Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
   4 *
   5 * Uses a block device as cache for other block devices; optimized for SSDs.
   6 * All allocation is done in buckets, which should match the erase block size
   7 * of the device.
   8 *
   9 * Buckets containing cached data are kept on a heap sorted by priority;
  10 * bucket priority is increased on cache hit, and periodically all the buckets
  11 * on the heap have their priority scaled down. This currently is just used as
  12 * an LRU but in the future should allow for more intelligent heuristics.
  13 *
  14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
  15 * counter. Garbage collection is used to remove stale pointers.
  16 *
  17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
  18 * as keys are inserted we only sort the pages that have not yet been written.
  19 * When garbage collection is run, we resort the entire node.
  20 *
  21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
  22 */
  23
  24#include "bcache.h"
  25#include "btree.h"
  26#include "debug.h"
  27#include "extents.h"
  28
  29#include <linux/slab.h>
  30#include <linux/bitops.h>
  31#include <linux/hash.h>
  32#include <linux/kthread.h>
  33#include <linux/prefetch.h>
  34#include <linux/random.h>
  35#include <linux/rcupdate.h>
  36#include <linux/sched/clock.h>
  37#include <linux/rculist.h>
  38#include <linux/delay.h>
  39#include <trace/events/bcache.h>
  40
  41/*
  42 * Todo:
  43 * register_bcache: Return errors out to userspace correctly
  44 *
  45 * Writeback: don't undirty key until after a cache flush
  46 *
  47 * Create an iterator for key pointers
  48 *
  49 * On btree write error, mark bucket such that it won't be freed from the cache
  50 *
  51 * Journalling:
  52 *   Check for bad keys in replay
  53 *   Propagate barriers
  54 *   Refcount journal entries in journal_replay
  55 *
  56 * Garbage collection:
  57 *   Finish incremental gc
  58 *   Gc should free old UUIDs, data for invalid UUIDs
  59 *
  60 * Provide a way to list backing device UUIDs we have data cached for, and
  61 * probably how long it's been since we've seen them, and a way to invalidate
  62 * dirty data for devices that will never be attached again
  63 *
  64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
  65 * that based on that and how much dirty data we have we can keep writeback
  66 * from being starved
  67 *
  68 * Add a tracepoint or somesuch to watch for writeback starvation
  69 *
  70 * When btree depth > 1 and splitting an interior node, we have to make sure
  71 * alloc_bucket() cannot fail. This should be true but is not completely
  72 * obvious.
  73 *
  74 * Plugging?
  75 *
  76 * If data write is less than hard sector size of ssd, round up offset in open
  77 * bucket to the next whole sector
  78 *
  79 * Superblock needs to be fleshed out for multiple cache devices
  80 *
  81 * Add a sysfs tunable for the number of writeback IOs in flight
  82 *
  83 * Add a sysfs tunable for the number of open data buckets
  84 *
  85 * IO tracking: Can we track when one process is doing io on behalf of another?
  86 * IO tracking: Don't use just an average, weigh more recent stuff higher
  87 *
  88 * Test module load/unload
  89 */
  90
  91#define MAX_NEED_GC		64
  92#define MAX_SAVE_PRIO		72
  93#define MAX_GC_TIMES		100
  94#define MIN_GC_NODES		100
  95#define GC_SLEEP_MS		100
  96
  97#define PTR_DIRTY_BIT		(((uint64_t) 1 << 36))
  98
  99#define PTR_HASH(c, k)							\
 100	(((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
 101
 102static struct workqueue_struct *btree_io_wq;
 103
 104#define insert_lock(s, b)	((b)->level <= (s)->lock)
 105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 106
 107static inline struct bset *write_block(struct btree *b)
 108{
 109	return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c->cache);
 110}
 111
 112static void bch_btree_init_next(struct btree *b)
 113{
 114	/* If not a leaf node, always sort */
 115	if (b->level && b->keys.nsets)
 116		bch_btree_sort(&b->keys, &b->c->sort);
 117	else
 118		bch_btree_sort_lazy(&b->keys, &b->c->sort);
 119
 120	if (b->written < btree_blocks(b))
 121		bch_bset_init_next(&b->keys, write_block(b),
 122				   bset_magic(&b->c->cache->sb));
 123
 124}
 125
 126/* Btree key manipulation */
 127
 128void bkey_put(struct cache_set *c, struct bkey *k)
 129{
 130	unsigned int i;
 131
 132	for (i = 0; i < KEY_PTRS(k); i++)
 133		if (ptr_available(c, k, i))
 134			atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
 135}
 136
 137/* Btree IO */
 138
 139static uint64_t btree_csum_set(struct btree *b, struct bset *i)
 140{
 141	uint64_t crc = b->key.ptr[0];
 142	void *data = (void *) i + 8, *end = bset_bkey_last(i);
 143
 144	crc = crc64_be(crc, data, end - data);
 145	return crc ^ 0xffffffffffffffffULL;
 146}
 147
 148void bch_btree_node_read_done(struct btree *b)
 149{
 150	const char *err = "bad btree header";
 151	struct bset *i = btree_bset_first(b);
 152	struct btree_iter *iter;
 153
 154	/*
 155	 * c->fill_iter can allocate an iterator with more memory space
 156	 * than static MAX_BSETS.
 157	 * See the comment arount cache_set->fill_iter.
 158	 */
 159	iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
 160	iter->size = b->c->cache->sb.bucket_size / b->c->cache->sb.block_size;
 161	iter->used = 0;
 162
 163#ifdef CONFIG_BCACHE_DEBUG
 164	iter->b = &b->keys;
 165#endif
 166
 167	if (!i->seq)
 168		goto err;
 169
 170	for (;
 171	     b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
 172	     i = write_block(b)) {
 173		err = "unsupported bset version";
 174		if (i->version > BCACHE_BSET_VERSION)
 175			goto err;
 176
 177		err = "bad btree header";
 178		if (b->written + set_blocks(i, block_bytes(b->c->cache)) >
 179		    btree_blocks(b))
 180			goto err;
 181
 182		err = "bad magic";
 183		if (i->magic != bset_magic(&b->c->cache->sb))
 184			goto err;
 185
 186		err = "bad checksum";
 187		switch (i->version) {
 188		case 0:
 189			if (i->csum != csum_set(i))
 190				goto err;
 191			break;
 192		case BCACHE_BSET_VERSION:
 193			if (i->csum != btree_csum_set(b, i))
 194				goto err;
 195			break;
 196		}
 197
 198		err = "empty set";
 199		if (i != b->keys.set[0].data && !i->keys)
 200			goto err;
 201
 202		bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
 203
 204		b->written += set_blocks(i, block_bytes(b->c->cache));
 205	}
 206
 207	err = "corrupted btree";
 208	for (i = write_block(b);
 209	     bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
 210	     i = ((void *) i) + block_bytes(b->c->cache))
 211		if (i->seq == b->keys.set[0].data->seq)
 212			goto err;
 213
 214	bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
 215
 216	i = b->keys.set[0].data;
 217	err = "short btree key";
 218	if (b->keys.set[0].size &&
 219	    bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
 220		goto err;
 221
 222	if (b->written < btree_blocks(b))
 223		bch_bset_init_next(&b->keys, write_block(b),
 224				   bset_magic(&b->c->cache->sb));
 225out:
 226	mempool_free(iter, &b->c->fill_iter);
 227	return;
 228err:
 229	set_btree_node_io_error(b);
 230	bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
 231			    err, PTR_BUCKET_NR(b->c, &b->key, 0),
 232			    bset_block_offset(b, i), i->keys);
 233	goto out;
 234}
 235
 236static void btree_node_read_endio(struct bio *bio)
 237{
 238	struct closure *cl = bio->bi_private;
 239
 240	closure_put(cl);
 241}
 242
 243static void bch_btree_node_read(struct btree *b)
 244{
 245	uint64_t start_time = local_clock();
 246	struct closure cl;
 247	struct bio *bio;
 248
 249	trace_bcache_btree_read(b);
 250
 251	closure_init_stack(&cl);
 252
 253	bio = bch_bbio_alloc(b->c);
 254	bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
 255	bio->bi_end_io	= btree_node_read_endio;
 256	bio->bi_private	= &cl;
 257	bio->bi_opf = REQ_OP_READ | REQ_META;
 258
 259	bch_bio_map(bio, b->keys.set[0].data);
 260
 261	bch_submit_bbio(bio, b->c, &b->key, 0);
 262	closure_sync(&cl);
 263
 264	if (bio->bi_status)
 265		set_btree_node_io_error(b);
 266
 267	bch_bbio_free(bio, b->c);
 268
 269	if (btree_node_io_error(b))
 270		goto err;
 271
 272	bch_btree_node_read_done(b);
 273	bch_time_stats_update(&b->c->btree_read_time, start_time);
 274
 275	return;
 276err:
 277	bch_cache_set_error(b->c, "io error reading bucket %zu",
 278			    PTR_BUCKET_NR(b->c, &b->key, 0));
 279}
 280
 281static void btree_complete_write(struct btree *b, struct btree_write *w)
 282{
 283	if (w->prio_blocked &&
 284	    !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
 285		wake_up_allocators(b->c);
 286
 287	if (w->journal) {
 288		atomic_dec_bug(w->journal);
 289		__closure_wake_up(&b->c->journal.wait);
 290	}
 291
 292	w->prio_blocked	= 0;
 293	w->journal	= NULL;
 294}
 295
 296static void btree_node_write_unlock(struct closure *cl)
 297{
 298	struct btree *b = container_of(cl, struct btree, io);
 299
 300	up(&b->io_mutex);
 301}
 302
 303static void __btree_node_write_done(struct closure *cl)
 304{
 305	struct btree *b = container_of(cl, struct btree, io);
 306	struct btree_write *w = btree_prev_write(b);
 307
 308	bch_bbio_free(b->bio, b->c);
 309	b->bio = NULL;
 310	btree_complete_write(b, w);
 311
 312	if (btree_node_dirty(b))
 313		queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
 314
 315	closure_return_with_destructor(cl, btree_node_write_unlock);
 316}
 317
 318static void btree_node_write_done(struct closure *cl)
 319{
 320	struct btree *b = container_of(cl, struct btree, io);
 321
 322	bio_free_pages(b->bio);
 323	__btree_node_write_done(cl);
 324}
 325
 326static void btree_node_write_endio(struct bio *bio)
 327{
 328	struct closure *cl = bio->bi_private;
 329	struct btree *b = container_of(cl, struct btree, io);
 330
 331	if (bio->bi_status)
 332		set_btree_node_io_error(b);
 333
 334	bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
 335	closure_put(cl);
 336}
 337
 338static void do_btree_node_write(struct btree *b)
