Loading...
1/*
2 * Copyright (C) 2012 Red Hat. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm.h"
8#include "dm-bio-prison-v2.h"
9#include "dm-bio-record.h"
10#include "dm-cache-metadata.h"
11#include "dm-io-tracker.h"
12
13#include <linux/dm-io.h>
14#include <linux/dm-kcopyd.h>
15#include <linux/jiffies.h>
16#include <linux/init.h>
17#include <linux/mempool.h>
18#include <linux/module.h>
19#include <linux/rwsem.h>
20#include <linux/slab.h>
21#include <linux/vmalloc.h>
22
23#define DM_MSG_PREFIX "cache"
24
25DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
26 "A percentage of time allocated for copying to and/or from cache");
27
28/*----------------------------------------------------------------*/
29
30/*
31 * Glossary:
32 *
33 * oblock: index of an origin block
34 * cblock: index of a cache block
35 * promotion: movement of a block from origin to cache
36 * demotion: movement of a block from cache to origin
37 * migration: movement of a block between the origin and cache device,
38 * either direction
39 */
40
41/*----------------------------------------------------------------*/
42
43/*
44 * Represents a chunk of future work. 'input' allows continuations to pass
45 * values between themselves, typically error values.
46 */
47struct continuation {
48 struct work_struct ws;
49 blk_status_t input;
50};
51
52static inline void init_continuation(struct continuation *k,
53 void (*fn)(struct work_struct *))
54{
55 INIT_WORK(&k->ws, fn);
56 k->input = 0;
57}
58
59static inline void queue_continuation(struct workqueue_struct *wq,
60 struct continuation *k)
61{
62 queue_work(wq, &k->ws);
63}
64
65/*----------------------------------------------------------------*/
66
67/*
68 * The batcher collects together pieces of work that need a particular
69 * operation to occur before they can proceed (typically a commit).
70 */
71struct batcher {
72 /*
73 * The operation that everyone is waiting for.
74 */
75 blk_status_t (*commit_op)(void *context);
76 void *commit_context;
77
78 /*
79 * This is how bios should be issued once the commit op is complete
80 * (accounted_request).
81 */
82 void (*issue_op)(struct bio *bio, void *context);
83 void *issue_context;
84
85 /*
86 * Queued work gets put on here after commit.
87 */
88 struct workqueue_struct *wq;
89
90 spinlock_t lock;
91 struct list_head work_items;
92 struct bio_list bios;
93 struct work_struct commit_work;
94
95 bool commit_scheduled;
96};
97
98static void __commit(struct work_struct *_ws)
99{
100 struct batcher *b = container_of(_ws, struct batcher, commit_work);
101 blk_status_t r;
102 struct list_head work_items;
103 struct work_struct *ws, *tmp;
104 struct continuation *k;
105 struct bio *bio;
106 struct bio_list bios;
107
108 INIT_LIST_HEAD(&work_items);
109 bio_list_init(&bios);
110
111 /*
112 * We have to grab these before the commit_op to avoid a race
113 * condition.
114 */
115 spin_lock_irq(&b->lock);
116 list_splice_init(&b->work_items, &work_items);
117 bio_list_merge(&bios, &b->bios);
118 bio_list_init(&b->bios);
119 b->commit_scheduled = false;
120 spin_unlock_irq(&b->lock);
121
122 r = b->commit_op(b->commit_context);
123
124 list_for_each_entry_safe(ws, tmp, &work_items, entry) {
125 k = container_of(ws, struct continuation, ws);
126 k->input = r;
127 INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
128 queue_work(b->wq, ws);
129 }
130
131 while ((bio = bio_list_pop(&bios))) {
132 if (r) {
133 bio->bi_status = r;
134 bio_endio(bio);
135 } else
136 b->issue_op(bio, b->issue_context);
137 }
138}
139
140static void batcher_init(struct batcher *b,
141 blk_status_t (*commit_op)(void *),
142 void *commit_context,
143 void (*issue_op)(struct bio *bio, void *),
144 void *issue_context,
145 struct workqueue_struct *wq)
146{
147 b->commit_op = commit_op;
148 b->commit_context = commit_context;
149 b->issue_op = issue_op;
150 b->issue_context = issue_context;
151 b->wq = wq;
152
153 spin_lock_init(&b->lock);
154 INIT_LIST_HEAD(&b->work_items);
155 bio_list_init(&b->bios);
156 INIT_WORK(&b->commit_work, __commit);
157 b->commit_scheduled = false;
158}
159
160static void async_commit(struct batcher *b)
161{
162 queue_work(b->wq, &b->commit_work);
163}
164
165static void continue_after_commit(struct batcher *b, struct continuation *k)
166{
167 bool commit_scheduled;
168
169 spin_lock_irq(&b->lock);
170 commit_scheduled = b->commit_scheduled;
171 list_add_tail(&k->ws.entry, &b->work_items);
172 spin_unlock_irq(&b->lock);
173
174 if (commit_scheduled)
175 async_commit(b);
176}
177
178/*
179 * Bios are errored if commit failed.
180 */
181static void issue_after_commit(struct batcher *b, struct bio *bio)
182{
183 bool commit_scheduled;
184
185 spin_lock_irq(&b->lock);
186 commit_scheduled = b->commit_scheduled;
187 bio_list_add(&b->bios, bio);
188 spin_unlock_irq(&b->lock);
189
190 if (commit_scheduled)
191 async_commit(b);
192}
193
194/*
195 * Call this if some urgent work is waiting for the commit to complete.
196 */
197static void schedule_commit(struct batcher *b)
198{
199 bool immediate;
200
201 spin_lock_irq(&b->lock);
202 immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
203 b->commit_scheduled = true;
204 spin_unlock_irq(&b->lock);
205
206 if (immediate)
207 async_commit(b);
208}
209
210/*
211 * There are a couple of places where we let a bio run, but want to do some
212 * work before calling its endio function. We do this by temporarily
213 * changing the endio fn.
214 */
215struct dm_hook_info {
216 bio_end_io_t *bi_end_io;
217};
218
219static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
220 bio_end_io_t *bi_end_io, void *bi_private)
221{
222 h->bi_end_io = bio->bi_end_io;
223
224 bio->bi_end_io = bi_end_io;
225 bio->bi_private = bi_private;
226}
227
228static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
229{
230 bio->bi_end_io = h->bi_end_io;
231}
232
233/*----------------------------------------------------------------*/
234
235#define MIGRATION_POOL_SIZE 128
236#define COMMIT_PERIOD HZ
237#define MIGRATION_COUNT_WINDOW 10
238
239/*
240 * The block size of the device holding cache data must be
241 * between 32KB and 1GB.
242 */
243#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
244#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
245
246enum cache_metadata_mode {
247 CM_WRITE, /* metadata may be changed */
248 CM_READ_ONLY, /* metadata may not be changed */
249 CM_FAIL
250};
251
252enum cache_io_mode {
253 /*
254 * Data is written to cached blocks only. These blocks are marked
255 * dirty. If you lose the cache device you will lose data.
256 * Potential performance increase for both reads and writes.
257 */
258 CM_IO_WRITEBACK,
259
260 /*
261 * Data is written to both cache and origin. Blocks are never
262 * dirty. Potential performance benfit for reads only.
263 */
264 CM_IO_WRITETHROUGH,
265
266 /*
267 * A degraded mode useful for various cache coherency situations
268 * (eg, rolling back snapshots). Reads and writes always go to the
269 * origin. If a write goes to a cached oblock, then the cache
270 * block is invalidated.
271 */
272 CM_IO_PASSTHROUGH
273};
274
275struct cache_features {
276 enum cache_metadata_mode mode;
277 enum cache_io_mode io_mode;
278 unsigned metadata_version;
279 bool discard_passdown:1;
280};
281
282struct cache_stats {
283 atomic_t read_hit;
284 atomic_t read_miss;
285 atomic_t write_hit;
286 atomic_t write_miss;
287 atomic_t demotion;
288 atomic_t promotion;
289 atomic_t writeback;
290 atomic_t copies_avoided;
291 atomic_t cache_cell_clash;
292 atomic_t commit_count;
293 atomic_t discard_count;
294};
295
296struct cache {
297 struct dm_target *ti;
298 spinlock_t lock;
299
300 /*
301 * Fields for converting from sectors to blocks.
302 */
303 int sectors_per_block_shift;
304 sector_t sectors_per_block;
305
306 struct dm_cache_metadata *cmd;
307
308 /*
309 * Metadata is written to this device.
310 */
311 struct dm_dev *metadata_dev;
312
313 /*
314 * The slower of the two data devices. Typically a spindle.
315 */
316 struct dm_dev *origin_dev;
317
318 /*
319 * The faster of the two data devices. Typically an SSD.
320 */
321 struct dm_dev *cache_dev;
322
323 /*
324 * Size of the origin device in _complete_ blocks and native sectors.
325 */
326 dm_oblock_t origin_blocks;
327 sector_t origin_sectors;
328
329 /*
330 * Size of the cache device in blocks.
331 */
332 dm_cblock_t cache_size;
333
334 /*
335 * Invalidation fields.
336 */
337 spinlock_t invalidation_lock;
338 struct list_head invalidation_requests;
339
340 sector_t migration_threshold;
341 wait_queue_head_t migration_wait;
342 atomic_t nr_allocated_migrations;
343
344 /*
345 * The number of in flight migrations that are performing
346 * background io. eg, promotion, writeback.
347 */
348 atomic_t nr_io_migrations;
349
350 struct bio_list deferred_bios;
351
352 struct rw_semaphore quiesce_lock;
353
354 /*
355 * origin_blocks entries, discarded if set.
356 */
357 dm_dblock_t discard_nr_blocks;
358 unsigned long *discard_bitset;
359 uint32_t discard_block_size; /* a power of 2 times sectors per block */
360
361 /*
362 * Rather than reconstructing the table line for the status we just
363 * save it and regurgitate.
364 */
365 unsigned nr_ctr_args;
366 const char **ctr_args;
367
368 struct dm_kcopyd_client *copier;
369 struct work_struct deferred_bio_worker;
370 struct work_struct migration_worker;
371 struct workqueue_struct *wq;
372 struct delayed_work waker;
373 struct dm_bio_prison_v2 *prison;
374
375 /*
376 * cache_size entries, dirty if set
377 */
378 unsigned long *dirty_bitset;
379 atomic_t nr_dirty;
380
381 unsigned policy_nr_args;
382 struct dm_cache_policy *policy;
383
384 /*
385 * Cache features such as write-through.
386 */
387 struct cache_features features;
388
389 struct cache_stats stats;
390
391 bool need_tick_bio:1;
392 bool sized:1;
393 bool invalidate:1;
394 bool commit_requested:1;
395 bool loaded_mappings:1;
396 bool loaded_discards:1;
397
398 struct rw_semaphore background_work_lock;
399
400 struct batcher committer;
401 struct work_struct commit_ws;
402
403 struct dm_io_tracker tracker;
404
405 mempool_t migration_pool;
406
407 struct bio_set bs;
408};
409
410struct per_bio_data {
411 bool tick:1;
412 unsigned req_nr:2;
413 struct dm_bio_prison_cell_v2 *cell;
414 struct dm_hook_info hook_info;
415 sector_t len;
416};
417
418struct dm_cache_migration {
419 struct continuation k;
420 struct cache *cache;
421
422 struct policy_work *op;
423 struct bio *overwrite_bio;
424 struct dm_bio_prison_cell_v2 *cell;
425
426 dm_cblock_t invalidate_cblock;
427 dm_oblock_t invalidate_oblock;
428};
429
430/*----------------------------------------------------------------*/
431
432static bool writethrough_mode(struct cache *cache)
433{
434 return cache->features.io_mode == CM_IO_WRITETHROUGH;
435}
436
437static bool writeback_mode(struct cache *cache)
438{
439 return cache->features.io_mode == CM_IO_WRITEBACK;
440}
441
442static inline bool passthrough_mode(struct cache *cache)
443{
444 return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
445}
446
447/*----------------------------------------------------------------*/
448
449static void wake_deferred_bio_worker(struct cache *cache)
450{
451 queue_work(cache->wq, &cache->deferred_bio_worker);
452}
453
454static void wake_migration_worker(struct cache *cache)
455{
456 if (passthrough_mode(cache))
457 return;
458
459 queue_work(cache->wq, &cache->migration_worker);
460}
461
462/*----------------------------------------------------------------*/
463
464static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
465{
466 return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO);
467}
468
469static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
470{
471 dm_bio_prison_free_cell_v2(cache->prison, cell);
472}
473
474static struct dm_cache_migration *alloc_migration(struct cache *cache)
475{
476 struct dm_cache_migration *mg;
477
478 mg = mempool_alloc(&cache->migration_pool, GFP_NOIO);
479
480 memset(mg, 0, sizeof(*mg));
481
482 mg->cache = cache;
483 atomic_inc(&cache->nr_allocated_migrations);
484
485 return mg;
486}
487
488static void free_migration(struct dm_cache_migration *mg)
489{
490 struct cache *cache = mg->cache;
491
492 if (atomic_dec_and_test(&cache->nr_allocated_migrations))
493 wake_up(&cache->migration_wait);
494
495 mempool_free(mg, &cache->migration_pool);
496}
497
498/*----------------------------------------------------------------*/
499
500static inline dm_oblock_t oblock_succ(dm_oblock_t b)
501{
502 return to_oblock(from_oblock(b) + 1ull);
503}
504
505static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
506{
507 key->virtual = 0;
508 key->dev = 0;
509 key->block_begin = from_oblock(begin);
510 key->block_end = from_oblock(end);
511}
512
513/*
514 * We have two lock levels. Level 0, which is used to prevent WRITEs, and
515 * level 1 which prevents *both* READs and WRITEs.
516 */
517#define WRITE_LOCK_LEVEL 0
518#define READ_WRITE_LOCK_LEVEL 1
519
520static unsigned lock_level(struct bio *bio)
521{
522 return bio_data_dir(bio) == WRITE ?
523 WRITE_LOCK_LEVEL :
524 READ_WRITE_LOCK_LEVEL;
525}
526
527/*----------------------------------------------------------------
528 * Per bio data
529 *--------------------------------------------------------------*/
530
531static struct per_bio_data *get_per_bio_data(struct bio *bio)
532{
533 struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
534 BUG_ON(!pb);
535 return pb;
536}
537
538static struct per_bio_data *init_per_bio_data(struct bio *bio)
539{
540 struct per_bio_data *pb = get_per_bio_data(bio);
541
542 pb->tick = false;
543 pb->req_nr = dm_bio_get_target_bio_nr(bio);
544 pb->cell = NULL;
545 pb->len = 0;
546
547 return pb;
548}
549
550/*----------------------------------------------------------------*/
551
552static void defer_bio(struct cache *cache, struct bio *bio)
553{
554 spin_lock_irq(&cache->lock);
555 bio_list_add(&cache->deferred_bios, bio);
556 spin_unlock_irq(&cache->lock);
557
558 wake_deferred_bio_worker(cache);
559}
560
561static void defer_bios(struct cache *cache, struct bio_list *bios)
562{
563 spin_lock_irq(&cache->lock);
564 bio_list_merge(&cache->deferred_bios, bios);
565 bio_list_init(bios);
566 spin_unlock_irq(&cache->lock);
567
568 wake_deferred_bio_worker(cache);
569}
570
571/*----------------------------------------------------------------*/
572
573static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
574{
575 bool r;
576 struct per_bio_data *pb;
577 struct dm_cell_key_v2 key;
578 dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
579 struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
580
581 cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
582
583 build_key(oblock, end, &key);
584 r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
585 if (!r) {
586 /*
587 * Failed to get the lock.
588 */
589 free_prison_cell(cache, cell_prealloc);
590 return r;
591 }
592
593 if (cell != cell_prealloc)
594 free_prison_cell(cache, cell_prealloc);
595
596 pb = get_per_bio_data(bio);
597 pb->cell = cell;
598
599 return r;
600}
601
602/*----------------------------------------------------------------*/
603
604static bool is_dirty(struct cache *cache, dm_cblock_t b)
605{
606 return test_bit(from_cblock(b), cache->dirty_bitset);
607}
608
609static void set_dirty(struct cache *cache, dm_cblock_t cblock)
610{
611 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
612 atomic_inc(&cache->nr_dirty);
613 policy_set_dirty(cache->policy, cblock);
614 }
615}
616
617/*
618 * These two are called when setting after migrations to force the policy
619 * and dirty bitset to be in sync.
620 */
621static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
622{
623 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
624 atomic_inc(&cache->nr_dirty);
625 policy_set_dirty(cache->policy, cblock);
626}
627
628static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
629{
630 if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
631 if (atomic_dec_return(&cache->nr_dirty) == 0)
632 dm_table_event(cache->ti->table);
633 }
634
635 policy_clear_dirty(cache->policy, cblock);
636}
637
638/*----------------------------------------------------------------*/
639
640static bool block_size_is_power_of_two(struct cache *cache)
641{
642 return cache->sectors_per_block_shift >= 0;
643}
644
645static dm_block_t block_div(dm_block_t b, uint32_t n)
646{
647 do_div(b, n);
648
649 return b;
650}
651
652static dm_block_t oblocks_per_dblock(struct cache *cache)
653{
654 dm_block_t oblocks = cache->discard_block_size;
655
656 if (block_size_is_power_of_two(cache))
657 oblocks >>= cache->sectors_per_block_shift;
658 else
659 oblocks = block_div(oblocks, cache->sectors_per_block);
660
661 return oblocks;
662}
663
664static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
665{
666 return to_dblock(block_div(from_oblock(oblock),
667 oblocks_per_dblock(cache)));
668}
669
670static void set_discard(struct cache *cache, dm_dblock_t b)
671{
672 BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
673 atomic_inc(&cache->stats.discard_count);
674
675 spin_lock_irq(&cache->lock);
676 set_bit(from_dblock(b), cache->discard_bitset);
677 spin_unlock_irq(&cache->lock);
678}
679
680static void clear_discard(struct cache *cache, dm_dblock_t b)
681{
682 spin_lock_irq(&cache->lock);
683 clear_bit(from_dblock(b), cache->discard_bitset);
684 spin_unlock_irq(&cache->lock);
685}
686
687static bool is_discarded(struct cache *cache, dm_dblock_t b)
688{
689 int r;
690 spin_lock_irq(&cache->lock);
691 r = test_bit(from_dblock(b), cache->discard_bitset);
692 spin_unlock_irq(&cache->lock);
693
694 return r;
695}
696
697static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
698{
699 int r;
700 spin_lock_irq(&cache->lock);
701 r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
702 cache->discard_bitset);
703 spin_unlock_irq(&cache->lock);
704
705 return r;
706}
707
708/*----------------------------------------------------------------
709 * Remapping
710 *--------------------------------------------------------------*/
711static void remap_to_origin(struct cache *cache, struct bio *bio)
712{
713 bio_set_dev(bio, cache->origin_dev->bdev);
714}
715
716static void remap_to_cache(struct cache *cache, struct bio *bio,
717 dm_cblock_t cblock)
718{
719 sector_t bi_sector = bio->bi_iter.bi_sector;
720 sector_t block = from_cblock(cblock);
721
722 bio_set_dev(bio, cache->cache_dev->bdev);
723 if (!block_size_is_power_of_two(cache))
724 bio->bi_iter.bi_sector =
725 (block * cache->sectors_per_block) +
726 sector_div(bi_sector, cache->sectors_per_block);
727 else
728 bio->bi_iter.bi_sector =
729 (block << cache->sectors_per_block_shift) |
730 (bi_sector & (cache->sectors_per_block - 1));
731}
732
733static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
734{
735 struct per_bio_data *pb;
736
737 spin_lock_irq(&cache->lock);
738 if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
739 bio_op(bio) != REQ_OP_DISCARD) {
740 pb = get_per_bio_data(bio);
741 pb->tick = true;
742 cache->need_tick_bio = false;
743 }
744 spin_unlock_irq(&cache->lock);
745}
746
747static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
748 dm_oblock_t oblock)
749{
750 // FIXME: check_if_tick_bio_needed() is called way too much through this interface
751 check_if_tick_bio_needed(cache, bio);
752 remap_to_origin(cache, bio);
753 if (bio_data_dir(bio) == WRITE)
754 clear_discard(cache, oblock_to_dblock(cache, oblock));
755}
756
757static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
758 dm_oblock_t oblock, dm_cblock_t cblock)
759{
760 check_if_tick_bio_needed(cache, bio);
761 remap_to_cache(cache, bio, cblock);
762 if (bio_data_dir(bio) == WRITE) {
763 set_dirty(cache, cblock);
764 clear_discard(cache, oblock_to_dblock(cache, oblock));
765 }
766}
767
768static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
769{
770 sector_t block_nr = bio->bi_iter.bi_sector;
771
772 if (!block_size_is_power_of_two(cache))
773 (void) sector_div(block_nr, cache->sectors_per_block);
774 else
775 block_nr >>= cache->sectors_per_block_shift;
776
777 return to_oblock(block_nr);
778}
779
780static bool accountable_bio(struct cache *cache, struct bio *bio)
781{
782 return bio_op(bio) != REQ_OP_DISCARD;
783}
784
785static void accounted_begin(struct cache *cache, struct bio *bio)
786{
787 struct per_bio_data *pb;
788
789 if (accountable_bio(cache, bio)) {
790 pb = get_per_bio_data(bio);
791 pb->len = bio_sectors(bio);
792 dm_iot_io_begin(&cache->tracker, pb->len);
793 }
794}
795
796static void accounted_complete(struct cache *cache, struct bio *bio)
797{
798 struct per_bio_data *pb = get_per_bio_data(bio);
799
800 dm_iot_io_end(&cache->tracker, pb->len);
801}
802
803static void accounted_request(struct cache *cache, struct bio *bio)
804{
805 accounted_begin(cache, bio);
806 dm_submit_bio_remap(bio, NULL);
807}
808
809static void issue_op(struct bio *bio, void *context)
810{
811 struct cache *cache = context;
812 accounted_request(cache, bio);
813}
814
815/*
816 * When running in writethrough mode we need to send writes to clean blocks
817 * to both the cache and origin devices. Clone the bio and send them in parallel.
818 */
819static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
820 dm_oblock_t oblock, dm_cblock_t cblock)
821{
822 struct bio *origin_bio = bio_alloc_clone(cache->origin_dev->bdev, bio,
823 GFP_NOIO, &cache->bs);
824
825 BUG_ON(!origin_bio);
826
827 bio_chain(origin_bio, bio);
828
829 if (bio_data_dir(origin_bio) == WRITE)
830 clear_discard(cache, oblock_to_dblock(cache, oblock));
831 submit_bio(origin_bio);
832
833 remap_to_cache(cache, bio, cblock);
834}
835
836/*----------------------------------------------------------------
837 * Failure modes
838 *--------------------------------------------------------------*/
839static enum cache_metadata_mode get_cache_mode(struct cache *cache)
840{
841 return cache->features.mode;
842}
843
844static const char *cache_device_name(struct cache *cache)
845{
846 return dm_table_device_name(cache->ti->table);
847}
848
849static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
850{
851 const char *descs[] = {
852 "write",
853 "read-only",
854 "fail"
855 };
856
857 dm_table_event(cache->ti->table);
858 DMINFO("%s: switching cache to %s mode",
859 cache_device_name(cache), descs[(int)mode]);
860}
861
862static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
863{
864 bool needs_check;
865 enum cache_metadata_mode old_mode = get_cache_mode(cache);
866
867 if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
868 DMERR("%s: unable to read needs_check flag, setting failure mode.",
869 cache_device_name(cache));
870 new_mode = CM_FAIL;
871 }
872
873 if (new_mode == CM_WRITE && needs_check) {
874 DMERR("%s: unable to switch cache to write mode until repaired.",
875 cache_device_name(cache));
876 if (old_mode != new_mode)
877 new_mode = old_mode;
878 else
879 new_mode = CM_READ_ONLY;
880 }
881
882 /* Never move out of fail mode */
883 if (old_mode == CM_FAIL)
884 new_mode = CM_FAIL;
885
886 switch (new_mode) {
887 case CM_FAIL:
888 case CM_READ_ONLY:
889 dm_cache_metadata_set_read_only(cache->cmd);
890 break;
891
892 case CM_WRITE:
893 dm_cache_metadata_set_read_write(cache->cmd);
894 break;
895 }
896
897 cache->features.mode = new_mode;
898
899 if (new_mode != old_mode)
900 notify_mode_switch(cache, new_mode);
901}
902
903static void abort_transaction(struct cache *cache)
904{
905 const char *dev_name = cache_device_name(cache);
906
907 if (get_cache_mode(cache) >= CM_READ_ONLY)
908 return;
909
910 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
911 if (dm_cache_metadata_abort(cache->cmd)) {
912 DMERR("%s: failed to abort metadata transaction", dev_name);
913 set_cache_mode(cache, CM_FAIL);
914 }
915
916 if (dm_cache_metadata_set_needs_check(cache->cmd)) {
917 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
918 set_cache_mode(cache, CM_FAIL);
919 }
920}
921
922static void metadata_operation_failed(struct cache *cache, const char *op, int r)
923{
924 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
925 cache_device_name(cache), op, r);
926 abort_transaction(cache);
927 set_cache_mode(cache, CM_READ_ONLY);
928}
929
930/*----------------------------------------------------------------*/
931
932static void load_stats(struct cache *cache)
933{
934 struct dm_cache_statistics stats;
935
936 dm_cache_metadata_get_stats(cache->cmd, &stats);
937 atomic_set(&cache->stats.read_hit, stats.read_hits);
938 atomic_set(&cache->stats.read_miss, stats.read_misses);
939 atomic_set(&cache->stats.write_hit, stats.write_hits);
940 atomic_set(&cache->stats.write_miss, stats.write_misses);
941}
942
943static void save_stats(struct cache *cache)
944{
945 struct dm_cache_statistics stats;
946
947 if (get_cache_mode(cache) >= CM_READ_ONLY)
948 return;
949
950 stats.read_hits = atomic_read(&cache->stats.read_hit);
951 stats.read_misses = atomic_read(&cache->stats.read_miss);
952 stats.write_hits = atomic_read(&cache->stats.write_hit);
953 stats.write_misses = atomic_read(&cache->stats.write_miss);
954
955 dm_cache_metadata_set_stats(cache->cmd, &stats);
956}
957
958static void update_stats(struct cache_stats *stats, enum policy_operation op)
959{
960 switch (op) {
961 case POLICY_PROMOTE:
962 atomic_inc(&stats->promotion);
963 break;
964
965 case POLICY_DEMOTE:
966 atomic_inc(&stats->demotion);
967 break;
968
969 case POLICY_WRITEBACK:
970 atomic_inc(&stats->writeback);
971 break;
972 }
973}
974
975/*----------------------------------------------------------------
976 * Migration processing
977 *
978 * Migration covers moving data from the origin device to the cache, or
979 * vice versa.
