}
 296	if (!pfn_t_has_page(pfn)) {
 297		wc->memory_map = NULL;
 298		r = -EOPNOTSUPP;
 299		goto err2;
 300	}
 301	if (da != p) {
 302		long i;
 303		wc->memory_map = NULL;
 304		pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL);
 305		if (!pages) {
 306			r = -ENOMEM;
 307			goto err2;
 308		}
 309		i = 0;
 310		do {
 311			long daa;
 312			daa = dax_direct_access(wc->ssd_dev->dax_dev, offset + i,
 313					p - i, DAX_ACCESS, NULL, &pfn);
 314			if (daa <= 0) {
 315				r = daa ? daa : -EINVAL;
 316				goto err3;
 317			}
 318			if (!pfn_t_has_page(pfn)) {
 319				r = -EOPNOTSUPP;
 320				goto err3;
 321			}
 322			while (daa-- && i < p) {
 323				pages[i++] = pfn_t_to_page(pfn);
 324				pfn.val++;
 325				if (!(i & 15))
 326					cond_resched();
 327			}
 328		} while (i < p);
 329		wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL);
 330		if (!wc->memory_map) {
 331			r = -ENOMEM;
 332			goto err3;
 333		}
 334		kvfree(pages);
 335		wc->memory_vmapped = true;
 336	}
 337
 338	dax_read_unlock(id);
 339
 340	wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT;
 341	wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT;
 342
 343	return 0;
 344err3:
 345	kvfree(pages);
 346err2:
 347	dax_read_unlock(id);
 348err1:
 349	return r;
 350}
 351#else
 352static int persistent_memory_claim(struct dm_writecache *wc)
 353{
 354	return -EOPNOTSUPP;
 355}
 356#endif
 357
 358static void persistent_memory_release(struct dm_writecache *wc)
 359{
 360	if (wc->memory_vmapped)
 361		vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT));
 362}
 363
 364static struct page *persistent_memory_page(void *addr)
 365{
 366	if (is_vmalloc_addr(addr))
 367		return vmalloc_to_page(addr);
 368	else
 369		return virt_to_page(addr);
 370}
 371
 372static unsigned persistent_memory_page_offset(void *addr)
 373{
 374	return (unsigned long)addr & (PAGE_SIZE - 1);
 375}
 376
 377static void persistent_memory_flush_cache(void *ptr, size_t size)
 378{
 379	if (is_vmalloc_addr(ptr))
 380		flush_kernel_vmap_range(ptr, size);
 381}
 382
 383static void persistent_memory_invalidate_cache(void *ptr, size_t size)
 384{
 385	if (is_vmalloc_addr(ptr))
 386		invalidate_kernel_vmap_range(ptr, size);
 387}
 388
 389static struct wc_memory_superblock *sb(struct dm_writecache *wc)
 390{
 391	return wc->memory_map;
 392}
 393
 394static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e)
 395{
 396	return &sb(wc)->entries[e->index];
 397}
 398
 399static void *memory_data(struct dm_writecache *wc, struct wc_entry *e)
 400{
 401	return (char *)wc->block_start + (e->index << wc->block_size_bits);
 402}
 403
 404static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e)
 405{
 406	return wc->start_sector + wc->metadata_sectors +
 407		((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT));
 408}
 409
 410static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e)
 411{
 412#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
 413	return e->original_sector;
 414#else
 415	return le64_to_cpu(memory_entry(wc, e)->original_sector);
 416#endif
 417}
 418
 419static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e)
 420{
 421#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
 422	return e->seq_count;
 423#else
 424	return le64_to_cpu(memory_entry(wc, e)->seq_count);
 425#endif
 426}
 427
 428static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e)
 429{
 430#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
 431	e->seq_count = -1;
 432#endif
 433	pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1));
 434}
 435
 436static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e,
 437					    uint64_t original_sector, uint64_t seq_count)
 438{
 439	struct wc_memory_entry me;
 440#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
 441	e->original_sector = original_sector;
 442	e->seq_count = seq_count;
 443#endif
 444	me.original_sector = cpu_to_le64(original_sector);
 445	me.seq_count = cpu_to_le64(seq_count);
 446	pmem_assign(*memory_entry(wc, e), me);
 447}
 448
 449#define writecache_error(wc, err, msg, arg...)				\
 450do {									\
 451	if (!cmpxchg(&(wc)->error, 0, err))				\
 452		DMERR(msg, ##arg);					\
 453	wake_up(&(wc)->freelist_wait);					\
 454} while (0)
 455
 456#define writecache_has_error(wc)	(unlikely(READ_ONCE((wc)->error)))
 457
 458static void writecache_flush_all_metadata(struct dm_writecache *wc)
 459{
 460	if (!WC_MODE_PMEM(wc))
 461		memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size);
 462}
 463
 464static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size)
 465{
 466	if (!WC_MODE_PMEM(wc))
 467		__set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY,
 468			  wc->dirty_bitmap);
 469}
 470
 471static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev);
 472
 473struct io_notify {
 474	struct dm_writecache *wc;
 475	struct completion c;
 476	atomic_t count;
 477};
 478
 479static void writecache_notify_io(unsigned long error, void *context)
 480{
 481	struct io_notify *endio = context;
 482
 483	if (unlikely(error != 0))
 484		writecache_error(endio->wc, -EIO, "error writing metadata");
 485	BUG_ON(atomic_read(&endio->count) <= 0);
 486	if (atomic_dec_and_test(&endio->count))
 487		complete(&endio->c);
 488}
 489
 490static void writecache_wait_for_ios(struct dm_writecache *wc, int direction)
 491{
 492	wait_event(wc->bio_in_progress_wait[direction],
 493		   !atomic_read(&wc->bio_in_progress[direction]));
 494}
 495
 496static void ssd_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
 497{
 498	struct dm_io_region region;
 499	struct dm_io_request req;
 500	struct io_notify endio = {
 501		wc,
 502		COMPLETION_INITIALIZER_ONSTACK(endio.c),
 503		ATOMIC_INIT(1),
 504	};
 505	unsigned bitmap_bits = wc->dirty_bitmap_size * 8;
 506	unsigned i = 0;
 507
 508	while (1) {
 509		unsigned j;
 510		i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i);
 511		if (unlikely(i == bitmap_bits))
 512			break;
 513		j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i);
 514
 515		region.bdev = wc->ssd_dev->bdev;
 516		region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
 517		region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
 518
 519		if (unlikely(region.sector >= wc->metadata_sectors))
 520			break;
 521		if (unlikely(region.sector + region.count > wc->metadata_sectors))
 522			region.count = wc->metadata_sectors - region.sector;
 523
 524		region.sector += wc->start_sector;
 525		atomic_inc(&endio.count);
 526		req.bi_opf = REQ_OP_WRITE | REQ_SYNC;
 
 527		req.mem.type = DM_IO_VMA;
 528		req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY;
 529		req.client = wc->dm_io;
 530		req.notify.fn = writecache_notify_io;
 531		req.notify.context = &endio;
 532
 533		/* writing via async dm-io (implied by notify.fn above) won't return an error */
 534	        (void) dm_io(&req, 1, &region, NULL);
 535		i = j;
 536	}
 537
 538	writecache_notify_io(0, &endio);
 539	wait_for_completion_io(&endio.c);
 540
 541	if (wait_for_ios)
 542		writecache_wait_for_ios(wc, WRITE);
 543
 544	writecache_disk_flush(wc, wc->ssd_dev);
 545
 546	memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size);
 547}
 548
 549static void ssd_commit_superblock(struct dm_writecache *wc)
 550{
 551	int r;
 552	struct dm_io_region region;
 553	struct dm_io_request req;
 554
 555	region.bdev = wc->ssd_dev->bdev;
 556	region.sector = 0;
 557	region.count = max(4096U, wc->block_size) >> SECTOR_SHIFT;
 558
 559	if (unlikely(region.sector + region.count > wc->metadata_sectors))
 560		region.count = wc->metadata_sectors - region.sector;
 561
 562	region.sector += wc->start_sector;
 563
 564	req.bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_FUA;
 565	req.mem.type = DM_IO_VMA;
 566	req.mem.ptr.vma = (char *)wc->memory_map;
 567	req.client = wc->dm_io;
 568	req.notify.fn = NULL;
 569	req.notify.context = NULL;
 570
 571	r = dm_io(&req, 1, &region, NULL);
 572	if (unlikely(r))
 573		writecache_error(wc, r, "error writing superblock");
 574}
 575
 576static void writecache_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
 577{
 578	if (WC_MODE_PMEM(wc))
 579		pmem_wmb();
 580	else
 581		ssd_commit_flushed(wc, wait_for_ios);
 582}
 583
 584static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev)
 585{
 586	int r;
 587	struct dm_io_region region;
 588	struct dm_io_request req;
 589
 590	region.bdev = dev->bdev;
 591	region.sector = 0;
 592	region.count = 0;
 593	req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
 
 594	req.mem.type = DM_IO_KMEM;
 595	req.mem.ptr.addr = NULL;
 596	req.client = wc->dm_io;
 597	req.notify.fn = NULL;
 598
 599	r = dm_io(&req, 1, &region, NULL);
 600	if (unlikely(r))
 601		writecache_error(wc, r, "error flushing metadata: %d", r);
 602}
 603
 
 
 
 
 
 
 604#define WFE_RETURN_FOLLOWING	1
 605#define WFE_LOWEST_SEQ		2
 606
 607static struct wc_entry *writecache_find_entry(struct dm_writecache *wc,
 608					      uint64_t block, int flags)
 609{
 610	struct wc_entry *e;
 611	struct rb_node *node = wc->tree.rb_node;
 612
 613	if (unlikely(!node))
 614		return NULL;
 615
 616	while (1) {
 617		e = container_of(node, struct wc_entry, rb_node);
 618		if (read_original_sector(wc, e) == block)
 619			break;
 620
 621		node = (read_original_sector(wc, e) >= block ?
 622			e->rb_node.rb_left : e->rb_node.rb_right);
 623		if (unlikely(!node)) {
 624			if (!(flags & WFE_RETURN_FOLLOWING))
 625				return NULL;
 626			if (read_original_sector(wc, e) >= block) {
 627				return e;
 628			} else {
 629				node = rb_next(&e->rb_node);
 630				if (unlikely(!node))
 631					return NULL;
 632				e = container_of(node, struct wc_entry, rb_node);
 633				return e;
 634			}
 635		}
 636	}
 637
 638	while (1) {
 639		struct wc_entry *e2;
 640		if (flags & WFE_LOWEST_SEQ)
 641			node = rb_prev(&e->rb_node);
 642		else
 643			node = rb_next(&e->rb_node);
 644		if (unlikely(!node))
 645			return e;
 646		e2 = container_of(node, struct wc_entry, rb_node);
 647		if (read_original_sector(wc, e2) != block)
 648			return e;
 649		e = e2;
 650	}
 651}
 652
 653static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins)
 654{
 655	struct wc_entry *e;
 656	struct rb_node **node = &wc->tree.rb_node, *parent = NULL;
 657
 658	while (*node) {
 659		e = container_of(*node, struct wc_entry, rb_node);
 660		parent = &e->rb_node;
 661		if (read_original_sector(wc, e) > read_original_sector(wc, ins))
 662			node = &parent->rb_left;
 663		else
 664			node = &parent->rb_right;
 665	}
 666	rb_link_node(&ins->rb_node, parent, node);
 667	rb_insert_color(&ins->rb_node, &wc->tree);
 668	list_add(&ins->lru, &wc->lru);
 669	ins->age = jiffies;
 670}
 671
 672static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e)
 673{
 674	list_del(&e->lru);
 675	rb_erase(&e->rb_node, &wc->tree);
 676}
 677
 678static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e)
 679{
 680	if (WC_MODE_SORT_FREELIST(wc)) {
 681		struct rb_node **node = &wc->freetree.rb_node, *parent = NULL;
 682		if (unlikely(!*node))
 683			wc->current_free = e;
 684		while (*node) {
 685			parent = *node;
 686			if (&e->rb_node < *node)
 687				node = &parent->rb_left;
 688			else
 689				node = &parent->rb_right;
 690		}
 691		rb_link_node(&e->rb_node, parent, node);
 692		rb_insert_color(&e->rb_node, &wc->freetree);
 693	} else {
 694		list_add_tail(&e->lru, &wc->freelist);
 695	}
 696	wc->freelist_size++;
 697}
 698
 699static inline void writecache_verify_watermark(struct dm_writecache *wc)
 700{
 701	if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark))
 702		queue_work(wc->writeback_wq, &wc->writeback_work);
 703}
 704
 705static void writecache_max_age_timer(struct timer_list *t)
 706{
 707	struct dm_writecache *wc = from_timer(wc, t, max_age_timer);
 708
 709	if (!dm_suspended(wc->ti) && !writecache_has_error(wc)) {
 710		queue_work(wc->writeback_wq, &wc->writeback_work);
 711		mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV);
 712	}
 713}
 714
 715static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc, sector_t expected_sector)
 716{
 717	struct wc_entry *e;
 718
 719	if (WC_MODE_SORT_FREELIST(wc)) {
 720		struct rb_node *next;
 721		if (unlikely(!wc->current_free))
 722			return NULL;
 723		e = wc->current_free;
 724		if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector))
 725			return NULL;
 726		next = rb_next(&e->rb_node);
 727		rb_erase(&e->rb_node, &wc->freetree);
 728		if (unlikely(!next))
 729			next = rb_first(&wc->freetree);
 730		wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL;
 731	} else {
 732		if (unlikely(list_empty(&wc->freelist)))
 733			return NULL;
 734		e = container_of(wc->freelist.next, struct wc_entry, lru);
 735		if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector))
 736			return NULL;
 737		list_del(&e->lru);
 738	}
 739	wc->freelist_size--;
 740
 741	writecache_verify_watermark(wc);
 742
 743	return e;
 744}
 745
 746static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e)
 747{
 748	writecache_unlink(wc, e);
 749	writecache_add_to_freelist(wc, e);
 750	clear_seq_count(wc, e);
 751	writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
 752	if (unlikely(waitqueue_active(&wc->freelist_wait)))
 753		wake_up(&wc->freelist_wait);
 754}
 755
 756static void writecache_wait_on_freelist(struct dm_writecache *wc)
 757{
 758	DEFINE_WAIT(wait);
 759
 760	prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE);
 761	wc_unlock(wc);
 762	io_schedule();
 763	finish_wait(&wc->freelist_wait, &wait);
 764	wc_lock(wc);
 765}
 766
 767static void writecache_poison_lists(struct dm_writecache *wc)
 768{
 769	/*
 770	 * Catch incorrect access to these values while the device is suspended.
 771	 */
 772	memset(&wc->tree, -1, sizeof wc->tree);
 773	wc->lru.next = LIST_POISON1;
 774	wc->lru.prev = LIST_POISON2;
 775	wc->freelist.next = LIST_POISON1;
 776	wc->freelist.prev = LIST_POISON2;
 777}
 778
 779static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e)
 780{
 781	writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
 782	if (WC_MODE_PMEM(wc))
 783		writecache_flush_region(wc, memory_data(wc, e), wc->block_size);
 784}
 785
 786static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e)
 787{
 788	return read_seq_count(wc, e) < wc->seq_count;
 789}
 790
 791static void writecache_flush(struct dm_writecache *wc)
 792{
 793	struct wc_entry *e, *e2;
 794	bool need_flush_after_free;
 795
 796	wc->uncommitted_blocks = 0;
 797	del_timer(&wc->autocommit_timer);
 798
 799	if (list_empty(&wc->lru))
 800		return;
 801
 802	e = container_of(wc->lru.next, struct wc_entry, lru);
 803	if (writecache_entry_is_committed(wc, e)) {
 804		if (wc->overwrote_committed) {
 805			writecache_wait_for_ios(wc, WRITE);
 806			writecache_disk_flush(wc, wc->ssd_dev);
 807			wc->overwrote_committed = false;
 808		}
 809		return;
 810	}
 811	while (1) {
 812		writecache_flush_entry(wc, e);
 813		if (unlikely(e->lru.next == &wc->lru))
 814			break;
 815		e2 = container_of(e->lru.next, struct wc_entry, lru);
 816		if (writecache_entry_is_committed(wc, e2))
 817			break;
 818		e = e2;
 819		cond_resched();
 820	}
 821	writecache_commit_flushed(wc, true);
 
 
 
