Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2018 Red Hat. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include <linux/device-mapper.h>
   9#include <linux/module.h>
  10#include <linux/init.h>
  11#include <linux/vmalloc.h>
  12#include <linux/kthread.h>
  13#include <linux/dm-io.h>
  14#include <linux/dm-kcopyd.h>
  15#include <linux/dax.h>
  16#include <linux/pfn_t.h>
  17#include <linux/libnvdimm.h>
  18#include <linux/delay.h>
  19#include "dm-io-tracker.h"
  20
  21#define DM_MSG_PREFIX "writecache"
  22
  23#define HIGH_WATERMARK			50
  24#define LOW_WATERMARK			45
  25#define MAX_WRITEBACK_JOBS		min(0x10000000 / PAGE_SIZE, totalram_pages() / 16)
  26#define ENDIO_LATENCY			16
  27#define WRITEBACK_LATENCY		64
  28#define AUTOCOMMIT_BLOCKS_SSD		65536
  29#define AUTOCOMMIT_BLOCKS_PMEM		64
  30#define AUTOCOMMIT_MSEC			1000
  31#define MAX_AGE_DIV			16
  32#define MAX_AGE_UNSPECIFIED		-1UL
  33#define PAUSE_WRITEBACK			(HZ * 3)
  34
  35#define BITMAP_GRANULARITY	65536
  36#if BITMAP_GRANULARITY < PAGE_SIZE
  37#undef BITMAP_GRANULARITY
  38#define BITMAP_GRANULARITY	PAGE_SIZE
  39#endif
  40
  41#if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_FS_DAX)
  42#define DM_WRITECACHE_HAS_PMEM
  43#endif
  44
  45#ifdef DM_WRITECACHE_HAS_PMEM
  46#define pmem_assign(dest, src)					\
  47do {								\
  48	typeof(dest) uniq = (src);				\
  49	memcpy_flushcache(&(dest), &uniq, sizeof(dest));	\
  50} while (0)
  51#else
  52#define pmem_assign(dest, src)	((dest) = (src))
  53#endif
  54
  55#if IS_ENABLED(CONFIG_ARCH_HAS_COPY_MC) && defined(DM_WRITECACHE_HAS_PMEM)
  56#define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  57#endif
  58
  59#define MEMORY_SUPERBLOCK_MAGIC		0x23489321
  60#define MEMORY_SUPERBLOCK_VERSION	1
  61
  62struct wc_memory_entry {
  63	__le64 original_sector;
  64	__le64 seq_count;
  65};
  66
  67struct wc_memory_superblock {
  68	union {
  69		struct {
  70			__le32 magic;
  71			__le32 version;
  72			__le32 block_size;
  73			__le32 pad;
  74			__le64 n_blocks;
  75			__le64 seq_count;
  76		};
  77		__le64 padding[8];
  78	};
  79	struct wc_memory_entry entries[];
  80};
  81
  82struct wc_entry {
  83	struct rb_node rb_node;
  84	struct list_head lru;
  85	unsigned short wc_list_contiguous;
  86	bool write_in_progress
  87#if BITS_PER_LONG == 64
  88		:1
  89#endif
  90	;
  91	unsigned long index
  92#if BITS_PER_LONG == 64
  93		:47
  94#endif
  95	;
  96	unsigned long age;
  97#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  98	uint64_t original_sector;
  99	uint64_t seq_count;
 100#endif
 101};
 102
 103#ifdef DM_WRITECACHE_HAS_PMEM
 104#define WC_MODE_PMEM(wc)			((wc)->pmem_mode)
 105#define WC_MODE_FUA(wc)				((wc)->writeback_fua)
 106#else
 107#define WC_MODE_PMEM(wc)			false
 108#define WC_MODE_FUA(wc)				false
 109#endif
 110#define WC_MODE_SORT_FREELIST(wc)		(!WC_MODE_PMEM(wc))
 111
 112struct dm_writecache {
 113	struct mutex lock;
 114	struct list_head lru;
 115	union {
 116		struct list_head freelist;
 117		struct {
 118			struct rb_root freetree;
 119			struct wc_entry *current_free;
 120		};
 121	};
 122	struct rb_root tree;
 123
 124	size_t freelist_size;
 125	size_t writeback_size;
 126	size_t freelist_high_watermark;
 127	size_t freelist_low_watermark;
 128	unsigned long max_age;
 129	unsigned long pause;
 130
 131	unsigned uncommitted_blocks;
 132	unsigned autocommit_blocks;
 133	unsigned max_writeback_jobs;
 134
 135	int error;
 136
 137	unsigned long autocommit_jiffies;
 138	struct timer_list autocommit_timer;
 139	struct wait_queue_head freelist_wait;
 140
 141	struct timer_list max_age_timer;
 142
 143	atomic_t bio_in_progress[2];
 144	struct wait_queue_head bio_in_progress_wait[2];
 145
 146	struct dm_target *ti;
 147	struct dm_dev *dev;
 148	struct dm_dev *ssd_dev;
 149	sector_t start_sector;
 150	void *memory_map;
 151	uint64_t memory_map_size;
 152	size_t metadata_sectors;
 153	size_t n_blocks;
 154	uint64_t seq_count;
 155	sector_t data_device_sectors;
 156	void *block_start;
 157	struct wc_entry *entries;
 158	unsigned block_size;
 159	unsigned char block_size_bits;
 160
 161	bool pmem_mode:1;
 162	bool writeback_fua:1;
 163
 164	bool overwrote_committed:1;
 165	bool memory_vmapped:1;
 166
 167	bool start_sector_set:1;
 168	bool high_wm_percent_set:1;
 169	bool low_wm_percent_set:1;
 170	bool max_writeback_jobs_set:1;
 171	bool autocommit_blocks_set:1;
 172	bool autocommit_time_set:1;
 173	bool max_age_set:1;
 174	bool writeback_fua_set:1;
 175	bool flush_on_suspend:1;
 176	bool cleaner:1;
 177	bool cleaner_set:1;
 178	bool metadata_only:1;
 179	bool pause_set:1;
 180
 181	unsigned high_wm_percent_value;
 182	unsigned low_wm_percent_value;
 183	unsigned autocommit_time_value;
 184	unsigned max_age_value;
 185	unsigned pause_value;
 186
 187	unsigned writeback_all;
 188	struct workqueue_struct *writeback_wq;
 189	struct work_struct writeback_work;
 190	struct work_struct flush_work;
 191
 192	struct dm_io_tracker iot;
 193
 194	struct dm_io_client *dm_io;
 195
 196	raw_spinlock_t endio_list_lock;
 197	struct list_head endio_list;
 198	struct task_struct *endio_thread;
 199
 200	struct task_struct *flush_thread;
 201	struct bio_list flush_list;
 202
 203	struct dm_kcopyd_client *dm_kcopyd;
 204	unsigned long *dirty_bitmap;
 205	unsigned dirty_bitmap_size;
 206
 207	struct bio_set bio_set;
 208	mempool_t copy_pool;
 209
 210	struct {
 211		unsigned long long reads;
 212		unsigned long long read_hits;
 213		unsigned long long writes;
 214		unsigned long long write_hits_uncommitted;
 215		unsigned long long write_hits_committed;
 216		unsigned long long writes_around;
 217		unsigned long long writes_allocate;
 218		unsigned long long writes_blocked_on_freelist;
 219		unsigned long long flushes;
 220		unsigned long long discards;
 221	} stats;
 222};
 223
 224#define WB_LIST_INLINE		16
 225
 226struct writeback_struct {
 227	struct list_head endio_entry;
 228	struct dm_writecache *wc;
 229	struct wc_entry **wc_list;
 230	unsigned wc_list_n;
 231	struct wc_entry *wc_list_inline[WB_LIST_INLINE];
 232	struct bio bio;
 233};
 234
 235struct copy_struct {
 236	struct list_head endio_entry;
 237	struct dm_writecache *wc;
 238	struct wc_entry *e;
 239	unsigned n_entries;
 240	int error;
 241};
 242
 243DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle,
 244					    "A percentage of time allocated for data copying");
 245
 246static void wc_lock(struct dm_writecache *wc)
 247{
 248	mutex_lock(&wc->lock);
 249}
 250
 251static void wc_unlock(struct dm_writecache *wc)
 252{
 253	mutex_unlock(&wc->lock);
 254}
 255
 256#ifdef DM_WRITECACHE_HAS_PMEM
 257static int persistent_memory_claim(struct dm_writecache *wc)
 258{
 259	int r;
 260	loff_t s;
 261	long p, da;
 262	pfn_t pfn;
 263	int id;
 264	struct page **pages;
 265	sector_t offset;
 266
 267	wc->memory_vmapped = false;
 268
 269	s = wc->memory_map_size;
 270	p = s >> PAGE_SHIFT;
 271	if (!p) {
 272		r = -EINVAL;
 273		goto err1;
 274	}
 275	if (p != s >> PAGE_SHIFT) {
 276		r = -EOVERFLOW;
 277		goto err1;
 278	}
 279
 280	offset = get_start_sect(wc->ssd_dev->bdev);
 281	if (offset & (PAGE_SIZE / 512 - 1)) {
 282		r = -EINVAL;
 283		goto err1;
 284	}
 285	offset >>= PAGE_SHIFT - 9;
 286
 287	id = dax_read_lock();
 288
 289	da = dax_direct_access(wc->ssd_dev->dax_dev, offset, p, DAX_ACCESS,
 290			&wc->memory_map, &pfn);
 291	if (da < 0) {
 292		wc->memory_map = NULL;
 293		r = da;
 294		goto err2;
 295	}
 296	if (!pfn_t_has_page(pfn)) {
 297		wc->memory_map = NULL;
 298		r = -EOPNOTSUPP;
 299		goto err2;
 300	}
 301	if (da != p) {
 302		long i;
 303		wc->memory_map = NULL;
 304		pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL);
 305		if (!pages) {
 306			r = -ENOMEM;
 307			goto err2;
 308		}
 309		i = 0;
 310		do {
 311			long daa;
 312			daa = dax_direct_access(wc->ssd_dev->dax_dev, offset + i,
 313					p - i, DAX_ACCESS, NULL, &pfn);
 314			if (daa <= 0) {
 315				r = daa ? daa : -EINVAL;
 316				goto err3;
 317			}
 318			if (!pfn_t_has_page(pfn)) {
 319				r = -EOPNOTSUPP;
 320				goto err3;
 321			}
 322			while (daa-- && i < p) {
 323				pages[i++] = pfn_t_to_page(pfn);
 324				pfn.val++;
 325				if (!(i & 15))
 326					cond_resched();
 327			}
 328		} while (i < p);
 329		wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL);
 330		if (!wc->memory_map) {
 331			r = -ENOMEM;
 332			goto err3;
 333		}
 334		kvfree(pages);
 335		wc->memory_vmapped = true;
 336	}
 337
 338	dax_read_unlock(id);
 339
 340	wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT;
 341	wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT;
 342
 343	return 0;
 344err3:
 345	kvfree(pages);
 346err2:
 347	dax_read_unlock(id);
 348err1:
 349	return r;
 350}
 351#else
 352static int persistent_memory_claim(struct dm_writecache *wc)
 353{
 354	return -EOPNOTSUPP;
 355}
 356#endif
 357
 358static void persistent_memory_release(struct dm_writecache *wc)
 359{
 360	if (wc->memory_vmapped)
 361		vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT));
 362}
 363
 364static struct page *persistent_memory_page(void *addr)
 365{
 366	if (is_vmalloc_addr(addr))
 367		return vmalloc_to_page(addr);
 368	else
 369		return virt_to_page(addr);
 370}
 371
 372static unsigned persistent_memory_page_offset(void *addr)
 373{
 374	return (unsigned long)addr & (PAGE_SIZE - 1);
 375}
 376
 377static void persistent_memory_flush_cache(void *ptr, size_t size)
 378{
 379	if (is_vmalloc_addr(ptr))
 380		flush_kernel_vmap_range(ptr, size);
 381}
 382
 383static void persistent_memory_invalidate_cache(void *ptr, size_t size)
 384{
 385	if (is_vmalloc_addr(ptr))
 386		invalidate_kernel_vmap_range(ptr, size);
 387}
 388
 389static struct wc_memory_superblock *sb(struct dm_writecache *wc)
 390{
 391	return wc->memory_map;
 392}
 393
 394static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e)
 395{
 396	return &sb(wc)->entries[e->index];
 397}
 398
 399static void *memory_data(struct dm_writecache *wc, struct wc_entry *e)
 400{
 401	return (char *)wc->block_start + (e->index << wc->block_size_bits);
 402}
 403
 404static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e)
 405{
 406	return wc->start_sector + wc->metadata_sectors +
 407		((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT));
 408}
 409
 410static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e)
 411{
 412#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
 413	return e->original_sector;
 414#else
 415	return le64_to_cpu(memory_entry(wc, e)->original_sector);
 416#endif
 417}
 418
 419static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e)
 420{
 421#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
 422	return e->seq_count;
 423#else
 424	return le64_to_cpu(memory_entry(wc, e)->seq_count);
 425#endif
 426}
 427
 428static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e)
 429{
 430#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
 431	e->seq_count = -1;
 432#endif
 433	pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1));
 434}
 435
 436static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e,
 437					    uint64_t original_sector, uint64_t seq_count)
 438{
 439	struct wc_memory_entry me;
 440#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
 441	e->original_sector = original_sector;
 442	e->seq_count = seq_count;
 443#endif
 444	me.original_sector = cpu_to_le64(original_sector);
 445	me.seq_count = cpu_to_le64(seq_count);
 446	pmem_assign(*memory_entry(wc, e), me);
 447}
 448
 449#define writecache_error(wc, err, msg, arg...)				\
 450do {									\
 451	if (!cmpxchg(&(wc)->error, 0, err))				\
 452		DMERR(msg, ##arg);					\
 453	wake_up(&(wc)->freelist_wait);					\
 454} while (0)
 455
 456#define writecache_has_error(wc)	(unlikely(READ_ONCE((wc)->error)))
 457
 458static void writecache_flush_all_metadata(struct dm_writecache *wc)
 459{
 460	if (!WC_MODE_PMEM(wc))
 461		memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size);
 462}
 463
 464static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size)
 465{
 466	if (!WC_MODE_PMEM(wc))
 467		__set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY,
 468			  wc->dirty_bitmap);
 469}
 470
 471static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev);
 472
 473struct io_notify {
 474	struct dm_writecache *wc;
 475	struct completion c;
 476	atomic_t count;
 477};
 478
 479static void writecache_notify_io(unsigned long error, void *context)
 480{
 481	struct io_notify *endio = context;
 482
 483	if (unlikely(error != 0))
 484		writecache_error(endio->wc, -EIO, "error writing metadata");
 485	BUG_ON(atomic_read(&endio->count) <= 0);
 486	if (atomic_dec_and_test(&endio->count))
 487		complete(&endio->c);
 488}
 489
 490static void writecache_wait_for_ios(struct dm_writecache *wc, int direction)
 491{
 492	wait_event(wc->bio_in_progress_wait[direction],
 493		   !atomic_read(&wc->bio_in_progress[direction]));
 494}
 495
 496static void ssd_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
 497{
 498	struct dm_io_region region;
 499	struct dm_io_request req;
 500	struct io_notify endio = {
 501		wc,
 502		COMPLETION_INITIALIZER_ONSTACK(endio.c),
 503		ATOMIC_INIT(1),
 504	};
 505	unsigned bitmap_bits = wc->dirty_bitmap_size * 8;
 506	unsigned i = 0;
 507
 508	while (1) {
 509		unsigned j;
 510		i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i);
 511		if (unlikely(i == bitmap_bits))
 512			break;
 513		j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i);
 514
 515		region.bdev = wc->ssd_dev->bdev;
 516		region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
 517		region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
 518
 519		if (unlikely(region.sector >= wc->metadata_sectors))
 520			break;
 521		if (unlikely(region.sector + region.count > wc->metadata_sectors))
 522			region.count = wc->metadata_sectors - region.sector;
 523
 524		region.sector += wc->start_sector;
 525		atomic_inc(&endio.count);
 526		req.bi_opf = REQ_OP_WRITE | REQ_SYNC;
 
 527		req.mem.type = DM_IO_VMA;
 528		req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY;
 529		req.client = wc->dm_io;
 530		req.notify.fn = writecache_notify_io;
 531		req.notify.context = &endio;
 532
 533		/* writing via async dm-io (implied by notify.fn above) won't return an error */
 534	        (void) dm_io(&req, 1, &region, NULL);
 535		i = j;
 536	}
 537
 538	writecache_notify_io(0, &endio);
 539	wait_for_completion_io(&endio.c);
 540
 541	if (wait_for_ios)
 542		writecache_wait_for_ios(wc, WRITE);
 543
 544	writecache_disk_flush(wc, wc->ssd_dev);
 545
 546	memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size);
 547}
 548
 549static void ssd_commit_superblock(struct dm_writecache *wc)
 550{
 551	int r;
 552	struct dm_io_region region;
 553	struct dm_io_request req;
 554
 555	region.bdev = wc->ssd_dev->bdev;
 556	region.sector = 0;
 557	region.count = max(4096U, wc->block_size) >> SECTOR_SHIFT;
 558
 559	if (unlikely(region.sector + region.count > wc->metadata_sectors))
 560		region.count = wc->metadata_sectors - region.sector;
 561
 562	region.sector += wc->start_sector;
 563
 564	req.bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_FUA;
 
 565	req.mem.type = DM_IO_VMA;
 566	req.mem.ptr.vma = (char *)wc->memory_map;
 567	req.client = wc->dm_io;
 568	req.notify.fn = NULL;
 569	req.notify.context = NULL;
 570
 571	r = dm_io(&req, 1, &region, NULL);
 572	if (unlikely(r))
 573		writecache_error(wc, r, "error writing superblock");
 574}
 575
 576static void writecache_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
 577{
 578	if (WC_MODE_PMEM(wc))
 579		pmem_wmb();
 580	else
 581		ssd_commit_flushed(wc, wait_for_ios);
 582}
 583
 584static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev)
 585{
 586	int r;
 587	struct dm_io_region region;
 588	struct dm_io_request req;
 589
 590	region.bdev = dev->bdev;
 591	region.sector = 0;
 592	region.count = 0;
 593	req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
 