980 *--------------------------------------------------------------*/
981
982static void inc_io_migrations(struct cache *cache)
983{
984 atomic_inc(&cache->nr_io_migrations);
985}
986
987static void dec_io_migrations(struct cache *cache)
988{
989 atomic_dec(&cache->nr_io_migrations);
990}
991
992static bool discard_or_flush(struct bio *bio)
993{
994 return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
995}
996
997static void calc_discard_block_range(struct cache *cache, struct bio *bio,
998 dm_dblock_t *b, dm_dblock_t *e)
999{
1000 sector_t sb = bio->bi_iter.bi_sector;
1001 sector_t se = bio_end_sector(bio);
1002
1003 *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1004
1005 if (se - sb < cache->discard_block_size)
1006 *e = *b;
1007 else
1008 *e = to_dblock(block_div(se, cache->discard_block_size));
1009}
1010
1011/*----------------------------------------------------------------*/
1012
1013static void prevent_background_work(struct cache *cache)
1014{
1015 lockdep_off();
1016 down_write(&cache->background_work_lock);
1017 lockdep_on();
1018}
1019
1020static void allow_background_work(struct cache *cache)
1021{
1022 lockdep_off();
1023 up_write(&cache->background_work_lock);
1024 lockdep_on();
1025}
1026
1027static bool background_work_begin(struct cache *cache)
1028{
1029 bool r;
1030
1031 lockdep_off();
1032 r = down_read_trylock(&cache->background_work_lock);
1033 lockdep_on();
1034
1035 return r;
1036}
1037
1038static void background_work_end(struct cache *cache)
1039{
1040 lockdep_off();
1041 up_read(&cache->background_work_lock);
1042 lockdep_on();
1043}
1044
1045/*----------------------------------------------------------------*/
1046
1047static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1048{
1049 return (bio_data_dir(bio) == WRITE) &&
1050 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1051}
1052
1053static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1054{
1055 return writeback_mode(cache) &&
1056 (is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1057}
1058
1059static void quiesce(struct dm_cache_migration *mg,
1060 void (*continuation)(struct work_struct *))
1061{
1062 init_continuation(&mg->k, continuation);
1063 dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1064}
1065
1066static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1067{
1068 struct continuation *k = container_of(ws, struct continuation, ws);
1069 return container_of(k, struct dm_cache_migration, k);
1070}
1071
1072static void copy_complete(int read_err, unsigned long write_err, void *context)
1073{
1074 struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1075
1076 if (read_err || write_err)
1077 mg->k.input = BLK_STS_IOERR;
1078
1079 queue_continuation(mg->cache->wq, &mg->k);
1080}
1081
1082static void copy(struct dm_cache_migration *mg, bool promote)
1083{
1084 struct dm_io_region o_region, c_region;
1085 struct cache *cache = mg->cache;
1086
1087 o_region.bdev = cache->origin_dev->bdev;
1088 o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1089 o_region.count = cache->sectors_per_block;
1090
1091 c_region.bdev = cache->cache_dev->bdev;
1092 c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1093 c_region.count = cache->sectors_per_block;
1094
1095 if (promote)
1096 dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1097 else
1098 dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1099}
1100
1101static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1102{
1103 struct per_bio_data *pb = get_per_bio_data(bio);
1104
1105 if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1106 free_prison_cell(cache, pb->cell);
1107 pb->cell = NULL;
1108}
1109
1110static void overwrite_endio(struct bio *bio)
1111{
1112 struct dm_cache_migration *mg = bio->bi_private;
1113 struct cache *cache = mg->cache;
1114 struct per_bio_data *pb = get_per_bio_data(bio);
1115
1116 dm_unhook_bio(&pb->hook_info, bio);
1117
1118 if (bio->bi_status)
1119 mg->k.input = bio->bi_status;
1120
1121 queue_continuation(cache->wq, &mg->k);
1122}
1123
1124static void overwrite(struct dm_cache_migration *mg,
1125 void (*continuation)(struct work_struct *))
1126{
1127 struct bio *bio = mg->overwrite_bio;
1128 struct per_bio_data *pb = get_per_bio_data(bio);
1129
1130 dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1131
1132 /*
1133 * The overwrite bio is part of the copy operation, as such it does
1134 * not set/clear discard or dirty flags.
1135 */
1136 if (mg->op->op == POLICY_PROMOTE)
1137 remap_to_cache(mg->cache, bio, mg->op->cblock);
1138 else
1139 remap_to_origin(mg->cache, bio);
1140
1141 init_continuation(&mg->k, continuation);
1142 accounted_request(mg->cache, bio);
1143}
1144
1145/*
1146 * Migration steps:
1147 *
1148 * 1) exclusive lock preventing WRITEs
1149 * 2) quiesce
1150 * 3) copy or issue overwrite bio
1151 * 4) upgrade to exclusive lock preventing READs and WRITEs
1152 * 5) quiesce
1153 * 6) update metadata and commit
1154 * 7) unlock
1155 */
1156static void mg_complete(struct dm_cache_migration *mg, bool success)
1157{
1158 struct bio_list bios;
1159 struct cache *cache = mg->cache;
1160 struct policy_work *op = mg->op;
1161 dm_cblock_t cblock = op->cblock;
1162
1163 if (success)
1164 update_stats(&cache->stats, op->op);
1165
1166 switch (op->op) {
1167 case POLICY_PROMOTE:
1168 clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1169 policy_complete_background_work(cache->policy, op, success);
1170
1171 if (mg->overwrite_bio) {
1172 if (success)
1173 force_set_dirty(cache, cblock);
1174 else if (mg->k.input)
1175 mg->overwrite_bio->bi_status = mg->k.input;
1176 else
1177 mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1178 bio_endio(mg->overwrite_bio);
1179 } else {
1180 if (success)
1181 force_clear_dirty(cache, cblock);
1182 dec_io_migrations(cache);
1183 }
1184 break;
1185
1186 case POLICY_DEMOTE:
1187 /*
1188 * We clear dirty here to update the nr_dirty counter.
1189 */
1190 if (success)
1191 force_clear_dirty(cache, cblock);
1192 policy_complete_background_work(cache->policy, op, success);
1193 dec_io_migrations(cache);
1194 break;
1195
1196 case POLICY_WRITEBACK:
1197 if (success)
1198 force_clear_dirty(cache, cblock);
1199 policy_complete_background_work(cache->policy, op, success);
1200 dec_io_migrations(cache);
1201 break;
1202 }
1203
1204 bio_list_init(&bios);
1205 if (mg->cell) {
1206 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1207 free_prison_cell(cache, mg->cell);
1208 }
1209
1210 free_migration(mg);
1211 defer_bios(cache, &bios);
1212 wake_migration_worker(cache);
1213
1214 background_work_end(cache);
1215}
1216
1217static void mg_success(struct work_struct *ws)
1218{
1219 struct dm_cache_migration *mg = ws_to_mg(ws);
1220 mg_complete(mg, mg->k.input == 0);
1221}
1222
1223static void mg_update_metadata(struct work_struct *ws)
1224{
1225 int r;
1226 struct dm_cache_migration *mg = ws_to_mg(ws);
1227 struct cache *cache = mg->cache;
1228 struct policy_work *op = mg->op;
1229
1230 switch (op->op) {
1231 case POLICY_PROMOTE:
1232 r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1233 if (r) {
1234 DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1235 cache_device_name(cache));
1236 metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1237
1238 mg_complete(mg, false);
1239 return;
1240 }
1241 mg_complete(mg, true);
1242 break;
1243
1244 case POLICY_DEMOTE:
1245 r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1246 if (r) {
1247 DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1248 cache_device_name(cache));
1249 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1250
1251 mg_complete(mg, false);
1252 return;
1253 }
1254
1255 /*
1256 * It would be nice if we only had to commit when a REQ_FLUSH
1257 * comes through. But there's one scenario that we have to
1258 * look out for:
1259 *
1260 * - vblock x in a cache block
1261 * - domotion occurs
1262 * - cache block gets reallocated and over written
1263 * - crash
1264 *
1265 * When we recover, because there was no commit the cache will
1266 * rollback to having the data for vblock x in the cache block.
1267 * But the cache block has since been overwritten, so it'll end
1268 * up pointing to data that was never in 'x' during the history
1269 * of the device.
1270 *
1271 * To avoid this issue we require a commit as part of the
1272 * demotion operation.
1273 */
1274 init_continuation(&mg->k, mg_success);
1275 continue_after_commit(&cache->committer, &mg->k);
1276 schedule_commit(&cache->committer);
1277 break;
1278
1279 case POLICY_WRITEBACK:
1280 mg_complete(mg, true);
1281 break;
1282 }
1283}
1284
1285static void mg_update_metadata_after_copy(struct work_struct *ws)
1286{
1287 struct dm_cache_migration *mg = ws_to_mg(ws);
1288
1289 /*
1290 * Did the copy succeed?
1291 */
1292 if (mg->k.input)
1293 mg_complete(mg, false);
1294 else
1295 mg_update_metadata(ws);
1296}
1297
1298static void mg_upgrade_lock(struct work_struct *ws)
1299{
1300 int r;
1301 struct dm_cache_migration *mg = ws_to_mg(ws);
1302
1303 /*
1304 * Did the copy succeed?
1305 */
1306 if (mg->k.input)
1307 mg_complete(mg, false);
1308
1309 else {
1310 /*
1311 * Now we want the lock to prevent both reads and writes.
1312 */
1313 r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1314 READ_WRITE_LOCK_LEVEL);
1315 if (r < 0)
1316 mg_complete(mg, false);
1317
1318 else if (r)
1319 quiesce(mg, mg_update_metadata);
1320
1321 else
1322 mg_update_metadata(ws);
1323 }
1324}
1325
1326static void mg_full_copy(struct work_struct *ws)
1327{
1328 struct dm_cache_migration *mg = ws_to_mg(ws);
1329 struct cache *cache = mg->cache;
1330 struct policy_work *op = mg->op;
1331 bool is_policy_promote = (op->op == POLICY_PROMOTE);
1332
1333 if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1334 is_discarded_oblock(cache, op->oblock)) {
1335 mg_upgrade_lock(ws);
1336 return;
1337 }
1338
1339 init_continuation(&mg->k, mg_upgrade_lock);
1340 copy(mg, is_policy_promote);
1341}
1342
1343static void mg_copy(struct work_struct *ws)
1344{
1345 struct dm_cache_migration *mg = ws_to_mg(ws);
1346
1347 if (mg->overwrite_bio) {
1348 /*
1349 * No exclusive lock was held when we last checked if the bio
1350 * was optimisable. So we have to check again in case things
1351 * have changed (eg, the block may no longer be discarded).
1352 */
1353 if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1354 /*
1355 * Fallback to a real full copy after doing some tidying up.
1356 */
1357 bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1358 BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1359 mg->overwrite_bio = NULL;
1360 inc_io_migrations(mg->cache);
1361 mg_full_copy(ws);
1362 return;
1363 }
1364
1365 /*
1366 * It's safe to do this here, even though it's new data
1367 * because all IO has been locked out of the block.
1368 *
1369 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1370 * so _not_ using mg_upgrade_lock() as continutation.
1371 */
1372 overwrite(mg, mg_update_metadata_after_copy);
1373
1374 } else
1375 mg_full_copy(ws);
1376}
1377
1378static int mg_lock_writes(struct dm_cache_migration *mg)
1379{
1380 int r;
1381 struct dm_cell_key_v2 key;
1382 struct cache *cache = mg->cache;
1383 struct dm_bio_prison_cell_v2 *prealloc;
1384
1385 prealloc = alloc_prison_cell(cache);
1386
1387 /*
1388 * Prevent writes to the block, but allow reads to continue.
1389 * Unless we're using an overwrite bio, in which case we lock
1390 * everything.
1391 */
1392 build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1393 r = dm_cell_lock_v2(cache->prison, &key,
1394 mg->overwrite_bio ? READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1395 prealloc, &mg->cell);
1396 if (r < 0) {
1397 free_prison_cell(cache, prealloc);
1398 mg_complete(mg, false);
1399 return r;
1400 }
1401
1402 if (mg->cell != prealloc)
1403 free_prison_cell(cache, prealloc);
1404
1405 if (r == 0)
1406 mg_copy(&mg->k.ws);
1407 else
1408 quiesce(mg, mg_copy);
1409
1410 return 0;
1411}
1412
1413static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1414{
1415 struct dm_cache_migration *mg;
1416
1417 if (!background_work_begin(cache)) {
1418 policy_complete_background_work(cache->policy, op, false);
1419 return -EPERM;
1420 }
1421
1422 mg = alloc_migration(cache);
1423
1424 mg->op = op;
1425 mg->overwrite_bio = bio;
1426
1427 if (!bio)
1428 inc_io_migrations(cache);
1429
1430 return mg_lock_writes(mg);
1431}
1432
1433/*----------------------------------------------------------------
1434 * invalidation processing
1435 *--------------------------------------------------------------*/
1436
1437static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1438{
1439 struct bio_list bios;
1440 struct cache *cache = mg->cache;
1441
1442 bio_list_init(&bios);
1443 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1444 free_prison_cell(cache, mg->cell);
1445
1446 if (!success && mg->overwrite_bio)
1447 bio_io_error(mg->overwrite_bio);
1448
1449 free_migration(mg);
1450 defer_bios(cache, &bios);
1451
1452 background_work_end(cache);
1453}
1454
1455static void invalidate_completed(struct work_struct *ws)
1456{
1457 struct dm_cache_migration *mg = ws_to_mg(ws);
1458 invalidate_complete(mg, !mg->k.input);
1459}
1460
1461static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1462{
1463 int r = policy_invalidate_mapping(cache->policy, cblock);
1464 if (!r) {
1465 r = dm_cache_remove_mapping(cache->cmd, cblock);
1466 if (r) {
1467 DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1468 cache_device_name(cache));
1469 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1470 }
1471
1472 } else if (r == -ENODATA) {
1473 /*
1474 * Harmless, already unmapped.
1475 */
1476 r = 0;
1477
1478 } else
1479 DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1480
1481 return r;
1482}
1483
1484static void invalidate_remove(struct work_struct *ws)
1485{
1486 int r;
1487 struct dm_cache_migration *mg = ws_to_mg(ws);
1488 struct cache *cache = mg->cache;
1489
1490 r = invalidate_cblock(cache, mg->invalidate_cblock);
1491 if (r) {
1492 invalidate_complete(mg, false);
1493 return;
1494 }
1495
1496 init_continuation(&mg->k, invalidate_completed);
1497 continue_after_commit(&cache->committer, &mg->k);
1498 remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1499 mg->overwrite_bio = NULL;
1500 schedule_commit(&cache->committer);
1501}
1502
1503static int invalidate_lock(struct dm_cache_migration *mg)
1504{
1505 int r;
1506 struct dm_cell_key_v2 key;
1507 struct cache *cache = mg->cache;
1508 struct dm_bio_prison_cell_v2 *prealloc;
1509
1510 prealloc = alloc_prison_cell(cache);
1511
1512 build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1513 r = dm_cell_lock_v2(cache->prison, &key,
1514 READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1515 if (r < 0) {
1516 free_prison_cell(cache, prealloc);
1517 invalidate_complete(mg, false);
1518 return r;
1519 }
1520
1521 if (mg->cell != prealloc)
1522 free_prison_cell(cache, prealloc);
1523
1524 if (r)
1525 quiesce(mg, invalidate_remove);
1526
1527 else {
1528 /*
1529 * We can't call invalidate_remove() directly here because we
1530 * might still be in request context.
1531 */
1532 init_continuation(&mg->k, invalidate_remove);
1533 queue_work(cache->wq, &mg->k.ws);
1534 }
1535
1536 return 0;
1537}
1538
1539static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1540 dm_oblock_t oblock, struct bio *bio)
1541{
1542 struct dm_cache_migration *mg;
1543
1544 if (!background_work_begin(cache))
1545 return -EPERM;
1546
1547 mg = alloc_migration(cache);
1548
1549 mg->overwrite_bio = bio;
1550 mg->invalidate_cblock = cblock;
1551 mg->invalidate_oblock = oblock;
1552
1553 return invalidate_lock(mg);
1554}
1555
1556/*----------------------------------------------------------------
1557 * bio processing
1558 *--------------------------------------------------------------*/
1559
1560enum busy {
1561 IDLE,
1562 BUSY
1563};
1564
1565static enum busy spare_migration_bandwidth(struct cache *cache)
1566{
1567 bool idle = dm_iot_idle_for(&cache->tracker, HZ);
1568 sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1569 cache->sectors_per_block;
1570
1571 if (idle && current_volume <= cache->migration_threshold)
1572 return IDLE;
1573 else
1574 return BUSY;
1575}
1576
1577static void inc_hit_counter(struct cache *cache, struct bio *bio)
1578{
1579 atomic_inc(bio_data_dir(bio) == READ ?
1580 &cache->stats.read_hit : &cache->stats.write_hit);
1581}
1582
1583static void inc_miss_counter(struct cache *cache, struct bio *bio)
1584{
1585 atomic_inc(bio_data_dir(bio) == READ ?
1586 &cache->stats.read_miss : &cache->stats.write_miss);
1587}
1588
1589/*----------------------------------------------------------------*/
1590
1591static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1592 bool *commit_needed)
1593{
1594 int r, data_dir;
1595 bool rb, background_queued;
1596 dm_cblock_t cblock;
1597
1598 *commit_needed = false;
1599
1600 rb = bio_detain_shared(cache, block, bio);
1601 if (!rb) {
1602 /*
1603 * An exclusive lock is held for this block, so we have to
1604 * wait. We set the commit_needed flag so the current
1605 * transaction will be committed asap, allowing this lock
1606 * to be dropped.
1607 */
1608 *commit_needed = true;
1609 return DM_MAPIO_SUBMITTED;
1610 }
1611
1612 data_dir = bio_data_dir(bio);
1613
1614 if (optimisable_bio(cache, bio, block)) {
1615 struct policy_work *op = NULL;
1616
1617 r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1618 if (unlikely(r && r != -ENOENT)) {
1619 DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1620 cache_device_name(cache), r);
1621 bio_io_error(bio);
1622 return DM_MAPIO_SUBMITTED;
1623 }
1624
1625 if (r == -ENOENT && op) {
1626 bio_drop_shared_lock(cache, bio);
1627 BUG_ON(op->op != POLICY_PROMOTE);
1628 mg_start(cache, op, bio);
1629 return DM_MAPIO_SUBMITTED;
1630 }
1631 } else {
1632 r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1633 if (unlikely(r && r != -ENOENT)) {
1634 DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1635 cache_device_name(cache), r);
1636 bio_io_error(bio);
1637 return DM_MAPIO_SUBMITTED;
1638 }
1639
1640 if (background_queued)
1641 wake_migration_worker(cache);
1642 }
1643
1644 if (r == -ENOENT) {
1645 struct per_bio_data *pb = get_per_bio_data(bio);
1646
1647 /*
1648 * Miss.
1649 */
1650 inc_miss_counter(cache, bio);
1651 if (pb->req_nr == 0) {
1652 accounted_begin(cache, bio);
1653 remap_to_origin_clear_discard(cache, bio, block);
1654 } else {
1655 /*
1656 * This is a duplicate writethrough io that is no
1657 * longer needed because the block has been demoted.
1658 */
1659 bio_endio(bio);
1660 return DM_MAPIO_SUBMITTED;
1661 }
1662 } else {
1663 /*
1664 * Hit.
1665 */
1666 inc_hit_counter(cache, bio);
1667
1668 /*
1669 * Passthrough always maps to the origin, invalidating any
1670 * cache blocks that are written to.
1671 */
1672 if (passthrough_mode(cache)) {
1673 if (bio_data_dir(bio) == WRITE) {
1674 bio_drop_shared_lock(cache, bio);
1675 atomic_inc(&cache->stats.demotion);
1676 invalidate_start(cache, cblock, block, bio);
1677 } else
1678 remap_to_origin_clear_discard(cache, bio, block);
1679 } else {
1680 if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1681 !is_dirty(cache, cblock)) {
1682 remap_to_origin_and_cache(cache, bio, block, cblock);
1683 accounted_begin(cache, bio);
1684 } else
1685 remap_to_cache_dirty(cache, bio, block, cblock);
1686 }
1687 }
1688
1689 /*
1690 * dm core turns FUA requests into a separate payload and FLUSH req.
1691 */
1692 if (bio->bi_opf & REQ_FUA) {
1693 /*
1694 * issue_after_commit will call accounted_begin a second time. So
1695 * we call accounted_complete() to avoid double accounting.
1696 */
1697 accounted_complete(cache, bio);
1698 issue_after_commit(&cache->committer, bio);
1699 *commit_needed = true;
1700 return DM_MAPIO_SUBMITTED;
1701 }
1702
1703 return DM_MAPIO_REMAPPED;
1704}
1705
1706static bool process_bio(struct cache *cache, struct bio *bio)
1707{
1708 bool commit_needed;
1709
1710 if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1711 dm_submit_bio_remap(bio, NULL);
1712
1713 return commit_needed;
1714}
1715
1716/*
1717 * A non-zero return indicates read_only or fail_io mode.
1718 */
1719static int commit(struct cache *cache, bool clean_shutdown)
1720{
1721 int r;
1722
1723 if (get_cache_mode(cache) >= CM_READ_ONLY)
1724 return -EINVAL;
1725
1726 atomic_inc(&cache->stats.commit_count);
1727 r = dm_cache_commit(cache->cmd, clean_shutdown);
1728 if (r)
1729 metadata_operation_failed(cache, "dm_cache_commit", r);
1730
1731 return r;
1732}
1733
1734/*
1735 * Used by the batcher.
1736 */
1737static blk_status_t commit_op(void *context)
1738{
1739 struct cache *cache = context;
1740
1741 if (dm_cache_changed_this_transaction(cache->cmd))
1742 return errno_to_blk_status(commit(cache, false));
1743
1744 return 0;
1745}
1746
1747/*----------------------------------------------------------------*/
1748
1749static bool process_flush_bio(struct cache *cache, struct bio *bio)
1750{
1751 struct per_bio_data *pb = get_per_bio_data(bio);
1752
1753 if (!pb->req_nr)
1754 remap_to_origin(cache, bio);
1755 else
1756 remap_to_cache(cache, bio, 0);
1757
1758 issue_after_commit(&cache->committer, bio);
1759 return true;
1760}
1761
1762static bool process_discard_bio(struct cache *cache, struct bio *bio)
1763{
1764 dm_dblock_t b, e;
1765
1766 // FIXME: do we need to lock the region? Or can we just assume the
1767 // user wont be so foolish as to issue discard concurrently with
1768 // other IO?