 822
 823	wc->seq_count++;
 824	pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count));
 825	if (WC_MODE_PMEM(wc))
 826		writecache_commit_flushed(wc, false);
 827	else
 828		ssd_commit_superblock(wc);
 829
 830	wc->overwrote_committed = false;
 831
 832	need_flush_after_free = false;
 833	while (1) {
 834		/* Free another committed entry with lower seq-count */
 835		struct rb_node *rb_node = rb_prev(&e->rb_node);
 836
 837		if (rb_node) {
 838			e2 = container_of(rb_node, struct wc_entry, rb_node);
 839			if (read_original_sector(wc, e2) == read_original_sector(wc, e) &&
 840			    likely(!e2->write_in_progress)) {
 841				writecache_free_entry(wc, e2);
 842				need_flush_after_free = true;
 843			}
 844		}
 845		if (unlikely(e->lru.prev == &wc->lru))
 846			break;
 847		e = container_of(e->lru.prev, struct wc_entry, lru);
 848		cond_resched();
 849	}
 850
 851	if (need_flush_after_free)
 852		writecache_commit_flushed(wc, false);
 853}
 854
 855static void writecache_flush_work(struct work_struct *work)
 856{
 857	struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work);
 858
 859	wc_lock(wc);
 860	writecache_flush(wc);
 861	wc_unlock(wc);
 862}
 863
 864static void writecache_autocommit_timer(struct timer_list *t)
 865{
 866	struct dm_writecache *wc = from_timer(wc, t, autocommit_timer);
 867	if (!writecache_has_error(wc))
 868		queue_work(wc->writeback_wq, &wc->flush_work);
 869}
 870
 871static void writecache_schedule_autocommit(struct dm_writecache *wc)
 872{
 873	if (!timer_pending(&wc->autocommit_timer))
 874		mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies);
 875}
 876
 877static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end)
 878{
 879	struct wc_entry *e;
 880	bool discarded_something = false;
 881
 882	e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ);
 883	if (unlikely(!e))
 884		return;
 885
 886	while (read_original_sector(wc, e) < end) {
 887		struct rb_node *node = rb_next(&e->rb_node);
 888
 889		if (likely(!e->write_in_progress)) {
 890			if (!discarded_something) {
 891				if (!WC_MODE_PMEM(wc)) {
 892					writecache_wait_for_ios(wc, READ);
 893					writecache_wait_for_ios(wc, WRITE);
 894				}
 895				discarded_something = true;
 896			}
 897			if (!writecache_entry_is_committed(wc, e))
 898				wc->uncommitted_blocks--;
 899			writecache_free_entry(wc, e);
 900		}
 901
 902		if (unlikely(!node))
 903			break;
 904
 905		e = container_of(node, struct wc_entry, rb_node);
 906	}
 907
 908	if (discarded_something)
 909		writecache_commit_flushed(wc, false);
 910}
 911
 912static bool writecache_wait_for_writeback(struct dm_writecache *wc)
 913{
 914	if (wc->writeback_size) {
 915		writecache_wait_on_freelist(wc);
 916		return true;
 917	}
 918	return false;
 919}
 920
 921static void writecache_suspend(struct dm_target *ti)
 922{
 923	struct dm_writecache *wc = ti->private;
 924	bool flush_on_suspend;
 925
 926	del_timer_sync(&wc->autocommit_timer);
 927	del_timer_sync(&wc->max_age_timer);
 928
 929	wc_lock(wc);
 930	writecache_flush(wc);
 931	flush_on_suspend = wc->flush_on_suspend;
 932	if (flush_on_suspend) {
 933		wc->flush_on_suspend = false;
 934		wc->writeback_all++;
 935		queue_work(wc->writeback_wq, &wc->writeback_work);
 936	}
 937	wc_unlock(wc);
 938
 939	drain_workqueue(wc->writeback_wq);
 940
 941	wc_lock(wc);
 942	if (flush_on_suspend)
 943		wc->writeback_all--;
 944	while (writecache_wait_for_writeback(wc));
 945
 946	if (WC_MODE_PMEM(wc))
 947		persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
 948
 949	writecache_poison_lists(wc);
 950
 951	wc_unlock(wc);
 952}
 953
 954static int writecache_alloc_entries(struct dm_writecache *wc)
 955{
 956	size_t b;
 957
 958	if (wc->entries)
 959		return 0;
 960	wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks));
 961	if (!wc->entries)
 962		return -ENOMEM;
 963	for (b = 0; b < wc->n_blocks; b++) {
 964		struct wc_entry *e = &wc->entries[b];
 965		e->index = b;
 966		e->write_in_progress = false;
 967		cond_resched();
 968	}
 969
 970	return 0;
 971}
 972
 973static int writecache_read_metadata(struct dm_writecache *wc, sector_t n_sectors)
 974{
 975	struct dm_io_region region;
 976	struct dm_io_request req;
 977
 978	region.bdev = wc->ssd_dev->bdev;
 979	region.sector = wc->start_sector;
 980	region.count = n_sectors;
 981	req.bi_opf = REQ_OP_READ | REQ_SYNC;
 982	req.mem.type = DM_IO_VMA;
 983	req.mem.ptr.vma = (char *)wc->memory_map;
 984	req.client = wc->dm_io;
 985	req.notify.fn = NULL;
 986
 987	return dm_io(&req, 1, &region, NULL);
 988}
 989
 990static void writecache_resume(struct dm_target *ti)
 991{
 992	struct dm_writecache *wc = ti->private;
 993	size_t b;
 994	bool need_flush = false;
 995	__le64 sb_seq_count;
 996	int r;
 997
 998	wc_lock(wc);
 999
1000	wc->data_device_sectors = bdev_nr_sectors(wc->dev->bdev);
1001
1002	if (WC_MODE_PMEM(wc)) {
1003		persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size);
1004	} else {
1005		r = writecache_read_metadata(wc, wc->metadata_sectors);
1006		if (r) {
1007			size_t sb_entries_offset;
1008			writecache_error(wc, r, "unable to read metadata: %d", r);
1009			sb_entries_offset = offsetof(struct wc_memory_superblock, entries);
1010			memset((char *)wc->memory_map + sb_entries_offset, -1,
1011			       (wc->metadata_sectors << SECTOR_SHIFT) - sb_entries_offset);
1012		}
1013	}
1014
1015	wc->tree = RB_ROOT;
1016	INIT_LIST_HEAD(&wc->lru);
1017	if (WC_MODE_SORT_FREELIST(wc)) {
1018		wc->freetree = RB_ROOT;
1019		wc->current_free = NULL;
1020	} else {
1021		INIT_LIST_HEAD(&wc->freelist);
1022	}
1023	wc->freelist_size = 0;
1024
1025	r = copy_mc_to_kernel(&sb_seq_count, &sb(wc)->seq_count,
1026			      sizeof(uint64_t));
1027	if (r) {
1028		writecache_error(wc, r, "hardware memory error when reading superblock: %d", r);
1029		sb_seq_count = cpu_to_le64(0);
1030	}
1031	wc->seq_count = le64_to_cpu(sb_seq_count);
1032
1033#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
1034	for (b = 0; b < wc->n_blocks; b++) {
1035		struct wc_entry *e = &wc->entries[b];
1036		struct wc_memory_entry wme;
1037		if (writecache_has_error(wc)) {
1038			e->original_sector = -1;
1039			e->seq_count = -1;
1040			continue;
1041		}
1042		r = copy_mc_to_kernel(&wme, memory_entry(wc, e),
1043				      sizeof(struct wc_memory_entry));
1044		if (r) {
1045			writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d",
1046					 (unsigned long)b, r);
1047			e->original_sector = -1;
1048			e->seq_count = -1;
1049		} else {
1050			e->original_sector = le64_to_cpu(wme.original_sector);
1051			e->seq_count = le64_to_cpu(wme.seq_count);
1052		}
1053		cond_resched();
1054	}
1055#endif
1056	for (b = 0; b < wc->n_blocks; b++) {
1057		struct wc_entry *e = &wc->entries[b];
1058		if (!writecache_entry_is_committed(wc, e)) {
1059			if (read_seq_count(wc, e) != -1) {
1060erase_this:
1061				clear_seq_count(wc, e);
1062				need_flush = true;
1063			}
1064			writecache_add_to_freelist(wc, e);
1065		} else {
1066			struct wc_entry *old;
1067
1068			old = writecache_find_entry(wc, read_original_sector(wc, e), 0);
1069			if (!old) {
1070				writecache_insert_entry(wc, e);
1071			} else {
1072				if (read_seq_count(wc, old) == read_seq_count(wc, e)) {
1073					writecache_error(wc, -EINVAL,
1074						 "two identical entries, position %llu, sector %llu, sequence %llu",
1075						 (unsigned long long)b, (unsigned long long)read_original_sector(wc, e),
1076						 (unsigned long long)read_seq_count(wc, e));
1077				}
1078				if (read_seq_count(wc, old) > read_seq_count(wc, e)) {
1079					goto erase_this;
1080				} else {
1081					writecache_free_entry(wc, old);
1082					writecache_insert_entry(wc, e);
1083					need_flush = true;
1084				}
1085			}
1086		}
1087		cond_resched();
1088	}
1089
1090	if (need_flush) {
1091		writecache_flush_all_metadata(wc);
1092		writecache_commit_flushed(wc, false);
1093	}
1094
1095	writecache_verify_watermark(wc);
1096
1097	if (wc->max_age != MAX_AGE_UNSPECIFIED)
1098		mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV);
1099
1100	wc_unlock(wc);
1101}
1102
1103static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1104{
1105	if (argc != 1)
1106		return -EINVAL;
1107
1108	wc_lock(wc);
1109	if (dm_suspended(wc->ti)) {
1110		wc_unlock(wc);
1111		return -EBUSY;
1112	}
1113	if (writecache_has_error(wc)) {
1114		wc_unlock(wc);
1115		return -EIO;
1116	}
1117
1118	writecache_flush(wc);
1119	wc->writeback_all++;
1120	queue_work(wc->writeback_wq, &wc->writeback_work);
1121	wc_unlock(wc);
1122
1123	flush_workqueue(wc->writeback_wq);
1124
1125	wc_lock(wc);
1126	wc->writeback_all--;
1127	if (writecache_has_error(wc)) {
1128		wc_unlock(wc);
1129		return -EIO;
1130	}
1131	wc_unlock(wc);
1132
1133	return 0;
1134}
1135
1136static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1137{
1138	if (argc != 1)
1139		return -EINVAL;
1140
1141	wc_lock(wc);
1142	wc->flush_on_suspend = true;
1143	wc_unlock(wc);
1144
1145	return 0;
1146}
1147
1148static void activate_cleaner(struct dm_writecache *wc)
1149{
1150	wc->flush_on_suspend = true;
1151	wc->cleaner = true;
1152	wc->freelist_high_watermark = wc->n_blocks;
1153	wc->freelist_low_watermark = wc->n_blocks;
1154}
1155
1156static int process_cleaner_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1157{
1158	if (argc != 1)
1159		return -EINVAL;
1160
1161	wc_lock(wc);
1162	activate_cleaner(wc);
1163	if (!dm_suspended(wc->ti))
1164		writecache_verify_watermark(wc);
1165	wc_unlock(wc);
1166
1167	return 0;
1168}
1169
1170static int process_clear_stats_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1171{
1172	if (argc != 1)
1173		return -EINVAL;
1174
1175	wc_lock(wc);
1176	memset(&wc->stats, 0, sizeof wc->stats);
1177	wc_unlock(wc);
1178
1179	return 0;
1180}
1181
1182static int writecache_message(struct dm_target *ti, unsigned argc, char **argv,
1183			      char *result, unsigned maxlen)
1184{
1185	int r = -EINVAL;
1186	struct dm_writecache *wc = ti->private;
1187
1188	if (!strcasecmp(argv[0], "flush"))
1189		r = process_flush_mesg(argc, argv, wc);
1190	else if (!strcasecmp(argv[0], "flush_on_suspend"))
1191		r = process_flush_on_suspend_mesg(argc, argv, wc);
1192	else if (!strcasecmp(argv[0], "cleaner"))
1193		r = process_cleaner_mesg(argc, argv, wc);
1194	else if (!strcasecmp(argv[0], "clear_stats"))
1195		r = process_clear_stats_mesg(argc, argv, wc);
1196	else
1197		DMERR("unrecognised message received: %s", argv[0]);
1198
1199	return r;
1200}
1201
1202static void memcpy_flushcache_optimized(void *dest, void *source, size_t size)
1203{
1204	/*
1205	 * clflushopt performs better with block size 1024, 2048, 4096
1206	 * non-temporal stores perform better with block size 512
1207	 *
1208	 * block size   512             1024            2048            4096
1209	 * movnti       496 MB/s        642 MB/s        725 MB/s        744 MB/s
1210	 * clflushopt   373 MB/s        688 MB/s        1.1 GB/s        1.2 GB/s
1211	 *
1212	 * We see that movnti performs better for 512-byte blocks, and
1213	 * clflushopt performs better for 1024-byte and larger blocks. So, we
1214	 * prefer clflushopt for sizes >= 768.
1215	 *
1216	 * NOTE: this happens to be the case now (with dm-writecache's single
1217	 * threaded model) but re-evaluate this once memcpy_flushcache() is
1218	 * enabled to use movdir64b which might invalidate this performance
1219	 * advantage seen with cache-allocating-writes plus flushing.
1220	 */
1221#ifdef CONFIG_X86
1222	if (static_cpu_has(X86_FEATURE_CLFLUSHOPT) &&
1223	    likely(boot_cpu_data.x86_clflush_size == 64) &&
1224	    likely(size >= 768)) {
1225		do {
1226			memcpy((void *)dest, (void *)source, 64);
1227			clflushopt((void *)dest);
1228			dest += 64;
1229			source += 64;
1230			size -= 64;
1231		} while (size >= 64);
1232		return;
1233	}
1234#endif
1235	memcpy_flushcache(dest, source, size);
1236}
1237
1238static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data)
1239{
1240	void *buf;
 
1241	unsigned size;
1242	int rw = bio_data_dir(bio);
1243	unsigned remaining_size = wc->block_size;
1244
1245	do {
1246		struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter);
1247		buf = bvec_kmap_local(&bv);
1248		size = bv.bv_len;
1249		if (unlikely(size > remaining_size))
1250			size = remaining_size;
1251
1252		if (rw == READ) {
1253			int r;
1254			r = copy_mc_to_kernel(buf, data, size);
1255			flush_dcache_page(bio_page(bio));
1256			if (unlikely(r)) {
1257				writecache_error(wc, r, "hardware memory error when reading data: %d", r);
1258				bio->bi_status = BLK_STS_IOERR;
1259			}
1260		} else {
1261			flush_dcache_page(bio_page(bio));
1262			memcpy_flushcache_optimized(data, buf, size);
1263		}
1264
1265		kunmap_local(buf);
1266
1267		data = (char *)data + size;
1268		remaining_size -= size;
1269		bio_advance(bio, size);
1270	} while (unlikely(remaining_size));
1271}
1272
1273static int writecache_flush_thread(void *data)
1274{
1275	struct dm_writecache *wc = data;
1276
1277	while (1) {
1278		struct bio *bio;
1279
1280		wc_lock(wc);
1281		bio = bio_list_pop(&wc->flush_list);
1282		if (!bio) {
1283			set_current_state(TASK_INTERRUPTIBLE);
1284			wc_unlock(wc);
1285
1286			if (unlikely(kthread_should_stop())) {
1287				set_current_state(TASK_RUNNING);
1288				break;
1289			}
1290
1291			schedule();
1292			continue;
1293		}
1294
1295		if (bio_op(bio) == REQ_OP_DISCARD) {
1296			writecache_discard(wc, bio->bi_iter.bi_sector,
1297					   bio_end_sector(bio));
1298			wc_unlock(wc);
1299			bio_set_dev(bio, wc->dev->bdev);
1300			submit_bio_noacct(bio);
1301		} else {
1302			writecache_flush(wc);
1303			wc_unlock(wc);
1304			if (writecache_has_error(wc))
1305				bio->bi_status = BLK_STS_IOERR;
1306			bio_endio(bio);
1307		}
1308	}
1309
1310	return 0;
1311}
1312
1313static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio)
1314{
1315	if (bio_list_empty(&wc->flush_list))
1316		wake_up_process(wc->flush_thread);
1317	bio_list_add(&wc->flush_list, bio);
1318}
1319
1320enum wc_map_op {
1321	WC_MAP_SUBMIT,
1322	WC_MAP_REMAP,
1323	WC_MAP_REMAP_ORIGIN,
1324	WC_MAP_RETURN,
1325	WC_MAP_ERROR,
1326};
1327
1328static void writecache_map_remap_origin(struct dm_writecache *wc, struct bio *bio,
1329					struct wc_entry *e)
1330{
1331	if (e) {
1332		sector_t next_boundary =
1333			read_original_sector(wc, e) - bio->bi_iter.bi_sector;
1334		if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT)
1335			dm_accept_partial_bio(bio, next_boundary);
1336	}
1337}
1338
1339static enum wc_map_op writecache_map_read(struct dm_writecache *wc, struct bio *bio)
1340{
1341	enum wc_map_op map_op;
1342	struct wc_entry *e;
1343
1344read_next_block:
1345	wc->stats.reads++;
1346	e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1347	if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) {
1348		wc->stats.read_hits++;
1349		if (WC_MODE_PMEM(wc)) {
1350			bio_copy_block(wc, bio, memory_data(wc, e));
1351			if (bio->bi_iter.bi_size)
1352				goto read_next_block;
1353			map_op = WC_MAP_SUBMIT;
1354		} else {
1355			dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
1356			bio_set_dev(bio, wc->ssd_dev->bdev);
1357			bio->bi_iter.bi_sector = cache_sector(wc, e);
1358			if (!writecache_entry_is_committed(wc, e))
1359				writecache_wait_for_ios(wc, WRITE);
1360			map_op = WC_MAP_REMAP;
1361		}
1362	} else {
1363		writecache_map_remap_origin(wc, bio, e);
1364		wc->stats.reads += (bio->bi_iter.bi_size - wc->block_size) >> wc->block_size_bits;
1365		map_op = WC_MAP_REMAP_ORIGIN;
1366	}
1367
1368	return map_op;
1369}
1370
1371static void writecache_bio_copy_ssd(struct dm_writecache *wc, struct bio *bio,
1372				    struct wc_entry *e, bool search_used)
1373{
1374	unsigned bio_size = wc->block_size;
1375	sector_t start_cache_sec = cache_sector(wc, e);
1376	sector_t current_cache_sec = start_cache_sec + (bio_size >> SECTOR_SHIFT);
1377
1378	while (bio_size < bio->bi_iter.bi_size) {
1379		if (!search_used) {
1380			struct wc_entry *f = writecache_pop_from_freelist(wc, current_cache_sec);
1381			if (!f)
1382				break;
1383			write_original_sector_seq_count(wc, f, bio->bi_iter.bi_sector +
1384							(bio_size >> SECTOR_SHIFT), wc->seq_count);
1385			writecache_insert_entry(wc, f);
1386			wc->uncommitted_blocks++;
1387		} else {
1388			struct wc_entry *f;
1389			struct rb_node *next = rb_next(&e->rb_node);
1390			if (!next)
1391				break;
1392			f = container_of(next, struct wc_entry, rb_node);
1393			if (f != e + 1)
1394				break;
1395			if (read_original_sector(wc, f) !=
1396			    read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
1397				break;
1398			if (unlikely(f->write_in_progress))
1399				break;
1400			if (writecache_entry_is_committed(wc, f))
1401				wc->overwrote_committed = true;
1402			e = f;
1403		}
1404		bio_size += wc->block_size;
1405		current_cache_sec += wc->block_size >> SECTOR_SHIFT;
1406	}
1407
1408	bio_set_dev(bio, wc->ssd_dev->bdev);
1409	bio->bi_iter.bi_sector = start_cache_sec;
1410	dm_accept_partial_bio(bio, bio_size >> SECTOR_SHIFT);
1411
1412	wc->stats.writes += bio->bi_iter.bi_size >> wc->block_size_bits;
1413	wc->stats.writes_allocate += (bio->bi_iter.bi_size - wc->block_size) >> wc->block_size_bits;
1414
1415	if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) {
1416		wc->uncommitted_blocks = 0;
1417		queue_work(wc->writeback_wq, &wc->flush_work);
1418	} else {
1419		writecache_schedule_autocommit(wc);
1420	}
1421}
1422
1423static enum wc_map_op writecache_map_write(struct dm_writecache *wc, struct bio *bio)
1424{
1425	struct wc_entry *e;
1426
1427	do {
1428		bool found_entry = false;
1429		bool search_used = false;
1430		if (writecache_has_error(wc)) {
1431			wc->stats.writes += bio->bi_iter.bi_size >> wc->block_size_bits;
1432			return WC_MAP_ERROR;
1433		}
1434		e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0);
1435		if (e) {
1436			if (!writecache_entry_is_committed(wc, e)) {
1437				wc->stats.write_hits_uncommitted++;
1438				search_used = true;
1439				goto bio_copy;
1440			}
1441			wc->stats.write_hits_committed++;
1442			if (!WC_MODE_PMEM(wc) && !e->write_in_progress) {
1443				wc->overwrote_committed = true;
1444				search_used = true;
1445				goto bio_copy;
1446			}
1447			found_entry = true;
1448		} else {
1449			if (unlikely(wc->cleaner) ||
1450			    (wc->metadata_only && !(bio->bi_opf & REQ_META)))
1451				goto direct_write;
1452		}
1453		e = writecache_pop_from_freelist(wc, (sector_t)-1);
1454		if (unlikely(!e)) {
1455			if (!WC_MODE_PMEM(wc) && !found_entry) {
1456direct_write:
1457				e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1458				writecache_map_remap_origin(wc, bio, e);
1459				wc->stats.writes_around += bio->bi_iter.bi_size >> wc->block_size_bits;
1460				wc->stats.writes += bio->bi_iter.bi_size >> wc->block_size_bits;
1461				return WC_MAP_REMAP_ORIGIN;
1462			}
1463			wc->stats.writes_blocked_on_freelist++;
1464			writecache_wait_on_freelist(wc);
1465			continue;
1466		}
1467		write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count);
1468		writecache_insert_entry(wc, e);
1469		wc->uncommitted_blocks++;
1470		wc->stats.writes_allocate++;
1471bio_copy:
1472		if (WC_MODE_PMEM(wc)) {
1473			bio_copy_block(wc, bio, memory_data(wc, e));
1474			wc->stats.writes++;
1475		} else {
1476			writecache_bio_copy_ssd(wc, bio, e, search_used);
1477			return WC_MAP_REMAP;
1478		}
1479	} while (bio->bi_iter.bi_size);
1480
1481	if (unlikely(bio->bi_opf & REQ_FUA || wc->uncommitted_blocks >= wc->autocommit_blocks))
1482		writecache_flush(wc);
1483	else
1484		writecache_schedule_autocommit(wc);
1485
1486	return WC_MAP_SUBMIT;
1487}
1488
1489static enum wc_map_op writecache_map_flush(struct dm_writecache *wc, struct bio *bio)
1490{
1491	if (writecache_has_error(wc))
1492		return WC_MAP_ERROR;
1493
1494	if (WC_MODE_PMEM(wc)) {
1495		wc->stats.flushes++;
1496		writecache_flush(wc);
1497		if (writecache_has_error(wc))
1498			return WC_MAP_ERROR;
1499		else if (unlikely(wc->cleaner) || unlikely(wc->metadata_only))
1500			return WC_MAP_REMAP_ORIGIN;
1501		return WC_MAP_SUBMIT;
1502	}
1503	/* SSD: */
1504	if (dm_bio_get_target_bio_nr(bio))
1505		return WC_MAP_REMAP_ORIGIN;
1506	wc->stats.flushes++;
1507	writecache_offload_bio(wc, bio);
1508	return WC_MAP_RETURN;
1509}
1510
1511static enum wc_map_op writecache_map_discard(struct dm_writecache *wc, struct bio *bio)
1512{
1513	wc->stats.discards += bio->bi_iter.bi_size >> wc->block_size_bits;
1514
1515	if (writecache_has_error(wc))
1516		return WC_MAP_ERROR;
1517
1518	if (WC_MODE_PMEM(wc)) {
1519		writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio));
1520		return WC_MAP_REMAP_ORIGIN;
1521	}
1522	/* SSD: */
1523	writecache_offload_bio(wc, bio);
1524	return WC_MAP_RETURN;
1525}
1526
1527static int writecache_map(struct dm_target *ti, struct bio *bio)
1528{
 