 594	req.mem.type = DM_IO_KMEM;
 595	req.mem.ptr.addr = NULL;
 596	req.client = wc->dm_io;
 597	req.notify.fn = NULL;
 598
 599	r = dm_io(&req, 1, &region, NULL);
 600	if (unlikely(r))
 601		writecache_error(wc, r, "error flushing metadata: %d", r);
 602}
 603
 604#define WFE_RETURN_FOLLOWING	1
 605#define WFE_LOWEST_SEQ		2
 606
 607static struct wc_entry *writecache_find_entry(struct dm_writecache *wc,
 608					      uint64_t block, int flags)
 609{
 610	struct wc_entry *e;
 611	struct rb_node *node = wc->tree.rb_node;
 612
 613	if (unlikely(!node))
 614		return NULL;
 615
 616	while (1) {
 617		e = container_of(node, struct wc_entry, rb_node);
 618		if (read_original_sector(wc, e) == block)
 619			break;
 620
 621		node = (read_original_sector(wc, e) >= block ?
 622			e->rb_node.rb_left : e->rb_node.rb_right);
 623		if (unlikely(!node)) {
 624			if (!(flags & WFE_RETURN_FOLLOWING))
 625				return NULL;
 626			if (read_original_sector(wc, e) >= block) {
 627				return e;
 628			} else {
 629				node = rb_next(&e->rb_node);
 630				if (unlikely(!node))
 631					return NULL;
 632				e = container_of(node, struct wc_entry, rb_node);
 633				return e;
 634			}
 635		}
 636	}
 637
 638	while (1) {
 639		struct wc_entry *e2;
 640		if (flags & WFE_LOWEST_SEQ)
 641			node = rb_prev(&e->rb_node);
 642		else
 643			node = rb_next(&e->rb_node);
 644		if (unlikely(!node))
 645			return e;
 646		e2 = container_of(node, struct wc_entry, rb_node);
 647		if (read_original_sector(wc, e2) != block)
 648			return e;
 649		e = e2;
 650	}
 651}
 652
 653static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins)
 654{
 655	struct wc_entry *e;
 656	struct rb_node **node = &wc->tree.rb_node, *parent = NULL;
 657
 658	while (*node) {
 659		e = container_of(*node, struct wc_entry, rb_node);
 660		parent = &e->rb_node;
 661		if (read_original_sector(wc, e) > read_original_sector(wc, ins))
 662			node = &parent->rb_left;
 663		else
 664			node = &parent->rb_right;
 665	}
 666	rb_link_node(&ins->rb_node, parent, node);
 667	rb_insert_color(&ins->rb_node, &wc->tree);
 668	list_add(&ins->lru, &wc->lru);
 669	ins->age = jiffies;
 670}
 671
 672static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e)
 673{
 674	list_del(&e->lru);
 675	rb_erase(&e->rb_node, &wc->tree);
 676}
 677
 678static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e)
 679{
 680	if (WC_MODE_SORT_FREELIST(wc)) {
 681		struct rb_node **node = &wc->freetree.rb_node, *parent = NULL;
 682		if (unlikely(!*node))
 683			wc->current_free = e;
 684		while (*node) {
 685			parent = *node;
 686			if (&e->rb_node < *node)
 687				node = &parent->rb_left;
 688			else
 689				node = &parent->rb_right;
 690		}
 691		rb_link_node(&e->rb_node, parent, node);
 692		rb_insert_color(&e->rb_node, &wc->freetree);
 693	} else {
 694		list_add_tail(&e->lru, &wc->freelist);
 695	}
 696	wc->freelist_size++;
 697}
 698
 699static inline void writecache_verify_watermark(struct dm_writecache *wc)
 700{
 701	if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark))
 702		queue_work(wc->writeback_wq, &wc->writeback_work);
 703}
 704
 705static void writecache_max_age_timer(struct timer_list *t)
 706{
 707	struct dm_writecache *wc = from_timer(wc, t, max_age_timer);
 708
 709	if (!dm_suspended(wc->ti) && !writecache_has_error(wc)) {
 710		queue_work(wc->writeback_wq, &wc->writeback_work);
 711		mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV);
 712	}
 713}
 714
 715static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc, sector_t expected_sector)
 716{
 717	struct wc_entry *e;
 718
 719	if (WC_MODE_SORT_FREELIST(wc)) {
 720		struct rb_node *next;
 721		if (unlikely(!wc->current_free))
 722			return NULL;
 723		e = wc->current_free;
 724		if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector))
 725			return NULL;
 726		next = rb_next(&e->rb_node);
 727		rb_erase(&e->rb_node, &wc->freetree);
 728		if (unlikely(!next))
 729			next = rb_first(&wc->freetree);
 730		wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL;
 731	} else {
 732		if (unlikely(list_empty(&wc->freelist)))
 733			return NULL;
 734		e = container_of(wc->freelist.next, struct wc_entry, lru);
 735		if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector))
 736			return NULL;
 737		list_del(&e->lru);
 738	}
 739	wc->freelist_size--;
 740
 741	writecache_verify_watermark(wc);
 742
 743	return e;
 744}
 745
 746static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e)
 747{
 748	writecache_unlink(wc, e);
 749	writecache_add_to_freelist(wc, e);
 750	clear_seq_count(wc, e);
 751	writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
 752	if (unlikely(waitqueue_active(&wc->freelist_wait)))
 753		wake_up(&wc->freelist_wait);
 754}
 755
 756static void writecache_wait_on_freelist(struct dm_writecache *wc)
 757{
 758	DEFINE_WAIT(wait);
 759
 760	prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE);
 761	wc_unlock(wc);
 762	io_schedule();
 763	finish_wait(&wc->freelist_wait, &wait);
 764	wc_lock(wc);
 765}
 766
 767static void writecache_poison_lists(struct dm_writecache *wc)
 768{
 769	/*
 770	 * Catch incorrect access to these values while the device is suspended.
 771	 */
 772	memset(&wc->tree, -1, sizeof wc->tree);
 773	wc->lru.next = LIST_POISON1;
 774	wc->lru.prev = LIST_POISON2;
 775	wc->freelist.next = LIST_POISON1;
 776	wc->freelist.prev = LIST_POISON2;
 777}
 778
 779static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e)
 780{
 781	writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
 782	if (WC_MODE_PMEM(wc))
 783		writecache_flush_region(wc, memory_data(wc, e), wc->block_size);
 784}
 785
 786static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e)
 787{
 788	return read_seq_count(wc, e) < wc->seq_count;
 789}
 790
 791static void writecache_flush(struct dm_writecache *wc)
 792{
 793	struct wc_entry *e, *e2;
 794	bool need_flush_after_free;
 795
 796	wc->uncommitted_blocks = 0;
 797	del_timer(&wc->autocommit_timer);
 798
 799	if (list_empty(&wc->lru))
 800		return;
 801
 802	e = container_of(wc->lru.next, struct wc_entry, lru);
 803	if (writecache_entry_is_committed(wc, e)) {
 804		if (wc->overwrote_committed) {
 805			writecache_wait_for_ios(wc, WRITE);
 806			writecache_disk_flush(wc, wc->ssd_dev);
 807			wc->overwrote_committed = false;
 808		}
 809		return;
 810	}
 811	while (1) {
 812		writecache_flush_entry(wc, e);
 813		if (unlikely(e->lru.next == &wc->lru))
 814			break;
 815		e2 = container_of(e->lru.next, struct wc_entry, lru);
 816		if (writecache_entry_is_committed(wc, e2))
 817			break;
 818		e = e2;
 819		cond_resched();
 820	}
 821	writecache_commit_flushed(wc, true);
 822
 823	wc->seq_count++;
 824	pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count));
 825	if (WC_MODE_PMEM(wc))
 826		writecache_commit_flushed(wc, false);
 827	else
 828		ssd_commit_superblock(wc);
 829
 830	wc->overwrote_committed = false;
 831
 832	need_flush_after_free = false;
 833	while (1) {
 834		/* Free another committed entry with lower seq-count */
 835		struct rb_node *rb_node = rb_prev(&e->rb_node);
 836
 837		if (rb_node) {
 838			e2 = container_of(rb_node, struct wc_entry, rb_node);
 839			if (read_original_sector(wc, e2) == read_original_sector(wc, e) &&
 840			    likely(!e2->write_in_progress)) {
 841				writecache_free_entry(wc, e2);
 842				need_flush_after_free = true;
 843			}
 844		}
 845		if (unlikely(e->lru.prev == &wc->lru))
 846			break;
 847		e = container_of(e->lru.prev, struct wc_entry, lru);
 848		cond_resched();
 849	}
 850
 851	if (need_flush_after_free)
 852		writecache_commit_flushed(wc, false);
 853}
 854
 855static void writecache_flush_work(struct work_struct *work)
 856{
 857	struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work);
 858
 859	wc_lock(wc);
 860	writecache_flush(wc);
 861	wc_unlock(wc);
 862}
 863
 864static void writecache_autocommit_timer(struct timer_list *t)
 865{
 866	struct dm_writecache *wc = from_timer(wc, t, autocommit_timer);
 867	if (!writecache_has_error(wc))
 868		queue_work(wc->writeback_wq, &wc->flush_work);
 869}
 870
 871static void writecache_schedule_autocommit(struct dm_writecache *wc)
 872{
 873	if (!timer_pending(&wc->autocommit_timer))
 874		mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies);
 875}
 876
 877static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end)
 878{
 879	struct wc_entry *e;
 880	bool discarded_something = false;
 881
 882	e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ);
 883	if (unlikely(!e))
 884		return;
 885
 886	while (read_original_sector(wc, e) < end) {
 887		struct rb_node *node = rb_next(&e->rb_node);
 888
 889		if (likely(!e->write_in_progress)) {
 890			if (!discarded_something) {
 891				if (!WC_MODE_PMEM(wc)) {
 892					writecache_wait_for_ios(wc, READ);
 893					writecache_wait_for_ios(wc, WRITE);
 894				}
 895				discarded_something = true;
 896			}
 897			if (!writecache_entry_is_committed(wc, e))
 898				wc->uncommitted_blocks--;
 899			writecache_free_entry(wc, e);
 900		}
 901
 902		if (unlikely(!node))
 903			break;
 904
 905		e = container_of(node, struct wc_entry, rb_node);
 906	}
 907
 908	if (discarded_something)
 909		writecache_commit_flushed(wc, false);
 910}
 911
 912static bool writecache_wait_for_writeback(struct dm_writecache *wc)
 913{
 914	if (wc->writeback_size) {
 915		writecache_wait_on_freelist(wc);
 916		return true;
 917	}
 918	return false;
 919}
 920
 921static void writecache_suspend(struct dm_target *ti)
 922{
 923	struct dm_writecache *wc = ti->private;
 924	bool flush_on_suspend;
 925
 926	del_timer_sync(&wc->autocommit_timer);
 927	del_timer_sync(&wc->max_age_timer);
 928
 929	wc_lock(wc);
 930	writecache_flush(wc);
 931	flush_on_suspend = wc->flush_on_suspend;
 932	if (flush_on_suspend) {
 933		wc->flush_on_suspend = false;
 934		wc->writeback_all++;
 935		queue_work(wc->writeback_wq, &wc->writeback_work);
 936	}
 937	wc_unlock(wc);
 938
 939	drain_workqueue(wc->writeback_wq);
 940
 941	wc_lock(wc);
 942	if (flush_on_suspend)
 943		wc->writeback_all--;
 944	while (writecache_wait_for_writeback(wc));
 945
 946	if (WC_MODE_PMEM(wc))
 947		persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
 948
 949	writecache_poison_lists(wc);
 950
 951	wc_unlock(wc);
 952}
 953
 954static int writecache_alloc_entries(struct dm_writecache *wc)
 955{
 956	size_t b;
 957
 958	if (wc->entries)
 959		return 0;
 960	wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks));
 961	if (!wc->entries)
 962		return -ENOMEM;
 963	for (b = 0; b < wc->n_blocks; b++) {
 964		struct wc_entry *e = &wc->entries[b];
 965		e->index = b;
 966		e->write_in_progress = false;
 967		cond_resched();
 968	}
 969
 970	return 0;
 971}
 972
 973static int writecache_read_metadata(struct dm_writecache *wc, sector_t n_sectors)
 974{
 975	struct dm_io_region region;
 976	struct dm_io_request req;
 977
 978	region.bdev = wc->ssd_dev->bdev;
 979	region.sector = wc->start_sector;
 980	region.count = n_sectors;
 981	req.bi_opf = REQ_OP_READ | REQ_SYNC;
 
 982	req.mem.type = DM_IO_VMA;
 983	req.mem.ptr.vma = (char *)wc->memory_map;
 984	req.client = wc->dm_io;
 985	req.notify.fn = NULL;
 986
 987	return dm_io(&req, 1, &region, NULL);
 988}
 989
 990static void writecache_resume(struct dm_target *ti)
 991{
 992	struct dm_writecache *wc = ti->private;
 993	size_t b;
 994	bool need_flush = false;
 995	__le64 sb_seq_count;
 996	int r;
 997
 998	wc_lock(wc);
 999
1000	wc->data_device_sectors = bdev_nr_sectors(wc->dev->bdev);
1001
1002	if (WC_MODE_PMEM(wc)) {
1003		persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size);
1004	} else {
1005		r = writecache_read_metadata(wc, wc->metadata_sectors);
1006		if (r) {
1007			size_t sb_entries_offset;
1008			writecache_error(wc, r, "unable to read metadata: %d", r);
1009			sb_entries_offset = offsetof(struct wc_memory_superblock, entries);
1010			memset((char *)wc->memory_map + sb_entries_offset, -1,
1011			       (wc->metadata_sectors << SECTOR_SHIFT) - sb_entries_offset);
1012		}
1013	}
1014
1015	wc->tree = RB_ROOT;
1016	INIT_LIST_HEAD(&wc->lru);
1017	if (WC_MODE_SORT_FREELIST(wc)) {
1018		wc->freetree = RB_ROOT;
1019		wc->current_free = NULL;
1020	} else {
1021		INIT_LIST_HEAD(&wc->freelist);
1022	}
1023	wc->freelist_size = 0;
1024
1025	r = copy_mc_to_kernel(&sb_seq_count, &sb(wc)->seq_count,
1026			      sizeof(uint64_t));
1027	if (r) {
1028		writecache_error(wc, r, "hardware memory error when reading superblock: %d", r);
1029		sb_seq_count = cpu_to_le64(0);
1030	}
1031	wc->seq_count = le64_to_cpu(sb_seq_count);
1032
1033#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
1034	for (b = 0; b < wc->n_blocks; b++) {
1035		struct wc_entry *e = &wc->entries[b];
1036		struct wc_memory_entry wme;
1037		if (writecache_has_error(wc)) {
1038			e->original_sector = -1;
1039			e->seq_count = -1;
1040			continue;
1041		}
1042		r = copy_mc_to_kernel(&wme, memory_entry(wc, e),
1043				      sizeof(struct wc_memory_entry));
1044		if (r) {
1045			writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d",
1046					 (unsigned long)b, r);
1047			e->original_sector = -1;
1048			e->seq_count = -1;
1049		} else {
1050			e->original_sector = le64_to_cpu(wme.original_sector);
1051			e->seq_count = le64_to_cpu(wme.seq_count);
1052		}
1053		cond_resched();
1054	}
1055#endif
1056	for (b = 0; b < wc->n_blocks; b++) {
1057		struct wc_entry *e = &wc->entries[b];
1058		if (!writecache_entry_is_committed(wc, e)) {
1059			if (read_seq_count(wc, e) != -1) {
1060erase_this:
1061				clear_seq_count(wc, e);
1062				need_flush = true;
1063			}
1064			writecache_add_to_freelist(wc, e);
1065		} else {
1066			struct wc_entry *old;
1067
1068			old = writecache_find_entry(wc, read_original_sector(wc, e), 0);
1069			if (!old) {
1070				writecache_insert_entry(wc, e);
1071			} else {
1072				if (read_seq_count(wc, old) == read_seq_count(wc, e)) {
1073					writecache_error(wc, -EINVAL,
1074						 "two identical entries, position %llu, sector %llu, sequence %llu",
1075						 (unsigned long long)b, (unsigned long long)read_original_sector(wc, e),
1076						 (unsigned long long)read_seq_count(wc, e));
1077				}
1078				if (read_seq_count(wc, old) > read_seq_count(wc, e)) {
1079					goto erase_this;
1080				} else {
1081					writecache_free_entry(wc, old);
1082					writecache_insert_entry(wc, e);
1083					need_flush = true;
1084				}
1085			}
1086		}
1087		cond_resched();
1088	}
1089
1090	if (need_flush) {
1091		writecache_flush_all_metadata(wc);
1092		writecache_commit_flushed(wc, false);
1093	}
1094
1095	writecache_verify_watermark(wc);
1096
1097	if (wc->max_age != MAX_AGE_UNSPECIFIED)
1098		mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV);
1099
1100	wc_unlock(wc);
1101}
1102
1103static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1104{
1105	if (argc != 1)
1106		return -EINVAL;
1107
1108	wc_lock(wc);
1109	if (dm_suspended(wc->ti)) {
1110		wc_unlock(wc);
1111		return -EBUSY;
1112	}
1113	if (writecache_has_error(wc)) {
1114		wc_unlock(wc);
1115		return -EIO;
1116	}
1117
1118	writecache_flush(wc);
1119	wc->writeback_all++;
1120	queue_work(wc->writeback_wq, &wc->writeback_work);
1121	wc_unlock(wc);
1122
1123	flush_workqueue(wc->writeback_wq);
1124
1125	wc_lock(wc);
1126	wc->writeback_all--;
1127	if (writecache_has_error(wc)) {
1128		wc_unlock(wc);
1129		return -EIO;
1130	}
1131	wc_unlock(wc);
1132
1133	return 0;
1134}
1135
1136static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1137{
1138	if (argc != 1)
1139		return -EINVAL;
1140
1141	wc_lock(wc);
1142	wc->flush_on_suspend = true;
1143	wc_unlock(wc);
1144
1145	return 0;
1146}
1147
1148static void activate_cleaner(struct dm_writecache *wc)
1149{
1150	wc->flush_on_suspend = true;
1151	wc->cleaner = true;
1152	wc->freelist_high_watermark = wc->n_blocks;
1153	wc->freelist_low_watermark = wc->n_blocks;
1154}
1155
1156static int process_cleaner_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1157{
1158	if (argc != 1)
1159		return -EINVAL;
1160
1161	wc_lock(wc);
1162	activate_cleaner(wc);
1163	if (!dm_suspended(wc->ti))
1164		writecache_verify_watermark(wc);
1165	wc_unlock(wc);
1166
1167	return 0;
1168}
1169
1170static int process_clear_stats_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1171{
1172	if (argc != 1)
1173		return -EINVAL;
1174
1175	wc_lock(wc);
1176	memset(&wc->stats, 0, sizeof wc->stats);
1177	wc_unlock(wc);
1178
1179	return 0;
1180}
1181
1182static int writecache_message(struct dm_target *ti, unsigned argc, char **argv,
1183			      char *result, unsigned maxlen)
1184{
1185	int r = -EINVAL;
1186	struct dm_writecache *wc = ti->private;
1187
1188	if (!strcasecmp(argv[0], "flush"))
1189		r = process_flush_mesg(argc, argv, wc);
1190	else if (!strcasecmp(argv[0], "flush_on_suspend"))
1191		r = process_flush_on_suspend_mesg(argc, argv, wc);
1192	else if (!strcasecmp(argv[0], "cleaner"))
1193		r = process_cleaner_mesg(argc, argv, wc);
1194	else if (!strcasecmp(argv[0], "clear_stats"))
1195		r = process_clear_stats_mesg(argc, argv, wc);
1196	else
1197		DMERR("unrecognised message received: %s", argv[0]);
1198
1199	return r;
1200}
1201
1202static void memcpy_flushcache_optimized(void *dest, void *source, size_t size)
1203{
1204	/*
1205	 * clflushopt performs better with block size 1024, 2048, 4096
1206	 * non-temporal stores perform better with block size 512
1207	 *
1208	 * block size   512             1024            2048            4096
1209	 * movnti       496 MB/s        642 MB/s        725 MB/s        744 MB/s
1210	 * clflushopt   373 MB/s        688 MB/s        1.1 GB/s        1.2 GB/s
1211	 *
1212	 * We see that movnti performs better for 512-byte blocks, and
1213	 * clflushopt performs better for 1024-byte and larger blocks. So, we
1214	 * prefer clflushopt for sizes >= 768.
1215	 *
1216	 * NOTE: this happens to be the case now (with dm-writecache's single
1217	 * threaded model) but re-evaluate this once memcpy_flushcache() is
1218	 * enabled to use movdir64b which might invalidate this performance
1219	 * advantage seen with cache-allocating-writes plus flushing.
1220	 */
1221#ifdef CONFIG_X86
1222	if (static_cpu_has(X86_FEATURE_CLFLUSHOPT) &&
1223	    likely(boot_cpu_data.x86_clflush_size == 64) &&
1224	    likely(size >= 768)) {
1225		do {
1226			memcpy((void *)dest, (void *)source, 64);
1227			clflushopt((void *)dest);
1228			dest += 64;
1229			source += 64;
1230			size -= 64;
1231		} while (size >= 64);
1232		return;
1233	}
1234#endif
1235	memcpy_flushcache(dest, source, size);
1236}
1237
1238static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data)
1239{
1240	void *buf;
 
1241	unsigned size;
1242	int rw = bio_data_dir(bio);
1243	unsigned remaining_size = wc->block_size;
1244
1245	do {
1246		struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter);
1247		buf = bvec_kmap_local(&bv);
1248		size = bv.bv_len;
1249		if (unlikely(size > remaining_size))
1250			size = remaining_size;
1251
1252		if (rw == READ) {
1253			int r;
1254			r = copy_mc_to_kernel(buf, data, size);
1255			flush_dcache_page(bio_page(bio));
1256			if (unlikely(r)) {
1257				writecache_error(wc, r, "hardware memory error when reading data: %d", r);
1258				bio->bi_status = BLK_STS_IOERR;
1259			}
1260		} else {
1261			flush_dcache_page(bio_page(bio));
1262			memcpy_flushcache_optimized(data, buf, size);
1263		}
1264
1265		kunmap_local(buf);
1266
1267		data = (char *)data + size;
1268		remaining_size -= size;
1269		bio_advance(bio, size);
1270	} while (unlikely(remaining_size));
1271}
1272
1273static int writecache_flush_thread(void *data)
1274{
1275	struct dm_writecache *wc = data;
1276
1277	while (1) {
1278		struct bio *bio;
1279
1280		wc_lock(wc);
1281		bio = bio_list_pop(&wc->flush_list);
1282		if (!bio) {
1283			set_current_state(TASK_INTERRUPTIBLE);
1284			wc_unlock(wc);
1285
1286			if (unlikely(kthread_should_stop())) {
1287				set_current_state(TASK_RUNNING);
1288				break;
1289			}
1290
1291			schedule();
1292			continue;
1293		}
1294
1295		if (bio_op(bio) == REQ_OP_DISCARD) {
1296			writecache_discard(wc, bio->bi_iter.bi_sector,
1297					   bio_end_sector(bio));
1298			wc_unlock(wc);
1299			bio_set_dev(bio, wc->dev->bdev);
1300			submit_bio_noacct(bio);
1301		} else {
1302			writecache_flush(wc);
1303			wc_unlock(wc);
1304			if (writecache_has_error(wc))
1305				bio->bi_status = BLK_STS_IOERR;
1306			bio_endio(bio);
1307		}
1308	}
1309
1310	return 0;
1311}
1312
1313static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio)
1314{
1315	if (bio_list_empty(&wc->flush_list))
1316		wake_up_process(wc->flush_thread);
1317	bio_list_add(&wc->flush_list, bio);
1318}
1319
1320enum wc_map_op {
1321	WC_MAP_SUBMIT,
1322	WC_MAP_REMAP,
1323	WC_MAP_REMAP_ORIGIN,
1324	WC_MAP_RETURN,
1325	WC_MAP_ERROR,
1326};
1327
1328static void writecache_map_remap_origin(struct dm_writecache *wc, struct bio *bio,
1329					struct wc_entry *e)
1330{
1331	if (e) {
1332		sector_t next_boundary =
1333			read_original_sector(wc, e) - bio->bi_iter.bi_sector;
1334		if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT)
1335			dm_accept_partial_bio(bio, next_boundary);
1336	}
1337}
1338
1339static enum wc_map_op writecache_map_read(struct dm_writecache *wc, struct bio *bio)
1340{
1341	enum wc_map_op map_op;
1342	struct wc_entry *e;
1343
1344read_next_block:
1345	wc->stats.reads++;
1346	e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1347	if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) {
1348		wc->stats.read_hits++;
1349		if (WC_MODE_PMEM(wc)) {
1350			bio_copy_block(wc, bio, memory_data(wc, e));
1351			if (bio->bi_iter.bi_size)
1352				goto read_next_block;
1353			map_op = WC_MAP_SUBMIT;
1354		} else {
1355			dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
1356			bio_set_dev(bio, wc->ssd_dev->bdev);
1357			bio->bi_iter.bi_sector = cache_sector(wc, e);
1358			if (!writecache_entry_is_committed(wc, e))
1359				writecache_wait_for_ios(wc, WRITE);
1360			map_op = WC_MAP_REMAP;
1361		}
1362	} else {
1363		writecache_map_remap_origin(wc, bio, e);
1364		wc->stats.reads += (bio->bi_iter.bi_size - wc->block_size) >> wc->block_size_bits;
1365		map_op = WC_MAP_REMAP_ORIGIN;
1366	}
1367
1368	return map_op;
1369}
1370
1371static void writecache_bio_copy_ssd(struct dm_writecache *wc, struct bio *bio,
1372				    struct wc_entry *e, bool search_used)
1373{
1374	unsigned bio_size = wc->block_size;
1375	sector_t start_cache_sec = cache_sector(wc, e);
1376	sector_t current_cache_sec = start_cache_sec + (bio_size >> SECTOR_SHIFT);
1377
1378	while (bio_size < bio->bi_iter.bi_size) {
1379		if (!search_used) {
1380			struct wc_entry *f = writecache_pop_from_freelist(wc, current_cache_sec);
1381			if (!f)
1382				break;
1383			write_original_sector_seq_count(wc, f, bio->bi_iter.bi_sector +
1384							(bio_size >> SECTOR_SHIFT), wc->seq_count);
1385			writecache_insert_entry(wc, f);
1386			wc->uncommitted_blocks++;
1387		} else {
1388			struct wc_entry *f;
1389			struct rb_node *next = rb_next(&e->rb_node);
1390			if (!next)
1391				break;
1392			f = container_of(next, struct wc_entry, rb_node);
1393			if (f != e + 1)
1394				break;
1395			if (read_original_sector(wc, f) !=
1396			    read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
1397				break;
1398			if (unlikely(f->write_in_progress))
1399				break;
1400			if (writecache_entry_is_committed(wc, f))
1401				wc->overwrote_committed = true;
1402			e = f;
1403		}
1404		bio_size += wc->block_size;
1405		current_cache_sec += wc->block_size >> SECTOR_SHIFT;
1406	}
1407
1408	bio_set_dev(bio, wc->ssd_dev->bdev);
1409	bio->bi_iter.bi_sector = start_cache_sec;
1410	dm_accept_partial_bio(bio, bio_size >> SECTOR_SHIFT);
1411
1412	wc->stats.writes += bio->bi_iter.bi_size >> wc->block_size_bits;
1413	wc->stats.writes_allocate += (bio->bi_iter.bi_size - wc->block_size) >> wc->block_size_bits;
1414
1415	if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) {
1416		wc->uncommitted_blocks = 0;
1417		queue_work(wc->writeback_wq, &wc->flush_work);
1418	} else {
1419		writecache_schedule_autocommit(wc);
1420	}
1421}
1422
1423static enum wc_map_op writecache_map_write(struct dm_writecache *wc, struct bio *bio)
1424{
1425	struct wc_entry *e;
1426
1427	do {
1428		bool found_entry = false;
1429		bool search_used = false;
1430		if (writecache_has_error(wc)) {
1431			wc->stats.writes += bio->bi_iter.bi_size >> wc->block_size_bits;
1432			return WC_MAP_ERROR;
1433		}
1434		e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0);
1435		if (e) {
1436			if (!writecache_entry_is_committed(wc, e)) {
1437				wc->stats.write_hits_uncommitted++;
1438				search_used = true;
1439				goto bio_copy;
1440			}
1441			wc->stats.write_hits_committed++;
1442			if (!WC_MODE_PMEM(wc) && !e->write_in_progress) {
1443				wc->overwrote_committed = true;
1444				search_used = true;
1445				goto bio_copy;
1446			}
1447			found_entry = true;
1448		} else {
1449			if (unlikely(wc->cleaner) ||
1450			    (wc->metadata_only && !(bio->bi_opf & REQ_META)))
1451				goto direct_write;
1452		}
1453		e = writecache_pop_from_freelist(wc, (sector_t)-1);
1454		if (unlikely(!e)) {
1455			if (!WC_MODE_PMEM(wc) && !found_entry) {
1456direct_write:
1457				e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1458				writecache_map_remap_origin(wc, bio, e);
1459				wc->stats.writes_around += bio->bi_iter.bi_size >> wc->block_size_bits;
1460				wc->stats.writes += bio->bi_iter.bi_size >> wc->block_size_bits;
1461				return WC_MAP_REMAP_ORIGIN;
1462			}
1463			wc->stats.writes_blocked_on_freelist++;
1464			writecache_wait_on_freelist(wc);
1465			continue;
1466		}
1467		write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count);
1468		writecache_insert_entry(wc, e);
1469		wc->uncommitted_blocks++;
1470		wc->stats.writes_allocate++;
1471bio_copy:
1472		if (WC_MODE_PMEM(wc)) {
1473			bio_copy_block(wc, bio, memory_data(wc, e));
1474			wc->stats.writes++;
1475		} else {
1476			writecache_bio_copy_ssd(wc, bio, e, search_used);
1477			return WC_MAP_REMAP;
1478		}
1479	} while (bio->bi_iter.bi_size);
1480
1481	if (unlikely(bio->bi_opf & REQ_FUA || wc->uncommitted_blocks >= wc->autocommit_blocks))
1482		writecache_flush(wc);
1483	else
1484		writecache_schedule_autocommit(wc);
1485
1486	return WC_MAP_SUBMIT;
1487}
1488
1489static enum wc_map_op writecache_map_flush(struct dm_writecache *wc, struct bio *bio)
1490{
1491	if (writecache_has_error(wc))
1492		return WC_MAP_ERROR;
1493
1494	if (WC_MODE_PMEM(wc)) {
1495		wc->stats.flushes++;
1496		writecache_flush(wc);
1497		if (writecache_has_error(wc))
1498			return WC_MAP_ERROR;
1499		else if (unlikely(wc->cleaner) || unlikely(wc->metadata_only))
1500			return WC_MAP_REMAP_ORIGIN;
1501		return WC_MAP_SUBMIT;
1502	}
1503	/* SSD: */
1504	if (dm_bio_get_target_bio_nr(bio))
1505		return WC_MAP_REMAP_ORIGIN;
1506	wc->stats.flushes++;
1507	writecache_offload_bio(wc, bio);
1508	return WC_MAP_RETURN;
1509}
1510
1511static enum wc_map_op writecache_map_discard(struct dm_writecache *wc, struct bio *bio)
1512{
1513	wc->stats.discards += bio->bi_iter.bi_size >> wc->block_size_bits;
1514
1515	if (writecache_has_error(wc))
1516		return WC_MAP_ERROR;
1517
1518	if (WC_MODE_PMEM(wc)) {
1519		writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio));
1520		return WC_MAP_REMAP_ORIGIN;
1521	}
1522	/* SSD: */
1523	writecache_offload_bio(wc, bio);
1524	return WC_MAP_RETURN;
1525}
1526
1527static int writecache_map(struct dm_target *ti, struct bio *bio)
1528{
 