1769 calc_discard_block_range(cache, bio, &b, &e);
1770 while (b != e) {
1771 set_discard(cache, b);
1772 b = to_dblock(from_dblock(b) + 1);
1773 }
1774
1775 if (cache->features.discard_passdown) {
1776 remap_to_origin(cache, bio);
1777 dm_submit_bio_remap(bio, NULL);
1778 } else
1779 bio_endio(bio);
1780
1781 return false;
1782}
1783
1784static void process_deferred_bios(struct work_struct *ws)
1785{
1786 struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1787
1788 bool commit_needed = false;
1789 struct bio_list bios;
1790 struct bio *bio;
1791
1792 bio_list_init(&bios);
1793
1794 spin_lock_irq(&cache->lock);
1795 bio_list_merge(&bios, &cache->deferred_bios);
1796 bio_list_init(&cache->deferred_bios);
1797 spin_unlock_irq(&cache->lock);
1798
1799 while ((bio = bio_list_pop(&bios))) {
1800 if (bio->bi_opf & REQ_PREFLUSH)
1801 commit_needed = process_flush_bio(cache, bio) || commit_needed;
1802
1803 else if (bio_op(bio) == REQ_OP_DISCARD)
1804 commit_needed = process_discard_bio(cache, bio) || commit_needed;
1805
1806 else
1807 commit_needed = process_bio(cache, bio) || commit_needed;
1808 }
1809
1810 if (commit_needed)
1811 schedule_commit(&cache->committer);
1812}
1813
1814/*----------------------------------------------------------------
1815 * Main worker loop
1816 *--------------------------------------------------------------*/
1817
1818static void requeue_deferred_bios(struct cache *cache)
1819{
1820 struct bio *bio;
1821 struct bio_list bios;
1822
1823 bio_list_init(&bios);
1824 bio_list_merge(&bios, &cache->deferred_bios);
1825 bio_list_init(&cache->deferred_bios);
1826
1827 while ((bio = bio_list_pop(&bios))) {
1828 bio->bi_status = BLK_STS_DM_REQUEUE;
1829 bio_endio(bio);
1830 }
1831}
1832
1833/*
1834 * We want to commit periodically so that not too much
1835 * unwritten metadata builds up.
1836 */
1837static void do_waker(struct work_struct *ws)
1838{
1839 struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1840
1841 policy_tick(cache->policy, true);
1842 wake_migration_worker(cache);
1843 schedule_commit(&cache->committer);
1844 queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1845}
1846
1847static void check_migrations(struct work_struct *ws)
1848{
1849 int r;
1850 struct policy_work *op;
1851 struct cache *cache = container_of(ws, struct cache, migration_worker);
1852 enum busy b;
1853
1854 for (;;) {
1855 b = spare_migration_bandwidth(cache);
1856
1857 r = policy_get_background_work(cache->policy, b == IDLE, &op);
1858 if (r == -ENODATA)
1859 break;
1860
1861 if (r) {
1862 DMERR_LIMIT("%s: policy_background_work failed",
1863 cache_device_name(cache));
1864 break;
1865 }
1866
1867 r = mg_start(cache, op, NULL);
1868 if (r)
1869 break;
1870 }
1871}
1872
1873/*----------------------------------------------------------------
1874 * Target methods
1875 *--------------------------------------------------------------*/
1876
1877/*
1878 * This function gets called on the error paths of the constructor, so we
1879 * have to cope with a partially initialised struct.
1880 */
1881static void destroy(struct cache *cache)
1882{
1883 unsigned i;
1884
1885 mempool_exit(&cache->migration_pool);
1886
1887 if (cache->prison)
1888 dm_bio_prison_destroy_v2(cache->prison);
1889
1890 cancel_delayed_work_sync(&cache->waker);
1891 if (cache->wq)
1892 destroy_workqueue(cache->wq);
1893
1894 if (cache->dirty_bitset)
1895 free_bitset(cache->dirty_bitset);
1896
1897 if (cache->discard_bitset)
1898 free_bitset(cache->discard_bitset);
1899
1900 if (cache->copier)
1901 dm_kcopyd_client_destroy(cache->copier);
1902
1903 if (cache->cmd)
1904 dm_cache_metadata_close(cache->cmd);
1905
1906 if (cache->metadata_dev)
1907 dm_put_device(cache->ti, cache->metadata_dev);
1908
1909 if (cache->origin_dev)
1910 dm_put_device(cache->ti, cache->origin_dev);
1911
1912 if (cache->cache_dev)
1913 dm_put_device(cache->ti, cache->cache_dev);
1914
1915 if (cache->policy)
1916 dm_cache_policy_destroy(cache->policy);
1917
1918 for (i = 0; i < cache->nr_ctr_args ; i++)
1919 kfree(cache->ctr_args[i]);
1920 kfree(cache->ctr_args);
1921
1922 bioset_exit(&cache->bs);
1923
1924 kfree(cache);
1925}
1926
1927static void cache_dtr(struct dm_target *ti)
1928{
1929 struct cache *cache = ti->private;
1930
1931 destroy(cache);
1932}
1933
1934static sector_t get_dev_size(struct dm_dev *dev)
1935{
1936 return bdev_nr_sectors(dev->bdev);
1937}
1938
1939/*----------------------------------------------------------------*/
1940
1941/*
1942 * Construct a cache device mapping.
1943 *
1944 * cache <metadata dev> <cache dev> <origin dev> <block size>
1945 * <#feature args> [<feature arg>]*
1946 * <policy> <#policy args> [<policy arg>]*
1947 *
1948 * metadata dev : fast device holding the persistent metadata
1949 * cache dev : fast device holding cached data blocks
1950 * origin dev : slow device holding original data blocks
1951 * block size : cache unit size in sectors
1952 *
1953 * #feature args : number of feature arguments passed
1954 * feature args : writethrough. (The default is writeback.)
1955 *
1956 * policy : the replacement policy to use
1957 * #policy args : an even number of policy arguments corresponding
1958 * to key/value pairs passed to the policy
1959 * policy args : key/value pairs passed to the policy
1960 * E.g. 'sequential_threshold 1024'
1961 * See cache-policies.txt for details.
1962 *
1963 * Optional feature arguments are:
1964 * writethrough : write through caching that prohibits cache block
1965 * content from being different from origin block content.
1966 * Without this argument, the default behaviour is to write
1967 * back cache block contents later for performance reasons,
1968 * so they may differ from the corresponding origin blocks.
1969 */
1970struct cache_args {
1971 struct dm_target *ti;
1972
1973 struct dm_dev *metadata_dev;
1974
1975 struct dm_dev *cache_dev;
1976 sector_t cache_sectors;
1977
1978 struct dm_dev *origin_dev;
1979 sector_t origin_sectors;
1980
1981 uint32_t block_size;
1982
1983 const char *policy_name;
1984 int policy_argc;
1985 const char **policy_argv;
1986
1987 struct cache_features features;
1988};
1989
1990static void destroy_cache_args(struct cache_args *ca)
1991{
1992 if (ca->metadata_dev)
1993 dm_put_device(ca->ti, ca->metadata_dev);
1994
1995 if (ca->cache_dev)
1996 dm_put_device(ca->ti, ca->cache_dev);
1997
1998 if (ca->origin_dev)
1999 dm_put_device(ca->ti, ca->origin_dev);
2000
2001 kfree(ca);
2002}
2003
2004static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2005{
2006 if (!as->argc) {
2007 *error = "Insufficient args";
2008 return false;
2009 }
2010
2011 return true;
2012}
2013
2014static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2015 char **error)
2016{
2017 int r;
2018 sector_t metadata_dev_size;
2019
2020 if (!at_least_one_arg(as, error))
2021 return -EINVAL;
2022
2023 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2024 &ca->metadata_dev);
2025 if (r) {
2026 *error = "Error opening metadata device";
2027 return r;
2028 }
2029
2030 metadata_dev_size = get_dev_size(ca->metadata_dev);
2031 if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2032 DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
2033 ca->metadata_dev->bdev, THIN_METADATA_MAX_SECTORS);
2034
2035 return 0;
2036}
2037
2038static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2039 char **error)
2040{
2041 int r;
2042
2043 if (!at_least_one_arg(as, error))
2044 return -EINVAL;
2045
2046 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2047 &ca->cache_dev);
2048 if (r) {
2049 *error = "Error opening cache device";
2050 return r;
2051 }
2052 ca->cache_sectors = get_dev_size(ca->cache_dev);
2053
2054 return 0;
2055}
2056
2057static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2058 char **error)
2059{
2060 int r;
2061
2062 if (!at_least_one_arg(as, error))
2063 return -EINVAL;
2064
2065 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2066 &ca->origin_dev);
2067 if (r) {
2068 *error = "Error opening origin device";
2069 return r;
2070 }
2071
2072 ca->origin_sectors = get_dev_size(ca->origin_dev);
2073 if (ca->ti->len > ca->origin_sectors) {
2074 *error = "Device size larger than cached device";
2075 return -EINVAL;
2076 }
2077
2078 return 0;
2079}
2080
2081static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2082 char **error)
2083{
2084 unsigned long block_size;
2085
2086 if (!at_least_one_arg(as, error))
2087 return -EINVAL;
2088
2089 if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2090 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2091 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2092 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2093 *error = "Invalid data block size";
2094 return -EINVAL;
2095 }
2096
2097 if (block_size > ca->cache_sectors) {
2098 *error = "Data block size is larger than the cache device";
2099 return -EINVAL;
2100 }
2101
2102 ca->block_size = block_size;
2103
2104 return 0;
2105}
2106
2107static void init_features(struct cache_features *cf)
2108{
2109 cf->mode = CM_WRITE;
2110 cf->io_mode = CM_IO_WRITEBACK;
2111 cf->metadata_version = 1;
2112 cf->discard_passdown = true;
2113}
2114
2115static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2116 char **error)
2117{
2118 static const struct dm_arg _args[] = {
2119 {0, 3, "Invalid number of cache feature arguments"},
2120 };
2121
2122 int r, mode_ctr = 0;
2123 unsigned argc;
2124 const char *arg;
2125 struct cache_features *cf = &ca->features;
2126
2127 init_features(cf);
2128
2129 r = dm_read_arg_group(_args, as, &argc, error);
2130 if (r)
2131 return -EINVAL;
2132
2133 while (argc--) {
2134 arg = dm_shift_arg(as);
2135
2136 if (!strcasecmp(arg, "writeback")) {
2137 cf->io_mode = CM_IO_WRITEBACK;
2138 mode_ctr++;
2139 }
2140
2141 else if (!strcasecmp(arg, "writethrough")) {
2142 cf->io_mode = CM_IO_WRITETHROUGH;
2143 mode_ctr++;
2144 }
2145
2146 else if (!strcasecmp(arg, "passthrough")) {
2147 cf->io_mode = CM_IO_PASSTHROUGH;
2148 mode_ctr++;
2149 }
2150
2151 else if (!strcasecmp(arg, "metadata2"))
2152 cf->metadata_version = 2;
2153
2154 else if (!strcasecmp(arg, "no_discard_passdown"))
2155 cf->discard_passdown = false;
2156
2157 else {
2158 *error = "Unrecognised cache feature requested";
2159 return -EINVAL;
2160 }
2161 }
2162
2163 if (mode_ctr > 1) {
2164 *error = "Duplicate cache io_mode features requested";
2165 return -EINVAL;
2166 }
2167
2168 return 0;
2169}
2170
2171static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2172 char **error)
2173{
2174 static const struct dm_arg _args[] = {
2175 {0, 1024, "Invalid number of policy arguments"},
2176 };
2177
2178 int r;
2179
2180 if (!at_least_one_arg(as, error))
2181 return -EINVAL;
2182
2183 ca->policy_name = dm_shift_arg(as);
2184
2185 r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2186 if (r)
2187 return -EINVAL;
2188
2189 ca->policy_argv = (const char **)as->argv;
2190 dm_consume_args(as, ca->policy_argc);
2191
2192 return 0;
2193}
2194
2195static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2196 char **error)
2197{
2198 int r;
2199 struct dm_arg_set as;
2200
2201 as.argc = argc;
2202 as.argv = argv;
2203
2204 r = parse_metadata_dev(ca, &as, error);
2205 if (r)
2206 return r;
2207
2208 r = parse_cache_dev(ca, &as, error);
2209 if (r)
2210 return r;
2211
2212 r = parse_origin_dev(ca, &as, error);
2213 if (r)
2214 return r;
2215
2216 r = parse_block_size(ca, &as, error);
2217 if (r)
2218 return r;
2219
2220 r = parse_features(ca, &as, error);
2221 if (r)
2222 return r;
2223
2224 r = parse_policy(ca, &as, error);
2225 if (r)
2226 return r;
2227
2228 return 0;
2229}
2230
2231/*----------------------------------------------------------------*/
2232
2233static struct kmem_cache *migration_cache;
2234
2235#define NOT_CORE_OPTION 1
2236
2237static int process_config_option(struct cache *cache, const char *key, const char *value)
2238{
2239 unsigned long tmp;
2240
2241 if (!strcasecmp(key, "migration_threshold")) {
2242 if (kstrtoul(value, 10, &tmp))
2243 return -EINVAL;
2244
2245 cache->migration_threshold = tmp;
2246 return 0;
2247 }
2248
2249 return NOT_CORE_OPTION;
2250}
2251
2252static int set_config_value(struct cache *cache, const char *key, const char *value)
2253{
2254 int r = process_config_option(cache, key, value);
2255
2256 if (r == NOT_CORE_OPTION)
2257 r = policy_set_config_value(cache->policy, key, value);
2258
2259 if (r)
2260 DMWARN("bad config value for %s: %s", key, value);
2261
2262 return r;
2263}
2264
2265static int set_config_values(struct cache *cache, int argc, const char **argv)
2266{
2267 int r = 0;
2268
2269 if (argc & 1) {
2270 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2271 return -EINVAL;
2272 }
2273
2274 while (argc) {
2275 r = set_config_value(cache, argv[0], argv[1]);
2276 if (r)
2277 break;
2278
2279 argc -= 2;
2280 argv += 2;
2281 }
2282
2283 return r;
2284}
2285
2286static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2287 char **error)
2288{
2289 struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2290 cache->cache_size,
2291 cache->origin_sectors,
2292 cache->sectors_per_block);
2293 if (IS_ERR(p)) {
2294 *error = "Error creating cache's policy";
2295 return PTR_ERR(p);
2296 }
2297 cache->policy = p;
2298 BUG_ON(!cache->policy);
2299
2300 return 0;
2301}
2302
2303/*
2304 * We want the discard block size to be at least the size of the cache
2305 * block size and have no more than 2^14 discard blocks across the origin.
2306 */
2307#define MAX_DISCARD_BLOCKS (1 << 14)
2308
2309static bool too_many_discard_blocks(sector_t discard_block_size,
2310 sector_t origin_size)
2311{
2312 (void) sector_div(origin_size, discard_block_size);
2313
2314 return origin_size > MAX_DISCARD_BLOCKS;
2315}
2316
2317static sector_t calculate_discard_block_size(sector_t cache_block_size,
2318 sector_t origin_size)
2319{
2320 sector_t discard_block_size = cache_block_size;
2321
2322 if (origin_size)
2323 while (too_many_discard_blocks(discard_block_size, origin_size))
2324 discard_block_size *= 2;
2325
2326 return discard_block_size;
2327}
2328
2329static void set_cache_size(struct cache *cache, dm_cblock_t size)
2330{
2331 dm_block_t nr_blocks = from_cblock(size);
2332
2333 if (nr_blocks > (1 << 20) && cache->cache_size != size)
2334 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2335 "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2336 "Please consider increasing the cache block size to reduce the overall cache block count.",
2337 (unsigned long long) nr_blocks);
2338
2339 cache->cache_size = size;
2340}
2341
2342#define DEFAULT_MIGRATION_THRESHOLD 2048
2343
2344static int cache_create(struct cache_args *ca, struct cache **result)
2345{
2346 int r = 0;
2347 char **error = &ca->ti->error;
2348 struct cache *cache;
2349 struct dm_target *ti = ca->ti;
2350 dm_block_t origin_blocks;
2351 struct dm_cache_metadata *cmd;
2352 bool may_format = ca->features.mode == CM_WRITE;
2353
2354 cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2355 if (!cache)
2356 return -ENOMEM;
2357
2358 cache->ti = ca->ti;
2359 ti->private = cache;
2360 ti->accounts_remapped_io = true;
2361 ti->num_flush_bios = 2;
2362 ti->flush_supported = true;
2363
2364 ti->num_discard_bios = 1;
2365 ti->discards_supported = true;
2366
2367 ti->per_io_data_size = sizeof(struct per_bio_data);
2368
2369 cache->features = ca->features;
2370 if (writethrough_mode(cache)) {
2371 /* Create bioset for writethrough bios issued to origin */
2372 r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2373 if (r)
2374 goto bad;
2375 }
2376
2377 cache->metadata_dev = ca->metadata_dev;
2378 cache->origin_dev = ca->origin_dev;
2379 cache->cache_dev = ca->cache_dev;
2380
2381 ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2382
2383 origin_blocks = cache->origin_sectors = ca->origin_sectors;
2384 origin_blocks = block_div(origin_blocks, ca->block_size);
2385 cache->origin_blocks = to_oblock(origin_blocks);
2386
2387 cache->sectors_per_block = ca->block_size;
2388 if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2389 r = -EINVAL;
2390 goto bad;
2391 }
2392
2393 if (ca->block_size & (ca->block_size - 1)) {
2394 dm_block_t cache_size = ca->cache_sectors;
2395
2396 cache->sectors_per_block_shift = -1;
2397 cache_size = block_div(cache_size, ca->block_size);
2398 set_cache_size(cache, to_cblock(cache_size));
2399 } else {
2400 cache->sectors_per_block_shift = __ffs(ca->block_size);
2401 set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2402 }
2403
2404 r = create_cache_policy(cache, ca, error);
2405 if (r)
2406 goto bad;
2407
2408 cache->policy_nr_args = ca->policy_argc;
2409 cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2410
2411 r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2412 if (r) {
2413 *error = "Error setting cache policy's config values";
2414 goto bad;
2415 }
2416
2417 cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2418 ca->block_size, may_format,
2419 dm_cache_policy_get_hint_size(cache->policy),
2420 ca->features.metadata_version);
2421 if (IS_ERR(cmd)) {
2422 *error = "Error creating metadata object";
2423 r = PTR_ERR(cmd);
2424 goto bad;
2425 }
2426 cache->cmd = cmd;
2427 set_cache_mode(cache, CM_WRITE);
2428 if (get_cache_mode(cache) != CM_WRITE) {
2429 *error = "Unable to get write access to metadata, please check/repair metadata.";
2430 r = -EINVAL;
2431 goto bad;
2432 }
2433
2434 if (passthrough_mode(cache)) {
2435 bool all_clean;
2436
2437 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2438 if (r) {
2439 *error = "dm_cache_metadata_all_clean() failed";
2440 goto bad;
2441 }
2442
2443 if (!all_clean) {
2444 *error = "Cannot enter passthrough mode unless all blocks are clean";
2445 r = -EINVAL;
2446 goto bad;
2447 }
2448
2449 policy_allow_migrations(cache->policy, false);
2450 }
2451
2452 spin_lock_init(&cache->lock);
2453 bio_list_init(&cache->deferred_bios);
2454 atomic_set(&cache->nr_allocated_migrations, 0);
2455 atomic_set(&cache->nr_io_migrations, 0);
2456 init_waitqueue_head(&cache->migration_wait);
2457
2458 r = -ENOMEM;
2459 atomic_set(&cache->nr_dirty, 0);
2460 cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2461 if (!cache->dirty_bitset) {
2462 *error = "could not allocate dirty bitset";
2463 goto bad;
2464 }
2465 clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2466
2467 cache->discard_block_size =
2468 calculate_discard_block_size(cache->sectors_per_block,
2469 cache->origin_sectors);
2470 cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2471 cache->discard_block_size));
2472 cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2473 if (!cache->discard_bitset) {
2474 *error = "could not allocate discard bitset";
2475 goto bad;
2476 }
2477 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2478
2479 cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2480 if (IS_ERR(cache->copier)) {
2481 *error = "could not create kcopyd client";
2482 r = PTR_ERR(cache->copier);
2483 goto bad;
2484 }
2485
2486 cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2487 if (!cache->wq) {
2488 *error = "could not create workqueue for metadata object";
2489 goto bad;
2490 }
2491 INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2492 INIT_WORK(&cache->migration_worker, check_migrations);
2493 INIT_DELAYED_WORK(&cache->waker, do_waker);
2494
2495 cache->prison = dm_bio_prison_create_v2(cache->wq);
2496 if (!cache->prison) {
2497 *error = "could not create bio prison";
2498 goto bad;
2499 }
2500
2501 r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2502 migration_cache);
2503 if (r) {
2504 *error = "Error creating cache's migration mempool";
2505 goto bad;
2506 }
2507
2508 cache->need_tick_bio = true;
2509 cache->sized = false;
2510 cache->invalidate = false;
2511 cache->commit_requested = false;
2512 cache->loaded_mappings = false;
2513 cache->loaded_discards = false;
2514
2515 load_stats(cache);
2516
2517 atomic_set(&cache->stats.demotion, 0);
2518 atomic_set(&cache->stats.promotion, 0);
2519 atomic_set(&cache->stats.copies_avoided, 0);
2520 atomic_set(&cache->stats.cache_cell_clash, 0);
2521 atomic_set(&cache->stats.commit_count, 0);
2522 atomic_set(&cache->stats.discard_count, 0);
2523
2524 spin_lock_init(&cache->invalidation_lock);
2525 INIT_LIST_HEAD(&cache->invalidation_requests);
2526
2527 batcher_init(&cache->committer, commit_op, cache,
2528 issue_op, cache, cache->wq);
2529 dm_iot_init(&cache->tracker);
2530
2531 init_rwsem(&cache->background_work_lock);
2532 prevent_background_work(cache);
2533
2534 *result = cache;
2535 return 0;
2536bad:
2537 destroy(cache);
2538 return r;
2539}
2540
2541static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2542{
2543 unsigned i;
2544 const char **copy;
2545
2546 copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2547 if (!copy)
2548 return -ENOMEM;
2549 for (i = 0; i < argc; i++) {
2550 copy[i] = kstrdup(argv[i], GFP_KERNEL);
2551 if (!copy[i]) {
2552 while (i--)
2553 kfree(copy[i]);
2554 kfree(copy);
2555 return -ENOMEM;
2556 }
2557 }
2558
2559 cache->nr_ctr_args = argc;
2560 cache->ctr_args = copy;
2561
2562 return 0;
2563}
2564
2565static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2566{
2567 int r = -EINVAL;
2568 struct cache_args *ca;
2569 struct cache *cache = NULL;
2570
2571 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2572 if (!ca) {
2573 ti->error = "Error allocating memory for cache";
2574 return -ENOMEM;
2575 }
2576 ca->ti = ti;
2577
2578 r = parse_cache_args(ca, argc, argv, &ti->error);
2579 if (r)
2580 goto out;
2581
2582 r = cache_create(ca, &cache);
2583 if (r)
2584 goto out;
2585
2586 r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2587 if (r) {
2588 destroy(cache);
2589 goto out;
2590 }
2591
2592 ti->private = cache;
2593out:
2594 destroy_cache_args(ca);
2595 return r;
2596}
2597
2598/*----------------------------------------------------------------*/
2599
2600static int cache_map(struct dm_target *ti, struct bio *bio)
2601{
2602 struct cache *cache = ti->private;
2603
2604 int r;
2605 bool commit_needed;
2606 dm_oblock_t block = get_bio_block(cache, bio);
2607
2608 init_per_bio_data(bio);
2609 if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2610 /*
2611 * This can only occur if the io goes to a partial block at
2612 * the end of the origin device. We don't cache these.
2613 * Just remap to the origin and carry on.