 339{
 340	struct closure *cl = &b->io;
 341	struct bset *i = btree_bset_last(b);
 342	BKEY_PADDED(key) k;
 343
 344	i->version	= BCACHE_BSET_VERSION;
 345	i->csum		= btree_csum_set(b, i);
 346
 347	BUG_ON(b->bio);
 348	b->bio = bch_bbio_alloc(b->c);
 349
 350	b->bio->bi_end_io	= btree_node_write_endio;
 351	b->bio->bi_private	= cl;
 352	b->bio->bi_iter.bi_size	= roundup(set_bytes(i), block_bytes(b->c->cache));
 353	b->bio->bi_opf		= REQ_OP_WRITE | REQ_META | REQ_FUA;
 354	bch_bio_map(b->bio, i);
 355
 356	/*
 357	 * If we're appending to a leaf node, we don't technically need FUA -
 358	 * this write just needs to be persisted before the next journal write,
 359	 * which will be marked FLUSH|FUA.
 360	 *
 361	 * Similarly if we're writing a new btree root - the pointer is going to
 362	 * be in the next journal entry.
 363	 *
 364	 * But if we're writing a new btree node (that isn't a root) or
 365	 * appending to a non leaf btree node, we need either FUA or a flush
 366	 * when we write the parent with the new pointer. FUA is cheaper than a
 367	 * flush, and writes appending to leaf nodes aren't blocking anything so
 368	 * just make all btree node writes FUA to keep things sane.
 369	 */
 370
 371	bkey_copy(&k.key, &b->key);
 372	SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
 373		       bset_sector_offset(&b->keys, i));
 374
 375	if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
 376		struct bio_vec *bv;
 377		void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
 378		struct bvec_iter_all iter_all;
 379
 380		bio_for_each_segment_all(bv, b->bio, iter_all) {
 381			memcpy(page_address(bv->bv_page), addr, PAGE_SIZE);
 382			addr += PAGE_SIZE;
 383		}
 384
 385		bch_submit_bbio(b->bio, b->c, &k.key, 0);
 386
 387		continue_at(cl, btree_node_write_done, NULL);
 388	} else {
 389		/*
 390		 * No problem for multipage bvec since the bio is
 391		 * just allocated
 392		 */
 393		b->bio->bi_vcnt = 0;
 394		bch_bio_map(b->bio, i);
 395
 396		bch_submit_bbio(b->bio, b->c, &k.key, 0);
 397
 398		closure_sync(cl);
 399		continue_at_nobarrier(cl, __btree_node_write_done, NULL);
 400	}
 401}
 402
 403void __bch_btree_node_write(struct btree *b, struct closure *parent)
 404{
 405	struct bset *i = btree_bset_last(b);
 406
 407	lockdep_assert_held(&b->write_lock);
 408
 409	trace_bcache_btree_write(b);
 410
 411	BUG_ON(current->bio_list);
 412	BUG_ON(b->written >= btree_blocks(b));
 413	BUG_ON(b->written && !i->keys);
 414	BUG_ON(btree_bset_first(b)->seq != i->seq);
 415	bch_check_keys(&b->keys, "writing");
 416
 417	cancel_delayed_work(&b->work);
 418
 419	/* If caller isn't waiting for write, parent refcount is cache set */
 420	down(&b->io_mutex);
 421	closure_init(&b->io, parent ?: &b->c->cl);
 422
 423	clear_bit(BTREE_NODE_dirty,	 &b->flags);
 424	change_bit(BTREE_NODE_write_idx, &b->flags);
 425
 426	do_btree_node_write(b);
 427
 428	atomic_long_add(set_blocks(i, block_bytes(b->c->cache)) * b->c->cache->sb.block_size,
 429			&b->c->cache->btree_sectors_written);
 430
 431	b->written += set_blocks(i, block_bytes(b->c->cache));
 432}
 433
 434void bch_btree_node_write(struct btree *b, struct closure *parent)
 435{
 436	unsigned int nsets = b->keys.nsets;
 437
 438	lockdep_assert_held(&b->lock);
 439
 440	__bch_btree_node_write(b, parent);
 441
 442	/*
 443	 * do verify if there was more than one set initially (i.e. we did a
 444	 * sort) and we sorted down to a single set:
 445	 */
 446	if (nsets && !b->keys.nsets)
 447		bch_btree_verify(b);
 448
 449	bch_btree_init_next(b);
 450}
 451
 452static void bch_btree_node_write_sync(struct btree *b)
 453{
 454	struct closure cl;
 455
 456	closure_init_stack(&cl);
 457
 458	mutex_lock(&b->write_lock);
 459	bch_btree_node_write(b, &cl);
 460	mutex_unlock(&b->write_lock);
 461
 462	closure_sync(&cl);
 463}
 464
 465static void btree_node_write_work(struct work_struct *w)
 466{
 467	struct btree *b = container_of(to_delayed_work(w), struct btree, work);
 468
 469	mutex_lock(&b->write_lock);
 470	if (btree_node_dirty(b))
 471		__bch_btree_node_write(b, NULL);
 472	mutex_unlock(&b->write_lock);
 473}
 474
 475static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
 476{
 477	struct bset *i = btree_bset_last(b);
 478	struct btree_write *w = btree_current_write(b);
 479
 480	lockdep_assert_held(&b->write_lock);
 481
 482	BUG_ON(!b->written);
 483	BUG_ON(!i->keys);
 484
 485	if (!btree_node_dirty(b))
 486		queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
 487
 488	set_btree_node_dirty(b);
 489
 490	/*
 491	 * w->journal is always the oldest journal pin of all bkeys
 492	 * in the leaf node, to make sure the oldest jset seq won't
 493	 * be increased before this btree node is flushed.
 494	 */
 495	if (journal_ref) {
 496		if (w->journal &&
 497		    journal_pin_cmp(b->c, w->journal, journal_ref)) {
 498			atomic_dec_bug(w->journal);
 499			w->journal = NULL;
 500		}
 501
 502		if (!w->journal) {
 503			w->journal = journal_ref;
 504			atomic_inc(w->journal);
 505		}
 506	}
 507
 508	/* Force write if set is too big */
 509	if (set_bytes(i) > PAGE_SIZE - 48 &&
 510	    !current->bio_list)
 511		bch_btree_node_write(b, NULL);
 512}
 513
 514/*
 515 * Btree in memory cache - allocation/freeing
 516 * mca -> memory cache
 517 */
 518
 519#define mca_reserve(c)	(((!IS_ERR_OR_NULL(c->root) && c->root->level) \
 520			  ? c->root->level : 1) * 8 + 16)
 521#define mca_can_free(c)						\
 522	max_t(int, 0, c->btree_cache_used - mca_reserve(c))
 523
 524static void mca_data_free(struct btree *b)
 525{
 526	BUG_ON(b->io_mutex.count != 1);
 527
 528	bch_btree_keys_free(&b->keys);
 529
 530	b->c->btree_cache_used--;
 531	list_move(&b->list, &b->c->btree_cache_freed);
 532}
 533
 534static void mca_bucket_free(struct btree *b)
 535{
 536	BUG_ON(btree_node_dirty(b));
 537
 538	b->key.ptr[0] = 0;
 539	hlist_del_init_rcu(&b->hash);
 540	list_move(&b->list, &b->c->btree_cache_freeable);
 541}
 542
 543static unsigned int btree_order(struct bkey *k)
 544{
 545	return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
 546}
 547
 548static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
 549{
 550	if (!bch_btree_keys_alloc(&b->keys,
 551				  max_t(unsigned int,
 552					ilog2(b->c->btree_pages),
 553					btree_order(k)),
 554				  gfp)) {
 555		b->c->btree_cache_used++;
 556		list_move(&b->list, &b->c->btree_cache);
 557	} else {
 558		list_move(&b->list, &b->c->btree_cache_freed);
 559	}
 560}
 561
 562static struct btree *mca_bucket_alloc(struct cache_set *c,
 563				      struct bkey *k, gfp_t gfp)
 564{
 565	/*
 566	 * kzalloc() is necessary here for initialization,
 567	 * see code comments in bch_btree_keys_init().
 568	 */
 569	struct btree *b = kzalloc(sizeof(struct btree), gfp);
 570
 571	if (!b)
 572		return NULL;
 573
 574	init_rwsem(&b->lock);
 575	lockdep_set_novalidate_class(&b->lock);
 576	mutex_init(&b->write_lock);
 577	lockdep_set_novalidate_class(&b->write_lock);
 578	INIT_LIST_HEAD(&b->list);
 579	INIT_DELAYED_WORK(&b->work, btree_node_write_work);
 580	b->c = c;
 581	sema_init(&b->io_mutex, 1);
 582
 583	mca_data_alloc(b, k, gfp);
 584	return b;
 585}
 586
 587static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
 588{
 589	struct closure cl;
 590
 591	closure_init_stack(&cl);
 592	lockdep_assert_held(&b->c->bucket_lock);
 593
 594	if (!down_write_trylock(&b->lock))
 595		return -ENOMEM;
 596
 597	BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
 598
 599	if (b->keys.page_order < min_order)
 600		goto out_unlock;
 601
 602	if (!flush) {
 603		if (btree_node_dirty(b))
 604			goto out_unlock;
 605
 606		if (down_trylock(&b->io_mutex))
 607			goto out_unlock;
 608		up(&b->io_mutex);
 609	}
 610
 611retry:
 612	/*
 613	 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by
 614	 * __bch_btree_node_write(). To avoid an extra flush, acquire
 615	 * b->write_lock before checking BTREE_NODE_dirty bit.
 616	 */
 617	mutex_lock(&b->write_lock);
 618	/*
 619	 * If this btree node is selected in btree_flush_write() by journal
 620	 * code, delay and retry until the node is flushed by journal code
 621	 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
 622	 */
 623	if (btree_node_journal_flush(b)) {
 624		pr_debug("bnode %p is flushing by journal, retry\n", b);
 625		mutex_unlock(&b->write_lock);
 626		udelay(1);
 627		goto retry;
 628	}
 629
 630	if (btree_node_dirty(b))
 631		__bch_btree_node_write(b, &cl);
 632	mutex_unlock(&b->write_lock);
 633
 634	closure_sync(&cl);
 635
 636	/* wait for any in flight btree write */
 637	down(&b->io_mutex);
 638	up(&b->io_mutex);
 639
 640	return 0;
 641out_unlock:
 642	rw_unlock(true, b);
 643	return -ENOMEM;
 644}
 645
 646static unsigned long bch_mca_scan(struct shrinker *shrink,
 647				  struct shrink_control *sc)
 648{
 649	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
 650	struct btree *b, *t;
 651	unsigned long i, nr = sc->nr_to_scan;
 652	unsigned long freed = 0;
 653	unsigned int btree_cache_used;
 654
 655	if (c->shrinker_disabled)
 656		return SHRINK_STOP;
 657
 658	if (c->btree_cache_alloc_lock)
 659		return SHRINK_STOP;
 660
 661	/* Return -1 if we can't do anything right now */
 662	if (sc->gfp_mask & __GFP_IO)
 663		mutex_lock(&c->bucket_lock);
 664	else if (!mutex_trylock(&c->bucket_lock))
 665		return -1;
 666
 667	/*
 668	 * It's _really_ critical that we don't free too many btree nodes - we
 669	 * have to always leave ourselves a reserve. The reserve is how we
 670	 * guarantee that allocating memory for a new btree node can always
 671	 * succeed, so that inserting keys into the btree can always succeed and
 672	 * IO can always make forward progress:
 673	 */
 674	nr /= c->btree_pages;
 675	if (nr == 0)
 676		nr = 1;
 677	nr = min_t(unsigned long, nr, mca_can_free(c));
 678
 679	i = 0;
 680	btree_cache_used = c->btree_cache_used;
 681	list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) {
 682		if (nr <= 0)
 683			goto out;
 684
 685		if (!mca_reap(b, 0, false)) {
 