1529	struct dm_writecache *wc = ti->private;
1530	enum wc_map_op map_op;
1531
1532	bio->bi_private = NULL;
1533
1534	wc_lock(wc);
1535
1536	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1537		map_op = writecache_map_flush(wc, bio);
1538		goto done;
 
 
 
 
 
 
 
 
 
1539	}
1540
1541	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1542
1543	if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
1544				(wc->block_size / 512 - 1)) != 0)) {
1545		DMERR("I/O is not aligned, sector %llu, size %u, block size %u",
1546		      (unsigned long long)bio->bi_iter.bi_sector,
1547		      bio->bi_iter.bi_size, wc->block_size);
1548		map_op = WC_MAP_ERROR;
1549		goto done;
1550	}
1551
1552	if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
1553		map_op = writecache_map_discard(wc, bio);
1554		goto done;
 
 
 
 
 
 
 
1555	}
1556
1557	if (bio_data_dir(bio) == READ)
1558		map_op = writecache_map_read(wc, bio);
1559	else
1560		map_op = writecache_map_write(wc, bio);
1561done:
1562	switch (map_op) {
1563	case WC_MAP_REMAP_ORIGIN:
1564		if (likely(wc->pause != 0)) {
1565			if (bio_op(bio) == REQ_OP_WRITE) {
1566				dm_iot_io_begin(&wc->iot, 1);
1567				bio->bi_private = (void *)2;
 
 
 
 
 
1568			}
 
 
 
 
 
 
 
 
 
1569		}
1570		bio_set_dev(bio, wc->dev->bdev);
1571		wc_unlock(wc);
1572		return DM_MAPIO_REMAPPED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1573
1574	case WC_MAP_REMAP:
1575		/* make sure that writecache_end_io decrements bio_in_progress: */
1576		bio->bi_private = (void *)1;
1577		atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]);
1578		wc_unlock(wc);
1579		return DM_MAPIO_REMAPPED;
1580
1581	case WC_MAP_SUBMIT:
1582		wc_unlock(wc);
1583		bio_endio(bio);
1584		return DM_MAPIO_SUBMITTED;
1585
1586	case WC_MAP_RETURN:
1587		wc_unlock(wc);
1588		return DM_MAPIO_SUBMITTED;
 
 
 
1589
1590	case WC_MAP_ERROR:
1591		wc_unlock(wc);
1592		bio_io_error(bio);
1593		return DM_MAPIO_SUBMITTED;
1594
1595	default:
1596		BUG();
1597		wc_unlock(wc);
1598		return DM_MAPIO_KILL;
1599	}
 
 
 
1600}
1601
1602static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
1603{
1604	struct dm_writecache *wc = ti->private;
1605
1606	if (bio->bi_private == (void *)1) {
1607		int dir = bio_data_dir(bio);
1608		if (atomic_dec_and_test(&wc->bio_in_progress[dir]))
1609			if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir])))
1610				wake_up(&wc->bio_in_progress_wait[dir]);
1611	} else if (bio->bi_private == (void *)2) {
1612		dm_iot_io_end(&wc->iot, 1);
1613	}
1614	return 0;
1615}
1616
1617static int writecache_iterate_devices(struct dm_target *ti,
1618				      iterate_devices_callout_fn fn, void *data)
1619{
1620	struct dm_writecache *wc = ti->private;
1621
1622	return fn(ti, wc->dev, 0, ti->len, data);
1623}
1624
1625static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits)
1626{
1627	struct dm_writecache *wc = ti->private;
1628
1629	if (limits->logical_block_size < wc->block_size)
1630		limits->logical_block_size = wc->block_size;
1631
1632	if (limits->physical_block_size < wc->block_size)
1633		limits->physical_block_size = wc->block_size;
1634
1635	if (limits->io_min < wc->block_size)
1636		limits->io_min = wc->block_size;
1637}
1638
1639
1640static void writecache_writeback_endio(struct bio *bio)
1641{
1642	struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio);
1643	struct dm_writecache *wc = wb->wc;
1644	unsigned long flags;
1645
1646	raw_spin_lock_irqsave(&wc->endio_list_lock, flags);
1647	if (unlikely(list_empty(&wc->endio_list)))
1648		wake_up_process(wc->endio_thread);
1649	list_add_tail(&wb->endio_entry, &wc->endio_list);
1650	raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags);
1651}
1652
1653static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr)
1654{
1655	struct copy_struct *c = ptr;
1656	struct dm_writecache *wc = c->wc;
1657
1658	c->error = likely(!(read_err | write_err)) ? 0 : -EIO;
1659
1660	raw_spin_lock_irq(&wc->endio_list_lock);
1661	if (unlikely(list_empty(&wc->endio_list)))
1662		wake_up_process(wc->endio_thread);
1663	list_add_tail(&c->endio_entry, &wc->endio_list);
1664	raw_spin_unlock_irq(&wc->endio_list_lock);
1665}
1666
1667static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list)
1668{
1669	unsigned i;
1670	struct writeback_struct *wb;
1671	struct wc_entry *e;
1672	unsigned long n_walked = 0;
1673
1674	do {
1675		wb = list_entry(list->next, struct writeback_struct, endio_entry);
1676		list_del(&wb->endio_entry);
1677
1678		if (unlikely(wb->bio.bi_status != BLK_STS_OK))
1679			writecache_error(wc, blk_status_to_errno(wb->bio.bi_status),
1680					"write error %d", wb->bio.bi_status);
1681		i = 0;
1682		do {
1683			e = wb->wc_list[i];
1684			BUG_ON(!e->write_in_progress);
1685			e->write_in_progress = false;
1686			INIT_LIST_HEAD(&e->lru);
1687			if (!writecache_has_error(wc))
1688				writecache_free_entry(wc, e);
1689			BUG_ON(!wc->writeback_size);
1690			wc->writeback_size--;
1691			n_walked++;
1692			if (unlikely(n_walked >= ENDIO_LATENCY)) {
1693				writecache_commit_flushed(wc, false);
1694				wc_unlock(wc);
1695				wc_lock(wc);
1696				n_walked = 0;
1697			}
1698		} while (++i < wb->wc_list_n);
1699
1700		if (wb->wc_list != wb->wc_list_inline)
1701			kfree(wb->wc_list);
1702		bio_put(&wb->bio);
1703	} while (!list_empty(list));
1704}
1705
1706static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list)
1707{
1708	struct copy_struct *c;
1709	struct wc_entry *e;
1710
1711	do {
1712		c = list_entry(list->next, struct copy_struct, endio_entry);
1713		list_del(&c->endio_entry);
1714
1715		if (unlikely(c->error))
1716			writecache_error(wc, c->error, "copy error");
1717
1718		e = c->e;
1719		do {
1720			BUG_ON(!e->write_in_progress);
1721			e->write_in_progress = false;
1722			INIT_LIST_HEAD(&e->lru);
1723			if (!writecache_has_error(wc))
1724				writecache_free_entry(wc, e);
1725
1726			BUG_ON(!wc->writeback_size);
1727			wc->writeback_size--;
1728			e++;
1729		} while (--c->n_entries);
1730		mempool_free(c, &wc->copy_pool);
1731	} while (!list_empty(list));
1732}
1733
1734static int writecache_endio_thread(void *data)
1735{
1736	struct dm_writecache *wc = data;
1737
1738	while (1) {
1739		struct list_head list;
1740
1741		raw_spin_lock_irq(&wc->endio_list_lock);
1742		if (!list_empty(&wc->endio_list))
1743			goto pop_from_list;
1744		set_current_state(TASK_INTERRUPTIBLE);
1745		raw_spin_unlock_irq(&wc->endio_list_lock);
1746
1747		if (unlikely(kthread_should_stop())) {
1748			set_current_state(TASK_RUNNING);
1749			break;
1750		}
1751
1752		schedule();
1753
1754		continue;
1755
1756pop_from_list:
1757		list = wc->endio_list;
1758		list.next->prev = list.prev->next = &list;
1759		INIT_LIST_HEAD(&wc->endio_list);
1760		raw_spin_unlock_irq(&wc->endio_list_lock);
1761
1762		if (!WC_MODE_FUA(wc))
1763			writecache_disk_flush(wc, wc->dev);
1764
1765		wc_lock(wc);
1766
1767		if (WC_MODE_PMEM(wc)) {
1768			__writecache_endio_pmem(wc, &list);
1769		} else {
1770			__writecache_endio_ssd(wc, &list);
1771			writecache_wait_for_ios(wc, READ);
1772		}
1773
1774		writecache_commit_flushed(wc, false);
1775
1776		wc_unlock(wc);
1777	}
1778
1779	return 0;
1780}
1781
1782static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e)
1783{
1784	struct dm_writecache *wc = wb->wc;
1785	unsigned block_size = wc->block_size;
1786	void *address = memory_data(wc, e);
1787
1788	persistent_memory_flush_cache(address, block_size);
1789
1790	if (unlikely(bio_end_sector(&wb->bio) >= wc->data_device_sectors))
1791		return true;
1792
1793	return bio_add_page(&wb->bio, persistent_memory_page(address),
1794			    block_size, persistent_memory_page_offset(address)) != 0;
1795}
1796
1797struct writeback_list {
1798	struct list_head list;
1799	size_t size;
1800};
1801
1802static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl)
1803{
1804	if (unlikely(wc->max_writeback_jobs)) {
1805		if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) {
1806			wc_lock(wc);
1807			while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs)
1808				writecache_wait_on_freelist(wc);
1809			wc_unlock(wc);
1810		}
1811	}
1812	cond_resched();
1813}
1814
1815static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl)
1816{
1817	struct wc_entry *e, *f;
1818	struct bio *bio;
1819	struct writeback_struct *wb;
1820	unsigned max_pages;
1821
1822	while (wbl->size) {
1823		wbl->size--;
1824		e = container_of(wbl->list.prev, struct wc_entry, lru);
1825		list_del(&e->lru);
1826
1827		max_pages = e->wc_list_contiguous;
1828
1829		bio = bio_alloc_bioset(wc->dev->bdev, max_pages, REQ_OP_WRITE,
1830				       GFP_NOIO, &wc->bio_set);
1831		wb = container_of(bio, struct writeback_struct, bio);
1832		wb->wc = wc;
1833		bio->bi_end_io = writecache_writeback_endio;
 
1834		bio->bi_iter.bi_sector = read_original_sector(wc, e);
1835		if (max_pages <= WB_LIST_INLINE ||
1836		    unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *),
1837							   GFP_NOIO | __GFP_NORETRY |
1838							   __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
1839			wb->wc_list = wb->wc_list_inline;
1840			max_pages = WB_LIST_INLINE;
1841		}
1842
1843		BUG_ON(!wc_add_block(wb, e));
1844
1845		wb->wc_list[0] = e;
1846		wb->wc_list_n = 1;
1847
1848		while (wbl->size && wb->wc_list_n < max_pages) {
1849			f = container_of(wbl->list.prev, struct wc_entry, lru);
1850			if (read_original_sector(wc, f) !=
1851			    read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
1852				break;
1853			if (!wc_add_block(wb, f))
1854				break;
1855			wbl->size--;
1856			list_del(&f->lru);
1857			wb->wc_list[wb->wc_list_n++] = f;
1858			e = f;
1859		}
1860		if (WC_MODE_FUA(wc))
1861			bio->bi_opf |= REQ_FUA;
1862		if (writecache_has_error(wc)) {
1863			bio->bi_status = BLK_STS_IOERR;
1864			bio_endio(bio);
1865		} else if (unlikely(!bio_sectors(bio))) {
1866			bio->bi_status = BLK_STS_OK;
1867			bio_endio(bio);
1868		} else {
1869			submit_bio(bio);
1870		}
1871
1872		__writeback_throttle(wc, wbl);
1873	}
1874}
1875
1876static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl)
1877{
1878	struct wc_entry *e, *f;
1879	struct dm_io_region from, to;
1880	struct copy_struct *c;
1881
1882	while (wbl->size) {
1883		unsigned n_sectors;
1884
1885		wbl->size--;
1886		e = container_of(wbl->list.prev, struct wc_entry, lru);
1887		list_del(&e->lru);
1888
1889		n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT);
1890
1891		from.bdev = wc->ssd_dev->bdev;
1892		from.sector = cache_sector(wc, e);
1893		from.count = n_sectors;
1894		to.bdev = wc->dev->bdev;
1895		to.sector = read_original_sector(wc, e);
1896		to.count = n_sectors;
1897
1898		c = mempool_alloc(&wc->copy_pool, GFP_NOIO);
1899		c->wc = wc;
1900		c->e = e;
1901		c->n_entries = e->wc_list_contiguous;
1902
1903		while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) {
1904			wbl->size--;
1905			f = container_of(wbl->list.prev, struct wc_entry, lru);
1906			BUG_ON(f != e + 1);
1907			list_del(&f->lru);
1908			e = f;
1909		}
1910
1911		if (unlikely(to.sector + to.count > wc->data_device_sectors)) {
1912			if (to.sector >= wc->data_device_sectors) {
1913				writecache_copy_endio(0, 0, c);
1914				continue;
1915			}
1916			from.count = to.count = wc->data_device_sectors - to.sector;
1917		}
1918
1919		dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c);
1920
1921		__writeback_throttle(wc, wbl);
1922	}
1923}
1924
1925static void writecache_writeback(struct work_struct *work)
1926{
1927	struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work);
1928	struct blk_plug plug;
1929	struct wc_entry *f, *g, *e = NULL;
1930	struct rb_node *node, *next_node;
1931	struct list_head skipped;
1932	struct writeback_list wbl;
1933	unsigned long n_walked;
1934
1935	if (!WC_MODE_PMEM(wc)) {
1936		/* Wait for any active kcopyd work on behalf of ssd writeback */
1937		dm_kcopyd_client_flush(wc->dm_kcopyd);
1938	}
1939
1940	if (likely(wc->pause != 0)) {
1941		while (1) {
1942			unsigned long idle;
1943			if (unlikely(wc->cleaner) || unlikely(wc->writeback_all) ||
1944			    unlikely(dm_suspended(wc->ti)))
1945				break;
1946			idle = dm_iot_idle_time(&wc->iot);
1947			if (idle >= wc->pause)
1948				break;
1949			idle = wc->pause - idle;
1950			if (idle > HZ)
1951				idle = HZ;
1952			schedule_timeout_idle(idle);
1953		}
1954	}
1955
1956	wc_lock(wc);
1957restart:
1958	if (writecache_has_error(wc)) {
1959		wc_unlock(wc);
1960		return;
1961	}
1962
1963	if (unlikely(wc->writeback_all)) {
1964		if (writecache_wait_for_writeback(wc))
1965			goto restart;
1966	}
1967
1968	if (wc->overwrote_committed) {
1969		writecache_wait_for_ios(wc, WRITE);
1970	}
1971
1972	n_walked = 0;
1973	INIT_LIST_HEAD(&skipped);
1974	INIT_LIST_HEAD(&wbl.list);
1975	wbl.size = 0;
1976	while (!list_empty(&wc->lru) &&
1977	       (wc->writeback_all ||
1978		wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark ||
1979		(jiffies - container_of(wc->lru.prev, struct wc_entry, lru)->age >=
1980		 wc->max_age - wc->max_age / MAX_AGE_DIV))) {
1981
1982		n_walked++;
1983		if (unlikely(n_walked > WRITEBACK_LATENCY) &&
1984		    likely(!wc->writeback_all)) {
1985			if (likely(!dm_suspended(wc->ti)))
1986				queue_work(wc->writeback_wq, &wc->writeback_work);
1987			break;
1988		}
1989
1990		if (unlikely(wc->writeback_all)) {
1991			if (unlikely(!e)) {
1992				writecache_flush(wc);
1993				e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node);
1994			} else
1995				e = g;
1996		} else
1997			e = container_of(wc->lru.prev, struct wc_entry, lru);
1998		BUG_ON(e->write_in_progress);
1999		if (unlikely(!writecache_entry_is_committed(wc, e))) {
2000			writecache_flush(wc);
2001		}
2002		node = rb_prev(&e->rb_node);
2003		if (node) {
2004			f = container_of(node, struct wc_entry, rb_node);
2005			if (unlikely(read_original_sector(wc, f) ==
2006				     read_original_sector(wc, e))) {
2007				BUG_ON(!f->write_in_progress);
2008				list_move(&e->lru, &skipped);
 
2009				cond_resched();
2010				continue;
2011			}
2012		}
2013		wc->writeback_size++;
2014		list_move(&e->lru, &wbl.list);
 
2015		wbl.size++;
2016		e->write_in_progress = true;
2017		e->wc_list_contiguous = 1;
2018
2019		f = e;
2020
2021		while (1) {
2022			next_node = rb_next(&f->rb_node);
2023			if (unlikely(!next_node))
2024				break;
2025			g = container_of(next_node, struct wc_entry, rb_node);
2026			if (unlikely(read_original_sector(wc, g) ==
2027			    read_original_sector(wc, f))) {
2028				f = g;
2029				continue;
2030			}
2031			if (read_original_sector(wc, g) !=
2032			    read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT))
2033				break;
2034			if (unlikely(g->write_in_progress))
2035				break;
2036			if (unlikely(!writecache_entry_is_committed(wc, g)))
2037				break;
2038
2039			if (!WC_MODE_PMEM(wc)) {
2040				if (g != f + 1)
2041					break;
2042			}
2043
2044			n_walked++;
2045			//if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all))
2046			//	break;
2047
2048			wc->writeback_size++;
2049			list_move(&g->lru, &wbl.list);
 