1529	struct dm_writecache *wc = ti->private;
1530	enum wc_map_op map_op;
1531
1532	bio->bi_private = NULL;
1533
1534	wc_lock(wc);
1535
1536	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1537		map_op = writecache_map_flush(wc, bio);
1538		goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 
1539	}
1540
1541	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1542
1543	if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
1544				(wc->block_size / 512 - 1)) != 0)) {
1545		DMERR("I/O is not aligned, sector %llu, size %u, block size %u",
1546		      (unsigned long long)bio->bi_iter.bi_sector,
1547		      bio->bi_iter.bi_size, wc->block_size);
1548		map_op = WC_MAP_ERROR;
1549		goto done;
1550	}
1551
1552	if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
1553		map_op = writecache_map_discard(wc, bio);
1554		goto done;
 
 
 
 
 
 
 
1555	}
1556
1557	if (bio_data_dir(bio) == READ)
1558		map_op = writecache_map_read(wc, bio);
1559	else
1560		map_op = writecache_map_write(wc, bio);
1561done:
1562	switch (map_op) {
1563	case WC_MAP_REMAP_ORIGIN:
1564		if (likely(wc->pause != 0)) {
1565			if (bio_op(bio) == REQ_OP_WRITE) {
1566				dm_iot_io_begin(&wc->iot, 1);
1567				bio->bi_private = (void *)2;
 
 
 
 
 
1568			}
 
 
 
 
 
 
 
 
 
1569		}
1570		bio_set_dev(bio, wc->dev->bdev);
1571		wc_unlock(wc);
1572		return DM_MAPIO_REMAPPED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1573
1574	case WC_MAP_REMAP:
1575		/* make sure that writecache_end_io decrements bio_in_progress: */
1576		bio->bi_private = (void *)1;
1577		atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]);
1578		wc_unlock(wc);
1579		return DM_MAPIO_REMAPPED;
 
 
 
 
 
 
 
1580
1581	case WC_MAP_SUBMIT:
1582		wc_unlock(wc);
1583		bio_endio(bio);
1584		return DM_MAPIO_SUBMITTED;
 
 
 
1585
1586	case WC_MAP_RETURN:
1587		wc_unlock(wc);
1588		return DM_MAPIO_SUBMITTED;
 
 
 
 
 
 
 
1589
1590	case WC_MAP_ERROR:
1591		wc_unlock(wc);
1592		bio_io_error(bio);
1593		return DM_MAPIO_SUBMITTED;
 
 
1594
1595	default:
1596		BUG();
1597		wc_unlock(wc);
1598		return DM_MAPIO_KILL;
1599	}
 
 
 
 
 
 
 
 
1600}
1601
1602static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
1603{
1604	struct dm_writecache *wc = ti->private;
1605
1606	if (bio->bi_private == (void *)1) {
1607		int dir = bio_data_dir(bio);
1608		if (atomic_dec_and_test(&wc->bio_in_progress[dir]))
1609			if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir])))
1610				wake_up(&wc->bio_in_progress_wait[dir]);
1611	} else if (bio->bi_private == (void *)2) {
1612		dm_iot_io_end(&wc->iot, 1);
1613	}
1614	return 0;
1615}
1616
1617static int writecache_iterate_devices(struct dm_target *ti,
1618				      iterate_devices_callout_fn fn, void *data)
1619{
1620	struct dm_writecache *wc = ti->private;
1621
1622	return fn(ti, wc->dev, 0, ti->len, data);
1623}
1624
1625static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits)
1626{
1627	struct dm_writecache *wc = ti->private;
1628
1629	if (limits->logical_block_size < wc->block_size)
1630		limits->logical_block_size = wc->block_size;
1631
1632	if (limits->physical_block_size < wc->block_size)
1633		limits->physical_block_size = wc->block_size;
1634
1635	if (limits->io_min < wc->block_size)
1636		limits->io_min = wc->block_size;
1637}
1638
1639
1640static void writecache_writeback_endio(struct bio *bio)
1641{
1642	struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio);
1643	struct dm_writecache *wc = wb->wc;
1644	unsigned long flags;
1645
1646	raw_spin_lock_irqsave(&wc->endio_list_lock, flags);
1647	if (unlikely(list_empty(&wc->endio_list)))
1648		wake_up_process(wc->endio_thread);
1649	list_add_tail(&wb->endio_entry, &wc->endio_list);
1650	raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags);
1651}
1652
1653static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr)
1654{
1655	struct copy_struct *c = ptr;
1656	struct dm_writecache *wc = c->wc;
1657
1658	c->error = likely(!(read_err | write_err)) ? 0 : -EIO;
1659
1660	raw_spin_lock_irq(&wc->endio_list_lock);
1661	if (unlikely(list_empty(&wc->endio_list)))
1662		wake_up_process(wc->endio_thread);
1663	list_add_tail(&c->endio_entry, &wc->endio_list);
1664	raw_spin_unlock_irq(&wc->endio_list_lock);
1665}
1666
1667static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list)
1668{
1669	unsigned i;
1670	struct writeback_struct *wb;
1671	struct wc_entry *e;
1672	unsigned long n_walked = 0;
1673
1674	do {
1675		wb = list_entry(list->next, struct writeback_struct, endio_entry);
1676		list_del(&wb->endio_entry);
1677
1678		if (unlikely(wb->bio.bi_status != BLK_STS_OK))
1679			writecache_error(wc, blk_status_to_errno(wb->bio.bi_status),
1680					"write error %d", wb->bio.bi_status);
1681		i = 0;
1682		do {
1683			e = wb->wc_list[i];
1684			BUG_ON(!e->write_in_progress);
1685			e->write_in_progress = false;
1686			INIT_LIST_HEAD(&e->lru);
1687			if (!writecache_has_error(wc))
1688				writecache_free_entry(wc, e);
1689			BUG_ON(!wc->writeback_size);
1690			wc->writeback_size--;
1691			n_walked++;
1692			if (unlikely(n_walked >= ENDIO_LATENCY)) {
1693				writecache_commit_flushed(wc, false);
1694				wc_unlock(wc);
1695				wc_lock(wc);
1696				n_walked = 0;
1697			}
1698		} while (++i < wb->wc_list_n);
1699
1700		if (wb->wc_list != wb->wc_list_inline)
1701			kfree(wb->wc_list);
1702		bio_put(&wb->bio);
1703	} while (!list_empty(list));
1704}
1705
1706static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list)
1707{
1708	struct copy_struct *c;
1709	struct wc_entry *e;
1710
1711	do {
1712		c = list_entry(list->next, struct copy_struct, endio_entry);
1713		list_del(&c->endio_entry);
1714
1715		if (unlikely(c->error))
1716			writecache_error(wc, c->error, "copy error");
1717
1718		e = c->e;
1719		do {
1720			BUG_ON(!e->write_in_progress);
1721			e->write_in_progress = false;
1722			INIT_LIST_HEAD(&e->lru);
1723			if (!writecache_has_error(wc))
1724				writecache_free_entry(wc, e);
1725
1726			BUG_ON(!wc->writeback_size);
1727			wc->writeback_size--;
1728			e++;
1729		} while (--c->n_entries);
1730		mempool_free(c, &wc->copy_pool);
1731	} while (!list_empty(list));
1732}
1733
1734static int writecache_endio_thread(void *data)
1735{
1736	struct dm_writecache *wc = data;
1737
1738	while (1) {
1739		struct list_head list;
1740
1741		raw_spin_lock_irq(&wc->endio_list_lock);
1742		if (!list_empty(&wc->endio_list))
1743			goto pop_from_list;
1744		set_current_state(TASK_INTERRUPTIBLE);
1745		raw_spin_unlock_irq(&wc->endio_list_lock);
1746
1747		if (unlikely(kthread_should_stop())) {
1748			set_current_state(TASK_RUNNING);
1749			break;
1750		}
1751
1752		schedule();
1753
1754		continue;
1755
1756pop_from_list:
1757		list = wc->endio_list;
1758		list.next->prev = list.prev->next = &list;
1759		INIT_LIST_HEAD(&wc->endio_list);
1760		raw_spin_unlock_irq(&wc->endio_list_lock);
1761
1762		if (!WC_MODE_FUA(wc))
1763			writecache_disk_flush(wc, wc->dev);
1764
1765		wc_lock(wc);
1766
1767		if (WC_MODE_PMEM(wc)) {
1768			__writecache_endio_pmem(wc, &list);
1769		} else {
1770			__writecache_endio_ssd(wc, &list);
1771			writecache_wait_for_ios(wc, READ);
1772		}
1773
1774		writecache_commit_flushed(wc, false);
1775
1776		wc_unlock(wc);
1777	}
1778
1779	return 0;
1780}
1781
1782static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e)
1783{
1784	struct dm_writecache *wc = wb->wc;
1785	unsigned block_size = wc->block_size;
1786	void *address = memory_data(wc, e);
1787
1788	persistent_memory_flush_cache(address, block_size);
1789
1790	if (unlikely(bio_end_sector(&wb->bio) >= wc->data_device_sectors))
1791		return true;
1792
1793	return bio_add_page(&wb->bio, persistent_memory_page(address),
1794			    block_size, persistent_memory_page_offset(address)) != 0;
1795}
1796
1797struct writeback_list {
1798	struct list_head list;
1799	size_t size;
1800};
1801
1802static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl)
1803{
1804	if (unlikely(wc->max_writeback_jobs)) {
1805		if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) {
1806			wc_lock(wc);
1807			while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs)
1808				writecache_wait_on_freelist(wc);
1809			wc_unlock(wc);
1810		}
1811	}
1812	cond_resched();
1813}
1814
1815static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl)
1816{
1817	struct wc_entry *e, *f;
1818	struct bio *bio;
1819	struct writeback_struct *wb;
1820	unsigned max_pages;
1821
1822	while (wbl->size) {
1823		wbl->size--;
1824		e = container_of(wbl->list.prev, struct wc_entry, lru);
1825		list_del(&e->lru);
1826
1827		max_pages = e->wc_list_contiguous;
1828
1829		bio = bio_alloc_bioset(wc->dev->bdev, max_pages, REQ_OP_WRITE,
1830				       GFP_NOIO, &wc->bio_set);
1831		wb = container_of(bio, struct writeback_struct, bio);
1832		wb->wc = wc;
1833		bio->bi_end_io = writecache_writeback_endio;
 
1834		bio->bi_iter.bi_sector = read_original_sector(wc, e);
1835		if (max_pages <= WB_LIST_INLINE ||
1836		    unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *),
1837							   GFP_NOIO | __GFP_NORETRY |
1838							   __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
1839			wb->wc_list = wb->wc_list_inline;
1840			max_pages = WB_LIST_INLINE;
1841		}
1842
1843		BUG_ON(!wc_add_block(wb, e));
1844
1845		wb->wc_list[0] = e;
1846		wb->wc_list_n = 1;
1847
1848		while (wbl->size && wb->wc_list_n < max_pages) {
1849			f = container_of(wbl->list.prev, struct wc_entry, lru);
1850			if (read_original_sector(wc, f) !=
1851			    read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
1852				break;
1853			if (!wc_add_block(wb, f))
1854				break;
1855			wbl->size--;
1856			list_del(&f->lru);
1857			wb->wc_list[wb->wc_list_n++] = f;
1858			e = f;
1859		}
1860		if (WC_MODE_FUA(wc))
1861			bio->bi_opf |= REQ_FUA;
1862		if (writecache_has_error(wc)) {
1863			bio->bi_status = BLK_STS_IOERR;
1864			bio_endio(bio);
1865		} else if (unlikely(!bio_sectors(bio))) {
1866			bio->bi_status = BLK_STS_OK;
1867			bio_endio(bio);
1868		} else {
1869			submit_bio(bio);
1870		}
1871
1872		__writeback_throttle(wc, wbl);
1873	}
1874}
1875
1876static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl)
1877{
1878	struct wc_entry *e, *f;
1879	struct dm_io_region from, to;
1880	struct copy_struct *c;
1881
1882	while (wbl->size) {
1883		unsigned n_sectors;
1884
1885		wbl->size--;
1886		e = container_of(wbl->list.prev, struct wc_entry, lru);
1887		list_del(&e->lru);
1888
1889		n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT);
1890
1891		from.bdev = wc->ssd_dev->bdev;
1892		from.sector = cache_sector(wc, e);
1893		from.count = n_sectors;
1894		to.bdev = wc->dev->bdev;
1895		to.sector = read_original_sector(wc, e);
1896		to.count = n_sectors;
1897
1898		c = mempool_alloc(&wc->copy_pool, GFP_NOIO);
1899		c->wc = wc;
1900		c->e = e;
1901		c->n_entries = e->wc_list_contiguous;
1902
1903		while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) {
1904			wbl->size--;
1905			f = container_of(wbl->list.prev, struct wc_entry, lru);
1906			BUG_ON(f != e + 1);
1907			list_del(&f->lru);
1908			e = f;
1909		}
1910
1911		if (unlikely(to.sector + to.count > wc->data_device_sectors)) {
1912			if (to.sector >= wc->data_device_sectors) {
1913				writecache_copy_endio(0, 0, c);
1914				continue;
1915			}
1916			from.count = to.count = wc->data_device_sectors - to.sector;
1917		}
1918
1919		dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c);
1920
1921		__writeback_throttle(wc, wbl);
1922	}
1923}
1924
1925static void writecache_writeback(struct work_struct *work)
1926{
1927	struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work);
1928	struct blk_plug plug;
1929	struct wc_entry *f, *g, *e = NULL;
1930	struct rb_node *node, *next_node;
1931	struct list_head skipped;
1932	struct writeback_list wbl;
1933	unsigned long n_walked;
1934
1935	if (!WC_MODE_PMEM(wc)) {
1936		/* Wait for any active kcopyd work on behalf of ssd writeback */
1937		dm_kcopyd_client_flush(wc->dm_kcopyd);
1938	}
1939
1940	if (likely(wc->pause != 0)) {
1941		while (1) {
1942			unsigned long idle;
1943			if (unlikely(wc->cleaner) || unlikely(wc->writeback_all) ||
1944			    unlikely(dm_suspended(wc->ti)))
1945				break;
1946			idle = dm_iot_idle_time(&wc->iot);
1947			if (idle >= wc->pause)
1948				break;
1949			idle = wc->pause - idle;
1950			if (idle > HZ)
1951				idle = HZ;
1952			schedule_timeout_idle(idle);
1953		}
1954	}
1955
1956	wc_lock(wc);
1957restart:
1958	if (writecache_has_error(wc)) {
1959		wc_unlock(wc);
1960		return;
1961	}
1962
1963	if (unlikely(wc->writeback_all)) {
1964		if (writecache_wait_for_writeback(wc))
1965			goto restart;
1966	}
1967
1968	if (wc->overwrote_committed) {
1969		writecache_wait_for_ios(wc, WRITE);
1970	}
1971
1972	n_walked = 0;
1973	INIT_LIST_HEAD(&skipped);
1974	INIT_LIST_HEAD(&wbl.list);
1975	wbl.size = 0;
1976	while (!list_empty(&wc->lru) &&
1977	       (wc->writeback_all ||
1978		wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark ||
1979		(jiffies - container_of(wc->lru.prev, struct wc_entry, lru)->age >=
1980		 wc->max_age - wc->max_age / MAX_AGE_DIV))) {
1981
1982		n_walked++;
1983		if (unlikely(n_walked > WRITEBACK_LATENCY) &&
1984		    likely(!wc->writeback_all)) {
1985			if (likely(!dm_suspended(wc->ti)))
1986				queue_work(wc->writeback_wq, &wc->writeback_work);
1987			break;
1988		}
1989
1990		if (unlikely(wc->writeback_all)) {
1991			if (unlikely(!e)) {
1992				writecache_flush(wc);
1993				e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node);
1994			} else
1995				e = g;
1996		} else
1997			e = container_of(wc->lru.prev, struct wc_entry, lru);
1998		BUG_ON(e->write_in_progress);
1999		if (unlikely(!writecache_entry_is_committed(wc, e))) {
2000			writecache_flush(wc);
2001		}
2002		node = rb_prev(&e->rb_node);
2003		if (node) {
2004			f = container_of(node, struct wc_entry, rb_node);
2005			if (unlikely(read_original_sector(wc, f) ==
2006				     read_original_sector(wc, e))) {
2007				BUG_ON(!f->write_in_progress);
2008				list_move(&e->lru, &skipped);
2009				cond_resched();
2010				continue;
2011			}
2012		}
2013		wc->writeback_size++;
2014		list_move(&e->lru, &wbl.list);
2015		wbl.size++;
2016		e->write_in_progress = true;
2017		e->wc_list_contiguous = 1;
2018
2019		f = e;
2020
2021		while (1) {
2022			next_node = rb_next(&f->rb_node);
2023			if (unlikely(!next_node))
2024				break;
2025			g = container_of(next_node, struct wc_entry, rb_node);
2026			if (unlikely(read_original_sector(wc, g) ==
2027			    read_original_sector(wc, f))) {
2028				f = g;
2029				continue;
2030			}
2031			if (read_original_sector(wc, g) !=
2032			    read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT))
2033				break;
2034			if (unlikely(g->write_in_progress))
2035				break;
2036			if (unlikely(!writecache_entry_is_committed(wc, g)))
2037				break;
2038
2039			if (!WC_MODE_PMEM(wc)) {
2040				if (g != f + 1)
2041					break;
2042			}
2043
2044			n_walked++;
2045			//if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all))
2046			//	break;
2047
2048			wc->writeback_size++;
2049			list_move(&g->lru, &wbl.list);
2050			wbl.size++;
2051			g->write_in_progress = true;
2052			g->wc_list_contiguous = BIO_MAX_VECS;
2053			f = g;
2054			e->wc_list_contiguous++;
2055			if (unlikely(e->wc_list_contiguous == BIO_MAX_VECS)) {
2056				if (unlikely(wc->writeback_all)) {
2057					next_node = rb_next(&f->rb_node);
2058					if (likely(next_node))
2059						g = container_of(next_node, struct wc_entry, rb_node);
2060				}
2061				break;
2062			}
2063		}
2064		cond_resched();
2065	}
2066
2067	if (!list_empty(&skipped)) {
2068		list_splice_tail(&skipped, &wc->lru);
2069		/*
2070		 * If we didn't do any progress, we must wait until some
2071		 * writeback finishes to avoid burning CPU in a loop
2072		 */
2073		if (unlikely(!wbl.size))
2074			writecache_wait_for_writeback(wc);
2075	}
2076
2077	wc_unlock(wc);
2078
2079	blk_start_plug(&plug);
2080
2081	if (WC_MODE_PMEM(wc))
2082		__writecache_writeback_pmem(wc, &wbl);
2083	else
2084		__writecache_writeback_ssd(wc, &wbl);
2085
2086	blk_finish_plug(&plug);
2087
2088	if (unlikely(wc->writeback_all)) {
2089		wc_lock(wc);
2090		while (writecache_wait_for_writeback(wc));
2091		wc_unlock(wc);
2092	}
2093}
2094
2095static int calculate_memory_size(uint64_t device_size, unsigned block_size,
2096				 size_t *n_blocks_p, size_t *n_metadata_blocks_p)
2097{
2098	uint64_t n_blocks, offset;
2099	struct wc_entry e;
2100
2101	n_blocks = device_size;
2102	do_div(n_blocks, block_size + sizeof(struct wc_memory_entry));
2103
2104	while (1) {
2105		if (!n_blocks)
2106			return -ENOSPC;
2107		/* Verify the following entries[n_blocks] won't overflow */
2108		if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) /
2109				 sizeof(struct wc_memory_entry)))
2110			return -EFBIG;
2111		offset = offsetof(struct wc_memory_superblock, entries[n_blocks]);
2112		offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1);
2113		if (offset + n_blocks * block_size <= device_size)
2114			break;
2115		n_blocks--;
2116	}
2117
2118	/* check if the bit field overflows */
2119	e.index = n_blocks;
2120	if (e.index != n_blocks)
2121		return -EFBIG;
2122
2123	if (n_blocks_p)
2124		*n_blocks_p = n_blocks;
2125	if (n_metadata_blocks_p)
2126		*n_metadata_blocks_p = offset >> __ffs(block_size);
2127	return 0;
2128}
2129
2130static int init_memory(struct dm_writecache *wc)
2131{
2132	size_t b;
2133	int r;
2134
2135	r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL);
2136	if (r)
2137		return r;
2138
2139	r = writecache_alloc_entries(wc);
2140	if (r)
2141		return r;
2142
2143	for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++)
2144		pmem_assign(sb(wc)->padding[b], cpu_to_le64(0));
2145	pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION));
2146	pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size));
2147	pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks));
2148	pmem_assign(sb(wc)->seq_count, cpu_to_le64(0));
2149
2150	for (b = 0; b < wc->n_blocks; b++) {
2151		write_original_sector_seq_count(wc, &wc->entries[b], -1, -1);
2152		cond_resched();
2153	}
2154
2155	writecache_flush_all_metadata(wc);
2156	writecache_commit_flushed(wc, false);
2157	pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC));
2158	writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic);
2159	writecache_commit_flushed(wc, false);
2160
2161	return 0;
2162}
2163
2164static void writecache_dtr(struct dm_target *ti)
2165{
2166	struct dm_writecache *wc = ti->private;
2167
2168	if (!wc)
2169		return;
2170
2171	if (wc->endio_thread)
2172		kthread_stop(wc->endio_thread);
2173
2174	if (wc->flush_thread)
2175		kthread_stop(wc->flush_thread);
2176
2177	bioset_exit(&wc->bio_set);
2178
2179	mempool_exit(&wc->copy_pool);
2180
2181	if (wc->writeback_wq)
2182		destroy_workqueue(wc->writeback_wq);
2183
2184	if (wc->dev)
2185		dm_put_device(ti, wc->dev);
2186
2187	if (wc->ssd_dev)
2188		dm_put_device(ti, wc->ssd_dev);
2189
2190	vfree(wc->entries);
2191
2192	if (wc->memory_map) {
2193		if (WC_MODE_PMEM(wc))
2194			persistent_memory_release(wc);
2195		else
2196			vfree(wc->memory_map);
2197	}
2198
2199	if (wc->dm_kcopyd)
2200		dm_kcopyd_client_destroy(wc->dm_kcopyd);
2201
2202	if (wc->dm_io)
2203		dm_io_client_destroy(wc->dm_io);
2204
2205	vfree(wc->dirty_bitmap);
2206
2207	kfree(wc);
2208}
2209
2210static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2211{
2212	struct dm_writecache *wc;
2213	struct dm_arg_set as;
2214	const char *string;
2215	unsigned opt_params;
2216	size_t offset, data_size;
2217	int i, r;
2218	char dummy;
2219	int high_wm_percent = HIGH_WATERMARK;
2220	int low_wm_percent = LOW_WATERMARK;
2221	uint64_t x;
2222	struct wc_memory_superblock s;
2223
2224	static struct dm_arg _args[] = {
2225		{0, 18, "Invalid number of feature args"},
2226	};
2227
2228	as.argc = argc;
2229	as.argv = argv;
2230
2231	wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL);
2232	if (!wc) {
2233		ti->error = "Cannot allocate writecache structure";
2234		r = -ENOMEM;
2235		goto bad;
2236	}
2237	ti->private = wc;
2238	wc->ti = ti;
2239
2240	mutex_init(&wc->lock);
2241	wc->max_age = MAX_AGE_UNSPECIFIED;
2242	writecache_poison_lists(wc);
2243	init_waitqueue_head(&wc->freelist_wait);
2244	timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0);
2245	timer_setup(&wc->max_age_timer, writecache_max_age_timer, 0);
2246
2247	for (i = 0; i < 2; i++) {
2248		atomic_set(&wc->bio_in_progress[i], 0);
2249		init_waitqueue_head(&wc->bio_in_progress_wait[i]);
2250	}
2251
2252	wc->dm_io = dm_io_client_create();
2253	if (IS_ERR(wc->dm_io)) {
2254		r = PTR_ERR(wc->dm_io);
2255		ti->error = "Unable to allocate dm-io client";
2256		wc->dm_io = NULL;
2257		goto bad;
2258	}
2259
2260	wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1);
2261	if (!wc->writeback_wq) {
2262		r = -ENOMEM;
2263		ti->error = "Could not allocate writeback workqueue";
2264		goto bad;
2265	}
2266	INIT_WORK(&wc->writeback_work, writecache_writeback);
2267	INIT_WORK(&wc->flush_work, writecache_flush_work);
2268
2269	dm_iot_init(&wc->iot);
2270
2271	raw_spin_lock_init(&wc->endio_list_lock);
2272	INIT_LIST_HEAD(&wc->endio_list);
2273	wc->endio_thread = kthread_run(writecache_endio_thread, wc, "writecache_endio");
2274	if (IS_ERR(wc->endio_thread)) {
2275		r = PTR_ERR(wc->endio_thread);
2276		wc->endio_thread = NULL;
2277		ti->error = "Couldn't spawn endio thread";
2278		goto bad;
2279	}
 