 686			mca_data_free(b);
 687			rw_unlock(true, b);
 688			freed++;
 689		}
 690		nr--;
 691		i++;
 692	}
 693
 694	list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) {
 695		if (nr <= 0 || i >= btree_cache_used)
 696			goto out;
 697
 698		if (!mca_reap(b, 0, false)) {
 
 
 
 
 699			mca_bucket_free(b);
 700			mca_data_free(b);
 701			rw_unlock(true, b);
 702			freed++;
 703		}
 704
 705		nr--;
 706		i++;
 707	}
 708out:
 709	mutex_unlock(&c->bucket_lock);
 710	return freed * c->btree_pages;
 711}
 712
 713static unsigned long bch_mca_count(struct shrinker *shrink,
 714				   struct shrink_control *sc)
 715{
 716	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
 717
 718	if (c->shrinker_disabled)
 719		return 0;
 720
 721	if (c->btree_cache_alloc_lock)
 722		return 0;
 723
 724	return mca_can_free(c) * c->btree_pages;
 725}
 726
 727void bch_btree_cache_free(struct cache_set *c)
 728{
 729	struct btree *b;
 730	struct closure cl;
 731
 732	closure_init_stack(&cl);
 733
 734	if (c->shrink.list.next)
 735		unregister_shrinker(&c->shrink);
 736
 737	mutex_lock(&c->bucket_lock);
 738
 739#ifdef CONFIG_BCACHE_DEBUG
 740	if (c->verify_data)
 741		list_move(&c->verify_data->list, &c->btree_cache);
 742
 743	free_pages((unsigned long) c->verify_ondisk, ilog2(meta_bucket_pages(&c->cache->sb)));
 744#endif
 745
 746	list_splice(&c->btree_cache_freeable,
 747		    &c->btree_cache);
 748
 749	while (!list_empty(&c->btree_cache)) {
 750		b = list_first_entry(&c->btree_cache, struct btree, list);
 751
 752		/*
 753		 * This function is called by cache_set_free(), no I/O
 754		 * request on cache now, it is unnecessary to acquire
 755		 * b->write_lock before clearing BTREE_NODE_dirty anymore.
 756		 */
 757		if (btree_node_dirty(b)) {
 758			btree_complete_write(b, btree_current_write(b));
 759			clear_bit(BTREE_NODE_dirty, &b->flags);
 760		}
 761		mca_data_free(b);
 762	}
 763
 764	while (!list_empty(&c->btree_cache_freed)) {
 765		b = list_first_entry(&c->btree_cache_freed,
 766				     struct btree, list);
 767		list_del(&b->list);
 768		cancel_delayed_work_sync(&b->work);
 769		kfree(b);
 770	}
 771
 772	mutex_unlock(&c->bucket_lock);
 773}
 774
 775int bch_btree_cache_alloc(struct cache_set *c)
 776{
 777	unsigned int i;
 778
 779	for (i = 0; i < mca_reserve(c); i++)
 780		if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
 781			return -ENOMEM;
 782
 783	list_splice_init(&c->btree_cache,
 784			 &c->btree_cache_freeable);
 785
 786#ifdef CONFIG_BCACHE_DEBUG
 787	mutex_init(&c->verify_lock);
 788
 789	c->verify_ondisk = (void *)
 790		__get_free_pages(GFP_KERNEL|__GFP_COMP,
 791				 ilog2(meta_bucket_pages(&c->cache->sb)));
 792	if (!c->verify_ondisk) {
 793		/*
 794		 * Don't worry about the mca_rereserve buckets
 795		 * allocated in previous for-loop, they will be
 796		 * handled properly in bch_cache_set_unregister().
 797		 */
 798		return -ENOMEM;
 799	}
 800
 801	c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
 802
 803	if (c->verify_data &&
 804	    c->verify_data->keys.set->data)
 805		list_del_init(&c->verify_data->list);
 806	else
 807		c->verify_data = NULL;
 808#endif
 809
 810	c->shrink.count_objects = bch_mca_count;
 811	c->shrink.scan_objects = bch_mca_scan;
 812	c->shrink.seeks = 4;
 813	c->shrink.batch = c->btree_pages * 2;
 814
 815	if (register_shrinker(&c->shrink, "md-bcache:%pU", c->set_uuid))
 816		pr_warn("bcache: %s: could not register shrinker\n",
 817				__func__);
 818
 819	return 0;
 820}
 821
 822/* Btree in memory cache - hash table */
 823
 824static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
 825{
 826	return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
 827}
 828
 829static struct btree *mca_find(struct cache_set *c, struct bkey *k)
 830{
 831	struct btree *b;
 832
 833	rcu_read_lock();
 834	hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
 835		if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
 836			goto out;
 837	b = NULL;
 838out:
 839	rcu_read_unlock();
 840	return b;
 841}
 842
 843static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
 844{
 845	spin_lock(&c->btree_cannibalize_lock);
 846	if (likely(c->btree_cache_alloc_lock == NULL)) {
 847		c->btree_cache_alloc_lock = current;
 848	} else if (c->btree_cache_alloc_lock != current) {
 849		if (op)
 850			prepare_to_wait(&c->btree_cache_wait, &op->wait,
 851					TASK_UNINTERRUPTIBLE);
 852		spin_unlock(&c->btree_cannibalize_lock);
 853		return -EINTR;
 854	}
 855	spin_unlock(&c->btree_cannibalize_lock);
 856
 857	return 0;
 858}
 859
 860static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
 861				     struct bkey *k)
 862{
 863	struct btree *b;
 864
 865	trace_bcache_btree_cache_cannibalize(c);
 866
 867	if (mca_cannibalize_lock(c, op))
 868		return ERR_PTR(-EINTR);
 869
 870	list_for_each_entry_reverse(b, &c->btree_cache, list)
 871		if (!mca_reap(b, btree_order(k), false))
 872			return b;
 873
 874	list_for_each_entry_reverse(b, &c->btree_cache, list)
 875		if (!mca_reap(b, btree_order(k), true))
 876			return b;
 877
 878	WARN(1, "btree cache cannibalize failed\n");
 879	return ERR_PTR(-ENOMEM);
 880}
 881
 882/*
 883 * We can only have one thread cannibalizing other cached btree nodes at a time,
 884 * or we'll deadlock. We use an open coded mutex to ensure that, which a
 885 * cannibalize_bucket() will take. This means every time we unlock the root of
 886 * the btree, we need to release this lock if we have it held.
 887 */
 888static void bch_cannibalize_unlock(struct cache_set *c)
 889{
 890	spin_lock(&c->btree_cannibalize_lock);
 891	if (c->btree_cache_alloc_lock == current) {
 892		c->btree_cache_alloc_lock = NULL;
 893		wake_up(&c->btree_cache_wait);
 894	}
 895	spin_unlock(&c->btree_cannibalize_lock);
 896}
 897
 898static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
 899			       struct bkey *k, int level)
 900{
 901	struct btree *b;
 902
 903	BUG_ON(current->bio_list);
 904
 905	lockdep_assert_held(&c->bucket_lock);
 906
 907	if (mca_find(c, k))
 908		return NULL;
 909
 910	/* btree_free() doesn't free memory; it sticks the node on the end of
 911	 * the list. Check if there's any freed nodes there:
 912	 */
 913	list_for_each_entry(b, &c->btree_cache_freeable, list)
 914		if (!mca_reap(b, btree_order(k), false))
 915			goto out;
 916
 917	/* We never free struct btree itself, just the memory that holds the on
 918	 * disk node. Check the freed list before allocating a new one:
 919	 */
 920	list_for_each_entry(b, &c->btree_cache_freed, list)
 921		if (!mca_reap(b, 0, false)) {
 922			mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
 923			if (!b->keys.set[0].data)
 924				goto err;
 925			else
 926				goto out;
 927		}
 928
 929	b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
 930	if (!b)
 931		goto err;
 932
 933	BUG_ON(!down_write_trylock(&b->lock));
 934	if (!b->keys.set->data)
 935		goto err;
 936out:
 937	BUG_ON(b->io_mutex.count != 1);
 938
 939	bkey_copy(&b->key, k);
 940	list_move(&b->list, &c->btree_cache);
 941	hlist_del_init_rcu(&b->hash);
 942	hlist_add_head_rcu(&b->hash, mca_hash(c, k));
 943
 944	lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
 945	b->parent	= (void *) ~0UL;
 946	b->flags	= 0;
 947	b->written	= 0;
 948	b->level	= level;
 949
 950	if (!b->level)
 951		bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
 952				    &b->c->expensive_debug_checks);
 953	else
 954		bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
 955				    &b->c->expensive_debug_checks);
 956
 957	return b;
 958err:
 959	if (b)
 960		rw_unlock(true, b);
 961
 962	b = mca_cannibalize(c, op, k);
 963	if (!IS_ERR(b))
 964		goto out;
 965
 966	return b;
 967}
 968
 969/*
 970 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
 971 * in from disk if necessary.
 972 *
 973 * If IO is necessary and running under submit_bio_noacct, returns -EAGAIN.
 974 *
 975 * The btree node will have either a read or a write lock held, depending on
 976 * level and op->lock.
 977 */
 978struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
 979				 struct bkey *k, int level, bool write,
 980				 struct btree *parent)
 981{
 982	int i = 0;
 983	struct btree *b;
 984
 985	BUG_ON(level < 0);
 986retry:
 987	b = mca_find(c, k);
 988
 989	if (!b) {
 990		if (current->bio_list)
 991			return ERR_PTR(-EAGAIN);
 992
 993		mutex_lock(&c->bucket_lock);
 994		b = mca_alloc(c, op, k, level);
 995		mutex_unlock(&c->bucket_lock);
 996
 997		if (!b)
 998			goto retry;
 999		if (IS_ERR(b))
1000			return b;
1001
1002		bch_btree_node_read(b);
1003
1004		if (!write)
1005			downgrade_write(&b->lock);
1006	} else {
1007		rw_lock(write, b, level);
1008		if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1009			rw_unlock(write, b);
1010			goto retry;
1011		}
1012		BUG_ON(b->level != level);
1013	}
1014
1015	if (btree_node_io_error(b)) {
1016		rw_unlock(write, b);
1017		return ERR_PTR(-EIO);
1018	}
1019
1020	BUG_ON(!b->written);
1021
1022	b->parent = parent;
 
1023
1024	for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1025		prefetch(b->keys.set[i].tree);
1026		prefetch(b->keys.set[i].data);
1027	}
1028
1029	for (; i <= b->keys.nsets; i++)
1030		prefetch(b->keys.set[i].data);
1031
1032	return b;
1033}
1034
1035static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1036{
1037	struct btree *b;
1038
1039	mutex_lock(&parent->c->bucket_lock);
1040	b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1041	mutex_unlock(&parent->c->bucket_lock);
1042
1043	if (!IS_ERR_OR_NULL(b)) {
1044		b->parent = parent;
1045		bch_btree_node_read(b);
1046		rw_unlock(true, b);
1047	}
1048}
1049
1050/* Btree alloc */
1051
1052static void btree_node_free(struct btree *b)
1053{
1054	trace_bcache_btree_node_free(b);
1055
1056	BUG_ON(b == b->c->root);
1057
1058retry:
1059	mutex_lock(&b->write_lock);
1060	/*
1061	 * If the btree node is selected and flushing in btree_flush_write(),
1062	 * delay and retry until the BTREE_NODE_journal_flush bit cleared,
1063	 * then it is safe to free the btree node here. Otherwise this btree
1064	 * node will be in race condition.
1065	 */
1066	if (btree_node_journal_flush(b)) {
1067		mutex_unlock(&b->write_lock);
1068		pr_debug("bnode %p journal_flush set, retry\n", b);
1069		udelay(1);
1070		goto retry;
1071	}
1072
1073	if (btree_node_dirty(b)) {
1074		btree_complete_write(b, btree_current_write(b));
1075		clear_bit(BTREE_NODE_dirty, &b->flags);
1076	}
1077
1078	mutex_unlock(&b->write_lock);
1079
1080	cancel_delayed_work(&b->work);
1081
1082	mutex_lock(&b->c->bucket_lock);
1083	bch_bucket_free(b->c, &b->key);
1084	mca_bucket_free(b);
1085	mutex_unlock(&b->c->bucket_lock);
1086}
1087
1088struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1089				     int level, bool wait,
1090				     struct btree *parent)
1091{
1092	BKEY_PADDED(key) k;
1093	struct btree *b = ERR_PTR(-EAGAIN);
1094
1095	mutex_lock(&c->bucket_lock);
1096retry:
1097	if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, wait))
1098		goto err;
1099
1100	bkey_put(c, &k.key);
1101	SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1102
1103	b = mca_alloc(c, op, &k.key, level);
1104	if (IS_ERR(b))
1105		goto err_free;
1106
1107	if (!b) {
1108		cache_bug(c,
1109			"Tried to allocate bucket that was in btree cache");
1110		goto retry;
1111	}
1112
 
1113	b->parent = parent;
1114	bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->cache->sb));
1115
1116	mutex_unlock(&c->bucket_lock);
1117
1118	trace_bcache_btree_node_alloc(b);
1119	return b;
1120err_free:
1121	bch_bucket_free(c, &k.key);
1122err:
1123	mutex_unlock(&c->bucket_lock);
1124
1125	trace_bcache_btree_node_alloc_fail(c);
1126	return b;
1127}
1128
1129static struct btree *bch_btree_node_alloc(struct cache_set *c,
1130					  struct btree_op *op, int level,
1131					  struct btree *parent)
1132{
1133	return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1134}
1135
1136static struct btree *btree_node_alloc_replacement(struct btree *b,
1137						  struct btree_op *op)
1138{
1139	struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1140
1141	if (!IS_ERR_OR_NULL(n)) {
1142		mutex_lock(&n->write_lock);
1143		bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1144		bkey_copy_key(&n->key, &b->key);
1145		mutex_unlock(&n->write_lock);
1146	}
1147
1148	return n;
1149}
1150
1151static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1152{
1153	unsigned int i;
1154
1155	mutex_lock(&b->c->bucket_lock);
1156
1157	atomic_inc(&b->c->prio_blocked);
1158
1159	bkey_copy(k, &b->key);
1160	bkey_copy_key(k, &ZERO_KEY);
1161
1162	for (i = 0; i < KEY_PTRS(k); i++)
1163		SET_PTR_GEN(k, i,
1164			    bch_inc_gen(b->c->cache,
1165					PTR_BUCKET(b->c, &b->key, i)));
1166
1167	mutex_unlock(&b->c->bucket_lock);
1168}
1169
1170static int btree_check_reserve(struct btree *b, struct btree_op *op)
1171{
1172	struct cache_set *c = b->c;
1173	struct cache *ca = c->cache;
1174	unsigned int reserve = (c->root->level - b->level) * 2 + 1;
1175
1176	mutex_lock(&c->bucket_lock);
1177
1178	if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1179		if (op)
1180			prepare_to_wait(&c->btree_cache_wait, &op->wait,
1181					TASK_UNINTERRUPTIBLE);
1182		mutex_unlock(&c->bucket_lock);
1183		return -EINTR;
1184	}
 