2050			wbl.size++;
2051			g->write_in_progress = true;
2052			g->wc_list_contiguous = BIO_MAX_VECS;
2053			f = g;
2054			e->wc_list_contiguous++;
2055			if (unlikely(e->wc_list_contiguous == BIO_MAX_VECS)) {
2056				if (unlikely(wc->writeback_all)) {
2057					next_node = rb_next(&f->rb_node);
2058					if (likely(next_node))
2059						g = container_of(next_node, struct wc_entry, rb_node);
2060				}
2061				break;
2062			}
2063		}
2064		cond_resched();
2065	}
2066
2067	if (!list_empty(&skipped)) {
2068		list_splice_tail(&skipped, &wc->lru);
2069		/*
2070		 * If we didn't do any progress, we must wait until some
2071		 * writeback finishes to avoid burning CPU in a loop
2072		 */
2073		if (unlikely(!wbl.size))
2074			writecache_wait_for_writeback(wc);
2075	}
2076
2077	wc_unlock(wc);
2078
2079	blk_start_plug(&plug);
2080
2081	if (WC_MODE_PMEM(wc))
2082		__writecache_writeback_pmem(wc, &wbl);
2083	else
2084		__writecache_writeback_ssd(wc, &wbl);
2085
2086	blk_finish_plug(&plug);
2087
2088	if (unlikely(wc->writeback_all)) {
2089		wc_lock(wc);
2090		while (writecache_wait_for_writeback(wc));
2091		wc_unlock(wc);
2092	}
2093}
2094
2095static int calculate_memory_size(uint64_t device_size, unsigned block_size,
2096				 size_t *n_blocks_p, size_t *n_metadata_blocks_p)
2097{
2098	uint64_t n_blocks, offset;
2099	struct wc_entry e;
2100
2101	n_blocks = device_size;
2102	do_div(n_blocks, block_size + sizeof(struct wc_memory_entry));
2103
2104	while (1) {
2105		if (!n_blocks)
2106			return -ENOSPC;
2107		/* Verify the following entries[n_blocks] won't overflow */
2108		if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) /
2109				 sizeof(struct wc_memory_entry)))
2110			return -EFBIG;
2111		offset = offsetof(struct wc_memory_superblock, entries[n_blocks]);
2112		offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1);
2113		if (offset + n_blocks * block_size <= device_size)
2114			break;
2115		n_blocks--;
2116	}
2117
2118	/* check if the bit field overflows */
2119	e.index = n_blocks;
2120	if (e.index != n_blocks)
2121		return -EFBIG;
2122
2123	if (n_blocks_p)
2124		*n_blocks_p = n_blocks;
2125	if (n_metadata_blocks_p)
2126		*n_metadata_blocks_p = offset >> __ffs(block_size);
2127	return 0;
2128}
2129
2130static int init_memory(struct dm_writecache *wc)
2131{
2132	size_t b;
2133	int r;
2134
2135	r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL);
2136	if (r)
2137		return r;
2138
2139	r = writecache_alloc_entries(wc);
2140	if (r)
2141		return r;
2142
2143	for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++)
2144		pmem_assign(sb(wc)->padding[b], cpu_to_le64(0));
2145	pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION));
2146	pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size));
2147	pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks));
2148	pmem_assign(sb(wc)->seq_count, cpu_to_le64(0));
2149
2150	for (b = 0; b < wc->n_blocks; b++) {
2151		write_original_sector_seq_count(wc, &wc->entries[b], -1, -1);
2152		cond_resched();
2153	}
2154
2155	writecache_flush_all_metadata(wc);
2156	writecache_commit_flushed(wc, false);
2157	pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC));
2158	writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic);
2159	writecache_commit_flushed(wc, false);
2160
2161	return 0;
2162}
2163
2164static void writecache_dtr(struct dm_target *ti)
2165{
2166	struct dm_writecache *wc = ti->private;
2167
2168	if (!wc)
2169		return;
2170
2171	if (wc->endio_thread)
2172		kthread_stop(wc->endio_thread);
2173
2174	if (wc->flush_thread)
2175		kthread_stop(wc->flush_thread);
2176
2177	bioset_exit(&wc->bio_set);
2178
2179	mempool_exit(&wc->copy_pool);
2180
2181	if (wc->writeback_wq)
2182		destroy_workqueue(wc->writeback_wq);
2183
2184	if (wc->dev)
2185		dm_put_device(ti, wc->dev);
2186
2187	if (wc->ssd_dev)
2188		dm_put_device(ti, wc->ssd_dev);
2189
2190	vfree(wc->entries);
 
2191
2192	if (wc->memory_map) {
2193		if (WC_MODE_PMEM(wc))
2194			persistent_memory_release(wc);
2195		else
2196			vfree(wc->memory_map);
2197	}
2198
2199	if (wc->dm_kcopyd)
2200		dm_kcopyd_client_destroy(wc->dm_kcopyd);
2201
2202	if (wc->dm_io)
2203		dm_io_client_destroy(wc->dm_io);
2204
2205	vfree(wc->dirty_bitmap);
 
2206
2207	kfree(wc);
2208}
2209
2210static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2211{
2212	struct dm_writecache *wc;
2213	struct dm_arg_set as;
2214	const char *string;
2215	unsigned opt_params;
2216	size_t offset, data_size;
2217	int i, r;
2218	char dummy;
2219	int high_wm_percent = HIGH_WATERMARK;
2220	int low_wm_percent = LOW_WATERMARK;
2221	uint64_t x;
2222	struct wc_memory_superblock s;
2223
2224	static struct dm_arg _args[] = {
2225		{0, 18, "Invalid number of feature args"},
2226	};
2227
2228	as.argc = argc;
2229	as.argv = argv;
2230
2231	wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL);
2232	if (!wc) {
2233		ti->error = "Cannot allocate writecache structure";
2234		r = -ENOMEM;
2235		goto bad;
2236	}
2237	ti->private = wc;
2238	wc->ti = ti;
2239
2240	mutex_init(&wc->lock);
2241	wc->max_age = MAX_AGE_UNSPECIFIED;
2242	writecache_poison_lists(wc);
2243	init_waitqueue_head(&wc->freelist_wait);
2244	timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0);
2245	timer_setup(&wc->max_age_timer, writecache_max_age_timer, 0);
2246
2247	for (i = 0; i < 2; i++) {
2248		atomic_set(&wc->bio_in_progress[i], 0);
2249		init_waitqueue_head(&wc->bio_in_progress_wait[i]);
2250	}
2251
2252	wc->dm_io = dm_io_client_create();
2253	if (IS_ERR(wc->dm_io)) {
2254		r = PTR_ERR(wc->dm_io);
2255		ti->error = "Unable to allocate dm-io client";
2256		wc->dm_io = NULL;
2257		goto bad;
2258	}
2259
2260	wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1);
2261	if (!wc->writeback_wq) {
2262		r = -ENOMEM;
2263		ti->error = "Could not allocate writeback workqueue";
2264		goto bad;
2265	}
2266	INIT_WORK(&wc->writeback_work, writecache_writeback);
2267	INIT_WORK(&wc->flush_work, writecache_flush_work);
2268
2269	dm_iot_init(&wc->iot);
2270
2271	raw_spin_lock_init(&wc->endio_list_lock);
2272	INIT_LIST_HEAD(&wc->endio_list);
2273	wc->endio_thread = kthread_run(writecache_endio_thread, wc, "writecache_endio");
2274	if (IS_ERR(wc->endio_thread)) {
2275		r = PTR_ERR(wc->endio_thread);
2276		wc->endio_thread = NULL;
2277		ti->error = "Couldn't spawn endio thread";
2278		goto bad;
2279	}
 
2280
2281	/*
2282	 * Parse the mode (pmem or ssd)
2283	 */
2284	string = dm_shift_arg(&as);
2285	if (!string)
2286		goto bad_arguments;
2287
2288	if (!strcasecmp(string, "s")) {
2289		wc->pmem_mode = false;
2290	} else if (!strcasecmp(string, "p")) {
2291#ifdef DM_WRITECACHE_HAS_PMEM
2292		wc->pmem_mode = true;
2293		wc->writeback_fua = true;
2294#else
2295		/*
2296		 * If the architecture doesn't support persistent memory or
2297		 * the kernel doesn't support any DAX drivers, this driver can
2298		 * only be used in SSD-only mode.
2299		 */
2300		r = -EOPNOTSUPP;
2301		ti->error = "Persistent memory or DAX not supported on this system";
2302		goto bad;
2303#endif
2304	} else {
2305		goto bad_arguments;
2306	}
2307
2308	if (WC_MODE_PMEM(wc)) {
2309		r = bioset_init(&wc->bio_set, BIO_POOL_SIZE,
2310				offsetof(struct writeback_struct, bio),
2311				BIOSET_NEED_BVECS);
2312		if (r) {
2313			ti->error = "Could not allocate bio set";
2314			goto bad;
2315		}
2316	} else {
2317		wc->pause = PAUSE_WRITEBACK;
2318		r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct));
2319		if (r) {
2320			ti->error = "Could not allocate mempool";
2321			goto bad;
2322		}
2323	}
2324
2325	/*
2326	 * Parse the origin data device
2327	 */
2328	string = dm_shift_arg(&as);
2329	if (!string)
2330		goto bad_arguments;
2331	r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev);
2332	if (r) {
2333		ti->error = "Origin data device lookup failed";
2334		goto bad;
2335	}
2336
2337	/*
2338	 * Parse cache data device (be it pmem or ssd)
2339	 */
2340	string = dm_shift_arg(&as);
2341	if (!string)
2342		goto bad_arguments;
2343
2344	r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev);
2345	if (r) {
2346		ti->error = "Cache data device lookup failed";
2347		goto bad;
2348	}
2349	wc->memory_map_size = bdev_nr_bytes(wc->ssd_dev->bdev);
2350
2351	/*
2352	 * Parse the cache block size
2353	 */
2354	string = dm_shift_arg(&as);
2355	if (!string)
2356		goto bad_arguments;
2357	if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 ||
2358	    wc->block_size < 512 || wc->block_size > PAGE_SIZE ||
2359	    (wc->block_size & (wc->block_size - 1))) {
2360		r = -EINVAL;
2361		ti->error = "Invalid block size";
2362		goto bad;
2363	}
2364	if (wc->block_size < bdev_logical_block_size(wc->dev->bdev) ||
2365	    wc->block_size < bdev_logical_block_size(wc->ssd_dev->bdev)) {
2366		r = -EINVAL;
2367		ti->error = "Block size is smaller than device logical block size";
2368		goto bad;
2369	}
2370	wc->block_size_bits = __ffs(wc->block_size);
2371
2372	wc->max_writeback_jobs = MAX_WRITEBACK_JOBS;
2373	wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM;
2374	wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC);
2375
2376	/*
2377	 * Parse optional arguments
2378	 */
2379	r = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2380	if (r)
2381		goto bad;
2382
2383	while (opt_params) {
2384		string = dm_shift_arg(&as), opt_params--;
2385		if (!strcasecmp(string, "start_sector") && opt_params >= 1) {
2386			unsigned long long start_sector;
2387			string = dm_shift_arg(&as), opt_params--;
2388			if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1)
2389				goto invalid_optional;
2390			wc->start_sector = start_sector;
2391			wc->start_sector_set = true;
2392			if (wc->start_sector != start_sector ||
2393			    wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT)
2394				goto invalid_optional;
2395		} else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) {
2396			string = dm_shift_arg(&as), opt_params--;
2397			if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1)
2398				goto invalid_optional;
2399			if (high_wm_percent < 0 || high_wm_percent > 100)
2400				goto invalid_optional;
2401			wc->high_wm_percent_value = high_wm_percent;
2402			wc->high_wm_percent_set = true;
2403		} else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) {
2404			string = dm_shift_arg(&as), opt_params--;
2405			if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1)
2406				goto invalid_optional;
2407			if (low_wm_percent < 0 || low_wm_percent > 100)
2408				goto invalid_optional;
2409			wc->low_wm_percent_value = low_wm_percent;
2410			wc->low_wm_percent_set = true;
2411		} else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) {
2412			string = dm_shift_arg(&as), opt_params--;
2413			if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1)
2414				goto invalid_optional;
2415			wc->max_writeback_jobs_set = true;
2416		} else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) {
2417			string = dm_shift_arg(&as), opt_params--;
2418			if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1)
2419				goto invalid_optional;
2420			wc->autocommit_blocks_set = true;
2421		} else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) {
2422			unsigned autocommit_msecs;
2423			string = dm_shift_arg(&as), opt_params--;
2424			if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1)
2425				goto invalid_optional;
2426			if (autocommit_msecs > 3600000)
2427				goto invalid_optional;
2428			wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs);
2429			wc->autocommit_time_value = autocommit_msecs;
2430			wc->autocommit_time_set = true;
2431		} else if (!strcasecmp(string, "max_age") && opt_params >= 1) {
2432			unsigned max_age_msecs;
2433			string = dm_shift_arg(&as), opt_params--;
2434			if (sscanf(string, "%u%c", &max_age_msecs, &dummy) != 1)
2435				goto invalid_optional;
2436			if (max_age_msecs > 86400000)
2437				goto invalid_optional;
2438			wc->max_age = msecs_to_jiffies(max_age_msecs);
2439			wc->max_age_set = true;
2440			wc->max_age_value = max_age_msecs;
2441		} else if (!strcasecmp(string, "cleaner")) {
2442			wc->cleaner_set = true;
2443			wc->cleaner = true;
2444		} else if (!strcasecmp(string, "fua")) {
2445			if (WC_MODE_PMEM(wc)) {
2446				wc->writeback_fua = true;
2447				wc->writeback_fua_set = true;
2448			} else goto invalid_optional;
2449		} else if (!strcasecmp(string, "nofua")) {
2450			if (WC_MODE_PMEM(wc)) {
2451				wc->writeback_fua = false;
2452				wc->writeback_fua_set = true;
2453			} else goto invalid_optional;
2454		} else if (!strcasecmp(string, "metadata_only")) {
2455			wc->metadata_only = true;
2456		} else if (!strcasecmp(string, "pause_writeback") && opt_params >= 1) {
2457			unsigned pause_msecs;
2458			if (WC_MODE_PMEM(wc))
2459				goto invalid_optional;
2460			string = dm_shift_arg(&as), opt_params--;
2461			if (sscanf(string, "%u%c", &pause_msecs, &dummy) != 1)
2462				goto invalid_optional;
2463			if (pause_msecs > 60000)
2464				goto invalid_optional;
2465			wc->pause = msecs_to_jiffies(pause_msecs);
2466			wc->pause_set = true;
2467			wc->pause_value = pause_msecs;
2468		} else {
2469invalid_optional:
2470			r = -EINVAL;
2471			ti->error = "Invalid optional argument";
2472			goto bad;
2473		}
2474	}
2475
2476	if (high_wm_percent < low_wm_percent) {
2477		r = -EINVAL;
2478		ti->error = "High watermark must be greater than or equal to low watermark";
2479		goto bad;
2480	}
2481
2482	if (WC_MODE_PMEM(wc)) {
2483		if (!dax_synchronous(wc->ssd_dev->dax_dev)) {
2484			r = -EOPNOTSUPP;
2485			ti->error = "Asynchronous persistent memory not supported as pmem cache";
2486			goto bad;
2487		}
2488
2489		r = persistent_memory_claim(wc);
2490		if (r) {
2491			ti->error = "Unable to map persistent memory for cache";
2492			goto bad;
2493		}
2494	} else {
 
 
2495		size_t n_blocks, n_metadata_blocks;
2496		uint64_t n_bitmap_bits;
2497
2498		wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT;
2499
2500		bio_list_init(&wc->flush_list);
2501		wc->flush_thread = kthread_run(writecache_flush_thread, wc, "dm_writecache_flush");
2502		if (IS_ERR(wc->flush_thread)) {
2503			r = PTR_ERR(wc->flush_thread);
2504			wc->flush_thread = NULL;
2505			ti->error = "Couldn't spawn flush thread";
2506			goto bad;
2507		}
 
2508
2509		r = calculate_memory_size(wc->memory_map_size, wc->block_size,
2510					  &n_blocks, &n_metadata_blocks);
2511		if (r) {
2512			ti->error = "Invalid device size";
2513			goto bad;
2514		}
2515
2516		n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) +
2517				 BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY;
2518		/* this is limitation of test_bit functions */
2519		if (n_bitmap_bits > 1U << 31) {
2520			r = -EFBIG;
2521			ti->error = "Invalid device size";
2522			goto bad;
2523		}
2524
2525		wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits);
2526		if (!wc->memory_map) {
2527			r = -ENOMEM;
2528			ti->error = "Unable to allocate memory for metadata";
2529			goto bad;
2530		}
2531
2532		wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2533		if (IS_ERR(wc->dm_kcopyd)) {
2534			r = PTR_ERR(wc->dm_kcopyd);
2535			ti->error = "Unable to allocate dm-kcopyd client";
2536			wc->dm_kcopyd = NULL;
2537			goto bad;
2538		}
2539
2540		wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT);
2541		wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) /
2542			BITS_PER_LONG * sizeof(unsigned long);
2543		wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size);
2544		if (!wc->dirty_bitmap) {
2545			r = -ENOMEM;
2546			ti->error = "Unable to allocate dirty bitmap";
2547			goto bad;
2548		}
2549
2550		r = writecache_read_metadata(wc, wc->block_size >> SECTOR_SHIFT);
 
 
 
 
 
 
 
 
 
 
2551		if (r) {
2552			ti->error = "Unable to read first block of metadata";
2553			goto bad;
2554		}
2555	}
2556
2557	r = copy_mc_to_kernel(&s, sb(wc), sizeof(struct wc_memory_superblock));
2558	if (r) {
2559		ti->error = "Hardware memory error when reading superblock";
2560		goto bad;
2561	}
2562	if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) {
2563		r = init_memory(wc);
2564		if (r) {
2565			ti->error = "Unable to initialize device";
2566			goto bad;
2567		}
2568		r = copy_mc_to_kernel(&s, sb(wc),
2569				      sizeof(struct wc_memory_superblock));
2570		if (r) {
2571			ti->error = "Hardware memory error when reading superblock";
2572			goto bad;
2573		}
2574	}
2575
2576	if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) {
2577		ti->error = "Invalid magic in the superblock";
2578		r = -EINVAL;
2579		goto bad;
2580	}
2581
2582	if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) {
2583		ti->error = "Invalid version in the superblock";
2584		r = -EINVAL;
2585		goto bad;
2586	}
2587
2588	if (le32_to_cpu(s.block_size) != wc->block_size) {
2589		ti->error = "Block size does not match superblock";
2590		r = -EINVAL;
2591		goto bad;
2592	}
2593
2594	wc->n_blocks = le64_to_cpu(s.n_blocks);
2595
2596	offset = wc->n_blocks * sizeof(struct wc_memory_entry);
2597	if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) {
2598overflow:
2599		ti->error = "Overflow in size calculation";
2600		r = -EINVAL;
2601		goto bad;
2602	}
2603	offset += sizeof(struct wc_memory_superblock);
2604	if (offset < sizeof(struct wc_memory_superblock))
2605		goto overflow;
2606	offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1);
2607	data_size = wc->n_blocks * (size_t)wc->block_size;
2608	if (!offset || (data_size / wc->block_size != wc->n_blocks) ||
2609	    (offset + data_size < offset))
2610		goto overflow;
2611	if (offset + data_size > wc->memory_map_size) {
2612		ti->error = "Memory area is too small";
2613		r = -EINVAL;
2614		goto bad;
2615	}
2616
2617	wc->metadata_sectors = offset >> SECTOR_SHIFT;
2618	wc->block_start = (char *)sb(wc) + offset;
2619
2620	x = (uint64_t)wc->n_blocks * (100 - high_wm_percent);
2621	x += 50;
2622	do_div(x, 100);
2623	wc->freelist_high_watermark = x;
2624	x = (uint64_t)wc->n_blocks * (100 - low_wm_percent);
2625	x += 50;
2626	do_div(x, 100);
2627	wc->freelist_low_watermark = x;
2628
2629	if (wc->cleaner)
2630		activate_cleaner(wc);
2631
2632	r = writecache_alloc_entries(wc);
2633	if (r) {
2634		ti->error = "Cannot allocate memory";
2635		goto bad;
2636	}
2637
2638	ti->num_flush_bios = WC_MODE_PMEM(wc) ? 1 : 2;
2639	ti->flush_supported = true;
2640	ti->num_discard_bios = 1;
2641
2642	if (WC_MODE_PMEM(wc))
2643		persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
2644
2645	return 0;
2646
2647bad_arguments:
2648	r = -EINVAL;
2649	ti->error = "Bad arguments";
2650bad:
2651	writecache_dtr(ti);
2652	return r;
2653}
2654
2655static void writecache_status(struct dm_target *ti, status_type_t type,
2656			      unsigned status_flags, char *result, unsigned maxlen)
2657{
2658	struct dm_writecache *wc = ti->private;
2659	unsigned extra_args;
2660	unsigned sz = 0;
 