2280
2281	/*
2282	 * Parse the mode (pmem or ssd)
2283	 */
2284	string = dm_shift_arg(&as);
2285	if (!string)
2286		goto bad_arguments;
2287
2288	if (!strcasecmp(string, "s")) {
2289		wc->pmem_mode = false;
2290	} else if (!strcasecmp(string, "p")) {
2291#ifdef DM_WRITECACHE_HAS_PMEM
2292		wc->pmem_mode = true;
2293		wc->writeback_fua = true;
2294#else
2295		/*
2296		 * If the architecture doesn't support persistent memory or
2297		 * the kernel doesn't support any DAX drivers, this driver can
2298		 * only be used in SSD-only mode.
2299		 */
2300		r = -EOPNOTSUPP;
2301		ti->error = "Persistent memory or DAX not supported on this system";
2302		goto bad;
2303#endif
2304	} else {
2305		goto bad_arguments;
2306	}
2307
2308	if (WC_MODE_PMEM(wc)) {
2309		r = bioset_init(&wc->bio_set, BIO_POOL_SIZE,
2310				offsetof(struct writeback_struct, bio),
2311				BIOSET_NEED_BVECS);
2312		if (r) {
2313			ti->error = "Could not allocate bio set";
2314			goto bad;
2315		}
2316	} else {
2317		wc->pause = PAUSE_WRITEBACK;
2318		r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct));
2319		if (r) {
2320			ti->error = "Could not allocate mempool";
2321			goto bad;
2322		}
2323	}
2324
2325	/*
2326	 * Parse the origin data device
2327	 */
2328	string = dm_shift_arg(&as);
2329	if (!string)
2330		goto bad_arguments;
2331	r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev);
2332	if (r) {
2333		ti->error = "Origin data device lookup failed";
2334		goto bad;
2335	}
2336
2337	/*
2338	 * Parse cache data device (be it pmem or ssd)
2339	 */
2340	string = dm_shift_arg(&as);
2341	if (!string)
2342		goto bad_arguments;
2343
2344	r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev);
2345	if (r) {
2346		ti->error = "Cache data device lookup failed";
2347		goto bad;
2348	}
2349	wc->memory_map_size = bdev_nr_bytes(wc->ssd_dev->bdev);
2350
2351	/*
2352	 * Parse the cache block size
2353	 */
2354	string = dm_shift_arg(&as);
2355	if (!string)
2356		goto bad_arguments;
2357	if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 ||
2358	    wc->block_size < 512 || wc->block_size > PAGE_SIZE ||
2359	    (wc->block_size & (wc->block_size - 1))) {
2360		r = -EINVAL;
2361		ti->error = "Invalid block size";
2362		goto bad;
2363	}
2364	if (wc->block_size < bdev_logical_block_size(wc->dev->bdev) ||
2365	    wc->block_size < bdev_logical_block_size(wc->ssd_dev->bdev)) {
2366		r = -EINVAL;
2367		ti->error = "Block size is smaller than device logical block size";
2368		goto bad;
2369	}
2370	wc->block_size_bits = __ffs(wc->block_size);
2371
2372	wc->max_writeback_jobs = MAX_WRITEBACK_JOBS;
2373	wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM;
2374	wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC);
2375
2376	/*
2377	 * Parse optional arguments
2378	 */
2379	r = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2380	if (r)
2381		goto bad;
2382
2383	while (opt_params) {
2384		string = dm_shift_arg(&as), opt_params--;
2385		if (!strcasecmp(string, "start_sector") && opt_params >= 1) {
2386			unsigned long long start_sector;
2387			string = dm_shift_arg(&as), opt_params--;
2388			if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1)
2389				goto invalid_optional;
2390			wc->start_sector = start_sector;
2391			wc->start_sector_set = true;
2392			if (wc->start_sector != start_sector ||
2393			    wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT)
2394				goto invalid_optional;
2395		} else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) {
2396			string = dm_shift_arg(&as), opt_params--;
2397			if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1)
2398				goto invalid_optional;
2399			if (high_wm_percent < 0 || high_wm_percent > 100)
2400				goto invalid_optional;
2401			wc->high_wm_percent_value = high_wm_percent;
2402			wc->high_wm_percent_set = true;
2403		} else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) {
2404			string = dm_shift_arg(&as), opt_params--;
2405			if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1)
2406				goto invalid_optional;
2407			if (low_wm_percent < 0 || low_wm_percent > 100)
2408				goto invalid_optional;
2409			wc->low_wm_percent_value = low_wm_percent;
2410			wc->low_wm_percent_set = true;
2411		} else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) {
2412			string = dm_shift_arg(&as), opt_params--;
2413			if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1)
2414				goto invalid_optional;
2415			wc->max_writeback_jobs_set = true;
2416		} else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) {
2417			string = dm_shift_arg(&as), opt_params--;
2418			if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1)
2419				goto invalid_optional;
2420			wc->autocommit_blocks_set = true;
2421		} else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) {
2422			unsigned autocommit_msecs;
2423			string = dm_shift_arg(&as), opt_params--;
2424			if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1)
2425				goto invalid_optional;
2426			if (autocommit_msecs > 3600000)
2427				goto invalid_optional;
2428			wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs);
2429			wc->autocommit_time_value = autocommit_msecs;
2430			wc->autocommit_time_set = true;
2431		} else if (!strcasecmp(string, "max_age") && opt_params >= 1) {
2432			unsigned max_age_msecs;
2433			string = dm_shift_arg(&as), opt_params--;
2434			if (sscanf(string, "%u%c", &max_age_msecs, &dummy) != 1)
2435				goto invalid_optional;
2436			if (max_age_msecs > 86400000)
2437				goto invalid_optional;
2438			wc->max_age = msecs_to_jiffies(max_age_msecs);
2439			wc->max_age_set = true;
2440			wc->max_age_value = max_age_msecs;
2441		} else if (!strcasecmp(string, "cleaner")) {
2442			wc->cleaner_set = true;
2443			wc->cleaner = true;
2444		} else if (!strcasecmp(string, "fua")) {
2445			if (WC_MODE_PMEM(wc)) {
2446				wc->writeback_fua = true;
2447				wc->writeback_fua_set = true;
2448			} else goto invalid_optional;
2449		} else if (!strcasecmp(string, "nofua")) {
2450			if (WC_MODE_PMEM(wc)) {
2451				wc->writeback_fua = false;
2452				wc->writeback_fua_set = true;
2453			} else goto invalid_optional;
2454		} else if (!strcasecmp(string, "metadata_only")) {
2455			wc->metadata_only = true;
2456		} else if (!strcasecmp(string, "pause_writeback") && opt_params >= 1) {
2457			unsigned pause_msecs;
2458			if (WC_MODE_PMEM(wc))
2459				goto invalid_optional;
2460			string = dm_shift_arg(&as), opt_params--;
2461			if (sscanf(string, "%u%c", &pause_msecs, &dummy) != 1)
2462				goto invalid_optional;
2463			if (pause_msecs > 60000)
2464				goto invalid_optional;
2465			wc->pause = msecs_to_jiffies(pause_msecs);
2466			wc->pause_set = true;
2467			wc->pause_value = pause_msecs;
2468		} else {
2469invalid_optional:
2470			r = -EINVAL;
2471			ti->error = "Invalid optional argument";
2472			goto bad;
2473		}
2474	}
2475
2476	if (high_wm_percent < low_wm_percent) {
2477		r = -EINVAL;
2478		ti->error = "High watermark must be greater than or equal to low watermark";
2479		goto bad;
2480	}
2481
2482	if (WC_MODE_PMEM(wc)) {
2483		if (!dax_synchronous(wc->ssd_dev->dax_dev)) {
2484			r = -EOPNOTSUPP;
2485			ti->error = "Asynchronous persistent memory not supported as pmem cache";
2486			goto bad;
2487		}
2488
2489		r = persistent_memory_claim(wc);
2490		if (r) {
2491			ti->error = "Unable to map persistent memory for cache";
2492			goto bad;
2493		}
2494	} else {
2495		size_t n_blocks, n_metadata_blocks;
2496		uint64_t n_bitmap_bits;
2497
2498		wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT;
2499
2500		bio_list_init(&wc->flush_list);
2501		wc->flush_thread = kthread_run(writecache_flush_thread, wc, "dm_writecache_flush");
2502		if (IS_ERR(wc->flush_thread)) {
2503			r = PTR_ERR(wc->flush_thread);
2504			wc->flush_thread = NULL;
2505			ti->error = "Couldn't spawn flush thread";
2506			goto bad;
2507		}
 