1185
1186	mutex_unlock(&c->bucket_lock);
1187
1188	return mca_cannibalize_lock(b->c, op);
1189}
1190
1191/* Garbage collection */
1192
1193static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1194				    struct bkey *k)
1195{
1196	uint8_t stale = 0;
1197	unsigned int i;
1198	struct bucket *g;
1199
1200	/*
1201	 * ptr_invalid() can't return true for the keys that mark btree nodes as
1202	 * freed, but since ptr_bad() returns true we'll never actually use them
1203	 * for anything and thus we don't want mark their pointers here
1204	 */
1205	if (!bkey_cmp(k, &ZERO_KEY))
1206		return stale;
1207
1208	for (i = 0; i < KEY_PTRS(k); i++) {
1209		if (!ptr_available(c, k, i))
1210			continue;
1211
1212		g = PTR_BUCKET(c, k, i);
1213
1214		if (gen_after(g->last_gc, PTR_GEN(k, i)))
1215			g->last_gc = PTR_GEN(k, i);
1216
1217		if (ptr_stale(c, k, i)) {
1218			stale = max(stale, ptr_stale(c, k, i));
1219			continue;
1220		}
1221
1222		cache_bug_on(GC_MARK(g) &&
1223			     (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1224			     c, "inconsistent ptrs: mark = %llu, level = %i",
1225			     GC_MARK(g), level);
1226
1227		if (level)
1228			SET_GC_MARK(g, GC_MARK_METADATA);
1229		else if (KEY_DIRTY(k))
1230			SET_GC_MARK(g, GC_MARK_DIRTY);
1231		else if (!GC_MARK(g))
1232			SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1233
1234		/* guard against overflow */
1235		SET_GC_SECTORS_USED(g, min_t(unsigned int,
1236					     GC_SECTORS_USED(g) + KEY_SIZE(k),
1237					     MAX_GC_SECTORS_USED));
1238
1239		BUG_ON(!GC_SECTORS_USED(g));
1240	}
1241
1242	return stale;
1243}
1244
1245#define btree_mark_key(b, k)	__bch_btree_mark_key(b->c, b->level, k)
1246
1247void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1248{
1249	unsigned int i;
1250
1251	for (i = 0; i < KEY_PTRS(k); i++)
1252		if (ptr_available(c, k, i) &&
1253		    !ptr_stale(c, k, i)) {
1254			struct bucket *b = PTR_BUCKET(c, k, i);
1255
1256			b->gen = PTR_GEN(k, i);
1257
1258			if (level && bkey_cmp(k, &ZERO_KEY))
1259				b->prio = BTREE_PRIO;
1260			else if (!level && b->prio == BTREE_PRIO)
1261				b->prio = INITIAL_PRIO;
1262		}
1263
1264	__bch_btree_mark_key(c, level, k);
1265}
1266
1267void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1268{
1269	stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1270}
1271
1272static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1273{
1274	uint8_t stale = 0;
1275	unsigned int keys = 0, good_keys = 0;
1276	struct bkey *k;
1277	struct btree_iter iter;
1278	struct bset_tree *t;
1279
1280	gc->nodes++;
1281
1282	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1283		stale = max(stale, btree_mark_key(b, k));
1284		keys++;
1285
1286		if (bch_ptr_bad(&b->keys, k))
1287			continue;
1288
1289		gc->key_bytes += bkey_u64s(k);
1290		gc->nkeys++;
1291		good_keys++;
1292
1293		gc->data += KEY_SIZE(k);
1294	}
1295
1296	for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1297		btree_bug_on(t->size &&
1298			     bset_written(&b->keys, t) &&
1299			     bkey_cmp(&b->key, &t->end) < 0,
1300			     b, "found short btree key in gc");
1301
1302	if (b->c->gc_always_rewrite)
1303		return true;
1304
1305	if (stale > 10)
1306		return true;
1307
1308	if ((keys - good_keys) * 2 > keys)
1309		return true;
1310
1311	return false;
1312}
1313
1314#define GC_MERGE_NODES	4U
1315
1316struct gc_merge_info {
1317	struct btree	*b;
1318	unsigned int	keys;
1319};
1320
1321static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1322				 struct keylist *insert_keys,
1323				 atomic_t *journal_ref,
1324				 struct bkey *replace_key);
1325
1326static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1327			     struct gc_stat *gc, struct gc_merge_info *r)
1328{
1329	unsigned int i, nodes = 0, keys = 0, blocks;
1330	struct btree *new_nodes[GC_MERGE_NODES];
1331	struct keylist keylist;
1332	struct closure cl;
1333	struct bkey *k;
1334
1335	bch_keylist_init(&keylist);
1336
1337	if (btree_check_reserve(b, NULL))
1338		return 0;
1339
1340	memset(new_nodes, 0, sizeof(new_nodes));
1341	closure_init_stack(&cl);
1342
1343	while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1344		keys += r[nodes++].keys;
1345
1346	blocks = btree_default_blocks(b->c) * 2 / 3;
1347
1348	if (nodes < 2 ||
1349	    __set_blocks(b->keys.set[0].data, keys,
1350			 block_bytes(b->c->cache)) > blocks * (nodes - 1))
1351		return 0;
1352
1353	for (i = 0; i < nodes; i++) {
1354		new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1355		if (IS_ERR_OR_NULL(new_nodes[i]))
1356			goto out_nocoalesce;
1357	}
1358
1359	/*
1360	 * We have to check the reserve here, after we've allocated our new
1361	 * nodes, to make sure the insert below will succeed - we also check
1362	 * before as an optimization to potentially avoid a bunch of expensive
1363	 * allocs/sorts
1364	 */
1365	if (btree_check_reserve(b, NULL))
1366		goto out_nocoalesce;
1367
1368	for (i = 0; i < nodes; i++)
1369		mutex_lock(&new_nodes[i]->write_lock);
1370
1371	for (i = nodes - 1; i > 0; --i) {
1372		struct bset *n1 = btree_bset_first(new_nodes[i]);
1373		struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1374		struct bkey *k, *last = NULL;
1375
1376		keys = 0;
1377
1378		if (i > 1) {
1379			for (k = n2->start;
1380			     k < bset_bkey_last(n2);
1381			     k = bkey_next(k)) {
1382				if (__set_blocks(n1, n1->keys + keys +
1383						 bkey_u64s(k),
1384						 block_bytes(b->c->cache)) > blocks)
1385					break;
1386
1387				last = k;
1388				keys += bkey_u64s(k);
1389			}
1390		} else {
1391			/*
1392			 * Last node we're not getting rid of - we're getting
1393			 * rid of the node at r[0]. Have to try and fit all of
1394			 * the remaining keys into this node; we can't ensure
1395			 * they will always fit due to rounding and variable
1396			 * length keys (shouldn't be possible in practice,
1397			 * though)
1398			 */
1399			if (__set_blocks(n1, n1->keys + n2->keys,
1400					 block_bytes(b->c->cache)) >
1401			    btree_blocks(new_nodes[i]))
1402				goto out_unlock_nocoalesce;
1403
1404			keys = n2->keys;
1405			/* Take the key of the node we're getting rid of */
1406			last = &r->b->key;
1407		}
1408
1409		BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c->cache)) >
1410		       btree_blocks(new_nodes[i]));
1411
1412		if (last)
1413			bkey_copy_key(&new_nodes[i]->key, last);
1414
1415		memcpy(bset_bkey_last(n1),
1416		       n2->start,
1417		       (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1418
1419		n1->keys += keys;
1420		r[i].keys = n1->keys;
1421
1422		memmove(n2->start,
1423			bset_bkey_idx(n2, keys),
1424			(void *) bset_bkey_last(n2) -
1425			(void *) bset_bkey_idx(n2, keys));
1426
1427		n2->keys -= keys;
1428
1429		if (__bch_keylist_realloc(&keylist,
1430					  bkey_u64s(&new_nodes[i]->key)))
1431			goto out_unlock_nocoalesce;
1432
1433		bch_btree_node_write(new_nodes[i], &cl);
1434		bch_keylist_add(&keylist, &new_nodes[i]->key);
1435	}
1436
1437	for (i = 0; i < nodes; i++)
1438		mutex_unlock(&new_nodes[i]->write_lock);
1439
1440	closure_sync(&cl);
1441
1442	/* We emptied out this node */
1443	BUG_ON(btree_bset_first(new_nodes[0])->keys);
1444	btree_node_free(new_nodes[0]);
1445	rw_unlock(true, new_nodes[0]);
1446	new_nodes[0] = NULL;
1447
1448	for (i = 0; i < nodes; i++) {
1449		if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1450			goto out_nocoalesce;
1451
1452		make_btree_freeing_key(r[i].b, keylist.top);
1453		bch_keylist_push(&keylist);
1454	}
1455
1456	bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1457	BUG_ON(!bch_keylist_empty(&keylist));
1458
1459	for (i = 0; i < nodes; i++) {
1460		btree_node_free(r[i].b);
1461		rw_unlock(true, r[i].b);
1462
1463		r[i].b = new_nodes[i];
1464	}
1465
1466	memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1467	r[nodes - 1].b = ERR_PTR(-EINTR);
1468
1469	trace_bcache_btree_gc_coalesce(nodes);
1470	gc->nodes--;
1471
1472	bch_keylist_free(&keylist);
1473
1474	/* Invalidated our iterator */
1475	return -EINTR;
1476
1477out_unlock_nocoalesce:
1478	for (i = 0; i < nodes; i++)
1479		mutex_unlock(&new_nodes[i]->write_lock);
1480
1481out_nocoalesce:
1482	closure_sync(&cl);
1483
1484	while ((k = bch_keylist_pop(&keylist)))
1485		if (!bkey_cmp(k, &ZERO_KEY))
1486			atomic_dec(&b->c->prio_blocked);
1487	bch_keylist_free(&keylist);
1488
1489	for (i = 0; i < nodes; i++)
1490		if (!IS_ERR_OR_NULL(new_nodes[i])) {
1491			btree_node_free(new_nodes[i]);
1492			rw_unlock(true, new_nodes[i]);
1493		}
1494	return 0;
1495}
1496
1497static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1498				 struct btree *replace)
1499{
1500	struct keylist keys;
1501	struct btree *n;
1502
1503	if (btree_check_reserve(b, NULL))
1504		return 0;
1505
1506	n = btree_node_alloc_replacement(replace, NULL);
1507
1508	/* recheck reserve after allocating replacement node */
1509	if (btree_check_reserve(b, NULL)) {
1510		btree_node_free(n);
1511		rw_unlock(true, n);
1512		return 0;
1513	}
1514
1515	bch_btree_node_write_sync(n);
1516
1517	bch_keylist_init(&keys);
1518	bch_keylist_add(&keys, &n->key);
1519
1520	make_btree_freeing_key(replace, keys.top);
1521	bch_keylist_push(&keys);
1522
1523	bch_btree_insert_node(b, op, &keys, NULL, NULL);
1524	BUG_ON(!bch_keylist_empty(&keys));
1525
1526	btree_node_free(replace);
1527	rw_unlock(true, n);
1528
1529	/* Invalidated our iterator */
1530	return -EINTR;
1531}
1532
1533static unsigned int btree_gc_count_keys(struct btree *b)
1534{
1535	struct bkey *k;
1536	struct btree_iter iter;
1537	unsigned int ret = 0;
1538
1539	for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1540		ret += bkey_u64s(k);
1541
1542	return ret;
1543}
1544
1545static size_t btree_gc_min_nodes(struct cache_set *c)
1546{
1547	size_t min_nodes;
1548
1549	/*
1550	 * Since incremental GC would stop 100ms when front
1551	 * side I/O comes, so when there are many btree nodes,
1552	 * if GC only processes constant (100) nodes each time,
1553	 * GC would last a long time, and the front side I/Os
1554	 * would run out of the buckets (since no new bucket
1555	 * can be allocated during GC), and be blocked again.
1556	 * So GC should not process constant nodes, but varied
1557	 * nodes according to the number of btree nodes, which
1558	 * realized by dividing GC into constant(100) times,
1559	 * so when there are many btree nodes, GC can process
1560	 * more nodes each time, otherwise, GC will process less
1561	 * nodes each time (but no less than MIN_GC_NODES)
1562	 */
1563	min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1564	if (min_nodes < MIN_GC_NODES)
1565		min_nodes = MIN_GC_NODES;
1566
1567	return min_nodes;
1568}
1569
1570
1571static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1572			    struct closure *writes, struct gc_stat *gc)
1573{
1574	int ret = 0;
1575	bool should_rewrite;
1576	struct bkey *k;
1577	struct btree_iter iter;
1578	struct gc_merge_info r[GC_MERGE_NODES];
1579	struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1580
1581	bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1582
1583	for (i = r; i < r + ARRAY_SIZE(r); i++)
1584		i->b = ERR_PTR(-EINTR);
1585
1586	while (1) {
1587		k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1588		if (k) {
1589			r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1590						  true, b);
1591			if (IS_ERR(r->b)) {
1592				ret = PTR_ERR(r->b);
1593				break;
1594			}
1595
1596			r->keys = btree_gc_count_keys(r->b);
1597
1598			ret = btree_gc_coalesce(b, op, gc, r);
1599			if (ret)
1600				break;
1601		}
1602
1603		if (!last->b)
1604			break;
1605
1606		if (!IS_ERR(last->b)) {
1607			should_rewrite = btree_gc_mark_node(last->b, gc);
1608			if (should_rewrite) {
1609				ret = btree_gc_rewrite_node(b, op, last->b);
1610				if (ret)
1611					break;
1612			}
1613
1614			if (last->b->level) {
1615				ret = btree_gc_recurse(last->b, op, writes, gc);
1616				if (ret)
1617					break;
1618			}
1619
1620			bkey_copy_key(&b->c->gc_done, &last->b->key);
1621
1622			/*
1623			 * Must flush leaf nodes before gc ends, since replace
1624			 * operations aren't journalled
1625			 */
1626			mutex_lock(&last->b->write_lock);
1627			if (btree_node_dirty(last->b))
1628				bch_btree_node_write(last->b, writes);
1629			mutex_unlock(&last->b->write_lock);
1630			rw_unlock(true, last->b);
1631		}
1632
1633		memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1634		r->b = NULL;
1635
1636		if (atomic_read(&b->c->search_inflight) &&
1637		    gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
1638			gc->nodes_pre =  gc->nodes;
1639			ret = -EAGAIN;
1640			break;
1641		}
1642
1643		if (need_resched()) {
1644			ret = -EAGAIN;
1645			break;
1646		}
1647	}
1648
1649	for (i = r; i < r + ARRAY_SIZE(r); i++)
1650		if (!IS_ERR_OR_NULL(i->b)) {
1651			mutex_lock(&i->b->write_lock);
1652			if (btree_node_dirty(i->b))
1653				bch_btree_node_write(i->b, writes);
1654			mutex_unlock(&i->b->write_lock);
1655			rw_unlock(true, i->b);
1656		}
1657
1658	return ret;
1659}
1660
1661static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1662			     struct closure *writes, struct gc_stat *gc)
1663{
1664	struct btree *n = NULL;
1665	int ret = 0;
1666	bool should_rewrite;
1667
1668	should_rewrite = btree_gc_mark_node(b, gc);
1669	if (should_rewrite) {
1670		n = btree_node_alloc_replacement(b, NULL);
1671
1672		if (!IS_ERR_OR_NULL(n)) {
1673			bch_btree_node_write_sync(n);
1674
1675			bch_btree_set_root(n);
1676			btree_node_free(b);
1677			rw_unlock(true, n);
1678
1679			return -EINTR;
1680		}
1681	}
1682
1683	__bch_btree_mark_key(b->c, b->level + 1, &b->key);
1684
1685	if (b->level) {
1686		ret = btree_gc_recurse(b, op, writes, gc);
1687		if (ret)
1688			return ret;
1689	}
1690
1691	bkey_copy_key(&b->c->gc_done, &b->key);
1692
1693	return ret;
1694}
1695
1696static void btree_gc_start(struct cache_set *c)
1697{
1698	struct cache *ca;
1699	struct bucket *b;
 