2661
2662	switch (type) {
2663	case STATUSTYPE_INFO:
2664		DMEMIT("%ld %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu",
2665		       writecache_has_error(wc),
2666		       (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size,
2667		       (unsigned long long)wc->writeback_size,
2668		       wc->stats.reads,
2669		       wc->stats.read_hits,
2670		       wc->stats.writes,
2671		       wc->stats.write_hits_uncommitted,
2672		       wc->stats.write_hits_committed,
2673		       wc->stats.writes_around,
2674		       wc->stats.writes_allocate,
2675		       wc->stats.writes_blocked_on_freelist,
2676		       wc->stats.flushes,
2677		       wc->stats.discards);
2678		break;
2679	case STATUSTYPE_TABLE:
2680		DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's',
2681				wc->dev->name, wc->ssd_dev->name, wc->block_size);
2682		extra_args = 0;
2683		if (wc->start_sector_set)
2684			extra_args += 2;
2685		if (wc->high_wm_percent_set)
2686			extra_args += 2;
2687		if (wc->low_wm_percent_set)
2688			extra_args += 2;
2689		if (wc->max_writeback_jobs_set)
2690			extra_args += 2;
2691		if (wc->autocommit_blocks_set)
2692			extra_args += 2;
2693		if (wc->autocommit_time_set)
2694			extra_args += 2;
2695		if (wc->max_age_set)
2696			extra_args += 2;
2697		if (wc->cleaner_set)
2698			extra_args++;
2699		if (wc->writeback_fua_set)
2700			extra_args++;
2701		if (wc->metadata_only)
2702			extra_args++;
2703		if (wc->pause_set)
2704			extra_args += 2;
2705
2706		DMEMIT("%u", extra_args);
2707		if (wc->start_sector_set)
2708			DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector);
2709		if (wc->high_wm_percent_set)
2710			DMEMIT(" high_watermark %u", wc->high_wm_percent_value);
2711		if (wc->low_wm_percent_set)
2712			DMEMIT(" low_watermark %u", wc->low_wm_percent_value);
 
 
 
 
 
 
 
 
2713		if (wc->max_writeback_jobs_set)
2714			DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs);
2715		if (wc->autocommit_blocks_set)
2716			DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks);
2717		if (wc->autocommit_time_set)
2718			DMEMIT(" autocommit_time %u", wc->autocommit_time_value);
2719		if (wc->max_age_set)
2720			DMEMIT(" max_age %u", wc->max_age_value);
2721		if (wc->cleaner_set)
2722			DMEMIT(" cleaner");
2723		if (wc->writeback_fua_set)
2724			DMEMIT(" %sfua", wc->writeback_fua ? "" : "no");
2725		if (wc->metadata_only)
2726			DMEMIT(" metadata_only");
2727		if (wc->pause_set)
2728			DMEMIT(" pause_writeback %u", wc->pause_value);
2729		break;
2730	case STATUSTYPE_IMA:
2731		*result = '\0';
2732		break;
2733	}
2734}
2735
2736static struct target_type writecache_target = {
2737	.name			= "writecache",
2738	.version		= {1, 6, 0},
2739	.module			= THIS_MODULE,
2740	.ctr			= writecache_ctr,
2741	.dtr			= writecache_dtr,
2742	.status			= writecache_status,
2743	.postsuspend		= writecache_suspend,
2744	.resume			= writecache_resume,
2745	.message		= writecache_message,
2746	.map			= writecache_map,
2747	.end_io			= writecache_end_io,
2748	.iterate_devices	= writecache_iterate_devices,
2749	.io_hints		= writecache_io_hints,
2750};
2751
2752static int __init dm_writecache_init(void)
2753{
2754	int r;
2755
2756	r = dm_register_target(&writecache_target);
2757	if (r < 0) {
2758		DMERR("register failed %d", r);
2759		return r;
2760	}
2761
2762	return 0;
2763}
2764
2765static void __exit dm_writecache_exit(void)
2766{
2767	dm_unregister_target(&writecache_target);
2768}
2769
2770module_init(dm_writecache_init);
2771module_exit(dm_writecache_exit);
2772
2773MODULE_DESCRIPTION(DM_NAME " writecache target");
2774MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2775MODULE_LICENSE("GPL");
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2018 Red Hat. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include <linux/device-mapper.h>
   9#include <linux/module.h>
  10#include <linux/init.h>
  11#include <linux/vmalloc.h>
  12#include <linux/kthread.h>
  13#include <linux/dm-io.h>
  14#include <linux/dm-kcopyd.h>
  15#include <linux/dax.h>
  16#include <linux/pfn_t.h>
  17#include <linux/libnvdimm.h>
 
 
  18
  19#define DM_MSG_PREFIX "writecache"
  20
  21#define HIGH_WATERMARK			50
  22#define LOW_WATERMARK			45
  23#define MAX_WRITEBACK_JOBS		0
  24#define ENDIO_LATENCY			16
  25#define WRITEBACK_LATENCY		64
  26#define AUTOCOMMIT_BLOCKS_SSD		65536
  27#define AUTOCOMMIT_BLOCKS_PMEM		64
  28#define AUTOCOMMIT_MSEC			1000
 
 
 
  29
  30#define BITMAP_GRANULARITY	65536
  31#if BITMAP_GRANULARITY < PAGE_SIZE
  32#undef BITMAP_GRANULARITY
  33#define BITMAP_GRANULARITY	PAGE_SIZE
  34#endif
  35
  36#if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_DAX_DRIVER)
  37#define DM_WRITECACHE_HAS_PMEM
  38#endif
  39
  40#ifdef DM_WRITECACHE_HAS_PMEM
  41#define pmem_assign(dest, src)					\
  42do {								\
  43	typeof(dest) uniq = (src);				\
  44	memcpy_flushcache(&(dest), &uniq, sizeof(dest));	\
  45} while (0)
  46#else
  47#define pmem_assign(dest, src)	((dest) = (src))
  48#endif
  49
  50#if defined(__HAVE_ARCH_MEMCPY_MCSAFE) && defined(DM_WRITECACHE_HAS_PMEM)
  51#define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  52#endif
  53
  54#define MEMORY_SUPERBLOCK_MAGIC		0x23489321
  55#define MEMORY_SUPERBLOCK_VERSION	1
  56
  57struct wc_memory_entry {
  58	__le64 original_sector;
  59	__le64 seq_count;
  60};
  61
  62struct wc_memory_superblock {
  63	union {
  64		struct {
  65			__le32 magic;
  66			__le32 version;
  67			__le32 block_size;
  68			__le32 pad;
  69			__le64 n_blocks;
  70			__le64 seq_count;
  71		};
  72		__le64 padding[8];
  73	};
  74	struct wc_memory_entry entries[0];
  75};
  76
  77struct wc_entry {
  78	struct rb_node rb_node;
  79	struct list_head lru;
  80	unsigned short wc_list_contiguous;
  81	bool write_in_progress
  82#if BITS_PER_LONG == 64
  83		:1
  84#endif
  85	;
  86	unsigned long index
  87#if BITS_PER_LONG == 64
  88		:47
  89#endif
  90	;
 
  91#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  92	uint64_t original_sector;
  93	uint64_t seq_count;
  94#endif
  95};
  96
  97#ifdef DM_WRITECACHE_HAS_PMEM
  98#define WC_MODE_PMEM(wc)			((wc)->pmem_mode)
  99#define WC_MODE_FUA(wc)				((wc)->writeback_fua)
 100#else
 101#define WC_MODE_PMEM(wc)			false
 102#define WC_MODE_FUA(wc)				false
 103#endif
 104#define WC_MODE_SORT_FREELIST(wc)		(!WC_MODE_PMEM(wc))
 105
 106struct dm_writecache {
 107	struct mutex lock;
 108	struct list_head lru;
 109	union {
 110		struct list_head freelist;
 111		struct {
 112			struct rb_root freetree;
 113			struct wc_entry *current_free;
 114		};
 115	};
 116	struct rb_root tree;
 117
 118	size_t freelist_size;
 119	size_t writeback_size;
 120	size_t freelist_high_watermark;
 121	size_t freelist_low_watermark;
 
 
 122
 123	unsigned uncommitted_blocks;
 124	unsigned autocommit_blocks;
 125	unsigned max_writeback_jobs;
 126
 127	int error;
 128
 129	unsigned long autocommit_jiffies;
 130	struct timer_list autocommit_timer;
 131	struct wait_queue_head freelist_wait;
 132
 
 
 133	atomic_t bio_in_progress[2];
 134	struct wait_queue_head bio_in_progress_wait[2];
 135
 136	struct dm_target *ti;
 137	struct dm_dev *dev;
 138	struct dm_dev *ssd_dev;
 139	sector_t start_sector;
 140	void *memory_map;
 141	uint64_t memory_map_size;
 142	size_t metadata_sectors;
 143	size_t n_blocks;
 144	uint64_t seq_count;
 
 145	void *block_start;
 146	struct wc_entry *entries;
 147	unsigned block_size;
 148	unsigned char block_size_bits;
 149
 150	bool pmem_mode:1;
 151	bool writeback_fua:1;
 152
 153	bool overwrote_committed:1;
 154	bool memory_vmapped:1;
 155
 
 156	bool high_wm_percent_set:1;
 157	bool low_wm_percent_set:1;
 158	bool max_writeback_jobs_set:1;
 159	bool autocommit_blocks_set:1;
 160	bool autocommit_time_set:1;
 
 161	bool writeback_fua_set:1;
 162	bool flush_on_suspend:1;
 
 
 
 
 
 
 
 
 
 
 163
 164	unsigned writeback_all;
 165	struct workqueue_struct *writeback_wq;
 166	struct work_struct writeback_work;
 167	struct work_struct flush_work;
 168
 
 
 169	struct dm_io_client *dm_io;
 170
 171	raw_spinlock_t endio_list_lock;
 172	struct list_head endio_list;
 173	struct task_struct *endio_thread;
 174
 175	struct task_struct *flush_thread;
 176	struct bio_list flush_list;
 177
 178	struct dm_kcopyd_client *dm_kcopyd;
 179	unsigned long *dirty_bitmap;
 180	unsigned dirty_bitmap_size;
 181
 182	struct bio_set bio_set;
 183	mempool_t copy_pool;
 
 
 
 
 
 
 
 
 
 
 
 
 
 184};
 185
 186#define WB_LIST_INLINE		16
 187
 188struct writeback_struct {
 189	struct list_head endio_entry;
 190	struct dm_writecache *wc;
 191	struct wc_entry **wc_list;
 192	unsigned wc_list_n;
 193	struct wc_entry *wc_list_inline[WB_LIST_INLINE];
 194	struct bio bio;
 195};
 196
 197struct copy_struct {
 198	struct list_head endio_entry;
 199	struct dm_writecache *wc;
 200	struct wc_entry *e;
 201	unsigned n_entries;
 202	int error;
 203};
 204
 205DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle,
 206					    "A percentage of time allocated for data copying");
 207
 208static void wc_lock(struct dm_writecache *wc)
 209{
 210	mutex_lock(&wc->lock);
 211}
 212
 213static void wc_unlock(struct dm_writecache *wc)
 214{
 215	mutex_unlock(&wc->lock);
 216}
 217
 218#ifdef DM_WRITECACHE_HAS_PMEM
 219static int persistent_memory_claim(struct dm_writecache *wc)
 220{
 221	int r;
 222	loff_t s;
 223	long p, da;
 224	pfn_t pfn;
 225	int id;
 226	struct page **pages;
 
 227
 228	wc->memory_vmapped = false;
 229
 230	if (!wc->ssd_dev->dax_dev) {
 231		r = -EOPNOTSUPP;
 232		goto err1;
 233	}
 234	s = wc->memory_map_size;
 235	p = s >> PAGE_SHIFT;
 236	if (!p) {
 237		r = -EINVAL;
 238		goto err1;
 239	}
 240	if (p != s >> PAGE_SHIFT) {
 241		r = -EOVERFLOW;
 242		goto err1;
 243	}
 244
 
 
 
 
 
 
 
 245	id = dax_read_lock();
 246
 247	da = dax_direct_access(wc->ssd_dev->dax_dev, 0, p, &wc->memory_map, &pfn);
 
 248	if (da < 0) {
 249		wc->memory_map = NULL;
 250		r = da;
 251		goto err2;
 252	}
 253	if (!pfn_t_has_page(pfn)) {
 254		wc->memory_map = NULL;
 255		r = -EOPNOTSUPP;
 256		goto err2;
 257	}
 258	if (da != p) {
 259		long i;
 260		wc->memory_map = NULL;
 261		pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL);
 262		if (!pages) {
 263			r = -ENOMEM;
 264			goto err2;
 265		}
 266		i = 0;
 267		do {
 268			long daa;
 269			daa = dax_direct_access(wc->ssd_dev->dax_dev, i, p - i,
 270						NULL, &pfn);
 271			if (daa <= 0) {
 272				r = daa ? daa : -EINVAL;
 273				goto err3;
 274			}
 275			if (!pfn_t_has_page(pfn)) {
 276				r = -EOPNOTSUPP;
 277				goto err3;
 278			}
 279			while (daa-- && i < p) {
 280				pages[i++] = pfn_t_to_page(pfn);
 281				pfn.val++;
 
 
 282			}
 283		} while (i < p);
 284		wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL);
 285		if (!wc->memory_map) {
 286			r = -ENOMEM;
 287			goto err3;
 288		}
 289		kvfree(pages);
 290		wc->memory_vmapped = true;
 291	}
 292
 293	dax_read_unlock(id);
 294
 295	wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT;
 296	wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT;
 297
 298	return 0;
 299err3:
 300	kvfree(pages);
 301err2:
 302	dax_read_unlock(id);
 303err1:
 304	return r;
 305}
 306#else
 307static int persistent_memory_claim(struct dm_writecache *wc)
 308{
 309	BUG();
 310}
 311#endif
 312
 313static void persistent_memory_release(struct dm_writecache *wc)
 314{
 315	if (wc->memory_vmapped)
 316		vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT));
 317}
 318
 319static struct page *persistent_memory_page(void *addr)
 320{
 321	if (is_vmalloc_addr(addr))
 322		return vmalloc_to_page(addr);
 323	else
 324		return virt_to_page(addr);
 325}
 326
 327static unsigned persistent_memory_page_offset(void *addr)
 328{
 329	return (unsigned long)addr & (PAGE_SIZE - 1);
 330}
 331
 332static void persistent_memory_flush_cache(void *ptr, size_t size)
 333{
 334	if (is_vmalloc_addr(ptr))
 335		flush_kernel_vmap_range(ptr, size);
 336}
 337
 338static void persistent_memory_invalidate_cache(void *ptr, size_t size)
 339{
 340	if (is_vmalloc_addr(ptr))
 341		invalidate_kernel_vmap_range(ptr, size);
 342}
 343
 344static struct wc_memory_superblock *sb(struct dm_writecache *wc)
 345{
 346	return wc->memory_map;
 347}
 348
 349static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e)
 350{
 351	return &sb(wc)->entries[e->index];
 352}
 353
 354static void *memory_data(struct dm_writecache *wc, struct wc_entry *e)
 355{
 356	return (char *)wc->block_start + (e->index << wc->block_size_bits);
 357}
 358
 359static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e)
 360{
 361	return wc->start_sector + wc->metadata_sectors +
 362		((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT));
 363}
 364
 365static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e)
 366{
 367#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
 368	return e->original_sector;
 369#else
 370	return le64_to_cpu(memory_entry(wc, e)->original_sector);
 371#endif
 372}
 373
 374static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e)
 375{
 376#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
 377	return e->seq_count;
 378#else
 379	return le64_to_cpu(memory_entry(wc, e)->seq_count);
 380#endif
 381}
 382
 383static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e)
 384{
 385#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
 386	e->seq_count = -1;
 387#endif
 388	pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1));
 389}
 390
 391static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e,
 392					    uint64_t original_sector, uint64_t seq_count)
 393{
 394	struct wc_memory_entry me;
 395#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
 396	e->original_sector = original_sector;
 397	e->seq_count = seq_count;
 398#endif
 399	me.original_sector = cpu_to_le64(original_sector);
 400	me.seq_count = cpu_to_le64(seq_count);
 401	pmem_assign(*memory_entry(wc, e), me);
 402}
 403
 404#define writecache_error(wc, err, msg, arg...)				\
 405do {									\
 406	if (!cmpxchg(&(wc)->error, 0, err))				\
 407		DMERR(msg, ##arg);					\
 408	wake_up(&(wc)->freelist_wait);					\
 409} while (0)
 410
 411#define writecache_has_error(wc)	(unlikely(READ_ONCE((wc)->error)))
 412
 413static void writecache_flush_all_metadata(struct dm_writecache *wc)
 414{
 415	if (!WC_MODE_PMEM(wc))
 416		memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size);
 417}
 418
 419static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size)
 420{
 421	if (!WC_MODE_PMEM(wc))
 422		__set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY,
 423			  wc->dirty_bitmap);
 424}
 425
 426static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev);
 427
 428struct io_notify {
 429	struct dm_writecache *wc;
 430	struct completion c;
 431	atomic_t count;
 432};
 433
 434static void writecache_notify_io(unsigned long error, void *context)
 435{
 436	struct io_notify *endio = context;
 437
 438	if (unlikely(error != 0))
 439		writecache_error(endio->wc, -EIO, "error writing metadata");
 440	BUG_ON(atomic_read(&endio->count) <= 0);
 441	if (atomic_dec_and_test(&endio->count))
 442		complete(&endio->c);
 443}
 444
 445static void ssd_commit_flushed(struct dm_writecache *wc)
 
 
 
 
 
 
 446{
 447	struct dm_io_region region;
 448	struct dm_io_request req;
 449	struct io_notify endio = {
 450		wc,
 451		COMPLETION_INITIALIZER_ONSTACK(endio.c),
 452		ATOMIC_INIT(1),
 453	};
 454	unsigned bitmap_bits = wc->dirty_bitmap_size * 8;
 455	unsigned i = 0;
 456
 457	while (1) {
 458		unsigned j;
 459		i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i);
 460		if (unlikely(i == bitmap_bits))
 461			break;
 462		j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i);
 463
 464		region.bdev = wc->ssd_dev->bdev;
 465		region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
 466		region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
 467
 468		if (unlikely(region.sector >= wc->metadata_sectors))
 469			break;
 470		if (unlikely(region.sector + region.count > wc->metadata_sectors))
 471			region.count = wc->metadata_sectors - region.sector;
 472
 473		region.sector += wc->start_sector;
 474		atomic_inc(&endio.count);
 475		req.bi_op = REQ_OP_WRITE;
 476		req.bi_op_flags = REQ_SYNC;
 477		req.mem.type = DM_IO_VMA;
 478		req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY;
 479		req.client = wc->dm_io;
 480		req.notify.fn = writecache_notify_io;
 481		req.notify.context = &endio;
 482
 483		/* writing via async dm-io (implied by notify.fn above) won't return an error */
 484	        (void) dm_io(&req, 1, &region, NULL);
 485		i = j;
 486	}
 487
 488	writecache_notify_io(0, &endio);
 489	wait_for_completion_io(&endio.c);
 490
 
 
 
