Loading...
1/*
2 * Copyright (C) 2012 Red Hat. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm.h"
8#include "dm-bio-prison-v2.h"
9#include "dm-bio-record.h"
10#include "dm-cache-metadata.h"
11#include "dm-io-tracker.h"
12
13#include <linux/dm-io.h>
14#include <linux/dm-kcopyd.h>
15#include <linux/jiffies.h>
16#include <linux/init.h>
17#include <linux/mempool.h>
18#include <linux/module.h>
19#include <linux/rwsem.h>
20#include <linux/slab.h>
21#include <linux/vmalloc.h>
22
23#define DM_MSG_PREFIX "cache"
24
25DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
26 "A percentage of time allocated for copying to and/or from cache");
27
28/*----------------------------------------------------------------*/
29
30/*
31 * Glossary:
32 *
33 * oblock: index of an origin block
34 * cblock: index of a cache block
35 * promotion: movement of a block from origin to cache
36 * demotion: movement of a block from cache to origin
37 * migration: movement of a block between the origin and cache device,
38 * either direction
39 */
40
41/*----------------------------------------------------------------*/
42
43/*
44 * Represents a chunk of future work. 'input' allows continuations to pass
45 * values between themselves, typically error values.
46 */
47struct continuation {
48 struct work_struct ws;
49 blk_status_t input;
50};
51
52static inline void init_continuation(struct continuation *k,
53 void (*fn)(struct work_struct *))
54{
55 INIT_WORK(&k->ws, fn);
56 k->input = 0;
57}
58
59static inline void queue_continuation(struct workqueue_struct *wq,
60 struct continuation *k)
61{
62 queue_work(wq, &k->ws);
63}
64
65/*----------------------------------------------------------------*/
66
67/*
68 * The batcher collects together pieces of work that need a particular
69 * operation to occur before they can proceed (typically a commit).
70 */
71struct batcher {
72 /*
73 * The operation that everyone is waiting for.
74 */
75 blk_status_t (*commit_op)(void *context);
76 void *commit_context;
77
78 /*
79 * This is how bios should be issued once the commit op is complete
80 * (accounted_request).
81 */
82 void (*issue_op)(struct bio *bio, void *context);
83 void *issue_context;
84
85 /*
86 * Queued work gets put on here after commit.
87 */
88 struct workqueue_struct *wq;
89
90 spinlock_t lock;
91 struct list_head work_items;
92 struct bio_list bios;
93 struct work_struct commit_work;
94
95 bool commit_scheduled;
96};
97
98static void __commit(struct work_struct *_ws)
99{
100 struct batcher *b = container_of(_ws, struct batcher, commit_work);
101 blk_status_t r;
102 struct list_head work_items;
103 struct work_struct *ws, *tmp;
104 struct continuation *k;
105 struct bio *bio;
106 struct bio_list bios;
107
108 INIT_LIST_HEAD(&work_items);
109 bio_list_init(&bios);
110
111 /*
112 * We have to grab these before the commit_op to avoid a race
113 * condition.
114 */
115 spin_lock_irq(&b->lock);
116 list_splice_init(&b->work_items, &work_items);
117 bio_list_merge(&bios, &b->bios);
118 bio_list_init(&b->bios);
119 b->commit_scheduled = false;
120 spin_unlock_irq(&b->lock);
121
122 r = b->commit_op(b->commit_context);
123
124 list_for_each_entry_safe(ws, tmp, &work_items, entry) {
125 k = container_of(ws, struct continuation, ws);
126 k->input = r;
127 INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
128 queue_work(b->wq, ws);
129 }
130
131 while ((bio = bio_list_pop(&bios))) {
132 if (r) {
133 bio->bi_status = r;
134 bio_endio(bio);
135 } else
136 b->issue_op(bio, b->issue_context);
137 }
138}
139
140static void batcher_init(struct batcher *b,
141 blk_status_t (*commit_op)(void *),
142 void *commit_context,
143 void (*issue_op)(struct bio *bio, void *),
144 void *issue_context,
145 struct workqueue_struct *wq)
146{
147 b->commit_op = commit_op;
148 b->commit_context = commit_context;
149 b->issue_op = issue_op;
150 b->issue_context = issue_context;
151 b->wq = wq;
152
153 spin_lock_init(&b->lock);
154 INIT_LIST_HEAD(&b->work_items);
155 bio_list_init(&b->bios);
156 INIT_WORK(&b->commit_work, __commit);
157 b->commit_scheduled = false;
158}
159
160static void async_commit(struct batcher *b)
161{
162 queue_work(b->wq, &b->commit_work);
163}
164
165static void continue_after_commit(struct batcher *b, struct continuation *k)
166{
167 bool commit_scheduled;
168
169 spin_lock_irq(&b->lock);
170 commit_scheduled = b->commit_scheduled;
171 list_add_tail(&k->ws.entry, &b->work_items);
172 spin_unlock_irq(&b->lock);
173
174 if (commit_scheduled)
175 async_commit(b);
176}
177
178/*
179 * Bios are errored if commit failed.
180 */
181static void issue_after_commit(struct batcher *b, struct bio *bio)
182{
183 bool commit_scheduled;
184
185 spin_lock_irq(&b->lock);
186 commit_scheduled = b->commit_scheduled;
187 bio_list_add(&b->bios, bio);
188 spin_unlock_irq(&b->lock);
189
190 if (commit_scheduled)
191 async_commit(b);
192}
193
194/*
195 * Call this if some urgent work is waiting for the commit to complete.
196 */
197static void schedule_commit(struct batcher *b)
198{
199 bool immediate;
200
201 spin_lock_irq(&b->lock);
202 immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
203 b->commit_scheduled = true;
204 spin_unlock_irq(&b->lock);
205
206 if (immediate)
207 async_commit(b);
208}
209
210/*
211 * There are a couple of places where we let a bio run, but want to do some
212 * work before calling its endio function. We do this by temporarily
213 * changing the endio fn.
214 */
215struct dm_hook_info {
216 bio_end_io_t *bi_end_io;
217};
218
219static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
220 bio_end_io_t *bi_end_io, void *bi_private)
221{
222 h->bi_end_io = bio->bi_end_io;
223
224 bio->bi_end_io = bi_end_io;
225 bio->bi_private = bi_private;
226}
227
228static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
229{
230 bio->bi_end_io = h->bi_end_io;
231}
232
233/*----------------------------------------------------------------*/
234
235#define MIGRATION_POOL_SIZE 128
236#define COMMIT_PERIOD HZ
237#define MIGRATION_COUNT_WINDOW 10
238
239/*
240 * The block size of the device holding cache data must be
241 * between 32KB and 1GB.
242 */
243#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
244#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
245
246enum cache_metadata_mode {
247 CM_WRITE, /* metadata may be changed */
248 CM_READ_ONLY, /* metadata may not be changed */
249 CM_FAIL
250};
251
252enum cache_io_mode {
253 /*
254 * Data is written to cached blocks only. These blocks are marked
255 * dirty. If you lose the cache device you will lose data.
256 * Potential performance increase for both reads and writes.
257 */
258 CM_IO_WRITEBACK,
259
260 /*
261 * Data is written to both cache and origin. Blocks are never
262 * dirty. Potential performance benfit for reads only.
263 */
264 CM_IO_WRITETHROUGH,
265
266 /*
267 * A degraded mode useful for various cache coherency situations
268 * (eg, rolling back snapshots). Reads and writes always go to the
269 * origin. If a write goes to a cached oblock, then the cache
270 * block is invalidated.
271 */
272 CM_IO_PASSTHROUGH
273};
274
275struct cache_features {
276 enum cache_metadata_mode mode;
277 enum cache_io_mode io_mode;
278 unsigned metadata_version;
279 bool discard_passdown:1;
280};
281
282struct cache_stats {
283 atomic_t read_hit;
284 atomic_t read_miss;
285 atomic_t write_hit;
286 atomic_t write_miss;
287 atomic_t demotion;
288 atomic_t promotion;
289 atomic_t writeback;
290 atomic_t copies_avoided;
291 atomic_t cache_cell_clash;
292 atomic_t commit_count;
293 atomic_t discard_count;
294};
295
296struct cache {
297 struct dm_target *ti;
298 spinlock_t lock;
299
300 /*
301 * Fields for converting from sectors to blocks.
302 */
303 int sectors_per_block_shift;
304 sector_t sectors_per_block;
305
306 struct dm_cache_metadata *cmd;
307
308 /*
309 * Metadata is written to this device.
310 */
311 struct dm_dev *metadata_dev;
312
313 /*
314 * The slower of the two data devices. Typically a spindle.
315 */
316 struct dm_dev *origin_dev;
317
318 /*
319 * The faster of the two data devices. Typically an SSD.
320 */
321 struct dm_dev *cache_dev;
322
323 /*
324 * Size of the origin device in _complete_ blocks and native sectors.
325 */
326 dm_oblock_t origin_blocks;
327 sector_t origin_sectors;
328
329 /*
330 * Size of the cache device in blocks.
331 */
332 dm_cblock_t cache_size;
333
334 /*
335 * Invalidation fields.
336 */
337 spinlock_t invalidation_lock;
338 struct list_head invalidation_requests;
339
340 sector_t migration_threshold;
341 wait_queue_head_t migration_wait;
342 atomic_t nr_allocated_migrations;
343
344 /*
345 * The number of in flight migrations that are performing
346 * background io. eg, promotion, writeback.
347 */
348 atomic_t nr_io_migrations;
349
350 struct bio_list deferred_bios;
351
352 struct rw_semaphore quiesce_lock;
353
354 /*
355 * origin_blocks entries, discarded if set.
356 */
357 dm_dblock_t discard_nr_blocks;
358 unsigned long *discard_bitset;
359 uint32_t discard_block_size; /* a power of 2 times sectors per block */
360
361 /*
362 * Rather than reconstructing the table line for the status we just
363 * save it and regurgitate.
364 */
365 unsigned nr_ctr_args;
366 const char **ctr_args;
367
368 struct dm_kcopyd_client *copier;
369 struct work_struct deferred_bio_worker;
370 struct work_struct migration_worker;
371 struct workqueue_struct *wq;
372 struct delayed_work waker;
373 struct dm_bio_prison_v2 *prison;
374
375 /*
376 * cache_size entries, dirty if set
377 */
378 unsigned long *dirty_bitset;
379 atomic_t nr_dirty;
380
381 unsigned policy_nr_args;
382 struct dm_cache_policy *policy;
383
384 /*
385 * Cache features such as write-through.
386 */
387 struct cache_features features;
388
389 struct cache_stats stats;
390
391 bool need_tick_bio:1;
392 bool sized:1;
393 bool invalidate:1;
394 bool commit_requested:1;
395 bool loaded_mappings:1;
396 bool loaded_discards:1;
397
398 struct rw_semaphore background_work_lock;
399
400 struct batcher committer;
401 struct work_struct commit_ws;
402
403 struct dm_io_tracker tracker;
404
405 mempool_t migration_pool;
406
407 struct bio_set bs;
408};
409
410struct per_bio_data {
411 bool tick:1;
412 unsigned req_nr:2;
413 struct dm_bio_prison_cell_v2 *cell;
414 struct dm_hook_info hook_info;
415 sector_t len;
416};
417
418struct dm_cache_migration {
419 struct continuation k;
420 struct cache *cache;
421
422 struct policy_work *op;
423 struct bio *overwrite_bio;
424 struct dm_bio_prison_cell_v2 *cell;
425
426 dm_cblock_t invalidate_cblock;
427 dm_oblock_t invalidate_oblock;
428};
429
430/*----------------------------------------------------------------*/
431
432static bool writethrough_mode(struct cache *cache)
433{
434 return cache->features.io_mode == CM_IO_WRITETHROUGH;
435}
436
437static bool writeback_mode(struct cache *cache)
438{
439 return cache->features.io_mode == CM_IO_WRITEBACK;
440}
441
442static inline bool passthrough_mode(struct cache *cache)
443{
444 return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
445}
446
447/*----------------------------------------------------------------*/
448
449static void wake_deferred_bio_worker(struct cache *cache)
450{
451 queue_work(cache->wq, &cache->deferred_bio_worker);
452}
453
454static void wake_migration_worker(struct cache *cache)
455{
456 if (passthrough_mode(cache))
457 return;
458
459 queue_work(cache->wq, &cache->migration_worker);
460}
461
462/*----------------------------------------------------------------*/
463
464static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
465{
466 return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO);
467}
468
469static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
470{
471 dm_bio_prison_free_cell_v2(cache->prison, cell);
472}
473
474static struct dm_cache_migration *alloc_migration(struct cache *cache)
475{
476 struct dm_cache_migration *mg;
477
478 mg = mempool_alloc(&cache->migration_pool, GFP_NOIO);
479
480 memset(mg, 0, sizeof(*mg));
481
482 mg->cache = cache;
483 atomic_inc(&cache->nr_allocated_migrations);
484
485 return mg;
486}
487
488static void free_migration(struct dm_cache_migration *mg)
489{
490 struct cache *cache = mg->cache;
491
492 if (atomic_dec_and_test(&cache->nr_allocated_migrations))
493 wake_up(&cache->migration_wait);
494
495 mempool_free(mg, &cache->migration_pool);
496}
497
498/*----------------------------------------------------------------*/
499
500static inline dm_oblock_t oblock_succ(dm_oblock_t b)
501{
502 return to_oblock(from_oblock(b) + 1ull);
503}
504
505static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
506{
507 key->virtual = 0;
508 key->dev = 0;
509 key->block_begin = from_oblock(begin);
510 key->block_end = from_oblock(end);
511}
512
513/*
514 * We have two lock levels. Level 0, which is used to prevent WRITEs, and
515 * level 1 which prevents *both* READs and WRITEs.
516 */
517#define WRITE_LOCK_LEVEL 0
518#define READ_WRITE_LOCK_LEVEL 1
519
520static unsigned lock_level(struct bio *bio)
521{
522 return bio_data_dir(bio) == WRITE ?
523 WRITE_LOCK_LEVEL :
524 READ_WRITE_LOCK_LEVEL;
525}
526
527/*----------------------------------------------------------------
528 * Per bio data
529 *--------------------------------------------------------------*/
530
531static struct per_bio_data *get_per_bio_data(struct bio *bio)
532{
533 struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
534 BUG_ON(!pb);
535 return pb;
536}
537
538static struct per_bio_data *init_per_bio_data(struct bio *bio)
539{
540 struct per_bio_data *pb = get_per_bio_data(bio);
541
542 pb->tick = false;
543 pb->req_nr = dm_bio_get_target_bio_nr(bio);
544 pb->cell = NULL;
545 pb->len = 0;
546
547 return pb;
548}
549
550/*----------------------------------------------------------------*/
551
552static void defer_bio(struct cache *cache, struct bio *bio)
553{
554 spin_lock_irq(&cache->lock);
555 bio_list_add(&cache->deferred_bios, bio);
556 spin_unlock_irq(&cache->lock);
557
558 wake_deferred_bio_worker(cache);
559}
560
561static void defer_bios(struct cache *cache, struct bio_list *bios)
562{
563 spin_lock_irq(&cache->lock);
564 bio_list_merge(&cache->deferred_bios, bios);
565 bio_list_init(bios);
566 spin_unlock_irq(&cache->lock);
567
568 wake_deferred_bio_worker(cache);
569}
570
571/*----------------------------------------------------------------*/
572
573static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
574{
575 bool r;
576 struct per_bio_data *pb;
577 struct dm_cell_key_v2 key;
578 dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
579 struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
580
581 cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
582
583 build_key(oblock, end, &key);
584 r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
585 if (!r) {
586 /*
587 * Failed to get the lock.
588 */
589 free_prison_cell(cache, cell_prealloc);
590 return r;
591 }
592
593 if (cell != cell_prealloc)
594 free_prison_cell(cache, cell_prealloc);
595
596 pb = get_per_bio_data(bio);
597 pb->cell = cell;
598
599 return r;
600}
601
602/*----------------------------------------------------------------*/
603
604static bool is_dirty(struct cache *cache, dm_cblock_t b)
605{
606 return test_bit(from_cblock(b), cache->dirty_bitset);
607}
608
609static void set_dirty(struct cache *cache, dm_cblock_t cblock)
610{
611 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
612 atomic_inc(&cache->nr_dirty);
613 policy_set_dirty(cache->policy, cblock);
614 }
615}
616
617/*
618 * These two are called when setting after migrations to force the policy
619 * and dirty bitset to be in sync.
620 */
621static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
622{
623 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
624 atomic_inc(&cache->nr_dirty);
625 policy_set_dirty(cache->policy, cblock);
626}
627
628static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
629{
630 if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
631 if (atomic_dec_return(&cache->nr_dirty) == 0)
632 dm_table_event(cache->ti->table);
633 }
634
635 policy_clear_dirty(cache->policy, cblock);
636}
637
638/*----------------------------------------------------------------*/
639
640static bool block_size_is_power_of_two(struct cache *cache)
641{
642 return cache->sectors_per_block_shift >= 0;
643}
644
645static dm_block_t block_div(dm_block_t b, uint32_t n)
646{
647 do_div(b, n);
648
649 return b;
650}
651
652static dm_block_t oblocks_per_dblock(struct cache *cache)
653{
654 dm_block_t oblocks = cache->discard_block_size;
655
656 if (block_size_is_power_of_two(cache))
657 oblocks >>= cache->sectors_per_block_shift;
658 else
659 oblocks = block_div(oblocks, cache->sectors_per_block);
660
661 return oblocks;
662}
663
664static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
665{
666 return to_dblock(block_div(from_oblock(oblock),
667 oblocks_per_dblock(cache)));
668}
669
670static void set_discard(struct cache *cache, dm_dblock_t b)
671{
672 BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
673 atomic_inc(&cache->stats.discard_count);
674
675 spin_lock_irq(&cache->lock);
676 set_bit(from_dblock(b), cache->discard_bitset);
677 spin_unlock_irq(&cache->lock);
678}
679
680static void clear_discard(struct cache *cache, dm_dblock_t b)
681{
682 spin_lock_irq(&cache->lock);
683 clear_bit(from_dblock(b), cache->discard_bitset);
684 spin_unlock_irq(&cache->lock);
685}
686
687static bool is_discarded(struct cache *cache, dm_dblock_t b)
688{
689 int r;
690 spin_lock_irq(&cache->lock);
691 r = test_bit(from_dblock(b), cache->discard_bitset);
692 spin_unlock_irq(&cache->lock);
693
694 return r;
695}
696
697static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
698{
699 int r;
700 spin_lock_irq(&cache->lock);
701 r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
702 cache->discard_bitset);
703 spin_unlock_irq(&cache->lock);
704
705 return r;
706}
707
708/*----------------------------------------------------------------
709 * Remapping
710 *--------------------------------------------------------------*/
711static void remap_to_origin(struct cache *cache, struct bio *bio)
712{
713 bio_set_dev(bio, cache->origin_dev->bdev);
714}
715
716static void remap_to_cache(struct cache *cache, struct bio *bio,
717 dm_cblock_t cblock)
718{
719 sector_t bi_sector = bio->bi_iter.bi_sector;
720 sector_t block = from_cblock(cblock);
721
722 bio_set_dev(bio, cache->cache_dev->bdev);
723 if (!block_size_is_power_of_two(cache))
724 bio->bi_iter.bi_sector =
725 (block * cache->sectors_per_block) +
726 sector_div(bi_sector, cache->sectors_per_block);
727 else
728 bio->bi_iter.bi_sector =
729 (block << cache->sectors_per_block_shift) |
730 (bi_sector & (cache->sectors_per_block - 1));
731}
732
733static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
734{
735 struct per_bio_data *pb;
736
737 spin_lock_irq(&cache->lock);
738 if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
739 bio_op(bio) != REQ_OP_DISCARD) {
740 pb = get_per_bio_data(bio);
741 pb->tick = true;
742 cache->need_tick_bio = false;
743 }
744 spin_unlock_irq(&cache->lock);
745}
746
747static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
748 dm_oblock_t oblock)
749{
750 // FIXME: check_if_tick_bio_needed() is called way too much through this interface
751 check_if_tick_bio_needed(cache, bio);
752 remap_to_origin(cache, bio);
753 if (bio_data_dir(bio) == WRITE)
754 clear_discard(cache, oblock_to_dblock(cache, oblock));
755}
756
757static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
758 dm_oblock_t oblock, dm_cblock_t cblock)
759{
760 check_if_tick_bio_needed(cache, bio);
761 remap_to_cache(cache, bio, cblock);
762 if (bio_data_dir(bio) == WRITE) {
763 set_dirty(cache, cblock);
764 clear_discard(cache, oblock_to_dblock(cache, oblock));
765 }
766}
767
768static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
769{
770 sector_t block_nr = bio->bi_iter.bi_sector;
771
772 if (!block_size_is_power_of_two(cache))
773 (void) sector_div(block_nr, cache->sectors_per_block);
774 else
775 block_nr >>= cache->sectors_per_block_shift;
776
777 return to_oblock(block_nr);
778}
779
780static bool accountable_bio(struct cache *cache, struct bio *bio)
781{
782 return bio_op(bio) != REQ_OP_DISCARD;
783}
784
785static void accounted_begin(struct cache *cache, struct bio *bio)
786{
787 struct per_bio_data *pb;
788
789 if (accountable_bio(cache, bio)) {
790 pb = get_per_bio_data(bio);
791 pb->len = bio_sectors(bio);
792 dm_iot_io_begin(&cache->tracker, pb->len);
793 }
794}
795
796static void accounted_complete(struct cache *cache, struct bio *bio)
797{
798 struct per_bio_data *pb = get_per_bio_data(bio);
799
800 dm_iot_io_end(&cache->tracker, pb->len);
801}
802
803static void accounted_request(struct cache *cache, struct bio *bio)
804{
805 accounted_begin(cache, bio);
806 dm_submit_bio_remap(bio, NULL);
807}
808
809static void issue_op(struct bio *bio, void *context)
810{
811 struct cache *cache = context;
812 accounted_request(cache, bio);
813}
814
815/*
816 * When running in writethrough mode we need to send writes to clean blocks
817 * to both the cache and origin devices. Clone the bio and send them in parallel.
818 */
819static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
820 dm_oblock_t oblock, dm_cblock_t cblock)
821{
822 struct bio *origin_bio = bio_alloc_clone(cache->origin_dev->bdev, bio,
823 GFP_NOIO, &cache->bs);
824
825 BUG_ON(!origin_bio);
826
827 bio_chain(origin_bio, bio);
828
829 if (bio_data_dir(origin_bio) == WRITE)
830 clear_discard(cache, oblock_to_dblock(cache, oblock));
831 submit_bio(origin_bio);
832
833 remap_to_cache(cache, bio, cblock);
834}
835
836/*----------------------------------------------------------------
837 * Failure modes
838 *--------------------------------------------------------------*/
839static enum cache_metadata_mode get_cache_mode(struct cache *cache)
840{
841 return cache->features.mode;
842}
843
844static const char *cache_device_name(struct cache *cache)
845{
846 return dm_table_device_name(cache->ti->table);
847}
848
849static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
850{
851 const char *descs[] = {
852 "write",
853 "read-only",
854 "fail"
855 };
856
857 dm_table_event(cache->ti->table);
858 DMINFO("%s: switching cache to %s mode",
859 cache_device_name(cache), descs[(int)mode]);
860}
861
862static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
863{
864 bool needs_check;
865 enum cache_metadata_mode old_mode = get_cache_mode(cache);
866
867 if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
868 DMERR("%s: unable to read needs_check flag, setting failure mode.",
869 cache_device_name(cache));
870 new_mode = CM_FAIL;
871 }
872
873 if (new_mode == CM_WRITE && needs_check) {
874 DMERR("%s: unable to switch cache to write mode until repaired.",
875 cache_device_name(cache));
876 if (old_mode != new_mode)
877 new_mode = old_mode;
878 else
879 new_mode = CM_READ_ONLY;
880 }
881
882 /* Never move out of fail mode */
883 if (old_mode == CM_FAIL)
884 new_mode = CM_FAIL;
885
886 switch (new_mode) {
887 case CM_FAIL:
888 case CM_READ_ONLY:
889 dm_cache_metadata_set_read_only(cache->cmd);
890 break;
891
892 case CM_WRITE:
893 dm_cache_metadata_set_read_write(cache->cmd);
894 break;
895 }
896
897 cache->features.mode = new_mode;
898
899 if (new_mode != old_mode)
900 notify_mode_switch(cache, new_mode);
901}
902
903static void abort_transaction(struct cache *cache)
904{
905 const char *dev_name = cache_device_name(cache);
906
907 if (get_cache_mode(cache) >= CM_READ_ONLY)
908 return;
909
910 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
911 if (dm_cache_metadata_abort(cache->cmd)) {
912 DMERR("%s: failed to abort metadata transaction", dev_name);
913 set_cache_mode(cache, CM_FAIL);
914 }
915
916 if (dm_cache_metadata_set_needs_check(cache->cmd)) {
917 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
918 set_cache_mode(cache, CM_FAIL);
919 }
920}
921
922static void metadata_operation_failed(struct cache *cache, const char *op, int r)
923{
924 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
925 cache_device_name(cache), op, r);
926 abort_transaction(cache);
927 set_cache_mode(cache, CM_READ_ONLY);
928}
929
930/*----------------------------------------------------------------*/
931
932static void load_stats(struct cache *cache)
933{
934 struct dm_cache_statistics stats;
935
936 dm_cache_metadata_get_stats(cache->cmd, &stats);
937 atomic_set(&cache->stats.read_hit, stats.read_hits);
938 atomic_set(&cache->stats.read_miss, stats.read_misses);
939 atomic_set(&cache->stats.write_hit, stats.write_hits);
940 atomic_set(&cache->stats.write_miss, stats.write_misses);
941}
942
943static void save_stats(struct cache *cache)
944{
945 struct dm_cache_statistics stats;
946
947 if (get_cache_mode(cache) >= CM_READ_ONLY)
948 return;
949
950 stats.read_hits = atomic_read(&cache->stats.read_hit);
951 stats.read_misses = atomic_read(&cache->stats.read_miss);
952 stats.write_hits = atomic_read(&cache->stats.write_hit);
953 stats.write_misses = atomic_read(&cache->stats.write_miss);
954
955 dm_cache_metadata_set_stats(cache->cmd, &stats);
956}
957
958static void update_stats(struct cache_stats *stats, enum policy_operation op)
959{
960 switch (op) {
961 case POLICY_PROMOTE:
962 atomic_inc(&stats->promotion);
963 break;
964
965 case POLICY_DEMOTE:
966 atomic_inc(&stats->demotion);
967 break;
968
969 case POLICY_WRITEBACK:
970 atomic_inc(&stats->writeback);
971 break;
972 }
973}
974
975/*----------------------------------------------------------------
976 * Migration processing
977 *
978 * Migration covers moving data from the origin device to the cache, or
979 * vice versa.