1700
1701	if (!c->gc_mark_valid)
1702		return;
1703
1704	mutex_lock(&c->bucket_lock);
1705
1706	c->gc_mark_valid = 0;
1707	c->gc_done = ZERO_KEY;
1708
1709	ca = c->cache;
1710	for_each_bucket(b, ca) {
1711		b->last_gc = b->gen;
1712		if (!atomic_read(&b->pin)) {
1713			SET_GC_MARK(b, 0);
1714			SET_GC_SECTORS_USED(b, 0);
 
1715		}
1716	}
1717
1718	mutex_unlock(&c->bucket_lock);
1719}
1720
1721static void bch_btree_gc_finish(struct cache_set *c)
1722{
1723	struct bucket *b;
1724	struct cache *ca;
1725	unsigned int i, j;
1726	uint64_t *k;
1727
1728	mutex_lock(&c->bucket_lock);
1729
1730	set_gc_sectors(c);
1731	c->gc_mark_valid = 1;
1732	c->need_gc	= 0;
1733
1734	for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1735		SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1736			    GC_MARK_METADATA);
1737
1738	/* don't reclaim buckets to which writeback keys point */
1739	rcu_read_lock();
1740	for (i = 0; i < c->devices_max_used; i++) {
1741		struct bcache_device *d = c->devices[i];
1742		struct cached_dev *dc;
1743		struct keybuf_key *w, *n;
 
1744
1745		if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1746			continue;
1747		dc = container_of(d, struct cached_dev, disk);
1748
1749		spin_lock(&dc->writeback_keys.lock);
1750		rbtree_postorder_for_each_entry_safe(w, n,
1751					&dc->writeback_keys.keys, node)
1752			for (j = 0; j < KEY_PTRS(&w->key); j++)
1753				SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1754					    GC_MARK_DIRTY);
1755		spin_unlock(&dc->writeback_keys.lock);
1756	}
1757	rcu_read_unlock();
1758
1759	c->avail_nbuckets = 0;
 
 
1760
1761	ca = c->cache;
1762	ca->invalidate_needs_gc = 0;
1763
1764	for (k = ca->sb.d; k < ca->sb.d + ca->sb.keys; k++)
1765		SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
1766
1767	for (k = ca->prio_buckets;
1768	     k < ca->prio_buckets + prio_buckets(ca) * 2; k++)
1769		SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
1770
1771	for_each_bucket(b, ca) {
1772		c->need_gc	= max(c->need_gc, bucket_gc_gen(b));
1773
1774		if (atomic_read(&b->pin))
1775			continue;
1776
1777		BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1778
1779		if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1780			c->avail_nbuckets++;
 
1781	}
1782
1783	mutex_unlock(&c->bucket_lock);
1784}
1785
1786static void bch_btree_gc(struct cache_set *c)
1787{
1788	int ret;
1789	struct gc_stat stats;
1790	struct closure writes;
1791	struct btree_op op;
1792	uint64_t start_time = local_clock();
1793
1794	trace_bcache_gc_start(c);
1795
1796	memset(&stats, 0, sizeof(struct gc_stat));
1797	closure_init_stack(&writes);
1798	bch_btree_op_init(&op, SHRT_MAX);
1799
1800	btree_gc_start(c);
1801
1802	/* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1803	do {
1804		ret = bcache_btree_root(gc_root, c, &op, &writes, &stats);
1805		closure_sync(&writes);
1806		cond_resched();
1807
1808		if (ret == -EAGAIN)
1809			schedule_timeout_interruptible(msecs_to_jiffies
1810						       (GC_SLEEP_MS));
1811		else if (ret)
1812			pr_warn("gc failed!\n");
1813	} while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1814
1815	bch_btree_gc_finish(c);
1816	wake_up_allocators(c);
1817
1818	bch_time_stats_update(&c->btree_gc_time, start_time);
1819
1820	stats.key_bytes *= sizeof(uint64_t);
1821	stats.data	<<= 9;
1822	bch_update_bucket_in_use(c, &stats);
1823	memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1824
1825	trace_bcache_gc_end(c);
1826
1827	bch_moving_gc(c);
1828}
1829
1830static bool gc_should_run(struct cache_set *c)
1831{
1832	struct cache *ca = c->cache;
 
1833
1834	if (ca->invalidate_needs_gc)
1835		return true;
 
1836
1837	if (atomic_read(&c->sectors_to_gc) < 0)
1838		return true;
1839
1840	return false;
1841}
1842
1843static int bch_gc_thread(void *arg)
1844{
1845	struct cache_set *c = arg;
1846
1847	while (1) {
1848		wait_event_interruptible(c->gc_wait,
1849			   kthread_should_stop() ||
1850			   test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1851			   gc_should_run(c));
1852
1853		if (kthread_should_stop() ||
1854		    test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1855			break;
1856
1857		set_gc_sectors(c);
1858		bch_btree_gc(c);
1859	}
1860
1861	wait_for_kthread_stop();
1862	return 0;
1863}
1864
1865int bch_gc_thread_start(struct cache_set *c)
1866{
1867	c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1868	return PTR_ERR_OR_ZERO(c->gc_thread);
1869}
1870
1871/* Initial partial gc */
1872
1873static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1874{
1875	int ret = 0;
1876	struct bkey *k, *p = NULL;
1877	struct btree_iter iter;
1878
1879	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1880		bch_initial_mark_key(b->c, b->level, k);
1881
1882	bch_initial_mark_key(b->c, b->level + 1, &b->key);
1883
1884	if (b->level) {
1885		bch_btree_iter_init(&b->keys, &iter, NULL);
1886
1887		do {
1888			k = bch_btree_iter_next_filter(&iter, &b->keys,
1889						       bch_ptr_bad);
1890			if (k) {
1891				btree_node_prefetch(b, k);
1892				/*
1893				 * initiallize c->gc_stats.nodes
1894				 * for incremental GC
1895				 */
1896				b->c->gc_stats.nodes++;
1897			}
1898
1899			if (p)
1900				ret = bcache_btree(check_recurse, p, b, op);
1901
1902			p = k;
1903		} while (p && !ret);
1904	}
1905
1906	return ret;
1907}
1908
1909
1910static int bch_btree_check_thread(void *arg)
1911{
1912	int ret;
1913	struct btree_check_info *info = arg;
1914	struct btree_check_state *check_state = info->state;
1915	struct cache_set *c = check_state->c;
1916	struct btree_iter iter;
1917	struct bkey *k, *p;
1918	int cur_idx, prev_idx, skip_nr;
1919
1920	k = p = NULL;
1921	cur_idx = prev_idx = 0;
1922	ret = 0;
1923
1924	/* root node keys are checked before thread created */
1925	bch_btree_iter_init(&c->root->keys, &iter, NULL);
1926	k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
1927	BUG_ON(!k);
1928
1929	p = k;
1930	while (k) {
1931		/*
1932		 * Fetch a root node key index, skip the keys which
1933		 * should be fetched by other threads, then check the
1934		 * sub-tree indexed by the fetched key.
1935		 */
1936		spin_lock(&check_state->idx_lock);
1937		cur_idx = check_state->key_idx;
1938		check_state->key_idx++;
1939		spin_unlock(&check_state->idx_lock);
1940
1941		skip_nr = cur_idx - prev_idx;
1942
1943		while (skip_nr) {
1944			k = bch_btree_iter_next_filter(&iter,
1945						       &c->root->keys,
1946						       bch_ptr_bad);
1947			if (k)
1948				p = k;
1949			else {
1950				/*
1951				 * No more keys to check in root node,
1952				 * current checking threads are enough,
1953				 * stop creating more.
1954				 */
1955				atomic_set(&check_state->enough, 1);
1956				/* Update check_state->enough earlier */
1957				smp_mb__after_atomic();
1958				goto out;
1959			}
1960			skip_nr--;
1961			cond_resched();
1962		}
1963
1964		if (p) {
1965			struct btree_op op;
1966
1967			btree_node_prefetch(c->root, p);
1968			c->gc_stats.nodes++;
1969			bch_btree_op_init(&op, 0);
1970			ret = bcache_btree(check_recurse, p, c->root, &op);
1971			if (ret)
1972				goto out;
1973		}
1974		p = NULL;
1975		prev_idx = cur_idx;
1976		cond_resched();
1977	}
1978
1979out:
1980	info->result = ret;
1981	/* update check_state->started among all CPUs */
1982	smp_mb__before_atomic();
1983	if (atomic_dec_and_test(&check_state->started))
1984		wake_up(&check_state->wait);
1985
1986	return ret;
1987}
1988
1989
1990
1991static int bch_btree_chkthread_nr(void)
1992{
1993	int n = num_online_cpus()/2;
1994
1995	if (n == 0)
1996		n = 1;
1997	else if (n > BCH_BTR_CHKTHREAD_MAX)
1998		n = BCH_BTR_CHKTHREAD_MAX;
1999
2000	return n;
2001}
2002
2003int bch_btree_check(struct cache_set *c)
2004{
2005	int ret = 0;
2006	int i;
2007	struct bkey *k = NULL;
2008	struct btree_iter iter;
2009	struct btree_check_state check_state;
2010
2011	/* check and mark root node keys */
2012	for_each_key_filter(&c->root->keys, k, &iter, bch_ptr_invalid)
2013		bch_initial_mark_key(c, c->root->level, k);
2014
2015	bch_initial_mark_key(c, c->root->level + 1, &c->root->key);
2016
2017	if (c->root->level == 0)
2018		return 0;
2019
2020	memset(&check_state, 0, sizeof(struct btree_check_state));
2021	check_state.c = c;
2022	check_state.total_threads = bch_btree_chkthread_nr();
2023	check_state.key_idx = 0;
2024	spin_lock_init(&check_state.idx_lock);
2025	atomic_set(&check_state.started, 0);
2026	atomic_set(&check_state.enough, 0);
2027	init_waitqueue_head(&check_state.wait);
2028
2029	rw_lock(0, c->root, c->root->level);
2030	/*
2031	 * Run multiple threads to check btree nodes in parallel,
2032	 * if check_state.enough is non-zero, it means current
2033	 * running check threads are enough, unncessary to create
2034	 * more.
2035	 */
2036	for (i = 0; i < check_state.total_threads; i++) {
2037		/* fetch latest check_state.enough earlier */
2038		smp_mb__before_atomic();
2039		if (atomic_read(&check_state.enough))
2040			break;
2041
2042		check_state.infos[i].result = 0;
2043		check_state.infos[i].state = &check_state;
2044
2045		check_state.infos[i].thread =
2046			kthread_run(bch_btree_check_thread,
2047				    &check_state.infos[i],
2048				    "bch_btrchk[%d]", i);
2049		if (IS_ERR(check_state.infos[i].thread)) {
2050			pr_err("fails to run thread bch_btrchk[%d]\n", i);
2051			for (--i; i >= 0; i--)
2052				kthread_stop(check_state.infos[i].thread);
2053			ret = -ENOMEM;
2054			goto out;
2055		}
2056		atomic_inc(&check_state.started);
2057	}
2058
2059	/*
2060	 * Must wait for all threads to stop.
2061	 */
2062	wait_event(check_state.wait, atomic_read(&check_state.started) == 0);
2063
2064	for (i = 0; i < check_state.total_threads; i++) {
2065		if (check_state.infos[i].result) {
2066			ret = check_state.infos[i].result;
2067			goto out;
2068		}
2069	}
2070
2071out:
2072	rw_unlock(0, c->root);
2073	return ret;
2074}
2075
2076void bch_initial_gc_finish(struct cache_set *c)
2077{
2078	struct cache *ca = c->cache;
2079	struct bucket *b;
 