 491	writecache_disk_flush(wc, wc->ssd_dev);
 492
 493	memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size);
 494}
 495
 496static void writecache_commit_flushed(struct dm_writecache *wc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 497{
 498	if (WC_MODE_PMEM(wc))
 499		wmb();
 500	else
 501		ssd_commit_flushed(wc);
 502}
 503
 504static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev)
 505{
 506	int r;
 507	struct dm_io_region region;
 508	struct dm_io_request req;
 509
 510	region.bdev = dev->bdev;
 511	region.sector = 0;
 512	region.count = 0;
 513	req.bi_op = REQ_OP_WRITE;
 514	req.bi_op_flags = REQ_PREFLUSH;
 515	req.mem.type = DM_IO_KMEM;
 516	req.mem.ptr.addr = NULL;
 517	req.client = wc->dm_io;
 518	req.notify.fn = NULL;
 519
 520	r = dm_io(&req, 1, &region, NULL);
 521	if (unlikely(r))
 522		writecache_error(wc, r, "error flushing metadata: %d", r);
 523}
 524
 525static void writecache_wait_for_ios(struct dm_writecache *wc, int direction)
 526{
 527	wait_event(wc->bio_in_progress_wait[direction],
 528		   !atomic_read(&wc->bio_in_progress[direction]));
 529}
 530
 531#define WFE_RETURN_FOLLOWING	1
 532#define WFE_LOWEST_SEQ		2
 533
 534static struct wc_entry *writecache_find_entry(struct dm_writecache *wc,
 535					      uint64_t block, int flags)
 536{
 537	struct wc_entry *e;
 538	struct rb_node *node = wc->tree.rb_node;
 539
 540	if (unlikely(!node))
 541		return NULL;
 542
 543	while (1) {
 544		e = container_of(node, struct wc_entry, rb_node);
 545		if (read_original_sector(wc, e) == block)
 546			break;
 547
 548		node = (read_original_sector(wc, e) >= block ?
 549			e->rb_node.rb_left : e->rb_node.rb_right);
 550		if (unlikely(!node)) {
 551			if (!(flags & WFE_RETURN_FOLLOWING))
 552				return NULL;
 553			if (read_original_sector(wc, e) >= block) {
 554				return e;
 555			} else {
 556				node = rb_next(&e->rb_node);
 557				if (unlikely(!node))
 558					return NULL;
 559				e = container_of(node, struct wc_entry, rb_node);
 560				return e;
 561			}
 562		}
 563	}
 564
 565	while (1) {
 566		struct wc_entry *e2;
 567		if (flags & WFE_LOWEST_SEQ)
 568			node = rb_prev(&e->rb_node);
 569		else
 570			node = rb_next(&e->rb_node);
 571		if (unlikely(!node))
 572			return e;
 573		e2 = container_of(node, struct wc_entry, rb_node);
 574		if (read_original_sector(wc, e2) != block)
 575			return e;
 576		e = e2;
 577	}
 578}
 579
 580static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins)
 581{
 582	struct wc_entry *e;
 583	struct rb_node **node = &wc->tree.rb_node, *parent = NULL;
 584
 585	while (*node) {
 586		e = container_of(*node, struct wc_entry, rb_node);
 587		parent = &e->rb_node;
 588		if (read_original_sector(wc, e) > read_original_sector(wc, ins))
 589			node = &parent->rb_left;
 590		else
 591			node = &parent->rb_right;
 592	}
 593	rb_link_node(&ins->rb_node, parent, node);
 594	rb_insert_color(&ins->rb_node, &wc->tree);
 595	list_add(&ins->lru, &wc->lru);
 
 596}
 597
 598static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e)
 599{
 600	list_del(&e->lru);
 601	rb_erase(&e->rb_node, &wc->tree);
 602}
 603
 604static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e)
 605{
 606	if (WC_MODE_SORT_FREELIST(wc)) {
 607		struct rb_node **node = &wc->freetree.rb_node, *parent = NULL;
 608		if (unlikely(!*node))
 609			wc->current_free = e;
 610		while (*node) {
 611			parent = *node;
 612			if (&e->rb_node < *node)
 613				node = &parent->rb_left;
 614			else
 615				node = &parent->rb_right;
 616		}
 617		rb_link_node(&e->rb_node, parent, node);
 618		rb_insert_color(&e->rb_node, &wc->freetree);
 619	} else {
 620		list_add_tail(&e->lru, &wc->freelist);
 621	}
 622	wc->freelist_size++;
 623}
 624
 625static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 626{
 627	struct wc_entry *e;
 628
 629	if (WC_MODE_SORT_FREELIST(wc)) {
 630		struct rb_node *next;
 631		if (unlikely(!wc->current_free))
 632			return NULL;
 633		e = wc->current_free;
 
 
 634		next = rb_next(&e->rb_node);
 635		rb_erase(&e->rb_node, &wc->freetree);
 636		if (unlikely(!next))
 637			next = rb_first(&wc->freetree);
 638		wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL;
 639	} else {
 640		if (unlikely(list_empty(&wc->freelist)))
 641			return NULL;
 642		e = container_of(wc->freelist.next, struct wc_entry, lru);
 
 
 643		list_del(&e->lru);
 644	}
 645	wc->freelist_size--;
 646	if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark))
 647		queue_work(wc->writeback_wq, &wc->writeback_work);
 648
 649	return e;
 650}
 651
 652static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e)
 653{
 654	writecache_unlink(wc, e);
 655	writecache_add_to_freelist(wc, e);
 656	clear_seq_count(wc, e);
 657	writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
 658	if (unlikely(waitqueue_active(&wc->freelist_wait)))
 659		wake_up(&wc->freelist_wait);
 660}
 661
 662static void writecache_wait_on_freelist(struct dm_writecache *wc)
 663{
 664	DEFINE_WAIT(wait);
 665
 666	prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE);
 667	wc_unlock(wc);
 668	io_schedule();
 669	finish_wait(&wc->freelist_wait, &wait);
 670	wc_lock(wc);
 671}
 672
 673static void writecache_poison_lists(struct dm_writecache *wc)
 674{
 675	/*
 676	 * Catch incorrect access to these values while the device is suspended.
 677	 */
 678	memset(&wc->tree, -1, sizeof wc->tree);
 679	wc->lru.next = LIST_POISON1;
 680	wc->lru.prev = LIST_POISON2;
 681	wc->freelist.next = LIST_POISON1;
 682	wc->freelist.prev = LIST_POISON2;
 683}
 684
 685static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e)
 686{
 687	writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
 688	if (WC_MODE_PMEM(wc))
 689		writecache_flush_region(wc, memory_data(wc, e), wc->block_size);
 690}
 691
 692static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e)
 693{
 694	return read_seq_count(wc, e) < wc->seq_count;
 695}
 696
 697static void writecache_flush(struct dm_writecache *wc)
 698{
 699	struct wc_entry *e, *e2;
 700	bool need_flush_after_free;
 701
 702	wc->uncommitted_blocks = 0;
 703	del_timer(&wc->autocommit_timer);
 704
 705	if (list_empty(&wc->lru))
 706		return;
 707
 708	e = container_of(wc->lru.next, struct wc_entry, lru);
 709	if (writecache_entry_is_committed(wc, e)) {
 710		if (wc->overwrote_committed) {
 711			writecache_wait_for_ios(wc, WRITE);
 712			writecache_disk_flush(wc, wc->ssd_dev);
 713			wc->overwrote_committed = false;
 714		}
 715		return;
 716	}
 717	while (1) {
 718		writecache_flush_entry(wc, e);
 719		if (unlikely(e->lru.next == &wc->lru))
 720			break;
 721		e2 = container_of(e->lru.next, struct wc_entry, lru);
 722		if (writecache_entry_is_committed(wc, e2))
 723			break;
 724		e = e2;
 725		cond_resched();
 726	}
 727	writecache_commit_flushed(wc);
 728
 729	if (!WC_MODE_PMEM(wc))
 730		writecache_wait_for_ios(wc, WRITE);
 731
 732	wc->seq_count++;
 733	pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count));
 734	writecache_flush_region(wc, &sb(wc)->seq_count, sizeof sb(wc)->seq_count);
 735	writecache_commit_flushed(wc);
 
 
 736
 737	wc->overwrote_committed = false;
 738
 739	need_flush_after_free = false;
 740	while (1) {
 741		/* Free another committed entry with lower seq-count */
 742		struct rb_node *rb_node = rb_prev(&e->rb_node);
 743
 744		if (rb_node) {
 745			e2 = container_of(rb_node, struct wc_entry, rb_node);
 746			if (read_original_sector(wc, e2) == read_original_sector(wc, e) &&
 747			    likely(!e2->write_in_progress)) {
 748				writecache_free_entry(wc, e2);
 749				need_flush_after_free = true;
 750			}
 751		}
 752		if (unlikely(e->lru.prev == &wc->lru))
 753			break;
 754		e = container_of(e->lru.prev, struct wc_entry, lru);
 755		cond_resched();
 756	}
 757
 758	if (need_flush_after_free)
 759		writecache_commit_flushed(wc);
 760}
 761
 762static void writecache_flush_work(struct work_struct *work)
 763{
 764	struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work);
 765
 766	wc_lock(wc);
 767	writecache_flush(wc);
 768	wc_unlock(wc);
 769}
 770
 771static void writecache_autocommit_timer(struct timer_list *t)
 772{
 773	struct dm_writecache *wc = from_timer(wc, t, autocommit_timer);
 774	if (!writecache_has_error(wc))
 775		queue_work(wc->writeback_wq, &wc->flush_work);
 776}
 777
 778static void writecache_schedule_autocommit(struct dm_writecache *wc)
 779{
 780	if (!timer_pending(&wc->autocommit_timer))
 781		mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies);
 782}
 783
 784static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end)
 785{
 786	struct wc_entry *e;
 787	bool discarded_something = false;
 788
 789	e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ);
 790	if (unlikely(!e))
 791		return;
 792
 793	while (read_original_sector(wc, e) < end) {
 794		struct rb_node *node = rb_next(&e->rb_node);
 795
 796		if (likely(!e->write_in_progress)) {
 797			if (!discarded_something) {
 798				writecache_wait_for_ios(wc, READ);
 799				writecache_wait_for_ios(wc, WRITE);
 
 
 800				discarded_something = true;
 801			}
 
 
 802			writecache_free_entry(wc, e);
 803		}
 804
 805		if (unlikely(!node))
 806			break;
 807
 808		e = container_of(node, struct wc_entry, rb_node);
 809	}
 810
 811	if (discarded_something)
 812		writecache_commit_flushed(wc);
 813}
 814
 815static bool writecache_wait_for_writeback(struct dm_writecache *wc)
 816{
 817	if (wc->writeback_size) {
 818		writecache_wait_on_freelist(wc);
 819		return true;
 820	}
 821	return false;
 822}
 823
 824static void writecache_suspend(struct dm_target *ti)
 825{
 826	struct dm_writecache *wc = ti->private;
 827	bool flush_on_suspend;
 828
 829	del_timer_sync(&wc->autocommit_timer);
 
 830
 831	wc_lock(wc);
 832	writecache_flush(wc);
 833	flush_on_suspend = wc->flush_on_suspend;
 834	if (flush_on_suspend) {
 835		wc->flush_on_suspend = false;
 836		wc->writeback_all++;
 837		queue_work(wc->writeback_wq, &wc->writeback_work);
 838	}
 839	wc_unlock(wc);
 840
 841	flush_workqueue(wc->writeback_wq);
 842
 843	wc_lock(wc);
 844	if (flush_on_suspend)
 845		wc->writeback_all--;
 846	while (writecache_wait_for_writeback(wc));
 847
 848	if (WC_MODE_PMEM(wc))
 849		persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
 850
 851	writecache_poison_lists(wc);
 852
 853	wc_unlock(wc);
 854}
 855
 856static int writecache_alloc_entries(struct dm_writecache *wc)
 857{
 858	size_t b;
 859
 860	if (wc->entries)
 861		return 0;
 862	wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks));
 863	if (!wc->entries)
 864		return -ENOMEM;
 865	for (b = 0; b < wc->n_blocks; b++) {
 866		struct wc_entry *e = &wc->entries[b];
 867		e->index = b;
 868		e->write_in_progress = false;
 
 869	}
 870
 871	return 0;
 872}
 873
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 874static void writecache_resume(struct dm_target *ti)
 875{
 876	struct dm_writecache *wc = ti->private;
 877	size_t b;
 878	bool need_flush = false;
 879	__le64 sb_seq_count;
 880	int r;
 881
 882	wc_lock(wc);
 883
 884	if (WC_MODE_PMEM(wc))
 
 
 885		persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size);
 
 
 
 
 
 
 
 
 
 
 886
 887	wc->tree = RB_ROOT;
 888	INIT_LIST_HEAD(&wc->lru);
 889	if (WC_MODE_SORT_FREELIST(wc)) {
 890		wc->freetree = RB_ROOT;
 891		wc->current_free = NULL;
 892	} else {
 893		INIT_LIST_HEAD(&wc->freelist);
 894	}
 895	wc->freelist_size = 0;
 896
 897	r = memcpy_mcsafe(&sb_seq_count, &sb(wc)->seq_count, sizeof(uint64_t));
 
 898	if (r) {
 899		writecache_error(wc, r, "hardware memory error when reading superblock: %d", r);
 900		sb_seq_count = cpu_to_le64(0);
 901	}
 902	wc->seq_count = le64_to_cpu(sb_seq_count);
 903
 904#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
 905	for (b = 0; b < wc->n_blocks; b++) {
 906		struct wc_entry *e = &wc->entries[b];
 907		struct wc_memory_entry wme;
 908		if (writecache_has_error(wc)) {
 909			e->original_sector = -1;
 910			e->seq_count = -1;
 911			continue;
 912		}
 913		r = memcpy_mcsafe(&wme, memory_entry(wc, e), sizeof(struct wc_memory_entry));
 
 914		if (r) {
 915			writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d",
 916					 (unsigned long)b, r);
 917			e->original_sector = -1;
 918			e->seq_count = -1;
 919		} else {
 920			e->original_sector = le64_to_cpu(wme.original_sector);
 921			e->seq_count = le64_to_cpu(wme.seq_count);
 922		}
 
 923	}
 924#endif
 925	for (b = 0; b < wc->n_blocks; b++) {
 926		struct wc_entry *e = &wc->entries[b];
 927		if (!writecache_entry_is_committed(wc, e)) {
 928			if (read_seq_count(wc, e) != -1) {
 929erase_this:
 930				clear_seq_count(wc, e);
 931				need_flush = true;
 932			}
 933			writecache_add_to_freelist(wc, e);
 934		} else {
 935			struct wc_entry *old;
 936
 937			old = writecache_find_entry(wc, read_original_sector(wc, e), 0);
 938			if (!old) {
 939				writecache_insert_entry(wc, e);
 940			} else {
 941				if (read_seq_count(wc, old) == read_seq_count(wc, e)) {
 942					writecache_error(wc, -EINVAL,
 943						 "two identical entries, position %llu, sector %llu, sequence %llu",
 944						 (unsigned long long)b, (unsigned long long)read_original_sector(wc, e),
 945						 (unsigned long long)read_seq_count(wc, e));
 946				}
 947				if (read_seq_count(wc, old) > read_seq_count(wc, e)) {
 948					goto erase_this;
 949				} else {
 950					writecache_free_entry(wc, old);
 951					writecache_insert_entry(wc, e);
 952					need_flush = true;
 953				}
 954			}
 955		}
 956		cond_resched();
 957	}
 958
 959	if (need_flush) {
 960		writecache_flush_all_metadata(wc);
 961		writecache_commit_flushed(wc);
 962	}
 963
 
 
 
 
 
 964	wc_unlock(wc);
 965}
 966
 967static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
 968{
 969	if (argc != 1)
 970		return -EINVAL;
 971
 972	wc_lock(wc);
 973	if (dm_suspended(wc->ti)) {
 974		wc_unlock(wc);
 975		return -EBUSY;
 976	}
 977	if (writecache_has_error(wc)) {
 978		wc_unlock(wc);
 979		return -EIO;
 980	}
 981
 982	writecache_flush(wc);
 983	wc->writeback_all++;
 984	queue_work(wc->writeback_wq, &wc->writeback_work);
 985	wc_unlock(wc);
 986
 987	flush_workqueue(wc->writeback_wq);
 988
 989	wc_lock(wc);
 990	wc->writeback_all--;
 991	if (writecache_has_error(wc)) {
 992		wc_unlock(wc);
 993		return -EIO;
 994	}
 995	wc_unlock(wc);
 996
 997	return 0;
 998}
 999
1000static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1001{
1002	if (argc != 1)
1003		return -EINVAL;
1004
1005	wc_lock(wc);
1006	wc->flush_on_suspend = true;
1007	wc_unlock(wc);
1008
1009	return 0;
1010}
1011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1012static int writecache_message(struct dm_target *ti, unsigned argc, char **argv,
1013			      char *result, unsigned maxlen)
1014{
1015	int r = -EINVAL;
1016	struct dm_writecache *wc = ti->private;
1017
1018	if (!strcasecmp(argv[0], "flush"))
1019		r = process_flush_mesg(argc, argv, wc);
1020	else if (!strcasecmp(argv[0], "flush_on_suspend"))
1021		r = process_flush_on_suspend_mesg(argc, argv, wc);
 
 
 
 
1022	else
1023		DMERR("unrecognised message received: %s", argv[0]);
1024
1025	return r;
1026}
1027
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1028static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data)
1029{
1030	void *buf;
1031	unsigned long flags;
1032	unsigned size;
1033	int rw = bio_data_dir(bio);
1034	unsigned remaining_size = wc->block_size;
1035
1036	do {
1037		struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter);
1038		buf = bvec_kmap_irq(&bv, &flags);
1039		size = bv.bv_len;
1040		if (unlikely(size > remaining_size))
1041			size = remaining_size;
1042
1043		if (rw == READ) {
1044			int r;
1045			r = memcpy_mcsafe(buf, data, size);
1046			flush_dcache_page(bio_page(bio));
1047			if (unlikely(r)) {
1048				writecache_error(wc, r, "hardware memory error when reading data: %d", r);
1049				bio->bi_status = BLK_STS_IOERR;
1050			}
1051		} else {
1052			flush_dcache_page(bio_page(bio));
1053			memcpy_flushcache(data, buf, size);
1054		}
1055
1056		bvec_kunmap_irq(buf, &flags);
1057
1058		data = (char *)data + size;
1059		remaining_size -= size;
1060		bio_advance(bio, size);
1061	} while (unlikely(remaining_size));
1062}
1063
1064static int writecache_flush_thread(void *data)
1065{
1066	struct dm_writecache *wc = data;
1067
1068	while (1) {
1069		struct bio *bio;
1070
1071		wc_lock(wc);
1072		bio = bio_list_pop(&wc->flush_list);
1073		if (!bio) {
1074			set_current_state(TASK_INTERRUPTIBLE);
1075			wc_unlock(wc);
1076
1077			if (unlikely(kthread_should_stop())) {
1078				set_current_state(TASK_RUNNING);
1079				break;
1080			}
1081
1082			schedule();
1083			continue;
1084		}
1085
1086		if (bio_op(bio) == REQ_OP_DISCARD) {
1087			writecache_discard(wc, bio->bi_iter.bi_sector,
1088					   bio_end_sector(bio));
1089			wc_unlock(wc);
1090			bio_set_dev(bio, wc->dev->bdev);
1091			generic_make_request(bio);
1092		} else {
1093			writecache_flush(wc);
1094			wc_unlock(wc);
1095			if (writecache_has_error(wc))
1096				bio->bi_status = BLK_STS_IOERR;
1097			bio_endio(bio);
1098		}
1099	}
1100
1101	return 0;
1102}
1103
1104static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio)
1105{
1106	if (bio_list_empty(&wc->flush_list))
1107		wake_up_process(wc->flush_thread);
1108	bio_list_add(&wc->flush_list, bio);
1109}
1110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1111static int writecache_map(struct dm_target *ti, struct bio *bio)
1112{
1113	struct wc_entry *e;
1114	struct dm_writecache *wc = ti->private;
 
1115
1116	bio->bi_private = NULL;
1117
1118	wc_lock(wc);
1119
1120	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1121		if (writecache_has_error(wc))
1122			goto unlock_error;
1123		if (WC_MODE_PMEM(wc)) {
1124			writecache_flush(wc);
1125			if (writecache_has_error(wc))
1126				goto unlock_error;
1127			goto unlock_submit;
1128		} else {
1129			writecache_offload_bio(wc, bio);
1130			goto unlock_return;
1131		}
1132	}
1133
1134	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1135
1136	if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
1137				(wc->block_size / 512 - 1)) != 0)) {
1138		DMERR("I/O is not aligned, sector %llu, size %u, block size %u",
1139		      (unsigned long long)bio->bi_iter.bi_sector,
1140		      bio->bi_iter.bi_size, wc->block_size);
1141		goto unlock_error;
 