2614 */
2615 remap_to_origin(cache, bio);
2616 accounted_begin(cache, bio);
2617 return DM_MAPIO_REMAPPED;
2618 }
2619
2620 if (discard_or_flush(bio)) {
2621 defer_bio(cache, bio);
2622 return DM_MAPIO_SUBMITTED;
2623 }
2624
2625 r = map_bio(cache, bio, block, &commit_needed);
2626 if (commit_needed)
2627 schedule_commit(&cache->committer);
2628
2629 return r;
2630}
2631
2632static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2633{
2634 struct cache *cache = ti->private;
2635 unsigned long flags;
2636 struct per_bio_data *pb = get_per_bio_data(bio);
2637
2638 if (pb->tick) {
2639 policy_tick(cache->policy, false);
2640
2641 spin_lock_irqsave(&cache->lock, flags);
2642 cache->need_tick_bio = true;
2643 spin_unlock_irqrestore(&cache->lock, flags);
2644 }
2645
2646 bio_drop_shared_lock(cache, bio);
2647 accounted_complete(cache, bio);
2648
2649 return DM_ENDIO_DONE;
2650}
2651
2652static int write_dirty_bitset(struct cache *cache)
2653{
2654 int r;
2655
2656 if (get_cache_mode(cache) >= CM_READ_ONLY)
2657 return -EINVAL;
2658
2659 r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2660 if (r)
2661 metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2662
2663 return r;
2664}
2665
2666static int write_discard_bitset(struct cache *cache)
2667{
2668 unsigned i, r;
2669
2670 if (get_cache_mode(cache) >= CM_READ_ONLY)
2671 return -EINVAL;
2672
2673 r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2674 cache->discard_nr_blocks);
2675 if (r) {
2676 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2677 metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2678 return r;
2679 }
2680
2681 for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2682 r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2683 is_discarded(cache, to_dblock(i)));
2684 if (r) {
2685 metadata_operation_failed(cache, "dm_cache_set_discard", r);
2686 return r;
2687 }
2688 }
2689
2690 return 0;
2691}
2692
2693static int write_hints(struct cache *cache)
2694{
2695 int r;
2696
2697 if (get_cache_mode(cache) >= CM_READ_ONLY)
2698 return -EINVAL;
2699
2700 r = dm_cache_write_hints(cache->cmd, cache->policy);
2701 if (r) {
2702 metadata_operation_failed(cache, "dm_cache_write_hints", r);
2703 return r;
2704 }
2705
2706 return 0;
2707}
2708
2709/*
2710 * returns true on success
2711 */
2712static bool sync_metadata(struct cache *cache)
2713{
2714 int r1, r2, r3, r4;
2715
2716 r1 = write_dirty_bitset(cache);
2717 if (r1)
2718 DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2719
2720 r2 = write_discard_bitset(cache);
2721 if (r2)
2722 DMERR("%s: could not write discard bitset", cache_device_name(cache));
2723
2724 save_stats(cache);
2725
2726 r3 = write_hints(cache);
2727 if (r3)
2728 DMERR("%s: could not write hints", cache_device_name(cache));
2729
2730 /*
2731 * If writing the above metadata failed, we still commit, but don't
2732 * set the clean shutdown flag. This will effectively force every
2733 * dirty bit to be set on reload.
2734 */
2735 r4 = commit(cache, !r1 && !r2 && !r3);
2736 if (r4)
2737 DMERR("%s: could not write cache metadata", cache_device_name(cache));
2738
2739 return !r1 && !r2 && !r3 && !r4;
2740}
2741
2742static void cache_postsuspend(struct dm_target *ti)
2743{
2744 struct cache *cache = ti->private;
2745
2746 prevent_background_work(cache);
2747 BUG_ON(atomic_read(&cache->nr_io_migrations));
2748
2749 cancel_delayed_work_sync(&cache->waker);
2750 drain_workqueue(cache->wq);
2751 WARN_ON(cache->tracker.in_flight);
2752
2753 /*
2754 * If it's a flush suspend there won't be any deferred bios, so this
2755 * call is harmless.
2756 */
2757 requeue_deferred_bios(cache);
2758
2759 if (get_cache_mode(cache) == CM_WRITE)
2760 (void) sync_metadata(cache);
2761}
2762
2763static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2764 bool dirty, uint32_t hint, bool hint_valid)
2765{
2766 struct cache *cache = context;
2767
2768 if (dirty) {
2769 set_bit(from_cblock(cblock), cache->dirty_bitset);
2770 atomic_inc(&cache->nr_dirty);
2771 } else
2772 clear_bit(from_cblock(cblock), cache->dirty_bitset);
2773
2774 return policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2775}
2776
2777/*
2778 * The discard block size in the on disk metadata is not
2779 * necessarily the same as we're currently using. So we have to
2780 * be careful to only set the discarded attribute if we know it
2781 * covers a complete block of the new size.
2782 */
2783struct discard_load_info {
2784 struct cache *cache;
2785
2786 /*
2787 * These blocks are sized using the on disk dblock size, rather
2788 * than the current one.
2789 */
2790 dm_block_t block_size;
2791 dm_block_t discard_begin, discard_end;
2792};
2793
2794static void discard_load_info_init(struct cache *cache,
2795 struct discard_load_info *li)
2796{
2797 li->cache = cache;
2798 li->discard_begin = li->discard_end = 0;
2799}
2800
2801static void set_discard_range(struct discard_load_info *li)
2802{
2803 sector_t b, e;
2804
2805 if (li->discard_begin == li->discard_end)
2806 return;
2807
2808 /*
2809 * Convert to sectors.
2810 */
2811 b = li->discard_begin * li->block_size;
2812 e = li->discard_end * li->block_size;
2813
2814 /*
2815 * Then convert back to the current dblock size.
2816 */
2817 b = dm_sector_div_up(b, li->cache->discard_block_size);
2818 sector_div(e, li->cache->discard_block_size);
2819
2820 /*
2821 * The origin may have shrunk, so we need to check we're still in
2822 * bounds.
2823 */
2824 if (e > from_dblock(li->cache->discard_nr_blocks))
2825 e = from_dblock(li->cache->discard_nr_blocks);
2826
2827 for (; b < e; b++)
2828 set_discard(li->cache, to_dblock(b));
2829}
2830
2831static int load_discard(void *context, sector_t discard_block_size,
2832 dm_dblock_t dblock, bool discard)
2833{
2834 struct discard_load_info *li = context;
2835
2836 li->block_size = discard_block_size;
2837
2838 if (discard) {
2839 if (from_dblock(dblock) == li->discard_end)
2840 /*
2841 * We're already in a discard range, just extend it.
2842 */
2843 li->discard_end = li->discard_end + 1ULL;
2844
2845 else {
2846 /*
2847 * Emit the old range and start a new one.
2848 */
2849 set_discard_range(li);
2850 li->discard_begin = from_dblock(dblock);
2851 li->discard_end = li->discard_begin + 1ULL;
2852 }
2853 } else {
2854 set_discard_range(li);
2855 li->discard_begin = li->discard_end = 0;
2856 }
2857
2858 return 0;
2859}
2860
2861static dm_cblock_t get_cache_dev_size(struct cache *cache)
2862{
2863 sector_t size = get_dev_size(cache->cache_dev);
2864 (void) sector_div(size, cache->sectors_per_block);
2865 return to_cblock(size);
2866}
2867
2868static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2869{
2870 if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
2871 if (cache->sized) {
2872 DMERR("%s: unable to extend cache due to missing cache table reload",
2873 cache_device_name(cache));
2874 return false;
2875 }
2876 }
2877
2878 /*
2879 * We can't drop a dirty block when shrinking the cache.
2880 */
2881 while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
2882 new_size = to_cblock(from_cblock(new_size) + 1);
2883 if (is_dirty(cache, new_size)) {
2884 DMERR("%s: unable to shrink cache; cache block %llu is dirty",
2885 cache_device_name(cache),
2886 (unsigned long long) from_cblock(new_size));
2887 return false;
2888 }
2889 }
2890
2891 return true;
2892}
2893
2894static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2895{
2896 int r;
2897
2898 r = dm_cache_resize(cache->cmd, new_size);
2899 if (r) {
2900 DMERR("%s: could not resize cache metadata", cache_device_name(cache));
2901 metadata_operation_failed(cache, "dm_cache_resize", r);
2902 return r;
2903 }
2904
2905 set_cache_size(cache, new_size);
2906
2907 return 0;
2908}
2909
2910static int cache_preresume(struct dm_target *ti)
2911{
2912 int r = 0;
2913 struct cache *cache = ti->private;
2914 dm_cblock_t csize = get_cache_dev_size(cache);
2915
2916 /*
2917 * Check to see if the cache has resized.
2918 */
2919 if (!cache->sized) {
2920 r = resize_cache_dev(cache, csize);
2921 if (r)
2922 return r;
2923
2924 cache->sized = true;
2925
2926 } else if (csize != cache->cache_size) {
2927 if (!can_resize(cache, csize))
2928 return -EINVAL;
2929
2930 r = resize_cache_dev(cache, csize);
2931 if (r)
2932 return r;
2933 }
2934
2935 if (!cache->loaded_mappings) {
2936 r = dm_cache_load_mappings(cache->cmd, cache->policy,
2937 load_mapping, cache);
2938 if (r) {
2939 DMERR("%s: could not load cache mappings", cache_device_name(cache));
2940 metadata_operation_failed(cache, "dm_cache_load_mappings", r);
2941 return r;
2942 }
2943
2944 cache->loaded_mappings = true;
2945 }
2946
2947 if (!cache->loaded_discards) {
2948 struct discard_load_info li;
2949
2950 /*
2951 * The discard bitset could have been resized, or the
2952 * discard block size changed. To be safe we start by
2953 * setting every dblock to not discarded.
2954 */
2955 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2956
2957 discard_load_info_init(cache, &li);
2958 r = dm_cache_load_discards(cache->cmd, load_discard, &li);
2959 if (r) {
2960 DMERR("%s: could not load origin discards", cache_device_name(cache));
2961 metadata_operation_failed(cache, "dm_cache_load_discards", r);
2962 return r;
2963 }
2964 set_discard_range(&li);
2965
2966 cache->loaded_discards = true;
2967 }
2968
2969 return r;
2970}
2971
2972static void cache_resume(struct dm_target *ti)
2973{
2974 struct cache *cache = ti->private;
2975
2976 cache->need_tick_bio = true;
2977 allow_background_work(cache);
2978 do_waker(&cache->waker.work);
2979}
2980
2981static void emit_flags(struct cache *cache, char *result,
2982 unsigned maxlen, ssize_t *sz_ptr)
2983{
2984 ssize_t sz = *sz_ptr;
2985 struct cache_features *cf = &cache->features;
2986 unsigned count = (cf->metadata_version == 2) + !cf->discard_passdown + 1;
2987
2988 DMEMIT("%u ", count);
2989
2990 if (cf->metadata_version == 2)
2991 DMEMIT("metadata2 ");
2992
2993 if (writethrough_mode(cache))
2994 DMEMIT("writethrough ");
2995
2996 else if (passthrough_mode(cache))
2997 DMEMIT("passthrough ");
2998
2999 else if (writeback_mode(cache))
3000 DMEMIT("writeback ");
3001
3002 else {
3003 DMEMIT("unknown ");
3004 DMERR("%s: internal error: unknown io mode: %d",
3005 cache_device_name(cache), (int) cf->io_mode);
3006 }
3007
3008 if (!cf->discard_passdown)
3009 DMEMIT("no_discard_passdown ");
3010
3011 *sz_ptr = sz;
3012}
3013
3014/*
3015 * Status format:
3016 *
3017 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3018 * <cache block size> <#used cache blocks>/<#total cache blocks>
3019 * <#read hits> <#read misses> <#write hits> <#write misses>
3020 * <#demotions> <#promotions> <#dirty>
3021 * <#features> <features>*
3022 * <#core args> <core args>
3023 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3024 */
3025static void cache_status(struct dm_target *ti, status_type_t type,
3026 unsigned status_flags, char *result, unsigned maxlen)
3027{
3028 int r = 0;
3029 unsigned i;
3030 ssize_t sz = 0;
3031 dm_block_t nr_free_blocks_metadata = 0;
3032 dm_block_t nr_blocks_metadata = 0;
3033 char buf[BDEVNAME_SIZE];
3034 struct cache *cache = ti->private;
3035 dm_cblock_t residency;
3036 bool needs_check;
3037
3038 switch (type) {
3039 case STATUSTYPE_INFO:
3040 if (get_cache_mode(cache) == CM_FAIL) {
3041 DMEMIT("Fail");
3042 break;
3043 }
3044
3045 /* Commit to ensure statistics aren't out-of-date */
3046 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3047 (void) commit(cache, false);
3048
3049 r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3050 if (r) {
3051 DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3052 cache_device_name(cache), r);
3053 goto err;
3054 }
3055
3056 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3057 if (r) {
3058 DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3059 cache_device_name(cache), r);
3060 goto err;
3061 }
3062
3063 residency = policy_residency(cache->policy);
3064
3065 DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3066 (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3067 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3068 (unsigned long long)nr_blocks_metadata,
3069 (unsigned long long)cache->sectors_per_block,
3070 (unsigned long long) from_cblock(residency),
3071 (unsigned long long) from_cblock(cache->cache_size),
3072 (unsigned) atomic_read(&cache->stats.read_hit),
3073 (unsigned) atomic_read(&cache->stats.read_miss),
3074 (unsigned) atomic_read(&cache->stats.write_hit),
3075 (unsigned) atomic_read(&cache->stats.write_miss),
3076 (unsigned) atomic_read(&cache->stats.demotion),
3077 (unsigned) atomic_read(&cache->stats.promotion),
3078 (unsigned long) atomic_read(&cache->nr_dirty));
3079
3080 emit_flags(cache, result, maxlen, &sz);
3081
3082 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3083
3084 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3085 if (sz < maxlen) {
3086 r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3087 if (r)
3088 DMERR("%s: policy_emit_config_values returned %d",
3089 cache_device_name(cache), r);
3090 }
3091
3092 if (get_cache_mode(cache) == CM_READ_ONLY)
3093 DMEMIT("ro ");
3094 else
3095 DMEMIT("rw ");
3096
3097 r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3098
3099 if (r || needs_check)
3100 DMEMIT("needs_check ");
3101 else
3102 DMEMIT("- ");
3103
3104 break;
3105
3106 case STATUSTYPE_TABLE:
3107 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3108 DMEMIT("%s ", buf);
3109 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3110 DMEMIT("%s ", buf);
3111 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3112 DMEMIT("%s", buf);
3113
3114 for (i = 0; i < cache->nr_ctr_args - 1; i++)
3115 DMEMIT(" %s", cache->ctr_args[i]);
3116 if (cache->nr_ctr_args)
3117 DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3118 break;
3119
3120 case STATUSTYPE_IMA:
3121 DMEMIT_TARGET_NAME_VERSION(ti->type);
3122 if (get_cache_mode(cache) == CM_FAIL)
3123 DMEMIT(",metadata_mode=fail");
3124 else if (get_cache_mode(cache) == CM_READ_ONLY)
3125 DMEMIT(",metadata_mode=ro");
3126 else
3127 DMEMIT(",metadata_mode=rw");
3128
3129 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3130 DMEMIT(",cache_metadata_device=%s", buf);
3131 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3132 DMEMIT(",cache_device=%s", buf);
3133 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3134 DMEMIT(",cache_origin_device=%s", buf);
3135 DMEMIT(",writethrough=%c", writethrough_mode(cache) ? 'y' : 'n');
3136 DMEMIT(",writeback=%c", writeback_mode(cache) ? 'y' : 'n');
3137 DMEMIT(",passthrough=%c", passthrough_mode(cache) ? 'y' : 'n');
3138 DMEMIT(",metadata2=%c", cache->features.metadata_version == 2 ? 'y' : 'n');
3139 DMEMIT(",no_discard_passdown=%c", cache->features.discard_passdown ? 'n' : 'y');
3140 DMEMIT(";");
3141 break;
3142 }
3143
3144 return;
3145
3146err:
3147 DMEMIT("Error");
3148}
3149
3150/*
3151 * Defines a range of cblocks, begin to (end - 1) are in the range. end is
3152 * the one-past-the-end value.
3153 */
3154struct cblock_range {
3155 dm_cblock_t begin;
3156 dm_cblock_t end;
3157};
3158
3159/*
3160 * A cache block range can take two forms:
3161 *
3162 * i) A single cblock, eg. '3456'
3163 * ii) A begin and end cblock with a dash between, eg. 123-234
3164 */
3165static int parse_cblock_range(struct cache *cache, const char *str,
3166 struct cblock_range *result)
3167{
3168 char dummy;
3169 uint64_t b, e;
3170 int r;
3171
3172 /*
3173 * Try and parse form (ii) first.
3174 */
3175 r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3176 if (r < 0)
3177 return r;
3178
3179 if (r == 2) {
3180 result->begin = to_cblock(b);
3181 result->end = to_cblock(e);
3182 return 0;
3183 }
3184
3185 /*
3186 * That didn't work, try form (i).
3187 */
3188 r = sscanf(str, "%llu%c", &b, &dummy);
3189 if (r < 0)
3190 return r;
3191
3192 if (r == 1) {
3193 result->begin = to_cblock(b);
3194 result->end = to_cblock(from_cblock(result->begin) + 1u);
3195 return 0;
3196 }
3197
3198 DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3199 return -EINVAL;
3200}
3201
3202static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3203{
3204 uint64_t b = from_cblock(range->begin);
3205 uint64_t e = from_cblock(range->end);
3206 uint64_t n = from_cblock(cache->cache_size);
3207
3208 if (b >= n) {
3209 DMERR("%s: begin cblock out of range: %llu >= %llu",
3210 cache_device_name(cache), b, n);
3211 return -EINVAL;
3212 }
3213
3214 if (e > n) {
3215 DMERR("%s: end cblock out of range: %llu > %llu",
3216 cache_device_name(cache), e, n);
3217 return -EINVAL;
3218 }
3219
3220 if (b >= e) {
3221 DMERR("%s: invalid cblock range: %llu >= %llu",
3222 cache_device_name(cache), b, e);
3223 return -EINVAL;
3224 }
3225
3226 return 0;
3227}
3228
3229static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3230{
3231 return to_cblock(from_cblock(b) + 1);
3232}
3233
3234static int request_invalidation(struct cache *cache, struct cblock_range *range)
3235{
3236 int r = 0;
3237
3238 /*
3239 * We don't need to do any locking here because we know we're in
3240 * passthrough mode. There's is potential for a race between an
3241 * invalidation triggered by an io and an invalidation message. This
3242 * is harmless, we must not worry if the policy call fails.
3243 */
3244 while (range->begin != range->end) {
3245 r = invalidate_cblock(cache, range->begin);
3246 if (r)
3247 return r;
3248
3249 range->begin = cblock_succ(range->begin);
3250 }
3251
3252 cache->commit_requested = true;
3253 return r;
3254}
3255
3256static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3257 const char **cblock_ranges)
3258{
3259 int r = 0;
3260 unsigned i;
3261 struct cblock_range range;
3262
3263 if (!passthrough_mode(cache)) {
3264 DMERR("%s: cache has to be in passthrough mode for invalidation",
3265 cache_device_name(cache));
3266 return -EPERM;
3267 }
3268
3269 for (i = 0; i < count; i++) {
3270 r = parse_cblock_range(cache, cblock_ranges[i], &range);
3271 if (r)
3272 break;
3273
3274 r = validate_cblock_range(cache, &range);
3275 if (r)
3276 break;
3277
3278 /*
3279 * Pass begin and end origin blocks to the worker and wake it.
3280 */
3281 r = request_invalidation(cache, &range);
3282 if (r)
3283 break;
3284 }
3285
3286 return r;
3287}
3288
3289/*
3290 * Supports
3291 * "<key> <value>"
3292 * and
3293 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3294 *
3295 * The key migration_threshold is supported by the cache target core.
3296 */
3297static int cache_message(struct dm_target *ti, unsigned argc, char **argv,
3298 char *result, unsigned maxlen)
3299{
3300 struct cache *cache = ti->private;
3301
3302 if (!argc)
3303 return -EINVAL;
3304
3305 if (get_cache_mode(cache) >= CM_READ_ONLY) {
3306 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3307 cache_device_name(cache));
3308 return -EOPNOTSUPP;
3309 }
3310
3311 if (!strcasecmp(argv[0], "invalidate_cblocks"))
3312 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3313
3314 if (argc != 2)
3315 return -EINVAL;
3316
3317 return set_config_value(cache, argv[0], argv[1]);
3318}
3319
3320static int cache_iterate_devices(struct dm_target *ti,
3321 iterate_devices_callout_fn fn, void *data)
3322{
3323 int r = 0;
3324 struct cache *cache = ti->private;
3325
3326 r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3327 if (!r)
3328 r = fn(ti, cache->origin_dev, 0, ti->len, data);
3329
3330 return r;
3331}
3332
3333/*
3334 * If discard_passdown was enabled verify that the origin device
3335 * supports discards. Disable discard_passdown if not.
3336 */
3337static void disable_passdown_if_not_supported(struct cache *cache)
3338{
3339 struct block_device *origin_bdev = cache->origin_dev->bdev;
3340 struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3341 const char *reason = NULL;
3342
3343 if (!cache->features.discard_passdown)
3344 return;
3345
3346 if (!bdev_max_discard_sectors(origin_bdev))
3347 reason = "discard unsupported";
3348
3349 else if (origin_limits->max_discard_sectors < cache->sectors_per_block)
3350 reason = "max discard sectors smaller than a block";
3351
3352 if (reason) {
3353 DMWARN("Origin device (%pg) %s: Disabling discard passdown.",
3354 origin_bdev, reason);
3355 cache->features.discard_passdown = false;
3356 }
3357}
3358
3359static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3360{
3361 struct block_device *origin_bdev = cache->origin_dev->bdev;
3362 struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3363
3364 if (!cache->features.discard_passdown) {
3365 /* No passdown is done so setting own virtual limits */
3366 limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3367 cache->origin_sectors);
3368 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3369 return;
3370 }
3371
3372 /*
3373 * cache_iterate_devices() is stacking both origin and fast device limits
3374 * but discards aren't passed to fast device, so inherit origin's limits.
3375 */
3376 limits->max_discard_sectors = origin_limits->max_discard_sectors;
3377 limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors;
3378 limits->discard_granularity = origin_limits->discard_granularity;
3379 limits->discard_alignment = origin_limits->discard_alignment;
3380 limits->discard_misaligned = origin_limits->discard_misaligned;
3381}
3382
3383static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3384{
3385 struct cache *cache = ti->private;
3386 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3387
3388 /*
3389 * If the system-determined stacked limits are compatible with the
3390 * cache's blocksize (io_opt is a factor) do not override them.
3391 */
3392 if (io_opt_sectors < cache->sectors_per_block ||
3393 do_div(io_opt_sectors, cache->sectors_per_block)) {
3394 blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3395 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3396 }
3397
3398 disable_passdown_if_not_supported(cache);
3399 set_discard_limits(cache, limits);
3400}
3401
3402/*----------------------------------------------------------------*/
3403
3404static struct target_type cache_target = {
3405 .name = "cache",
3406 .version = {2, 2, 0},
3407 .module = THIS_MODULE,
3408 .ctr = cache_ctr,
3409 .dtr = cache_dtr,
3410 .map = cache_map,
3411 .end_io = cache_end_io,
3412 .postsuspend = cache_postsuspend,
3413 .preresume = cache_preresume,
3414 .resume = cache_resume,
3415 .status = cache_status,
3416 .message = cache_message,
3417 .iterate_devices = cache_iterate_devices,
3418 .io_hints = cache_io_hints,
3419};
3420
3421static int __init dm_cache_init(void)
3422{
3423 int r;
3424
3425 migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3426 if (!migration_cache)
3427 return -ENOMEM;
3428
3429 r = dm_register_target(&cache_target);
3430 if (r) {
3431 DMERR("cache target registration failed: %d", r);
3432 kmem_cache_destroy(migration_cache);
3433 return r;
3434 }
3435
3436 return 0;
3437}
3438
3439static void __exit dm_cache_exit(void)
3440{
3441 dm_unregister_target(&cache_target);
3442 kmem_cache_destroy(migration_cache);
3443}
3444
3445module_init(dm_cache_init);
3446module_exit(dm_cache_exit);
3447
3448MODULE_DESCRIPTION(DM_NAME " cache target");
3449MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3450MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2012 Red Hat. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm.h"
9#include "dm-bio-prison-v2.h"
10#include "dm-bio-record.h"
11#include "dm-cache-metadata.h"
12#include "dm-io-tracker.h"
13#include "dm-cache-background-tracker.h"
14
15#include <linux/dm-io.h>
16#include <linux/dm-kcopyd.h>
17#include <linux/jiffies.h>
18#include <linux/init.h>
19#include <linux/mempool.h>
20#include <linux/module.h>
21#include <linux/rwsem.h>
22#include <linux/slab.h>
23#include <linux/vmalloc.h>
24
25#define DM_MSG_PREFIX "cache"
26
27DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
28 "A percentage of time allocated for copying to and/or from cache");
29
30/*----------------------------------------------------------------*/
31
32/*
33 * Glossary:
34 *
35 * oblock: index of an origin block
36 * cblock: index of a cache block
37 * promotion: movement of a block from origin to cache
38 * demotion: movement of a block from cache to origin
39 * migration: movement of a block between the origin and cache device,
40 * either direction
41 */
42
43/*----------------------------------------------------------------*/
44
45/*
46 * Represents a chunk of future work. 'input' allows continuations to pass
47 * values between themselves, typically error values.