980 *--------------------------------------------------------------*/
981
982static void inc_io_migrations(struct cache *cache)
983{
984 atomic_inc(&cache->nr_io_migrations);
985}
986
987static void dec_io_migrations(struct cache *cache)
988{
989 atomic_dec(&cache->nr_io_migrations);
990}
991
992static bool discard_or_flush(struct bio *bio)
993{
994 return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
995}
996
997static void calc_discard_block_range(struct cache *cache, struct bio *bio,
998 dm_dblock_t *b, dm_dblock_t *e)
999{
1000 sector_t sb = bio->bi_iter.bi_sector;
1001 sector_t se = bio_end_sector(bio);
1002
1003 *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1004
1005 if (se - sb < cache->discard_block_size)
1006 *e = *b;
1007 else
1008 *e = to_dblock(block_div(se, cache->discard_block_size));
1009}
1010
1011/*----------------------------------------------------------------*/
1012
1013static void prevent_background_work(struct cache *cache)
1014{
1015 lockdep_off();
1016 down_write(&cache->background_work_lock);
1017 lockdep_on();
1018}
1019
1020static void allow_background_work(struct cache *cache)
1021{
1022 lockdep_off();
1023 up_write(&cache->background_work_lock);
1024 lockdep_on();
1025}
1026
1027static bool background_work_begin(struct cache *cache)
1028{
1029 bool r;
1030
1031 lockdep_off();
1032 r = down_read_trylock(&cache->background_work_lock);
1033 lockdep_on();
1034
1035 return r;
1036}
1037
1038static void background_work_end(struct cache *cache)
1039{
1040 lockdep_off();
1041 up_read(&cache->background_work_lock);
1042 lockdep_on();
1043}
1044
1045/*----------------------------------------------------------------*/
1046
1047static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1048{
1049 return (bio_data_dir(bio) == WRITE) &&
1050 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1051}
1052
1053static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1054{
1055 return writeback_mode(cache) &&
1056 (is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1057}
1058
1059static void quiesce(struct dm_cache_migration *mg,
1060 void (*continuation)(struct work_struct *))
1061{
1062 init_continuation(&mg->k, continuation);
1063 dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1064}
1065
1066static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1067{
1068 struct continuation *k = container_of(ws, struct continuation, ws);
1069 return container_of(k, struct dm_cache_migration, k);
1070}
1071
1072static void copy_complete(int read_err, unsigned long write_err, void *context)
1073{
1074 struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1075
1076 if (read_err || write_err)
1077 mg->k.input = BLK_STS_IOERR;
1078
1079 queue_continuation(mg->cache->wq, &mg->k);
1080}
1081
1082static void copy(struct dm_cache_migration *mg, bool promote)
1083{
1084 struct dm_io_region o_region, c_region;
1085 struct cache *cache = mg->cache;
1086
1087 o_region.bdev = cache->origin_dev->bdev;
1088 o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1089 o_region.count = cache->sectors_per_block;
1090
1091 c_region.bdev = cache->cache_dev->bdev;
1092 c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1093 c_region.count = cache->sectors_per_block;
1094
1095 if (promote)
1096 dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1097 else
1098 dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1099}
1100
1101static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1102{
1103 struct per_bio_data *pb = get_per_bio_data(bio);
1104
1105 if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1106 free_prison_cell(cache, pb->cell);
1107 pb->cell = NULL;
1108}
1109
1110static void overwrite_endio(struct bio *bio)
1111{
1112 struct dm_cache_migration *mg = bio->bi_private;
1113 struct cache *cache = mg->cache;
1114 struct per_bio_data *pb = get_per_bio_data(bio);
1115
1116 dm_unhook_bio(&pb->hook_info, bio);
1117
1118 if (bio->bi_status)
1119 mg->k.input = bio->bi_status;
1120
1121 queue_continuation(cache->wq, &mg->k);
1122}
1123
1124static void overwrite(struct dm_cache_migration *mg,
1125 void (*continuation)(struct work_struct *))
1126{
1127 struct bio *bio = mg->overwrite_bio;
1128 struct per_bio_data *pb = get_per_bio_data(bio);
1129
1130 dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1131
1132 /*
1133 * The overwrite bio is part of the copy operation, as such it does
1134 * not set/clear discard or dirty flags.
1135 */
1136 if (mg->op->op == POLICY_PROMOTE)
1137 remap_to_cache(mg->cache, bio, mg->op->cblock);
1138 else
1139 remap_to_origin(mg->cache, bio);
1140
1141 init_continuation(&mg->k, continuation);
1142 accounted_request(mg->cache, bio);
1143}
1144
1145/*
1146 * Migration steps:
1147 *
1148 * 1) exclusive lock preventing WRITEs
1149 * 2) quiesce
1150 * 3) copy or issue overwrite bio
1151 * 4) upgrade to exclusive lock preventing READs and WRITEs
1152 * 5) quiesce
1153 * 6) update metadata and commit
1154 * 7) unlock
1155 */
1156static void mg_complete(struct dm_cache_migration *mg, bool success)
1157{
1158 struct bio_list bios;
1159 struct cache *cache = mg->cache;
1160 struct policy_work *op = mg->op;
1161 dm_cblock_t cblock = op->cblock;
1162
1163 if (success)
1164 update_stats(&cache->stats, op->op);
1165
1166 switch (op->op) {
1167 case POLICY_PROMOTE:
1168 clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1169 policy_complete_background_work(cache->policy, op, success);
1170
1171 if (mg->overwrite_bio) {
1172 if (success)
1173 force_set_dirty(cache, cblock);
1174 else if (mg->k.input)
1175 mg->overwrite_bio->bi_status = mg->k.input;
1176 else
1177 mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1178 bio_endio(mg->overwrite_bio);
1179 } else {
1180 if (success)
1181 force_clear_dirty(cache, cblock);
1182 dec_io_migrations(cache);
1183 }
1184 break;
1185
1186 case POLICY_DEMOTE:
1187 /*
1188 * We clear dirty here to update the nr_dirty counter.
1189 */
1190 if (success)
1191 force_clear_dirty(cache, cblock);
1192 policy_complete_background_work(cache->policy, op, success);
1193 dec_io_migrations(cache);
1194 break;
1195
1196 case POLICY_WRITEBACK:
1197 if (success)
1198 force_clear_dirty(cache, cblock);
1199 policy_complete_background_work(cache->policy, op, success);
1200 dec_io_migrations(cache);
1201 break;
1202 }
1203
1204 bio_list_init(&bios);
1205 if (mg->cell) {
1206 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1207 free_prison_cell(cache, mg->cell);
1208 }
1209
1210 free_migration(mg);
1211 defer_bios(cache, &bios);
1212 wake_migration_worker(cache);
1213
1214 background_work_end(cache);
1215}
1216
1217static void mg_success(struct work_struct *ws)
1218{
1219 struct dm_cache_migration *mg = ws_to_mg(ws);
1220 mg_complete(mg, mg->k.input == 0);
1221}
1222
1223static void mg_update_metadata(struct work_struct *ws)
1224{
1225 int r;
1226 struct dm_cache_migration *mg = ws_to_mg(ws);
1227 struct cache *cache = mg->cache;
1228 struct policy_work *op = mg->op;
1229
1230 switch (op->op) {
1231 case POLICY_PROMOTE:
1232 r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1233 if (r) {
1234 DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1235 cache_device_name(cache));
1236 metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1237
1238 mg_complete(mg, false);
1239 return;
1240 }
1241 mg_complete(mg, true);
1242 break;
1243
1244 case POLICY_DEMOTE:
1245 r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1246 if (r) {
1247 DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1248 cache_device_name(cache));
1249 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1250
1251 mg_complete(mg, false);
1252 return;
1253 }
1254
1255 /*
1256 * It would be nice if we only had to commit when a REQ_FLUSH
1257 * comes through. But there's one scenario that we have to
1258 * look out for:
1259 *
1260 * - vblock x in a cache block
1261 * - domotion occurs
1262 * - cache block gets reallocated and over written
1263 * - crash
1264 *
1265 * When we recover, because there was no commit the cache will
1266 * rollback to having the data for vblock x in the cache block.
1267 * But the cache block has since been overwritten, so it'll end
1268 * up pointing to data that was never in 'x' during the history
1269 * of the device.
1270 *
1271 * To avoid this issue we require a commit as part of the
1272 * demotion operation.
1273 */
1274 init_continuation(&mg->k, mg_success);
1275 continue_after_commit(&cache->committer, &mg->k);
1276 schedule_commit(&cache->committer);
1277 break;
1278
1279 case POLICY_WRITEBACK:
1280 mg_complete(mg, true);
1281 break;
1282 }
1283}
1284
1285static void mg_update_metadata_after_copy(struct work_struct *ws)
1286{
1287 struct dm_cache_migration *mg = ws_to_mg(ws);
1288
1289 /*
1290 * Did the copy succeed?
1291 */
1292 if (mg->k.input)
1293 mg_complete(mg, false);
1294 else
1295 mg_update_metadata(ws);
1296}
1297
1298static void mg_upgrade_lock(struct work_struct *ws)
1299{
1300 int r;
1301 struct dm_cache_migration *mg = ws_to_mg(ws);
1302
1303 /*
1304 * Did the copy succeed?
1305 */
1306 if (mg->k.input)
1307 mg_complete(mg, false);
1308
1309 else {
1310 /*
1311 * Now we want the lock to prevent both reads and writes.
1312 */
1313 r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1314 READ_WRITE_LOCK_LEVEL);
1315 if (r < 0)
1316 mg_complete(mg, false);
1317
1318 else if (r)
1319 quiesce(mg, mg_update_metadata);
1320
1321 else
1322 mg_update_metadata(ws);
1323 }
1324}
1325
1326static void mg_full_copy(struct work_struct *ws)
1327{
1328 struct dm_cache_migration *mg = ws_to_mg(ws);
1329 struct cache *cache = mg->cache;
1330 struct policy_work *op = mg->op;
1331 bool is_policy_promote = (op->op == POLICY_PROMOTE);
1332
1333 if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1334 is_discarded_oblock(cache, op->oblock)) {
1335 mg_upgrade_lock(ws);
1336 return;
1337 }
1338
1339 init_continuation(&mg->k, mg_upgrade_lock);
1340 copy(mg, is_policy_promote);
1341}
1342
1343static void mg_copy(struct work_struct *ws)
1344{
1345 struct dm_cache_migration *mg = ws_to_mg(ws);
1346
1347 if (mg->overwrite_bio) {
1348 /*
1349 * No exclusive lock was held when we last checked if the bio
1350 * was optimisable. So we have to check again in case things
1351 * have changed (eg, the block may no longer be discarded).
1352 */
1353 if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1354 /*
1355 * Fallback to a real full copy after doing some tidying up.
1356 */
1357 bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1358 BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1359 mg->overwrite_bio = NULL;
1360 inc_io_migrations(mg->cache);
1361 mg_full_copy(ws);
1362 return;
1363 }
1364
1365 /*
1366 * It's safe to do this here, even though it's new data
1367 * because all IO has been locked out of the block.
1368 *
1369 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1370 * so _not_ using mg_upgrade_lock() as continutation.
1371 */
1372 overwrite(mg, mg_update_metadata_after_copy);
1373
1374 } else
1375 mg_full_copy(ws);
1376}
1377
1378static int mg_lock_writes(struct dm_cache_migration *mg)
1379{
1380 int r;
1381 struct dm_cell_key_v2 key;
1382 struct cache *cache = mg->cache;
1383 struct dm_bio_prison_cell_v2 *prealloc;
1384
1385 prealloc = alloc_prison_cell(cache);
1386
1387 /*
1388 * Prevent writes to the block, but allow reads to continue.
1389 * Unless we're using an overwrite bio, in which case we lock
1390 * everything.
1391 */
1392 build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1393 r = dm_cell_lock_v2(cache->prison, &key,
1394 mg->overwrite_bio ? READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1395 prealloc, &mg->cell);
1396 if (r < 0) {
1397 free_prison_cell(cache, prealloc);
1398 mg_complete(mg, false);
1399 return r;
1400 }
1401
1402 if (mg->cell != prealloc)
1403 free_prison_cell(cache, prealloc);
1404
1405 if (r == 0)
1406 mg_copy(&mg->k.ws);
1407 else
1408 quiesce(mg, mg_copy);
1409
1410 return 0;
1411}
1412
1413static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1414{
1415 struct dm_cache_migration *mg;
1416
1417 if (!background_work_begin(cache)) {
1418 policy_complete_background_work(cache->policy, op, false);
1419 return -EPERM;
1420 }
1421
1422 mg = alloc_migration(cache);
1423
1424 mg->op = op;
1425 mg->overwrite_bio = bio;
1426
1427 if (!bio)
1428 inc_io_migrations(cache);
1429
1430 return mg_lock_writes(mg);
1431}
1432
1433/*----------------------------------------------------------------
1434 * invalidation processing
1435 *--------------------------------------------------------------*/
1436
1437static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1438{
1439 struct bio_list bios;
1440 struct cache *cache = mg->cache;
1441
1442 bio_list_init(&bios);
1443 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1444 free_prison_cell(cache, mg->cell);
1445
1446 if (!success && mg->overwrite_bio)
1447 bio_io_error(mg->overwrite_bio);
1448
1449 free_migration(mg);
1450 defer_bios(cache, &bios);
1451
1452 background_work_end(cache);
1453}
1454
1455static void invalidate_completed(struct work_struct *ws)
1456{
1457 struct dm_cache_migration *mg = ws_to_mg(ws);
1458 invalidate_complete(mg, !mg->k.input);
1459}
1460
1461static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1462{
1463 int r = policy_invalidate_mapping(cache->policy, cblock);
1464 if (!r) {
1465 r = dm_cache_remove_mapping(cache->cmd, cblock);
1466 if (r) {
1467 DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1468 cache_device_name(cache));
1469 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1470 }
1471
1472 } else if (r == -ENODATA) {
1473 /*
1474 * Harmless, already unmapped.
1475 */
1476 r = 0;
1477
1478 } else
1479 DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1480
1481 return r;
1482}
1483
1484static void invalidate_remove(struct work_struct *ws)
1485{
1486 int r;
1487 struct dm_cache_migration *mg = ws_to_mg(ws);
1488 struct cache *cache = mg->cache;
1489
1490 r = invalidate_cblock(cache, mg->invalidate_cblock);
1491 if (r) {
1492 invalidate_complete(mg, false);
1493 return;
1494 }
1495
1496 init_continuation(&mg->k, invalidate_completed);
1497 continue_after_commit(&cache->committer, &mg->k);
1498 remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1499 mg->overwrite_bio = NULL;
1500 schedule_commit(&cache->committer);
1501}
1502
1503static int invalidate_lock(struct dm_cache_migration *mg)
1504{
1505 int r;
1506 struct dm_cell_key_v2 key;
1507 struct cache *cache = mg->cache;
1508 struct dm_bio_prison_cell_v2 *prealloc;
1509
1510 prealloc = alloc_prison_cell(cache);
1511
1512 build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1513 r = dm_cell_lock_v2(cache->prison, &key,
1514 READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1515 if (r < 0) {
1516 free_prison_cell(cache, prealloc);
1517 invalidate_complete(mg, false);
1518 return r;
1519 }
1520
1521 if (mg->cell != prealloc)
1522 free_prison_cell(cache, prealloc);
1523
1524 if (r)
1525 quiesce(mg, invalidate_remove);
1526
1527 else {
1528 /*
1529 * We can't call invalidate_remove() directly here because we
1530 * might still be in request context.
1531 */
1532 init_continuation(&mg->k, invalidate_remove);
1533 queue_work(cache->wq, &mg->k.ws);
1534 }
1535
1536 return 0;
1537}
1538
1539static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1540 dm_oblock_t oblock, struct bio *bio)
1541{
1542 struct dm_cache_migration *mg;
1543
1544 if (!background_work_begin(cache))
1545 return -EPERM;
1546
1547 mg = alloc_migration(cache);
1548
1549 mg->overwrite_bio = bio;
1550 mg->invalidate_cblock = cblock;
1551 mg->invalidate_oblock = oblock;
1552
1553 return invalidate_lock(mg);
1554}
1555
1556/*----------------------------------------------------------------
1557 * bio processing
1558 *--------------------------------------------------------------*/
1559
1560enum busy {
1561 IDLE,
1562 BUSY
1563};
1564
1565static enum busy spare_migration_bandwidth(struct cache *cache)
1566{
1567 bool idle = dm_iot_idle_for(&cache->tracker, HZ);
1568 sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1569 cache->sectors_per_block;
1570
1571 if (idle && current_volume <= cache->migration_threshold)
1572 return IDLE;
1573 else
1574 return BUSY;
1575}
1576
1577static void inc_hit_counter(struct cache *cache, struct bio *bio)
1578{
1579 atomic_inc(bio_data_dir(bio) == READ ?
1580 &cache->stats.read_hit : &cache->stats.write_hit);
1581}
1582
1583static void inc_miss_counter(struct cache *cache, struct bio *bio)
1584{
1585 atomic_inc(bio_data_dir(bio) == READ ?
1586 &cache->stats.read_miss : &cache->stats.write_miss);
1587}
1588
1589/*----------------------------------------------------------------*/
1590
1591static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1592 bool *commit_needed)
1593{
1594 int r, data_dir;
1595 bool rb, background_queued;
1596 dm_cblock_t cblock;
1597
1598 *commit_needed = false;
1599
1600 rb = bio_detain_shared(cache, block, bio);
1601 if (!rb) {
1602 /*
1603 * An exclusive lock is held for this block, so we have to
1604 * wait. We set the commit_needed flag so the current
1605 * transaction will be committed asap, allowing this lock
1606 * to be dropped.
1607 */
1608 *commit_needed = true;
1609 return DM_MAPIO_SUBMITTED;
1610 }
1611
1612 data_dir = bio_data_dir(bio);
1613
1614 if (optimisable_bio(cache, bio, block)) {
1615 struct policy_work *op = NULL;
1616
1617 r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1618 if (unlikely(r && r != -ENOENT)) {
1619 DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1620 cache_device_name(cache), r);
1621 bio_io_error(bio);
1622 return DM_MAPIO_SUBMITTED;
1623 }
1624
1625 if (r == -ENOENT && op) {
1626 bio_drop_shared_lock(cache, bio);
1627 BUG_ON(op->op != POLICY_PROMOTE);
1628 mg_start(cache, op, bio);
1629 return DM_MAPIO_SUBMITTED;
1630 }
1631 } else {
1632 r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1633 if (unlikely(r && r != -ENOENT)) {
1634 DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1635 cache_device_name(cache), r);
1636 bio_io_error(bio);
1637 return DM_MAPIO_SUBMITTED;
1638 }
1639
1640 if (background_queued)
1641 wake_migration_worker(cache);
1642 }
1643
1644 if (r == -ENOENT) {
1645 struct per_bio_data *pb = get_per_bio_data(bio);
1646
1647 /*
1648 * Miss.
1649 */
1650 inc_miss_counter(cache, bio);
1651 if (pb->req_nr == 0) {
1652 accounted_begin(cache, bio);
1653 remap_to_origin_clear_discard(cache, bio, block);
1654 } else {
1655 /*
1656 * This is a duplicate writethrough io that is no
1657 * longer needed because the block has been demoted.
1658 */
1659 bio_endio(bio);
1660 return DM_MAPIO_SUBMITTED;
1661 }
1662 } else {
1663 /*
1664 * Hit.
1665 */
1666 inc_hit_counter(cache, bio);
1667
1668 /*
1669 * Passthrough always maps to the origin, invalidating any
1670 * cache blocks that are written to.
1671 */
1672 if (passthrough_mode(cache)) {
1673 if (bio_data_dir(bio) == WRITE) {
1674 bio_drop_shared_lock(cache, bio);
1675 atomic_inc(&cache->stats.demotion);
1676 invalidate_start(cache, cblock, block, bio);
1677 } else
1678 remap_to_origin_clear_discard(cache, bio, block);
1679 } else {
1680 if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1681 !is_dirty(cache, cblock)) {
1682 remap_to_origin_and_cache(cache, bio, block, cblock);
1683 accounted_begin(cache, bio);
1684 } else
1685 remap_to_cache_dirty(cache, bio, block, cblock);
1686 }
1687 }
1688
1689 /*
1690 * dm core turns FUA requests into a separate payload and FLUSH req.
1691 */
1692 if (bio->bi_opf & REQ_FUA) {
1693 /*
1694 * issue_after_commit will call accounted_begin a second time. So
1695 * we call accounted_complete() to avoid double accounting.
1696 */
1697 accounted_complete(cache, bio);
1698 issue_after_commit(&cache->committer, bio);
1699 *commit_needed = true;
1700 return DM_MAPIO_SUBMITTED;
1701 }
1702
1703 return DM_MAPIO_REMAPPED;
1704}
1705
1706static bool process_bio(struct cache *cache, struct bio *bio)
1707{
1708 bool commit_needed;
1709
1710 if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1711 dm_submit_bio_remap(bio, NULL);
1712
1713 return commit_needed;
1714}
1715
1716/*
1717 * A non-zero return indicates read_only or fail_io mode.
1718 */
1719static int commit(struct cache *cache, bool clean_shutdown)
1720{
1721 int r;
1722
1723 if (get_cache_mode(cache) >= CM_READ_ONLY)
1724 return -EINVAL;
1725
1726 atomic_inc(&cache->stats.commit_count);
1727 r = dm_cache_commit(cache->cmd, clean_shutdown);
1728 if (r)
1729 metadata_operation_failed(cache, "dm_cache_commit", r);
1730
1731 return r;
1732}
1733
1734/*
1735 * Used by the batcher.
1736 */
1737static blk_status_t commit_op(void *context)
1738{
1739 struct cache *cache = context;
1740
1741 if (dm_cache_changed_this_transaction(cache->cmd))
1742 return errno_to_blk_status(commit(cache, false));
1743
1744 return 0;
1745}
1746
1747/*----------------------------------------------------------------*/
1748
1749static bool process_flush_bio(struct cache *cache, struct bio *bio)
1750{
1751 struct per_bio_data *pb = get_per_bio_data(bio);
1752
1753 if (!pb->req_nr)
1754 remap_to_origin(cache, bio);
1755 else
1756 remap_to_cache(cache, bio, 0);
1757
1758 issue_after_commit(&cache->committer, bio);
1759 return true;
1760}
1761
1762static bool process_discard_bio(struct cache *cache, struct bio *bio)
1763{
1764 dm_dblock_t b, e;
1765
1766 // FIXME: do we need to lock the region? Or can we just assume the
1767 // user wont be so foolish as to issue discard concurrently with
1768 // other IO?