2508
2509		r = calculate_memory_size(wc->memory_map_size, wc->block_size,
2510					  &n_blocks, &n_metadata_blocks);
2511		if (r) {
2512			ti->error = "Invalid device size";
2513			goto bad;
2514		}
2515
2516		n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) +
2517				 BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY;
2518		/* this is limitation of test_bit functions */
2519		if (n_bitmap_bits > 1U << 31) {
2520			r = -EFBIG;
2521			ti->error = "Invalid device size";
2522			goto bad;
2523		}
2524
2525		wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits);
2526		if (!wc->memory_map) {
2527			r = -ENOMEM;
2528			ti->error = "Unable to allocate memory for metadata";
2529			goto bad;
2530		}
2531
2532		wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2533		if (IS_ERR(wc->dm_kcopyd)) {
2534			r = PTR_ERR(wc->dm_kcopyd);
2535			ti->error = "Unable to allocate dm-kcopyd client";
2536			wc->dm_kcopyd = NULL;
2537			goto bad;
2538		}
2539
2540		wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT);
2541		wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) /
2542			BITS_PER_LONG * sizeof(unsigned long);
2543		wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size);
2544		if (!wc->dirty_bitmap) {
2545			r = -ENOMEM;
2546			ti->error = "Unable to allocate dirty bitmap";
2547			goto bad;
2548		}
2549
2550		r = writecache_read_metadata(wc, wc->block_size >> SECTOR_SHIFT);
2551		if (r) {
2552			ti->error = "Unable to read first block of metadata";
2553			goto bad;
2554		}
2555	}
2556
2557	r = copy_mc_to_kernel(&s, sb(wc), sizeof(struct wc_memory_superblock));
2558	if (r) {
2559		ti->error = "Hardware memory error when reading superblock";
2560		goto bad;
2561	}
2562	if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) {
2563		r = init_memory(wc);
2564		if (r) {
2565			ti->error = "Unable to initialize device";
2566			goto bad;
2567		}
2568		r = copy_mc_to_kernel(&s, sb(wc),
2569				      sizeof(struct wc_memory_superblock));
2570		if (r) {
2571			ti->error = "Hardware memory error when reading superblock";
2572			goto bad;
2573		}
2574	}
2575
2576	if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) {
2577		ti->error = "Invalid magic in the superblock";
2578		r = -EINVAL;
2579		goto bad;
2580	}
2581
2582	if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) {
2583		ti->error = "Invalid version in the superblock";
2584		r = -EINVAL;
2585		goto bad;
2586	}
2587
2588	if (le32_to_cpu(s.block_size) != wc->block_size) {
2589		ti->error = "Block size does not match superblock";
2590		r = -EINVAL;
2591		goto bad;
2592	}
2593
2594	wc->n_blocks = le64_to_cpu(s.n_blocks);
2595
2596	offset = wc->n_blocks * sizeof(struct wc_memory_entry);
2597	if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) {
2598overflow:
2599		ti->error = "Overflow in size calculation";
2600		r = -EINVAL;
2601		goto bad;
2602	}
2603	offset += sizeof(struct wc_memory_superblock);
2604	if (offset < sizeof(struct wc_memory_superblock))
2605		goto overflow;
2606	offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1);
2607	data_size = wc->n_blocks * (size_t)wc->block_size;
2608	if (!offset || (data_size / wc->block_size != wc->n_blocks) ||
2609	    (offset + data_size < offset))
2610		goto overflow;
2611	if (offset + data_size > wc->memory_map_size) {
2612		ti->error = "Memory area is too small";
2613		r = -EINVAL;
2614		goto bad;
2615	}
2616
2617	wc->metadata_sectors = offset >> SECTOR_SHIFT;
2618	wc->block_start = (char *)sb(wc) + offset;
2619
2620	x = (uint64_t)wc->n_blocks * (100 - high_wm_percent);
2621	x += 50;
2622	do_div(x, 100);
2623	wc->freelist_high_watermark = x;
2624	x = (uint64_t)wc->n_blocks * (100 - low_wm_percent);
2625	x += 50;
2626	do_div(x, 100);
2627	wc->freelist_low_watermark = x;
2628
2629	if (wc->cleaner)
2630		activate_cleaner(wc);
2631
2632	r = writecache_alloc_entries(wc);
2633	if (r) {
2634		ti->error = "Cannot allocate memory";
2635		goto bad;
2636	}
2637
2638	ti->num_flush_bios = WC_MODE_PMEM(wc) ? 1 : 2;
2639	ti->flush_supported = true;
2640	ti->num_discard_bios = 1;
2641
2642	if (WC_MODE_PMEM(wc))
2643		persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
2644
2645	return 0;
2646
2647bad_arguments:
2648	r = -EINVAL;
2649	ti->error = "Bad arguments";
2650bad:
2651	writecache_dtr(ti);
2652	return r;
2653}
2654
2655static void writecache_status(struct dm_target *ti, status_type_t type,
2656			      unsigned status_flags, char *result, unsigned maxlen)
2657{
2658	struct dm_writecache *wc = ti->private;
2659	unsigned extra_args;
2660	unsigned sz = 0;
2661
2662	switch (type) {
2663	case STATUSTYPE_INFO:
2664		DMEMIT("%ld %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu",
2665		       writecache_has_error(wc),
2666		       (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size,
2667		       (unsigned long long)wc->writeback_size,
2668		       wc->stats.reads,
2669		       wc->stats.read_hits,
2670		       wc->stats.writes,
2671		       wc->stats.write_hits_uncommitted,
2672		       wc->stats.write_hits_committed,
2673		       wc->stats.writes_around,
2674		       wc->stats.writes_allocate,
2675		       wc->stats.writes_blocked_on_freelist,
2676		       wc->stats.flushes,
2677		       wc->stats.discards);
2678		break;
2679	case STATUSTYPE_TABLE:
2680		DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's',
2681				wc->dev->name, wc->ssd_dev->name, wc->block_size);
2682		extra_args = 0;
2683		if (wc->start_sector_set)
2684			extra_args += 2;
2685		if (wc->high_wm_percent_set)
2686			extra_args += 2;
2687		if (wc->low_wm_percent_set)
2688			extra_args += 2;
2689		if (wc->max_writeback_jobs_set)
2690			extra_args += 2;
2691		if (wc->autocommit_blocks_set)
2692			extra_args += 2;
2693		if (wc->autocommit_time_set)
2694			extra_args += 2;
2695		if (wc->max_age_set)
2696			extra_args += 2;
2697		if (wc->cleaner_set)
2698			extra_args++;
2699		if (wc->writeback_fua_set)
2700			extra_args++;
2701		if (wc->metadata_only)
2702			extra_args++;
2703		if (wc->pause_set)
2704			extra_args += 2;
2705
2706		DMEMIT("%u", extra_args);
2707		if (wc->start_sector_set)
2708			DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector);
2709		if (wc->high_wm_percent_set)
2710			DMEMIT(" high_watermark %u", wc->high_wm_percent_value);
2711		if (wc->low_wm_percent_set)
2712			DMEMIT(" low_watermark %u", wc->low_wm_percent_value);
2713		if (wc->max_writeback_jobs_set)
2714			DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs);
2715		if (wc->autocommit_blocks_set)
2716			DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks);
2717		if (wc->autocommit_time_set)
2718			DMEMIT(" autocommit_time %u", wc->autocommit_time_value);
2719		if (wc->max_age_set)
2720			DMEMIT(" max_age %u", wc->max_age_value);
2721		if (wc->cleaner_set)
2722			DMEMIT(" cleaner");
2723		if (wc->writeback_fua_set)
2724			DMEMIT(" %sfua", wc->writeback_fua ? "" : "no");
2725		if (wc->metadata_only)
2726			DMEMIT(" metadata_only");
2727		if (wc->pause_set)
2728			DMEMIT(" pause_writeback %u", wc->pause_value);
2729		break;
2730	case STATUSTYPE_IMA:
2731		*result = '\0';
2732		break;
2733	}
2734}
2735
2736static struct target_type writecache_target = {
2737	.name			= "writecache",
2738	.version		= {1, 6, 0},
2739	.module			= THIS_MODULE,
2740	.ctr			= writecache_ctr,
2741	.dtr			= writecache_dtr,
2742	.status			= writecache_status,
2743	.postsuspend		= writecache_suspend,
2744	.resume			= writecache_resume,
2745	.message		= writecache_message,
2746	.map			= writecache_map,
2747	.end_io			= writecache_end_io,
2748	.iterate_devices	= writecache_iterate_devices,
2749	.io_hints		= writecache_io_hints,
2750};
2751
2752static int __init dm_writecache_init(void)
2753{
2754	int r;
2755
2756	r = dm_register_target(&writecache_target);
2757	if (r < 0) {
2758		DMERR("register failed %d", r);
2759		return r;
2760	}
2761
2762	return 0;
2763}
2764
2765static void __exit dm_writecache_exit(void)
2766{
2767	dm_unregister_target(&writecache_target);
2768}
2769
2770module_init(dm_writecache_init);
2771module_exit(dm_writecache_exit);
2772
2773MODULE_DESCRIPTION(DM_NAME " writecache target");
2774MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2775MODULE_LICENSE("GPL");
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2018 Red Hat. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include <linux/device-mapper.h>
   9#include <linux/module.h>
  10#include <linux/init.h>
  11#include <linux/vmalloc.h>
  12#include <linux/kthread.h>
  13#include <linux/dm-io.h>
  14#include <linux/dm-kcopyd.h>
  15#include <linux/dax.h>
  16#include <linux/pfn_t.h>
  17#include <linux/libnvdimm.h>
  18#include <linux/delay.h>
  19#include "dm-io-tracker.h"
  20
  21#define DM_MSG_PREFIX "writecache"
  22
  23#define HIGH_WATERMARK			50
  24#define LOW_WATERMARK			45
  25#define MAX_WRITEBACK_JOBS		0
  26#define ENDIO_LATENCY			16
  27#define WRITEBACK_LATENCY		64
  28#define AUTOCOMMIT_BLOCKS_SSD		65536
  29#define AUTOCOMMIT_BLOCKS_PMEM		64
  30#define AUTOCOMMIT_MSEC			1000
  31#define MAX_AGE_DIV			16
  32#define MAX_AGE_UNSPECIFIED		-1UL
  33#define PAUSE_WRITEBACK			(HZ * 3)
  34
  35#define BITMAP_GRANULARITY	65536
  36#if BITMAP_GRANULARITY < PAGE_SIZE
  37#undef BITMAP_GRANULARITY
  38#define BITMAP_GRANULARITY	PAGE_SIZE
  39#endif
  40
  41#if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_DAX_DRIVER)
  42#define DM_WRITECACHE_HAS_PMEM
  43#endif
  44
  45#ifdef DM_WRITECACHE_HAS_PMEM
  46#define pmem_assign(dest, src)					\
  47do {								\
  48	typeof(dest) uniq = (src);				\
  49	memcpy_flushcache(&(dest), &uniq, sizeof(dest));	\
  50} while (0)
  51#else
  52#define pmem_assign(dest, src)	((dest) = (src))
  53#endif
  54
  55#if IS_ENABLED(CONFIG_ARCH_HAS_COPY_MC) && defined(DM_WRITECACHE_HAS_PMEM)
  56#define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  57#endif
  58
  59#define MEMORY_SUPERBLOCK_MAGIC		0x23489321
  60#define MEMORY_SUPERBLOCK_VERSION	1
  61
  62struct wc_memory_entry {
  63	__le64 original_sector;
  64	__le64 seq_count;
  65};
  66
  67struct wc_memory_superblock {
  68	union {
  69		struct {
  70			__le32 magic;
  71			__le32 version;
  72			__le32 block_size;
  73			__le32 pad;
  74			__le64 n_blocks;
  75			__le64 seq_count;
  76		};
  77		__le64 padding[8];
  78	};
  79	struct wc_memory_entry entries[];
  80};
  81
  82struct wc_entry {
  83	struct rb_node rb_node;
  84	struct list_head lru;
  85	unsigned short wc_list_contiguous;
  86	bool write_in_progress
  87#if BITS_PER_LONG == 64
  88		:1
  89#endif
  90	;
  91	unsigned long index
  92#if BITS_PER_LONG == 64
  93		:47
  94#endif
  95	;
  96	unsigned long age;
  97#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
  98	uint64_t original_sector;
  99	uint64_t seq_count;
 100#endif
 101};
 102
 103#ifdef DM_WRITECACHE_HAS_PMEM
 104#define WC_MODE_PMEM(wc)			((wc)->pmem_mode)
 105#define WC_MODE_FUA(wc)				((wc)->writeback_fua)
 106#else
 107#define WC_MODE_PMEM(wc)			false
 108#define WC_MODE_FUA(wc)				false
 109#endif
 110#define WC_MODE_SORT_FREELIST(wc)		(!WC_MODE_PMEM(wc))
 111
 112struct dm_writecache {
 113	struct mutex lock;
 114	struct list_head lru;
 115	union {
 116		struct list_head freelist;
 117		struct {
 118			struct rb_root freetree;
 119			struct wc_entry *current_free;
 120		};
 121	};
 122	struct rb_root tree;
 123
 124	size_t freelist_size;
 125	size_t writeback_size;
 126	size_t freelist_high_watermark;
 127	size_t freelist_low_watermark;
 128	unsigned long max_age;
 129	unsigned long pause;
 130
 131	unsigned uncommitted_blocks;
 132	unsigned autocommit_blocks;
 133	unsigned max_writeback_jobs;
 134
 135	int error;
 136
 137	unsigned long autocommit_jiffies;
 138	struct timer_list autocommit_timer;
 139	struct wait_queue_head freelist_wait;
 140
 141	struct timer_list max_age_timer;
 142
 143	atomic_t bio_in_progress[2];
 144	struct wait_queue_head bio_in_progress_wait[2];
 145
 146	struct dm_target *ti;
 147	struct dm_dev *dev;
 148	struct dm_dev *ssd_dev;
 149	sector_t start_sector;
 150	void *memory_map;
 151	uint64_t memory_map_size;
 152	size_t metadata_sectors;
 153	size_t n_blocks;
 154	uint64_t seq_count;
 155	sector_t data_device_sectors;
 156	void *block_start;
 157	struct wc_entry *entries;
 158	unsigned block_size;
 159	unsigned char block_size_bits;
 160
 161	bool pmem_mode:1;
 162	bool writeback_fua:1;
 163
 164	bool overwrote_committed:1;
 165	bool memory_vmapped:1;
 166
 167	bool start_sector_set:1;
 168	bool high_wm_percent_set:1;
 169	bool low_wm_percent_set:1;
 170	bool max_writeback_jobs_set:1;
 171	bool autocommit_blocks_set:1;
 172	bool autocommit_time_set:1;
 173	bool max_age_set:1;
 174	bool writeback_fua_set:1;
 175	bool flush_on_suspend:1;
 176	bool cleaner:1;
 177	bool cleaner_set:1;
 178	bool metadata_only:1;
 179	bool pause_set:1;
 180
 181	unsigned high_wm_percent_value;
 182	unsigned low_wm_percent_value;
 183	unsigned autocommit_time_value;
 184	unsigned max_age_value;
 185	unsigned pause_value;
 186
 187	unsigned writeback_all;
 188	struct workqueue_struct *writeback_wq;
 189	struct work_struct writeback_work;
 190	struct work_struct flush_work;
 191
 192	struct dm_io_tracker iot;
 193
 194	struct dm_io_client *dm_io;
 195
 196	raw_spinlock_t endio_list_lock;
 197	struct list_head endio_list;
 198	struct task_struct *endio_thread;
 199
 200	struct task_struct *flush_thread;
 201	struct bio_list flush_list;
 202
 203	struct dm_kcopyd_client *dm_kcopyd;
 204	unsigned long *dirty_bitmap;
 205	unsigned dirty_bitmap_size;
 206
 207	struct bio_set bio_set;
 208	mempool_t copy_pool;
 
 
 
 
 
 
 
 
 
 
 
 
 
 209};
 210
 211#define WB_LIST_INLINE		16
 212
 213struct writeback_struct {
 214	struct list_head endio_entry;
 215	struct dm_writecache *wc;
 216	struct wc_entry **wc_list;
 217	unsigned wc_list_n;
 218	struct wc_entry *wc_list_inline[WB_LIST_INLINE];
 219	struct bio bio;
 220};
 221
 222struct copy_struct {
 223	struct list_head endio_entry;
 224	struct dm_writecache *wc;
 225	struct wc_entry *e;
 226	unsigned n_entries;
 227	int error;
 228};
 229
 230DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle,
 231					    "A percentage of time allocated for data copying");
 232
 233static void wc_lock(struct dm_writecache *wc)
 234{
 235	mutex_lock(&wc->lock);
 236}
 237
 238static void wc_unlock(struct dm_writecache *wc)
 239{
 240	mutex_unlock(&wc->lock);
 241}
 242
 243#ifdef DM_WRITECACHE_HAS_PMEM
 244static int persistent_memory_claim(struct dm_writecache *wc)
 245{
 246	int r;
 247	loff_t s;
 248	long p, da;
 249	pfn_t pfn;
 250	int id;
 251	struct page **pages;
 252	sector_t offset;
 253
 254	wc->memory_vmapped = false;
 255
 256	s = wc->memory_map_size;
 257	p = s >> PAGE_SHIFT;
 258	if (!p) {
 259		r = -EINVAL;
 260		goto err1;
 261	}
 262	if (p != s >> PAGE_SHIFT) {
 263		r = -EOVERFLOW;
 264		goto err1;
 265	}
 266
 267	offset = get_start_sect(wc->ssd_dev->bdev);
 268	if (offset & (PAGE_SIZE / 512 - 1)) {
 269		r = -EINVAL;
 270		goto err1;
 271	}
 272	offset >>= PAGE_SHIFT - 9;
 273
 274	id = dax_read_lock();
 275
 276	da = dax_direct_access(wc->ssd_dev->dax_dev, offset, p, &wc->memory_map, &pfn);
 