48 */
49struct continuation {
50 struct work_struct ws;
51 blk_status_t input;
52};
53
54static inline void init_continuation(struct continuation *k,
55 void (*fn)(struct work_struct *))
56{
57 INIT_WORK(&k->ws, fn);
58 k->input = 0;
59}
60
61static inline void queue_continuation(struct workqueue_struct *wq,
62 struct continuation *k)
63{
64 queue_work(wq, &k->ws);
65}
66
67/*----------------------------------------------------------------*/
68
69/*
70 * The batcher collects together pieces of work that need a particular
71 * operation to occur before they can proceed (typically a commit).
72 */
73struct batcher {
74 /*
75 * The operation that everyone is waiting for.
76 */
77 blk_status_t (*commit_op)(void *context);
78 void *commit_context;
79
80 /*
81 * This is how bios should be issued once the commit op is complete
82 * (accounted_request).
83 */
84 void (*issue_op)(struct bio *bio, void *context);
85 void *issue_context;
86
87 /*
88 * Queued work gets put on here after commit.
89 */
90 struct workqueue_struct *wq;
91
92 spinlock_t lock;
93 struct list_head work_items;
94 struct bio_list bios;
95 struct work_struct commit_work;
96
97 bool commit_scheduled;
98};
99
100static void __commit(struct work_struct *_ws)
101{
102 struct batcher *b = container_of(_ws, struct batcher, commit_work);
103 blk_status_t r;
104 struct list_head work_items;
105 struct work_struct *ws, *tmp;
106 struct continuation *k;
107 struct bio *bio;
108 struct bio_list bios;
109
110 INIT_LIST_HEAD(&work_items);
111 bio_list_init(&bios);
112
113 /*
114 * We have to grab these before the commit_op to avoid a race
115 * condition.
116 */
117 spin_lock_irq(&b->lock);
118 list_splice_init(&b->work_items, &work_items);
119 bio_list_merge_init(&bios, &b->bios);
120 b->commit_scheduled = false;
121 spin_unlock_irq(&b->lock);
122
123 r = b->commit_op(b->commit_context);
124
125 list_for_each_entry_safe(ws, tmp, &work_items, entry) {
126 k = container_of(ws, struct continuation, ws);
127 k->input = r;
128 INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
129 queue_work(b->wq, ws);
130 }
131
132 while ((bio = bio_list_pop(&bios))) {
133 if (r) {
134 bio->bi_status = r;
135 bio_endio(bio);
136 } else
137 b->issue_op(bio, b->issue_context);
138 }
139}
140
141static void batcher_init(struct batcher *b,
142 blk_status_t (*commit_op)(void *),
143 void *commit_context,
144 void (*issue_op)(struct bio *bio, void *),
145 void *issue_context,
146 struct workqueue_struct *wq)
147{
148 b->commit_op = commit_op;
149 b->commit_context = commit_context;
150 b->issue_op = issue_op;
151 b->issue_context = issue_context;
152 b->wq = wq;
153
154 spin_lock_init(&b->lock);
155 INIT_LIST_HEAD(&b->work_items);
156 bio_list_init(&b->bios);
157 INIT_WORK(&b->commit_work, __commit);
158 b->commit_scheduled = false;
159}
160
161static void async_commit(struct batcher *b)
162{
163 queue_work(b->wq, &b->commit_work);
164}
165
166static void continue_after_commit(struct batcher *b, struct continuation *k)
167{
168 bool commit_scheduled;
169
170 spin_lock_irq(&b->lock);
171 commit_scheduled = b->commit_scheduled;
172 list_add_tail(&k->ws.entry, &b->work_items);
173 spin_unlock_irq(&b->lock);
174
175 if (commit_scheduled)
176 async_commit(b);
177}
178
179/*
180 * Bios are errored if commit failed.
181 */
182static void issue_after_commit(struct batcher *b, struct bio *bio)
183{
184 bool commit_scheduled;
185
186 spin_lock_irq(&b->lock);
187 commit_scheduled = b->commit_scheduled;
188 bio_list_add(&b->bios, bio);
189 spin_unlock_irq(&b->lock);
190
191 if (commit_scheduled)
192 async_commit(b);
193}
194
195/*
196 * Call this if some urgent work is waiting for the commit to complete.
197 */
198static void schedule_commit(struct batcher *b)
199{
200 bool immediate;
201
202 spin_lock_irq(&b->lock);
203 immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
204 b->commit_scheduled = true;
205 spin_unlock_irq(&b->lock);
206
207 if (immediate)
208 async_commit(b);
209}
210
211/*
212 * There are a couple of places where we let a bio run, but want to do some
213 * work before calling its endio function. We do this by temporarily
214 * changing the endio fn.
215 */
216struct dm_hook_info {
217 bio_end_io_t *bi_end_io;
218};
219
220static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
221 bio_end_io_t *bi_end_io, void *bi_private)
222{
223 h->bi_end_io = bio->bi_end_io;
224
225 bio->bi_end_io = bi_end_io;
226 bio->bi_private = bi_private;
227}
228
229static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
230{
231 bio->bi_end_io = h->bi_end_io;
232}
233
234/*----------------------------------------------------------------*/
235
236#define MIGRATION_POOL_SIZE 128
237#define COMMIT_PERIOD HZ
238#define MIGRATION_COUNT_WINDOW 10
239
240/*
241 * The block size of the device holding cache data must be
242 * between 32KB and 1GB.
243 */
244#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
245#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
246
247enum cache_metadata_mode {
248 CM_WRITE, /* metadata may be changed */
249 CM_READ_ONLY, /* metadata may not be changed */
250 CM_FAIL
251};
252
253enum cache_io_mode {
254 /*
255 * Data is written to cached blocks only. These blocks are marked
256 * dirty. If you lose the cache device you will lose data.
257 * Potential performance increase for both reads and writes.
258 */
259 CM_IO_WRITEBACK,
260
261 /*
262 * Data is written to both cache and origin. Blocks are never
263 * dirty. Potential performance benfit for reads only.
264 */
265 CM_IO_WRITETHROUGH,
266
267 /*
268 * A degraded mode useful for various cache coherency situations
269 * (eg, rolling back snapshots). Reads and writes always go to the
270 * origin. If a write goes to a cached oblock, then the cache
271 * block is invalidated.
272 */
273 CM_IO_PASSTHROUGH
274};
275
276struct cache_features {
277 enum cache_metadata_mode mode;
278 enum cache_io_mode io_mode;
279 unsigned int metadata_version;
280 bool discard_passdown:1;
281};
282
283struct cache_stats {
284 atomic_t read_hit;
285 atomic_t read_miss;
286 atomic_t write_hit;
287 atomic_t write_miss;
288 atomic_t demotion;
289 atomic_t promotion;
290 atomic_t writeback;
291 atomic_t copies_avoided;
292 atomic_t cache_cell_clash;
293 atomic_t commit_count;
294 atomic_t discard_count;
295};
296
297struct cache {
298 struct dm_target *ti;
299 spinlock_t lock;
300
301 /*
302 * Fields for converting from sectors to blocks.
303 */
304 int sectors_per_block_shift;
305 sector_t sectors_per_block;
306
307 struct dm_cache_metadata *cmd;
308
309 /*
310 * Metadata is written to this device.
311 */
312 struct dm_dev *metadata_dev;
313
314 /*
315 * The slower of the two data devices. Typically a spindle.
316 */
317 struct dm_dev *origin_dev;
318
319 /*
320 * The faster of the two data devices. Typically an SSD.
321 */
322 struct dm_dev *cache_dev;
323
324 /*
325 * Size of the origin device in _complete_ blocks and native sectors.
326 */
327 dm_oblock_t origin_blocks;
328 sector_t origin_sectors;
329
330 /*
331 * Size of the cache device in blocks.
332 */
333 dm_cblock_t cache_size;
334
335 /*
336 * Invalidation fields.
337 */
338 spinlock_t invalidation_lock;
339 struct list_head invalidation_requests;
340
341 sector_t migration_threshold;
342 wait_queue_head_t migration_wait;
343 atomic_t nr_allocated_migrations;
344
345 /*
346 * The number of in flight migrations that are performing
347 * background io. eg, promotion, writeback.
348 */
349 atomic_t nr_io_migrations;
350
351 struct bio_list deferred_bios;
352
353 struct rw_semaphore quiesce_lock;
354
355 /*
356 * origin_blocks entries, discarded if set.
357 */
358 dm_dblock_t discard_nr_blocks;
359 unsigned long *discard_bitset;
360 uint32_t discard_block_size; /* a power of 2 times sectors per block */
361
362 /*
363 * Rather than reconstructing the table line for the status we just
364 * save it and regurgitate.
365 */
366 unsigned int nr_ctr_args;
367 const char **ctr_args;
368
369 struct dm_kcopyd_client *copier;
370 struct work_struct deferred_bio_worker;
371 struct work_struct migration_worker;
372 struct workqueue_struct *wq;
373 struct delayed_work waker;
374 struct dm_bio_prison_v2 *prison;
375
376 /*
377 * cache_size entries, dirty if set
378 */
379 unsigned long *dirty_bitset;
380 atomic_t nr_dirty;
381
382 unsigned int policy_nr_args;
383 struct dm_cache_policy *policy;
384
385 /*
386 * Cache features such as write-through.
387 */
388 struct cache_features features;
389
390 struct cache_stats stats;
391
392 bool need_tick_bio:1;
393 bool sized:1;
394 bool invalidate:1;
395 bool commit_requested:1;
396 bool loaded_mappings:1;
397 bool loaded_discards:1;
398
399 struct rw_semaphore background_work_lock;
400
401 struct batcher committer;
402 struct work_struct commit_ws;
403
404 struct dm_io_tracker tracker;
405
406 mempool_t migration_pool;
407
408 struct bio_set bs;
409};
410
411struct per_bio_data {
412 bool tick:1;
413 unsigned int req_nr:2;
414 struct dm_bio_prison_cell_v2 *cell;
415 struct dm_hook_info hook_info;
416 sector_t len;
417};
418
419struct dm_cache_migration {
420 struct continuation k;
421 struct cache *cache;
422
423 struct policy_work *op;
424 struct bio *overwrite_bio;
425 struct dm_bio_prison_cell_v2 *cell;
426
427 dm_cblock_t invalidate_cblock;
428 dm_oblock_t invalidate_oblock;
429};
430
431/*----------------------------------------------------------------*/
432
433static bool writethrough_mode(struct cache *cache)
434{
435 return cache->features.io_mode == CM_IO_WRITETHROUGH;
436}
437
438static bool writeback_mode(struct cache *cache)
439{
440 return cache->features.io_mode == CM_IO_WRITEBACK;
441}
442
443static inline bool passthrough_mode(struct cache *cache)
444{
445 return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
446}
447
448/*----------------------------------------------------------------*/
449
450static void wake_deferred_bio_worker(struct cache *cache)
451{
452 queue_work(cache->wq, &cache->deferred_bio_worker);
453}
454
455static void wake_migration_worker(struct cache *cache)
456{
457 if (passthrough_mode(cache))
458 return;
459
460 queue_work(cache->wq, &cache->migration_worker);
461}
462
463/*----------------------------------------------------------------*/
464
465static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
466{
467 return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO);
468}
469
470static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
471{
472 dm_bio_prison_free_cell_v2(cache->prison, cell);
473}
474
475static struct dm_cache_migration *alloc_migration(struct cache *cache)
476{
477 struct dm_cache_migration *mg;
478
479 mg = mempool_alloc(&cache->migration_pool, GFP_NOIO);
480
481 memset(mg, 0, sizeof(*mg));
482
483 mg->cache = cache;
484 atomic_inc(&cache->nr_allocated_migrations);
485
486 return mg;
487}
488
489static void free_migration(struct dm_cache_migration *mg)
490{
491 struct cache *cache = mg->cache;
492
493 if (atomic_dec_and_test(&cache->nr_allocated_migrations))
494 wake_up(&cache->migration_wait);
495
496 mempool_free(mg, &cache->migration_pool);
497}
498
499/*----------------------------------------------------------------*/
500
501static inline dm_oblock_t oblock_succ(dm_oblock_t b)
502{
503 return to_oblock(from_oblock(b) + 1ull);
504}
505
506static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
507{
508 key->virtual = 0;
509 key->dev = 0;
510 key->block_begin = from_oblock(begin);
511 key->block_end = from_oblock(end);
512}
513
514/*
515 * We have two lock levels. Level 0, which is used to prevent WRITEs, and
516 * level 1 which prevents *both* READs and WRITEs.
517 */
518#define WRITE_LOCK_LEVEL 0
519#define READ_WRITE_LOCK_LEVEL 1
520
521static unsigned int lock_level(struct bio *bio)
522{
523 return bio_data_dir(bio) == WRITE ?
524 WRITE_LOCK_LEVEL :
525 READ_WRITE_LOCK_LEVEL;
526}
527
528/*
529 *--------------------------------------------------------------
530 * Per bio data
531 *--------------------------------------------------------------
532 */
533
534static struct per_bio_data *get_per_bio_data(struct bio *bio)
535{
536 struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
537
538 BUG_ON(!pb);
539 return pb;
540}
541
542static struct per_bio_data *init_per_bio_data(struct bio *bio)
543{
544 struct per_bio_data *pb = get_per_bio_data(bio);
545
546 pb->tick = false;
547 pb->req_nr = dm_bio_get_target_bio_nr(bio);
548 pb->cell = NULL;
549 pb->len = 0;
550
551 return pb;
552}
553
554/*----------------------------------------------------------------*/
555
556static void defer_bio(struct cache *cache, struct bio *bio)
557{
558 spin_lock_irq(&cache->lock);
559 bio_list_add(&cache->deferred_bios, bio);
560 spin_unlock_irq(&cache->lock);
561
562 wake_deferred_bio_worker(cache);
563}
564
565static void defer_bios(struct cache *cache, struct bio_list *bios)
566{
567 spin_lock_irq(&cache->lock);
568 bio_list_merge_init(&cache->deferred_bios, bios);
569 spin_unlock_irq(&cache->lock);
570
571 wake_deferred_bio_worker(cache);
572}
573
574/*----------------------------------------------------------------*/
575
576static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
577{
578 bool r;
579 struct per_bio_data *pb;
580 struct dm_cell_key_v2 key;
581 dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
582 struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
583
584 cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
585
586 build_key(oblock, end, &key);
587 r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
588 if (!r) {
589 /*
590 * Failed to get the lock.
591 */
592 free_prison_cell(cache, cell_prealloc);
593 return r;
594 }
595
596 if (cell != cell_prealloc)
597 free_prison_cell(cache, cell_prealloc);
598
599 pb = get_per_bio_data(bio);
600 pb->cell = cell;
601
602 return r;
603}
604
605/*----------------------------------------------------------------*/
606
607static bool is_dirty(struct cache *cache, dm_cblock_t b)
608{
609 return test_bit(from_cblock(b), cache->dirty_bitset);
610}
611
612static void set_dirty(struct cache *cache, dm_cblock_t cblock)
613{
614 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
615 atomic_inc(&cache->nr_dirty);
616 policy_set_dirty(cache->policy, cblock);
617 }
618}
619
620/*
621 * These two are called when setting after migrations to force the policy
622 * and dirty bitset to be in sync.
623 */
624static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
625{
626 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
627 atomic_inc(&cache->nr_dirty);
628 policy_set_dirty(cache->policy, cblock);
629}
630
631static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
632{
633 if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
634 if (atomic_dec_return(&cache->nr_dirty) == 0)
635 dm_table_event(cache->ti->table);
636 }
637
638 policy_clear_dirty(cache->policy, cblock);
639}
640
641/*----------------------------------------------------------------*/
642
643static bool block_size_is_power_of_two(struct cache *cache)
644{
645 return cache->sectors_per_block_shift >= 0;
646}
647
648static dm_block_t block_div(dm_block_t b, uint32_t n)
649{
650 do_div(b, n);
651
652 return b;
653}
654
655static dm_block_t oblocks_per_dblock(struct cache *cache)
656{
657 dm_block_t oblocks = cache->discard_block_size;
658
659 if (block_size_is_power_of_two(cache))
660 oblocks >>= cache->sectors_per_block_shift;
661 else
662 oblocks = block_div(oblocks, cache->sectors_per_block);
663
664 return oblocks;
665}
666
667static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
668{
669 return to_dblock(block_div(from_oblock(oblock),
670 oblocks_per_dblock(cache)));
671}
672
673static void set_discard(struct cache *cache, dm_dblock_t b)
674{
675 BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
676 atomic_inc(&cache->stats.discard_count);
677
678 spin_lock_irq(&cache->lock);
679 set_bit(from_dblock(b), cache->discard_bitset);
680 spin_unlock_irq(&cache->lock);
681}
682
683static void clear_discard(struct cache *cache, dm_dblock_t b)
684{
685 spin_lock_irq(&cache->lock);
686 clear_bit(from_dblock(b), cache->discard_bitset);
687 spin_unlock_irq(&cache->lock);
688}
689
690static bool is_discarded(struct cache *cache, dm_dblock_t b)
691{
692 int r;
693
694 spin_lock_irq(&cache->lock);
695 r = test_bit(from_dblock(b), cache->discard_bitset);
696 spin_unlock_irq(&cache->lock);
697
698 return r;
699}
700
701static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
702{
703 int r;
704
705 spin_lock_irq(&cache->lock);
706 r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
707 cache->discard_bitset);
708 spin_unlock_irq(&cache->lock);
709
710 return r;
711}
712
713/*
714 * -------------------------------------------------------------
715 * Remapping
716 *--------------------------------------------------------------
717 */
718static void remap_to_origin(struct cache *cache, struct bio *bio)
719{
720 bio_set_dev(bio, cache->origin_dev->bdev);
721}
722
723static void remap_to_cache(struct cache *cache, struct bio *bio,
724 dm_cblock_t cblock)
725{
726 sector_t bi_sector = bio->bi_iter.bi_sector;
727 sector_t block = from_cblock(cblock);
728
729 bio_set_dev(bio, cache->cache_dev->bdev);
730 if (!block_size_is_power_of_two(cache))
731 bio->bi_iter.bi_sector =
732 (block * cache->sectors_per_block) +
733 sector_div(bi_sector, cache->sectors_per_block);
734 else
735 bio->bi_iter.bi_sector =
736 (block << cache->sectors_per_block_shift) |
737 (bi_sector & (cache->sectors_per_block - 1));
738}
739
740static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
741{
742 struct per_bio_data *pb;
743
744 spin_lock_irq(&cache->lock);
745 if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
746 bio_op(bio) != REQ_OP_DISCARD) {
747 pb = get_per_bio_data(bio);
748 pb->tick = true;
749 cache->need_tick_bio = false;
750 }
751 spin_unlock_irq(&cache->lock);
752}
753
754static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
755 dm_oblock_t oblock)
756{
757 // FIXME: check_if_tick_bio_needed() is called way too much through this interface
758 check_if_tick_bio_needed(cache, bio);
759 remap_to_origin(cache, bio);
760 if (bio_data_dir(bio) == WRITE)
761 clear_discard(cache, oblock_to_dblock(cache, oblock));
762}
763
764static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
765 dm_oblock_t oblock, dm_cblock_t cblock)
766{
767 check_if_tick_bio_needed(cache, bio);
768 remap_to_cache(cache, bio, cblock);
769 if (bio_data_dir(bio) == WRITE) {
770 set_dirty(cache, cblock);
771 clear_discard(cache, oblock_to_dblock(cache, oblock));
772 }
773}
774
775static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
776{
777 sector_t block_nr = bio->bi_iter.bi_sector;
778
779 if (!block_size_is_power_of_two(cache))
780 (void) sector_div(block_nr, cache->sectors_per_block);
781 else
782 block_nr >>= cache->sectors_per_block_shift;
783
784 return to_oblock(block_nr);
785}
786
787static bool accountable_bio(struct cache *cache, struct bio *bio)
788{
789 return bio_op(bio) != REQ_OP_DISCARD;
790}
791
792static void accounted_begin(struct cache *cache, struct bio *bio)
793{
794 struct per_bio_data *pb;
795
796 if (accountable_bio(cache, bio)) {
797 pb = get_per_bio_data(bio);
798 pb->len = bio_sectors(bio);
799 dm_iot_io_begin(&cache->tracker, pb->len);
800 }
801}
802
803static void accounted_complete(struct cache *cache, struct bio *bio)
804{
805 struct per_bio_data *pb = get_per_bio_data(bio);
806
807 dm_iot_io_end(&cache->tracker, pb->len);
808}
809
810static void accounted_request(struct cache *cache, struct bio *bio)
811{
812 accounted_begin(cache, bio);
813 dm_submit_bio_remap(bio, NULL);
814}
815
816static void issue_op(struct bio *bio, void *context)
817{
818 struct cache *cache = context;
819
820 accounted_request(cache, bio);
821}
822
823/*
824 * When running in writethrough mode we need to send writes to clean blocks
825 * to both the cache and origin devices. Clone the bio and send them in parallel.
826 */
827static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
828 dm_oblock_t oblock, dm_cblock_t cblock)
829{
830 struct bio *origin_bio = bio_alloc_clone(cache->origin_dev->bdev, bio,
831 GFP_NOIO, &cache->bs);
832
833 BUG_ON(!origin_bio);
834
835 bio_chain(origin_bio, bio);
836
837 if (bio_data_dir(origin_bio) == WRITE)
838 clear_discard(cache, oblock_to_dblock(cache, oblock));
839 submit_bio(origin_bio);
840
841 remap_to_cache(cache, bio, cblock);
842}
843
844/*
845 *--------------------------------------------------------------
846 * Failure modes
847 *--------------------------------------------------------------
848 */
849static enum cache_metadata_mode get_cache_mode(struct cache *cache)
850{
851 return cache->features.mode;
852}
853
854static const char *cache_device_name(struct cache *cache)
855{
856 return dm_table_device_name(cache->ti->table);
857}
858
859static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
860{
861 static const char *descs[] = {
862 "write",
863 "read-only",
864 "fail"
865 };
866
867 dm_table_event(cache->ti->table);
868 DMINFO("%s: switching cache to %s mode",
869 cache_device_name(cache), descs[(int)mode]);
870}
871
872static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
873{
874 bool needs_check;
875 enum cache_metadata_mode old_mode = get_cache_mode(cache);
876
877 if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
878 DMERR("%s: unable to read needs_check flag, setting failure mode.",
879 cache_device_name(cache));
880 new_mode = CM_FAIL;
881 }
882
883 if (new_mode == CM_WRITE && needs_check) {
884 DMERR("%s: unable to switch cache to write mode until repaired.",
885 cache_device_name(cache));
886 if (old_mode != new_mode)
887 new_mode = old_mode;
888 else
889 new_mode = CM_READ_ONLY;
890 }
891
892 /* Never move out of fail mode */
893 if (old_mode == CM_FAIL)
894 new_mode = CM_FAIL;
895
896 switch (new_mode) {
897 case CM_FAIL:
898 case CM_READ_ONLY:
899 dm_cache_metadata_set_read_only(cache->cmd);
900 break;
901
902 case CM_WRITE:
903 dm_cache_metadata_set_read_write(cache->cmd);
904 break;
905 }
906
907 cache->features.mode = new_mode;
908
909 if (new_mode != old_mode)
910 notify_mode_switch(cache, new_mode);
911}
912
913static void abort_transaction(struct cache *cache)
914{
915 const char *dev_name = cache_device_name(cache);
916
917 if (get_cache_mode(cache) >= CM_READ_ONLY)
918 return;
919
920 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
921 if (dm_cache_metadata_abort(cache->cmd)) {
922 DMERR("%s: failed to abort metadata transaction", dev_name);
923 set_cache_mode(cache, CM_FAIL);
924 }
925
926 if (dm_cache_metadata_set_needs_check(cache->cmd)) {
927 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
928 set_cache_mode(cache, CM_FAIL);
929 }
930}
931
932static void metadata_operation_failed(struct cache *cache, const char *op, int r)
933{
934 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
935 cache_device_name(cache), op, r);
936 abort_transaction(cache);
937 set_cache_mode(cache, CM_READ_ONLY);
938}
939
940/*----------------------------------------------------------------*/
941
942static void load_stats(struct cache *cache)
943{
944 struct dm_cache_statistics stats;
945
946 dm_cache_metadata_get_stats(cache->cmd, &stats);
947 atomic_set(&cache->stats.read_hit, stats.read_hits);
948 atomic_set(&cache->stats.read_miss, stats.read_misses);
949 atomic_set(&cache->stats.write_hit, stats.write_hits);
950 atomic_set(&cache->stats.write_miss, stats.write_misses);
951}
952
953static void save_stats(struct cache *cache)
954{
955 struct dm_cache_statistics stats;
956
957 if (get_cache_mode(cache) >= CM_READ_ONLY)
958 return;
959
960 stats.read_hits = atomic_read(&cache->stats.read_hit);
961 stats.read_misses = atomic_read(&cache->stats.read_miss);
962 stats.write_hits = atomic_read(&cache->stats.write_hit);
963 stats.write_misses = atomic_read(&cache->stats.write_miss);
964
965 dm_cache_metadata_set_stats(cache->cmd, &stats);
966}
967
968static void update_stats(struct cache_stats *stats, enum policy_operation op)
969{
970 switch (op) {
971 case POLICY_PROMOTE:
972 atomic_inc(&stats->promotion);
973 break;
974
975 case POLICY_DEMOTE:
976 atomic_inc(&stats->demotion);
977 break;
978
979 case POLICY_WRITEBACK:
980 atomic_inc(&stats->writeback);
981 break;
982 }
983}
984
985/*
986 *---------------------------------------------------------------------
987 * Migration processing
988 *
989 * Migration covers moving data from the origin device to the cache, or
990 * vice versa.