1769 calc_discard_block_range(cache, bio, &b, &e);
1770 while (b != e) {
1771 set_discard(cache, b);
1772 b = to_dblock(from_dblock(b) + 1);
1773 }
1774
1775 if (cache->features.discard_passdown) {
1776 remap_to_origin(cache, bio);
1777 dm_submit_bio_remap(bio, NULL);
1778 } else
1779 bio_endio(bio);
1780
1781 return false;
1782}
1783
1784static void process_deferred_bios(struct work_struct *ws)
1785{
1786 struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1787
1788 bool commit_needed = false;
1789 struct bio_list bios;
1790 struct bio *bio;
1791
1792 bio_list_init(&bios);
1793
1794 spin_lock_irq(&cache->lock);
1795 bio_list_merge(&bios, &cache->deferred_bios);
1796 bio_list_init(&cache->deferred_bios);
1797 spin_unlock_irq(&cache->lock);
1798
1799 while ((bio = bio_list_pop(&bios))) {
1800 if (bio->bi_opf & REQ_PREFLUSH)
1801 commit_needed = process_flush_bio(cache, bio) || commit_needed;
1802
1803 else if (bio_op(bio) == REQ_OP_DISCARD)
1804 commit_needed = process_discard_bio(cache, bio) || commit_needed;
1805
1806 else
1807 commit_needed = process_bio(cache, bio) || commit_needed;
1808 }
1809
1810 if (commit_needed)
1811 schedule_commit(&cache->committer);
1812}
1813
1814/*----------------------------------------------------------------
1815 * Main worker loop
1816 *--------------------------------------------------------------*/
1817
1818static void requeue_deferred_bios(struct cache *cache)
1819{
1820 struct bio *bio;
1821 struct bio_list bios;
1822
1823 bio_list_init(&bios);
1824 bio_list_merge(&bios, &cache->deferred_bios);
1825 bio_list_init(&cache->deferred_bios);
1826
1827 while ((bio = bio_list_pop(&bios))) {
1828 bio->bi_status = BLK_STS_DM_REQUEUE;
1829 bio_endio(bio);
1830 }
1831}
1832
1833/*
1834 * We want to commit periodically so that not too much
1835 * unwritten metadata builds up.
1836 */
1837static void do_waker(struct work_struct *ws)
1838{
1839 struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1840
1841 policy_tick(cache->policy, true);
1842 wake_migration_worker(cache);
1843 schedule_commit(&cache->committer);
1844 queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1845}
1846
1847static void check_migrations(struct work_struct *ws)
1848{
1849 int r;
1850 struct policy_work *op;
1851 struct cache *cache = container_of(ws, struct cache, migration_worker);
1852 enum busy b;
1853
1854 for (;;) {
1855 b = spare_migration_bandwidth(cache);
1856
1857 r = policy_get_background_work(cache->policy, b == IDLE, &op);
1858 if (r == -ENODATA)
1859 break;
1860
1861 if (r) {
1862 DMERR_LIMIT("%s: policy_background_work failed",
1863 cache_device_name(cache));
1864 break;
1865 }
1866
1867 r = mg_start(cache, op, NULL);
1868 if (r)
1869 break;
1870 }
1871}
1872
1873/*----------------------------------------------------------------
1874 * Target methods
1875 *--------------------------------------------------------------*/
1876
1877/*
1878 * This function gets called on the error paths of the constructor, so we
1879 * have to cope with a partially initialised struct.
1880 */
1881static void destroy(struct cache *cache)
1882{
1883 unsigned i;
1884
1885 mempool_exit(&cache->migration_pool);
1886
1887 if (cache->prison)
1888 dm_bio_prison_destroy_v2(cache->prison);
1889
1890 cancel_delayed_work_sync(&cache->waker);
1891 if (cache->wq)
1892 destroy_workqueue(cache->wq);
1893
1894 if (cache->dirty_bitset)
1895 free_bitset(cache->dirty_bitset);
1896
1897 if (cache->discard_bitset)
1898 free_bitset(cache->discard_bitset);
1899
1900 if (cache->copier)
1901 dm_kcopyd_client_destroy(cache->copier);
1902
1903 if (cache->cmd)
1904 dm_cache_metadata_close(cache->cmd);
1905
1906 if (cache->metadata_dev)
1907 dm_put_device(cache->ti, cache->metadata_dev);
1908
1909 if (cache->origin_dev)
1910 dm_put_device(cache->ti, cache->origin_dev);
1911
1912 if (cache->cache_dev)
1913 dm_put_device(cache->ti, cache->cache_dev);
1914
1915 if (cache->policy)
1916 dm_cache_policy_destroy(cache->policy);
1917
1918 for (i = 0; i < cache->nr_ctr_args ; i++)
1919 kfree(cache->ctr_args[i]);
1920 kfree(cache->ctr_args);
1921
1922 bioset_exit(&cache->bs);
1923
1924 kfree(cache);
1925}
1926
1927static void cache_dtr(struct dm_target *ti)
1928{
1929 struct cache *cache = ti->private;
1930
1931 destroy(cache);
1932}
1933
1934static sector_t get_dev_size(struct dm_dev *dev)
1935{
1936 return bdev_nr_sectors(dev->bdev);
1937}
1938
1939/*----------------------------------------------------------------*/
1940
1941/*
1942 * Construct a cache device mapping.
1943 *
1944 * cache <metadata dev> <cache dev> <origin dev> <block size>
1945 * <#feature args> [<feature arg>]*
1946 * <policy> <#policy args> [<policy arg>]*
1947 *
1948 * metadata dev : fast device holding the persistent metadata
1949 * cache dev : fast device holding cached data blocks
1950 * origin dev : slow device holding original data blocks
1951 * block size : cache unit size in sectors
1952 *
1953 * #feature args : number of feature arguments passed
1954 * feature args : writethrough. (The default is writeback.)
1955 *
1956 * policy : the replacement policy to use
1957 * #policy args : an even number of policy arguments corresponding
1958 * to key/value pairs passed to the policy
1959 * policy args : key/value pairs passed to the policy
1960 * E.g. 'sequential_threshold 1024'
1961 * See cache-policies.txt for details.
1962 *
1963 * Optional feature arguments are:
1964 * writethrough : write through caching that prohibits cache block
1965 * content from being different from origin block content.
1966 * Without this argument, the default behaviour is to write
1967 * back cache block contents later for performance reasons,
1968 * so they may differ from the corresponding origin blocks.
1969 */
1970struct cache_args {
1971 struct dm_target *ti;
1972
1973 struct dm_dev *metadata_dev;
1974
1975 struct dm_dev *cache_dev;
1976 sector_t cache_sectors;
1977
1978 struct dm_dev *origin_dev;
1979 sector_t origin_sectors;
1980
1981 uint32_t block_size;
1982
1983 const char *policy_name;
1984 int policy_argc;
1985 const char **policy_argv;
1986
1987 struct cache_features features;
1988};
1989
1990static void destroy_cache_args(struct cache_args *ca)
1991{
1992 if (ca->metadata_dev)
1993 dm_put_device(ca->ti, ca->metadata_dev);
1994
1995 if (ca->cache_dev)
1996 dm_put_device(ca->ti, ca->cache_dev);
1997
1998 if (ca->origin_dev)
1999 dm_put_device(ca->ti, ca->origin_dev);
2000
2001 kfree(ca);
2002}
2003
2004static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2005{
2006 if (!as->argc) {
2007 *error = "Insufficient args";
2008 return false;
2009 }
2010
2011 return true;
2012}
2013
2014static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2015 char **error)
2016{
2017 int r;
2018 sector_t metadata_dev_size;
2019
2020 if (!at_least_one_arg(as, error))
2021 return -EINVAL;
2022
2023 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2024 &ca->metadata_dev);
2025 if (r) {
2026 *error = "Error opening metadata device";
2027 return r;
2028 }
2029
2030 metadata_dev_size = get_dev_size(ca->metadata_dev);
2031 if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2032 DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
2033 ca->metadata_dev->bdev, THIN_METADATA_MAX_SECTORS);
2034
2035 return 0;
2036}
2037
2038static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2039 char **error)
2040{
2041 int r;
2042
2043 if (!at_least_one_arg(as, error))
2044 return -EINVAL;
2045
2046 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2047 &ca->cache_dev);
2048 if (r) {
2049 *error = "Error opening cache device";
2050 return r;
2051 }
2052 ca->cache_sectors = get_dev_size(ca->cache_dev);
2053
2054 return 0;
2055}
2056
2057static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2058 char **error)
2059{
2060 int r;
2061
2062 if (!at_least_one_arg(as, error))
2063 return -EINVAL;
2064
2065 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2066 &ca->origin_dev);
2067 if (r) {
2068 *error = "Error opening origin device";
2069 return r;
2070 }
2071
2072 ca->origin_sectors = get_dev_size(ca->origin_dev);
2073 if (ca->ti->len > ca->origin_sectors) {
2074 *error = "Device size larger than cached device";
2075 return -EINVAL;
2076 }
2077
2078 return 0;
2079}
2080
2081static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2082 char **error)
2083{
2084 unsigned long block_size;
2085
2086 if (!at_least_one_arg(as, error))
2087 return -EINVAL;
2088
2089 if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2090 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2091 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2092 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2093 *error = "Invalid data block size";
2094 return -EINVAL;
2095 }
2096
2097 if (block_size > ca->cache_sectors) {
2098 *error = "Data block size is larger than the cache device";
2099 return -EINVAL;
2100 }
2101
2102 ca->block_size = block_size;
2103
2104 return 0;
2105}
2106
2107static void init_features(struct cache_features *cf)
2108{
2109 cf->mode = CM_WRITE;
2110 cf->io_mode = CM_IO_WRITEBACK;
2111 cf->metadata_version = 1;
2112 cf->discard_passdown = true;
2113}
2114
2115static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2116 char **error)
2117{
2118 static const struct dm_arg _args[] = {
2119 {0, 3, "Invalid number of cache feature arguments"},
2120 };
2121
2122 int r, mode_ctr = 0;
2123 unsigned argc;
2124 const char *arg;
2125 struct cache_features *cf = &ca->features;
2126
2127 init_features(cf);
2128
2129 r = dm_read_arg_group(_args, as, &argc, error);
2130 if (r)
2131 return -EINVAL;
2132
2133 while (argc--) {
2134 arg = dm_shift_arg(as);
2135
2136 if (!strcasecmp(arg, "writeback")) {
2137 cf->io_mode = CM_IO_WRITEBACK;
2138 mode_ctr++;
2139 }
2140
2141 else if (!strcasecmp(arg, "writethrough")) {
2142 cf->io_mode = CM_IO_WRITETHROUGH;
2143 mode_ctr++;
2144 }
2145
2146 else if (!strcasecmp(arg, "passthrough")) {
2147 cf->io_mode = CM_IO_PASSTHROUGH;
2148 mode_ctr++;
2149 }
2150
2151 else if (!strcasecmp(arg, "metadata2"))
2152 cf->metadata_version = 2;
2153
2154 else if (!strcasecmp(arg, "no_discard_passdown"))
2155 cf->discard_passdown = false;
2156
2157 else {
2158 *error = "Unrecognised cache feature requested";
2159 return -EINVAL;
2160 }
2161 }
2162
2163 if (mode_ctr > 1) {
2164 *error = "Duplicate cache io_mode features requested";
2165 return -EINVAL;
2166 }
2167
2168 return 0;
2169}
2170
2171static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2172 char **error)
2173{
2174 static const struct dm_arg _args[] = {
2175 {0, 1024, "Invalid number of policy arguments"},
2176 };
2177
2178 int r;
2179
2180 if (!at_least_one_arg(as, error))
2181 return -EINVAL;
2182
2183 ca->policy_name = dm_shift_arg(as);
2184
2185 r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2186 if (r)
2187 return -EINVAL;
2188
2189 ca->policy_argv = (const char **)as->argv;
2190 dm_consume_args(as, ca->policy_argc);
2191
2192 return 0;
2193}
2194
2195static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2196 char **error)
2197{
2198 int r;
2199 struct dm_arg_set as;
2200
2201 as.argc = argc;
2202 as.argv = argv;
2203
2204 r = parse_metadata_dev(ca, &as, error);
2205 if (r)
2206 return r;
2207
2208 r = parse_cache_dev(ca, &as, error);
2209 if (r)
2210 return r;
2211
2212 r = parse_origin_dev(ca, &as, error);
2213 if (r)
2214 return r;
2215
2216 r = parse_block_size(ca, &as, error);
2217 if (r)
2218 return r;
2219
2220 r = parse_features(ca, &as, error);
2221 if (r)
2222 return r;
2223
2224 r = parse_policy(ca, &as, error);
2225 if (r)
2226 return r;
2227
2228 return 0;
2229}
2230
2231/*----------------------------------------------------------------*/
2232
2233static struct kmem_cache *migration_cache;
2234
2235#define NOT_CORE_OPTION 1
2236
2237static int process_config_option(struct cache *cache, const char *key, const char *value)
2238{
2239 unsigned long tmp;
2240
2241 if (!strcasecmp(key, "migration_threshold")) {
2242 if (kstrtoul(value, 10, &tmp))
2243 return -EINVAL;
2244
2245 cache->migration_threshold = tmp;
2246 return 0;
2247 }
2248
2249 return NOT_CORE_OPTION;
2250}
2251
2252static int set_config_value(struct cache *cache, const char *key, const char *value)
2253{
2254 int r = process_config_option(cache, key, value);
2255
2256 if (r == NOT_CORE_OPTION)
2257 r = policy_set_config_value(cache->policy, key, value);
2258
2259 if (r)
2260 DMWARN("bad config value for %s: %s", key, value);
2261
2262 return r;
2263}
2264
2265static int set_config_values(struct cache *cache, int argc, const char **argv)
2266{
2267 int r = 0;
2268
2269 if (argc & 1) {
2270 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2271 return -EINVAL;
2272 }
2273
2274 while (argc) {
2275 r = set_config_value(cache, argv[0], argv[1]);
2276 if (r)
2277 break;
2278
2279 argc -= 2;
2280 argv += 2;
2281 }
2282
2283 return r;
2284}
2285
2286static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2287 char **error)
2288{
2289 struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2290 cache->cache_size,
2291 cache->origin_sectors,
2292 cache->sectors_per_block);
2293 if (IS_ERR(p)) {
2294 *error = "Error creating cache's policy";
2295 return PTR_ERR(p);
2296 }
2297 cache->policy = p;
2298 BUG_ON(!cache->policy);
2299
2300 return 0;
2301}
2302
2303/*
2304 * We want the discard block size to be at least the size of the cache
2305 * block size and have no more than 2^14 discard blocks across the origin.
2306 */
2307#define MAX_DISCARD_BLOCKS (1 << 14)
2308
2309static bool too_many_discard_blocks(sector_t discard_block_size,
2310 sector_t origin_size)
2311{
2312 (void) sector_div(origin_size, discard_block_size);
2313
2314 return origin_size > MAX_DISCARD_BLOCKS;
2315}
2316
2317static sector_t calculate_discard_block_size(sector_t cache_block_size,
2318 sector_t origin_size)
2319{
2320 sector_t discard_block_size = cache_block_size;
2321
2322 if (origin_size)
2323 while (too_many_discard_blocks(discard_block_size, origin_size))
2324 discard_block_size *= 2;
2325
2326 return discard_block_size;
2327}
2328
2329static void set_cache_size(struct cache *cache, dm_cblock_t size)
2330{
2331 dm_block_t nr_blocks = from_cblock(size);
2332
2333 if (nr_blocks > (1 << 20) && cache->cache_size != size)
2334 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2335 "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2336 "Please consider increasing the cache block size to reduce the overall cache block count.",
2337 (unsigned long long) nr_blocks);
2338
2339 cache->cache_size = size;
2340}
2341
2342#define DEFAULT_MIGRATION_THRESHOLD 2048
2343
2344static int cache_create(struct cache_args *ca, struct cache **result)
2345{
2346 int r = 0;
2347 char **error = &ca->ti->error;
2348 struct cache *cache;
2349 struct dm_target *ti = ca->ti;
2350 dm_block_t origin_blocks;
2351 struct dm_cache_metadata *cmd;
2352 bool may_format = ca->features.mode == CM_WRITE;
2353
2354 cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2355 if (!cache)
2356 return -ENOMEM;
2357
2358 cache->ti = ca->ti;
2359 ti->private = cache;
2360 ti->accounts_remapped_io = true;
2361 ti->num_flush_bios = 2;
2362 ti->flush_supported = true;
2363
2364 ti->num_discard_bios = 1;
2365 ti->discards_supported = true;
2366
2367 ti->per_io_data_size = sizeof(struct per_bio_data);
2368
2369 cache->features = ca->features;
2370 if (writethrough_mode(cache)) {
2371 /* Create bioset for writethrough bios issued to origin */
2372 r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2373 if (r)
2374 goto bad;
2375 }
2376
2377 cache->metadata_dev = ca->metadata_dev;
2378 cache->origin_dev = ca->origin_dev;
2379 cache->cache_dev = ca->cache_dev;
2380
2381 ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2382
2383 origin_blocks = cache->origin_sectors = ca->origin_sectors;
2384 origin_blocks = block_div(origin_blocks, ca->block_size);
2385 cache->origin_blocks = to_oblock(origin_blocks);
2386
2387 cache->sectors_per_block = ca->block_size;
2388 if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2389 r = -EINVAL;
2390 goto bad;
2391 }
2392
2393 if (ca->block_size & (ca->block_size - 1)) {
2394 dm_block_t cache_size = ca->cache_sectors;
2395
2396 cache->sectors_per_block_shift = -1;
2397 cache_size = block_div(cache_size, ca->block_size);
2398 set_cache_size(cache, to_cblock(cache_size));
2399 } else {
2400 cache->sectors_per_block_shift = __ffs(ca->block_size);
2401 set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2402 }
2403
2404 r = create_cache_policy(cache, ca, error);
2405 if (r)
2406 goto bad;
2407
2408 cache->policy_nr_args = ca->policy_argc;
2409 cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2410
2411 r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2412 if (r) {
2413 *error = "Error setting cache policy's config values";
2414 goto bad;
2415 }
2416
2417 cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2418 ca->block_size, may_format,
2419 dm_cache_policy_get_hint_size(cache->policy),
2420 ca->features.metadata_version);
2421 if (IS_ERR(cmd)) {
2422 *error = "Error creating metadata object";
2423 r = PTR_ERR(cmd);
2424 goto bad;
2425 }
2426 cache->cmd = cmd;
2427 set_cache_mode(cache, CM_WRITE);
2428 if (get_cache_mode(cache) != CM_WRITE) {
2429 *error = "Unable to get write access to metadata, please check/repair metadata.";
2430 r = -EINVAL;
2431 goto bad;
2432 }
2433
2434 if (passthrough_mode(cache)) {
2435 bool all_clean;
2436
2437 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2438 if (r) {
2439 *error = "dm_cache_metadata_all_clean() failed";
2440 goto bad;
2441 }
2442
2443 if (!all_clean) {
2444 *error = "Cannot enter passthrough mode unless all blocks are clean";
2445 r = -EINVAL;
2446 goto bad;
2447 }
2448
2449 policy_allow_migrations(cache->policy, false);
2450 }
2451
2452 spin_lock_init(&cache->lock);
2453 bio_list_init(&cache->deferred_bios);
2454 atomic_set(&cache->nr_allocated_migrations, 0);
2455 atomic_set(&cache->nr_io_migrations, 0);
2456 init_waitqueue_head(&cache->migration_wait);
2457
2458 r = -ENOMEM;
2459 atomic_set(&cache->nr_dirty, 0);
2460 cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2461 if (!cache->dirty_bitset) {
2462 *error = "could not allocate dirty bitset";
2463 goto bad;
2464 }
2465 clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2466
2467 cache->discard_block_size =
2468 calculate_discard_block_size(cache->sectors_per_block,
2469 cache->origin_sectors);
2470 cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2471 cache->discard_block_size));
2472 cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2473 if (!cache->discard_bitset) {
2474 *error = "could not allocate discard bitset";
2475 goto bad;
2476 }
2477 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2478
2479 cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2480 if (IS_ERR(cache->copier)) {
2481 *error = "could not create kcopyd client";
2482 r = PTR_ERR(cache->copier);
2483 goto bad;
2484 }
2485
2486 cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2487 if (!cache->wq) {
2488 *error = "could not create workqueue for metadata object";
2489 goto bad;
2490 }
2491 INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2492 INIT_WORK(&cache->migration_worker, check_migrations);
2493 INIT_DELAYED_WORK(&cache->waker, do_waker);
2494
2495 cache->prison = dm_bio_prison_create_v2(cache->wq);
2496 if (!cache->prison) {
2497 *error = "could not create bio prison";
2498 goto bad;
2499 }
2500
2501 r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2502 migration_cache);
2503 if (r) {
2504 *error = "Error creating cache's migration mempool";
2505 goto bad;
2506 }
2507
2508 cache->need_tick_bio = true;
2509 cache->sized = false;
2510 cache->invalidate = false;
2511 cache->commit_requested = false;
2512 cache->loaded_mappings = false;
2513 cache->loaded_discards = false;
2514
2515 load_stats(cache);
2516
2517 atomic_set(&cache->stats.demotion, 0);
2518 atomic_set(&cache->stats.promotion, 0);
2519 atomic_set(&cache->stats.copies_avoided, 0);
2520 atomic_set(&cache->stats.cache_cell_clash, 0);
2521 atomic_set(&cache->stats.commit_count, 0);
2522 atomic_set(&cache->stats.discard_count, 0);
2523
2524 spin_lock_init(&cache->invalidation_lock);
2525 INIT_LIST_HEAD(&cache->invalidation_requests);
2526
2527 batcher_init(&cache->committer, commit_op, cache,
2528 issue_op, cache, cache->wq);
2529 dm_iot_init(&cache->tracker);
2530
2531 init_rwsem(&cache->background_work_lock);
2532 prevent_background_work(cache);
2533
2534 *result = cache;
2535 return 0;
2536bad:
2537 destroy(cache);
2538 return r;
2539}
2540
2541static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2542{
2543 unsigned i;
2544 const char **copy;
2545
2546 copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2547 if (!copy)
2548 return -ENOMEM;
2549 for (i = 0; i < argc; i++) {
2550 copy[i] = kstrdup(argv[i], GFP_KERNEL);
2551 if (!copy[i]) {
2552 while (i--)
2553 kfree(copy[i]);
2554 kfree(copy);
2555 return -ENOMEM;
2556 }
2557 }
2558
2559 cache->nr_ctr_args = argc;
2560 cache->ctr_args = copy;
2561
2562 return 0;
2563}
2564
2565static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2566{
2567 int r = -EINVAL;
2568 struct cache_args *ca;
2569 struct cache *cache = NULL;
2570
2571 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2572 if (!ca) {
2573 ti->error = "Error allocating memory for cache";
2574 return -ENOMEM;
2575 }
2576 ca->ti = ti;
2577
2578 r = parse_cache_args(ca, argc, argv, &ti->error);
2579 if (r)
2580 goto out;
2581
2582 r = cache_create(ca, &cache);
2583 if (r)
2584 goto out;
2585
2586 r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2587 if (r) {
2588 destroy(cache);
2589 goto out;
2590 }
2591
2592 ti->private = cache;
2593out:
2594 destroy_cache_args(ca);
2595 return r;
2596}
2597
2598/*----------------------------------------------------------------*/
2599
2600static int cache_map(struct dm_target *ti, struct bio *bio)
2601{
2602 struct cache *cache = ti->private;
2603
2604 int r;
2605 bool commit_needed;
2606 dm_oblock_t block = get_bio_block(cache, bio);
2607
2608 init_per_bio_data(bio);
2609 if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2610 /*
2611 * This can only occur if the io goes to a partial block at
2612 * the end of the origin device. We don't cache these.
2613 * Just remap to the origin and carry on.