2080
2081	bch_btree_gc_finish(c);
2082
2083	mutex_lock(&c->bucket_lock);
2084
2085	/*
2086	 * We need to put some unused buckets directly on the prio freelist in
2087	 * order to get the allocator thread started - it needs freed buckets in
2088	 * order to rewrite the prios and gens, and it needs to rewrite prios
2089	 * and gens in order to free buckets.
2090	 *
2091	 * This is only safe for buckets that have no live data in them, which
2092	 * there should always be some of.
2093	 */
2094	for_each_bucket(b, ca) {
2095		if (fifo_full(&ca->free[RESERVE_PRIO]) &&
2096		    fifo_full(&ca->free[RESERVE_BTREE]))
2097			break;
 
2098
2099		if (bch_can_invalidate_bucket(ca, b) &&
2100		    !GC_MARK(b)) {
2101			__bch_invalidate_one_bucket(ca, b);
2102			if (!fifo_push(&ca->free[RESERVE_PRIO],
2103			   b - ca->buckets))
2104				fifo_push(&ca->free[RESERVE_BTREE],
2105					  b - ca->buckets);
 
2106		}
2107	}
2108
2109	mutex_unlock(&c->bucket_lock);
2110}
2111
2112/* Btree insertion */
2113
2114static bool btree_insert_key(struct btree *b, struct bkey *k,
2115			     struct bkey *replace_key)
2116{
2117	unsigned int status;
2118
2119	BUG_ON(bkey_cmp(k, &b->key) > 0);
2120
2121	status = bch_btree_insert_key(&b->keys, k, replace_key);
2122	if (status != BTREE_INSERT_STATUS_NO_INSERT) {
2123		bch_check_keys(&b->keys, "%u for %s", status,
2124			       replace_key ? "replace" : "insert");
2125
2126		trace_bcache_btree_insert_key(b, k, replace_key != NULL,
2127					      status);
2128		return true;
2129	} else
2130		return false;
2131}
2132
2133static size_t insert_u64s_remaining(struct btree *b)
2134{
2135	long ret = bch_btree_keys_u64s_remaining(&b->keys);
2136
2137	/*
2138	 * Might land in the middle of an existing extent and have to split it
2139	 */
2140	if (b->keys.ops->is_extents)
2141		ret -= KEY_MAX_U64S;
2142
2143	return max(ret, 0L);
2144}
2145
2146static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
2147				  struct keylist *insert_keys,
2148				  struct bkey *replace_key)
2149{
2150	bool ret = false;
2151	int oldsize = bch_count_data(&b->keys);
2152
2153	while (!bch_keylist_empty(insert_keys)) {
2154		struct bkey *k = insert_keys->keys;
2155
2156		if (bkey_u64s(k) > insert_u64s_remaining(b))
2157			break;
2158
2159		if (bkey_cmp(k, &b->key) <= 0) {
2160			if (!b->level)
2161				bkey_put(b->c, k);
2162
2163			ret |= btree_insert_key(b, k, replace_key);
2164			bch_keylist_pop_front(insert_keys);
2165		} else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
2166			BKEY_PADDED(key) temp;
2167			bkey_copy(&temp.key, insert_keys->keys);
2168
2169			bch_cut_back(&b->key, &temp.key);
2170			bch_cut_front(&b->key, insert_keys->keys);
2171
2172			ret |= btree_insert_key(b, &temp.key, replace_key);
2173			break;
2174		} else {
2175			break;
2176		}
2177	}
2178
2179	if (!ret)
2180		op->insert_collision = true;
2181
2182	BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2183
2184	BUG_ON(bch_count_data(&b->keys) < oldsize);
2185	return ret;
2186}
2187
2188static int btree_split(struct btree *b, struct btree_op *op,
2189		       struct keylist *insert_keys,
2190		       struct bkey *replace_key)
2191{
2192	bool split;
2193	struct btree *n1, *n2 = NULL, *n3 = NULL;
2194	uint64_t start_time = local_clock();
2195	struct closure cl;
2196	struct keylist parent_keys;
2197
2198	closure_init_stack(&cl);
2199	bch_keylist_init(&parent_keys);
2200
2201	if (btree_check_reserve(b, op)) {
2202		if (!b->level)
2203			return -EINTR;
2204		else
2205			WARN(1, "insufficient reserve for split\n");
2206	}
2207
2208	n1 = btree_node_alloc_replacement(b, op);
2209	if (IS_ERR(n1))
2210		goto err;
2211
2212	split = set_blocks(btree_bset_first(n1),
2213			   block_bytes(n1->c->cache)) > (btree_blocks(b) * 4) / 5;
2214
2215	if (split) {
2216		unsigned int keys = 0;
2217
2218		trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2219
2220		n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2221		if (IS_ERR(n2))
2222			goto err_free1;
2223
2224		if (!b->parent) {
2225			n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2226			if (IS_ERR(n3))
2227				goto err_free2;
2228		}
2229
2230		mutex_lock(&n1->write_lock);
2231		mutex_lock(&n2->write_lock);
2232
2233		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2234
2235		/*
2236		 * Has to be a linear search because we don't have an auxiliary
2237		 * search tree yet
2238		 */
2239
2240		while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2241			keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2242							keys));
2243
2244		bkey_copy_key(&n1->key,
2245			      bset_bkey_idx(btree_bset_first(n1), keys));
2246		keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2247
2248		btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2249		btree_bset_first(n1)->keys = keys;
2250
2251		memcpy(btree_bset_first(n2)->start,
2252		       bset_bkey_last(btree_bset_first(n1)),
2253		       btree_bset_first(n2)->keys * sizeof(uint64_t));
2254
2255		bkey_copy_key(&n2->key, &b->key);
2256
2257		bch_keylist_add(&parent_keys, &n2->key);
2258		bch_btree_node_write(n2, &cl);
2259		mutex_unlock(&n2->write_lock);
2260		rw_unlock(true, n2);
2261	} else {
2262		trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2263
2264		mutex_lock(&n1->write_lock);
2265		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2266	}
2267
2268	bch_keylist_add(&parent_keys, &n1->key);
2269	bch_btree_node_write(n1, &cl);
2270	mutex_unlock(&n1->write_lock);
2271
2272	if (n3) {
2273		/* Depth increases, make a new root */
2274		mutex_lock(&n3->write_lock);
2275		bkey_copy_key(&n3->key, &MAX_KEY);
2276		bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2277		bch_btree_node_write(n3, &cl);
2278		mutex_unlock(&n3->write_lock);
2279
2280		closure_sync(&cl);
2281		bch_btree_set_root(n3);
2282		rw_unlock(true, n3);
2283	} else if (!b->parent) {
2284		/* Root filled up but didn't need to be split */
2285		closure_sync(&cl);
2286		bch_btree_set_root(n1);
2287	} else {
2288		/* Split a non root node */
2289		closure_sync(&cl);
2290		make_btree_freeing_key(b, parent_keys.top);
2291		bch_keylist_push(&parent_keys);
2292
2293		bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2294		BUG_ON(!bch_keylist_empty(&parent_keys));
2295	}
2296
2297	btree_node_free(b);
2298	rw_unlock(true, n1);
2299
2300	bch_time_stats_update(&b->c->btree_split_time, start_time);
2301
2302	return 0;
2303err_free2:
2304	bkey_put(b->c, &n2->key);
2305	btree_node_free(n2);
2306	rw_unlock(true, n2);
2307err_free1:
2308	bkey_put(b->c, &n1->key);
2309	btree_node_free(n1);
2310	rw_unlock(true, n1);
2311err:
2312	WARN(1, "bcache: btree split failed (level %u)", b->level);
2313
2314	if (n3 == ERR_PTR(-EAGAIN) ||
2315	    n2 == ERR_PTR(-EAGAIN) ||
2316	    n1 == ERR_PTR(-EAGAIN))
2317		return -EAGAIN;
2318
2319	return -ENOMEM;
2320}
2321
2322static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2323				 struct keylist *insert_keys,
2324				 atomic_t *journal_ref,
2325				 struct bkey *replace_key)
2326{
2327	struct closure cl;
2328
2329	BUG_ON(b->level && replace_key);
2330
2331	closure_init_stack(&cl);
2332
2333	mutex_lock(&b->write_lock);
2334
2335	if (write_block(b) != btree_bset_last(b) &&
2336	    b->keys.last_set_unwritten)
2337		bch_btree_init_next(b); /* just wrote a set */
2338
2339	if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2340		mutex_unlock(&b->write_lock);
2341		goto split;
2342	}
2343
2344	BUG_ON(write_block(b) != btree_bset_last(b));
2345
2346	if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2347		if (!b->level)
2348			bch_btree_leaf_dirty(b, journal_ref);
2349		else
2350			bch_btree_node_write(b, &cl);
2351	}
2352
2353	mutex_unlock(&b->write_lock);
2354
2355	/* wait for btree node write if necessary, after unlock */
2356	closure_sync(&cl);
2357
2358	return 0;
2359split:
2360	if (current->bio_list) {
2361		op->lock = b->c->root->level + 1;
2362		return -EAGAIN;
2363	} else if (op->lock <= b->c->root->level) {
2364		op->lock = b->c->root->level + 1;
2365		return -EINTR;
2366	} else {
2367		/* Invalidated all iterators */
2368		int ret = btree_split(b, op, insert_keys, replace_key);
2369
2370		if (bch_keylist_empty(insert_keys))
2371			return 0;
2372		else if (!ret)
2373			return -EINTR;
2374		return ret;
2375	}
2376}
2377
2378int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2379			       struct bkey *check_key)
2380{
2381	int ret = -EINTR;
2382	uint64_t btree_ptr = b->key.ptr[0];
2383	unsigned long seq = b->seq;
2384	struct keylist insert;
2385	bool upgrade = op->lock == -1;
2386
2387	bch_keylist_init(&insert);
2388
2389	if (upgrade) {
2390		rw_unlock(false, b);
2391		rw_lock(true, b, b->level);
2392
2393		if (b->key.ptr[0] != btree_ptr ||
2394		    b->seq != seq + 1) {
2395			op->lock = b->level;
2396			goto out;
2397		}
2398	}
2399
2400	SET_KEY_PTRS(check_key, 1);
2401	get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2402
2403	SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2404
2405	bch_keylist_add(&insert, check_key);
2406
2407	ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2408
2409	BUG_ON(!ret && !bch_keylist_empty(&insert));
2410out:
2411	if (upgrade)
2412		downgrade_write(&b->lock);
2413	return ret;
2414}
2415
2416struct btree_insert_op {
2417	struct btree_op	op;
2418	struct keylist	*keys;
2419	atomic_t	*journal_ref;
2420	struct bkey	*replace_key;
2421};
2422
2423static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2424{
2425	struct btree_insert_op *op = container_of(b_op,
2426					struct btree_insert_op, op);
2427
2428	int ret = bch_btree_insert_node(b, &op->op, op->keys,
2429					op->journal_ref, op->replace_key);
2430	if (ret && !bch_keylist_empty(op->keys))
2431		return ret;
2432	else
2433		return MAP_DONE;
2434}
2435
2436int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2437		     atomic_t *journal_ref, struct bkey *replace_key)
2438{
2439	struct btree_insert_op op;
2440	int ret = 0;
2441
2442	BUG_ON(current->bio_list);
2443	BUG_ON(bch_keylist_empty(keys));
2444
2445	bch_btree_op_init(&op.op, 0);
2446	op.keys		= keys;
2447	op.journal_ref	= journal_ref;
2448	op.replace_key	= replace_key;
2449
2450	while (!ret && !bch_keylist_empty(keys)) {
2451		op.op.lock = 0;
2452		ret = bch_btree_map_leaf_nodes(&op.op, c,
2453					       &START_KEY(keys->keys),
2454					       btree_insert_fn);
2455	}
2456
2457	if (ret) {
2458		struct bkey *k;
2459
2460		pr_err("error %i\n", ret);
2461
2462		while ((k = bch_keylist_pop(keys)))
2463			bkey_put(c, k);
2464	} else if (op.op.insert_collision)
2465		ret = -ESRCH;
2466
2467	return ret;
2468}
2469
2470void bch_btree_set_root(struct btree *b)
2471{
2472	unsigned int i;
2473	struct closure cl;
2474
2475	closure_init_stack(&cl);
2476
2477	trace_bcache_btree_set_root(b);
2478
2479	BUG_ON(!b->written);
2480
2481	for (i = 0; i < KEY_PTRS(&b->key); i++)