1142	}
1143
1144	if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
1145		if (writecache_has_error(wc))
1146			goto unlock_error;
1147		if (WC_MODE_PMEM(wc)) {
1148			writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio));
1149			goto unlock_remap_origin;
1150		} else {
1151			writecache_offload_bio(wc, bio);
1152			goto unlock_return;
1153		}
1154	}
1155
1156	if (bio_data_dir(bio) == READ) {
1157read_next_block:
1158		e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1159		if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) {
1160			if (WC_MODE_PMEM(wc)) {
1161				bio_copy_block(wc, bio, memory_data(wc, e));
1162				if (bio->bi_iter.bi_size)
1163					goto read_next_block;
1164				goto unlock_submit;
1165			} else {
1166				dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
1167				bio_set_dev(bio, wc->ssd_dev->bdev);
1168				bio->bi_iter.bi_sector = cache_sector(wc, e);
1169				if (!writecache_entry_is_committed(wc, e))
1170					writecache_wait_for_ios(wc, WRITE);
1171				goto unlock_remap;
1172			}
1173		} else {
1174			if (e) {
1175				sector_t next_boundary =
1176					read_original_sector(wc, e) - bio->bi_iter.bi_sector;
1177				if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) {
1178					dm_accept_partial_bio(bio, next_boundary);
1179				}
1180			}
1181			goto unlock_remap_origin;
1182		}
1183	} else {
1184		do {
1185			if (writecache_has_error(wc))
1186				goto unlock_error;
1187			e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0);
1188			if (e) {
1189				if (!writecache_entry_is_committed(wc, e))
1190					goto bio_copy;
1191				if (!WC_MODE_PMEM(wc) && !e->write_in_progress) {
1192					wc->overwrote_committed = true;
1193					goto bio_copy;
1194				}
1195			}
1196			e = writecache_pop_from_freelist(wc);
1197			if (unlikely(!e)) {
1198				writecache_wait_on_freelist(wc);
1199				continue;
1200			}
1201			write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count);
1202			writecache_insert_entry(wc, e);
1203			wc->uncommitted_blocks++;
1204bio_copy:
1205			if (WC_MODE_PMEM(wc)) {
1206				bio_copy_block(wc, bio, memory_data(wc, e));
1207			} else {
1208				dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
1209				bio_set_dev(bio, wc->ssd_dev->bdev);
1210				bio->bi_iter.bi_sector = cache_sector(wc, e);
1211				if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) {
1212					wc->uncommitted_blocks = 0;
1213					queue_work(wc->writeback_wq, &wc->flush_work);
1214				} else {
1215					writecache_schedule_autocommit(wc);
1216				}
1217				goto unlock_remap;
1218			}
1219		} while (bio->bi_iter.bi_size);
1220
1221		if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks))
1222			writecache_flush(wc);
1223		else
1224			writecache_schedule_autocommit(wc);
1225		goto unlock_submit;
1226	}
1227
1228unlock_remap_origin:
1229	bio_set_dev(bio, wc->dev->bdev);
1230	wc_unlock(wc);
1231	return DM_MAPIO_REMAPPED;
1232
1233unlock_remap:
1234	/* make sure that writecache_end_io decrements bio_in_progress: */
1235	bio->bi_private = (void *)1;
1236	atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]);
1237	wc_unlock(wc);
1238	return DM_MAPIO_REMAPPED;
1239
1240unlock_submit:
1241	wc_unlock(wc);
1242	bio_endio(bio);
1243	return DM_MAPIO_SUBMITTED;
1244
1245unlock_return:
1246	wc_unlock(wc);
1247	return DM_MAPIO_SUBMITTED;
1248
1249unlock_error:
1250	wc_unlock(wc);
1251	bio_io_error(bio);
1252	return DM_MAPIO_SUBMITTED;
1253}
1254
1255static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
1256{
1257	struct dm_writecache *wc = ti->private;
1258
1259	if (bio->bi_private != NULL) {
1260		int dir = bio_data_dir(bio);
1261		if (atomic_dec_and_test(&wc->bio_in_progress[dir]))
1262			if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir])))
1263				wake_up(&wc->bio_in_progress_wait[dir]);
 
 
1264	}
1265	return 0;
1266}
1267
1268static int writecache_iterate_devices(struct dm_target *ti,
1269				      iterate_devices_callout_fn fn, void *data)
1270{
1271	struct dm_writecache *wc = ti->private;
1272
1273	return fn(ti, wc->dev, 0, ti->len, data);
1274}
1275
1276static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits)
1277{
1278	struct dm_writecache *wc = ti->private;
1279
1280	if (limits->logical_block_size < wc->block_size)
1281		limits->logical_block_size = wc->block_size;
1282
1283	if (limits->physical_block_size < wc->block_size)
1284		limits->physical_block_size = wc->block_size;
1285
1286	if (limits->io_min < wc->block_size)
1287		limits->io_min = wc->block_size;
1288}
1289
1290
1291static void writecache_writeback_endio(struct bio *bio)
1292{
1293	struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio);
1294	struct dm_writecache *wc = wb->wc;
1295	unsigned long flags;
1296
1297	raw_spin_lock_irqsave(&wc->endio_list_lock, flags);
1298	if (unlikely(list_empty(&wc->endio_list)))
1299		wake_up_process(wc->endio_thread);
1300	list_add_tail(&wb->endio_entry, &wc->endio_list);
1301	raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags);
1302}
1303
1304static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr)
1305{
1306	struct copy_struct *c = ptr;
1307	struct dm_writecache *wc = c->wc;
1308
1309	c->error = likely(!(read_err | write_err)) ? 0 : -EIO;
1310
1311	raw_spin_lock_irq(&wc->endio_list_lock);
1312	if (unlikely(list_empty(&wc->endio_list)))
1313		wake_up_process(wc->endio_thread);
1314	list_add_tail(&c->endio_entry, &wc->endio_list);
1315	raw_spin_unlock_irq(&wc->endio_list_lock);
1316}
1317
1318static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list)
1319{
1320	unsigned i;
1321	struct writeback_struct *wb;
1322	struct wc_entry *e;
1323	unsigned long n_walked = 0;
1324
1325	do {
1326		wb = list_entry(list->next, struct writeback_struct, endio_entry);
1327		list_del(&wb->endio_entry);
1328
1329		if (unlikely(wb->bio.bi_status != BLK_STS_OK))
1330			writecache_error(wc, blk_status_to_errno(wb->bio.bi_status),
1331					"write error %d", wb->bio.bi_status);
1332		i = 0;
1333		do {
1334			e = wb->wc_list[i];
1335			BUG_ON(!e->write_in_progress);
1336			e->write_in_progress = false;
1337			INIT_LIST_HEAD(&e->lru);
1338			if (!writecache_has_error(wc))
1339				writecache_free_entry(wc, e);
1340			BUG_ON(!wc->writeback_size);
1341			wc->writeback_size--;
1342			n_walked++;
1343			if (unlikely(n_walked >= ENDIO_LATENCY)) {
1344				writecache_commit_flushed(wc);
1345				wc_unlock(wc);
1346				wc_lock(wc);
1347				n_walked = 0;
1348			}
1349		} while (++i < wb->wc_list_n);
1350
1351		if (wb->wc_list != wb->wc_list_inline)
1352			kfree(wb->wc_list);
1353		bio_put(&wb->bio);
1354	} while (!list_empty(list));
1355}
1356
1357static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list)
1358{
1359	struct copy_struct *c;
1360	struct wc_entry *e;
1361
1362	do {
1363		c = list_entry(list->next, struct copy_struct, endio_entry);
1364		list_del(&c->endio_entry);
1365
1366		if (unlikely(c->error))
1367			writecache_error(wc, c->error, "copy error");
1368
1369		e = c->e;
1370		do {
1371			BUG_ON(!e->write_in_progress);
1372			e->write_in_progress = false;
1373			INIT_LIST_HEAD(&e->lru);
1374			if (!writecache_has_error(wc))
1375				writecache_free_entry(wc, e);
1376
1377			BUG_ON(!wc->writeback_size);
1378			wc->writeback_size--;
1379			e++;
1380		} while (--c->n_entries);
1381		mempool_free(c, &wc->copy_pool);
1382	} while (!list_empty(list));
1383}
1384
1385static int writecache_endio_thread(void *data)
1386{
1387	struct dm_writecache *wc = data;
1388
1389	while (1) {
1390		struct list_head list;
1391
1392		raw_spin_lock_irq(&wc->endio_list_lock);
1393		if (!list_empty(&wc->endio_list))
1394			goto pop_from_list;
1395		set_current_state(TASK_INTERRUPTIBLE);
1396		raw_spin_unlock_irq(&wc->endio_list_lock);
1397
1398		if (unlikely(kthread_should_stop())) {
1399			set_current_state(TASK_RUNNING);
1400			break;
1401		}
1402
1403		schedule();
1404
1405		continue;
1406
1407pop_from_list:
1408		list = wc->endio_list;
1409		list.next->prev = list.prev->next = &list;
1410		INIT_LIST_HEAD(&wc->endio_list);
1411		raw_spin_unlock_irq(&wc->endio_list_lock);
1412
1413		if (!WC_MODE_FUA(wc))
1414			writecache_disk_flush(wc, wc->dev);
1415
1416		wc_lock(wc);
1417
1418		if (WC_MODE_PMEM(wc)) {
1419			__writecache_endio_pmem(wc, &list);
1420		} else {
1421			__writecache_endio_ssd(wc, &list);
1422			writecache_wait_for_ios(wc, READ);
1423		}
1424
1425		writecache_commit_flushed(wc);
1426
1427		wc_unlock(wc);
1428	}
1429
1430	return 0;
1431}
1432
1433static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e, gfp_t gfp)
1434{
1435	struct dm_writecache *wc = wb->wc;
1436	unsigned block_size = wc->block_size;
1437	void *address = memory_data(wc, e);
1438
1439	persistent_memory_flush_cache(address, block_size);
 
 
 
 
1440	return bio_add_page(&wb->bio, persistent_memory_page(address),
1441			    block_size, persistent_memory_page_offset(address)) != 0;
1442}
1443
1444struct writeback_list {
1445	struct list_head list;
1446	size_t size;
1447};
1448
1449static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl)
1450{
1451	if (unlikely(wc->max_writeback_jobs)) {
1452		if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) {
1453			wc_lock(wc);
1454			while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs)
1455				writecache_wait_on_freelist(wc);
1456			wc_unlock(wc);
1457		}
1458	}
1459	cond_resched();
1460}
1461
1462static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl)
1463{
1464	struct wc_entry *e, *f;
1465	struct bio *bio;
1466	struct writeback_struct *wb;
1467	unsigned max_pages;
1468
1469	while (wbl->size) {
1470		wbl->size--;
1471		e = container_of(wbl->list.prev, struct wc_entry, lru);
1472		list_del(&e->lru);
1473
1474		max_pages = e->wc_list_contiguous;
1475
1476		bio = bio_alloc_bioset(GFP_NOIO, max_pages, &wc->bio_set);
 
1477		wb = container_of(bio, struct writeback_struct, bio);
1478		wb->wc = wc;
1479		bio->bi_end_io = writecache_writeback_endio;
1480		bio_set_dev(bio, wc->dev->bdev);
1481		bio->bi_iter.bi_sector = read_original_sector(wc, e);
1482		if (max_pages <= WB_LIST_INLINE ||
1483		    unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *),
1484							   GFP_NOIO | __GFP_NORETRY |
1485							   __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
1486			wb->wc_list = wb->wc_list_inline;
1487			max_pages = WB_LIST_INLINE;
1488		}
1489
1490		BUG_ON(!wc_add_block(wb, e, GFP_NOIO));
1491
1492		wb->wc_list[0] = e;
1493		wb->wc_list_n = 1;
1494
1495		while (wbl->size && wb->wc_list_n < max_pages) {
1496			f = container_of(wbl->list.prev, struct wc_entry, lru);
1497			if (read_original_sector(wc, f) !=
1498			    read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
1499				break;
1500			if (!wc_add_block(wb, f, GFP_NOWAIT | __GFP_NOWARN))
1501				break;
1502			wbl->size--;
1503			list_del(&f->lru);
1504			wb->wc_list[wb->wc_list_n++] = f;
1505			e = f;
1506		}
1507		bio_set_op_attrs(bio, REQ_OP_WRITE, WC_MODE_FUA(wc) * REQ_FUA);
 
1508		if (writecache_has_error(wc)) {
1509			bio->bi_status = BLK_STS_IOERR;
1510			bio_endio(bio);
 
 
 
1511		} else {
1512			submit_bio(bio);
1513		}
1514
1515		__writeback_throttle(wc, wbl);
1516	}
1517}
1518
1519static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl)
1520{
1521	struct wc_entry *e, *f;
1522	struct dm_io_region from, to;
1523	struct copy_struct *c;
1524
1525	while (wbl->size) {
1526		unsigned n_sectors;
1527
1528		wbl->size--;
1529		e = container_of(wbl->list.prev, struct wc_entry, lru);
1530		list_del(&e->lru);
1531
1532		n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT);
1533
1534		from.bdev = wc->ssd_dev->bdev;
1535		from.sector = cache_sector(wc, e);
1536		from.count = n_sectors;
1537		to.bdev = wc->dev->bdev;
1538		to.sector = read_original_sector(wc, e);
1539		to.count = n_sectors;
1540
1541		c = mempool_alloc(&wc->copy_pool, GFP_NOIO);
1542		c->wc = wc;
1543		c->e = e;
1544		c->n_entries = e->wc_list_contiguous;
1545
1546		while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) {
1547			wbl->size--;
1548			f = container_of(wbl->list.prev, struct wc_entry, lru);
1549			BUG_ON(f != e + 1);
1550			list_del(&f->lru);
1551			e = f;
1552		}
1553
 
 
 
 
 
 
 
 
1554		dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c);
1555
1556		__writeback_throttle(wc, wbl);
1557	}
1558}
1559
1560static void writecache_writeback(struct work_struct *work)
1561{
1562	struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work);
1563	struct blk_plug plug;
1564	struct wc_entry *f, *g, *e = NULL;
1565	struct rb_node *node, *next_node;
1566	struct list_head skipped;
1567	struct writeback_list wbl;
1568	unsigned long n_walked;
1569
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1570	wc_lock(wc);
1571restart:
1572	if (writecache_has_error(wc)) {
1573		wc_unlock(wc);
1574		return;
1575	}
1576
1577	if (unlikely(wc->writeback_all)) {
1578		if (writecache_wait_for_writeback(wc))
1579			goto restart;
1580	}
1581
1582	if (wc->overwrote_committed) {
1583		writecache_wait_for_ios(wc, WRITE);
1584	}
1585
1586	n_walked = 0;
1587	INIT_LIST_HEAD(&skipped);
1588	INIT_LIST_HEAD(&wbl.list);
1589	wbl.size = 0;
1590	while (!list_empty(&wc->lru) &&
1591	       (wc->writeback_all ||
1592		wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark)) {
 
 
1593
1594		n_walked++;
1595		if (unlikely(n_walked > WRITEBACK_LATENCY) &&
1596		    likely(!wc->writeback_all) && likely(!dm_suspended(wc->ti))) {
1597			queue_work(wc->writeback_wq, &wc->writeback_work);
 
1598			break;
1599		}
1600
1601		if (unlikely(wc->writeback_all)) {
1602			if (unlikely(!e)) {
1603				writecache_flush(wc);
1604				e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node);
1605			} else
1606				e = g;
1607		} else
1608			e = container_of(wc->lru.prev, struct wc_entry, lru);
1609		BUG_ON(e->write_in_progress);
1610		if (unlikely(!writecache_entry_is_committed(wc, e))) {
1611			writecache_flush(wc);
1612		}
1613		node = rb_prev(&e->rb_node);
1614		if (node) {
1615			f = container_of(node, struct wc_entry, rb_node);
1616			if (unlikely(read_original_sector(wc, f) ==
1617				     read_original_sector(wc, e))) {
1618				BUG_ON(!f->write_in_progress);
1619				list_del(&e->lru);
1620				list_add(&e->lru, &skipped);
1621				cond_resched();
1622				continue;
1623			}
1624		}
1625		wc->writeback_size++;
1626		list_del(&e->lru);
1627		list_add(&e->lru, &wbl.list);
1628		wbl.size++;
1629		e->write_in_progress = true;
1630		e->wc_list_contiguous = 1;
1631
1632		f = e;
1633
1634		while (1) {
1635			next_node = rb_next(&f->rb_node);
1636			if (unlikely(!next_node))
1637				break;
1638			g = container_of(next_node, struct wc_entry, rb_node);
1639			if (unlikely(read_original_sector(wc, g) ==
1640			    read_original_sector(wc, f))) {
1641				f = g;
1642				continue;
1643			}
1644			if (read_original_sector(wc, g) !=
1645			    read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT))
1646				break;
1647			if (unlikely(g->write_in_progress))
1648				break;
1649			if (unlikely(!writecache_entry_is_committed(wc, g)))
1650				break;
1651
1652			if (!WC_MODE_PMEM(wc)) {
1653				if (g != f + 1)
1654					break;
1655			}
1656
1657			n_walked++;
1658			//if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all))
1659			//	break;
1660
1661			wc->writeback_size++;
1662			list_del(&g->lru);
1663			list_add(&g->lru, &wbl.list);
1664			wbl.size++;
1665			g->write_in_progress = true;
1666			g->wc_list_contiguous = BIO_MAX_PAGES;
1667			f = g;
1668			e->wc_list_contiguous++;
1669			if (unlikely(e->wc_list_contiguous == BIO_MAX_PAGES)) {
1670				if (unlikely(wc->writeback_all)) {
1671					next_node = rb_next(&f->rb_node);
1672					if (likely(next_node))
1673						g = container_of(next_node, struct wc_entry, rb_node);
1674				}
1675				break;
1676			}
1677		}
1678		cond_resched();
1679	}
1680
1681	if (!list_empty(&skipped)) {
1682		list_splice_tail(&skipped, &wc->lru);
1683		/*
1684		 * If we didn't do any progress, we must wait until some
1685		 * writeback finishes to avoid burning CPU in a loop
1686		 */
1687		if (unlikely(!wbl.size))
1688			writecache_wait_for_writeback(wc);
1689	}
1690
1691	wc_unlock(wc);
1692
1693	blk_start_plug(&plug);
1694
1695	if (WC_MODE_PMEM(wc))
1696		__writecache_writeback_pmem(wc, &wbl);
1697	else
1698		__writecache_writeback_ssd(wc, &wbl);
1699
1700	blk_finish_plug(&plug);
1701
1702	if (unlikely(wc->writeback_all)) {
1703		wc_lock(wc);
1704		while (writecache_wait_for_writeback(wc));
1705		wc_unlock(wc);
1706	}
1707}
1708
1709static int calculate_memory_size(uint64_t device_size, unsigned block_size,
1710				 size_t *n_blocks_p, size_t *n_metadata_blocks_p)
1711{
1712	uint64_t n_blocks, offset;
1713	struct wc_entry e;
1714
1715	n_blocks = device_size;
1716	do_div(n_blocks, block_size + sizeof(struct wc_memory_entry));
1717
1718	while (1) {
1719		if (!n_blocks)
1720			return -ENOSPC;
1721		/* Verify the following entries[n_blocks] won't overflow */
1722		if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) /
1723				 sizeof(struct wc_memory_entry)))
1724			return -EFBIG;
1725		offset = offsetof(struct wc_memory_superblock, entries[n_blocks]);
1726		offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1);
1727		if (offset + n_blocks * block_size <= device_size)
1728			break;
1729		n_blocks--;
1730	}
1731
1732	/* check if the bit field overflows */
1733	e.index = n_blocks;
1734	if (e.index != n_blocks)
1735		return -EFBIG;
1736
1737	if (n_blocks_p)
1738		*n_blocks_p = n_blocks;
1739	if (n_metadata_blocks_p)
1740		*n_metadata_blocks_p = offset >> __ffs(block_size);
1741	return 0;
1742}
1743
1744static int init_memory(struct dm_writecache *wc)
1745{
1746	size_t b;
1747	int r;
1748
1749	r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL);
1750	if (r)
1751		return r;
1752
1753	r = writecache_alloc_entries(wc);
1754	if (r)
1755		return r;
1756
1757	for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++)
1758		pmem_assign(sb(wc)->padding[b], cpu_to_le64(0));
1759	pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION));
1760	pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size));
1761	pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks));
1762	pmem_assign(sb(wc)->seq_count, cpu_to_le64(0));
1763
1764	for (b = 0; b < wc->n_blocks; b++)
1765		write_original_sector_seq_count(wc, &wc->entries[b], -1, -1);
 