991 *---------------------------------------------------------------------
992 */
993static void inc_io_migrations(struct cache *cache)
994{
995 atomic_inc(&cache->nr_io_migrations);
996}
997
998static void dec_io_migrations(struct cache *cache)
999{
1000 atomic_dec(&cache->nr_io_migrations);
1001}
1002
1003static bool discard_or_flush(struct bio *bio)
1004{
1005 return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1006}
1007
1008static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1009 dm_dblock_t *b, dm_dblock_t *e)
1010{
1011 sector_t sb = bio->bi_iter.bi_sector;
1012 sector_t se = bio_end_sector(bio);
1013
1014 *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1015
1016 if (se - sb < cache->discard_block_size)
1017 *e = *b;
1018 else
1019 *e = to_dblock(block_div(se, cache->discard_block_size));
1020}
1021
1022/*----------------------------------------------------------------*/
1023
1024static void prevent_background_work(struct cache *cache)
1025{
1026 lockdep_off();
1027 down_write(&cache->background_work_lock);
1028 lockdep_on();
1029}
1030
1031static void allow_background_work(struct cache *cache)
1032{
1033 lockdep_off();
1034 up_write(&cache->background_work_lock);
1035 lockdep_on();
1036}
1037
1038static bool background_work_begin(struct cache *cache)
1039{
1040 bool r;
1041
1042 lockdep_off();
1043 r = down_read_trylock(&cache->background_work_lock);
1044 lockdep_on();
1045
1046 return r;
1047}
1048
1049static void background_work_end(struct cache *cache)
1050{
1051 lockdep_off();
1052 up_read(&cache->background_work_lock);
1053 lockdep_on();
1054}
1055
1056/*----------------------------------------------------------------*/
1057
1058static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1059{
1060 return (bio_data_dir(bio) == WRITE) &&
1061 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1062}
1063
1064static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1065{
1066 return writeback_mode(cache) &&
1067 (is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1068}
1069
1070static void quiesce(struct dm_cache_migration *mg,
1071 void (*continuation)(struct work_struct *))
1072{
1073 init_continuation(&mg->k, continuation);
1074 dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1075}
1076
1077static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1078{
1079 struct continuation *k = container_of(ws, struct continuation, ws);
1080
1081 return container_of(k, struct dm_cache_migration, k);
1082}
1083
1084static void copy_complete(int read_err, unsigned long write_err, void *context)
1085{
1086 struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1087
1088 if (read_err || write_err)
1089 mg->k.input = BLK_STS_IOERR;
1090
1091 queue_continuation(mg->cache->wq, &mg->k);
1092}
1093
1094static void copy(struct dm_cache_migration *mg, bool promote)
1095{
1096 struct dm_io_region o_region, c_region;
1097 struct cache *cache = mg->cache;
1098
1099 o_region.bdev = cache->origin_dev->bdev;
1100 o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1101 o_region.count = cache->sectors_per_block;
1102
1103 c_region.bdev = cache->cache_dev->bdev;
1104 c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1105 c_region.count = cache->sectors_per_block;
1106
1107 if (promote)
1108 dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1109 else
1110 dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1111}
1112
1113static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1114{
1115 struct per_bio_data *pb = get_per_bio_data(bio);
1116
1117 if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1118 free_prison_cell(cache, pb->cell);
1119 pb->cell = NULL;
1120}
1121
1122static void overwrite_endio(struct bio *bio)
1123{
1124 struct dm_cache_migration *mg = bio->bi_private;
1125 struct cache *cache = mg->cache;
1126 struct per_bio_data *pb = get_per_bio_data(bio);
1127
1128 dm_unhook_bio(&pb->hook_info, bio);
1129
1130 if (bio->bi_status)
1131 mg->k.input = bio->bi_status;
1132
1133 queue_continuation(cache->wq, &mg->k);
1134}
1135
1136static void overwrite(struct dm_cache_migration *mg,
1137 void (*continuation)(struct work_struct *))
1138{
1139 struct bio *bio = mg->overwrite_bio;
1140 struct per_bio_data *pb = get_per_bio_data(bio);
1141
1142 dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1143
1144 /*
1145 * The overwrite bio is part of the copy operation, as such it does
1146 * not set/clear discard or dirty flags.
1147 */
1148 if (mg->op->op == POLICY_PROMOTE)
1149 remap_to_cache(mg->cache, bio, mg->op->cblock);
1150 else
1151 remap_to_origin(mg->cache, bio);
1152
1153 init_continuation(&mg->k, continuation);
1154 accounted_request(mg->cache, bio);
1155}
1156
1157/*
1158 * Migration steps:
1159 *
1160 * 1) exclusive lock preventing WRITEs
1161 * 2) quiesce
1162 * 3) copy or issue overwrite bio
1163 * 4) upgrade to exclusive lock preventing READs and WRITEs
1164 * 5) quiesce
1165 * 6) update metadata and commit
1166 * 7) unlock
1167 */
1168static void mg_complete(struct dm_cache_migration *mg, bool success)
1169{
1170 struct bio_list bios;
1171 struct cache *cache = mg->cache;
1172 struct policy_work *op = mg->op;
1173 dm_cblock_t cblock = op->cblock;
1174
1175 if (success)
1176 update_stats(&cache->stats, op->op);
1177
1178 switch (op->op) {
1179 case POLICY_PROMOTE:
1180 clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1181 policy_complete_background_work(cache->policy, op, success);
1182
1183 if (mg->overwrite_bio) {
1184 if (success)
1185 force_set_dirty(cache, cblock);
1186 else if (mg->k.input)
1187 mg->overwrite_bio->bi_status = mg->k.input;
1188 else
1189 mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1190 bio_endio(mg->overwrite_bio);
1191 } else {
1192 if (success)
1193 force_clear_dirty(cache, cblock);
1194 dec_io_migrations(cache);
1195 }
1196 break;
1197
1198 case POLICY_DEMOTE:
1199 /*
1200 * We clear dirty here to update the nr_dirty counter.
1201 */
1202 if (success)
1203 force_clear_dirty(cache, cblock);
1204 policy_complete_background_work(cache->policy, op, success);
1205 dec_io_migrations(cache);
1206 break;
1207
1208 case POLICY_WRITEBACK:
1209 if (success)
1210 force_clear_dirty(cache, cblock);
1211 policy_complete_background_work(cache->policy, op, success);
1212 dec_io_migrations(cache);
1213 break;
1214 }
1215
1216 bio_list_init(&bios);
1217 if (mg->cell) {
1218 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1219 free_prison_cell(cache, mg->cell);
1220 }
1221
1222 free_migration(mg);
1223 defer_bios(cache, &bios);
1224 wake_migration_worker(cache);
1225
1226 background_work_end(cache);
1227}
1228
1229static void mg_success(struct work_struct *ws)
1230{
1231 struct dm_cache_migration *mg = ws_to_mg(ws);
1232
1233 mg_complete(mg, mg->k.input == 0);
1234}
1235
1236static void mg_update_metadata(struct work_struct *ws)
1237{
1238 int r;
1239 struct dm_cache_migration *mg = ws_to_mg(ws);
1240 struct cache *cache = mg->cache;
1241 struct policy_work *op = mg->op;
1242
1243 switch (op->op) {
1244 case POLICY_PROMOTE:
1245 r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1246 if (r) {
1247 DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1248 cache_device_name(cache));
1249 metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1250
1251 mg_complete(mg, false);
1252 return;
1253 }
1254 mg_complete(mg, true);
1255 break;
1256
1257 case POLICY_DEMOTE:
1258 r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1259 if (r) {
1260 DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1261 cache_device_name(cache));
1262 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1263
1264 mg_complete(mg, false);
1265 return;
1266 }
1267
1268 /*
1269 * It would be nice if we only had to commit when a REQ_FLUSH
1270 * comes through. But there's one scenario that we have to
1271 * look out for:
1272 *
1273 * - vblock x in a cache block
1274 * - domotion occurs
1275 * - cache block gets reallocated and over written
1276 * - crash
1277 *
1278 * When we recover, because there was no commit the cache will
1279 * rollback to having the data for vblock x in the cache block.
1280 * But the cache block has since been overwritten, so it'll end
1281 * up pointing to data that was never in 'x' during the history
1282 * of the device.
1283 *
1284 * To avoid this issue we require a commit as part of the
1285 * demotion operation.
1286 */
1287 init_continuation(&mg->k, mg_success);
1288 continue_after_commit(&cache->committer, &mg->k);
1289 schedule_commit(&cache->committer);
1290 break;
1291
1292 case POLICY_WRITEBACK:
1293 mg_complete(mg, true);
1294 break;
1295 }
1296}
1297
1298static void mg_update_metadata_after_copy(struct work_struct *ws)
1299{
1300 struct dm_cache_migration *mg = ws_to_mg(ws);
1301
1302 /*
1303 * Did the copy succeed?
1304 */
1305 if (mg->k.input)
1306 mg_complete(mg, false);
1307 else
1308 mg_update_metadata(ws);
1309}
1310
1311static void mg_upgrade_lock(struct work_struct *ws)
1312{
1313 int r;
1314 struct dm_cache_migration *mg = ws_to_mg(ws);
1315
1316 /*
1317 * Did the copy succeed?
1318 */
1319 if (mg->k.input)
1320 mg_complete(mg, false);
1321
1322 else {
1323 /*
1324 * Now we want the lock to prevent both reads and writes.
1325 */
1326 r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1327 READ_WRITE_LOCK_LEVEL);
1328 if (r < 0)
1329 mg_complete(mg, false);
1330
1331 else if (r)
1332 quiesce(mg, mg_update_metadata);
1333
1334 else
1335 mg_update_metadata(ws);
1336 }
1337}
1338
1339static void mg_full_copy(struct work_struct *ws)
1340{
1341 struct dm_cache_migration *mg = ws_to_mg(ws);
1342 struct cache *cache = mg->cache;
1343 struct policy_work *op = mg->op;
1344 bool is_policy_promote = (op->op == POLICY_PROMOTE);
1345
1346 if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1347 is_discarded_oblock(cache, op->oblock)) {
1348 mg_upgrade_lock(ws);
1349 return;
1350 }
1351
1352 init_continuation(&mg->k, mg_upgrade_lock);
1353 copy(mg, is_policy_promote);
1354}
1355
1356static void mg_copy(struct work_struct *ws)
1357{
1358 struct dm_cache_migration *mg = ws_to_mg(ws);
1359
1360 if (mg->overwrite_bio) {
1361 /*
1362 * No exclusive lock was held when we last checked if the bio
1363 * was optimisable. So we have to check again in case things
1364 * have changed (eg, the block may no longer be discarded).
1365 */
1366 if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1367 /*
1368 * Fallback to a real full copy after doing some tidying up.
1369 */
1370 bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1371
1372 BUG_ON(rb); /* An exclusive lock must _not_ be held for this block */
1373 mg->overwrite_bio = NULL;
1374 inc_io_migrations(mg->cache);
1375 mg_full_copy(ws);
1376 return;
1377 }
1378
1379 /*
1380 * It's safe to do this here, even though it's new data
1381 * because all IO has been locked out of the block.
1382 *
1383 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1384 * so _not_ using mg_upgrade_lock() as continutation.
1385 */
1386 overwrite(mg, mg_update_metadata_after_copy);
1387
1388 } else
1389 mg_full_copy(ws);
1390}
1391
1392static int mg_lock_writes(struct dm_cache_migration *mg)
1393{
1394 int r;
1395 struct dm_cell_key_v2 key;
1396 struct cache *cache = mg->cache;
1397 struct dm_bio_prison_cell_v2 *prealloc;
1398
1399 prealloc = alloc_prison_cell(cache);
1400
1401 /*
1402 * Prevent writes to the block, but allow reads to continue.
1403 * Unless we're using an overwrite bio, in which case we lock
1404 * everything.
1405 */
1406 build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1407 r = dm_cell_lock_v2(cache->prison, &key,
1408 mg->overwrite_bio ? READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1409 prealloc, &mg->cell);
1410 if (r < 0) {
1411 free_prison_cell(cache, prealloc);
1412 mg_complete(mg, false);
1413 return r;
1414 }
1415
1416 if (mg->cell != prealloc)
1417 free_prison_cell(cache, prealloc);
1418
1419 if (r == 0)
1420 mg_copy(&mg->k.ws);
1421 else
1422 quiesce(mg, mg_copy);
1423
1424 return 0;
1425}
1426
1427static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1428{
1429 struct dm_cache_migration *mg;
1430
1431 if (!background_work_begin(cache)) {
1432 policy_complete_background_work(cache->policy, op, false);
1433 return -EPERM;
1434 }
1435
1436 mg = alloc_migration(cache);
1437
1438 mg->op = op;
1439 mg->overwrite_bio = bio;
1440
1441 if (!bio)
1442 inc_io_migrations(cache);
1443
1444 return mg_lock_writes(mg);
1445}
1446
1447/*
1448 *--------------------------------------------------------------
1449 * invalidation processing
1450 *--------------------------------------------------------------
1451 */
1452
1453static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1454{
1455 struct bio_list bios;
1456 struct cache *cache = mg->cache;
1457
1458 bio_list_init(&bios);
1459 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1460 free_prison_cell(cache, mg->cell);
1461
1462 if (!success && mg->overwrite_bio)
1463 bio_io_error(mg->overwrite_bio);
1464
1465 free_migration(mg);
1466 defer_bios(cache, &bios);
1467
1468 background_work_end(cache);
1469}
1470
1471static void invalidate_completed(struct work_struct *ws)
1472{
1473 struct dm_cache_migration *mg = ws_to_mg(ws);
1474
1475 invalidate_complete(mg, !mg->k.input);
1476}
1477
1478static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1479{
1480 int r;
1481
1482 r = policy_invalidate_mapping(cache->policy, cblock);
1483 if (!r) {
1484 r = dm_cache_remove_mapping(cache->cmd, cblock);
1485 if (r) {
1486 DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1487 cache_device_name(cache));
1488 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1489 }
1490
1491 } else if (r == -ENODATA) {
1492 /*
1493 * Harmless, already unmapped.
1494 */
1495 r = 0;
1496
1497 } else
1498 DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1499
1500 return r;
1501}
1502
1503static void invalidate_remove(struct work_struct *ws)
1504{
1505 int r;
1506 struct dm_cache_migration *mg = ws_to_mg(ws);
1507 struct cache *cache = mg->cache;
1508
1509 r = invalidate_cblock(cache, mg->invalidate_cblock);
1510 if (r) {
1511 invalidate_complete(mg, false);
1512 return;
1513 }
1514
1515 init_continuation(&mg->k, invalidate_completed);
1516 continue_after_commit(&cache->committer, &mg->k);
1517 remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1518 mg->overwrite_bio = NULL;
1519 schedule_commit(&cache->committer);
1520}
1521
1522static int invalidate_lock(struct dm_cache_migration *mg)
1523{
1524 int r;
1525 struct dm_cell_key_v2 key;
1526 struct cache *cache = mg->cache;
1527 struct dm_bio_prison_cell_v2 *prealloc;
1528
1529 prealloc = alloc_prison_cell(cache);
1530
1531 build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1532 r = dm_cell_lock_v2(cache->prison, &key,
1533 READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1534 if (r < 0) {
1535 free_prison_cell(cache, prealloc);
1536 invalidate_complete(mg, false);
1537 return r;
1538 }
1539
1540 if (mg->cell != prealloc)
1541 free_prison_cell(cache, prealloc);
1542
1543 if (r)
1544 quiesce(mg, invalidate_remove);
1545
1546 else {
1547 /*
1548 * We can't call invalidate_remove() directly here because we
1549 * might still be in request context.
1550 */
1551 init_continuation(&mg->k, invalidate_remove);
1552 queue_work(cache->wq, &mg->k.ws);
1553 }
1554
1555 return 0;
1556}
1557
1558static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1559 dm_oblock_t oblock, struct bio *bio)
1560{
1561 struct dm_cache_migration *mg;
1562
1563 if (!background_work_begin(cache))
1564 return -EPERM;
1565
1566 mg = alloc_migration(cache);
1567
1568 mg->overwrite_bio = bio;
1569 mg->invalidate_cblock = cblock;
1570 mg->invalidate_oblock = oblock;
1571
1572 return invalidate_lock(mg);
1573}
1574
1575/*
1576 *--------------------------------------------------------------
1577 * bio processing
1578 *--------------------------------------------------------------
1579 */
1580
1581enum busy {
1582 IDLE,
1583 BUSY
1584};
1585
1586static enum busy spare_migration_bandwidth(struct cache *cache)
1587{
1588 bool idle = dm_iot_idle_for(&cache->tracker, HZ);
1589 sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1590 cache->sectors_per_block;
1591
1592 if (idle && current_volume <= cache->migration_threshold)
1593 return IDLE;
1594 else
1595 return BUSY;
1596}
1597
1598static void inc_hit_counter(struct cache *cache, struct bio *bio)
1599{
1600 atomic_inc(bio_data_dir(bio) == READ ?
1601 &cache->stats.read_hit : &cache->stats.write_hit);
1602}
1603
1604static void inc_miss_counter(struct cache *cache, struct bio *bio)
1605{
1606 atomic_inc(bio_data_dir(bio) == READ ?
1607 &cache->stats.read_miss : &cache->stats.write_miss);
1608}
1609
1610/*----------------------------------------------------------------*/
1611
1612static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1613 bool *commit_needed)
1614{
1615 int r, data_dir;
1616 bool rb, background_queued;
1617 dm_cblock_t cblock;
1618
1619 *commit_needed = false;
1620
1621 rb = bio_detain_shared(cache, block, bio);
1622 if (!rb) {
1623 /*
1624 * An exclusive lock is held for this block, so we have to
1625 * wait. We set the commit_needed flag so the current
1626 * transaction will be committed asap, allowing this lock
1627 * to be dropped.
1628 */
1629 *commit_needed = true;
1630 return DM_MAPIO_SUBMITTED;
1631 }
1632
1633 data_dir = bio_data_dir(bio);
1634
1635 if (optimisable_bio(cache, bio, block)) {
1636 struct policy_work *op = NULL;
1637
1638 r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1639 if (unlikely(r && r != -ENOENT)) {
1640 DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1641 cache_device_name(cache), r);
1642 bio_io_error(bio);
1643 return DM_MAPIO_SUBMITTED;
1644 }
1645
1646 if (r == -ENOENT && op) {
1647 bio_drop_shared_lock(cache, bio);
1648 BUG_ON(op->op != POLICY_PROMOTE);
1649 mg_start(cache, op, bio);
1650 return DM_MAPIO_SUBMITTED;
1651 }
1652 } else {
1653 r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1654 if (unlikely(r && r != -ENOENT)) {
1655 DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1656 cache_device_name(cache), r);
1657 bio_io_error(bio);
1658 return DM_MAPIO_SUBMITTED;
1659 }
1660
1661 if (background_queued)
1662 wake_migration_worker(cache);
1663 }
1664
1665 if (r == -ENOENT) {
1666 struct per_bio_data *pb = get_per_bio_data(bio);
1667
1668 /*
1669 * Miss.
1670 */
1671 inc_miss_counter(cache, bio);
1672 if (pb->req_nr == 0) {
1673 accounted_begin(cache, bio);
1674 remap_to_origin_clear_discard(cache, bio, block);
1675 } else {
1676 /*
1677 * This is a duplicate writethrough io that is no
1678 * longer needed because the block has been demoted.
1679 */
1680 bio_endio(bio);
1681 return DM_MAPIO_SUBMITTED;
1682 }
1683 } else {
1684 /*
1685 * Hit.
1686 */
1687 inc_hit_counter(cache, bio);
1688
1689 /*
1690 * Passthrough always maps to the origin, invalidating any
1691 * cache blocks that are written to.
1692 */
1693 if (passthrough_mode(cache)) {
1694 if (bio_data_dir(bio) == WRITE) {
1695 bio_drop_shared_lock(cache, bio);
1696 atomic_inc(&cache->stats.demotion);
1697 invalidate_start(cache, cblock, block, bio);
1698 } else
1699 remap_to_origin_clear_discard(cache, bio, block);
1700 } else {
1701 if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1702 !is_dirty(cache, cblock)) {
1703 remap_to_origin_and_cache(cache, bio, block, cblock);
1704 accounted_begin(cache, bio);
1705 } else
1706 remap_to_cache_dirty(cache, bio, block, cblock);
1707 }
1708 }
1709
1710 /*
1711 * dm core turns FUA requests into a separate payload and FLUSH req.
1712 */
1713 if (bio->bi_opf & REQ_FUA) {
1714 /*
1715 * issue_after_commit will call accounted_begin a second time. So
1716 * we call accounted_complete() to avoid double accounting.
1717 */
1718 accounted_complete(cache, bio);
1719 issue_after_commit(&cache->committer, bio);
1720 *commit_needed = true;
1721 return DM_MAPIO_SUBMITTED;
1722 }
1723
1724 return DM_MAPIO_REMAPPED;
1725}
1726
1727static bool process_bio(struct cache *cache, struct bio *bio)
1728{
1729 bool commit_needed;
1730
1731 if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1732 dm_submit_bio_remap(bio, NULL);
1733
1734 return commit_needed;
1735}
1736
1737/*
1738 * A non-zero return indicates read_only or fail_io mode.
1739 */
1740static int commit(struct cache *cache, bool clean_shutdown)
1741{
1742 int r;
1743
1744 if (get_cache_mode(cache) >= CM_READ_ONLY)
1745 return -EINVAL;
1746
1747 atomic_inc(&cache->stats.commit_count);
1748 r = dm_cache_commit(cache->cmd, clean_shutdown);
1749 if (r)
1750 metadata_operation_failed(cache, "dm_cache_commit", r);
1751
1752 return r;
1753}
1754
1755/*
1756 * Used by the batcher.
1757 */
1758static blk_status_t commit_op(void *context)
1759{
1760 struct cache *cache = context;
1761
1762 if (dm_cache_changed_this_transaction(cache->cmd))
1763 return errno_to_blk_status(commit(cache, false));
1764
1765 return 0;
1766}
1767
1768/*----------------------------------------------------------------*/
1769
1770static bool process_flush_bio(struct cache *cache, struct bio *bio)
1771{
1772 struct per_bio_data *pb = get_per_bio_data(bio);
1773
1774 if (!pb->req_nr)
1775 remap_to_origin(cache, bio);
1776 else
1777 remap_to_cache(cache, bio, 0);
1778
1779 issue_after_commit(&cache->committer, bio);
1780 return true;
1781}
1782
1783static bool process_discard_bio(struct cache *cache, struct bio *bio)
1784{
1785 dm_dblock_t b, e;
1786
1787 /*
1788 * FIXME: do we need to lock the region? Or can we just assume the
1789 * user wont be so foolish as to issue discard concurrently with
1790 * other IO?