2614 */
2615 remap_to_origin(cache, bio);
2616 accounted_begin(cache, bio);
2617 return DM_MAPIO_REMAPPED;
2618 }
2619
2620 if (discard_or_flush(bio)) {
2621 defer_bio(cache, bio);
2622 return DM_MAPIO_SUBMITTED;
2623 }
2624
2625 r = map_bio(cache, bio, block, &commit_needed);
2626 if (commit_needed)
2627 schedule_commit(&cache->committer);
2628
2629 return r;
2630}
2631
2632static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2633{
2634 struct cache *cache = ti->private;
2635 unsigned long flags;
2636 struct per_bio_data *pb = get_per_bio_data(bio);
2637
2638 if (pb->tick) {
2639 policy_tick(cache->policy, false);
2640
2641 spin_lock_irqsave(&cache->lock, flags);
2642 cache->need_tick_bio = true;
2643 spin_unlock_irqrestore(&cache->lock, flags);
2644 }
2645
2646 bio_drop_shared_lock(cache, bio);
2647 accounted_complete(cache, bio);
2648
2649 return DM_ENDIO_DONE;
2650}
2651
2652static int write_dirty_bitset(struct cache *cache)
2653{
2654 int r;
2655
2656 if (get_cache_mode(cache) >= CM_READ_ONLY)
2657 return -EINVAL;
2658
2659 r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2660 if (r)
2661 metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2662
2663 return r;
2664}
2665
2666static int write_discard_bitset(struct cache *cache)
2667{
2668 unsigned i, r;
2669
2670 if (get_cache_mode(cache) >= CM_READ_ONLY)
2671 return -EINVAL;
2672
2673 r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2674 cache->discard_nr_blocks);
2675 if (r) {
2676 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2677 metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2678 return r;
2679 }
2680
2681 for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2682 r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2683 is_discarded(cache, to_dblock(i)));
2684 if (r) {
2685 metadata_operation_failed(cache, "dm_cache_set_discard", r);
2686 return r;
2687 }
2688 }
2689
2690 return 0;
2691}
2692
2693static int write_hints(struct cache *cache)
2694{
2695 int r;
2696
2697 if (get_cache_mode(cache) >= CM_READ_ONLY)
2698 return -EINVAL;
2699
2700 r = dm_cache_write_hints(cache->cmd, cache->policy);
2701 if (r) {
2702 metadata_operation_failed(cache, "dm_cache_write_hints", r);
2703 return r;
2704 }
2705
2706 return 0;
2707}
2708
2709/*
2710 * returns true on success
2711 */
2712static bool sync_metadata(struct cache *cache)
2713{
2714 int r1, r2, r3, r4;
2715
2716 r1 = write_dirty_bitset(cache);
2717 if (r1)
2718 DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2719
2720 r2 = write_discard_bitset(cache);
2721 if (r2)
2722 DMERR("%s: could not write discard bitset", cache_device_name(cache));
2723
2724 save_stats(cache);
2725
2726 r3 = write_hints(cache);
2727 if (r3)
2728 DMERR("%s: could not write hints", cache_device_name(cache));
2729
2730 /*
2731 * If writing the above metadata failed, we still commit, but don't
2732 * set the clean shutdown flag. This will effectively force every
2733 * dirty bit to be set on reload.
2734 */
2735 r4 = commit(cache, !r1 && !r2 && !r3);
2736 if (r4)
2737 DMERR("%s: could not write cache metadata", cache_device_name(cache));
2738
2739 return !r1 && !r2 && !r3 && !r4;
2740}
2741
2742static void cache_postsuspend(struct dm_target *ti)
2743{
2744 struct cache *cache = ti->private;
2745
2746 prevent_background_work(cache);
2747 BUG_ON(atomic_read(&cache->nr_io_migrations));
2748
2749 cancel_delayed_work_sync(&cache->waker);
2750 drain_workqueue(cache->wq);
2751 WARN_ON(cache->tracker.in_flight);
2752
2753 /*
2754 * If it's a flush suspend there won't be any deferred bios, so this
2755 * call is harmless.
2756 */
2757 requeue_deferred_bios(cache);
2758
2759 if (get_cache_mode(cache) == CM_WRITE)
2760 (void) sync_metadata(cache);
2761}
2762
2763static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2764 bool dirty, uint32_t hint, bool hint_valid)
2765{
2766 struct cache *cache = context;
2767
2768 if (dirty) {
2769 set_bit(from_cblock(cblock), cache->dirty_bitset);
2770 atomic_inc(&cache->nr_dirty);
2771 } else
2772 clear_bit(from_cblock(cblock), cache->dirty_bitset);
2773
2774 return policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2775}
2776
2777/*
2778 * The discard block size in the on disk metadata is not
2779 * necessarily the same as we're currently using. So we have to
2780 * be careful to only set the discarded attribute if we know it
2781 * covers a complete block of the new size.
2782 */
2783struct discard_load_info {
2784 struct cache *cache;
2785
2786 /*
2787 * These blocks are sized using the on disk dblock size, rather
2788 * than the current one.
2789 */
2790 dm_block_t block_size;
2791 dm_block_t discard_begin, discard_end;
2792};
2793
2794static void discard_load_info_init(struct cache *cache,
2795 struct discard_load_info *li)
2796{
2797 li->cache = cache;
2798 li->discard_begin = li->discard_end = 0;
2799}
2800
2801static void set_discard_range(struct discard_load_info *li)
2802{
2803 sector_t b, e;
2804
2805 if (li->discard_begin == li->discard_end)
2806 return;
2807
2808 /*
2809 * Convert to sectors.
2810 */
2811 b = li->discard_begin * li->block_size;
2812 e = li->discard_end * li->block_size;
2813
2814 /*
2815 * Then convert back to the current dblock size.
2816 */
2817 b = dm_sector_div_up(b, li->cache->discard_block_size);
2818 sector_div(e, li->cache->discard_block_size);
2819
2820 /*
2821 * The origin may have shrunk, so we need to check we're still in
2822 * bounds.
2823 */
2824 if (e > from_dblock(li->cache->discard_nr_blocks))
2825 e = from_dblock(li->cache->discard_nr_blocks);
2826
2827 for (; b < e; b++)
2828 set_discard(li->cache, to_dblock(b));
2829}
2830
2831static int load_discard(void *context, sector_t discard_block_size,
2832 dm_dblock_t dblock, bool discard)
2833{
2834 struct discard_load_info *li = context;
2835
2836 li->block_size = discard_block_size;
2837
2838 if (discard) {
2839 if (from_dblock(dblock) == li->discard_end)
2840 /*
2841 * We're already in a discard range, just extend it.
2842 */
2843 li->discard_end = li->discard_end + 1ULL;
2844
2845 else {
2846 /*
2847 * Emit the old range and start a new one.
2848 */
2849 set_discard_range(li);
2850 li->discard_begin = from_dblock(dblock);
2851 li->discard_end = li->discard_begin + 1ULL;
2852 }
2853 } else {
2854 set_discard_range(li);
2855 li->discard_begin = li->discard_end = 0;
2856 }
2857
2858 return 0;
2859}
2860
2861static dm_cblock_t get_cache_dev_size(struct cache *cache)
2862{
2863 sector_t size = get_dev_size(cache->cache_dev);
2864 (void) sector_div(size, cache->sectors_per_block);
2865 return to_cblock(size);
2866}
2867
2868static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2869{
2870 if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
2871 if (cache->sized) {
2872 DMERR("%s: unable to extend cache due to missing cache table reload",
2873 cache_device_name(cache));
2874 return false;
2875 }
2876 }
2877
2878 /*
2879 * We can't drop a dirty block when shrinking the cache.
2880 */
2881 while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
2882 new_size = to_cblock(from_cblock(new_size) + 1);
2883 if (is_dirty(cache, new_size)) {
2884 DMERR("%s: unable to shrink cache; cache block %llu is dirty",
2885 cache_device_name(cache),
2886 (unsigned long long) from_cblock(new_size));
2887 return false;
2888 }
2889 }
2890
2891 return true;
2892}
2893
2894static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2895{
2896 int r;
2897
2898 r = dm_cache_resize(cache->cmd, new_size);
2899 if (r) {
2900 DMERR("%s: could not resize cache metadata", cache_device_name(cache));
2901 metadata_operation_failed(cache, "dm_cache_resize", r);
2902 return r;
2903 }
2904
2905 set_cache_size(cache, new_size);
2906
2907 return 0;
2908}
2909
2910static int cache_preresume(struct dm_target *ti)
2911{
2912 int r = 0;
2913 struct cache *cache = ti->private;
2914 dm_cblock_t csize = get_cache_dev_size(cache);
2915
2916 /*
2917 * Check to see if the cache has resized.
2918 */
2919 if (!cache->sized) {
2920 r = resize_cache_dev(cache, csize);
2921 if (r)
2922 return r;
2923
2924 cache->sized = true;
2925
2926 } else if (csize != cache->cache_size) {
2927 if (!can_resize(cache, csize))
2928 return -EINVAL;
2929
2930 r = resize_cache_dev(cache, csize);
2931 if (r)
2932 return r;
2933 }
2934
2935 if (!cache->loaded_mappings) {
2936 r = dm_cache_load_mappings(cache->cmd, cache->policy,
2937 load_mapping, cache);
2938 if (r) {
2939 DMERR("%s: could not load cache mappings", cache_device_name(cache));
2940 metadata_operation_failed(cache, "dm_cache_load_mappings", r);
2941 return r;
2942 }
2943
2944 cache->loaded_mappings = true;
2945 }
2946
2947 if (!cache->loaded_discards) {
2948 struct discard_load_info li;
2949
2950 /*
2951 * The discard bitset could have been resized, or the
2952 * discard block size changed. To be safe we start by
2953 * setting every dblock to not discarded.
2954 */
2955 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2956
2957 discard_load_info_init(cache, &li);
2958 r = dm_cache_load_discards(cache->cmd, load_discard, &li);
2959 if (r) {
2960 DMERR("%s: could not load origin discards", cache_device_name(cache));
2961 metadata_operation_failed(cache, "dm_cache_load_discards", r);
2962 return r;
2963 }
2964 set_discard_range(&li);
2965
2966 cache->loaded_discards = true;
2967 }
2968
2969 return r;
2970}
2971
2972static void cache_resume(struct dm_target *ti)
2973{
2974 struct cache *cache = ti->private;
2975
2976 cache->need_tick_bio = true;
2977 allow_background_work(cache);
2978 do_waker(&cache->waker.work);
2979}
2980
2981static void emit_flags(struct cache *cache, char *result,
2982 unsigned maxlen, ssize_t *sz_ptr)
2983{
2984 ssize_t sz = *sz_ptr;
2985 struct cache_features *cf = &cache->features;
2986 unsigned count = (cf->metadata_version == 2) + !cf->discard_passdown + 1;
2987
2988 DMEMIT("%u ", count);
2989
2990 if (cf->metadata_version == 2)
2991 DMEMIT("metadata2 ");
2992
2993 if (writethrough_mode(cache))
2994 DMEMIT("writethrough ");
2995
2996 else if (passthrough_mode(cache))
2997 DMEMIT("passthrough ");
2998
2999 else if (writeback_mode(cache))
3000 DMEMIT("writeback ");
3001
3002 else {
3003 DMEMIT("unknown ");
3004 DMERR("%s: internal error: unknown io mode: %d",
3005 cache_device_name(cache), (int) cf->io_mode);
3006 }
3007
3008 if (!cf->discard_passdown)
3009 DMEMIT("no_discard_passdown ");
3010
3011 *sz_ptr = sz;
3012}
3013
3014/*
3015 * Status format:
3016 *
3017 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3018 * <cache block size> <#used cache blocks>/<#total cache blocks>
3019 * <#read hits> <#read misses> <#write hits> <#write misses>
3020 * <#demotions> <#promotions> <#dirty>
3021 * <#features> <features>*
3022 * <#core args> <core args>
3023 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3024 */
3025static void cache_status(struct dm_target *ti, status_type_t type,
3026 unsigned status_flags, char *result, unsigned maxlen)
3027{
3028 int r = 0;
3029 unsigned i;
3030 ssize_t sz = 0;
3031 dm_block_t nr_free_blocks_metadata = 0;
3032 dm_block_t nr_blocks_metadata = 0;
3033 char buf[BDEVNAME_SIZE];
3034 struct cache *cache = ti->private;
3035 dm_cblock_t residency;
3036 bool needs_check;
3037
3038 switch (type) {
3039 case STATUSTYPE_INFO:
3040 if (get_cache_mode(cache) == CM_FAIL) {
3041 DMEMIT("Fail");
3042 break;
3043 }
3044
3045 /* Commit to ensure statistics aren't out-of-date */
3046 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3047 (void) commit(cache, false);
3048
3049 r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3050 if (r) {
3051 DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3052 cache_device_name(cache), r);
3053 goto err;
3054 }
3055
3056 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3057 if (r) {
3058 DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3059 cache_device_name(cache), r);
3060 goto err;
3061 }
3062
3063 residency = policy_residency(cache->policy);
3064
3065 DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3066 (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3067 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3068 (unsigned long long)nr_blocks_metadata,
3069 (unsigned long long)cache->sectors_per_block,
3070 (unsigned long long) from_cblock(residency),
3071 (unsigned long long) from_cblock(cache->cache_size),
3072 (unsigned) atomic_read(&cache->stats.read_hit),
3073 (unsigned) atomic_read(&cache->stats.read_miss),
3074 (unsigned) atomic_read(&cache->stats.write_hit),
3075 (unsigned) atomic_read(&cache->stats.write_miss),
3076 (unsigned) atomic_read(&cache->stats.demotion),
3077 (unsigned) atomic_read(&cache->stats.promotion),
3078 (unsigned long) atomic_read(&cache->nr_dirty));
3079
3080 emit_flags(cache, result, maxlen, &sz);
3081
3082 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3083
3084 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3085 if (sz < maxlen) {
3086 r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3087 if (r)
3088 DMERR("%s: policy_emit_config_values returned %d",
3089 cache_device_name(cache), r);
3090 }
3091
3092 if (get_cache_mode(cache) == CM_READ_ONLY)
3093 DMEMIT("ro ");
3094 else
3095 DMEMIT("rw ");
3096
3097 r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3098
3099 if (r || needs_check)
3100 DMEMIT("needs_check ");
3101 else
3102 DMEMIT("- ");
3103
3104 break;
3105
3106 case STATUSTYPE_TABLE:
3107 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3108 DMEMIT("%s ", buf);
3109 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3110 DMEMIT("%s ", buf);
3111 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3112 DMEMIT("%s", buf);
3113
3114 for (i = 0; i < cache->nr_ctr_args - 1; i++)
3115 DMEMIT(" %s", cache->ctr_args[i]);
3116 if (cache->nr_ctr_args)
3117 DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3118 break;
3119
3120 case STATUSTYPE_IMA:
3121 DMEMIT_TARGET_NAME_VERSION(ti->type);
3122 if (get_cache_mode(cache) == CM_FAIL)
3123 DMEMIT(",metadata_mode=fail");
3124 else if (get_cache_mode(cache) == CM_READ_ONLY)
3125 DMEMIT(",metadata_mode=ro");
3126 else
3127 DMEMIT(",metadata_mode=rw");
3128
3129 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3130 DMEMIT(",cache_metadata_device=%s", buf);
3131 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3132 DMEMIT(",cache_device=%s", buf);
3133 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3134 DMEMIT(",cache_origin_device=%s", buf);
3135 DMEMIT(",writethrough=%c", writethrough_mode(cache) ? 'y' : 'n');
3136 DMEMIT(",writeback=%c", writeback_mode(cache) ? 'y' : 'n');
3137 DMEMIT(",passthrough=%c", passthrough_mode(cache) ? 'y' : 'n');
3138 DMEMIT(",metadata2=%c", cache->features.metadata_version == 2 ? 'y' : 'n');
3139 DMEMIT(",no_discard_passdown=%c", cache->features.discard_passdown ? 'n' : 'y');
3140 DMEMIT(";");
3141 break;
3142 }
3143
3144 return;
3145
3146err:
3147 DMEMIT("Error");
3148}
3149
3150/*
3151 * Defines a range of cblocks, begin to (end - 1) are in the range. end is
3152 * the one-past-the-end value.
3153 */
3154struct cblock_range {
3155 dm_cblock_t begin;
3156 dm_cblock_t end;
3157};
3158
3159/*
3160 * A cache block range can take two forms:
3161 *
3162 * i) A single cblock, eg. '3456'
3163 * ii) A begin and end cblock with a dash between, eg. 123-234
3164 */
3165static int parse_cblock_range(struct cache *cache, const char *str,
3166 struct cblock_range *result)
3167{
3168 char dummy;
3169 uint64_t b, e;
3170 int r;
3171
3172 /*
3173 * Try and parse form (ii) first.
3174 */
3175 r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3176 if (r < 0)
3177 return r;
3178
3179 if (r == 2) {
3180 result->begin = to_cblock(b);
3181 result->end = to_cblock(e);
3182 return 0;
3183 }
3184
3185 /*
3186 * That didn't work, try form (i).
3187 */
3188 r = sscanf(str, "%llu%c", &b, &dummy);
3189 if (r < 0)
3190 return r;
3191
3192 if (r == 1) {
3193 result->begin = to_cblock(b);
3194 result->end = to_cblock(from_cblock(result->begin) + 1u);
3195 return 0;
3196 }
3197
3198 DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3199 return -EINVAL;
3200}
3201
3202static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3203{
3204 uint64_t b = from_cblock(range->begin);
3205 uint64_t e = from_cblock(range->end);
3206 uint64_t n = from_cblock(cache->cache_size);
3207
3208 if (b >= n) {
3209 DMERR("%s: begin cblock out of range: %llu >= %llu",
3210 cache_device_name(cache), b, n);
3211 return -EINVAL;
3212 }
3213
3214 if (e > n) {
3215 DMERR("%s: end cblock out of range: %llu > %llu",
3216 cache_device_name(cache), e, n);
3217 return -EINVAL;
3218 }
3219
3220 if (b >= e) {
3221 DMERR("%s: invalid cblock range: %llu >= %llu",
3222 cache_device_name(cache), b, e);
3223 return -EINVAL;
3224 }
3225
3226 return 0;
3227}
3228
3229static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3230{
3231 return to_cblock(from_cblock(b) + 1);
3232}
3233
3234static int request_invalidation(struct cache *cache, struct cblock_range *range)
3235{
3236 int r = 0;
3237
3238 /*
3239 * We don't need to do any locking here because we know we're in
3240 * passthrough mode. There's is potential for a race between an
3241 * invalidation triggered by an io and an invalidation message. This
3242 * is harmless, we must not worry if the policy call fails.
3243 */
3244 while (range->begin != range->end) {
3245 r = invalidate_cblock(cache, range->begin);
3246 if (r)
3247 return r;
3248
3249 range->begin = cblock_succ(range->begin);
3250 }
3251
3252 cache->commit_requested = true;
3253 return r;
3254}
3255
3256static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3257 const char **cblock_ranges)
3258{
3259 int r = 0;
3260 unsigned i;
3261 struct cblock_range range;
3262
3263 if (!passthrough_mode(cache)) {
3264 DMERR("%s: cache has to be in passthrough mode for invalidation",
3265 cache_device_name(cache));
3266 return -EPERM;
3267 }
3268
3269 for (i = 0; i < count; i++) {
3270 r = parse_cblock_range(cache, cblock_ranges[i], &range);
3271 if (r)
3272 break;
3273
3274 r = validate_cblock_range(cache, &range);
3275 if (r)
3276 break;
3277
3278 /*
3279 * Pass begin and end origin blocks to the worker and wake it.
3280 */
3281 r = request_invalidation(cache, &range);
3282 if (r)
3283 break;
3284 }
3285
3286 return r;
3287}
3288
3289/*
3290 * Supports
3291 * "<key> <value>"
3292 * and
3293 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3294 *
3295 * The key migration_threshold is supported by the cache target core.
3296 */
3297static int cache_message(struct dm_target *ti, unsigned argc, char **argv,
3298 char *result, unsigned maxlen)
3299{
3300 struct cache *cache = ti->private;
3301
3302 if (!argc)
3303 return -EINVAL;
3304
3305 if (get_cache_mode(cache) >= CM_READ_ONLY) {
3306 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3307 cache_device_name(cache));
3308 return -EOPNOTSUPP;
3309 }
3310
3311 if (!strcasecmp(argv[0], "invalidate_cblocks"))
3312 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3313
3314 if (argc != 2)
3315 return -EINVAL;
3316
3317 return set_config_value(cache, argv[0], argv[1]);
3318}
3319
3320static int cache_iterate_devices(struct dm_target *ti,
3321 iterate_devices_callout_fn fn, void *data)
3322{
3323 int r = 0;
3324 struct cache *cache = ti->private;
3325
3326 r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3327 if (!r)
3328 r = fn(ti, cache->origin_dev, 0, ti->len, data);
3329
3330 return r;
3331}
3332
3333/*
3334 * If discard_passdown was enabled verify that the origin device
3335 * supports discards. Disable discard_passdown if not.
3336 */
3337static void disable_passdown_if_not_supported(struct cache *cache)
3338{
3339 struct block_device *origin_bdev = cache->origin_dev->bdev;
3340 struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3341 const char *reason = NULL;
3342
3343 if (!cache->features.discard_passdown)
3344 return;
3345
3346 if (!bdev_max_discard_sectors(origin_bdev))
3347 reason = "discard unsupported";
3348
3349 else if (origin_limits->max_discard_sectors < cache->sectors_per_block)
3350 reason = "max discard sectors smaller than a block";
3351
3352 if (reason) {
3353 DMWARN("Origin device (%pg) %s: Disabling discard passdown.",
3354 origin_bdev, reason);
3355 cache->features.discard_passdown = false;
3356 }
3357}
3358
3359static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3360{
3361 struct block_device *origin_bdev = cache->origin_dev->bdev;
3362 struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3363
3364 if (!cache->features.discard_passdown) {
3365 /* No passdown is done so setting own virtual limits */
3366 limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3367 cache->origin_sectors);
3368 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3369 return;
3370 }
3371
3372 /*
3373 * cache_iterate_devices() is stacking both origin and fast device limits
3374 * but discards aren't passed to fast device, so inherit origin's limits.
3375 */
3376 limits->max_discard_sectors = origin_limits->max_discard_sectors;
3377 limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors;
3378 limits->discard_granularity = origin_limits->discard_granularity;
3379 limits->discard_alignment = origin_limits->discard_alignment;
3380 limits->discard_misaligned = origin_limits->discard_misaligned;
3381}
3382
3383static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3384{
3385 struct cache *cache = ti->private;
3386 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3387
3388 /*
3389 * If the system-determined stacked limits are compatible with the
3390 * cache's blocksize (io_opt is a factor) do not override them.
3391 */
3392 if (io_opt_sectors < cache->sectors_per_block ||
3393 do_div(io_opt_sectors, cache->sectors_per_block)) {
3394 blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3395 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3396 }
3397
3398 disable_passdown_if_not_supported(cache);
3399 set_discard_limits(cache, limits);
3400}
3401
3402/*----------------------------------------------------------------*/
3403
3404static struct target_type cache_target = {
3405 .name = "cache",
3406 .version = {2, 2, 0},
3407 .module = THIS_MODULE,
3408 .ctr = cache_ctr,
3409 .dtr = cache_dtr,
3410 .map = cache_map,
3411 .end_io = cache_end_io,
3412 .postsuspend = cache_postsuspend,
3413 .preresume = cache_preresume,
3414 .resume = cache_resume,
3415 .status = cache_status,
3416 .message = cache_message,
3417 .iterate_devices = cache_iterate_devices,
3418 .io_hints = cache_io_hints,
3419};
3420
3421static int __init dm_cache_init(void)
3422{
3423 int r;
3424
3425 migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3426 if (!migration_cache)
3427 return -ENOMEM;
3428
3429 r = dm_register_target(&cache_target);
3430 if (r) {
3431 DMERR("cache target registration failed: %d", r);
3432 kmem_cache_destroy(migration_cache);
3433 return r;
3434 }
3435
3436 return 0;
3437}
3438
3439static void __exit dm_cache_exit(void)
3440{
3441 dm_unregister_target(&cache_target);
3442 kmem_cache_destroy(migration_cache);
3443}
3444
3445module_init(dm_cache_init);
3446module_exit(dm_cache_exit);
3447
3448MODULE_DESCRIPTION(DM_NAME " cache target");
3449MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3450MODULE_LICENSE("GPL");
1/*
2 * Copyright (C) 2012 Red Hat. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm.h"
8#include "dm-bio-prison-v2.h"
9#include "dm-bio-record.h"
10#include "dm-cache-metadata.h"
11
12#include <linux/dm-io.h>
13#include <linux/dm-kcopyd.h>
14#include <linux/jiffies.h>
15#include <linux/init.h>
16#include <linux/mempool.h>
17#include <linux/module.h>
18#include <linux/rwsem.h>
19#include <linux/slab.h>
20#include <linux/vmalloc.h>
21
22#define DM_MSG_PREFIX "cache"
23
24DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
25 "A percentage of time allocated for copying to and/or from cache");
26
27/*----------------------------------------------------------------*/
28
29/*
30 * Glossary:
31 *
32 * oblock: index of an origin block
33 * cblock: index of a cache block
34 * promotion: movement of a block from origin to cache
35 * demotion: movement of a block from cache to origin
36 * migration: movement of a block between the origin and cache device,
37 * either direction
38 */
39
40/*----------------------------------------------------------------*/
41
42struct io_tracker {
43 spinlock_t lock;
44
45 /*
46 * Sectors of in-flight IO.