 277	if (da < 0) {
 278		wc->memory_map = NULL;
 279		r = da;
 280		goto err2;
 281	}
 282	if (!pfn_t_has_page(pfn)) {
 283		wc->memory_map = NULL;
 284		r = -EOPNOTSUPP;
 285		goto err2;
 286	}
 287	if (da != p) {
 288		long i;
 289		wc->memory_map = NULL;
 290		pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL);
 291		if (!pages) {
 292			r = -ENOMEM;
 293			goto err2;
 294		}
 295		i = 0;
 296		do {
 297			long daa;
 298			daa = dax_direct_access(wc->ssd_dev->dax_dev, offset + i, p - i,
 299						NULL, &pfn);
 300			if (daa <= 0) {
 301				r = daa ? daa : -EINVAL;
 302				goto err3;
 303			}
 304			if (!pfn_t_has_page(pfn)) {
 305				r = -EOPNOTSUPP;
 306				goto err3;
 307			}
 308			while (daa-- && i < p) {
 309				pages[i++] = pfn_t_to_page(pfn);
 310				pfn.val++;
 311				if (!(i & 15))
 312					cond_resched();
 313			}
 314		} while (i < p);
 315		wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL);
 316		if (!wc->memory_map) {
 317			r = -ENOMEM;
 318			goto err3;
 319		}
 320		kvfree(pages);
 321		wc->memory_vmapped = true;
 322	}
 323
 324	dax_read_unlock(id);
 325
 326	wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT;
 327	wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT;
 328
 329	return 0;
 330err3:
 331	kvfree(pages);
 332err2:
 333	dax_read_unlock(id);
 334err1:
 335	return r;
 336}
 337#else
 338static int persistent_memory_claim(struct dm_writecache *wc)
 339{
 340	return -EOPNOTSUPP;
 341}
 342#endif
 343
 344static void persistent_memory_release(struct dm_writecache *wc)
 345{
 346	if (wc->memory_vmapped)
 347		vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT));
 348}
 349
 350static struct page *persistent_memory_page(void *addr)
 351{
 352	if (is_vmalloc_addr(addr))
 353		return vmalloc_to_page(addr);
 354	else
 355		return virt_to_page(addr);
 356}
 357
 358static unsigned persistent_memory_page_offset(void *addr)
 359{
 360	return (unsigned long)addr & (PAGE_SIZE - 1);
 361}
 362
 363static void persistent_memory_flush_cache(void *ptr, size_t size)
 364{
 365	if (is_vmalloc_addr(ptr))
 366		flush_kernel_vmap_range(ptr, size);
 367}
 368
 369static void persistent_memory_invalidate_cache(void *ptr, size_t size)
 370{
 371	if (is_vmalloc_addr(ptr))
 372		invalidate_kernel_vmap_range(ptr, size);
 373}
 374
 375static struct wc_memory_superblock *sb(struct dm_writecache *wc)
 376{
 377	return wc->memory_map;
 378}
 379
 380static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e)
 381{
 382	return &sb(wc)->entries[e->index];
 383}
 384
 385static void *memory_data(struct dm_writecache *wc, struct wc_entry *e)
 386{
 387	return (char *)wc->block_start + (e->index << wc->block_size_bits);
 388}
 389
 390static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e)
 391{
 392	return wc->start_sector + wc->metadata_sectors +
 393		((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT));
 394}
 395
 396static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e)
 397{
 398#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
 399	return e->original_sector;
 400#else
 401	return le64_to_cpu(memory_entry(wc, e)->original_sector);
 402#endif
 403}
 404
 405static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e)
 406{
 407#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
 408	return e->seq_count;
 409#else
 410	return le64_to_cpu(memory_entry(wc, e)->seq_count);
 411#endif
 412}
 413
 414static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e)
 415{
 416#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
 417	e->seq_count = -1;
 418#endif
 419	pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1));
 420}
 421
 422static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e,
 423					    uint64_t original_sector, uint64_t seq_count)
 424{
 425	struct wc_memory_entry me;
 426#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
 427	e->original_sector = original_sector;
 428	e->seq_count = seq_count;
 429#endif
 430	me.original_sector = cpu_to_le64(original_sector);
 431	me.seq_count = cpu_to_le64(seq_count);
 432	pmem_assign(*memory_entry(wc, e), me);
 433}
 434
 435#define writecache_error(wc, err, msg, arg...)				\
 436do {									\
 437	if (!cmpxchg(&(wc)->error, 0, err))				\
 438		DMERR(msg, ##arg);					\
 439	wake_up(&(wc)->freelist_wait);					\
 440} while (0)
 441
 442#define writecache_has_error(wc)	(unlikely(READ_ONCE((wc)->error)))
 443
 444static void writecache_flush_all_metadata(struct dm_writecache *wc)
 445{
 446	if (!WC_MODE_PMEM(wc))
 447		memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size);
 448}
 449
 450static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size)
 451{
 452	if (!WC_MODE_PMEM(wc))
 453		__set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY,
 454			  wc->dirty_bitmap);
 455}
 456
 457static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev);
 458
 459struct io_notify {
 460	struct dm_writecache *wc;
 461	struct completion c;
 462	atomic_t count;
 463};
 464
 465static void writecache_notify_io(unsigned long error, void *context)
 466{
 467	struct io_notify *endio = context;
 468
 469	if (unlikely(error != 0))
 470		writecache_error(endio->wc, -EIO, "error writing metadata");
 471	BUG_ON(atomic_read(&endio->count) <= 0);
 472	if (atomic_dec_and_test(&endio->count))
 473		complete(&endio->c);
 474}
 475
 476static void writecache_wait_for_ios(struct dm_writecache *wc, int direction)
 477{
 478	wait_event(wc->bio_in_progress_wait[direction],
 479		   !atomic_read(&wc->bio_in_progress[direction]));
 480}
 481
 482static void ssd_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
 483{
 484	struct dm_io_region region;
 485	struct dm_io_request req;
 486	struct io_notify endio = {
 487		wc,
 488		COMPLETION_INITIALIZER_ONSTACK(endio.c),
 489		ATOMIC_INIT(1),
 490	};
 491	unsigned bitmap_bits = wc->dirty_bitmap_size * 8;
 492	unsigned i = 0;
 493
 494	while (1) {
 495		unsigned j;
 496		i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i);
 497		if (unlikely(i == bitmap_bits))
 498			break;
 499		j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i);
 500
 501		region.bdev = wc->ssd_dev->bdev;
 502		region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
 503		region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
 504
 505		if (unlikely(region.sector >= wc->metadata_sectors))
 506			break;
 507		if (unlikely(region.sector + region.count > wc->metadata_sectors))
 508			region.count = wc->metadata_sectors - region.sector;
 509
 510		region.sector += wc->start_sector;
 511		atomic_inc(&endio.count);
 512		req.bi_op = REQ_OP_WRITE;
 513		req.bi_op_flags = REQ_SYNC;
 514		req.mem.type = DM_IO_VMA;
 515		req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY;
 516		req.client = wc->dm_io;
 517		req.notify.fn = writecache_notify_io;
 518		req.notify.context = &endio;
 519
 520		/* writing via async dm-io (implied by notify.fn above) won't return an error */
 521	        (void) dm_io(&req, 1, &region, NULL);
 522		i = j;
 523	}
 524
 525	writecache_notify_io(0, &endio);
 526	wait_for_completion_io(&endio.c);
 527
 528	if (wait_for_ios)
 529		writecache_wait_for_ios(wc, WRITE);
 530
 531	writecache_disk_flush(wc, wc->ssd_dev);
 532
 533	memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size);
 534}
 535
 536static void ssd_commit_superblock(struct dm_writecache *wc)
 537{
 538	int r;
 539	struct dm_io_region region;
 540	struct dm_io_request req;
 541
 542	region.bdev = wc->ssd_dev->bdev;
 543	region.sector = 0;
 544	region.count = max(4096U, wc->block_size) >> SECTOR_SHIFT;
 545
 546	if (unlikely(region.sector + region.count > wc->metadata_sectors))
 547		region.count = wc->metadata_sectors - region.sector;
 548
 549	region.sector += wc->start_sector;
 550
 551	req.bi_op = REQ_OP_WRITE;
 552	req.bi_op_flags = REQ_SYNC | REQ_FUA;
 553	req.mem.type = DM_IO_VMA;
 554	req.mem.ptr.vma = (char *)wc->memory_map;
 555	req.client = wc->dm_io;
 556	req.notify.fn = NULL;
 557	req.notify.context = NULL;
 558
 559	r = dm_io(&req, 1, &region, NULL);
 560	if (unlikely(r))
 561		writecache_error(wc, r, "error writing superblock");
 562}
 563
 564static void writecache_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
 565{
 566	if (WC_MODE_PMEM(wc))
 567		pmem_wmb();
 568	else
 569		ssd_commit_flushed(wc, wait_for_ios);
 570}
 571
 572static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev)
 573{
 574	int r;
 575	struct dm_io_region region;
 576	struct dm_io_request req;
 577
 578	region.bdev = dev->bdev;
 579	region.sector = 0;
 580	region.count = 0;
 581	req.bi_op = REQ_OP_WRITE;
 582	req.bi_op_flags = REQ_PREFLUSH;
 583	req.mem.type = DM_IO_KMEM;
 584	req.mem.ptr.addr = NULL;
 585	req.client = wc->dm_io;
 586	req.notify.fn = NULL;
 587
 588	r = dm_io(&req, 1, &region, NULL);
 589	if (unlikely(r))
 590		writecache_error(wc, r, "error flushing metadata: %d", r);
 591}
 592
 593#define WFE_RETURN_FOLLOWING	1
 594#define WFE_LOWEST_SEQ		2
 595
 596static struct wc_entry *writecache_find_entry(struct dm_writecache *wc,
 597					      uint64_t block, int flags)
 598{
 599	struct wc_entry *e;
 600	struct rb_node *node = wc->tree.rb_node;
 601
 602	if (unlikely(!node))
 603		return NULL;
 604
 605	while (1) {
 606		e = container_of(node, struct wc_entry, rb_node);
 607		if (read_original_sector(wc, e) == block)
 608			break;
 609
 610		node = (read_original_sector(wc, e) >= block ?
 611			e->rb_node.rb_left : e->rb_node.rb_right);
 612		if (unlikely(!node)) {
 613			if (!(flags & WFE_RETURN_FOLLOWING))
 614				return NULL;
 615			if (read_original_sector(wc, e) >= block) {
 616				return e;
 617			} else {
 618				node = rb_next(&e->rb_node);
 619				if (unlikely(!node))
 620					return NULL;
 621				e = container_of(node, struct wc_entry, rb_node);
 622				return e;
 623			}
 624		}
 625	}
 626
 627	while (1) {
 628		struct wc_entry *e2;
 629		if (flags & WFE_LOWEST_SEQ)
 630			node = rb_prev(&e->rb_node);
 631		else
 632			node = rb_next(&e->rb_node);
 633		if (unlikely(!node))
 634			return e;
 635		e2 = container_of(node, struct wc_entry, rb_node);
 636		if (read_original_sector(wc, e2) != block)
 637			return e;
 638		e = e2;
 639	}
 640}
 641
 642static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins)
 643{
 644	struct wc_entry *e;
 645	struct rb_node **node = &wc->tree.rb_node, *parent = NULL;
 646
 647	while (*node) {
 648		e = container_of(*node, struct wc_entry, rb_node);
 649		parent = &e->rb_node;
 650		if (read_original_sector(wc, e) > read_original_sector(wc, ins))
 651			node = &parent->rb_left;
 652		else
 653			node = &parent->rb_right;
 654	}
 655	rb_link_node(&ins->rb_node, parent, node);
 656	rb_insert_color(&ins->rb_node, &wc->tree);
 657	list_add(&ins->lru, &wc->lru);
 658	ins->age = jiffies;
 659}
 660
 661static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e)
 662{
 663	list_del(&e->lru);
 664	rb_erase(&e->rb_node, &wc->tree);
 665}
 666
 667static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e)
 668{
 669	if (WC_MODE_SORT_FREELIST(wc)) {
 670		struct rb_node **node = &wc->freetree.rb_node, *parent = NULL;
 671		if (unlikely(!*node))
 672			wc->current_free = e;
 673		while (*node) {
 674			parent = *node;
 675			if (&e->rb_node < *node)
 676				node = &parent->rb_left;
 677			else
 678				node = &parent->rb_right;
 679		}
 680		rb_link_node(&e->rb_node, parent, node);
 681		rb_insert_color(&e->rb_node, &wc->freetree);
 682	} else {
 683		list_add_tail(&e->lru, &wc->freelist);
 684	}
 685	wc->freelist_size++;
 686}
 687
 688static inline void writecache_verify_watermark(struct dm_writecache *wc)
 689{
 690	if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark))
 691		queue_work(wc->writeback_wq, &wc->writeback_work);
 692}
 693
 694static void writecache_max_age_timer(struct timer_list *t)
 695{
 696	struct dm_writecache *wc = from_timer(wc, t, max_age_timer);
 697
 698	if (!dm_suspended(wc->ti) && !writecache_has_error(wc)) {
 699		queue_work(wc->writeback_wq, &wc->writeback_work);
 700		mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV);
 701	}
 702}
 703
 704static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc, sector_t expected_sector)
 705{
 706	struct wc_entry *e;
 707
 708	if (WC_MODE_SORT_FREELIST(wc)) {
 709		struct rb_node *next;
 710		if (unlikely(!wc->current_free))
 711			return NULL;
 712		e = wc->current_free;
 713		if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector))
 714			return NULL;
 715		next = rb_next(&e->rb_node);
 716		rb_erase(&e->rb_node, &wc->freetree);
 717		if (unlikely(!next))
 718			next = rb_first(&wc->freetree);
 719		wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL;
 720	} else {
 721		if (unlikely(list_empty(&wc->freelist)))
 722			return NULL;
 723		e = container_of(wc->freelist.next, struct wc_entry, lru);
 724		if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector))
 725			return NULL;
 726		list_del(&e->lru);
 727	}
 728	wc->freelist_size--;
 729
 730	writecache_verify_watermark(wc);
 731
 732	return e;
 733}
 734
 735static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e)
 736{
 737	writecache_unlink(wc, e);
 738	writecache_add_to_freelist(wc, e);
 739	clear_seq_count(wc, e);
 740	writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
 741	if (unlikely(waitqueue_active(&wc->freelist_wait)))
 742		wake_up(&wc->freelist_wait);
 743}
 744
 745static void writecache_wait_on_freelist(struct dm_writecache *wc)
 746{
 747	DEFINE_WAIT(wait);
 748
 749	prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE);
 750	wc_unlock(wc);
 751	io_schedule();
 752	finish_wait(&wc->freelist_wait, &wait);
 753	wc_lock(wc);
 754}
 755
 756static void writecache_poison_lists(struct dm_writecache *wc)
 757{
 758	/*
 759	 * Catch incorrect access to these values while the device is suspended.
 760	 */
 761	memset(&wc->tree, -1, sizeof wc->tree);
 762	wc->lru.next = LIST_POISON1;
 763	wc->lru.prev = LIST_POISON2;
 764	wc->freelist.next = LIST_POISON1;
 765	wc->freelist.prev = LIST_POISON2;
 766}
 767
 768static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e)
 769{
 770	writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
 771	if (WC_MODE_PMEM(wc))
 772		writecache_flush_region(wc, memory_data(wc, e), wc->block_size);
 773}
 774
 775static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e)
 776{
 777	return read_seq_count(wc, e) < wc->seq_count;
 778}
 779
 780static void writecache_flush(struct dm_writecache *wc)
 781{
 782	struct wc_entry *e, *e2;
 783	bool need_flush_after_free;
 784
 785	wc->uncommitted_blocks = 0;
 786	del_timer(&wc->autocommit_timer);
 787
 788	if (list_empty(&wc->lru))
 789		return;
 790
 791	e = container_of(wc->lru.next, struct wc_entry, lru);
 792	if (writecache_entry_is_committed(wc, e)) {
 793		if (wc->overwrote_committed) {
 794			writecache_wait_for_ios(wc, WRITE);
 795			writecache_disk_flush(wc, wc->ssd_dev);
 796			wc->overwrote_committed = false;
 797		}
 798		return;
 799	}
 800	while (1) {
 801		writecache_flush_entry(wc, e);
 802		if (unlikely(e->lru.next == &wc->lru))
 803			break;
 804		e2 = container_of(e->lru.next, struct wc_entry, lru);
 805		if (writecache_entry_is_committed(wc, e2))
 806			break;
 807		e = e2;
 808		cond_resched();
 809	}
 810	writecache_commit_flushed(wc, true);
 811
 812	wc->seq_count++;
 813	pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count));
 814	if (WC_MODE_PMEM(wc))
 815		writecache_commit_flushed(wc, false);
 816	else
 817		ssd_commit_superblock(wc);
 818
 819	wc->overwrote_committed = false;
 820
 821	need_flush_after_free = false;
 822	while (1) {
 823		/* Free another committed entry with lower seq-count */
 824		struct rb_node *rb_node = rb_prev(&e->rb_node);
 825
 826		if (rb_node) {
 827			e2 = container_of(rb_node, struct wc_entry, rb_node);
 828			if (read_original_sector(wc, e2) == read_original_sector(wc, e) &&
 829			    likely(!e2->write_in_progress)) {
 830				writecache_free_entry(wc, e2);
 831				need_flush_after_free = true;
 832			}
 833		}
 834		if (unlikely(e->lru.prev == &wc->lru))
 835			break;
 836		e = container_of(e->lru.prev, struct wc_entry, lru);
 837		cond_resched();
 838	}
 839
 840	if (need_flush_after_free)
 841		writecache_commit_flushed(wc, false);
 842}
 843
 844static void writecache_flush_work(struct work_struct *work)
 845{
 846	struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work);
 847
 848	wc_lock(wc);
 849	writecache_flush(wc);
 850	wc_unlock(wc);
 851}
 852
 853static void writecache_autocommit_timer(struct timer_list *t)
 854{
 855	struct dm_writecache *wc = from_timer(wc, t, autocommit_timer);
 856	if (!writecache_has_error(wc))
 857		queue_work(wc->writeback_wq, &wc->flush_work);
 858}
 859
 860static void writecache_schedule_autocommit(struct dm_writecache *wc)
 861{
 862	if (!timer_pending(&wc->autocommit_timer))
 863		mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies);
 864}
 865
 866static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end)
 867{
 868	struct wc_entry *e;
 869	bool discarded_something = false;
 870
 871	e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ);
 872	if (unlikely(!e))
 873		return;
 874
 875	while (read_original_sector(wc, e) < end) {
 876		struct rb_node *node = rb_next(&e->rb_node);
 877
 878		if (likely(!e->write_in_progress)) {
 879			if (!discarded_something) {
 880				if (!WC_MODE_PMEM(wc)) {
 881					writecache_wait_for_ios(wc, READ);
 882					writecache_wait_for_ios(wc, WRITE);
 883				}
 884				discarded_something = true;
 885			}
 886			if (!writecache_entry_is_committed(wc, e))
 887				wc->uncommitted_blocks--;
 888			writecache_free_entry(wc, e);
 889		}
 890
 891		if (unlikely(!node))
 892			break;
 893
 894		e = container_of(node, struct wc_entry, rb_node);
 895	}
 896
 897	if (discarded_something)
 898		writecache_commit_flushed(wc, false);
 899}
 900
 901static bool writecache_wait_for_writeback(struct dm_writecache *wc)
 902{
 903	if (wc->writeback_size) {
 904		writecache_wait_on_freelist(wc);
 905		return true;
 906	}
 907	return false;
 908}
 909
 910static void writecache_suspend(struct dm_target *ti)
 911{
 912	struct dm_writecache *wc = ti->private;
 913	bool flush_on_suspend;
 914
 915	del_timer_sync(&wc->autocommit_timer);
 916	del_timer_sync(&wc->max_age_timer);
 917
 918	wc_lock(wc);
 919	writecache_flush(wc);
 920	flush_on_suspend = wc->flush_on_suspend;
 921	if (flush_on_suspend) {
 922		wc->flush_on_suspend = false;
 923		wc->writeback_all++;
 924		queue_work(wc->writeback_wq, &wc->writeback_work);
 925	}
 926	wc_unlock(wc);
 927
 928	drain_workqueue(wc->writeback_wq);
 929
 930	wc_lock(wc);
 931	if (flush_on_suspend)
 932		wc->writeback_all--;
 933	while (writecache_wait_for_writeback(wc));
 934
 935	if (WC_MODE_PMEM(wc))
 936		persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
 937
 938	writecache_poison_lists(wc);
 939
 940	wc_unlock(wc);
 941}
 942
 943static int writecache_alloc_entries(struct dm_writecache *wc)
 944{
 945	size_t b;
 946
 947	if (wc->entries)
 948		return 0;
 949	wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks));
 950	if (!wc->entries)
 951		return -ENOMEM;
 952	for (b = 0; b < wc->n_blocks; b++) {
 953		struct wc_entry *e = &wc->entries[b];
 954		e->index = b;
 955		e->write_in_progress = false;
 956		cond_resched();
 957	}
 958
 959	return 0;
 960}
 961
 962static int writecache_read_metadata(struct dm_writecache *wc, sector_t n_sectors)
 963{
 964	struct dm_io_region region;
 965	struct dm_io_request req;
 966
 967	region.bdev = wc->ssd_dev->bdev;
 968	region.sector = wc->start_sector;
 969	region.count = n_sectors;
 970	req.bi_op = REQ_OP_READ;
 971	req.bi_op_flags = REQ_SYNC;
 972	req.mem.type = DM_IO_VMA;
 973	req.mem.ptr.vma = (char *)wc->memory_map;
 974	req.client = wc->dm_io;
 975	req.notify.fn = NULL;
 976
 977	return dm_io(&req, 1, &region, NULL);
 978}
 979
 980static void writecache_resume(struct dm_target *ti)
 981{
 982	struct dm_writecache *wc = ti->private;
 983	size_t b;
 984	bool need_flush = false;
 985	__le64 sb_seq_count;
 986	int r;
 987
 988	wc_lock(wc);
 989
 990	wc->data_device_sectors = bdev_nr_sectors(wc->dev->bdev);
 991
 992	if (WC_MODE_PMEM(wc)) {
 993		persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size);
 994	} else {
 995		r = writecache_read_metadata(wc, wc->metadata_sectors);
 996		if (r) {
 997			size_t sb_entries_offset;
 998			writecache_error(wc, r, "unable to read metadata: %d", r);
 999			sb_entries_offset = offsetof(struct wc_memory_superblock, entries);
1000			memset((char *)wc->memory_map + sb_entries_offset, -1,
1001			       (wc->metadata_sectors << SECTOR_SHIFT) - sb_entries_offset);
1002		}
1003	}
1004
1005	wc->tree = RB_ROOT;
1006	INIT_LIST_HEAD(&wc->lru);
1007	if (WC_MODE_SORT_FREELIST(wc)) {
1008		wc->freetree = RB_ROOT;
1009		wc->current_free = NULL;
1010	} else {
1011		INIT_LIST_HEAD(&wc->freelist);
1012	}
1013	wc->freelist_size = 0;
1014
1015	r = copy_mc_to_kernel(&sb_seq_count, &sb(wc)->seq_count,
1016			      sizeof(uint64_t));
1017	if (r) {
1018		writecache_error(wc, r, "hardware memory error when reading superblock: %d", r);
1019		sb_seq_count = cpu_to_le64(0);
1020	}
1021	wc->seq_count = le64_to_cpu(sb_seq_count);
1022
1023#ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
1024	for (b = 0; b < wc->n_blocks; b++) {
1025		struct wc_entry *e = &wc->entries[b];
1026		struct wc_memory_entry wme;
1027		if (writecache_has_error(wc)) {
1028			e->original_sector = -1;
1029			e->seq_count = -1;
1030			continue;
1031		}
1032		r = copy_mc_to_kernel(&wme, memory_entry(wc, e),
1033				      sizeof(struct wc_memory_entry));
1034		if (r) {
1035			writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d",
1036					 (unsigned long)b, r);
1037			e->original_sector = -1;
1038			e->seq_count = -1;
1039		} else {
1040			e->original_sector = le64_to_cpu(wme.original_sector);
1041			e->seq_count = le64_to_cpu(wme.seq_count);
1042		}
1043		cond_resched();
1044	}
1045#endif
1046	for (b = 0; b < wc->n_blocks; b++) {
1047		struct wc_entry *e = &wc->entries[b];
1048		if (!writecache_entry_is_committed(wc, e)) {
1049			if (read_seq_count(wc, e) != -1) {
1050erase_this:
1051				clear_seq_count(wc, e);
1052				need_flush = true;
1053			}
1054			writecache_add_to_freelist(wc, e);
1055		} else {
1056			struct wc_entry *old;
1057
1058			old = writecache_find_entry(wc, read_original_sector(wc, e), 0);
1059			if (!old) {
1060				writecache_insert_entry(wc, e);
1061			} else {
1062				if (read_seq_count(wc, old) == read_seq_count(wc, e)) {
1063					writecache_error(wc, -EINVAL,
1064						 "two identical entries, position %llu, sector %llu, sequence %llu",
1065						 (unsigned long long)b, (unsigned long long)read_original_sector(wc, e),
1066						 (unsigned long long)read_seq_count(wc, e));
1067				}
1068				if (read_seq_count(wc, old) > read_seq_count(wc, e)) {
1069					goto erase_this;
1070				} else {
1071					writecache_free_entry(wc, old);
1072					writecache_insert_entry(wc, e);
1073					need_flush = true;
1074				}
1075			}
1076		}
1077		cond_resched();
1078	}
1079
1080	if (need_flush) {
1081		writecache_flush_all_metadata(wc);
1082		writecache_commit_flushed(wc, false);
1083	}
1084
1085	writecache_verify_watermark(wc);
1086
1087	if (wc->max_age != MAX_AGE_UNSPECIFIED)
1088		mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV);
1089
1090	wc_unlock(wc);
1091}
1092
1093static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1094{
1095	if (argc != 1)
1096		return -EINVAL;
1097
1098	wc_lock(wc);
1099	if (dm_suspended(wc->ti)) {
1100		wc_unlock(wc);
1101		return -EBUSY;
1102	}
1103	if (writecache_has_error(wc)) {
1104		wc_unlock(wc);
1105		return -EIO;
1106	}
1107
1108	writecache_flush(wc);
1109	wc->writeback_all++;
1110	queue_work(wc->writeback_wq, &wc->writeback_work);
1111	wc_unlock(wc);
1112
1113	flush_workqueue(wc->writeback_wq);
1114
1115	wc_lock(wc);
1116	wc->writeback_all--;
1117	if (writecache_has_error(wc)) {
1118		wc_unlock(wc);
1119		return -EIO;
1120	}
1121	wc_unlock(wc);
1122
1123	return 0;
1124}
1125
1126static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1127{
1128	if (argc != 1)
1129		return -EINVAL;
1130
1131	wc_lock(wc);
1132	wc->flush_on_suspend = true;
1133	wc_unlock(wc);
1134
1135	return 0;
1136}
1137
1138static void activate_cleaner(struct dm_writecache *wc)
1139{
1140	wc->flush_on_suspend = true;
1141	wc->cleaner = true;
1142	wc->freelist_high_watermark = wc->n_blocks;
1143	wc->freelist_low_watermark = wc->n_blocks;
1144}
1145
1146static int process_cleaner_mesg(unsigned argc, char **argv, struct dm_writecache *wc)
1147{
1148	if (argc != 1)
1149		return -EINVAL;
1150
1151	wc_lock(wc);
1152	activate_cleaner(wc);
1153	if (!dm_suspended(wc->ti))
1154		writecache_verify_watermark(wc);
1155	wc_unlock(wc);
1156
1157	return 0;
1158}
1159
 
 
 
 
 
 
 
 
 
 
 
 
1160static int writecache_message(struct dm_target *ti, unsigned argc, char **argv,
1161			      char *result, unsigned maxlen)
1162{
1163	int r = -EINVAL;
1164	struct dm_writecache *wc = ti->private;
1165
1166	if (!strcasecmp(argv[0], "flush"))
1167		r = process_flush_mesg(argc, argv, wc);
1168	else if (!strcasecmp(argv[0], "flush_on_suspend"))
1169		r = process_flush_on_suspend_mesg(argc, argv, wc);
1170	else if (!strcasecmp(argv[0], "cleaner"))
1171		r = process_cleaner_mesg(argc, argv, wc);
 
 
1172	else
1173		DMERR("unrecognised message received: %s", argv[0]);
1174
1175	return r;
1176}
1177
1178static void memcpy_flushcache_optimized(void *dest, void *source, size_t size)
1179{
1180	/*
1181	 * clflushopt performs better with block size 1024, 2048, 4096
1182	 * non-temporal stores perform better with block size 512
1183	 *
1184	 * block size   512             1024            2048            4096
1185	 * movnti       496 MB/s        642 MB/s        725 MB/s        744 MB/s
1186	 * clflushopt   373 MB/s        688 MB/s        1.1 GB/s        1.2 GB/s
1187	 *
1188	 * We see that movnti performs better for 512-byte blocks, and
1189	 * clflushopt performs better for 1024-byte and larger blocks. So, we
1190	 * prefer clflushopt for sizes >= 768.
1191	 *
1192	 * NOTE: this happens to be the case now (with dm-writecache's single
1193	 * threaded model) but re-evaluate this once memcpy_flushcache() is
1194	 * enabled to use movdir64b which might invalidate this performance
1195	 * advantage seen with cache-allocating-writes plus flushing.
1196	 */
1197#ifdef CONFIG_X86
1198	if (static_cpu_has(X86_FEATURE_CLFLUSHOPT) &&
1199	    likely(boot_cpu_data.x86_clflush_size == 64) &&
1200	    likely(size >= 768)) {
1201		do {
1202			memcpy((void *)dest, (void *)source, 64);
1203			clflushopt((void *)dest);
1204			dest += 64;
1205			source += 64;
1206			size -= 64;
1207		} while (size >= 64);
1208		return;
1209	}
1210#endif
1211	memcpy_flushcache(dest, source, size);
1212}
1213
1214static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data)
1215{
1216	void *buf;
1217	unsigned long flags;
1218	unsigned size;
1219	int rw = bio_data_dir(bio);
1220	unsigned remaining_size = wc->block_size;
1221
1222	do {
1223		struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter);
1224		buf = bvec_kmap_irq(&bv, &flags);
1225		size = bv.bv_len;
1226		if (unlikely(size > remaining_size))
1227			size = remaining_size;
1228
1229		if (rw == READ) {
1230			int r;
1231			r = copy_mc_to_kernel(buf, data, size);
1232			flush_dcache_page(bio_page(bio));
1233			if (unlikely(r)) {
1234				writecache_error(wc, r, "hardware memory error when reading data: %d", r);
1235				bio->bi_status = BLK_STS_IOERR;
1236			}
1237		} else {
1238			flush_dcache_page(bio_page(bio));
1239			memcpy_flushcache_optimized(data, buf, size);
1240		}
1241
1242		bvec_kunmap_irq(buf, &flags);
1243
1244		data = (char *)data + size;
1245		remaining_size -= size;
1246		bio_advance(bio, size);
1247	} while (unlikely(remaining_size));
1248}
1249
1250static int writecache_flush_thread(void *data)
1251{
1252	struct dm_writecache *wc = data;
1253
1254	while (1) {
1255		struct bio *bio;
1256
1257		wc_lock(wc);
1258		bio = bio_list_pop(&wc->flush_list);
1259		if (!bio) {
1260			set_current_state(TASK_INTERRUPTIBLE);
1261			wc_unlock(wc);
1262
1263			if (unlikely(kthread_should_stop())) {
1264				set_current_state(TASK_RUNNING);
1265				break;
1266			}
1267
1268			schedule();
1269			continue;
1270		}
1271
1272		if (bio_op(bio) == REQ_OP_DISCARD) {
1273			writecache_discard(wc, bio->bi_iter.bi_sector,
1274					   bio_end_sector(bio));
1275			wc_unlock(wc);
1276			bio_set_dev(bio, wc->dev->bdev);
1277			submit_bio_noacct(bio);
1278		} else {
1279			writecache_flush(wc);
1280			wc_unlock(wc);
1281			if (writecache_has_error(wc))
1282				bio->bi_status = BLK_STS_IOERR;
1283			bio_endio(bio);
1284		}
1285	}
1286
1287	return 0;
1288}
1289
1290static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio)
1291{
1292	if (bio_list_empty(&wc->flush_list))
1293		wake_up_process(wc->flush_thread);
1294	bio_list_add(&wc->flush_list, bio);
1295}
1296
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1297static int writecache_map(struct dm_target *ti, struct bio *bio)
1298{
1299	struct wc_entry *e;
1300	struct dm_writecache *wc = ti->private;
 
1301
1302	bio->bi_private = NULL;
1303
1304	wc_lock(wc);
1305
1306	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1307		if (writecache_has_error(wc))
1308			goto unlock_error;
1309		if (WC_MODE_PMEM(wc)) {
1310			writecache_flush(wc);
1311			if (writecache_has_error(wc))
1312				goto unlock_error;
1313			if (unlikely(wc->cleaner) || unlikely(wc->metadata_only))
1314				goto unlock_remap_origin;
1315			goto unlock_submit;
1316		} else {
1317			if (dm_bio_get_target_bio_nr(bio))
1318				goto unlock_remap_origin;
1319			writecache_offload_bio(wc, bio);
1320			goto unlock_return;
1321		}
1322	}
1323
1324	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1325
1326	if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
1327				(wc->block_size / 512 - 1)) != 0)) {
1328		DMERR("I/O is not aligned, sector %llu, size %u, block size %u",
1329		      (unsigned long long)bio->bi_iter.bi_sector,
1330		      bio->bi_iter.bi_size, wc->block_size);
1331		goto unlock_error;
 