 
1766
1767	writecache_flush_all_metadata(wc);
1768	writecache_commit_flushed(wc);
1769	pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC));
1770	writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic);
1771	writecache_commit_flushed(wc);
1772
1773	return 0;
1774}
1775
1776static void writecache_dtr(struct dm_target *ti)
1777{
1778	struct dm_writecache *wc = ti->private;
1779
1780	if (!wc)
1781		return;
1782
1783	if (wc->endio_thread)
1784		kthread_stop(wc->endio_thread);
1785
1786	if (wc->flush_thread)
1787		kthread_stop(wc->flush_thread);
1788
1789	bioset_exit(&wc->bio_set);
1790
1791	mempool_exit(&wc->copy_pool);
1792
1793	if (wc->writeback_wq)
1794		destroy_workqueue(wc->writeback_wq);
1795
1796	if (wc->dev)
1797		dm_put_device(ti, wc->dev);
1798
1799	if (wc->ssd_dev)
1800		dm_put_device(ti, wc->ssd_dev);
1801
1802	if (wc->entries)
1803		vfree(wc->entries);
1804
1805	if (wc->memory_map) {
1806		if (WC_MODE_PMEM(wc))
1807			persistent_memory_release(wc);
1808		else
1809			vfree(wc->memory_map);
1810	}
1811
1812	if (wc->dm_kcopyd)
1813		dm_kcopyd_client_destroy(wc->dm_kcopyd);
1814
1815	if (wc->dm_io)
1816		dm_io_client_destroy(wc->dm_io);
1817
1818	if (wc->dirty_bitmap)
1819		vfree(wc->dirty_bitmap);
1820
1821	kfree(wc);
1822}
1823
1824static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv)
1825{
1826	struct dm_writecache *wc;
1827	struct dm_arg_set as;
1828	const char *string;
1829	unsigned opt_params;
1830	size_t offset, data_size;
1831	int i, r;
1832	char dummy;
1833	int high_wm_percent = HIGH_WATERMARK;
1834	int low_wm_percent = LOW_WATERMARK;
1835	uint64_t x;
1836	struct wc_memory_superblock s;
1837
1838	static struct dm_arg _args[] = {
1839		{0, 10, "Invalid number of feature args"},
1840	};
1841
1842	as.argc = argc;
1843	as.argv = argv;
1844
1845	wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL);
1846	if (!wc) {
1847		ti->error = "Cannot allocate writecache structure";
1848		r = -ENOMEM;
1849		goto bad;
1850	}
1851	ti->private = wc;
1852	wc->ti = ti;
1853
1854	mutex_init(&wc->lock);
 
1855	writecache_poison_lists(wc);
1856	init_waitqueue_head(&wc->freelist_wait);
1857	timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0);
 
1858
1859	for (i = 0; i < 2; i++) {
1860		atomic_set(&wc->bio_in_progress[i], 0);
1861		init_waitqueue_head(&wc->bio_in_progress_wait[i]);
1862	}
1863
1864	wc->dm_io = dm_io_client_create();
1865	if (IS_ERR(wc->dm_io)) {
1866		r = PTR_ERR(wc->dm_io);
1867		ti->error = "Unable to allocate dm-io client";
1868		wc->dm_io = NULL;
1869		goto bad;
1870	}
1871
1872	wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1);
1873	if (!wc->writeback_wq) {
1874		r = -ENOMEM;
1875		ti->error = "Could not allocate writeback workqueue";
1876		goto bad;
1877	}
1878	INIT_WORK(&wc->writeback_work, writecache_writeback);
1879	INIT_WORK(&wc->flush_work, writecache_flush_work);
1880
 
 
1881	raw_spin_lock_init(&wc->endio_list_lock);
1882	INIT_LIST_HEAD(&wc->endio_list);
1883	wc->endio_thread = kthread_create(writecache_endio_thread, wc, "writecache_endio");
1884	if (IS_ERR(wc->endio_thread)) {
1885		r = PTR_ERR(wc->endio_thread);
1886		wc->endio_thread = NULL;
1887		ti->error = "Couldn't spawn endio thread";
1888		goto bad;
1889	}
1890	wake_up_process(wc->endio_thread);
1891
1892	/*
1893	 * Parse the mode (pmem or ssd)
1894	 */
1895	string = dm_shift_arg(&as);
1896	if (!string)
1897		goto bad_arguments;
1898
1899	if (!strcasecmp(string, "s")) {
1900		wc->pmem_mode = false;
1901	} else if (!strcasecmp(string, "p")) {
1902#ifdef DM_WRITECACHE_HAS_PMEM
1903		wc->pmem_mode = true;
1904		wc->writeback_fua = true;
1905#else
1906		/*
1907		 * If the architecture doesn't support persistent memory or
1908		 * the kernel doesn't support any DAX drivers, this driver can
1909		 * only be used in SSD-only mode.
1910		 */
1911		r = -EOPNOTSUPP;
1912		ti->error = "Persistent memory or DAX not supported on this system";
1913		goto bad;
1914#endif
1915	} else {
1916		goto bad_arguments;
1917	}
1918
1919	if (WC_MODE_PMEM(wc)) {
1920		r = bioset_init(&wc->bio_set, BIO_POOL_SIZE,
1921				offsetof(struct writeback_struct, bio),
1922				BIOSET_NEED_BVECS);
1923		if (r) {
1924			ti->error = "Could not allocate bio set";
1925			goto bad;
1926		}
1927	} else {
 
1928		r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct));
1929		if (r) {
1930			ti->error = "Could not allocate mempool";
1931			goto bad;
1932		}
1933	}
1934
1935	/*
1936	 * Parse the origin data device
1937	 */
1938	string = dm_shift_arg(&as);
1939	if (!string)
1940		goto bad_arguments;
1941	r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev);
1942	if (r) {
1943		ti->error = "Origin data device lookup failed";
1944		goto bad;
1945	}
1946
1947	/*
1948	 * Parse cache data device (be it pmem or ssd)
1949	 */
1950	string = dm_shift_arg(&as);
1951	if (!string)
1952		goto bad_arguments;
1953
1954	r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev);
1955	if (r) {
1956		ti->error = "Cache data device lookup failed";
1957		goto bad;
1958	}
1959	wc->memory_map_size = i_size_read(wc->ssd_dev->bdev->bd_inode);
1960
1961	/*
1962	 * Parse the cache block size
1963	 */
1964	string = dm_shift_arg(&as);
1965	if (!string)
1966		goto bad_arguments;
1967	if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 ||
1968	    wc->block_size < 512 || wc->block_size > PAGE_SIZE ||
1969	    (wc->block_size & (wc->block_size - 1))) {
1970		r = -EINVAL;
1971		ti->error = "Invalid block size";
1972		goto bad;
1973	}
 
 
 
 
 
 
1974	wc->block_size_bits = __ffs(wc->block_size);
1975
1976	wc->max_writeback_jobs = MAX_WRITEBACK_JOBS;
1977	wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM;
1978	wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC);
1979
1980	/*
1981	 * Parse optional arguments
1982	 */
1983	r = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1984	if (r)
1985		goto bad;
1986
1987	while (opt_params) {
1988		string = dm_shift_arg(&as), opt_params--;
1989		if (!strcasecmp(string, "start_sector") && opt_params >= 1) {
1990			unsigned long long start_sector;
1991			string = dm_shift_arg(&as), opt_params--;
1992			if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1)
1993				goto invalid_optional;
1994			wc->start_sector = start_sector;
 
1995			if (wc->start_sector != start_sector ||
1996			    wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT)
1997				goto invalid_optional;
1998		} else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) {
1999			string = dm_shift_arg(&as), opt_params--;
2000			if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1)
2001				goto invalid_optional;
2002			if (high_wm_percent < 0 || high_wm_percent > 100)
2003				goto invalid_optional;
 
2004			wc->high_wm_percent_set = true;
2005		} else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) {
2006			string = dm_shift_arg(&as), opt_params--;
2007			if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1)
2008				goto invalid_optional;
2009			if (low_wm_percent < 0 || low_wm_percent > 100)
2010				goto invalid_optional;
 
2011			wc->low_wm_percent_set = true;
2012		} else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) {
2013			string = dm_shift_arg(&as), opt_params--;
2014			if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1)
2015				goto invalid_optional;
2016			wc->max_writeback_jobs_set = true;
2017		} else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) {
2018			string = dm_shift_arg(&as), opt_params--;
2019			if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1)
2020				goto invalid_optional;
2021			wc->autocommit_blocks_set = true;
2022		} else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) {
2023			unsigned autocommit_msecs;
2024			string = dm_shift_arg(&as), opt_params--;
2025			if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1)
2026				goto invalid_optional;
2027			if (autocommit_msecs > 3600000)
2028				goto invalid_optional;
2029			wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs);
 
2030			wc->autocommit_time_set = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
2031		} else if (!strcasecmp(string, "fua")) {
2032			if (WC_MODE_PMEM(wc)) {
2033				wc->writeback_fua = true;
2034				wc->writeback_fua_set = true;
2035			} else goto invalid_optional;
2036		} else if (!strcasecmp(string, "nofua")) {
2037			if (WC_MODE_PMEM(wc)) {
2038				wc->writeback_fua = false;
2039				wc->writeback_fua_set = true;
2040			} else goto invalid_optional;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2041		} else {
2042invalid_optional:
2043			r = -EINVAL;
2044			ti->error = "Invalid optional argument";
2045			goto bad;
2046		}
2047	}
2048
2049	if (high_wm_percent < low_wm_percent) {
2050		r = -EINVAL;
2051		ti->error = "High watermark must be greater than or equal to low watermark";
2052		goto bad;
2053	}
2054
2055	if (WC_MODE_PMEM(wc)) {
 
 
 
 
 
 
2056		r = persistent_memory_claim(wc);
2057		if (r) {
2058			ti->error = "Unable to map persistent memory for cache";
2059			goto bad;
2060		}
2061	} else {
2062		struct dm_io_region region;
2063		struct dm_io_request req;
2064		size_t n_blocks, n_metadata_blocks;
2065		uint64_t n_bitmap_bits;
2066
2067		wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT;
2068
2069		bio_list_init(&wc->flush_list);
2070		wc->flush_thread = kthread_create(writecache_flush_thread, wc, "dm_writecache_flush");
2071		if (IS_ERR(wc->flush_thread)) {
2072			r = PTR_ERR(wc->flush_thread);
2073			wc->flush_thread = NULL;
2074			ti->error = "Couldn't spawn flush thread";
2075			goto bad;
2076		}
2077		wake_up_process(wc->flush_thread);
2078
2079		r = calculate_memory_size(wc->memory_map_size, wc->block_size,
2080					  &n_blocks, &n_metadata_blocks);
2081		if (r) {
2082			ti->error = "Invalid device size";
2083			goto bad;
2084		}
2085
2086		n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) +
2087				 BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY;
2088		/* this is limitation of test_bit functions */
2089		if (n_bitmap_bits > 1U << 31) {
2090			r = -EFBIG;
2091			ti->error = "Invalid device size";
2092			goto bad;
2093		}
2094
2095		wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits);
2096		if (!wc->memory_map) {
2097			r = -ENOMEM;
2098			ti->error = "Unable to allocate memory for metadata";
2099			goto bad;
2100		}
2101
2102		wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2103		if (IS_ERR(wc->dm_kcopyd)) {
2104			r = PTR_ERR(wc->dm_kcopyd);
2105			ti->error = "Unable to allocate dm-kcopyd client";
2106			wc->dm_kcopyd = NULL;
2107			goto bad;
2108		}
2109
2110		wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT);
2111		wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) /
2112			BITS_PER_LONG * sizeof(unsigned long);
2113		wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size);
2114		if (!wc->dirty_bitmap) {
2115			r = -ENOMEM;
2116			ti->error = "Unable to allocate dirty bitmap";
2117			goto bad;
2118		}
2119
2120		region.bdev = wc->ssd_dev->bdev;
2121		region.sector = wc->start_sector;
2122		region.count = wc->metadata_sectors;
2123		req.bi_op = REQ_OP_READ;
2124		req.bi_op_flags = REQ_SYNC;
2125		req.mem.type = DM_IO_VMA;
2126		req.mem.ptr.vma = (char *)wc->memory_map;
2127		req.client = wc->dm_io;
2128		req.notify.fn = NULL;
2129
2130		r = dm_io(&req, 1, &region, NULL);
2131		if (r) {
2132			ti->error = "Unable to read metadata";
2133			goto bad;
2134		}
2135	}
2136
2137	r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock));
2138	if (r) {
2139		ti->error = "Hardware memory error when reading superblock";
2140		goto bad;
2141	}
2142	if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) {
2143		r = init_memory(wc);
2144		if (r) {
2145			ti->error = "Unable to initialize device";
2146			goto bad;
2147		}
2148		r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock));
 
2149		if (r) {
2150			ti->error = "Hardware memory error when reading superblock";
2151			goto bad;
2152		}
2153	}
2154
2155	if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) {
2156		ti->error = "Invalid magic in the superblock";
2157		r = -EINVAL;
2158		goto bad;
2159	}
2160
2161	if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) {
2162		ti->error = "Invalid version in the superblock";
2163		r = -EINVAL;
2164		goto bad;
2165	}
2166
2167	if (le32_to_cpu(s.block_size) != wc->block_size) {
2168		ti->error = "Block size does not match superblock";
2169		r = -EINVAL;
2170		goto bad;
2171	}
2172
2173	wc->n_blocks = le64_to_cpu(s.n_blocks);
2174
2175	offset = wc->n_blocks * sizeof(struct wc_memory_entry);
2176	if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) {
2177overflow:
2178		ti->error = "Overflow in size calculation";
2179		r = -EINVAL;
2180		goto bad;
2181	}
2182	offset += sizeof(struct wc_memory_superblock);
2183	if (offset < sizeof(struct wc_memory_superblock))
2184		goto overflow;
2185	offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1);
2186	data_size = wc->n_blocks * (size_t)wc->block_size;
2187	if (!offset || (data_size / wc->block_size != wc->n_blocks) ||
2188	    (offset + data_size < offset))
2189		goto overflow;
2190	if (offset + data_size > wc->memory_map_size) {
2191		ti->error = "Memory area is too small";
2192		r = -EINVAL;
2193		goto bad;
2194	}
2195
2196	wc->metadata_sectors = offset >> SECTOR_SHIFT;
2197	wc->block_start = (char *)sb(wc) + offset;
2198
2199	x = (uint64_t)wc->n_blocks * (100 - high_wm_percent);
2200	x += 50;
2201	do_div(x, 100);
2202	wc->freelist_high_watermark = x;
2203	x = (uint64_t)wc->n_blocks * (100 - low_wm_percent);
2204	x += 50;
2205	do_div(x, 100);
2206	wc->freelist_low_watermark = x;
2207
 
 
 
2208	r = writecache_alloc_entries(wc);
2209	if (r) {
2210		ti->error = "Cannot allocate memory";
2211		goto bad;
2212	}
2213
2214	ti->num_flush_bios = 1;
2215	ti->flush_supported = true;
2216	ti->num_discard_bios = 1;
2217
2218	if (WC_MODE_PMEM(wc))
2219		persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
2220
2221	return 0;
2222
2223bad_arguments:
2224	r = -EINVAL;
2225	ti->error = "Bad arguments";
2226bad:
2227	writecache_dtr(ti);
2228	return r;
2229}
2230
2231static void writecache_status(struct dm_target *ti, status_type_t type,
2232			      unsigned status_flags, char *result, unsigned maxlen)
2233{
2234	struct dm_writecache *wc = ti->private;
2235	unsigned extra_args;
2236	unsigned sz = 0;
2237	uint64_t x;
2238
2239	switch (type) {
2240	case STATUSTYPE_INFO:
2241		DMEMIT("%ld %llu %llu %llu", writecache_has_error(wc),
 
2242		       (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size,
2243		       (unsigned long long)wc->writeback_size);
 
 
 
 
 
 
 
 
 
 
2244		break;
2245	case STATUSTYPE_TABLE:
2246		DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's',
2247				wc->dev->name, wc->ssd_dev->name, wc->block_size);
2248		extra_args = 0;
2249		if (wc->start_sector)
2250			extra_args += 2;
2251		if (wc->high_wm_percent_set)
2252			extra_args += 2;
2253		if (wc->low_wm_percent_set)
2254			extra_args += 2;
2255		if (wc->max_writeback_jobs_set)
2256			extra_args += 2;
2257		if (wc->autocommit_blocks_set)
2258			extra_args += 2;
2259		if (wc->autocommit_time_set)
2260			extra_args += 2;
 
 
 
 
2261		if (wc->writeback_fua_set)
2262			extra_args++;
 
 
 
 
2263
2264		DMEMIT("%u", extra_args);
2265		if (wc->start_sector)
2266			DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector);
2267		if (wc->high_wm_percent_set) {
2268			x = (uint64_t)wc->freelist_high_watermark * 100;
2269			x += wc->n_blocks / 2;
2270			do_div(x, (size_t)wc->n_blocks);
2271			DMEMIT(" high_watermark %u", 100 - (unsigned)x);
2272		}
2273		if (wc->low_wm_percent_set) {
2274			x = (uint64_t)wc->freelist_low_watermark * 100;
2275			x += wc->n_blocks / 2;
2276			do_div(x, (size_t)wc->n_blocks);
2277			DMEMIT(" low_watermark %u", 100 - (unsigned)x);
2278		}
2279		if (wc->max_writeback_jobs_set)
2280			DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs);
2281		if (wc->autocommit_blocks_set)
2282			DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks);
2283		if (wc->autocommit_time_set)
2284			DMEMIT(" autocommit_time %u", jiffies_to_msecs(wc->autocommit_jiffies));
 
 
 
 
2285		if (wc->writeback_fua_set)
2286			DMEMIT(" %sfua", wc->writeback_fua ? "" : "no");
 
 
 
 
 
 
 
2287		break;
2288	}
2289}
2290
2291static struct target_type writecache_target = {
2292	.name			= "writecache",
2293	.version		= {1, 1, 1},
2294	.module			= THIS_MODULE,
2295	.ctr			= writecache_ctr,
2296	.dtr			= writecache_dtr,
2297	.status			= writecache_status,
2298	.postsuspend		= writecache_suspend,
2299	.resume			= writecache_resume,
2300	.message		= writecache_message,
2301	.map			= writecache_map,
2302	.end_io			= writecache_end_io,
2303	.iterate_devices	= writecache_iterate_devices,
2304	.io_hints		= writecache_io_hints,
2305};
2306
2307static int __init dm_writecache_init(void)
2308{
2309	int r;
2310
2311	r = dm_register_target(&writecache_target);
2312	if (r < 0) {
2313		DMERR("register failed %d", r);
2314		return r;
2315	}
2316
2317	return 0;
2318}
2319
2320static void __exit dm_writecache_exit(void)
2321{
2322	dm_unregister_target(&writecache_target);
2323}
2324
2325module_init(dm_writecache_init);
2326module_exit(dm_writecache_exit);
2327
2328MODULE_DESCRIPTION(DM_NAME " writecache target");
2329MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2330MODULE_LICENSE("GPL");