47 */
48 sector_t in_flight;
49
50 /*
51 * The time, in jiffies, when this device became idle (if it is
52 * indeed idle).
53 */
54 unsigned long idle_time;
55 unsigned long last_update_time;
56};
57
58static void iot_init(struct io_tracker *iot)
59{
60 spin_lock_init(&iot->lock);
61 iot->in_flight = 0ul;
62 iot->idle_time = 0ul;
63 iot->last_update_time = jiffies;
64}
65
66static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
67{
68 if (iot->in_flight)
69 return false;
70
71 return time_after(jiffies, iot->idle_time + jifs);
72}
73
74static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
75{
76 bool r;
77 unsigned long flags;
78
79 spin_lock_irqsave(&iot->lock, flags);
80 r = __iot_idle_for(iot, jifs);
81 spin_unlock_irqrestore(&iot->lock, flags);
82
83 return r;
84}
85
86static void iot_io_begin(struct io_tracker *iot, sector_t len)
87{
88 unsigned long flags;
89
90 spin_lock_irqsave(&iot->lock, flags);
91 iot->in_flight += len;
92 spin_unlock_irqrestore(&iot->lock, flags);
93}
94
95static void __iot_io_end(struct io_tracker *iot, sector_t len)
96{
97 if (!len)
98 return;
99
100 iot->in_flight -= len;
101 if (!iot->in_flight)
102 iot->idle_time = jiffies;
103}
104
105static void iot_io_end(struct io_tracker *iot, sector_t len)
106{
107 unsigned long flags;
108
109 spin_lock_irqsave(&iot->lock, flags);
110 __iot_io_end(iot, len);
111 spin_unlock_irqrestore(&iot->lock, flags);
112}
113
114/*----------------------------------------------------------------*/
115
116/*
117 * Represents a chunk of future work. 'input' allows continuations to pass
118 * values between themselves, typically error values.
119 */
120struct continuation {
121 struct work_struct ws;
122 blk_status_t input;
123};
124
125static inline void init_continuation(struct continuation *k,
126 void (*fn)(struct work_struct *))
127{
128 INIT_WORK(&k->ws, fn);
129 k->input = 0;
130}
131
132static inline void queue_continuation(struct workqueue_struct *wq,
133 struct continuation *k)
134{
135 queue_work(wq, &k->ws);
136}
137
138/*----------------------------------------------------------------*/
139
140/*
141 * The batcher collects together pieces of work that need a particular
142 * operation to occur before they can proceed (typically a commit).
143 */
144struct batcher {
145 /*
146 * The operation that everyone is waiting for.
147 */
148 blk_status_t (*commit_op)(void *context);
149 void *commit_context;
150
151 /*
152 * This is how bios should be issued once the commit op is complete
153 * (accounted_request).
154 */
155 void (*issue_op)(struct bio *bio, void *context);
156 void *issue_context;
157
158 /*
159 * Queued work gets put on here after commit.
160 */
161 struct workqueue_struct *wq;
162
163 spinlock_t lock;
164 struct list_head work_items;
165 struct bio_list bios;
166 struct work_struct commit_work;
167
168 bool commit_scheduled;
169};
170
171static void __commit(struct work_struct *_ws)
172{
173 struct batcher *b = container_of(_ws, struct batcher, commit_work);
174 blk_status_t r;
175 unsigned long flags;
176 struct list_head work_items;
177 struct work_struct *ws, *tmp;
178 struct continuation *k;
179 struct bio *bio;
180 struct bio_list bios;
181
182 INIT_LIST_HEAD(&work_items);
183 bio_list_init(&bios);
184
185 /*
186 * We have to grab these before the commit_op to avoid a race
187 * condition.
188 */
189 spin_lock_irqsave(&b->lock, flags);
190 list_splice_init(&b->work_items, &work_items);
191 bio_list_merge(&bios, &b->bios);
192 bio_list_init(&b->bios);
193 b->commit_scheduled = false;
194 spin_unlock_irqrestore(&b->lock, flags);
195
196 r = b->commit_op(b->commit_context);
197
198 list_for_each_entry_safe(ws, tmp, &work_items, entry) {
199 k = container_of(ws, struct continuation, ws);
200 k->input = r;
201 INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
202 queue_work(b->wq, ws);
203 }
204
205 while ((bio = bio_list_pop(&bios))) {
206 if (r) {
207 bio->bi_status = r;
208 bio_endio(bio);
209 } else
210 b->issue_op(bio, b->issue_context);
211 }
212}
213
214static void batcher_init(struct batcher *b,
215 blk_status_t (*commit_op)(void *),
216 void *commit_context,
217 void (*issue_op)(struct bio *bio, void *),
218 void *issue_context,
219 struct workqueue_struct *wq)
220{
221 b->commit_op = commit_op;
222 b->commit_context = commit_context;
223 b->issue_op = issue_op;
224 b->issue_context = issue_context;
225 b->wq = wq;
226
227 spin_lock_init(&b->lock);
228 INIT_LIST_HEAD(&b->work_items);
229 bio_list_init(&b->bios);
230 INIT_WORK(&b->commit_work, __commit);
231 b->commit_scheduled = false;
232}
233
234static void async_commit(struct batcher *b)
235{
236 queue_work(b->wq, &b->commit_work);
237}
238
239static void continue_after_commit(struct batcher *b, struct continuation *k)
240{
241 unsigned long flags;
242 bool commit_scheduled;
243
244 spin_lock_irqsave(&b->lock, flags);
245 commit_scheduled = b->commit_scheduled;
246 list_add_tail(&k->ws.entry, &b->work_items);
247 spin_unlock_irqrestore(&b->lock, flags);
248
249 if (commit_scheduled)
250 async_commit(b);
251}
252
253/*
254 * Bios are errored if commit failed.
255 */
256static void issue_after_commit(struct batcher *b, struct bio *bio)
257{
258 unsigned long flags;
259 bool commit_scheduled;
260
261 spin_lock_irqsave(&b->lock, flags);
262 commit_scheduled = b->commit_scheduled;
263 bio_list_add(&b->bios, bio);
264 spin_unlock_irqrestore(&b->lock, flags);
265
266 if (commit_scheduled)
267 async_commit(b);
268}
269
270/*
271 * Call this if some urgent work is waiting for the commit to complete.
272 */
273static void schedule_commit(struct batcher *b)
274{
275 bool immediate;
276 unsigned long flags;
277
278 spin_lock_irqsave(&b->lock, flags);
279 immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
280 b->commit_scheduled = true;
281 spin_unlock_irqrestore(&b->lock, flags);
282
283 if (immediate)
284 async_commit(b);
285}
286
287/*
288 * There are a couple of places where we let a bio run, but want to do some
289 * work before calling its endio function. We do this by temporarily
290 * changing the endio fn.
291 */
292struct dm_hook_info {
293 bio_end_io_t *bi_end_io;
294};
295
296static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
297 bio_end_io_t *bi_end_io, void *bi_private)
298{
299 h->bi_end_io = bio->bi_end_io;
300
301 bio->bi_end_io = bi_end_io;
302 bio->bi_private = bi_private;
303}
304
305static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
306{
307 bio->bi_end_io = h->bi_end_io;
308}
309
310/*----------------------------------------------------------------*/
311
312#define MIGRATION_POOL_SIZE 128
313#define COMMIT_PERIOD HZ
314#define MIGRATION_COUNT_WINDOW 10
315
316/*
317 * The block size of the device holding cache data must be
318 * between 32KB and 1GB.
319 */
320#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
321#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
322
323enum cache_metadata_mode {
324 CM_WRITE, /* metadata may be changed */
325 CM_READ_ONLY, /* metadata may not be changed */
326 CM_FAIL
327};
328
329enum cache_io_mode {
330 /*
331 * Data is written to cached blocks only. These blocks are marked
332 * dirty. If you lose the cache device you will lose data.
333 * Potential performance increase for both reads and writes.
334 */
335 CM_IO_WRITEBACK,
336
337 /*
338 * Data is written to both cache and origin. Blocks are never
339 * dirty. Potential performance benfit for reads only.
340 */
341 CM_IO_WRITETHROUGH,
342
343 /*
344 * A degraded mode useful for various cache coherency situations
345 * (eg, rolling back snapshots). Reads and writes always go to the
346 * origin. If a write goes to a cached oblock, then the cache
347 * block is invalidated.
348 */
349 CM_IO_PASSTHROUGH
350};
351
352struct cache_features {
353 enum cache_metadata_mode mode;
354 enum cache_io_mode io_mode;
355 unsigned metadata_version;
356 bool discard_passdown:1;
357};
358
359struct cache_stats {
360 atomic_t read_hit;
361 atomic_t read_miss;
362 atomic_t write_hit;
363 atomic_t write_miss;
364 atomic_t demotion;
365 atomic_t promotion;
366 atomic_t writeback;
367 atomic_t copies_avoided;
368 atomic_t cache_cell_clash;
369 atomic_t commit_count;
370 atomic_t discard_count;
371};
372
373struct cache {
374 struct dm_target *ti;
375 spinlock_t lock;
376
377 /*
378 * Fields for converting from sectors to blocks.
379 */
380 int sectors_per_block_shift;
381 sector_t sectors_per_block;
382
383 struct dm_cache_metadata *cmd;
384
385 /*
386 * Metadata is written to this device.
387 */
388 struct dm_dev *metadata_dev;
389
390 /*
391 * The slower of the two data devices. Typically a spindle.
392 */
393 struct dm_dev *origin_dev;
394
395 /*
396 * The faster of the two data devices. Typically an SSD.
397 */
398 struct dm_dev *cache_dev;
399
400 /*
401 * Size of the origin device in _complete_ blocks and native sectors.
402 */
403 dm_oblock_t origin_blocks;
404 sector_t origin_sectors;
405
406 /*
407 * Size of the cache device in blocks.
408 */
409 dm_cblock_t cache_size;
410
411 /*
412 * Invalidation fields.
413 */
414 spinlock_t invalidation_lock;
415 struct list_head invalidation_requests;
416
417 sector_t migration_threshold;
418 wait_queue_head_t migration_wait;
419 atomic_t nr_allocated_migrations;
420
421 /*
422 * The number of in flight migrations that are performing
423 * background io. eg, promotion, writeback.
424 */
425 atomic_t nr_io_migrations;
426
427 struct bio_list deferred_bios;
428
429 struct rw_semaphore quiesce_lock;
430
431 struct dm_target_callbacks callbacks;
432
433 /*
434 * origin_blocks entries, discarded if set.
435 */
436 dm_dblock_t discard_nr_blocks;
437 unsigned long *discard_bitset;
438 uint32_t discard_block_size; /* a power of 2 times sectors per block */
439
440 /*
441 * Rather than reconstructing the table line for the status we just
442 * save it and regurgitate.
443 */
444 unsigned nr_ctr_args;
445 const char **ctr_args;
446
447 struct dm_kcopyd_client *copier;
448 struct work_struct deferred_bio_worker;
449 struct work_struct migration_worker;
450 struct workqueue_struct *wq;
451 struct delayed_work waker;
452 struct dm_bio_prison_v2 *prison;
453
454 /*
455 * cache_size entries, dirty if set
456 */
457 unsigned long *dirty_bitset;
458 atomic_t nr_dirty;
459
460 unsigned policy_nr_args;
461 struct dm_cache_policy *policy;
462
463 /*
464 * Cache features such as write-through.
465 */
466 struct cache_features features;
467
468 struct cache_stats stats;
469
470 bool need_tick_bio:1;
471 bool sized:1;
472 bool invalidate:1;
473 bool commit_requested:1;
474 bool loaded_mappings:1;
475 bool loaded_discards:1;
476
477 struct rw_semaphore background_work_lock;
478
479 struct batcher committer;
480 struct work_struct commit_ws;
481
482 struct io_tracker tracker;
483
484 mempool_t migration_pool;
485
486 struct bio_set bs;
487};
488
489struct per_bio_data {
490 bool tick:1;
491 unsigned req_nr:2;
492 struct dm_bio_prison_cell_v2 *cell;
493 struct dm_hook_info hook_info;
494 sector_t len;
495};
496
497struct dm_cache_migration {
498 struct continuation k;
499 struct cache *cache;
500
501 struct policy_work *op;
502 struct bio *overwrite_bio;
503 struct dm_bio_prison_cell_v2 *cell;
504
505 dm_cblock_t invalidate_cblock;
506 dm_oblock_t invalidate_oblock;
507};
508
509/*----------------------------------------------------------------*/
510
511static bool writethrough_mode(struct cache *cache)
512{
513 return cache->features.io_mode == CM_IO_WRITETHROUGH;
514}
515
516static bool writeback_mode(struct cache *cache)
517{
518 return cache->features.io_mode == CM_IO_WRITEBACK;
519}
520
521static inline bool passthrough_mode(struct cache *cache)
522{
523 return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
524}
525
526/*----------------------------------------------------------------*/
527
528static void wake_deferred_bio_worker(struct cache *cache)
529{
530 queue_work(cache->wq, &cache->deferred_bio_worker);
531}
532
533static void wake_migration_worker(struct cache *cache)
534{
535 if (passthrough_mode(cache))
536 return;
537
538 queue_work(cache->wq, &cache->migration_worker);
539}
540
541/*----------------------------------------------------------------*/
542
543static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
544{
545 return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO);
546}
547
548static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
549{
550 dm_bio_prison_free_cell_v2(cache->prison, cell);
551}
552
553static struct dm_cache_migration *alloc_migration(struct cache *cache)
554{
555 struct dm_cache_migration *mg;
556
557 mg = mempool_alloc(&cache->migration_pool, GFP_NOIO);
558
559 memset(mg, 0, sizeof(*mg));
560
561 mg->cache = cache;
562 atomic_inc(&cache->nr_allocated_migrations);
563
564 return mg;
565}
566
567static void free_migration(struct dm_cache_migration *mg)
568{
569 struct cache *cache = mg->cache;
570
571 if (atomic_dec_and_test(&cache->nr_allocated_migrations))
572 wake_up(&cache->migration_wait);
573
574 mempool_free(mg, &cache->migration_pool);
575}
576
577/*----------------------------------------------------------------*/
578
579static inline dm_oblock_t oblock_succ(dm_oblock_t b)
580{
581 return to_oblock(from_oblock(b) + 1ull);
582}
583
584static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
585{
586 key->virtual = 0;
587 key->dev = 0;
588 key->block_begin = from_oblock(begin);
589 key->block_end = from_oblock(end);
590}
591
592/*
593 * We have two lock levels. Level 0, which is used to prevent WRITEs, and
594 * level 1 which prevents *both* READs and WRITEs.
595 */
596#define WRITE_LOCK_LEVEL 0
597#define READ_WRITE_LOCK_LEVEL 1
598
599static unsigned lock_level(struct bio *bio)
600{
601 return bio_data_dir(bio) == WRITE ?
602 WRITE_LOCK_LEVEL :
603 READ_WRITE_LOCK_LEVEL;
604}
605
606/*----------------------------------------------------------------
607 * Per bio data
608 *--------------------------------------------------------------*/
609
610static struct per_bio_data *get_per_bio_data(struct bio *bio)
611{
612 struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
613 BUG_ON(!pb);
614 return pb;
615}
616
617static struct per_bio_data *init_per_bio_data(struct bio *bio)
618{
619 struct per_bio_data *pb = get_per_bio_data(bio);
620
621 pb->tick = false;
622 pb->req_nr = dm_bio_get_target_bio_nr(bio);
623 pb->cell = NULL;
624 pb->len = 0;
625
626 return pb;
627}
628
629/*----------------------------------------------------------------*/
630
631static void defer_bio(struct cache *cache, struct bio *bio)
632{
633 unsigned long flags;
634
635 spin_lock_irqsave(&cache->lock, flags);
636 bio_list_add(&cache->deferred_bios, bio);
637 spin_unlock_irqrestore(&cache->lock, flags);
638
639 wake_deferred_bio_worker(cache);
640}
641
642static void defer_bios(struct cache *cache, struct bio_list *bios)
643{
644 unsigned long flags;
645
646 spin_lock_irqsave(&cache->lock, flags);
647 bio_list_merge(&cache->deferred_bios, bios);
648 bio_list_init(bios);
649 spin_unlock_irqrestore(&cache->lock, flags);
650
651 wake_deferred_bio_worker(cache);
652}
653
654/*----------------------------------------------------------------*/
655
656static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
657{
658 bool r;
659 struct per_bio_data *pb;
660 struct dm_cell_key_v2 key;
661 dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
662 struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
663
664 cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
665
666 build_key(oblock, end, &key);
667 r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
668 if (!r) {
669 /*
670 * Failed to get the lock.
671 */
672 free_prison_cell(cache, cell_prealloc);
673 return r;
674 }
675
676 if (cell != cell_prealloc)
677 free_prison_cell(cache, cell_prealloc);
678
679 pb = get_per_bio_data(bio);
680 pb->cell = cell;
681
682 return r;
683}
684
685/*----------------------------------------------------------------*/
686
687static bool is_dirty(struct cache *cache, dm_cblock_t b)
688{
689 return test_bit(from_cblock(b), cache->dirty_bitset);
690}
691
692static void set_dirty(struct cache *cache, dm_cblock_t cblock)
693{
694 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
695 atomic_inc(&cache->nr_dirty);
696 policy_set_dirty(cache->policy, cblock);
697 }
698}
699
700/*
701 * These two are called when setting after migrations to force the policy
702 * and dirty bitset to be in sync.
703 */
704static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
705{
706 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
707 atomic_inc(&cache->nr_dirty);
708 policy_set_dirty(cache->policy, cblock);
709}
710
711static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
712{
713 if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
714 if (atomic_dec_return(&cache->nr_dirty) == 0)
715 dm_table_event(cache->ti->table);
716 }
717
718 policy_clear_dirty(cache->policy, cblock);
719}
720
721/*----------------------------------------------------------------*/
722
723static bool block_size_is_power_of_two(struct cache *cache)
724{
725 return cache->sectors_per_block_shift >= 0;
726}
727
728/* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
729#if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
730__always_inline
731#endif
732static dm_block_t block_div(dm_block_t b, uint32_t n)
733{
734 do_div(b, n);
735
736 return b;
737}
738
739static dm_block_t oblocks_per_dblock(struct cache *cache)
740{
741 dm_block_t oblocks = cache->discard_block_size;
742
743 if (block_size_is_power_of_two(cache))
744 oblocks >>= cache->sectors_per_block_shift;
745 else
746 oblocks = block_div(oblocks, cache->sectors_per_block);
747
748 return oblocks;
749}
750
751static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
752{
753 return to_dblock(block_div(from_oblock(oblock),
754 oblocks_per_dblock(cache)));
755}
756
757static void set_discard(struct cache *cache, dm_dblock_t b)
758{
759 unsigned long flags;
760
761 BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
762 atomic_inc(&cache->stats.discard_count);
763
764 spin_lock_irqsave(&cache->lock, flags);
765 set_bit(from_dblock(b), cache->discard_bitset);
766 spin_unlock_irqrestore(&cache->lock, flags);
767}
768
769static void clear_discard(struct cache *cache, dm_dblock_t b)
770{
771 unsigned long flags;
772
773 spin_lock_irqsave(&cache->lock, flags);
774 clear_bit(from_dblock(b), cache->discard_bitset);
775 spin_unlock_irqrestore(&cache->lock, flags);
776}
777
778static bool is_discarded(struct cache *cache, dm_dblock_t b)
779{
780 int r;
781 unsigned long flags;
782
783 spin_lock_irqsave(&cache->lock, flags);
784 r = test_bit(from_dblock(b), cache->discard_bitset);
785 spin_unlock_irqrestore(&cache->lock, flags);
786
787 return r;
788}
789
790static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
791{
792 int r;
793 unsigned long flags;
794
795 spin_lock_irqsave(&cache->lock, flags);
796 r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
797 cache->discard_bitset);
798 spin_unlock_irqrestore(&cache->lock, flags);
799
800 return r;
801}
802
803/*----------------------------------------------------------------
804 * Remapping
805 *--------------------------------------------------------------*/
806static void remap_to_origin(struct cache *cache, struct bio *bio)
807{
808 bio_set_dev(bio, cache->origin_dev->bdev);
809}
810
811static void remap_to_cache(struct cache *cache, struct bio *bio,
812 dm_cblock_t cblock)
813{
814 sector_t bi_sector = bio->bi_iter.bi_sector;
815 sector_t block = from_cblock(cblock);
816
817 bio_set_dev(bio, cache->cache_dev->bdev);
818 if (!block_size_is_power_of_two(cache))
819 bio->bi_iter.bi_sector =
820 (block * cache->sectors_per_block) +
821 sector_div(bi_sector, cache->sectors_per_block);
822 else
823 bio->bi_iter.bi_sector =
824 (block << cache->sectors_per_block_shift) |
825 (bi_sector & (cache->sectors_per_block - 1));
826}
827
828static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
829{
830 unsigned long flags;
831 struct per_bio_data *pb;
832
833 spin_lock_irqsave(&cache->lock, flags);
834 if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
835 bio_op(bio) != REQ_OP_DISCARD) {
836 pb = get_per_bio_data(bio);
837 pb->tick = true;
838 cache->need_tick_bio = false;
839 }
840 spin_unlock_irqrestore(&cache->lock, flags);
841}
842
843static void __remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
844 dm_oblock_t oblock, bool bio_has_pbd)
845{
846 if (bio_has_pbd)
847 check_if_tick_bio_needed(cache, bio);
848 remap_to_origin(cache, bio);
849 if (bio_data_dir(bio) == WRITE)
850 clear_discard(cache, oblock_to_dblock(cache, oblock));
851}
852
853static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
854 dm_oblock_t oblock)
855{
856 // FIXME: check_if_tick_bio_needed() is called way too much through this interface
857 __remap_to_origin_clear_discard(cache, bio, oblock, true);
858}
859
860static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
861 dm_oblock_t oblock, dm_cblock_t cblock)
862{
863 check_if_tick_bio_needed(cache, bio);
864 remap_to_cache(cache, bio, cblock);
865 if (bio_data_dir(bio) == WRITE) {
866 set_dirty(cache, cblock);
867 clear_discard(cache, oblock_to_dblock(cache, oblock));
868 }
869}
870
871static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
872{
873 sector_t block_nr = bio->bi_iter.bi_sector;
874
875 if (!block_size_is_power_of_two(cache))
876 (void) sector_div(block_nr, cache->sectors_per_block);
877 else
878 block_nr >>= cache->sectors_per_block_shift;
879
880 return to_oblock(block_nr);
881}
882
883static bool accountable_bio(struct cache *cache, struct bio *bio)
884{
885 return bio_op(bio) != REQ_OP_DISCARD;
886}
887
888static void accounted_begin(struct cache *cache, struct bio *bio)
889{
890 struct per_bio_data *pb;
891
892 if (accountable_bio(cache, bio)) {
893 pb = get_per_bio_data(bio);
894 pb->len = bio_sectors(bio);
895 iot_io_begin(&cache->tracker, pb->len);
896 }
897}
898
899static void accounted_complete(struct cache *cache, struct bio *bio)
900{
901 struct per_bio_data *pb = get_per_bio_data(bio);
902
903 iot_io_end(&cache->tracker, pb->len);
904}
905
906static void accounted_request(struct cache *cache, struct bio *bio)
907{
908 accounted_begin(cache, bio);
909 generic_make_request(bio);
910}
911
912static void issue_op(struct bio *bio, void *context)
913{
914 struct cache *cache = context;
915 accounted_request(cache, bio);
916}
917
918/*
919 * When running in writethrough mode we need to send writes to clean blocks
920 * to both the cache and origin devices. Clone the bio and send them in parallel.