2482		BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2483
2484	mutex_lock(&b->c->bucket_lock);
2485	list_del_init(&b->list);
2486	mutex_unlock(&b->c->bucket_lock);
2487
2488	b->c->root = b;
2489
2490	bch_journal_meta(b->c, &cl);
2491	closure_sync(&cl);
2492}
2493
2494/* Map across nodes or keys */
2495
2496static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2497				       struct bkey *from,
2498				       btree_map_nodes_fn *fn, int flags)
2499{
2500	int ret = MAP_CONTINUE;
2501
2502	if (b->level) {
2503		struct bkey *k;
2504		struct btree_iter iter;
2505
2506		bch_btree_iter_init(&b->keys, &iter, from);
2507
2508		while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2509						       bch_ptr_bad))) {
2510			ret = bcache_btree(map_nodes_recurse, k, b,
2511				    op, from, fn, flags);
2512			from = NULL;
2513
2514			if (ret != MAP_CONTINUE)
2515				return ret;
2516		}
2517	}
2518
2519	if (!b->level || flags == MAP_ALL_NODES)
2520		ret = fn(op, b);
2521
2522	return ret;
2523}
2524
2525int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2526			  struct bkey *from, btree_map_nodes_fn *fn, int flags)
2527{
2528	return bcache_btree_root(map_nodes_recurse, c, op, from, fn, flags);
2529}
2530
2531int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2532				      struct bkey *from, btree_map_keys_fn *fn,
2533				      int flags)
2534{
2535	int ret = MAP_CONTINUE;
2536	struct bkey *k;
2537	struct btree_iter iter;
2538
2539	bch_btree_iter_init(&b->keys, &iter, from);
2540
2541	while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2542		ret = !b->level
2543			? fn(op, b, k)
2544			: bcache_btree(map_keys_recurse, k,
2545				       b, op, from, fn, flags);
2546		from = NULL;
2547
2548		if (ret != MAP_CONTINUE)
2549			return ret;
2550	}
2551
2552	if (!b->level && (flags & MAP_END_KEY))
2553		ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2554				     KEY_OFFSET(&b->key), 0));
2555
2556	return ret;
2557}
2558
2559int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2560		       struct bkey *from, btree_map_keys_fn *fn, int flags)
2561{
2562	return bcache_btree_root(map_keys_recurse, c, op, from, fn, flags);
2563}
2564
2565/* Keybuf code */
2566
2567static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2568{
2569	/* Overlapping keys compare equal */
2570	if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2571		return -1;
2572	if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2573		return 1;
2574	return 0;
2575}
2576
2577static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2578					    struct keybuf_key *r)
2579{
2580	return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2581}
2582
2583struct refill {
2584	struct btree_op	op;
2585	unsigned int	nr_found;
2586	struct keybuf	*buf;
2587	struct bkey	*end;
2588	keybuf_pred_fn	*pred;
2589};
2590
2591static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2592			    struct bkey *k)
2593{
2594	struct refill *refill = container_of(op, struct refill, op);
2595	struct keybuf *buf = refill->buf;
2596	int ret = MAP_CONTINUE;
2597
2598	if (bkey_cmp(k, refill->end) > 0) {
2599		ret = MAP_DONE;
2600		goto out;
2601	}
2602
2603	if (!KEY_SIZE(k)) /* end key */
2604		goto out;
2605
2606	if (refill->pred(buf, k)) {
2607		struct keybuf_key *w;
2608
2609		spin_lock(&buf->lock);
2610
2611		w = array_alloc(&buf->freelist);
2612		if (!w) {
2613			spin_unlock(&buf->lock);
2614			return MAP_DONE;
2615		}
2616
2617		w->private = NULL;
2618		bkey_copy(&w->key, k);
2619
2620		if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2621			array_free(&buf->freelist, w);
2622		else
2623			refill->nr_found++;
2624
2625		if (array_freelist_empty(&buf->freelist))
2626			ret = MAP_DONE;
2627
2628		spin_unlock(&buf->lock);
2629	}
2630out:
2631	buf->last_scanned = *k;
2632	return ret;
2633}
2634
2635void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2636		       struct bkey *end, keybuf_pred_fn *pred)
2637{
2638	struct bkey start = buf->last_scanned;
2639	struct refill refill;
2640
2641	cond_resched();
2642
2643	bch_btree_op_init(&refill.op, -1);
2644	refill.nr_found	= 0;
2645	refill.buf	= buf;
2646	refill.end	= end;
2647	refill.pred	= pred;
2648
2649	bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2650			   refill_keybuf_fn, MAP_END_KEY);
2651
2652	trace_bcache_keyscan(refill.nr_found,
2653			     KEY_INODE(&start), KEY_OFFSET(&start),
2654			     KEY_INODE(&buf->last_scanned),
2655			     KEY_OFFSET(&buf->last_scanned));
2656
2657	spin_lock(&buf->lock);
2658
2659	if (!RB_EMPTY_ROOT(&buf->keys)) {
2660		struct keybuf_key *w;
2661
2662		w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2663		buf->start	= START_KEY(&w->key);
2664
2665		w = RB_LAST(&buf->keys, struct keybuf_key, node);
2666		buf->end	= w->key;
2667	} else {
2668		buf->start	= MAX_KEY;
2669		buf->end	= MAX_KEY;
2670	}
2671
2672	spin_unlock(&buf->lock);
2673}
2674
2675static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2676{
2677	rb_erase(&w->node, &buf->keys);
2678	array_free(&buf->freelist, w);
2679}
2680
2681void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2682{
2683	spin_lock(&buf->lock);
2684	__bch_keybuf_del(buf, w);
2685	spin_unlock(&buf->lock);
2686}
2687
2688bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2689				  struct bkey *end)
2690{
2691	bool ret = false;
2692	struct keybuf_key *p, *w, s;
2693
2694	s.key = *start;
2695
2696	if (bkey_cmp(end, &buf->start) <= 0 ||
2697	    bkey_cmp(start, &buf->end) >= 0)
2698		return false;
2699
2700	spin_lock(&buf->lock);
2701	w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2702
2703	while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2704		p = w;
2705		w = RB_NEXT(w, node);
2706
2707		if (p->private)
2708			ret = true;
2709		else
2710			__bch_keybuf_del(buf, p);
2711	}
2712
2713	spin_unlock(&buf->lock);
2714	return ret;
2715}
2716
2717struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2718{
2719	struct keybuf_key *w;
2720
2721	spin_lock(&buf->lock);
2722
2723	w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2724
2725	while (w && w->private)
2726		w = RB_NEXT(w, node);
2727
2728	if (w)
2729		w->private = ERR_PTR(-EINTR);
2730
2731	spin_unlock(&buf->lock);
2732	return w;
2733}
2734
2735struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2736					  struct keybuf *buf,
2737					  struct bkey *end,
2738					  keybuf_pred_fn *pred)
2739{
2740	struct keybuf_key *ret;
2741
2742	while (1) {
2743		ret = bch_keybuf_next(buf);
2744		if (ret)
2745			break;
2746
2747		if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2748			pr_debug("scan finished\n");
2749			break;
2750		}
2751
2752		bch_refill_keybuf(c, buf, end, pred);
2753	}
2754
2755	return ret;
2756}
2757
2758void bch_keybuf_init(struct keybuf *buf)
2759{
2760	buf->last_scanned	= MAX_KEY;
2761	buf->keys		= RB_ROOT;
2762
2763	spin_lock_init(&buf->lock);
2764	array_allocator_init(&buf->freelist);
2765}
2766
2767void bch_btree_exit(void)
2768{
2769	if (btree_io_wq)
2770		destroy_workqueue(btree_io_wq);
2771}
2772
2773int __init bch_btree_init(void)
2774{
2775	btree_io_wq = alloc_workqueue("bch_btree_io", WQ_MEM_RECLAIM, 0);
2776	if (!btree_io_wq)
2777		return -ENOMEM;
2778
2779	return 0;
2780}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
   4 *
   5 * Uses a block device as cache for other block devices; optimized for SSDs.
   6 * All allocation is done in buckets, which should match the erase block size
   7 * of the device.
   8 *
   9 * Buckets containing cached data are kept on a heap sorted by priority;
  10 * bucket priority is increased on cache hit, and periodically all the buckets
  11 * on the heap have their priority scaled down. This currently is just used as
  12 * an LRU but in the future should allow for more intelligent heuristics.
  13 *
  14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
  15 * counter. Garbage collection is used to remove stale pointers.
  16 *
  17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
  18 * as keys are inserted we only sort the pages that have not yet been written.
  19 * When garbage collection is run, we resort the entire node.
  20 *
  21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
  22 */
  23
  24#include "bcache.h"
  25#include "btree.h"
  26#include "debug.h"
  27#include "extents.h"
  28
  29#include <linux/slab.h>
  30#include <linux/bitops.h>
  31#include <linux/hash.h>
  32#include <linux/kthread.h>
  33#include <linux/prefetch.h>
  34#include <linux/random.h>
  35#include <linux/rcupdate.h>
  36#include <linux/sched/clock.h>
  37#include <linux/rculist.h>
  38#include <linux/delay.h>
  39#include <trace/events/bcache.h>
  40
  41/*
  42 * Todo:
  43 * register_bcache: Return errors out to userspace correctly
  44 *
  45 * Writeback: don't undirty key until after a cache flush
  46 *
  47 * Create an iterator for key pointers
  48 *
  49 * On btree write error, mark bucket such that it won't be freed from the cache
  50 *
  51 * Journalling:
  52 *   Check for bad keys in replay
  53 *   Propagate barriers
  54 *   Refcount journal entries in journal_replay
  55 *
  56 * Garbage collection:
  57 *   Finish incremental gc
  58 *   Gc should free old UUIDs, data for invalid UUIDs
  59 *
  60 * Provide a way to list backing device UUIDs we have data cached for, and
  61 * probably how long it's been since we've seen them, and a way to invalidate
  62 * dirty data for devices that will never be attached again
  63 *
  64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
  65 * that based on that and how much dirty data we have we can keep writeback
  66 * from being starved
  67 *
  68 * Add a tracepoint or somesuch to watch for writeback starvation
  69 *
  70 * When btree depth > 1 and splitting an interior node, we have to make sure
  71 * alloc_bucket() cannot fail. This should be true but is not completely
  72 * obvious.
  73 *
  74 * Plugging?
  75 *
  76 * If data write is less than hard sector size of ssd, round up offset in open
  77 * bucket to the next whole sector
  78 *
  79 * Superblock needs to be fleshed out for multiple cache devices
  80 *
  81 * Add a sysfs tunable for the number of writeback IOs in flight
  82 *
  83 * Add a sysfs tunable for the number of open data buckets
  84 *
  85 * IO tracking: Can we track when one process is doing io on behalf of another?
  86 * IO tracking: Don't use just an average, weigh more recent stuff higher
  87 *
  88 * Test module load/unload
  89 */
  90
  91#define MAX_NEED_GC		64
  92#define MAX_SAVE_PRIO		72
  93#define MAX_GC_TIMES		100
  94#define MIN_GC_NODES		100
  95#define GC_SLEEP_MS		100
  96
  97#define PTR_DIRTY_BIT		(((uint64_t) 1 << 36))
  98
  99#define PTR_HASH(c, k)							\
 100	(((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
 101
 