1332	}
1333
1334	if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
1335		if (writecache_has_error(wc))
1336			goto unlock_error;
1337		if (WC_MODE_PMEM(wc)) {
1338			writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio));
1339			goto unlock_remap_origin;
1340		} else {
1341			writecache_offload_bio(wc, bio);
1342			goto unlock_return;
1343		}
1344	}
1345
1346	if (bio_data_dir(bio) == READ) {
1347read_next_block:
1348		e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1349		if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) {
1350			if (WC_MODE_PMEM(wc)) {
1351				bio_copy_block(wc, bio, memory_data(wc, e));
1352				if (bio->bi_iter.bi_size)
1353					goto read_next_block;
1354				goto unlock_submit;
1355			} else {
1356				dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
1357				bio_set_dev(bio, wc->ssd_dev->bdev);
1358				bio->bi_iter.bi_sector = cache_sector(wc, e);
1359				if (!writecache_entry_is_committed(wc, e))
1360					writecache_wait_for_ios(wc, WRITE);
1361				goto unlock_remap;
1362			}
1363		} else {
1364			if (e) {
1365				sector_t next_boundary =
1366					read_original_sector(wc, e) - bio->bi_iter.bi_sector;
1367				if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) {
1368					dm_accept_partial_bio(bio, next_boundary);
1369				}
1370			}
1371			goto unlock_remap_origin;
1372		}
1373	} else {
1374		do {
1375			bool found_entry = false;
1376			bool search_used = false;
1377			if (writecache_has_error(wc))
1378				goto unlock_error;
1379			e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0);
1380			if (e) {
1381				if (!writecache_entry_is_committed(wc, e)) {
1382					search_used = true;
1383					goto bio_copy;
1384				}
1385				if (!WC_MODE_PMEM(wc) && !e->write_in_progress) {
1386					wc->overwrote_committed = true;
1387					search_used = true;
1388					goto bio_copy;
1389				}
1390				found_entry = true;
1391			} else {
1392				if (unlikely(wc->cleaner) ||
1393				    (wc->metadata_only && !(bio->bi_opf & REQ_META)))
1394					goto direct_write;
1395			}
1396			e = writecache_pop_from_freelist(wc, (sector_t)-1);
1397			if (unlikely(!e)) {
1398				if (!WC_MODE_PMEM(wc) && !found_entry) {
1399direct_write:
1400					e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1401					if (e) {
1402						sector_t next_boundary = read_original_sector(wc, e) - bio->bi_iter.bi_sector;
1403						BUG_ON(!next_boundary);
1404						if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) {
1405							dm_accept_partial_bio(bio, next_boundary);
1406						}
1407					}
1408					goto unlock_remap_origin;
1409				}
1410				writecache_wait_on_freelist(wc);
1411				continue;
1412			}
1413			write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count);
1414			writecache_insert_entry(wc, e);
1415			wc->uncommitted_blocks++;
1416bio_copy:
1417			if (WC_MODE_PMEM(wc)) {
1418				bio_copy_block(wc, bio, memory_data(wc, e));
1419			} else {
1420				unsigned bio_size = wc->block_size;
1421				sector_t start_cache_sec = cache_sector(wc, e);
1422				sector_t current_cache_sec = start_cache_sec + (bio_size >> SECTOR_SHIFT);
1423
1424				while (bio_size < bio->bi_iter.bi_size) {
1425					if (!search_used) {
1426						struct wc_entry *f = writecache_pop_from_freelist(wc, current_cache_sec);
1427						if (!f)
1428							break;
1429						write_original_sector_seq_count(wc, f, bio->bi_iter.bi_sector +
1430										(bio_size >> SECTOR_SHIFT), wc->seq_count);
1431						writecache_insert_entry(wc, f);
1432						wc->uncommitted_blocks++;
1433					} else {
1434						struct wc_entry *f;
1435						struct rb_node *next = rb_next(&e->rb_node);
1436						if (!next)
1437							break;
1438						f = container_of(next, struct wc_entry, rb_node);
1439						if (f != e + 1)
1440							break;
1441						if (read_original_sector(wc, f) !=
1442						    read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
1443							break;
1444						if (unlikely(f->write_in_progress))
1445							break;
1446						if (writecache_entry_is_committed(wc, f))
1447							wc->overwrote_committed = true;
1448						e = f;
1449					}
1450					bio_size += wc->block_size;
1451					current_cache_sec += wc->block_size >> SECTOR_SHIFT;
1452				}
1453
1454				bio_set_dev(bio, wc->ssd_dev->bdev);
1455				bio->bi_iter.bi_sector = start_cache_sec;
1456				dm_accept_partial_bio(bio, bio_size >> SECTOR_SHIFT);
1457
1458				if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) {
1459					wc->uncommitted_blocks = 0;
1460					queue_work(wc->writeback_wq, &wc->flush_work);
1461				} else {
1462					writecache_schedule_autocommit(wc);
1463				}
1464				goto unlock_remap;
1465			}
1466		} while (bio->bi_iter.bi_size);
1467
1468		if (unlikely(bio->bi_opf & REQ_FUA ||
1469			     wc->uncommitted_blocks >= wc->autocommit_blocks))
1470			writecache_flush(wc);
1471		else
1472			writecache_schedule_autocommit(wc);
1473		goto unlock_submit;
1474	}
1475
1476unlock_remap_origin:
1477	if (likely(wc->pause != 0)) {
1478		 if (bio_op(bio) == REQ_OP_WRITE) {
1479			dm_iot_io_begin(&wc->iot, 1);
1480			bio->bi_private = (void *)2;
1481		}
1482	}
1483	bio_set_dev(bio, wc->dev->bdev);
1484	wc_unlock(wc);
1485	return DM_MAPIO_REMAPPED;
1486
1487unlock_remap:
1488	/* make sure that writecache_end_io decrements bio_in_progress: */
1489	bio->bi_private = (void *)1;
1490	atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]);
1491	wc_unlock(wc);
1492	return DM_MAPIO_REMAPPED;
1493
1494unlock_submit:
1495	wc_unlock(wc);
1496	bio_endio(bio);
1497	return DM_MAPIO_SUBMITTED;
1498
1499unlock_return:
1500	wc_unlock(wc);
1501	return DM_MAPIO_SUBMITTED;
1502
1503unlock_error:
1504	wc_unlock(wc);
1505	bio_io_error(bio);
1506	return DM_MAPIO_SUBMITTED;
1507}
1508
1509static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
1510{
1511	struct dm_writecache *wc = ti->private;
1512
1513	if (bio->bi_private == (void *)1) {
1514		int dir = bio_data_dir(bio);
1515		if (atomic_dec_and_test(&wc->bio_in_progress[dir]))
1516			if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir])))
1517				wake_up(&wc->bio_in_progress_wait[dir]);
1518	} else if (bio->bi_private == (void *)2) {
1519		dm_iot_io_end(&wc->iot, 1);
1520	}
1521	return 0;
1522}
1523
1524static int writecache_iterate_devices(struct dm_target *ti,
1525				      iterate_devices_callout_fn fn, void *data)
1526{
1527	struct dm_writecache *wc = ti->private;
1528
1529	return fn(ti, wc->dev, 0, ti->len, data);
1530}
1531
1532static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits)
1533{
1534	struct dm_writecache *wc = ti->private;
1535
1536	if (limits->logical_block_size < wc->block_size)
1537		limits->logical_block_size = wc->block_size;
1538
1539	if (limits->physical_block_size < wc->block_size)
1540		limits->physical_block_size = wc->block_size;
1541
1542	if (limits->io_min < wc->block_size)
1543		limits->io_min = wc->block_size;
1544}
1545
1546
1547static void writecache_writeback_endio(struct bio *bio)
1548{
1549	struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio);
1550	struct dm_writecache *wc = wb->wc;
1551	unsigned long flags;
1552
1553	raw_spin_lock_irqsave(&wc->endio_list_lock, flags);
1554	if (unlikely(list_empty(&wc->endio_list)))
1555		wake_up_process(wc->endio_thread);
1556	list_add_tail(&wb->endio_entry, &wc->endio_list);
1557	raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags);
1558}
1559
1560static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr)
1561{
1562	struct copy_struct *c = ptr;
1563	struct dm_writecache *wc = c->wc;
1564
1565	c->error = likely(!(read_err | write_err)) ? 0 : -EIO;
1566
1567	raw_spin_lock_irq(&wc->endio_list_lock);
1568	if (unlikely(list_empty(&wc->endio_list)))
1569		wake_up_process(wc->endio_thread);
1570	list_add_tail(&c->endio_entry, &wc->endio_list);
1571	raw_spin_unlock_irq(&wc->endio_list_lock);
1572}
1573
1574static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list)
1575{
1576	unsigned i;
1577	struct writeback_struct *wb;
1578	struct wc_entry *e;
1579	unsigned long n_walked = 0;
1580
1581	do {
1582		wb = list_entry(list->next, struct writeback_struct, endio_entry);
1583		list_del(&wb->endio_entry);
1584
1585		if (unlikely(wb->bio.bi_status != BLK_STS_OK))
1586			writecache_error(wc, blk_status_to_errno(wb->bio.bi_status),
1587					"write error %d", wb->bio.bi_status);
1588		i = 0;
1589		do {
1590			e = wb->wc_list[i];
1591			BUG_ON(!e->write_in_progress);
1592			e->write_in_progress = false;
1593			INIT_LIST_HEAD(&e->lru);
1594			if (!writecache_has_error(wc))
1595				writecache_free_entry(wc, e);
1596			BUG_ON(!wc->writeback_size);
1597			wc->writeback_size--;
1598			n_walked++;
1599			if (unlikely(n_walked >= ENDIO_LATENCY)) {
1600				writecache_commit_flushed(wc, false);
1601				wc_unlock(wc);
1602				wc_lock(wc);
1603				n_walked = 0;
1604			}
1605		} while (++i < wb->wc_list_n);
1606
1607		if (wb->wc_list != wb->wc_list_inline)
1608			kfree(wb->wc_list);
1609		bio_put(&wb->bio);
1610	} while (!list_empty(list));
1611}
1612
1613static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list)
1614{
1615	struct copy_struct *c;
1616	struct wc_entry *e;
1617
1618	do {
1619		c = list_entry(list->next, struct copy_struct, endio_entry);
1620		list_del(&c->endio_entry);
1621
1622		if (unlikely(c->error))
1623			writecache_error(wc, c->error, "copy error");
1624
1625		e = c->e;
1626		do {
1627			BUG_ON(!e->write_in_progress);
1628			e->write_in_progress = false;
1629			INIT_LIST_HEAD(&e->lru);
1630			if (!writecache_has_error(wc))
1631				writecache_free_entry(wc, e);
1632
1633			BUG_ON(!wc->writeback_size);
1634			wc->writeback_size--;
1635			e++;
1636		} while (--c->n_entries);
1637		mempool_free(c, &wc->copy_pool);
1638	} while (!list_empty(list));
1639}
1640
1641static int writecache_endio_thread(void *data)
1642{
1643	struct dm_writecache *wc = data;
1644
1645	while (1) {
1646		struct list_head list;
1647
1648		raw_spin_lock_irq(&wc->endio_list_lock);
1649		if (!list_empty(&wc->endio_list))
1650			goto pop_from_list;
1651		set_current_state(TASK_INTERRUPTIBLE);
1652		raw_spin_unlock_irq(&wc->endio_list_lock);
1653
1654		if (unlikely(kthread_should_stop())) {
1655			set_current_state(TASK_RUNNING);
1656			break;
1657		}
1658
1659		schedule();
1660
1661		continue;
1662
1663pop_from_list:
1664		list = wc->endio_list;
1665		list.next->prev = list.prev->next = &list;
1666		INIT_LIST_HEAD(&wc->endio_list);
1667		raw_spin_unlock_irq(&wc->endio_list_lock);
1668
1669		if (!WC_MODE_FUA(wc))
1670			writecache_disk_flush(wc, wc->dev);
1671
1672		wc_lock(wc);
1673
1674		if (WC_MODE_PMEM(wc)) {
1675			__writecache_endio_pmem(wc, &list);
1676		} else {
1677			__writecache_endio_ssd(wc, &list);
1678			writecache_wait_for_ios(wc, READ);
1679		}
1680
1681		writecache_commit_flushed(wc, false);
1682
1683		wc_unlock(wc);
1684	}
1685
1686	return 0;
1687}
1688
1689static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e)
1690{
1691	struct dm_writecache *wc = wb->wc;
1692	unsigned block_size = wc->block_size;
1693	void *address = memory_data(wc, e);
1694
1695	persistent_memory_flush_cache(address, block_size);
1696
1697	if (unlikely(bio_end_sector(&wb->bio) >= wc->data_device_sectors))
1698		return true;
1699
1700	return bio_add_page(&wb->bio, persistent_memory_page(address),
1701			    block_size, persistent_memory_page_offset(address)) != 0;
1702}
1703
1704struct writeback_list {
1705	struct list_head list;
1706	size_t size;
1707};
1708
1709static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl)
1710{
1711	if (unlikely(wc->max_writeback_jobs)) {
1712		if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) {
1713			wc_lock(wc);
1714			while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs)
1715				writecache_wait_on_freelist(wc);
1716			wc_unlock(wc);
1717		}
1718	}
1719	cond_resched();
1720}
1721
1722static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl)
1723{
1724	struct wc_entry *e, *f;
1725	struct bio *bio;
1726	struct writeback_struct *wb;
1727	unsigned max_pages;
1728
1729	while (wbl->size) {
1730		wbl->size--;
1731		e = container_of(wbl->list.prev, struct wc_entry, lru);
1732		list_del(&e->lru);
1733
1734		max_pages = e->wc_list_contiguous;
1735
1736		bio = bio_alloc_bioset(GFP_NOIO, max_pages, &wc->bio_set);
 
1737		wb = container_of(bio, struct writeback_struct, bio);
1738		wb->wc = wc;
1739		bio->bi_end_io = writecache_writeback_endio;
1740		bio_set_dev(bio, wc->dev->bdev);
1741		bio->bi_iter.bi_sector = read_original_sector(wc, e);
1742		if (max_pages <= WB_LIST_INLINE ||
1743		    unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *),
1744							   GFP_NOIO | __GFP_NORETRY |
1745							   __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
1746			wb->wc_list = wb->wc_list_inline;
1747			max_pages = WB_LIST_INLINE;
1748		}
1749
1750		BUG_ON(!wc_add_block(wb, e));
1751
1752		wb->wc_list[0] = e;
1753		wb->wc_list_n = 1;
1754
1755		while (wbl->size && wb->wc_list_n < max_pages) {
1756			f = container_of(wbl->list.prev, struct wc_entry, lru);
1757			if (read_original_sector(wc, f) !=
1758			    read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
1759				break;
1760			if (!wc_add_block(wb, f))
1761				break;
1762			wbl->size--;
1763			list_del(&f->lru);
1764			wb->wc_list[wb->wc_list_n++] = f;
1765			e = f;
1766		}
1767		bio_set_op_attrs(bio, REQ_OP_WRITE, WC_MODE_FUA(wc) * REQ_FUA);
 