921 */
922static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
923 dm_oblock_t oblock, dm_cblock_t cblock)
924{
925 struct bio *origin_bio = bio_clone_fast(bio, GFP_NOIO, &cache->bs);
926
927 BUG_ON(!origin_bio);
928
929 bio_chain(origin_bio, bio);
930 /*
931 * Passing false to __remap_to_origin_clear_discard() skips
932 * all code that might use per_bio_data (since clone doesn't have it)
933 */
934 __remap_to_origin_clear_discard(cache, origin_bio, oblock, false);
935 submit_bio(origin_bio);
936
937 remap_to_cache(cache, bio, cblock);
938}
939
940/*----------------------------------------------------------------
941 * Failure modes
942 *--------------------------------------------------------------*/
943static enum cache_metadata_mode get_cache_mode(struct cache *cache)
944{
945 return cache->features.mode;
946}
947
948static const char *cache_device_name(struct cache *cache)
949{
950 return dm_device_name(dm_table_get_md(cache->ti->table));
951}
952
953static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
954{
955 const char *descs[] = {
956 "write",
957 "read-only",
958 "fail"
959 };
960
961 dm_table_event(cache->ti->table);
962 DMINFO("%s: switching cache to %s mode",
963 cache_device_name(cache), descs[(int)mode]);
964}
965
966static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
967{
968 bool needs_check;
969 enum cache_metadata_mode old_mode = get_cache_mode(cache);
970
971 if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
972 DMERR("%s: unable to read needs_check flag, setting failure mode.",
973 cache_device_name(cache));
974 new_mode = CM_FAIL;
975 }
976
977 if (new_mode == CM_WRITE && needs_check) {
978 DMERR("%s: unable to switch cache to write mode until repaired.",
979 cache_device_name(cache));
980 if (old_mode != new_mode)
981 new_mode = old_mode;
982 else
983 new_mode = CM_READ_ONLY;
984 }
985
986 /* Never move out of fail mode */
987 if (old_mode == CM_FAIL)
988 new_mode = CM_FAIL;
989
990 switch (new_mode) {
991 case CM_FAIL:
992 case CM_READ_ONLY:
993 dm_cache_metadata_set_read_only(cache->cmd);
994 break;
995
996 case CM_WRITE:
997 dm_cache_metadata_set_read_write(cache->cmd);
998 break;
999 }
1000
1001 cache->features.mode = new_mode;
1002
1003 if (new_mode != old_mode)
1004 notify_mode_switch(cache, new_mode);
1005}
1006
1007static void abort_transaction(struct cache *cache)
1008{
1009 const char *dev_name = cache_device_name(cache);
1010
1011 if (get_cache_mode(cache) >= CM_READ_ONLY)
1012 return;
1013
1014 if (dm_cache_metadata_set_needs_check(cache->cmd)) {
1015 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1016 set_cache_mode(cache, CM_FAIL);
1017 }
1018
1019 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1020 if (dm_cache_metadata_abort(cache->cmd)) {
1021 DMERR("%s: failed to abort metadata transaction", dev_name);
1022 set_cache_mode(cache, CM_FAIL);
1023 }
1024}
1025
1026static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1027{
1028 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1029 cache_device_name(cache), op, r);
1030 abort_transaction(cache);
1031 set_cache_mode(cache, CM_READ_ONLY);
1032}
1033
1034/*----------------------------------------------------------------*/
1035
1036static void load_stats(struct cache *cache)
1037{
1038 struct dm_cache_statistics stats;
1039
1040 dm_cache_metadata_get_stats(cache->cmd, &stats);
1041 atomic_set(&cache->stats.read_hit, stats.read_hits);
1042 atomic_set(&cache->stats.read_miss, stats.read_misses);
1043 atomic_set(&cache->stats.write_hit, stats.write_hits);
1044 atomic_set(&cache->stats.write_miss, stats.write_misses);
1045}
1046
1047static void save_stats(struct cache *cache)
1048{
1049 struct dm_cache_statistics stats;
1050
1051 if (get_cache_mode(cache) >= CM_READ_ONLY)
1052 return;
1053
1054 stats.read_hits = atomic_read(&cache->stats.read_hit);
1055 stats.read_misses = atomic_read(&cache->stats.read_miss);
1056 stats.write_hits = atomic_read(&cache->stats.write_hit);
1057 stats.write_misses = atomic_read(&cache->stats.write_miss);
1058
1059 dm_cache_metadata_set_stats(cache->cmd, &stats);
1060}
1061
1062static void update_stats(struct cache_stats *stats, enum policy_operation op)
1063{
1064 switch (op) {
1065 case POLICY_PROMOTE:
1066 atomic_inc(&stats->promotion);
1067 break;
1068
1069 case POLICY_DEMOTE:
1070 atomic_inc(&stats->demotion);
1071 break;
1072
1073 case POLICY_WRITEBACK:
1074 atomic_inc(&stats->writeback);
1075 break;
1076 }
1077}
1078
1079/*----------------------------------------------------------------
1080 * Migration processing
1081 *
1082 * Migration covers moving data from the origin device to the cache, or
1083 * vice versa.
1084 *--------------------------------------------------------------*/
1085
1086static void inc_io_migrations(struct cache *cache)
1087{
1088 atomic_inc(&cache->nr_io_migrations);
1089}
1090
1091static void dec_io_migrations(struct cache *cache)
1092{
1093 atomic_dec(&cache->nr_io_migrations);
1094}
1095
1096static bool discard_or_flush(struct bio *bio)
1097{
1098 return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1099}
1100
1101static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1102 dm_dblock_t *b, dm_dblock_t *e)
1103{
1104 sector_t sb = bio->bi_iter.bi_sector;
1105 sector_t se = bio_end_sector(bio);
1106
1107 *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1108
1109 if (se - sb < cache->discard_block_size)
1110 *e = *b;
1111 else
1112 *e = to_dblock(block_div(se, cache->discard_block_size));
1113}
1114
1115/*----------------------------------------------------------------*/
1116
1117static void prevent_background_work(struct cache *cache)
1118{
1119 lockdep_off();
1120 down_write(&cache->background_work_lock);
1121 lockdep_on();
1122}
1123
1124static void allow_background_work(struct cache *cache)
1125{
1126 lockdep_off();
1127 up_write(&cache->background_work_lock);
1128 lockdep_on();
1129}
1130
1131static bool background_work_begin(struct cache *cache)
1132{
1133 bool r;
1134
1135 lockdep_off();
1136 r = down_read_trylock(&cache->background_work_lock);
1137 lockdep_on();
1138
1139 return r;
1140}
1141
1142static void background_work_end(struct cache *cache)
1143{
1144 lockdep_off();
1145 up_read(&cache->background_work_lock);
1146 lockdep_on();
1147}
1148
1149/*----------------------------------------------------------------*/
1150
1151static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1152{
1153 return (bio_data_dir(bio) == WRITE) &&
1154 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1155}
1156
1157static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1158{
1159 return writeback_mode(cache) &&
1160 (is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1161}
1162
1163static void quiesce(struct dm_cache_migration *mg,
1164 void (*continuation)(struct work_struct *))
1165{
1166 init_continuation(&mg->k, continuation);
1167 dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1168}
1169
1170static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1171{
1172 struct continuation *k = container_of(ws, struct continuation, ws);
1173 return container_of(k, struct dm_cache_migration, k);
1174}
1175
1176static void copy_complete(int read_err, unsigned long write_err, void *context)
1177{
1178 struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1179
1180 if (read_err || write_err)
1181 mg->k.input = BLK_STS_IOERR;
1182
1183 queue_continuation(mg->cache->wq, &mg->k);
1184}
1185
1186static void copy(struct dm_cache_migration *mg, bool promote)
1187{
1188 struct dm_io_region o_region, c_region;
1189 struct cache *cache = mg->cache;
1190
1191 o_region.bdev = cache->origin_dev->bdev;
1192 o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1193 o_region.count = cache->sectors_per_block;
1194
1195 c_region.bdev = cache->cache_dev->bdev;
1196 c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1197 c_region.count = cache->sectors_per_block;
1198
1199 if (promote)
1200 dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1201 else
1202 dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1203}
1204
1205static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1206{
1207 struct per_bio_data *pb = get_per_bio_data(bio);
1208
1209 if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1210 free_prison_cell(cache, pb->cell);
1211 pb->cell = NULL;
1212}
1213
1214static void overwrite_endio(struct bio *bio)
1215{
1216 struct dm_cache_migration *mg = bio->bi_private;
1217 struct cache *cache = mg->cache;
1218 struct per_bio_data *pb = get_per_bio_data(bio);
1219
1220 dm_unhook_bio(&pb->hook_info, bio);
1221
1222 if (bio->bi_status)
1223 mg->k.input = bio->bi_status;
1224
1225 queue_continuation(cache->wq, &mg->k);
1226}
1227
1228static void overwrite(struct dm_cache_migration *mg,
1229 void (*continuation)(struct work_struct *))
1230{
1231 struct bio *bio = mg->overwrite_bio;
1232 struct per_bio_data *pb = get_per_bio_data(bio);
1233
1234 dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1235
1236 /*
1237 * The overwrite bio is part of the copy operation, as such it does
1238 * not set/clear discard or dirty flags.
1239 */
1240 if (mg->op->op == POLICY_PROMOTE)
1241 remap_to_cache(mg->cache, bio, mg->op->cblock);
1242 else
1243 remap_to_origin(mg->cache, bio);
1244
1245 init_continuation(&mg->k, continuation);
1246 accounted_request(mg->cache, bio);
1247}
1248
1249/*
1250 * Migration steps:
1251 *
1252 * 1) exclusive lock preventing WRITEs
1253 * 2) quiesce
1254 * 3) copy or issue overwrite bio
1255 * 4) upgrade to exclusive lock preventing READs and WRITEs
1256 * 5) quiesce
1257 * 6) update metadata and commit
1258 * 7) unlock
1259 */
1260static void mg_complete(struct dm_cache_migration *mg, bool success)
1261{
1262 struct bio_list bios;
1263 struct cache *cache = mg->cache;
1264 struct policy_work *op = mg->op;
1265 dm_cblock_t cblock = op->cblock;
1266
1267 if (success)
1268 update_stats(&cache->stats, op->op);
1269
1270 switch (op->op) {
1271 case POLICY_PROMOTE:
1272 clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1273 policy_complete_background_work(cache->policy, op, success);
1274
1275 if (mg->overwrite_bio) {
1276 if (success)
1277 force_set_dirty(cache, cblock);
1278 else if (mg->k.input)
1279 mg->overwrite_bio->bi_status = mg->k.input;
1280 else
1281 mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1282 bio_endio(mg->overwrite_bio);
1283 } else {
1284 if (success)
1285 force_clear_dirty(cache, cblock);
1286 dec_io_migrations(cache);
1287 }
1288 break;
1289
1290 case POLICY_DEMOTE:
1291 /*
1292 * We clear dirty here to update the nr_dirty counter.
1293 */
1294 if (success)
1295 force_clear_dirty(cache, cblock);
1296 policy_complete_background_work(cache->policy, op, success);
1297 dec_io_migrations(cache);
1298 break;
1299
1300 case POLICY_WRITEBACK:
1301 if (success)
1302 force_clear_dirty(cache, cblock);
1303 policy_complete_background_work(cache->policy, op, success);
1304 dec_io_migrations(cache);
1305 break;
1306 }
1307
1308 bio_list_init(&bios);
1309 if (mg->cell) {
1310 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1311 free_prison_cell(cache, mg->cell);
1312 }
1313
1314 free_migration(mg);
1315 defer_bios(cache, &bios);
1316 wake_migration_worker(cache);
1317
1318 background_work_end(cache);
1319}
1320
1321static void mg_success(struct work_struct *ws)
1322{
1323 struct dm_cache_migration *mg = ws_to_mg(ws);
1324 mg_complete(mg, mg->k.input == 0);
1325}
1326
1327static void mg_update_metadata(struct work_struct *ws)
1328{
1329 int r;
1330 struct dm_cache_migration *mg = ws_to_mg(ws);
1331 struct cache *cache = mg->cache;
1332 struct policy_work *op = mg->op;
1333
1334 switch (op->op) {
1335 case POLICY_PROMOTE:
1336 r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1337 if (r) {
1338 DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1339 cache_device_name(cache));
1340 metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1341
1342 mg_complete(mg, false);
1343 return;
1344 }
1345 mg_complete(mg, true);
1346 break;
1347
1348 case POLICY_DEMOTE:
1349 r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1350 if (r) {
1351 DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1352 cache_device_name(cache));
1353 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1354
1355 mg_complete(mg, false);
1356 return;
1357 }
1358
1359 /*
1360 * It would be nice if we only had to commit when a REQ_FLUSH
1361 * comes through. But there's one scenario that we have to
1362 * look out for:
1363 *
1364 * - vblock x in a cache block
1365 * - domotion occurs
1366 * - cache block gets reallocated and over written
1367 * - crash
1368 *
1369 * When we recover, because there was no commit the cache will
1370 * rollback to having the data for vblock x in the cache block.
1371 * But the cache block has since been overwritten, so it'll end
1372 * up pointing to data that was never in 'x' during the history
1373 * of the device.
1374 *
1375 * To avoid this issue we require a commit as part of the
1376 * demotion operation.
1377 */
1378 init_continuation(&mg->k, mg_success);
1379 continue_after_commit(&cache->committer, &mg->k);
1380 schedule_commit(&cache->committer);
1381 break;
1382
1383 case POLICY_WRITEBACK:
1384 mg_complete(mg, true);
1385 break;
1386 }
1387}
1388
1389static void mg_update_metadata_after_copy(struct work_struct *ws)
1390{
1391 struct dm_cache_migration *mg = ws_to_mg(ws);
1392
1393 /*
1394 * Did the copy succeed?
1395 */
1396 if (mg->k.input)
1397 mg_complete(mg, false);
1398 else
1399 mg_update_metadata(ws);
1400}
1401
1402static void mg_upgrade_lock(struct work_struct *ws)
1403{
1404 int r;
1405 struct dm_cache_migration *mg = ws_to_mg(ws);
1406
1407 /*
1408 * Did the copy succeed?
1409 */
1410 if (mg->k.input)
1411 mg_complete(mg, false);
1412
1413 else {
1414 /*
1415 * Now we want the lock to prevent both reads and writes.
1416 */
1417 r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1418 READ_WRITE_LOCK_LEVEL);
1419 if (r < 0)
1420 mg_complete(mg, false);
1421
1422 else if (r)
1423 quiesce(mg, mg_update_metadata);
1424
1425 else
1426 mg_update_metadata(ws);
1427 }
1428}
1429
1430static void mg_full_copy(struct work_struct *ws)
1431{
1432 struct dm_cache_migration *mg = ws_to_mg(ws);
1433 struct cache *cache = mg->cache;
1434 struct policy_work *op = mg->op;
1435 bool is_policy_promote = (op->op == POLICY_PROMOTE);
1436
1437 if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1438 is_discarded_oblock(cache, op->oblock)) {
1439 mg_upgrade_lock(ws);
1440 return;
1441 }
1442
1443 init_continuation(&mg->k, mg_upgrade_lock);
1444 copy(mg, is_policy_promote);
1445}
1446
1447static void mg_copy(struct work_struct *ws)
1448{
1449 struct dm_cache_migration *mg = ws_to_mg(ws);
1450
1451 if (mg->overwrite_bio) {
1452 /*
1453 * No exclusive lock was held when we last checked if the bio
1454 * was optimisable. So we have to check again in case things
1455 * have changed (eg, the block may no longer be discarded).
1456 */
1457 if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1458 /*
1459 * Fallback to a real full copy after doing some tidying up.
1460 */
1461 bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1462 BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1463 mg->overwrite_bio = NULL;
1464 inc_io_migrations(mg->cache);
1465 mg_full_copy(ws);
1466 return;
1467 }
1468
1469 /*
1470 * It's safe to do this here, even though it's new data
1471 * because all IO has been locked out of the block.
1472 *
1473 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1474 * so _not_ using mg_upgrade_lock() as continutation.
1475 */
1476 overwrite(mg, mg_update_metadata_after_copy);
1477
1478 } else
1479 mg_full_copy(ws);
1480}
1481
1482static int mg_lock_writes(struct dm_cache_migration *mg)
1483{
1484 int r;
1485 struct dm_cell_key_v2 key;
1486 struct cache *cache = mg->cache;
1487 struct dm_bio_prison_cell_v2 *prealloc;
1488
1489 prealloc = alloc_prison_cell(cache);
1490
1491 /*
1492 * Prevent writes to the block, but allow reads to continue.
1493 * Unless we're using an overwrite bio, in which case we lock
1494 * everything.
1495 */
1496 build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1497 r = dm_cell_lock_v2(cache->prison, &key,
1498 mg->overwrite_bio ? READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1499 prealloc, &mg->cell);
1500 if (r < 0) {
1501 free_prison_cell(cache, prealloc);
1502 mg_complete(mg, false);
1503 return r;
1504 }
1505
1506 if (mg->cell != prealloc)
1507 free_prison_cell(cache, prealloc);
1508
1509 if (r == 0)
1510 mg_copy(&mg->k.ws);
1511 else
1512 quiesce(mg, mg_copy);
1513
1514 return 0;
1515}
1516
1517static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1518{
1519 struct dm_cache_migration *mg;
1520
1521 if (!background_work_begin(cache)) {
1522 policy_complete_background_work(cache->policy, op, false);
1523 return -EPERM;
1524 }
1525
1526 mg = alloc_migration(cache);
1527
1528 mg->op = op;
1529 mg->overwrite_bio = bio;
1530
1531 if (!bio)
1532 inc_io_migrations(cache);
1533
1534 return mg_lock_writes(mg);
1535}
1536
1537/*----------------------------------------------------------------
1538 * invalidation processing
1539 *--------------------------------------------------------------*/
1540
1541static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1542{
1543 struct bio_list bios;
1544 struct cache *cache = mg->cache;
1545
1546 bio_list_init(&bios);
1547 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1548 free_prison_cell(cache, mg->cell);
1549
1550 if (!success && mg->overwrite_bio)
1551 bio_io_error(mg->overwrite_bio);
1552
1553 free_migration(mg);
1554 defer_bios(cache, &bios);
1555
1556 background_work_end(cache);
1557}
1558
1559static void invalidate_completed(struct work_struct *ws)
1560{
1561 struct dm_cache_migration *mg = ws_to_mg(ws);
1562 invalidate_complete(mg, !mg->k.input);
1563}
1564
1565static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1566{
1567 int r = policy_invalidate_mapping(cache->policy, cblock);
1568 if (!r) {
1569 r = dm_cache_remove_mapping(cache->cmd, cblock);
1570 if (r) {
1571 DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1572 cache_device_name(cache));
1573 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1574 }
1575
1576 } else if (r == -ENODATA) {
1577 /*
1578 * Harmless, already unmapped.
1579 */
1580 r = 0;
1581
1582 } else
1583 DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1584
1585 return r;
1586}
1587
1588static void invalidate_remove(struct work_struct *ws)
1589{
1590 int r;
1591 struct dm_cache_migration *mg = ws_to_mg(ws);
1592 struct cache *cache = mg->cache;
1593
1594 r = invalidate_cblock(cache, mg->invalidate_cblock);
1595 if (r) {
1596 invalidate_complete(mg, false);
1597 return;
1598 }
1599
1600 init_continuation(&mg->k, invalidate_completed);
1601 continue_after_commit(&cache->committer, &mg->k);
1602 remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1603 mg->overwrite_bio = NULL;
1604 schedule_commit(&cache->committer);
1605}
1606
1607static int invalidate_lock(struct dm_cache_migration *mg)
1608{
1609 int r;
1610 struct dm_cell_key_v2 key;
1611 struct cache *cache = mg->cache;
1612 struct dm_bio_prison_cell_v2 *prealloc;
1613
1614 prealloc = alloc_prison_cell(cache);
1615
1616 build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1617 r = dm_cell_lock_v2(cache->prison, &key,
1618 READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1619 if (r < 0) {
1620 free_prison_cell(cache, prealloc);
1621 invalidate_complete(mg, false);
1622 return r;
1623 }
1624
1625 if (mg->cell != prealloc)
1626 free_prison_cell(cache, prealloc);
1627
1628 if (r)
1629 quiesce(mg, invalidate_remove);
1630
1631 else {
1632 /*
1633 * We can't call invalidate_remove() directly here because we
1634 * might still be in request context.
1635 */
1636 init_continuation(&mg->k, invalidate_remove);
1637 queue_work(cache->wq, &mg->k.ws);
1638 }
1639
1640 return 0;
1641}
1642
1643static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1644 dm_oblock_t oblock, struct bio *bio)
1645{
1646 struct dm_cache_migration *mg;
1647
1648 if (!background_work_begin(cache))
1649 return -EPERM;
1650
1651 mg = alloc_migration(cache);
1652
1653 mg->overwrite_bio = bio;
1654 mg->invalidate_cblock = cblock;
1655 mg->invalidate_oblock = oblock;
1656
1657 return invalidate_lock(mg);
1658}
1659
1660/*----------------------------------------------------------------
1661 * bio processing
1662 *--------------------------------------------------------------*/
1663
1664enum busy {
1665 IDLE,
1666 BUSY
1667};
1668
1669static enum busy spare_migration_bandwidth(struct cache *cache)
1670{
1671 bool idle = iot_idle_for(&cache->tracker, HZ);
1672 sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1673 cache->sectors_per_block;
1674
1675 if (idle && current_volume <= cache->migration_threshold)
1676 return IDLE;
1677 else
1678 return BUSY;
1679}
1680
1681static void inc_hit_counter(struct cache *cache, struct bio *bio)
1682{
1683 atomic_inc(bio_data_dir(bio) == READ ?
1684 &cache->stats.read_hit : &cache->stats.write_hit);
1685}
1686
1687static void inc_miss_counter(struct cache *cache, struct bio *bio)
1688{
1689 atomic_inc(bio_data_dir(bio) == READ ?
1690 &cache->stats.read_miss : &cache->stats.write_miss);
1691}
1692
1693/*----------------------------------------------------------------*/
1694
1695static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1696 bool *commit_needed)
1697{
1698 int r, data_dir;
1699 bool rb, background_queued;
1700 dm_cblock_t cblock;
1701
1702 *commit_needed = false;
1703
1704 rb = bio_detain_shared(cache, block, bio);
1705 if (!rb) {
1706 /*
1707 * An exclusive lock is held for this block, so we have to
1708 * wait. We set the commit_needed flag so the current
1709 * transaction will be committed asap, allowing this lock
1710 * to be dropped.
1711 */
1712 *commit_needed = true;
1713 return DM_MAPIO_SUBMITTED;
1714 }
1715
1716 data_dir = bio_data_dir(bio);
1717
1718 if (optimisable_bio(cache, bio, block)) {
1719 struct policy_work *op = NULL;
1720
1721 r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1722 if (unlikely(r && r != -ENOENT)) {
1723 DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1724 cache_device_name(cache), r);
1725 bio_io_error(bio);
1726 return DM_MAPIO_SUBMITTED;
1727 }
1728
1729 if (r == -ENOENT && op) {
1730 bio_drop_shared_lock(cache, bio);
1731 BUG_ON(op->op != POLICY_PROMOTE);
1732 mg_start(cache, op, bio);
1733 return DM_MAPIO_SUBMITTED;
1734 }
1735 } else {
1736 r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1737 if (unlikely(r && r != -ENOENT)) {
1738 DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1739 cache_device_name(cache), r);
1740 bio_io_error(bio);
1741 return DM_MAPIO_SUBMITTED;
1742 }
1743
1744 if (background_queued)
1745 wake_migration_worker(cache);
1746 }
1747
1748 if (r == -ENOENT) {
1749 struct per_bio_data *pb = get_per_bio_data(bio);
1750
1751 /*
1752 * Miss.
1753 */
1754 inc_miss_counter(cache, bio);
1755 if (pb->req_nr == 0) {
1756 accounted_begin(cache, bio);
1757 remap_to_origin_clear_discard(cache, bio, block);
1758 } else {
1759 /*
1760 * This is a duplicate writethrough io that is no
1761 * longer needed because the block has been demoted.
1762 */
1763 bio_endio(bio);
1764 return DM_MAPIO_SUBMITTED;
1765 }
1766 } else {
1767 /*
1768 * Hit.
1769 */
1770 inc_hit_counter(cache, bio);
1771
1772 /*
1773 * Passthrough always maps to the origin, invalidating any
1774 * cache blocks that are written to.
1775 */
1776 if (passthrough_mode(cache)) {
1777 if (bio_data_dir(bio) == WRITE) {
1778 bio_drop_shared_lock(cache, bio);
1779 atomic_inc(&cache->stats.demotion);
1780 invalidate_start(cache, cblock, block, bio);
1781 } else
1782 remap_to_origin_clear_discard(cache, bio, block);
1783 } else {
1784 if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1785 !is_dirty(cache, cblock)) {
1786 remap_to_origin_and_cache(cache, bio, block, cblock);
1787 accounted_begin(cache, bio);
1788 } else
1789 remap_to_cache_dirty(cache, bio, block, cblock);
1790 }
1791 }
1792
1793 /*
1794 * dm core turns FUA requests into a separate payload and FLUSH req.
1795 */
1796 if (bio->bi_opf & REQ_FUA) {
1797 /*
1798 * issue_after_commit will call accounted_begin a second time. So
1799 * we call accounted_complete() to avoid double accounting.
1800 */
1801 accounted_complete(cache, bio);
1802 issue_after_commit(&cache->committer, bio);
1803 *commit_needed = true;
1804 return DM_MAPIO_SUBMITTED;
1805 }
1806
1807 return DM_MAPIO_REMAPPED;
1808}
1809
1810static bool process_bio(struct cache *cache, struct bio *bio)
1811{
1812 bool commit_needed;
1813
1814 if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1815 generic_make_request(bio);
1816
1817 return commit_needed;
1818}
1819
1820/*
1821 * A non-zero return indicates read_only or fail_io mode.