1791 */
1792 calc_discard_block_range(cache, bio, &b, &e);
1793 while (b != e) {
1794 set_discard(cache, b);
1795 b = to_dblock(from_dblock(b) + 1);
1796 }
1797
1798 if (cache->features.discard_passdown) {
1799 remap_to_origin(cache, bio);
1800 dm_submit_bio_remap(bio, NULL);
1801 } else
1802 bio_endio(bio);
1803
1804 return false;
1805}
1806
1807static void process_deferred_bios(struct work_struct *ws)
1808{
1809 struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1810
1811 bool commit_needed = false;
1812 struct bio_list bios;
1813 struct bio *bio;
1814
1815 bio_list_init(&bios);
1816
1817 spin_lock_irq(&cache->lock);
1818 bio_list_merge_init(&bios, &cache->deferred_bios);
1819 spin_unlock_irq(&cache->lock);
1820
1821 while ((bio = bio_list_pop(&bios))) {
1822 if (bio->bi_opf & REQ_PREFLUSH)
1823 commit_needed = process_flush_bio(cache, bio) || commit_needed;
1824
1825 else if (bio_op(bio) == REQ_OP_DISCARD)
1826 commit_needed = process_discard_bio(cache, bio) || commit_needed;
1827
1828 else
1829 commit_needed = process_bio(cache, bio) || commit_needed;
1830 cond_resched();
1831 }
1832
1833 if (commit_needed)
1834 schedule_commit(&cache->committer);
1835}
1836
1837/*
1838 *--------------------------------------------------------------
1839 * Main worker loop
1840 *--------------------------------------------------------------
1841 */
1842static void requeue_deferred_bios(struct cache *cache)
1843{
1844 struct bio *bio;
1845 struct bio_list bios;
1846
1847 bio_list_init(&bios);
1848 bio_list_merge_init(&bios, &cache->deferred_bios);
1849
1850 while ((bio = bio_list_pop(&bios))) {
1851 bio->bi_status = BLK_STS_DM_REQUEUE;
1852 bio_endio(bio);
1853 cond_resched();
1854 }
1855}
1856
1857/*
1858 * We want to commit periodically so that not too much
1859 * unwritten metadata builds up.
1860 */
1861static void do_waker(struct work_struct *ws)
1862{
1863 struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1864
1865 policy_tick(cache->policy, true);
1866 wake_migration_worker(cache);
1867 schedule_commit(&cache->committer);
1868 queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1869}
1870
1871static void check_migrations(struct work_struct *ws)
1872{
1873 int r;
1874 struct policy_work *op;
1875 struct cache *cache = container_of(ws, struct cache, migration_worker);
1876 enum busy b;
1877
1878 for (;;) {
1879 b = spare_migration_bandwidth(cache);
1880
1881 r = policy_get_background_work(cache->policy, b == IDLE, &op);
1882 if (r == -ENODATA)
1883 break;
1884
1885 if (r) {
1886 DMERR_LIMIT("%s: policy_background_work failed",
1887 cache_device_name(cache));
1888 break;
1889 }
1890
1891 r = mg_start(cache, op, NULL);
1892 if (r)
1893 break;
1894
1895 cond_resched();
1896 }
1897}
1898
1899/*
1900 *--------------------------------------------------------------
1901 * Target methods
1902 *--------------------------------------------------------------
1903 */
1904
1905/*
1906 * This function gets called on the error paths of the constructor, so we
1907 * have to cope with a partially initialised struct.
1908 */
1909static void __destroy(struct cache *cache)
1910{
1911 mempool_exit(&cache->migration_pool);
1912
1913 if (cache->prison)
1914 dm_bio_prison_destroy_v2(cache->prison);
1915
1916 if (cache->wq)
1917 destroy_workqueue(cache->wq);
1918
1919 if (cache->dirty_bitset)
1920 free_bitset(cache->dirty_bitset);
1921
1922 if (cache->discard_bitset)
1923 free_bitset(cache->discard_bitset);
1924
1925 if (cache->copier)
1926 dm_kcopyd_client_destroy(cache->copier);
1927
1928 if (cache->cmd)
1929 dm_cache_metadata_close(cache->cmd);
1930
1931 if (cache->metadata_dev)
1932 dm_put_device(cache->ti, cache->metadata_dev);
1933
1934 if (cache->origin_dev)
1935 dm_put_device(cache->ti, cache->origin_dev);
1936
1937 if (cache->cache_dev)
1938 dm_put_device(cache->ti, cache->cache_dev);
1939
1940 if (cache->policy)
1941 dm_cache_policy_destroy(cache->policy);
1942
1943 bioset_exit(&cache->bs);
1944
1945 kfree(cache);
1946}
1947
1948static void destroy(struct cache *cache)
1949{
1950 unsigned int i;
1951
1952 cancel_delayed_work_sync(&cache->waker);
1953
1954 for (i = 0; i < cache->nr_ctr_args ; i++)
1955 kfree(cache->ctr_args[i]);
1956 kfree(cache->ctr_args);
1957
1958 __destroy(cache);
1959}
1960
1961static void cache_dtr(struct dm_target *ti)
1962{
1963 struct cache *cache = ti->private;
1964
1965 destroy(cache);
1966}
1967
1968static sector_t get_dev_size(struct dm_dev *dev)
1969{
1970 return bdev_nr_sectors(dev->bdev);
1971}
1972
1973/*----------------------------------------------------------------*/
1974
1975/*
1976 * Construct a cache device mapping.
1977 *
1978 * cache <metadata dev> <cache dev> <origin dev> <block size>
1979 * <#feature args> [<feature arg>]*
1980 * <policy> <#policy args> [<policy arg>]*
1981 *
1982 * metadata dev : fast device holding the persistent metadata
1983 * cache dev : fast device holding cached data blocks
1984 * origin dev : slow device holding original data blocks
1985 * block size : cache unit size in sectors
1986 *
1987 * #feature args : number of feature arguments passed
1988 * feature args : writethrough. (The default is writeback.)
1989 *
1990 * policy : the replacement policy to use
1991 * #policy args : an even number of policy arguments corresponding
1992 * to key/value pairs passed to the policy
1993 * policy args : key/value pairs passed to the policy
1994 * E.g. 'sequential_threshold 1024'
1995 * See cache-policies.txt for details.
1996 *
1997 * Optional feature arguments are:
1998 * writethrough : write through caching that prohibits cache block
1999 * content from being different from origin block content.
2000 * Without this argument, the default behaviour is to write
2001 * back cache block contents later for performance reasons,
2002 * so they may differ from the corresponding origin blocks.
2003 */
2004struct cache_args {
2005 struct dm_target *ti;
2006
2007 struct dm_dev *metadata_dev;
2008
2009 struct dm_dev *cache_dev;
2010 sector_t cache_sectors;
2011
2012 struct dm_dev *origin_dev;
2013
2014 uint32_t block_size;
2015
2016 const char *policy_name;
2017 int policy_argc;
2018 const char **policy_argv;
2019
2020 struct cache_features features;
2021};
2022
2023static void destroy_cache_args(struct cache_args *ca)
2024{
2025 if (ca->metadata_dev)
2026 dm_put_device(ca->ti, ca->metadata_dev);
2027
2028 if (ca->cache_dev)
2029 dm_put_device(ca->ti, ca->cache_dev);
2030
2031 if (ca->origin_dev)
2032 dm_put_device(ca->ti, ca->origin_dev);
2033
2034 kfree(ca);
2035}
2036
2037static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2038{
2039 if (!as->argc) {
2040 *error = "Insufficient args";
2041 return false;
2042 }
2043
2044 return true;
2045}
2046
2047static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2048 char **error)
2049{
2050 int r;
2051 sector_t metadata_dev_size;
2052
2053 if (!at_least_one_arg(as, error))
2054 return -EINVAL;
2055
2056 r = dm_get_device(ca->ti, dm_shift_arg(as),
2057 BLK_OPEN_READ | BLK_OPEN_WRITE, &ca->metadata_dev);
2058 if (r) {
2059 *error = "Error opening metadata device";
2060 return r;
2061 }
2062
2063 metadata_dev_size = get_dev_size(ca->metadata_dev);
2064 if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2065 DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
2066 ca->metadata_dev->bdev, THIN_METADATA_MAX_SECTORS);
2067
2068 return 0;
2069}
2070
2071static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2072 char **error)
2073{
2074 int r;
2075
2076 if (!at_least_one_arg(as, error))
2077 return -EINVAL;
2078
2079 r = dm_get_device(ca->ti, dm_shift_arg(as),
2080 BLK_OPEN_READ | BLK_OPEN_WRITE, &ca->cache_dev);
2081 if (r) {
2082 *error = "Error opening cache device";
2083 return r;
2084 }
2085 ca->cache_sectors = get_dev_size(ca->cache_dev);
2086
2087 return 0;
2088}
2089
2090static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2091 char **error)
2092{
2093 sector_t origin_sectors;
2094 int r;
2095
2096 if (!at_least_one_arg(as, error))
2097 return -EINVAL;
2098
2099 r = dm_get_device(ca->ti, dm_shift_arg(as),
2100 BLK_OPEN_READ | BLK_OPEN_WRITE, &ca->origin_dev);
2101 if (r) {
2102 *error = "Error opening origin device";
2103 return r;
2104 }
2105
2106 origin_sectors = get_dev_size(ca->origin_dev);
2107 if (ca->ti->len > origin_sectors) {
2108 *error = "Device size larger than cached device";
2109 return -EINVAL;
2110 }
2111
2112 return 0;
2113}
2114
2115static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2116 char **error)
2117{
2118 unsigned long block_size;
2119
2120 if (!at_least_one_arg(as, error))
2121 return -EINVAL;
2122
2123 if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2124 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2125 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2126 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2127 *error = "Invalid data block size";
2128 return -EINVAL;
2129 }
2130
2131 if (block_size > ca->cache_sectors) {
2132 *error = "Data block size is larger than the cache device";
2133 return -EINVAL;
2134 }
2135
2136 ca->block_size = block_size;
2137
2138 return 0;
2139}
2140
2141static void init_features(struct cache_features *cf)
2142{
2143 cf->mode = CM_WRITE;
2144 cf->io_mode = CM_IO_WRITEBACK;
2145 cf->metadata_version = 1;
2146 cf->discard_passdown = true;
2147}
2148
2149static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2150 char **error)
2151{
2152 static const struct dm_arg _args[] = {
2153 {0, 3, "Invalid number of cache feature arguments"},
2154 };
2155
2156 int r, mode_ctr = 0;
2157 unsigned int argc;
2158 const char *arg;
2159 struct cache_features *cf = &ca->features;
2160
2161 init_features(cf);
2162
2163 r = dm_read_arg_group(_args, as, &argc, error);
2164 if (r)
2165 return -EINVAL;
2166
2167 while (argc--) {
2168 arg = dm_shift_arg(as);
2169
2170 if (!strcasecmp(arg, "writeback")) {
2171 cf->io_mode = CM_IO_WRITEBACK;
2172 mode_ctr++;
2173 }
2174
2175 else if (!strcasecmp(arg, "writethrough")) {
2176 cf->io_mode = CM_IO_WRITETHROUGH;
2177 mode_ctr++;
2178 }
2179
2180 else if (!strcasecmp(arg, "passthrough")) {
2181 cf->io_mode = CM_IO_PASSTHROUGH;
2182 mode_ctr++;
2183 }
2184
2185 else if (!strcasecmp(arg, "metadata2"))
2186 cf->metadata_version = 2;
2187
2188 else if (!strcasecmp(arg, "no_discard_passdown"))
2189 cf->discard_passdown = false;
2190
2191 else {
2192 *error = "Unrecognised cache feature requested";
2193 return -EINVAL;
2194 }
2195 }
2196
2197 if (mode_ctr > 1) {
2198 *error = "Duplicate cache io_mode features requested";
2199 return -EINVAL;
2200 }
2201
2202 return 0;
2203}
2204
2205static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2206 char **error)
2207{
2208 static const struct dm_arg _args[] = {
2209 {0, 1024, "Invalid number of policy arguments"},
2210 };
2211
2212 int r;
2213
2214 if (!at_least_one_arg(as, error))
2215 return -EINVAL;
2216
2217 ca->policy_name = dm_shift_arg(as);
2218
2219 r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2220 if (r)
2221 return -EINVAL;
2222
2223 ca->policy_argv = (const char **)as->argv;
2224 dm_consume_args(as, ca->policy_argc);
2225
2226 return 0;
2227}
2228
2229static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2230 char **error)
2231{
2232 int r;
2233 struct dm_arg_set as;
2234
2235 as.argc = argc;
2236 as.argv = argv;
2237
2238 r = parse_metadata_dev(ca, &as, error);
2239 if (r)
2240 return r;
2241
2242 r = parse_cache_dev(ca, &as, error);
2243 if (r)
2244 return r;
2245
2246 r = parse_origin_dev(ca, &as, error);
2247 if (r)
2248 return r;
2249
2250 r = parse_block_size(ca, &as, error);
2251 if (r)
2252 return r;
2253
2254 r = parse_features(ca, &as, error);
2255 if (r)
2256 return r;
2257
2258 r = parse_policy(ca, &as, error);
2259 if (r)
2260 return r;
2261
2262 return 0;
2263}
2264
2265/*----------------------------------------------------------------*/
2266
2267static struct kmem_cache *migration_cache = NULL;
2268
2269#define NOT_CORE_OPTION 1
2270
2271static int process_config_option(struct cache *cache, const char *key, const char *value)
2272{
2273 unsigned long tmp;
2274
2275 if (!strcasecmp(key, "migration_threshold")) {
2276 if (kstrtoul(value, 10, &tmp))
2277 return -EINVAL;
2278
2279 cache->migration_threshold = tmp;
2280 return 0;
2281 }
2282
2283 return NOT_CORE_OPTION;
2284}
2285
2286static int set_config_value(struct cache *cache, const char *key, const char *value)
2287{
2288 int r = process_config_option(cache, key, value);
2289
2290 if (r == NOT_CORE_OPTION)
2291 r = policy_set_config_value(cache->policy, key, value);
2292
2293 if (r)
2294 DMWARN("bad config value for %s: %s", key, value);
2295
2296 return r;
2297}
2298
2299static int set_config_values(struct cache *cache, int argc, const char **argv)
2300{
2301 int r = 0;
2302
2303 if (argc & 1) {
2304 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2305 return -EINVAL;
2306 }
2307
2308 while (argc) {
2309 r = set_config_value(cache, argv[0], argv[1]);
2310 if (r)
2311 break;
2312
2313 argc -= 2;
2314 argv += 2;
2315 }
2316
2317 return r;
2318}
2319
2320static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2321 char **error)
2322{
2323 struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2324 cache->cache_size,
2325 cache->origin_sectors,
2326 cache->sectors_per_block);
2327 if (IS_ERR(p)) {
2328 *error = "Error creating cache's policy";
2329 return PTR_ERR(p);
2330 }
2331 cache->policy = p;
2332 BUG_ON(!cache->policy);
2333
2334 return 0;
2335}
2336
2337/*
2338 * We want the discard block size to be at least the size of the cache
2339 * block size and have no more than 2^14 discard blocks across the origin.
2340 */
2341#define MAX_DISCARD_BLOCKS (1 << 14)
2342
2343static bool too_many_discard_blocks(sector_t discard_block_size,
2344 sector_t origin_size)
2345{
2346 (void) sector_div(origin_size, discard_block_size);
2347
2348 return origin_size > MAX_DISCARD_BLOCKS;
2349}
2350
2351static sector_t calculate_discard_block_size(sector_t cache_block_size,
2352 sector_t origin_size)
2353{
2354 sector_t discard_block_size = cache_block_size;
2355
2356 if (origin_size)
2357 while (too_many_discard_blocks(discard_block_size, origin_size))
2358 discard_block_size *= 2;
2359
2360 return discard_block_size;
2361}
2362
2363static void set_cache_size(struct cache *cache, dm_cblock_t size)
2364{
2365 dm_block_t nr_blocks = from_cblock(size);
2366
2367 if (nr_blocks > (1 << 20) && cache->cache_size != size)
2368 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2369 "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2370 "Please consider increasing the cache block size to reduce the overall cache block count.",
2371 (unsigned long long) nr_blocks);
2372
2373 cache->cache_size = size;
2374}
2375
2376#define DEFAULT_MIGRATION_THRESHOLD 2048
2377
2378static int cache_create(struct cache_args *ca, struct cache **result)
2379{
2380 int r = 0;
2381 char **error = &ca->ti->error;
2382 struct cache *cache;
2383 struct dm_target *ti = ca->ti;
2384 dm_block_t origin_blocks;
2385 struct dm_cache_metadata *cmd;
2386 bool may_format = ca->features.mode == CM_WRITE;
2387
2388 cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2389 if (!cache)
2390 return -ENOMEM;
2391
2392 cache->ti = ca->ti;
2393 ti->private = cache;
2394 ti->accounts_remapped_io = true;
2395 ti->num_flush_bios = 2;
2396 ti->flush_supported = true;
2397
2398 ti->num_discard_bios = 1;
2399 ti->discards_supported = true;
2400
2401 ti->per_io_data_size = sizeof(struct per_bio_data);
2402
2403 cache->features = ca->features;
2404 if (writethrough_mode(cache)) {
2405 /* Create bioset for writethrough bios issued to origin */
2406 r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2407 if (r)
2408 goto bad;
2409 }
2410
2411 cache->metadata_dev = ca->metadata_dev;
2412 cache->origin_dev = ca->origin_dev;
2413 cache->cache_dev = ca->cache_dev;
2414
2415 ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2416
2417 origin_blocks = cache->origin_sectors = ti->len;
2418 origin_blocks = block_div(origin_blocks, ca->block_size);
2419 cache->origin_blocks = to_oblock(origin_blocks);
2420
2421 cache->sectors_per_block = ca->block_size;
2422 if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2423 r = -EINVAL;
2424 goto bad;
2425 }
2426
2427 if (ca->block_size & (ca->block_size - 1)) {
2428 dm_block_t cache_size = ca->cache_sectors;
2429
2430 cache->sectors_per_block_shift = -1;
2431 cache_size = block_div(cache_size, ca->block_size);
2432 set_cache_size(cache, to_cblock(cache_size));
2433 } else {
2434 cache->sectors_per_block_shift = __ffs(ca->block_size);
2435 set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2436 }
2437
2438 r = create_cache_policy(cache, ca, error);
2439 if (r)
2440 goto bad;
2441
2442 cache->policy_nr_args = ca->policy_argc;
2443 cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2444
2445 r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2446 if (r) {
2447 *error = "Error setting cache policy's config values";
2448 goto bad;
2449 }
2450
2451 cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2452 ca->block_size, may_format,
2453 dm_cache_policy_get_hint_size(cache->policy),
2454 ca->features.metadata_version);
2455 if (IS_ERR(cmd)) {
2456 *error = "Error creating metadata object";
2457 r = PTR_ERR(cmd);
2458 goto bad;
2459 }
2460 cache->cmd = cmd;
2461 set_cache_mode(cache, CM_WRITE);
2462 if (get_cache_mode(cache) != CM_WRITE) {
2463 *error = "Unable to get write access to metadata, please check/repair metadata.";
2464 r = -EINVAL;
2465 goto bad;
2466 }
2467
2468 if (passthrough_mode(cache)) {
2469 bool all_clean;
2470
2471 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2472 if (r) {
2473 *error = "dm_cache_metadata_all_clean() failed";
2474 goto bad;
2475 }
2476
2477 if (!all_clean) {
2478 *error = "Cannot enter passthrough mode unless all blocks are clean";
2479 r = -EINVAL;
2480 goto bad;
2481 }
2482
2483 policy_allow_migrations(cache->policy, false);
2484 }
2485
2486 spin_lock_init(&cache->lock);
2487 bio_list_init(&cache->deferred_bios);
2488 atomic_set(&cache->nr_allocated_migrations, 0);
2489 atomic_set(&cache->nr_io_migrations, 0);
2490 init_waitqueue_head(&cache->migration_wait);
2491
2492 r = -ENOMEM;
2493 atomic_set(&cache->nr_dirty, 0);
2494 cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2495 if (!cache->dirty_bitset) {
2496 *error = "could not allocate dirty bitset";
2497 goto bad;
2498 }
2499 clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2500
2501 cache->discard_block_size =
2502 calculate_discard_block_size(cache->sectors_per_block,
2503 cache->origin_sectors);
2504 cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2505 cache->discard_block_size));
2506 cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2507 if (!cache->discard_bitset) {
2508 *error = "could not allocate discard bitset";
2509 goto bad;
2510 }
2511 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2512
2513 cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2514 if (IS_ERR(cache->copier)) {
2515 *error = "could not create kcopyd client";
2516 r = PTR_ERR(cache->copier);
2517 goto bad;
2518 }
2519
2520 cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2521 if (!cache->wq) {
2522 *error = "could not create workqueue for metadata object";
2523 goto bad;
2524 }
2525 INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2526 INIT_WORK(&cache->migration_worker, check_migrations);
2527 INIT_DELAYED_WORK(&cache->waker, do_waker);
2528
2529 cache->prison = dm_bio_prison_create_v2(cache->wq);
2530 if (!cache->prison) {
2531 *error = "could not create bio prison";
2532 goto bad;
2533 }
2534
2535 r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2536 migration_cache);
2537 if (r) {
2538 *error = "Error creating cache's migration mempool";
2539 goto bad;
2540 }
2541
2542 cache->need_tick_bio = true;
2543 cache->sized = false;
2544 cache->invalidate = false;
2545 cache->commit_requested = false;
2546 cache->loaded_mappings = false;
2547 cache->loaded_discards = false;
2548
2549 load_stats(cache);
2550
2551 atomic_set(&cache->stats.demotion, 0);
2552 atomic_set(&cache->stats.promotion, 0);
2553 atomic_set(&cache->stats.copies_avoided, 0);
2554 atomic_set(&cache->stats.cache_cell_clash, 0);
2555 atomic_set(&cache->stats.commit_count, 0);
2556 atomic_set(&cache->stats.discard_count, 0);
2557
2558 spin_lock_init(&cache->invalidation_lock);
2559 INIT_LIST_HEAD(&cache->invalidation_requests);
2560
2561 batcher_init(&cache->committer, commit_op, cache,
2562 issue_op, cache, cache->wq);
2563 dm_iot_init(&cache->tracker);
2564
2565 init_rwsem(&cache->background_work_lock);
2566 prevent_background_work(cache);
2567
2568 *result = cache;
2569 return 0;
2570bad:
2571 __destroy(cache);
2572 return r;
2573}
2574
2575static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2576{
2577 unsigned int i;
2578 const char **copy;
2579
2580 copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2581 if (!copy)
2582 return -ENOMEM;
2583 for (i = 0; i < argc; i++) {
2584 copy[i] = kstrdup(argv[i], GFP_KERNEL);
2585 if (!copy[i]) {
2586 while (i--)
2587 kfree(copy[i]);
2588 kfree(copy);
2589 return -ENOMEM;
2590 }
2591 }
2592
2593 cache->nr_ctr_args = argc;
2594 cache->ctr_args = copy;
2595
2596 return 0;
2597}
2598
2599static int cache_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2600{
2601 int r = -EINVAL;
2602 struct cache_args *ca;
2603 struct cache *cache = NULL;
2604
2605 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2606 if (!ca) {
2607 ti->error = "Error allocating memory for cache";
2608 return -ENOMEM;
2609 }
2610 ca->ti = ti;
2611
2612 r = parse_cache_args(ca, argc, argv, &ti->error);
2613 if (r)
2614 goto out;
2615
2616 r = cache_create(ca, &cache);
2617 if (r)
2618 goto out;
2619
2620 r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2621 if (r) {
2622 __destroy(cache);
2623 goto out;
2624 }
2625
2626 ti->private = cache;
2627out:
2628 destroy_cache_args(ca);
2629 return r;
2630}
2631
2632/*----------------------------------------------------------------*/
2633
2634static int cache_map(struct dm_target *ti, struct bio *bio)
2635{
2636 struct cache *cache = ti->private;
2637
2638 int r;
2639 bool commit_needed;
2640 dm_oblock_t block = get_bio_block(cache, bio);
2641
2642 init_per_bio_data(bio);
2643 if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2644 /*
2645 * This can only occur if the io goes to a partial block at
2646 * the end of the origin device. We don't cache these.
2647 * Just remap to the origin and carry on.