1768		if (writecache_has_error(wc)) {
1769			bio->bi_status = BLK_STS_IOERR;
1770			bio_endio(bio);
1771		} else if (unlikely(!bio_sectors(bio))) {
1772			bio->bi_status = BLK_STS_OK;
1773			bio_endio(bio);
1774		} else {
1775			submit_bio(bio);
1776		}
1777
1778		__writeback_throttle(wc, wbl);
1779	}
1780}
1781
1782static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl)
1783{
1784	struct wc_entry *e, *f;
1785	struct dm_io_region from, to;
1786	struct copy_struct *c;
1787
1788	while (wbl->size) {
1789		unsigned n_sectors;
1790
1791		wbl->size--;
1792		e = container_of(wbl->list.prev, struct wc_entry, lru);
1793		list_del(&e->lru);
1794
1795		n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT);
1796
1797		from.bdev = wc->ssd_dev->bdev;
1798		from.sector = cache_sector(wc, e);
1799		from.count = n_sectors;
1800		to.bdev = wc->dev->bdev;
1801		to.sector = read_original_sector(wc, e);
1802		to.count = n_sectors;
1803
1804		c = mempool_alloc(&wc->copy_pool, GFP_NOIO);
1805		c->wc = wc;
1806		c->e = e;
1807		c->n_entries = e->wc_list_contiguous;
1808
1809		while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) {
1810			wbl->size--;
1811			f = container_of(wbl->list.prev, struct wc_entry, lru);
1812			BUG_ON(f != e + 1);
1813			list_del(&f->lru);
1814			e = f;
1815		}
1816
1817		if (unlikely(to.sector + to.count > wc->data_device_sectors)) {
1818			if (to.sector >= wc->data_device_sectors) {
1819				writecache_copy_endio(0, 0, c);
1820				continue;
1821			}
1822			from.count = to.count = wc->data_device_sectors - to.sector;
1823		}
1824
1825		dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c);
1826
1827		__writeback_throttle(wc, wbl);
1828	}
1829}
1830
1831static void writecache_writeback(struct work_struct *work)
1832{
1833	struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work);
1834	struct blk_plug plug;
1835	struct wc_entry *f, *g, *e = NULL;
1836	struct rb_node *node, *next_node;
1837	struct list_head skipped;
1838	struct writeback_list wbl;
1839	unsigned long n_walked;
1840
1841	if (!WC_MODE_PMEM(wc)) {
1842		/* Wait for any active kcopyd work on behalf of ssd writeback */
1843		dm_kcopyd_client_flush(wc->dm_kcopyd);
1844	}
1845
1846	if (likely(wc->pause != 0)) {
1847		while (1) {
1848			unsigned long idle;
1849			if (unlikely(wc->cleaner) || unlikely(wc->writeback_all) ||
1850			    unlikely(dm_suspended(wc->ti)))
1851				break;
1852			idle = dm_iot_idle_time(&wc->iot);
1853			if (idle >= wc->pause)
1854				break;
1855			idle = wc->pause - idle;
1856			if (idle > HZ)
1857				idle = HZ;
1858			schedule_timeout_idle(idle);
1859		}
1860	}
1861
1862	wc_lock(wc);
1863restart:
1864	if (writecache_has_error(wc)) {
1865		wc_unlock(wc);
1866		return;
1867	}
1868
1869	if (unlikely(wc->writeback_all)) {
1870		if (writecache_wait_for_writeback(wc))
1871			goto restart;
1872	}
1873
1874	if (wc->overwrote_committed) {
1875		writecache_wait_for_ios(wc, WRITE);
1876	}
1877
1878	n_walked = 0;
1879	INIT_LIST_HEAD(&skipped);
1880	INIT_LIST_HEAD(&wbl.list);
1881	wbl.size = 0;
1882	while (!list_empty(&wc->lru) &&
1883	       (wc->writeback_all ||
1884		wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark ||
1885		(jiffies - container_of(wc->lru.prev, struct wc_entry, lru)->age >=
1886		 wc->max_age - wc->max_age / MAX_AGE_DIV))) {
1887
1888		n_walked++;
1889		if (unlikely(n_walked > WRITEBACK_LATENCY) &&
1890		    likely(!wc->writeback_all)) {
1891			if (likely(!dm_suspended(wc->ti)))
1892				queue_work(wc->writeback_wq, &wc->writeback_work);
1893			break;
1894		}
1895
1896		if (unlikely(wc->writeback_all)) {
1897			if (unlikely(!e)) {
1898				writecache_flush(wc);
1899				e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node);
1900			} else
1901				e = g;
1902		} else
1903			e = container_of(wc->lru.prev, struct wc_entry, lru);
1904		BUG_ON(e->write_in_progress);
1905		if (unlikely(!writecache_entry_is_committed(wc, e))) {
1906			writecache_flush(wc);
1907		}
1908		node = rb_prev(&e->rb_node);
1909		if (node) {
1910			f = container_of(node, struct wc_entry, rb_node);
1911			if (unlikely(read_original_sector(wc, f) ==
1912				     read_original_sector(wc, e))) {
1913				BUG_ON(!f->write_in_progress);
1914				list_move(&e->lru, &skipped);
1915				cond_resched();
1916				continue;
1917			}
1918		}
1919		wc->writeback_size++;
1920		list_move(&e->lru, &wbl.list);
1921		wbl.size++;
1922		e->write_in_progress = true;
1923		e->wc_list_contiguous = 1;
1924
1925		f = e;
1926
1927		while (1) {
1928			next_node = rb_next(&f->rb_node);
1929			if (unlikely(!next_node))
1930				break;
1931			g = container_of(next_node, struct wc_entry, rb_node);
1932			if (unlikely(read_original_sector(wc, g) ==
1933			    read_original_sector(wc, f))) {
1934				f = g;
1935				continue;
1936			}
1937			if (read_original_sector(wc, g) !=
1938			    read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT))
1939				break;
1940			if (unlikely(g->write_in_progress))
1941				break;
1942			if (unlikely(!writecache_entry_is_committed(wc, g)))
1943				break;
1944
1945			if (!WC_MODE_PMEM(wc)) {
1946				if (g != f + 1)
1947					break;
1948			}
1949
1950			n_walked++;
1951			//if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all))
1952			//	break;
1953
1954			wc->writeback_size++;
1955			list_move(&g->lru, &wbl.list);
1956			wbl.size++;
1957			g->write_in_progress = true;
1958			g->wc_list_contiguous = BIO_MAX_VECS;
1959			f = g;
1960			e->wc_list_contiguous++;
1961			if (unlikely(e->wc_list_contiguous == BIO_MAX_VECS)) {
1962				if (unlikely(wc->writeback_all)) {
1963					next_node = rb_next(&f->rb_node);
1964					if (likely(next_node))
1965						g = container_of(next_node, struct wc_entry, rb_node);
1966				}
1967				break;
1968			}
1969		}
1970		cond_resched();
1971	}
1972
1973	if (!list_empty(&skipped)) {
1974		list_splice_tail(&skipped, &wc->lru);
1975		/*
1976		 * If we didn't do any progress, we must wait until some
1977		 * writeback finishes to avoid burning CPU in a loop
1978		 */
1979		if (unlikely(!wbl.size))
1980			writecache_wait_for_writeback(wc);
1981	}
1982
1983	wc_unlock(wc);
1984
1985	blk_start_plug(&plug);
1986
1987	if (WC_MODE_PMEM(wc))
1988		__writecache_writeback_pmem(wc, &wbl);
1989	else
1990		__writecache_writeback_ssd(wc, &wbl);
1991
1992	blk_finish_plug(&plug);
1993
1994	if (unlikely(wc->writeback_all)) {
1995		wc_lock(wc);
1996		while (writecache_wait_for_writeback(wc));
1997		wc_unlock(wc);
1998	}
1999}
2000
2001static int calculate_memory_size(uint64_t device_size, unsigned block_size,
2002				 size_t *n_blocks_p, size_t *n_metadata_blocks_p)
2003{
2004	uint64_t n_blocks, offset;
2005	struct wc_entry e;
2006
2007	n_blocks = device_size;
2008	do_div(n_blocks, block_size + sizeof(struct wc_memory_entry));
2009
2010	while (1) {
2011		if (!n_blocks)
2012			return -ENOSPC;
2013		/* Verify the following entries[n_blocks] won't overflow */
2014		if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) /
2015				 sizeof(struct wc_memory_entry)))
2016			return -EFBIG;
2017		offset = offsetof(struct wc_memory_superblock, entries[n_blocks]);
2018		offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1);
2019		if (offset + n_blocks * block_size <= device_size)
2020			break;
2021		n_blocks--;
2022	}
2023
2024	/* check if the bit field overflows */
2025	e.index = n_blocks;
2026	if (e.index != n_blocks)
2027		return -EFBIG;
2028
2029	if (n_blocks_p)
2030		*n_blocks_p = n_blocks;
2031	if (n_metadata_blocks_p)
2032		*n_metadata_blocks_p = offset >> __ffs(block_size);
2033	return 0;
2034}
2035
2036static int init_memory(struct dm_writecache *wc)
2037{
2038	size_t b;
2039	int r;
2040
2041	r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL);
2042	if (r)
2043		return r;
2044
2045	r = writecache_alloc_entries(wc);
2046	if (r)
2047		return r;
2048
2049	for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++)
2050		pmem_assign(sb(wc)->padding[b], cpu_to_le64(0));
2051	pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION));
2052	pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size));
2053	pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks));
2054	pmem_assign(sb(wc)->seq_count, cpu_to_le64(0));
2055
2056	for (b = 0; b < wc->n_blocks; b++) {
2057		write_original_sector_seq_count(wc, &wc->entries[b], -1, -1);
2058		cond_resched();
2059	}
2060
2061	writecache_flush_all_metadata(wc);
2062	writecache_commit_flushed(wc, false);
2063	pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC));
2064	writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic);
2065	writecache_commit_flushed(wc, false);
2066
2067	return 0;
2068}
2069
2070static void writecache_dtr(struct dm_target *ti)
2071{
2072	struct dm_writecache *wc = ti->private;
2073
2074	if (!wc)
2075		return;
2076
2077	if (wc->endio_thread)
2078		kthread_stop(wc->endio_thread);
2079
2080	if (wc->flush_thread)
2081		kthread_stop(wc->flush_thread);
2082
2083	bioset_exit(&wc->bio_set);
2084
2085	mempool_exit(&wc->copy_pool);
2086
2087	if (wc->writeback_wq)
2088		destroy_workqueue(wc->writeback_wq);
2089
2090	if (wc->dev)
2091		dm_put_device(ti, wc->dev);
2092
2093	if (wc->ssd_dev)
2094		dm_put_device(ti, wc->ssd_dev);
2095
2096	vfree(wc->entries);
2097
2098	if (wc->memory_map) {
2099		if (WC_MODE_PMEM(wc))
2100			persistent_memory_release(wc);
2101		else
2102			vfree(wc->memory_map);
2103	}
2104
2105	if (wc->dm_kcopyd)
2106		dm_kcopyd_client_destroy(wc->dm_kcopyd);
2107
2108	if (wc->dm_io)
2109		dm_io_client_destroy(wc->dm_io);
2110
2111	vfree(wc->dirty_bitmap);
2112
2113	kfree(wc);
2114}
2115
2116static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2117{
2118	struct dm_writecache *wc;
2119	struct dm_arg_set as;
2120	const char *string;
2121	unsigned opt_params;
2122	size_t offset, data_size;
2123	int i, r;
2124	char dummy;
2125	int high_wm_percent = HIGH_WATERMARK;
2126	int low_wm_percent = LOW_WATERMARK;
2127	uint64_t x;
2128	struct wc_memory_superblock s;
2129
2130	static struct dm_arg _args[] = {
2131		{0, 18, "Invalid number of feature args"},
2132	};
2133
2134	as.argc = argc;
2135	as.argv = argv;
2136
2137	wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL);
2138	if (!wc) {
2139		ti->error = "Cannot allocate writecache structure";
2140		r = -ENOMEM;
2141		goto bad;
2142	}
2143	ti->private = wc;
2144	wc->ti = ti;
2145
2146	mutex_init(&wc->lock);
2147	wc->max_age = MAX_AGE_UNSPECIFIED;
2148	writecache_poison_lists(wc);
2149	init_waitqueue_head(&wc->freelist_wait);
2150	timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0);
2151	timer_setup(&wc->max_age_timer, writecache_max_age_timer, 0);
2152
2153	for (i = 0; i < 2; i++) {
2154		atomic_set(&wc->bio_in_progress[i], 0);
2155		init_waitqueue_head(&wc->bio_in_progress_wait[i]);
2156	}
2157
2158	wc->dm_io = dm_io_client_create();
2159	if (IS_ERR(wc->dm_io)) {
2160		r = PTR_ERR(wc->dm_io);
2161		ti->error = "Unable to allocate dm-io client";
2162		wc->dm_io = NULL;
2163		goto bad;
2164	}
2165
2166	wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1);
2167	if (!wc->writeback_wq) {
2168		r = -ENOMEM;
2169		ti->error = "Could not allocate writeback workqueue";
2170		goto bad;
2171	}
2172	INIT_WORK(&wc->writeback_work, writecache_writeback);
2173	INIT_WORK(&wc->flush_work, writecache_flush_work);
2174
2175	dm_iot_init(&wc->iot);
2176
2177	raw_spin_lock_init(&wc->endio_list_lock);
2178	INIT_LIST_HEAD(&wc->endio_list);
2179	wc->endio_thread = kthread_create(writecache_endio_thread, wc, "writecache_endio");
2180	if (IS_ERR(wc->endio_thread)) {
2181		r = PTR_ERR(wc->endio_thread);
2182		wc->endio_thread = NULL;
2183		ti->error = "Couldn't spawn endio thread";
2184		goto bad;
2185	}
2186	wake_up_process(wc->endio_thread);
2187
2188	/*
2189	 * Parse the mode (pmem or ssd)
2190	 */
2191	string = dm_shift_arg(&as);
2192	if (!string)
2193		goto bad_arguments;
2194
2195	if (!strcasecmp(string, "s")) {
2196		wc->pmem_mode = false;
2197	} else if (!strcasecmp(string, "p")) {
2198#ifdef DM_WRITECACHE_HAS_PMEM
2199		wc->pmem_mode = true;
2200		wc->writeback_fua = true;
2201#else
2202		/*
2203		 * If the architecture doesn't support persistent memory or
2204		 * the kernel doesn't support any DAX drivers, this driver can
2205		 * only be used in SSD-only mode.
2206		 */
2207		r = -EOPNOTSUPP;
2208		ti->error = "Persistent memory or DAX not supported on this system";
2209		goto bad;
2210#endif
2211	} else {
2212		goto bad_arguments;
2213	}
2214
2215	if (WC_MODE_PMEM(wc)) {
2216		r = bioset_init(&wc->bio_set, BIO_POOL_SIZE,
2217				offsetof(struct writeback_struct, bio),
2218				BIOSET_NEED_BVECS);
2219		if (r) {
2220			ti->error = "Could not allocate bio set";
2221			goto bad;
2222		}
2223	} else {
2224		wc->pause = PAUSE_WRITEBACK;
2225		r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct));
2226		if (r) {
2227			ti->error = "Could not allocate mempool";
2228			goto bad;
2229		}
2230	}
2231
2232	/*
2233	 * Parse the origin data device
2234	 */
2235	string = dm_shift_arg(&as);
2236	if (!string)
2237		goto bad_arguments;
2238	r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev);
2239	if (r) {
2240		ti->error = "Origin data device lookup failed";
2241		goto bad;
2242	}
2243
2244	/*
2245	 * Parse cache data device (be it pmem or ssd)
2246	 */
2247	string = dm_shift_arg(&as);
2248	if (!string)
2249		goto bad_arguments;
2250
2251	r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev);
2252	if (r) {
2253		ti->error = "Cache data device lookup failed";
2254		goto bad;
2255	}
2256	wc->memory_map_size = i_size_read(wc->ssd_dev->bdev->bd_inode);
2257
2258	/*
2259	 * Parse the cache block size
2260	 */
2261	string = dm_shift_arg(&as);
2262	if (!string)
2263		goto bad_arguments;
2264	if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 ||
2265	    wc->block_size < 512 || wc->block_size > PAGE_SIZE ||
2266	    (wc->block_size & (wc->block_size - 1))) {
2267		r = -EINVAL;
2268		ti->error = "Invalid block size";
2269		goto bad;
2270	}
2271	if (wc->block_size < bdev_logical_block_size(wc->dev->bdev) ||
2272	    wc->block_size < bdev_logical_block_size(wc->ssd_dev->bdev)) {
2273		r = -EINVAL;
2274		ti->error = "Block size is smaller than device logical block size";
2275		goto bad;
2276	}
2277	wc->block_size_bits = __ffs(wc->block_size);
2278
2279	wc->max_writeback_jobs = MAX_WRITEBACK_JOBS;
2280	wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM;
2281	wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC);
2282
2283	/*
2284	 * Parse optional arguments
2285	 */
2286	r = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2287	if (r)
2288		goto bad;
2289
2290	while (opt_params) {
2291		string = dm_shift_arg(&as), opt_params--;
2292		if (!strcasecmp(string, "start_sector") && opt_params >= 1) {
2293			unsigned long long start_sector;
2294			string = dm_shift_arg(&as), opt_params--;
2295			if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1)
2296				goto invalid_optional;
2297			wc->start_sector = start_sector;
2298			wc->start_sector_set = true;
2299			if (wc->start_sector != start_sector ||
2300			    wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT)
2301				goto invalid_optional;
2302		} else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) {
2303			string = dm_shift_arg(&as), opt_params--;
2304			if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1)
2305				goto invalid_optional;
2306			if (high_wm_percent < 0 || high_wm_percent > 100)
2307				goto invalid_optional;
2308			wc->high_wm_percent_value = high_wm_percent;
2309			wc->high_wm_percent_set = true;
2310		} else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) {
2311			string = dm_shift_arg(&as), opt_params--;
2312			if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1)
2313				goto invalid_optional;
2314			if (low_wm_percent < 0 || low_wm_percent > 100)
2315				goto invalid_optional;
2316			wc->low_wm_percent_value = low_wm_percent;
2317			wc->low_wm_percent_set = true;
2318		} else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) {
2319			string = dm_shift_arg(&as), opt_params--;
2320			if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1)
2321				goto invalid_optional;
2322			wc->max_writeback_jobs_set = true;
2323		} else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) {
2324			string = dm_shift_arg(&as), opt_params--;
2325			if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1)
2326				goto invalid_optional;
2327			wc->autocommit_blocks_set = true;
2328		} else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) {
2329			unsigned autocommit_msecs;
2330			string = dm_shift_arg(&as), opt_params--;
2331			if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1)
2332				goto invalid_optional;
2333			if (autocommit_msecs > 3600000)
2334				goto invalid_optional;
2335			wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs);
2336			wc->autocommit_time_value = autocommit_msecs;
2337			wc->autocommit_time_set = true;
2338		} else if (!strcasecmp(string, "max_age") && opt_params >= 1) {
2339			unsigned max_age_msecs;
2340			string = dm_shift_arg(&as), opt_params--;
2341			if (sscanf(string, "%u%c", &max_age_msecs, &dummy) != 1)
2342				goto invalid_optional;
2343			if (max_age_msecs > 86400000)
2344				goto invalid_optional;
2345			wc->max_age = msecs_to_jiffies(max_age_msecs);
2346			wc->max_age_set = true;
2347			wc->max_age_value = max_age_msecs;
2348		} else if (!strcasecmp(string, "cleaner")) {
2349			wc->cleaner_set = true;
2350			wc->cleaner = true;
2351		} else if (!strcasecmp(string, "fua")) {
2352			if (WC_MODE_PMEM(wc)) {
2353				wc->writeback_fua = true;
2354				wc->writeback_fua_set = true;
2355			} else goto invalid_optional;
2356		} else if (!strcasecmp(string, "nofua")) {
2357			if (WC_MODE_PMEM(wc)) {
2358				wc->writeback_fua = false;
2359				wc->writeback_fua_set = true;
2360			} else goto invalid_optional;
2361		} else if (!strcasecmp(string, "metadata_only")) {
2362			wc->metadata_only = true;
2363		} else if (!strcasecmp(string, "pause_writeback") && opt_params >= 1) {
2364			unsigned pause_msecs;
2365			if (WC_MODE_PMEM(wc))
2366				goto invalid_optional;
2367			string = dm_shift_arg(&as), opt_params--;
2368			if (sscanf(string, "%u%c", &pause_msecs, &dummy) != 1)
2369				goto invalid_optional;
2370			if (pause_msecs > 60000)
2371				goto invalid_optional;
2372			wc->pause = msecs_to_jiffies(pause_msecs);
2373			wc->pause_set = true;
2374			wc->pause_value = pause_msecs;
2375		} else {
2376invalid_optional:
2377			r = -EINVAL;
2378			ti->error = "Invalid optional argument";
2379			goto bad;
2380		}
2381	}
2382
2383	if (high_wm_percent < low_wm_percent) {
2384		r = -EINVAL;
2385		ti->error = "High watermark must be greater than or equal to low watermark";
2386		goto bad;
2387	}
2388
2389	if (WC_MODE_PMEM(wc)) {
2390		if (!dax_synchronous(wc->ssd_dev->dax_dev)) {
2391			r = -EOPNOTSUPP;
2392			ti->error = "Asynchronous persistent memory not supported as pmem cache";
2393			goto bad;
2394		}
2395
2396		r = persistent_memory_claim(wc);
2397		if (r) {
2398			ti->error = "Unable to map persistent memory for cache";
2399			goto bad;
2400		}
2401	} else {
2402		size_t n_blocks, n_metadata_blocks;
2403		uint64_t n_bitmap_bits;
2404
2405		wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT;
2406
2407		bio_list_init(&wc->flush_list);
2408		wc->flush_thread = kthread_create(writecache_flush_thread, wc, "dm_writecache_flush");
2409		if (IS_ERR(wc->flush_thread)) {
2410			r = PTR_ERR(wc->flush_thread);
2411			wc->flush_thread = NULL;
2412			ti->error = "Couldn't spawn flush thread";
2413			goto bad;
2414		}
2415		wake_up_process(wc->flush_thread);
2416
2417		r = calculate_memory_size(wc->memory_map_size, wc->block_size,
2418					  &n_blocks, &n_metadata_blocks);
2419		if (r) {
2420			ti->error = "Invalid device size";
2421			goto bad;
2422		}
2423
2424		n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) +
2425				 BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY;
2426		/* this is limitation of test_bit functions */
2427		if (n_bitmap_bits > 1U << 31) {
2428			r = -EFBIG;
2429			ti->error = "Invalid device size";
2430			goto bad;
2431		}
2432
2433		wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits);
2434		if (!wc->memory_map) {
2435			r = -ENOMEM;
2436			ti->error = "Unable to allocate memory for metadata";
2437			goto bad;
2438		}
2439
2440		wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2441		if (IS_ERR(wc->dm_kcopyd)) {
2442			r = PTR_ERR(wc->dm_kcopyd);
2443			ti->error = "Unable to allocate dm-kcopyd client";
2444			wc->dm_kcopyd = NULL;
2445			goto bad;
2446		}
2447
2448		wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT);
2449		wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) /
2450			BITS_PER_LONG * sizeof(unsigned long);
2451		wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size);
2452		if (!wc->dirty_bitmap) {
2453			r = -ENOMEM;
2454			ti->error = "Unable to allocate dirty bitmap";
2455			goto bad;
2456		}
2457
2458		r = writecache_read_metadata(wc, wc->block_size >> SECTOR_SHIFT);
2459		if (r) {
2460			ti->error = "Unable to read first block of metadata";
2461			goto bad;
2462		}
2463	}
2464
2465	r = copy_mc_to_kernel(&s, sb(wc), sizeof(struct wc_memory_superblock));
2466	if (r) {
2467		ti->error = "Hardware memory error when reading superblock";
2468		goto bad;
2469	}
2470	if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) {
2471		r = init_memory(wc);
2472		if (r) {
2473			ti->error = "Unable to initialize device";
2474			goto bad;
2475		}
2476		r = copy_mc_to_kernel(&s, sb(wc),
2477				      sizeof(struct wc_memory_superblock));
2478		if (r) {
2479			ti->error = "Hardware memory error when reading superblock";
2480			goto bad;
2481		}
2482	}
2483
2484	if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) {
2485		ti->error = "Invalid magic in the superblock";
2486		r = -EINVAL;
2487		goto bad;
2488	}
2489
2490	if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) {
2491		ti->error = "Invalid version in the superblock";
2492		r = -EINVAL;
2493		goto bad;
2494	}
2495
2496	if (le32_to_cpu(s.block_size) != wc->block_size) {
2497		ti->error = "Block size does not match superblock";
2498		r = -EINVAL;
2499		goto bad;
2500	}
2501
2502	wc->n_blocks = le64_to_cpu(s.n_blocks);
2503
2504	offset = wc->n_blocks * sizeof(struct wc_memory_entry);
2505	if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) {
2506overflow:
2507		ti->error = "Overflow in size calculation";
2508		r = -EINVAL;
2509		goto bad;
2510	}
2511	offset += sizeof(struct wc_memory_superblock);
2512	if (offset < sizeof(struct wc_memory_superblock))
2513		goto overflow;
2514	offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1);
2515	data_size = wc->n_blocks * (size_t)wc->block_size;
2516	if (!offset || (data_size / wc->block_size != wc->n_blocks) ||
2517	    (offset + data_size < offset))
2518		goto overflow;
2519	if (offset + data_size > wc->memory_map_size) {
2520		ti->error = "Memory area is too small";
2521		r = -EINVAL;
2522		goto bad;
2523	}
2524
2525	wc->metadata_sectors = offset >> SECTOR_SHIFT;
2526	wc->block_start = (char *)sb(wc) + offset;
2527
2528	x = (uint64_t)wc->n_blocks * (100 - high_wm_percent);
2529	x += 50;
2530	do_div(x, 100);
2531	wc->freelist_high_watermark = x;
2532	x = (uint64_t)wc->n_blocks * (100 - low_wm_percent);
2533	x += 50;
2534	do_div(x, 100);
2535	wc->freelist_low_watermark = x;
2536
2537	if (wc->cleaner)
2538		activate_cleaner(wc);
2539
2540	r = writecache_alloc_entries(wc);
2541	if (r) {
2542		ti->error = "Cannot allocate memory";
2543		goto bad;
2544	}
2545
2546	ti->num_flush_bios = WC_MODE_PMEM(wc) ? 1 : 2;
2547	ti->flush_supported = true;
2548	ti->num_discard_bios = 1;
2549
2550	if (WC_MODE_PMEM(wc))
2551		persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
2552
2553	return 0;
2554
2555bad_arguments:
2556	r = -EINVAL;
2557	ti->error = "Bad arguments";
2558bad:
2559	writecache_dtr(ti);
2560	return r;
2561}
2562
2563static void writecache_status(struct dm_target *ti, status_type_t type,
2564			      unsigned status_flags, char *result, unsigned maxlen)
2565{
2566	struct dm_writecache *wc = ti->private;
2567	unsigned extra_args;
2568	unsigned sz = 0;
2569
2570	switch (type) {
2571	case STATUSTYPE_INFO:
2572		DMEMIT("%ld %llu %llu %llu", writecache_has_error(wc),
 
2573		       (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size,
2574		       (unsigned long long)wc->writeback_size);
 
 
 
 
 
 
 
 
 
 
2575		break;
2576	case STATUSTYPE_TABLE:
2577		DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's',
2578				wc->dev->name, wc->ssd_dev->name, wc->block_size);
2579		extra_args = 0;
2580		if (wc->start_sector_set)
2581			extra_args += 2;
2582		if (wc->high_wm_percent_set)
2583			extra_args += 2;
2584		if (wc->low_wm_percent_set)
2585			extra_args += 2;
2586		if (wc->max_writeback_jobs_set)
2587			extra_args += 2;
2588		if (wc->autocommit_blocks_set)
2589			extra_args += 2;
2590		if (wc->autocommit_time_set)
2591			extra_args += 2;
2592		if (wc->max_age_set)
2593			extra_args += 2;
2594		if (wc->cleaner_set)
2595			extra_args++;
2596		if (wc->writeback_fua_set)
2597			extra_args++;
2598		if (wc->metadata_only)
2599			extra_args++;
2600		if (wc->pause_set)
2601			extra_args += 2;
2602
2603		DMEMIT("%u", extra_args);
2604		if (wc->start_sector_set)
2605			DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector);
2606		if (wc->high_wm_percent_set)
2607			DMEMIT(" high_watermark %u", wc->high_wm_percent_value);
2608		if (wc->low_wm_percent_set)
2609			DMEMIT(" low_watermark %u", wc->low_wm_percent_value);
2610		if (wc->max_writeback_jobs_set)
2611			DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs);
2612		if (wc->autocommit_blocks_set)
2613			DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks);
2614		if (wc->autocommit_time_set)
2615			DMEMIT(" autocommit_time %u", wc->autocommit_time_value);
2616		if (wc->max_age_set)
2617			DMEMIT(" max_age %u", wc->max_age_value);
2618		if (wc->cleaner_set)
2619			DMEMIT(" cleaner");
2620		if (wc->writeback_fua_set)
2621			DMEMIT(" %sfua", wc->writeback_fua ? "" : "no");
2622		if (wc->metadata_only)
2623			DMEMIT(" metadata_only");
2624		if (wc->pause_set)
2625			DMEMIT(" pause_writeback %u", wc->pause_value);
2626		break;
 
 
 
2627	}
2628}
2629
2630static struct target_type writecache_target = {
2631	.name			= "writecache",
2632	.version		= {1, 5, 0},
2633	.module			= THIS_MODULE,
2634	.ctr			= writecache_ctr,
2635	.dtr			= writecache_dtr,
2636	.status			= writecache_status,
2637	.postsuspend		= writecache_suspend,
2638	.resume			= writecache_resume,
2639	.message		= writecache_message,
2640	.map			= writecache_map,
2641	.end_io			= writecache_end_io,
2642	.iterate_devices	= writecache_iterate_devices,
2643	.io_hints		= writecache_io_hints,
2644};
2645
2646static int __init dm_writecache_init(void)
2647{
2648	int r;
2649
2650	r = dm_register_target(&writecache_target);
2651	if (r < 0) {
2652		DMERR("register failed %d", r);
2653		return r;
2654	}
2655
2656	return 0;
2657}
2658
2659static void __exit dm_writecache_exit(void)
2660{
2661	dm_unregister_target(&writecache_target);
2662}
2663
2664module_init(dm_writecache_init);
2665module_exit(dm_writecache_exit);
2666
2667MODULE_DESCRIPTION(DM_NAME " writecache target");
2668MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
2669MODULE_LICENSE("GPL");