1822 */
1823static int commit(struct cache *cache, bool clean_shutdown)
1824{
1825 int r;
1826
1827 if (get_cache_mode(cache) >= CM_READ_ONLY)
1828 return -EINVAL;
1829
1830 atomic_inc(&cache->stats.commit_count);
1831 r = dm_cache_commit(cache->cmd, clean_shutdown);
1832 if (r)
1833 metadata_operation_failed(cache, "dm_cache_commit", r);
1834
1835 return r;
1836}
1837
1838/*
1839 * Used by the batcher.
1840 */
1841static blk_status_t commit_op(void *context)
1842{
1843 struct cache *cache = context;
1844
1845 if (dm_cache_changed_this_transaction(cache->cmd))
1846 return errno_to_blk_status(commit(cache, false));
1847
1848 return 0;
1849}
1850
1851/*----------------------------------------------------------------*/
1852
1853static bool process_flush_bio(struct cache *cache, struct bio *bio)
1854{
1855 struct per_bio_data *pb = get_per_bio_data(bio);
1856
1857 if (!pb->req_nr)
1858 remap_to_origin(cache, bio);
1859 else
1860 remap_to_cache(cache, bio, 0);
1861
1862 issue_after_commit(&cache->committer, bio);
1863 return true;
1864}
1865
1866static bool process_discard_bio(struct cache *cache, struct bio *bio)
1867{
1868 dm_dblock_t b, e;
1869
1870 // FIXME: do we need to lock the region? Or can we just assume the
1871 // user wont be so foolish as to issue discard concurrently with
1872 // other IO?
1873 calc_discard_block_range(cache, bio, &b, &e);
1874 while (b != e) {
1875 set_discard(cache, b);
1876 b = to_dblock(from_dblock(b) + 1);
1877 }
1878
1879 if (cache->features.discard_passdown) {
1880 remap_to_origin(cache, bio);
1881 generic_make_request(bio);
1882 } else
1883 bio_endio(bio);
1884
1885 return false;
1886}
1887
1888static void process_deferred_bios(struct work_struct *ws)
1889{
1890 struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1891
1892 unsigned long flags;
1893 bool commit_needed = false;
1894 struct bio_list bios;
1895 struct bio *bio;
1896
1897 bio_list_init(&bios);
1898
1899 spin_lock_irqsave(&cache->lock, flags);
1900 bio_list_merge(&bios, &cache->deferred_bios);
1901 bio_list_init(&cache->deferred_bios);
1902 spin_unlock_irqrestore(&cache->lock, flags);
1903
1904 while ((bio = bio_list_pop(&bios))) {
1905 if (bio->bi_opf & REQ_PREFLUSH)
1906 commit_needed = process_flush_bio(cache, bio) || commit_needed;
1907
1908 else if (bio_op(bio) == REQ_OP_DISCARD)
1909 commit_needed = process_discard_bio(cache, bio) || commit_needed;
1910
1911 else
1912 commit_needed = process_bio(cache, bio) || commit_needed;
1913 }
1914
1915 if (commit_needed)
1916 schedule_commit(&cache->committer);
1917}
1918
1919/*----------------------------------------------------------------
1920 * Main worker loop
1921 *--------------------------------------------------------------*/
1922
1923static void requeue_deferred_bios(struct cache *cache)
1924{
1925 struct bio *bio;
1926 struct bio_list bios;
1927
1928 bio_list_init(&bios);
1929 bio_list_merge(&bios, &cache->deferred_bios);
1930 bio_list_init(&cache->deferred_bios);
1931
1932 while ((bio = bio_list_pop(&bios))) {
1933 bio->bi_status = BLK_STS_DM_REQUEUE;
1934 bio_endio(bio);
1935 }
1936}
1937
1938/*
1939 * We want to commit periodically so that not too much
1940 * unwritten metadata builds up.
1941 */
1942static void do_waker(struct work_struct *ws)
1943{
1944 struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1945
1946 policy_tick(cache->policy, true);
1947 wake_migration_worker(cache);
1948 schedule_commit(&cache->committer);
1949 queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1950}
1951
1952static void check_migrations(struct work_struct *ws)
1953{
1954 int r;
1955 struct policy_work *op;
1956 struct cache *cache = container_of(ws, struct cache, migration_worker);
1957 enum busy b;
1958
1959 for (;;) {
1960 b = spare_migration_bandwidth(cache);
1961
1962 r = policy_get_background_work(cache->policy, b == IDLE, &op);
1963 if (r == -ENODATA)
1964 break;
1965
1966 if (r) {
1967 DMERR_LIMIT("%s: policy_background_work failed",
1968 cache_device_name(cache));
1969 break;
1970 }
1971
1972 r = mg_start(cache, op, NULL);
1973 if (r)
1974 break;
1975 }
1976}
1977
1978/*----------------------------------------------------------------
1979 * Target methods
1980 *--------------------------------------------------------------*/
1981
1982/*
1983 * This function gets called on the error paths of the constructor, so we
1984 * have to cope with a partially initialised struct.
1985 */
1986static void destroy(struct cache *cache)
1987{
1988 unsigned i;
1989
1990 mempool_exit(&cache->migration_pool);
1991
1992 if (cache->prison)
1993 dm_bio_prison_destroy_v2(cache->prison);
1994
1995 if (cache->wq)
1996 destroy_workqueue(cache->wq);
1997
1998 if (cache->dirty_bitset)
1999 free_bitset(cache->dirty_bitset);
2000
2001 if (cache->discard_bitset)
2002 free_bitset(cache->discard_bitset);
2003
2004 if (cache->copier)
2005 dm_kcopyd_client_destroy(cache->copier);
2006
2007 if (cache->cmd)
2008 dm_cache_metadata_close(cache->cmd);
2009
2010 if (cache->metadata_dev)
2011 dm_put_device(cache->ti, cache->metadata_dev);
2012
2013 if (cache->origin_dev)
2014 dm_put_device(cache->ti, cache->origin_dev);
2015
2016 if (cache->cache_dev)
2017 dm_put_device(cache->ti, cache->cache_dev);
2018
2019 if (cache->policy)
2020 dm_cache_policy_destroy(cache->policy);
2021
2022 for (i = 0; i < cache->nr_ctr_args ; i++)
2023 kfree(cache->ctr_args[i]);
2024 kfree(cache->ctr_args);
2025
2026 bioset_exit(&cache->bs);
2027
2028 kfree(cache);
2029}
2030
2031static void cache_dtr(struct dm_target *ti)
2032{
2033 struct cache *cache = ti->private;
2034
2035 destroy(cache);
2036}
2037
2038static sector_t get_dev_size(struct dm_dev *dev)
2039{
2040 return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2041}
2042
2043/*----------------------------------------------------------------*/
2044
2045/*
2046 * Construct a cache device mapping.
2047 *
2048 * cache <metadata dev> <cache dev> <origin dev> <block size>
2049 * <#feature args> [<feature arg>]*
2050 * <policy> <#policy args> [<policy arg>]*
2051 *
2052 * metadata dev : fast device holding the persistent metadata
2053 * cache dev : fast device holding cached data blocks
2054 * origin dev : slow device holding original data blocks
2055 * block size : cache unit size in sectors
2056 *
2057 * #feature args : number of feature arguments passed
2058 * feature args : writethrough. (The default is writeback.)
2059 *
2060 * policy : the replacement policy to use
2061 * #policy args : an even number of policy arguments corresponding
2062 * to key/value pairs passed to the policy
2063 * policy args : key/value pairs passed to the policy
2064 * E.g. 'sequential_threshold 1024'
2065 * See cache-policies.txt for details.
2066 *
2067 * Optional feature arguments are:
2068 * writethrough : write through caching that prohibits cache block
2069 * content from being different from origin block content.
2070 * Without this argument, the default behaviour is to write
2071 * back cache block contents later for performance reasons,
2072 * so they may differ from the corresponding origin blocks.
2073 */
2074struct cache_args {
2075 struct dm_target *ti;
2076
2077 struct dm_dev *metadata_dev;
2078
2079 struct dm_dev *cache_dev;
2080 sector_t cache_sectors;
2081
2082 struct dm_dev *origin_dev;
2083 sector_t origin_sectors;
2084
2085 uint32_t block_size;
2086
2087 const char *policy_name;
2088 int policy_argc;
2089 const char **policy_argv;
2090
2091 struct cache_features features;
2092};
2093
2094static void destroy_cache_args(struct cache_args *ca)
2095{
2096 if (ca->metadata_dev)
2097 dm_put_device(ca->ti, ca->metadata_dev);
2098
2099 if (ca->cache_dev)
2100 dm_put_device(ca->ti, ca->cache_dev);
2101
2102 if (ca->origin_dev)
2103 dm_put_device(ca->ti, ca->origin_dev);
2104
2105 kfree(ca);
2106}
2107
2108static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2109{
2110 if (!as->argc) {
2111 *error = "Insufficient args";
2112 return false;
2113 }
2114
2115 return true;
2116}
2117
2118static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2119 char **error)
2120{
2121 int r;
2122 sector_t metadata_dev_size;
2123 char b[BDEVNAME_SIZE];
2124
2125 if (!at_least_one_arg(as, error))
2126 return -EINVAL;
2127
2128 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2129 &ca->metadata_dev);
2130 if (r) {
2131 *error = "Error opening metadata device";
2132 return r;
2133 }
2134
2135 metadata_dev_size = get_dev_size(ca->metadata_dev);
2136 if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2137 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2138 bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2139
2140 return 0;
2141}
2142
2143static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2144 char **error)
2145{
2146 int r;
2147
2148 if (!at_least_one_arg(as, error))
2149 return -EINVAL;
2150
2151 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2152 &ca->cache_dev);
2153 if (r) {
2154 *error = "Error opening cache device";
2155 return r;
2156 }
2157 ca->cache_sectors = get_dev_size(ca->cache_dev);
2158
2159 return 0;
2160}
2161
2162static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2163 char **error)
2164{
2165 int r;
2166
2167 if (!at_least_one_arg(as, error))
2168 return -EINVAL;
2169
2170 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2171 &ca->origin_dev);
2172 if (r) {
2173 *error = "Error opening origin device";
2174 return r;
2175 }
2176
2177 ca->origin_sectors = get_dev_size(ca->origin_dev);
2178 if (ca->ti->len > ca->origin_sectors) {
2179 *error = "Device size larger than cached device";
2180 return -EINVAL;
2181 }
2182
2183 return 0;
2184}
2185
2186static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2187 char **error)
2188{
2189 unsigned long block_size;
2190
2191 if (!at_least_one_arg(as, error))
2192 return -EINVAL;
2193
2194 if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2195 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2196 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2197 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2198 *error = "Invalid data block size";
2199 return -EINVAL;
2200 }
2201
2202 if (block_size > ca->cache_sectors) {
2203 *error = "Data block size is larger than the cache device";
2204 return -EINVAL;
2205 }
2206
2207 ca->block_size = block_size;
2208
2209 return 0;
2210}
2211
2212static void init_features(struct cache_features *cf)
2213{
2214 cf->mode = CM_WRITE;
2215 cf->io_mode = CM_IO_WRITEBACK;
2216 cf->metadata_version = 1;
2217 cf->discard_passdown = true;
2218}
2219
2220static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2221 char **error)
2222{
2223 static const struct dm_arg _args[] = {
2224 {0, 3, "Invalid number of cache feature arguments"},
2225 };
2226
2227 int r, mode_ctr = 0;
2228 unsigned argc;
2229 const char *arg;
2230 struct cache_features *cf = &ca->features;
2231
2232 init_features(cf);
2233
2234 r = dm_read_arg_group(_args, as, &argc, error);
2235 if (r)
2236 return -EINVAL;
2237
2238 while (argc--) {
2239 arg = dm_shift_arg(as);
2240
2241 if (!strcasecmp(arg, "writeback")) {
2242 cf->io_mode = CM_IO_WRITEBACK;
2243 mode_ctr++;
2244 }
2245
2246 else if (!strcasecmp(arg, "writethrough")) {
2247 cf->io_mode = CM_IO_WRITETHROUGH;
2248 mode_ctr++;
2249 }
2250
2251 else if (!strcasecmp(arg, "passthrough")) {
2252 cf->io_mode = CM_IO_PASSTHROUGH;
2253 mode_ctr++;
2254 }
2255
2256 else if (!strcasecmp(arg, "metadata2"))
2257 cf->metadata_version = 2;
2258
2259 else if (!strcasecmp(arg, "no_discard_passdown"))
2260 cf->discard_passdown = false;
2261
2262 else {
2263 *error = "Unrecognised cache feature requested";
2264 return -EINVAL;
2265 }
2266 }
2267
2268 if (mode_ctr > 1) {
2269 *error = "Duplicate cache io_mode features requested";
2270 return -EINVAL;
2271 }
2272
2273 return 0;
2274}
2275
2276static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2277 char **error)
2278{
2279 static const struct dm_arg _args[] = {
2280 {0, 1024, "Invalid number of policy arguments"},
2281 };
2282
2283 int r;
2284
2285 if (!at_least_one_arg(as, error))
2286 return -EINVAL;
2287
2288 ca->policy_name = dm_shift_arg(as);
2289
2290 r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2291 if (r)
2292 return -EINVAL;
2293
2294 ca->policy_argv = (const char **)as->argv;
2295 dm_consume_args(as, ca->policy_argc);
2296
2297 return 0;
2298}
2299
2300static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2301 char **error)
2302{
2303 int r;
2304 struct dm_arg_set as;
2305
2306 as.argc = argc;
2307 as.argv = argv;
2308
2309 r = parse_metadata_dev(ca, &as, error);
2310 if (r)
2311 return r;
2312
2313 r = parse_cache_dev(ca, &as, error);
2314 if (r)
2315 return r;
2316
2317 r = parse_origin_dev(ca, &as, error);
2318 if (r)
2319 return r;
2320
2321 r = parse_block_size(ca, &as, error);
2322 if (r)
2323 return r;
2324
2325 r = parse_features(ca, &as, error);
2326 if (r)
2327 return r;
2328
2329 r = parse_policy(ca, &as, error);
2330 if (r)
2331 return r;
2332
2333 return 0;
2334}
2335
2336/*----------------------------------------------------------------*/
2337
2338static struct kmem_cache *migration_cache;
2339
2340#define NOT_CORE_OPTION 1
2341
2342static int process_config_option(struct cache *cache, const char *key, const char *value)
2343{
2344 unsigned long tmp;
2345
2346 if (!strcasecmp(key, "migration_threshold")) {
2347 if (kstrtoul(value, 10, &tmp))
2348 return -EINVAL;
2349
2350 cache->migration_threshold = tmp;
2351 return 0;
2352 }
2353
2354 return NOT_CORE_OPTION;
2355}
2356
2357static int set_config_value(struct cache *cache, const char *key, const char *value)
2358{
2359 int r = process_config_option(cache, key, value);
2360
2361 if (r == NOT_CORE_OPTION)
2362 r = policy_set_config_value(cache->policy, key, value);
2363
2364 if (r)
2365 DMWARN("bad config value for %s: %s", key, value);
2366
2367 return r;
2368}
2369
2370static int set_config_values(struct cache *cache, int argc, const char **argv)
2371{
2372 int r = 0;
2373
2374 if (argc & 1) {
2375 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2376 return -EINVAL;
2377 }
2378
2379 while (argc) {
2380 r = set_config_value(cache, argv[0], argv[1]);
2381 if (r)
2382 break;
2383
2384 argc -= 2;
2385 argv += 2;
2386 }
2387
2388 return r;
2389}
2390
2391static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2392 char **error)
2393{
2394 struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2395 cache->cache_size,
2396 cache->origin_sectors,
2397 cache->sectors_per_block);
2398 if (IS_ERR(p)) {
2399 *error = "Error creating cache's policy";
2400 return PTR_ERR(p);
2401 }
2402 cache->policy = p;
2403 BUG_ON(!cache->policy);
2404
2405 return 0;
2406}
2407
2408/*
2409 * We want the discard block size to be at least the size of the cache
2410 * block size and have no more than 2^14 discard blocks across the origin.
2411 */
2412#define MAX_DISCARD_BLOCKS (1 << 14)
2413
2414static bool too_many_discard_blocks(sector_t discard_block_size,
2415 sector_t origin_size)
2416{
2417 (void) sector_div(origin_size, discard_block_size);
2418
2419 return origin_size > MAX_DISCARD_BLOCKS;
2420}
2421
2422static sector_t calculate_discard_block_size(sector_t cache_block_size,
2423 sector_t origin_size)
2424{
2425 sector_t discard_block_size = cache_block_size;
2426
2427 if (origin_size)
2428 while (too_many_discard_blocks(discard_block_size, origin_size))
2429 discard_block_size *= 2;
2430
2431 return discard_block_size;
2432}
2433
2434static void set_cache_size(struct cache *cache, dm_cblock_t size)
2435{
2436 dm_block_t nr_blocks = from_cblock(size);
2437
2438 if (nr_blocks > (1 << 20) && cache->cache_size != size)
2439 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2440 "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2441 "Please consider increasing the cache block size to reduce the overall cache block count.",
2442 (unsigned long long) nr_blocks);
2443
2444 cache->cache_size = size;
2445}
2446
2447static int is_congested(struct dm_dev *dev, int bdi_bits)
2448{
2449 struct request_queue *q = bdev_get_queue(dev->bdev);
2450 return bdi_congested(q->backing_dev_info, bdi_bits);
2451}
2452
2453static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2454{
2455 struct cache *cache = container_of(cb, struct cache, callbacks);
2456
2457 return is_congested(cache->origin_dev, bdi_bits) ||
2458 is_congested(cache->cache_dev, bdi_bits);
2459}
2460
2461#define DEFAULT_MIGRATION_THRESHOLD 2048
2462
2463static int cache_create(struct cache_args *ca, struct cache **result)
2464{
2465 int r = 0;
2466 char **error = &ca->ti->error;
2467 struct cache *cache;
2468 struct dm_target *ti = ca->ti;
2469 dm_block_t origin_blocks;
2470 struct dm_cache_metadata *cmd;
2471 bool may_format = ca->features.mode == CM_WRITE;
2472
2473 cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2474 if (!cache)
2475 return -ENOMEM;
2476
2477 cache->ti = ca->ti;
2478 ti->private = cache;
2479 ti->num_flush_bios = 2;
2480 ti->flush_supported = true;
2481
2482 ti->num_discard_bios = 1;
2483 ti->discards_supported = true;
2484
2485 ti->per_io_data_size = sizeof(struct per_bio_data);
2486
2487 cache->features = ca->features;
2488 if (writethrough_mode(cache)) {
2489 /* Create bioset for writethrough bios issued to origin */
2490 r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2491 if (r)
2492 goto bad;
2493 }
2494
2495 cache->callbacks.congested_fn = cache_is_congested;
2496 dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2497
2498 cache->metadata_dev = ca->metadata_dev;
2499 cache->origin_dev = ca->origin_dev;
2500 cache->cache_dev = ca->cache_dev;
2501
2502 ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2503
2504 origin_blocks = cache->origin_sectors = ca->origin_sectors;
2505 origin_blocks = block_div(origin_blocks, ca->block_size);
2506 cache->origin_blocks = to_oblock(origin_blocks);
2507
2508 cache->sectors_per_block = ca->block_size;
2509 if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2510 r = -EINVAL;
2511 goto bad;
2512 }
2513
2514 if (ca->block_size & (ca->block_size - 1)) {
2515 dm_block_t cache_size = ca->cache_sectors;
2516
2517 cache->sectors_per_block_shift = -1;
2518 cache_size = block_div(cache_size, ca->block_size);
2519 set_cache_size(cache, to_cblock(cache_size));
2520 } else {
2521 cache->sectors_per_block_shift = __ffs(ca->block_size);
2522 set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2523 }
2524
2525 r = create_cache_policy(cache, ca, error);
2526 if (r)
2527 goto bad;
2528
2529 cache->policy_nr_args = ca->policy_argc;
2530 cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2531
2532 r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2533 if (r) {
2534 *error = "Error setting cache policy's config values";
2535 goto bad;
2536 }
2537
2538 cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2539 ca->block_size, may_format,
2540 dm_cache_policy_get_hint_size(cache->policy),
2541 ca->features.metadata_version);
2542 if (IS_ERR(cmd)) {
2543 *error = "Error creating metadata object";
2544 r = PTR_ERR(cmd);
2545 goto bad;
2546 }
2547 cache->cmd = cmd;
2548 set_cache_mode(cache, CM_WRITE);
2549 if (get_cache_mode(cache) != CM_WRITE) {
2550 *error = "Unable to get write access to metadata, please check/repair metadata.";
2551 r = -EINVAL;
2552 goto bad;
2553 }
2554
2555 if (passthrough_mode(cache)) {
2556 bool all_clean;
2557
2558 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2559 if (r) {
2560 *error = "dm_cache_metadata_all_clean() failed";
2561 goto bad;
2562 }
2563
2564 if (!all_clean) {
2565 *error = "Cannot enter passthrough mode unless all blocks are clean";
2566 r = -EINVAL;
2567 goto bad;
2568 }
2569
2570 policy_allow_migrations(cache->policy, false);
2571 }
2572
2573 spin_lock_init(&cache->lock);
2574 bio_list_init(&cache->deferred_bios);
2575 atomic_set(&cache->nr_allocated_migrations, 0);
2576 atomic_set(&cache->nr_io_migrations, 0);
2577 init_waitqueue_head(&cache->migration_wait);
2578
2579 r = -ENOMEM;
2580 atomic_set(&cache->nr_dirty, 0);
2581 cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2582 if (!cache->dirty_bitset) {
2583 *error = "could not allocate dirty bitset";
2584 goto bad;
2585 }
2586 clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2587
2588 cache->discard_block_size =
2589 calculate_discard_block_size(cache->sectors_per_block,
2590 cache->origin_sectors);
2591 cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2592 cache->discard_block_size));
2593 cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2594 if (!cache->discard_bitset) {
2595 *error = "could not allocate discard bitset";
2596 goto bad;
2597 }
2598 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2599
2600 cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2601 if (IS_ERR(cache->copier)) {
2602 *error = "could not create kcopyd client";
2603 r = PTR_ERR(cache->copier);
2604 goto bad;
2605 }
2606
2607 cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2608 if (!cache->wq) {
2609 *error = "could not create workqueue for metadata object";
2610 goto bad;
2611 }
2612 INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2613 INIT_WORK(&cache->migration_worker, check_migrations);
2614 INIT_DELAYED_WORK(&cache->waker, do_waker);
2615
2616 cache->prison = dm_bio_prison_create_v2(cache->wq);
2617 if (!cache->prison) {
2618 *error = "could not create bio prison";
2619 goto bad;
2620 }
2621
2622 r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2623 migration_cache);
2624 if (r) {
2625 *error = "Error creating cache's migration mempool";
2626 goto bad;
2627 }
2628
2629 cache->need_tick_bio = true;
2630 cache->sized = false;
2631 cache->invalidate = false;
2632 cache->commit_requested = false;
2633 cache->loaded_mappings = false;
2634 cache->loaded_discards = false;
2635
2636 load_stats(cache);
2637
2638 atomic_set(&cache->stats.demotion, 0);
2639 atomic_set(&cache->stats.promotion, 0);
2640 atomic_set(&cache->stats.copies_avoided, 0);
2641 atomic_set(&cache->stats.cache_cell_clash, 0);
2642 atomic_set(&cache->stats.commit_count, 0);
2643 atomic_set(&cache->stats.discard_count, 0);
2644
2645 spin_lock_init(&cache->invalidation_lock);
2646 INIT_LIST_HEAD(&cache->invalidation_requests);
2647
2648 batcher_init(&cache->committer, commit_op, cache,
2649 issue_op, cache, cache->wq);
2650 iot_init(&cache->tracker);
2651
2652 init_rwsem(&cache->background_work_lock);
2653 prevent_background_work(cache);
2654
2655 *result = cache;
2656 return 0;
2657bad:
2658 destroy(cache);
2659 return r;
2660}
2661
2662static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2663{
2664 unsigned i;
2665 const char **copy;
2666
2667 copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2668 if (!copy)
2669 return -ENOMEM;
2670 for (i = 0; i < argc; i++) {
2671 copy[i] = kstrdup(argv[i], GFP_KERNEL);
2672 if (!copy[i]) {
2673 while (i--)
2674 kfree(copy[i]);
2675 kfree(copy);
2676 return -ENOMEM;
2677 }
2678 }
2679
2680 cache->nr_ctr_args = argc;
2681 cache->ctr_args = copy;
2682
2683 return 0;
2684}
2685
2686static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2687{
2688 int r = -EINVAL;
2689 struct cache_args *ca;
2690 struct cache *cache = NULL;
2691
2692 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2693 if (!ca) {
2694 ti->error = "Error allocating memory for cache";
2695 return -ENOMEM;
2696 }
2697 ca->ti = ti;
2698
2699 r = parse_cache_args(ca, argc, argv, &ti->error);
2700 if (r)
2701 goto out;
2702
2703 r = cache_create(ca, &cache);
2704 if (r)
2705 goto out;
2706
2707 r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2708 if (r) {
2709 destroy(cache);
2710 goto out;
2711 }
2712
2713 ti->private = cache;
2714out:
2715 destroy_cache_args(ca);
2716 return r;
2717}
2718
2719/*----------------------------------------------------------------*/
2720
2721static int cache_map(struct dm_target *ti, struct bio *bio)
2722{
2723 struct cache *cache = ti->private;
2724
2725 int r;
2726 bool commit_needed;
2727 dm_oblock_t block = get_bio_block(cache, bio);
2728
2729 init_per_bio_data(bio);
2730 if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2731 /*
2732 * This can only occur if the io goes to a partial block at
2733 * the end of the origin device. We don't cache these.