2648 */
2649 remap_to_origin(cache, bio);
2650 accounted_begin(cache, bio);
2651 return DM_MAPIO_REMAPPED;
2652 }
2653
2654 if (discard_or_flush(bio)) {
2655 defer_bio(cache, bio);
2656 return DM_MAPIO_SUBMITTED;
2657 }
2658
2659 r = map_bio(cache, bio, block, &commit_needed);
2660 if (commit_needed)
2661 schedule_commit(&cache->committer);
2662
2663 return r;
2664}
2665
2666static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2667{
2668 struct cache *cache = ti->private;
2669 unsigned long flags;
2670 struct per_bio_data *pb = get_per_bio_data(bio);
2671
2672 if (pb->tick) {
2673 policy_tick(cache->policy, false);
2674
2675 spin_lock_irqsave(&cache->lock, flags);
2676 cache->need_tick_bio = true;
2677 spin_unlock_irqrestore(&cache->lock, flags);
2678 }
2679
2680 bio_drop_shared_lock(cache, bio);
2681 accounted_complete(cache, bio);
2682
2683 return DM_ENDIO_DONE;
2684}
2685
2686static int write_dirty_bitset(struct cache *cache)
2687{
2688 int r;
2689
2690 if (get_cache_mode(cache) >= CM_READ_ONLY)
2691 return -EINVAL;
2692
2693 r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2694 if (r)
2695 metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2696
2697 return r;
2698}
2699
2700static int write_discard_bitset(struct cache *cache)
2701{
2702 unsigned int i, r;
2703
2704 if (get_cache_mode(cache) >= CM_READ_ONLY)
2705 return -EINVAL;
2706
2707 r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2708 cache->discard_nr_blocks);
2709 if (r) {
2710 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2711 metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2712 return r;
2713 }
2714
2715 for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2716 r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2717 is_discarded(cache, to_dblock(i)));
2718 if (r) {
2719 metadata_operation_failed(cache, "dm_cache_set_discard", r);
2720 return r;
2721 }
2722 }
2723
2724 return 0;
2725}
2726
2727static int write_hints(struct cache *cache)
2728{
2729 int r;
2730
2731 if (get_cache_mode(cache) >= CM_READ_ONLY)
2732 return -EINVAL;
2733
2734 r = dm_cache_write_hints(cache->cmd, cache->policy);
2735 if (r) {
2736 metadata_operation_failed(cache, "dm_cache_write_hints", r);
2737 return r;
2738 }
2739
2740 return 0;
2741}
2742
2743/*
2744 * returns true on success
2745 */
2746static bool sync_metadata(struct cache *cache)
2747{
2748 int r1, r2, r3, r4;
2749
2750 r1 = write_dirty_bitset(cache);
2751 if (r1)
2752 DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2753
2754 r2 = write_discard_bitset(cache);
2755 if (r2)
2756 DMERR("%s: could not write discard bitset", cache_device_name(cache));
2757
2758 save_stats(cache);
2759
2760 r3 = write_hints(cache);
2761 if (r3)
2762 DMERR("%s: could not write hints", cache_device_name(cache));
2763
2764 /*
2765 * If writing the above metadata failed, we still commit, but don't
2766 * set the clean shutdown flag. This will effectively force every
2767 * dirty bit to be set on reload.
2768 */
2769 r4 = commit(cache, !r1 && !r2 && !r3);
2770 if (r4)
2771 DMERR("%s: could not write cache metadata", cache_device_name(cache));
2772
2773 return !r1 && !r2 && !r3 && !r4;
2774}
2775
2776static void cache_postsuspend(struct dm_target *ti)
2777{
2778 struct cache *cache = ti->private;
2779
2780 prevent_background_work(cache);
2781 BUG_ON(atomic_read(&cache->nr_io_migrations));
2782
2783 cancel_delayed_work_sync(&cache->waker);
2784 drain_workqueue(cache->wq);
2785 WARN_ON(cache->tracker.in_flight);
2786
2787 /*
2788 * If it's a flush suspend there won't be any deferred bios, so this
2789 * call is harmless.
2790 */
2791 requeue_deferred_bios(cache);
2792
2793 if (get_cache_mode(cache) == CM_WRITE)
2794 (void) sync_metadata(cache);
2795}
2796
2797static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2798 bool dirty, uint32_t hint, bool hint_valid)
2799{
2800 struct cache *cache = context;
2801
2802 if (dirty) {
2803 set_bit(from_cblock(cblock), cache->dirty_bitset);
2804 atomic_inc(&cache->nr_dirty);
2805 } else
2806 clear_bit(from_cblock(cblock), cache->dirty_bitset);
2807
2808 return policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2809}
2810
2811/*
2812 * The discard block size in the on disk metadata is not
2813 * necessarily the same as we're currently using. So we have to
2814 * be careful to only set the discarded attribute if we know it
2815 * covers a complete block of the new size.
2816 */
2817struct discard_load_info {
2818 struct cache *cache;
2819
2820 /*
2821 * These blocks are sized using the on disk dblock size, rather
2822 * than the current one.
2823 */
2824 dm_block_t block_size;
2825 dm_block_t discard_begin, discard_end;
2826};
2827
2828static void discard_load_info_init(struct cache *cache,
2829 struct discard_load_info *li)
2830{
2831 li->cache = cache;
2832 li->discard_begin = li->discard_end = 0;
2833}
2834
2835static void set_discard_range(struct discard_load_info *li)
2836{
2837 sector_t b, e;
2838
2839 if (li->discard_begin == li->discard_end)
2840 return;
2841
2842 /*
2843 * Convert to sectors.
2844 */
2845 b = li->discard_begin * li->block_size;
2846 e = li->discard_end * li->block_size;
2847
2848 /*
2849 * Then convert back to the current dblock size.
2850 */
2851 b = dm_sector_div_up(b, li->cache->discard_block_size);
2852 sector_div(e, li->cache->discard_block_size);
2853
2854 /*
2855 * The origin may have shrunk, so we need to check we're still in
2856 * bounds.
2857 */
2858 if (e > from_dblock(li->cache->discard_nr_blocks))
2859 e = from_dblock(li->cache->discard_nr_blocks);
2860
2861 for (; b < e; b++)
2862 set_discard(li->cache, to_dblock(b));
2863}
2864
2865static int load_discard(void *context, sector_t discard_block_size,
2866 dm_dblock_t dblock, bool discard)
2867{
2868 struct discard_load_info *li = context;
2869
2870 li->block_size = discard_block_size;
2871
2872 if (discard) {
2873 if (from_dblock(dblock) == li->discard_end)
2874 /*
2875 * We're already in a discard range, just extend it.
2876 */
2877 li->discard_end = li->discard_end + 1ULL;
2878
2879 else {
2880 /*
2881 * Emit the old range and start a new one.
2882 */
2883 set_discard_range(li);
2884 li->discard_begin = from_dblock(dblock);
2885 li->discard_end = li->discard_begin + 1ULL;
2886 }
2887 } else {
2888 set_discard_range(li);
2889 li->discard_begin = li->discard_end = 0;
2890 }
2891
2892 return 0;
2893}
2894
2895static dm_cblock_t get_cache_dev_size(struct cache *cache)
2896{
2897 sector_t size = get_dev_size(cache->cache_dev);
2898 (void) sector_div(size, cache->sectors_per_block);
2899 return to_cblock(size);
2900}
2901
2902static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2903{
2904 if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
2905 DMERR("%s: unable to extend cache due to missing cache table reload",
2906 cache_device_name(cache));
2907 return false;
2908 }
2909
2910 /*
2911 * We can't drop a dirty block when shrinking the cache.
2912 */
2913 if (cache->loaded_mappings) {
2914 new_size = to_cblock(find_next_bit(cache->dirty_bitset,
2915 from_cblock(cache->cache_size),
2916 from_cblock(new_size)));
2917 if (new_size != cache->cache_size) {
2918 DMERR("%s: unable to shrink cache; cache block %llu is dirty",
2919 cache_device_name(cache),
2920 (unsigned long long) from_cblock(new_size));
2921 return false;
2922 }
2923 }
2924
2925 return true;
2926}
2927
2928static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2929{
2930 int r;
2931
2932 r = dm_cache_resize(cache->cmd, new_size);
2933 if (r) {
2934 DMERR("%s: could not resize cache metadata", cache_device_name(cache));
2935 metadata_operation_failed(cache, "dm_cache_resize", r);
2936 return r;
2937 }
2938
2939 set_cache_size(cache, new_size);
2940
2941 return 0;
2942}
2943
2944static int cache_preresume(struct dm_target *ti)
2945{
2946 int r = 0;
2947 struct cache *cache = ti->private;
2948 dm_cblock_t csize = get_cache_dev_size(cache);
2949
2950 /*
2951 * Check to see if the cache has resized.
2952 */
2953 if (!cache->sized || csize != cache->cache_size) {
2954 if (!can_resize(cache, csize))
2955 return -EINVAL;
2956
2957 r = resize_cache_dev(cache, csize);
2958 if (r)
2959 return r;
2960
2961 cache->sized = true;
2962 }
2963
2964 if (!cache->loaded_mappings) {
2965 r = dm_cache_load_mappings(cache->cmd, cache->policy,
2966 load_mapping, cache);
2967 if (r) {
2968 DMERR("%s: could not load cache mappings", cache_device_name(cache));
2969 metadata_operation_failed(cache, "dm_cache_load_mappings", r);
2970 return r;
2971 }
2972
2973 cache->loaded_mappings = true;
2974 }
2975
2976 if (!cache->loaded_discards) {
2977 struct discard_load_info li;
2978
2979 /*
2980 * The discard bitset could have been resized, or the
2981 * discard block size changed. To be safe we start by
2982 * setting every dblock to not discarded.
2983 */
2984 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2985
2986 discard_load_info_init(cache, &li);
2987 r = dm_cache_load_discards(cache->cmd, load_discard, &li);
2988 if (r) {
2989 DMERR("%s: could not load origin discards", cache_device_name(cache));
2990 metadata_operation_failed(cache, "dm_cache_load_discards", r);
2991 return r;
2992 }
2993 set_discard_range(&li);
2994
2995 cache->loaded_discards = true;
2996 }
2997
2998 return r;
2999}
3000
3001static void cache_resume(struct dm_target *ti)
3002{
3003 struct cache *cache = ti->private;
3004
3005 cache->need_tick_bio = true;
3006 allow_background_work(cache);
3007 do_waker(&cache->waker.work);
3008}
3009
3010static void emit_flags(struct cache *cache, char *result,
3011 unsigned int maxlen, ssize_t *sz_ptr)
3012{
3013 ssize_t sz = *sz_ptr;
3014 struct cache_features *cf = &cache->features;
3015 unsigned int count = (cf->metadata_version == 2) + !cf->discard_passdown + 1;
3016
3017 DMEMIT("%u ", count);
3018
3019 if (cf->metadata_version == 2)
3020 DMEMIT("metadata2 ");
3021
3022 if (writethrough_mode(cache))
3023 DMEMIT("writethrough ");
3024
3025 else if (passthrough_mode(cache))
3026 DMEMIT("passthrough ");
3027
3028 else if (writeback_mode(cache))
3029 DMEMIT("writeback ");
3030
3031 else {
3032 DMEMIT("unknown ");
3033 DMERR("%s: internal error: unknown io mode: %d",
3034 cache_device_name(cache), (int) cf->io_mode);
3035 }
3036
3037 if (!cf->discard_passdown)
3038 DMEMIT("no_discard_passdown ");
3039
3040 *sz_ptr = sz;
3041}
3042
3043/*
3044 * Status format:
3045 *
3046 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3047 * <cache block size> <#used cache blocks>/<#total cache blocks>
3048 * <#read hits> <#read misses> <#write hits> <#write misses>
3049 * <#demotions> <#promotions> <#dirty>
3050 * <#features> <features>*
3051 * <#core args> <core args>
3052 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3053 */
3054static void cache_status(struct dm_target *ti, status_type_t type,
3055 unsigned int status_flags, char *result, unsigned int maxlen)
3056{
3057 int r = 0;
3058 unsigned int i;
3059 ssize_t sz = 0;
3060 dm_block_t nr_free_blocks_metadata = 0;
3061 dm_block_t nr_blocks_metadata = 0;
3062 char buf[BDEVNAME_SIZE];
3063 struct cache *cache = ti->private;
3064 dm_cblock_t residency;
3065 bool needs_check;
3066
3067 switch (type) {
3068 case STATUSTYPE_INFO:
3069 if (get_cache_mode(cache) == CM_FAIL) {
3070 DMEMIT("Fail");
3071 break;
3072 }
3073
3074 /* Commit to ensure statistics aren't out-of-date */
3075 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3076 (void) commit(cache, false);
3077
3078 r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3079 if (r) {
3080 DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3081 cache_device_name(cache), r);
3082 goto err;
3083 }
3084
3085 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3086 if (r) {
3087 DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3088 cache_device_name(cache), r);
3089 goto err;
3090 }
3091
3092 residency = policy_residency(cache->policy);
3093
3094 DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3095 (unsigned int)DM_CACHE_METADATA_BLOCK_SIZE,
3096 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3097 (unsigned long long)nr_blocks_metadata,
3098 (unsigned long long)cache->sectors_per_block,
3099 (unsigned long long) from_cblock(residency),
3100 (unsigned long long) from_cblock(cache->cache_size),
3101 (unsigned int) atomic_read(&cache->stats.read_hit),
3102 (unsigned int) atomic_read(&cache->stats.read_miss),
3103 (unsigned int) atomic_read(&cache->stats.write_hit),
3104 (unsigned int) atomic_read(&cache->stats.write_miss),
3105 (unsigned int) atomic_read(&cache->stats.demotion),
3106 (unsigned int) atomic_read(&cache->stats.promotion),
3107 (unsigned long) atomic_read(&cache->nr_dirty));
3108
3109 emit_flags(cache, result, maxlen, &sz);
3110
3111 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3112
3113 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3114 if (sz < maxlen) {
3115 r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3116 if (r)
3117 DMERR("%s: policy_emit_config_values returned %d",
3118 cache_device_name(cache), r);
3119 }
3120
3121 if (get_cache_mode(cache) == CM_READ_ONLY)
3122 DMEMIT("ro ");
3123 else
3124 DMEMIT("rw ");
3125
3126 r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3127
3128 if (r || needs_check)
3129 DMEMIT("needs_check ");
3130 else
3131 DMEMIT("- ");
3132
3133 break;
3134
3135 case STATUSTYPE_TABLE:
3136 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3137 DMEMIT("%s ", buf);
3138 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3139 DMEMIT("%s ", buf);
3140 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3141 DMEMIT("%s", buf);
3142
3143 for (i = 0; i < cache->nr_ctr_args - 1; i++)
3144 DMEMIT(" %s", cache->ctr_args[i]);
3145 if (cache->nr_ctr_args)
3146 DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3147 break;
3148
3149 case STATUSTYPE_IMA:
3150 DMEMIT_TARGET_NAME_VERSION(ti->type);
3151 if (get_cache_mode(cache) == CM_FAIL)
3152 DMEMIT(",metadata_mode=fail");
3153 else if (get_cache_mode(cache) == CM_READ_ONLY)
3154 DMEMIT(",metadata_mode=ro");
3155 else
3156 DMEMIT(",metadata_mode=rw");
3157
3158 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3159 DMEMIT(",cache_metadata_device=%s", buf);
3160 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3161 DMEMIT(",cache_device=%s", buf);
3162 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3163 DMEMIT(",cache_origin_device=%s", buf);
3164 DMEMIT(",writethrough=%c", writethrough_mode(cache) ? 'y' : 'n');
3165 DMEMIT(",writeback=%c", writeback_mode(cache) ? 'y' : 'n');
3166 DMEMIT(",passthrough=%c", passthrough_mode(cache) ? 'y' : 'n');
3167 DMEMIT(",metadata2=%c", cache->features.metadata_version == 2 ? 'y' : 'n');
3168 DMEMIT(",no_discard_passdown=%c", cache->features.discard_passdown ? 'n' : 'y');
3169 DMEMIT(";");
3170 break;
3171 }
3172
3173 return;
3174
3175err:
3176 DMEMIT("Error");
3177}
3178
3179/*
3180 * Defines a range of cblocks, begin to (end - 1) are in the range. end is
3181 * the one-past-the-end value.
3182 */
3183struct cblock_range {
3184 dm_cblock_t begin;
3185 dm_cblock_t end;
3186};
3187
3188/*
3189 * A cache block range can take two forms:
3190 *
3191 * i) A single cblock, eg. '3456'
3192 * ii) A begin and end cblock with a dash between, eg. 123-234
3193 */
3194static int parse_cblock_range(struct cache *cache, const char *str,
3195 struct cblock_range *result)
3196{
3197 char dummy;
3198 uint64_t b, e;
3199 int r;
3200
3201 /*
3202 * Try and parse form (ii) first.
3203 */
3204 r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3205
3206 if (r == 2) {
3207 result->begin = to_cblock(b);
3208 result->end = to_cblock(e);
3209 return 0;
3210 }
3211
3212 /*
3213 * That didn't work, try form (i).
3214 */
3215 r = sscanf(str, "%llu%c", &b, &dummy);
3216
3217 if (r == 1) {
3218 result->begin = to_cblock(b);
3219 result->end = to_cblock(from_cblock(result->begin) + 1u);
3220 return 0;
3221 }
3222
3223 DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3224 return -EINVAL;
3225}
3226
3227static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3228{
3229 uint64_t b = from_cblock(range->begin);
3230 uint64_t e = from_cblock(range->end);
3231 uint64_t n = from_cblock(cache->cache_size);
3232
3233 if (b >= n) {
3234 DMERR("%s: begin cblock out of range: %llu >= %llu",
3235 cache_device_name(cache), b, n);
3236 return -EINVAL;
3237 }
3238
3239 if (e > n) {
3240 DMERR("%s: end cblock out of range: %llu > %llu",
3241 cache_device_name(cache), e, n);
3242 return -EINVAL;
3243 }
3244
3245 if (b >= e) {
3246 DMERR("%s: invalid cblock range: %llu >= %llu",
3247 cache_device_name(cache), b, e);
3248 return -EINVAL;
3249 }
3250
3251 return 0;
3252}
3253
3254static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3255{
3256 return to_cblock(from_cblock(b) + 1);
3257}
3258
3259static int request_invalidation(struct cache *cache, struct cblock_range *range)
3260{
3261 int r = 0;
3262
3263 /*
3264 * We don't need to do any locking here because we know we're in
3265 * passthrough mode. There's is potential for a race between an
3266 * invalidation triggered by an io and an invalidation message. This
3267 * is harmless, we must not worry if the policy call fails.
3268 */
3269 while (range->begin != range->end) {
3270 r = invalidate_cblock(cache, range->begin);
3271 if (r)
3272 return r;
3273
3274 range->begin = cblock_succ(range->begin);
3275 }
3276
3277 cache->commit_requested = true;
3278 return r;
3279}
3280
3281static int process_invalidate_cblocks_message(struct cache *cache, unsigned int count,
3282 const char **cblock_ranges)
3283{
3284 int r = 0;
3285 unsigned int i;
3286 struct cblock_range range;
3287
3288 if (!passthrough_mode(cache)) {
3289 DMERR("%s: cache has to be in passthrough mode for invalidation",
3290 cache_device_name(cache));
3291 return -EPERM;
3292 }
3293
3294 for (i = 0; i < count; i++) {
3295 r = parse_cblock_range(cache, cblock_ranges[i], &range);
3296 if (r)
3297 break;
3298
3299 r = validate_cblock_range(cache, &range);
3300 if (r)
3301 break;
3302
3303 /*
3304 * Pass begin and end origin blocks to the worker and wake it.
3305 */
3306 r = request_invalidation(cache, &range);
3307 if (r)
3308 break;
3309 }
3310
3311 return r;
3312}
3313
3314/*
3315 * Supports
3316 * "<key> <value>"
3317 * and
3318 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3319 *
3320 * The key migration_threshold is supported by the cache target core.
3321 */
3322static int cache_message(struct dm_target *ti, unsigned int argc, char **argv,
3323 char *result, unsigned int maxlen)
3324{
3325 struct cache *cache = ti->private;
3326
3327 if (!argc)
3328 return -EINVAL;
3329
3330 if (get_cache_mode(cache) >= CM_READ_ONLY) {
3331 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3332 cache_device_name(cache));
3333 return -EOPNOTSUPP;
3334 }
3335
3336 if (!strcasecmp(argv[0], "invalidate_cblocks"))
3337 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3338
3339 if (argc != 2)
3340 return -EINVAL;
3341
3342 return set_config_value(cache, argv[0], argv[1]);
3343}
3344
3345static int cache_iterate_devices(struct dm_target *ti,
3346 iterate_devices_callout_fn fn, void *data)
3347{
3348 int r = 0;
3349 struct cache *cache = ti->private;
3350
3351 r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3352 if (!r)
3353 r = fn(ti, cache->origin_dev, 0, ti->len, data);
3354
3355 return r;
3356}
3357
3358/*
3359 * If discard_passdown was enabled verify that the origin device
3360 * supports discards. Disable discard_passdown if not.
3361 */
3362static void disable_passdown_if_not_supported(struct cache *cache)
3363{
3364 struct block_device *origin_bdev = cache->origin_dev->bdev;
3365 struct queue_limits *origin_limits = bdev_limits(origin_bdev);
3366 const char *reason = NULL;
3367
3368 if (!cache->features.discard_passdown)
3369 return;
3370
3371 if (!bdev_max_discard_sectors(origin_bdev))
3372 reason = "discard unsupported";
3373
3374 else if (origin_limits->max_discard_sectors < cache->sectors_per_block)
3375 reason = "max discard sectors smaller than a block";
3376
3377 if (reason) {
3378 DMWARN("Origin device (%pg) %s: Disabling discard passdown.",
3379 origin_bdev, reason);
3380 cache->features.discard_passdown = false;
3381 }
3382}
3383
3384static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3385{
3386 struct block_device *origin_bdev = cache->origin_dev->bdev;
3387 struct queue_limits *origin_limits = bdev_limits(origin_bdev);
3388
3389 if (!cache->features.discard_passdown) {
3390 /* No passdown is done so setting own virtual limits */
3391 limits->max_hw_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3392 cache->origin_sectors);
3393 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3394 return;
3395 }
3396
3397 /*
3398 * cache_iterate_devices() is stacking both origin and fast device limits
3399 * but discards aren't passed to fast device, so inherit origin's limits.
3400 */
3401 limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors;
3402 limits->discard_granularity = origin_limits->discard_granularity;
3403 limits->discard_alignment = origin_limits->discard_alignment;
3404}
3405
3406static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3407{
3408 struct cache *cache = ti->private;
3409 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3410
3411 /*
3412 * If the system-determined stacked limits are compatible with the
3413 * cache's blocksize (io_opt is a factor) do not override them.
3414 */
3415 if (io_opt_sectors < cache->sectors_per_block ||
3416 do_div(io_opt_sectors, cache->sectors_per_block)) {
3417 limits->io_min = cache->sectors_per_block << SECTOR_SHIFT;
3418 limits->io_opt = cache->sectors_per_block << SECTOR_SHIFT;
3419 }
3420
3421 disable_passdown_if_not_supported(cache);
3422 set_discard_limits(cache, limits);
3423}
3424
3425/*----------------------------------------------------------------*/
3426
3427static struct target_type cache_target = {
3428 .name = "cache",
3429 .version = {2, 2, 0},
3430 .module = THIS_MODULE,
3431 .ctr = cache_ctr,
3432 .dtr = cache_dtr,
3433 .map = cache_map,
3434 .end_io = cache_end_io,
3435 .postsuspend = cache_postsuspend,
3436 .preresume = cache_preresume,
3437 .resume = cache_resume,
3438 .status = cache_status,
3439 .message = cache_message,
3440 .iterate_devices = cache_iterate_devices,
3441 .io_hints = cache_io_hints,
3442};
3443
3444static int __init dm_cache_init(void)
3445{
3446 int r;
3447
3448 migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3449 if (!migration_cache) {
3450 r = -ENOMEM;
3451 goto err;
3452 }
3453
3454 btracker_work_cache = kmem_cache_create("dm_cache_bt_work",
3455 sizeof(struct bt_work), __alignof__(struct bt_work), 0, NULL);
3456 if (!btracker_work_cache) {
3457 r = -ENOMEM;
3458 goto err;
3459 }
3460
3461 r = dm_register_target(&cache_target);
3462 if (r) {
3463 goto err;
3464 }
3465
3466 return 0;
3467
3468err:
3469 kmem_cache_destroy(migration_cache);
3470 kmem_cache_destroy(btracker_work_cache);
3471 return r;
3472}
3473
3474static void __exit dm_cache_exit(void)
3475{
3476 dm_unregister_target(&cache_target);
3477 kmem_cache_destroy(migration_cache);
3478 kmem_cache_destroy(btracker_work_cache);
3479}
3480
3481module_init(dm_cache_init);
3482module_exit(dm_cache_exit);
3483
3484MODULE_DESCRIPTION(DM_NAME " cache target");
3485MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3486MODULE_LICENSE("GPL");