2734 * Just remap to the origin and carry on.
2735 */
2736 remap_to_origin(cache, bio);
2737 accounted_begin(cache, bio);
2738 return DM_MAPIO_REMAPPED;
2739 }
2740
2741 if (discard_or_flush(bio)) {
2742 defer_bio(cache, bio);
2743 return DM_MAPIO_SUBMITTED;
2744 }
2745
2746 r = map_bio(cache, bio, block, &commit_needed);
2747 if (commit_needed)
2748 schedule_commit(&cache->committer);
2749
2750 return r;
2751}
2752
2753static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2754{
2755 struct cache *cache = ti->private;
2756 unsigned long flags;
2757 struct per_bio_data *pb = get_per_bio_data(bio);
2758
2759 if (pb->tick) {
2760 policy_tick(cache->policy, false);
2761
2762 spin_lock_irqsave(&cache->lock, flags);
2763 cache->need_tick_bio = true;
2764 spin_unlock_irqrestore(&cache->lock, flags);
2765 }
2766
2767 bio_drop_shared_lock(cache, bio);
2768 accounted_complete(cache, bio);
2769
2770 return DM_ENDIO_DONE;
2771}
2772
2773static int write_dirty_bitset(struct cache *cache)
2774{
2775 int r;
2776
2777 if (get_cache_mode(cache) >= CM_READ_ONLY)
2778 return -EINVAL;
2779
2780 r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2781 if (r)
2782 metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2783
2784 return r;
2785}
2786
2787static int write_discard_bitset(struct cache *cache)
2788{
2789 unsigned i, r;
2790
2791 if (get_cache_mode(cache) >= CM_READ_ONLY)
2792 return -EINVAL;
2793
2794 r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2795 cache->discard_nr_blocks);
2796 if (r) {
2797 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2798 metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2799 return r;
2800 }
2801
2802 for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2803 r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2804 is_discarded(cache, to_dblock(i)));
2805 if (r) {
2806 metadata_operation_failed(cache, "dm_cache_set_discard", r);
2807 return r;
2808 }
2809 }
2810
2811 return 0;
2812}
2813
2814static int write_hints(struct cache *cache)
2815{
2816 int r;
2817
2818 if (get_cache_mode(cache) >= CM_READ_ONLY)
2819 return -EINVAL;
2820
2821 r = dm_cache_write_hints(cache->cmd, cache->policy);
2822 if (r) {
2823 metadata_operation_failed(cache, "dm_cache_write_hints", r);
2824 return r;
2825 }
2826
2827 return 0;
2828}
2829
2830/*
2831 * returns true on success
2832 */
2833static bool sync_metadata(struct cache *cache)
2834{
2835 int r1, r2, r3, r4;
2836
2837 r1 = write_dirty_bitset(cache);
2838 if (r1)
2839 DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2840
2841 r2 = write_discard_bitset(cache);
2842 if (r2)
2843 DMERR("%s: could not write discard bitset", cache_device_name(cache));
2844
2845 save_stats(cache);
2846
2847 r3 = write_hints(cache);
2848 if (r3)
2849 DMERR("%s: could not write hints", cache_device_name(cache));
2850
2851 /*
2852 * If writing the above metadata failed, we still commit, but don't
2853 * set the clean shutdown flag. This will effectively force every
2854 * dirty bit to be set on reload.
2855 */
2856 r4 = commit(cache, !r1 && !r2 && !r3);
2857 if (r4)
2858 DMERR("%s: could not write cache metadata", cache_device_name(cache));
2859
2860 return !r1 && !r2 && !r3 && !r4;
2861}
2862
2863static void cache_postsuspend(struct dm_target *ti)
2864{
2865 struct cache *cache = ti->private;
2866
2867 prevent_background_work(cache);
2868 BUG_ON(atomic_read(&cache->nr_io_migrations));
2869
2870 cancel_delayed_work(&cache->waker);
2871 flush_workqueue(cache->wq);
2872 WARN_ON(cache->tracker.in_flight);
2873
2874 /*
2875 * If it's a flush suspend there won't be any deferred bios, so this
2876 * call is harmless.
2877 */
2878 requeue_deferred_bios(cache);
2879
2880 if (get_cache_mode(cache) == CM_WRITE)
2881 (void) sync_metadata(cache);
2882}
2883
2884static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2885 bool dirty, uint32_t hint, bool hint_valid)
2886{
2887 int r;
2888 struct cache *cache = context;
2889
2890 if (dirty) {
2891 set_bit(from_cblock(cblock), cache->dirty_bitset);
2892 atomic_inc(&cache->nr_dirty);
2893 } else
2894 clear_bit(from_cblock(cblock), cache->dirty_bitset);
2895
2896 r = policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2897 if (r)
2898 return r;
2899
2900 return 0;
2901}
2902
2903/*
2904 * The discard block size in the on disk metadata is not
2905 * neccessarily the same as we're currently using. So we have to
2906 * be careful to only set the discarded attribute if we know it
2907 * covers a complete block of the new size.
2908 */
2909struct discard_load_info {
2910 struct cache *cache;
2911
2912 /*
2913 * These blocks are sized using the on disk dblock size, rather
2914 * than the current one.
2915 */
2916 dm_block_t block_size;
2917 dm_block_t discard_begin, discard_end;
2918};
2919
2920static void discard_load_info_init(struct cache *cache,
2921 struct discard_load_info *li)
2922{
2923 li->cache = cache;
2924 li->discard_begin = li->discard_end = 0;
2925}
2926
2927static void set_discard_range(struct discard_load_info *li)
2928{
2929 sector_t b, e;
2930
2931 if (li->discard_begin == li->discard_end)
2932 return;
2933
2934 /*
2935 * Convert to sectors.
2936 */
2937 b = li->discard_begin * li->block_size;
2938 e = li->discard_end * li->block_size;
2939
2940 /*
2941 * Then convert back to the current dblock size.
2942 */
2943 b = dm_sector_div_up(b, li->cache->discard_block_size);
2944 sector_div(e, li->cache->discard_block_size);
2945
2946 /*
2947 * The origin may have shrunk, so we need to check we're still in
2948 * bounds.
2949 */
2950 if (e > from_dblock(li->cache->discard_nr_blocks))
2951 e = from_dblock(li->cache->discard_nr_blocks);
2952
2953 for (; b < e; b++)
2954 set_discard(li->cache, to_dblock(b));
2955}
2956
2957static int load_discard(void *context, sector_t discard_block_size,
2958 dm_dblock_t dblock, bool discard)
2959{
2960 struct discard_load_info *li = context;
2961
2962 li->block_size = discard_block_size;
2963
2964 if (discard) {
2965 if (from_dblock(dblock) == li->discard_end)
2966 /*
2967 * We're already in a discard range, just extend it.
2968 */
2969 li->discard_end = li->discard_end + 1ULL;
2970
2971 else {
2972 /*
2973 * Emit the old range and start a new one.
2974 */
2975 set_discard_range(li);
2976 li->discard_begin = from_dblock(dblock);
2977 li->discard_end = li->discard_begin + 1ULL;
2978 }
2979 } else {
2980 set_discard_range(li);
2981 li->discard_begin = li->discard_end = 0;
2982 }
2983
2984 return 0;
2985}
2986
2987static dm_cblock_t get_cache_dev_size(struct cache *cache)
2988{
2989 sector_t size = get_dev_size(cache->cache_dev);
2990 (void) sector_div(size, cache->sectors_per_block);
2991 return to_cblock(size);
2992}
2993
2994static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2995{
2996 if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
2997 if (cache->sized) {
2998 DMERR("%s: unable to extend cache due to missing cache table reload",
2999 cache_device_name(cache));
3000 return false;
3001 }
3002 }
3003
3004 /*
3005 * We can't drop a dirty block when shrinking the cache.
3006 */
3007 while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3008 new_size = to_cblock(from_cblock(new_size) + 1);
3009 if (is_dirty(cache, new_size)) {
3010 DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3011 cache_device_name(cache),
3012 (unsigned long long) from_cblock(new_size));
3013 return false;
3014 }
3015 }
3016
3017 return true;
3018}
3019
3020static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3021{
3022 int r;
3023
3024 r = dm_cache_resize(cache->cmd, new_size);
3025 if (r) {
3026 DMERR("%s: could not resize cache metadata", cache_device_name(cache));
3027 metadata_operation_failed(cache, "dm_cache_resize", r);
3028 return r;
3029 }
3030
3031 set_cache_size(cache, new_size);
3032
3033 return 0;
3034}
3035
3036static int cache_preresume(struct dm_target *ti)
3037{
3038 int r = 0;
3039 struct cache *cache = ti->private;
3040 dm_cblock_t csize = get_cache_dev_size(cache);
3041
3042 /*
3043 * Check to see if the cache has resized.
3044 */
3045 if (!cache->sized) {
3046 r = resize_cache_dev(cache, csize);
3047 if (r)
3048 return r;
3049
3050 cache->sized = true;
3051
3052 } else if (csize != cache->cache_size) {
3053 if (!can_resize(cache, csize))
3054 return -EINVAL;
3055
3056 r = resize_cache_dev(cache, csize);
3057 if (r)
3058 return r;
3059 }
3060
3061 if (!cache->loaded_mappings) {
3062 r = dm_cache_load_mappings(cache->cmd, cache->policy,
3063 load_mapping, cache);
3064 if (r) {
3065 DMERR("%s: could not load cache mappings", cache_device_name(cache));
3066 metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3067 return r;
3068 }
3069
3070 cache->loaded_mappings = true;
3071 }
3072
3073 if (!cache->loaded_discards) {
3074 struct discard_load_info li;
3075
3076 /*
3077 * The discard bitset could have been resized, or the
3078 * discard block size changed. To be safe we start by
3079 * setting every dblock to not discarded.
3080 */
3081 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3082
3083 discard_load_info_init(cache, &li);
3084 r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3085 if (r) {
3086 DMERR("%s: could not load origin discards", cache_device_name(cache));
3087 metadata_operation_failed(cache, "dm_cache_load_discards", r);
3088 return r;
3089 }
3090 set_discard_range(&li);
3091
3092 cache->loaded_discards = true;
3093 }
3094
3095 return r;
3096}
3097
3098static void cache_resume(struct dm_target *ti)
3099{
3100 struct cache *cache = ti->private;
3101
3102 cache->need_tick_bio = true;
3103 allow_background_work(cache);
3104 do_waker(&cache->waker.work);
3105}
3106
3107static void emit_flags(struct cache *cache, char *result,
3108 unsigned maxlen, ssize_t *sz_ptr)
3109{
3110 ssize_t sz = *sz_ptr;
3111 struct cache_features *cf = &cache->features;
3112 unsigned count = (cf->metadata_version == 2) + !cf->discard_passdown + 1;
3113
3114 DMEMIT("%u ", count);
3115
3116 if (cf->metadata_version == 2)
3117 DMEMIT("metadata2 ");
3118
3119 if (writethrough_mode(cache))
3120 DMEMIT("writethrough ");
3121
3122 else if (passthrough_mode(cache))
3123 DMEMIT("passthrough ");
3124
3125 else if (writeback_mode(cache))
3126 DMEMIT("writeback ");
3127
3128 else {
3129 DMEMIT("unknown ");
3130 DMERR("%s: internal error: unknown io mode: %d",
3131 cache_device_name(cache), (int) cf->io_mode);
3132 }
3133
3134 if (!cf->discard_passdown)
3135 DMEMIT("no_discard_passdown ");
3136
3137 *sz_ptr = sz;
3138}
3139
3140/*
3141 * Status format:
3142 *
3143 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3144 * <cache block size> <#used cache blocks>/<#total cache blocks>
3145 * <#read hits> <#read misses> <#write hits> <#write misses>
3146 * <#demotions> <#promotions> <#dirty>
3147 * <#features> <features>*
3148 * <#core args> <core args>
3149 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3150 */
3151static void cache_status(struct dm_target *ti, status_type_t type,
3152 unsigned status_flags, char *result, unsigned maxlen)
3153{
3154 int r = 0;
3155 unsigned i;
3156 ssize_t sz = 0;
3157 dm_block_t nr_free_blocks_metadata = 0;
3158 dm_block_t nr_blocks_metadata = 0;
3159 char buf[BDEVNAME_SIZE];
3160 struct cache *cache = ti->private;
3161 dm_cblock_t residency;
3162 bool needs_check;
3163
3164 switch (type) {
3165 case STATUSTYPE_INFO:
3166 if (get_cache_mode(cache) == CM_FAIL) {
3167 DMEMIT("Fail");
3168 break;
3169 }
3170
3171 /* Commit to ensure statistics aren't out-of-date */
3172 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3173 (void) commit(cache, false);
3174
3175 r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3176 if (r) {
3177 DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3178 cache_device_name(cache), r);
3179 goto err;
3180 }
3181
3182 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3183 if (r) {
3184 DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3185 cache_device_name(cache), r);
3186 goto err;
3187 }
3188
3189 residency = policy_residency(cache->policy);
3190
3191 DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3192 (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3193 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3194 (unsigned long long)nr_blocks_metadata,
3195 (unsigned long long)cache->sectors_per_block,
3196 (unsigned long long) from_cblock(residency),
3197 (unsigned long long) from_cblock(cache->cache_size),
3198 (unsigned) atomic_read(&cache->stats.read_hit),
3199 (unsigned) atomic_read(&cache->stats.read_miss),
3200 (unsigned) atomic_read(&cache->stats.write_hit),
3201 (unsigned) atomic_read(&cache->stats.write_miss),
3202 (unsigned) atomic_read(&cache->stats.demotion),
3203 (unsigned) atomic_read(&cache->stats.promotion),
3204 (unsigned long) atomic_read(&cache->nr_dirty));
3205
3206 emit_flags(cache, result, maxlen, &sz);
3207
3208 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3209
3210 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3211 if (sz < maxlen) {
3212 r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3213 if (r)
3214 DMERR("%s: policy_emit_config_values returned %d",
3215 cache_device_name(cache), r);
3216 }
3217
3218 if (get_cache_mode(cache) == CM_READ_ONLY)
3219 DMEMIT("ro ");
3220 else
3221 DMEMIT("rw ");
3222
3223 r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3224
3225 if (r || needs_check)
3226 DMEMIT("needs_check ");
3227 else
3228 DMEMIT("- ");
3229
3230 break;
3231
3232 case STATUSTYPE_TABLE:
3233 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3234 DMEMIT("%s ", buf);
3235 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3236 DMEMIT("%s ", buf);
3237 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3238 DMEMIT("%s", buf);
3239
3240 for (i = 0; i < cache->nr_ctr_args - 1; i++)
3241 DMEMIT(" %s", cache->ctr_args[i]);
3242 if (cache->nr_ctr_args)
3243 DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3244 }
3245
3246 return;
3247
3248err:
3249 DMEMIT("Error");
3250}
3251
3252/*
3253 * Defines a range of cblocks, begin to (end - 1) are in the range. end is
3254 * the one-past-the-end value.
3255 */
3256struct cblock_range {
3257 dm_cblock_t begin;
3258 dm_cblock_t end;
3259};
3260
3261/*
3262 * A cache block range can take two forms:
3263 *
3264 * i) A single cblock, eg. '3456'
3265 * ii) A begin and end cblock with a dash between, eg. 123-234
3266 */
3267static int parse_cblock_range(struct cache *cache, const char *str,
3268 struct cblock_range *result)
3269{
3270 char dummy;
3271 uint64_t b, e;
3272 int r;
3273
3274 /*
3275 * Try and parse form (ii) first.
3276 */
3277 r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3278 if (r < 0)
3279 return r;
3280
3281 if (r == 2) {
3282 result->begin = to_cblock(b);
3283 result->end = to_cblock(e);
3284 return 0;
3285 }
3286
3287 /*
3288 * That didn't work, try form (i).
3289 */
3290 r = sscanf(str, "%llu%c", &b, &dummy);
3291 if (r < 0)
3292 return r;
3293
3294 if (r == 1) {
3295 result->begin = to_cblock(b);
3296 result->end = to_cblock(from_cblock(result->begin) + 1u);
3297 return 0;
3298 }
3299
3300 DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3301 return -EINVAL;
3302}
3303
3304static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3305{
3306 uint64_t b = from_cblock(range->begin);
3307 uint64_t e = from_cblock(range->end);
3308 uint64_t n = from_cblock(cache->cache_size);
3309
3310 if (b >= n) {
3311 DMERR("%s: begin cblock out of range: %llu >= %llu",
3312 cache_device_name(cache), b, n);
3313 return -EINVAL;
3314 }
3315
3316 if (e > n) {
3317 DMERR("%s: end cblock out of range: %llu > %llu",
3318 cache_device_name(cache), e, n);
3319 return -EINVAL;
3320 }
3321
3322 if (b >= e) {
3323 DMERR("%s: invalid cblock range: %llu >= %llu",
3324 cache_device_name(cache), b, e);
3325 return -EINVAL;
3326 }
3327
3328 return 0;
3329}
3330
3331static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3332{
3333 return to_cblock(from_cblock(b) + 1);
3334}
3335
3336static int request_invalidation(struct cache *cache, struct cblock_range *range)
3337{
3338 int r = 0;
3339
3340 /*
3341 * We don't need to do any locking here because we know we're in
3342 * passthrough mode. There's is potential for a race between an
3343 * invalidation triggered by an io and an invalidation message. This
3344 * is harmless, we must not worry if the policy call fails.
3345 */
3346 while (range->begin != range->end) {
3347 r = invalidate_cblock(cache, range->begin);
3348 if (r)
3349 return r;
3350
3351 range->begin = cblock_succ(range->begin);
3352 }
3353
3354 cache->commit_requested = true;
3355 return r;
3356}
3357
3358static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3359 const char **cblock_ranges)
3360{
3361 int r = 0;
3362 unsigned i;
3363 struct cblock_range range;
3364
3365 if (!passthrough_mode(cache)) {
3366 DMERR("%s: cache has to be in passthrough mode for invalidation",
3367 cache_device_name(cache));
3368 return -EPERM;
3369 }
3370
3371 for (i = 0; i < count; i++) {
3372 r = parse_cblock_range(cache, cblock_ranges[i], &range);
3373 if (r)
3374 break;
3375
3376 r = validate_cblock_range(cache, &range);
3377 if (r)
3378 break;
3379
3380 /*
3381 * Pass begin and end origin blocks to the worker and wake it.
3382 */
3383 r = request_invalidation(cache, &range);
3384 if (r)
3385 break;
3386 }
3387
3388 return r;
3389}
3390
3391/*
3392 * Supports
3393 * "<key> <value>"
3394 * and
3395 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3396 *
3397 * The key migration_threshold is supported by the cache target core.
3398 */
3399static int cache_message(struct dm_target *ti, unsigned argc, char **argv,
3400 char *result, unsigned maxlen)
3401{
3402 struct cache *cache = ti->private;
3403
3404 if (!argc)
3405 return -EINVAL;
3406
3407 if (get_cache_mode(cache) >= CM_READ_ONLY) {
3408 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3409 cache_device_name(cache));
3410 return -EOPNOTSUPP;
3411 }
3412
3413 if (!strcasecmp(argv[0], "invalidate_cblocks"))
3414 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3415
3416 if (argc != 2)
3417 return -EINVAL;
3418
3419 return set_config_value(cache, argv[0], argv[1]);
3420}
3421
3422static int cache_iterate_devices(struct dm_target *ti,
3423 iterate_devices_callout_fn fn, void *data)
3424{
3425 int r = 0;
3426 struct cache *cache = ti->private;
3427
3428 r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3429 if (!r)
3430 r = fn(ti, cache->origin_dev, 0, ti->len, data);
3431
3432 return r;
3433}
3434
3435static bool origin_dev_supports_discard(struct block_device *origin_bdev)
3436{
3437 struct request_queue *q = bdev_get_queue(origin_bdev);
3438
3439 return q && blk_queue_discard(q);
3440}
3441
3442/*
3443 * If discard_passdown was enabled verify that the origin device
3444 * supports discards. Disable discard_passdown if not.
3445 */
3446static void disable_passdown_if_not_supported(struct cache *cache)
3447{
3448 struct block_device *origin_bdev = cache->origin_dev->bdev;
3449 struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3450 const char *reason = NULL;
3451 char buf[BDEVNAME_SIZE];
3452
3453 if (!cache->features.discard_passdown)
3454 return;
3455
3456 if (!origin_dev_supports_discard(origin_bdev))
3457 reason = "discard unsupported";
3458
3459 else if (origin_limits->max_discard_sectors < cache->sectors_per_block)
3460 reason = "max discard sectors smaller than a block";
3461
3462 if (reason) {
3463 DMWARN("Origin device (%s) %s: Disabling discard passdown.",
3464 bdevname(origin_bdev, buf), reason);
3465 cache->features.discard_passdown = false;
3466 }
3467}
3468
3469static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3470{
3471 struct block_device *origin_bdev = cache->origin_dev->bdev;
3472 struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3473
3474 if (!cache->features.discard_passdown) {
3475 /* No passdown is done so setting own virtual limits */
3476 limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3477 cache->origin_sectors);
3478 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3479 return;
3480 }
3481
3482 /*
3483 * cache_iterate_devices() is stacking both origin and fast device limits
3484 * but discards aren't passed to fast device, so inherit origin's limits.
3485 */
3486 limits->max_discard_sectors = origin_limits->max_discard_sectors;
3487 limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors;
3488 limits->discard_granularity = origin_limits->discard_granularity;
3489 limits->discard_alignment = origin_limits->discard_alignment;
3490 limits->discard_misaligned = origin_limits->discard_misaligned;
3491}
3492
3493static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3494{
3495 struct cache *cache = ti->private;
3496 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3497
3498 /*
3499 * If the system-determined stacked limits are compatible with the
3500 * cache's blocksize (io_opt is a factor) do not override them.
3501 */
3502 if (io_opt_sectors < cache->sectors_per_block ||
3503 do_div(io_opt_sectors, cache->sectors_per_block)) {
3504 blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3505 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3506 }
3507
3508 disable_passdown_if_not_supported(cache);
3509 set_discard_limits(cache, limits);
3510}
3511
3512/*----------------------------------------------------------------*/
3513
3514static struct target_type cache_target = {
3515 .name = "cache",
3516 .version = {2, 1, 0},
3517 .module = THIS_MODULE,
3518 .ctr = cache_ctr,
3519 .dtr = cache_dtr,
3520 .map = cache_map,
3521 .end_io = cache_end_io,
3522 .postsuspend = cache_postsuspend,
3523 .preresume = cache_preresume,
3524 .resume = cache_resume,
3525 .status = cache_status,
3526 .message = cache_message,
3527 .iterate_devices = cache_iterate_devices,
3528 .io_hints = cache_io_hints,
3529};
3530
3531static int __init dm_cache_init(void)
3532{
3533 int r;
3534
3535 migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3536 if (!migration_cache)
3537 return -ENOMEM;
3538
3539 r = dm_register_target(&cache_target);
3540 if (r) {
3541 DMERR("cache target registration failed: %d", r);
3542 kmem_cache_destroy(migration_cache);
3543 return r;
3544 }
3545
3546 return 0;
3547}
3548
3549static void __exit dm_cache_exit(void)
3550{
3551 dm_unregister_target(&cache_target);
3552 kmem_cache_destroy(migration_cache);
3553}
3554
3555module_init(dm_cache_init);
3556module_exit(dm_cache_exit);
3557
3558MODULE_DESCRIPTION(DM_NAME " cache target");
3559MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3560MODULE_LICENSE("GPL");