 
 102#define insert_lock(s, b)	((b)->level <= (s)->lock)
 103
 104/*
 105 * These macros are for recursing down the btree - they handle the details of
 106 * locking and looking up nodes in the cache for you. They're best treated as
 107 * mere syntax when reading code that uses them.
 108 *
 109 * op->lock determines whether we take a read or a write lock at a given depth.
 110 * If you've got a read lock and find that you need a write lock (i.e. you're
 111 * going to have to split), set op->lock and return -EINTR; btree_root() will
 112 * call you again and you'll have the correct lock.
 113 */
 114
 115/**
 116 * btree - recurse down the btree on a specified key
 117 * @fn:		function to call, which will be passed the child node
 118 * @key:	key to recurse on
 119 * @b:		parent btree node
 120 * @op:		pointer to struct btree_op
 121 */
 122#define btree(fn, key, b, op, ...)					\
 123({									\
 124	int _r, l = (b)->level - 1;					\
 125	bool _w = l <= (op)->lock;					\
 126	struct btree *_child = bch_btree_node_get((b)->c, op, key, l,	\
 127						  _w, b);		\
 128	if (!IS_ERR(_child)) {						\
 129		_r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__);	\
 130		rw_unlock(_w, _child);					\
 131	} else								\
 132		_r = PTR_ERR(_child);					\
 133	_r;								\
 134})
 135
 136/**
 137 * btree_root - call a function on the root of the btree
 138 * @fn:		function to call, which will be passed the child node
 139 * @c:		cache set
 140 * @op:		pointer to struct btree_op
 141 */
 142#define btree_root(fn, c, op, ...)					\
 143({									\
 144	int _r = -EINTR;						\
 145	do {								\
 146		struct btree *_b = (c)->root;				\
 147		bool _w = insert_lock(op, _b);				\
 148		rw_lock(_w, _b, _b->level);				\
 149		if (_b == (c)->root &&					\
 150		    _w == insert_lock(op, _b)) {			\
 151			_r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__);	\
 152		}							\
 153		rw_unlock(_w, _b);					\
 154		bch_cannibalize_unlock(c);				\
 155		if (_r == -EINTR)					\
 156			schedule();					\
 157	} while (_r == -EINTR);						\
 158									\
 159	finish_wait(&(c)->btree_cache_wait, &(op)->wait);		\
 160	_r;								\
 161})
 162
 163static inline struct bset *write_block(struct btree *b)
 164{
 165	return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
 166}
 167
 168static void bch_btree_init_next(struct btree *b)
 169{
 170	/* If not a leaf node, always sort */
 171	if (b->level && b->keys.nsets)
 172		bch_btree_sort(&b->keys, &b->c->sort);
 173	else
 174		bch_btree_sort_lazy(&b->keys, &b->c->sort);
 175
 176	if (b->written < btree_blocks(b))
 177		bch_bset_init_next(&b->keys, write_block(b),
 178				   bset_magic(&b->c->sb));
 179
 180}
 181
 182/* Btree key manipulation */
 183
 184void bkey_put(struct cache_set *c, struct bkey *k)
 185{
 186	unsigned int i;
 187
 188	for (i = 0; i < KEY_PTRS(k); i++)
 189		if (ptr_available(c, k, i))
 190			atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
 191}
 192
 193/* Btree IO */
 194
 195static uint64_t btree_csum_set(struct btree *b, struct bset *i)
 196{
 197	uint64_t crc = b->key.ptr[0];
 198	void *data = (void *) i + 8, *end = bset_bkey_last(i);
 199
 200	crc = bch_crc64_update(crc, data, end - data);
 201	return crc ^ 0xffffffffffffffffULL;
 202}
 203
 204void bch_btree_node_read_done(struct btree *b)
 205{
 206	const char *err = "bad btree header";
 207	struct bset *i = btree_bset_first(b);
 208	struct btree_iter *iter;
 209
 210	/*
 211	 * c->fill_iter can allocate an iterator with more memory space
 212	 * than static MAX_BSETS.
 213	 * See the comment arount cache_set->fill_iter.
 214	 */
 215	iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
 216	iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
 217	iter->used = 0;
 218
 219#ifdef CONFIG_BCACHE_DEBUG
 220	iter->b = &b->keys;
 221#endif
 222
 223	if (!i->seq)
 224		goto err;
 225
 226	for (;
 227	     b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
 228	     i = write_block(b)) {
 229		err = "unsupported bset version";
 230		if (i->version > BCACHE_BSET_VERSION)
 231			goto err;
 232
 233		err = "bad btree header";
 234		if (b->written + set_blocks(i, block_bytes(b->c)) >
 235		    btree_blocks(b))
 236			goto err;
 237
 238		err = "bad magic";
 239		if (i->magic != bset_magic(&b->c->sb))
 240			goto err;
 241
 242		err = "bad checksum";
 243		switch (i->version) {
 244		case 0:
 245			if (i->csum != csum_set(i))
 246				goto err;
 247			break;
 248		case BCACHE_BSET_VERSION:
 249			if (i->csum != btree_csum_set(b, i))
 250				goto err;
 251			break;
 252		}
 253
 254		err = "empty set";
 255		if (i != b->keys.set[0].data && !i->keys)
 256			goto err;
 257
 258		bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
 259
 260		b->written += set_blocks(i, block_bytes(b->c));
 261	}
 262
 263	err = "corrupted btree";
 264	for (i = write_block(b);
 265	     bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
 266	     i = ((void *) i) + block_bytes(b->c))
 267		if (i->seq == b->keys.set[0].data->seq)
 268			goto err;
 269
 270	bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
 271
 272	i = b->keys.set[0].data;
 273	err = "short btree key";
 274	if (b->keys.set[0].size &&
 275	    bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
 276		goto err;
 277
 278	if (b->written < btree_blocks(b))
 279		bch_bset_init_next(&b->keys, write_block(b),
 280				   bset_magic(&b->c->sb));
 281out:
 282	mempool_free(iter, &b->c->fill_iter);
 283	return;
 284err:
 285	set_btree_node_io_error(b);
 286	bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
 287			    err, PTR_BUCKET_NR(b->c, &b->key, 0),
 288			    bset_block_offset(b, i), i->keys);
 289	goto out;
 290}
 291
 292static void btree_node_read_endio(struct bio *bio)
 293{
 294	struct closure *cl = bio->bi_private;
 295
 296	closure_put(cl);
 297}
 298
 299static void bch_btree_node_read(struct btree *b)
 300{
 301	uint64_t start_time = local_clock();
 302	struct closure cl;
 303	struct bio *bio;
 304
 305	trace_bcache_btree_read(b);
 306
 307	closure_init_stack(&cl);
 308
 309	bio = bch_bbio_alloc(b->c);
 310	bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
 311	bio->bi_end_io	= btree_node_read_endio;
 312	bio->bi_private	= &cl;
 313	bio->bi_opf = REQ_OP_READ | REQ_META;
 314
 315	bch_bio_map(bio, b->keys.set[0].data);
 316
 317	bch_submit_bbio(bio, b->c, &b->key, 0);
 318	closure_sync(&cl);
 319
 320	if (bio->bi_status)
 321		set_btree_node_io_error(b);
 322
 323	bch_bbio_free(bio, b->c);
 324
 325	if (btree_node_io_error(b))
 326		goto err;
 327
 328	bch_btree_node_read_done(b);
 329	bch_time_stats_update(&b->c->btree_read_time, start_time);
 330
 331	return;
 332err:
 333	bch_cache_set_error(b->c, "io error reading bucket %zu",
 334			    PTR_BUCKET_NR(b->c, &b->key, 0));
 335}
 336
 337static void btree_complete_write(struct btree *b, struct btree_write *w)
 338{
 339	if (w->prio_blocked &&
 340	    !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
 341		wake_up_allocators(b->c);
 342
 343	if (w->journal) {
 344		atomic_dec_bug(w->journal);
 345		__closure_wake_up(&b->c->journal.wait);
 346	}
 347
 348	w->prio_blocked	= 0;
 349	w->journal	= NULL;
 350}
 351
 352static void btree_node_write_unlock(struct closure *cl)
 353{
 354	struct btree *b = container_of(cl, struct btree, io);
 355
 356	up(&b->io_mutex);
 357}
 358
 359static void __btree_node_write_done(struct closure *cl)
 360{
 361	struct btree *b = container_of(cl, struct btree, io);
 362	struct btree_write *w = btree_prev_write(b);
 363
 364	bch_bbio_free(b->bio, b->c);
 365	b->bio = NULL;
 366	btree_complete_write(b, w);
 367
 368	if (btree_node_dirty(b))
 369		schedule_delayed_work(&b->work, 30 * HZ);
 370
 371	closure_return_with_destructor(cl, btree_node_write_unlock);
 372}
 373
 374static void btree_node_write_done(struct closure *cl)
 375{
 376	struct btree *b = container_of(cl, struct btree, io);
 377
 378	bio_free_pages(b->bio);
 379	__btree_node_write_done(cl);
 380}
 381
 382static void btree_node_write_endio(struct bio *bio)
 383{
 384	struct closure *cl = bio->bi_private;
 385	struct btree *b = container_of(cl, struct btree, io);
 386
 387	if (bio->bi_status)
 388		set_btree_node_io_error(b);
 389
 390	bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
 391	closure_put(cl);
 392}
 393
 394static void do_btree_node_write(struct btree *b)
 395{
 396	struct closure *cl = &b->io;
 397	struct bset *i = btree_bset_last(b);
 398	BKEY_PADDED(key) k;
 399
 400	i->version	= BCACHE_BSET_VERSION;
 401	i->csum		= btree_csum_set(b, i);
 402
 403	BUG_ON(b->bio);
 404	b->bio = bch_bbio_alloc(b->c);
 405
 406	b->bio->bi_end_io	= btree_node_write_endio;
 407	b->bio->bi_private	= cl;
 408	b->bio->bi_iter.bi_size	= roundup(set_bytes(i), block_bytes(b->c));
 409	b->bio->bi_opf		= REQ_OP_WRITE | REQ_META | REQ_FUA;
 410	bch_bio_map(b->bio, i);
 411
 412	/*
 413	 * If we're appending to a leaf node, we don't technically need FUA -
 414	 * this write just needs to be persisted before the next journal write,
 415	 * which will be marked FLUSH|FUA.
 416	 *
 417	 * Similarly if we're writing a new btree root - the pointer is going to
 418	 * be in the next journal entry.
 419	 *
 420	 * But if we're writing a new btree node (that isn't a root) or
 421	 * appending to a non leaf btree node, we need either FUA or a flush
 422	 * when we write the parent with the new pointer. FUA is cheaper than a
 423	 * flush, and writes appending to leaf nodes aren't blocking anything so
 424	 * just make all btree node writes FUA to keep things sane.
 425	 */
 426
 427	bkey_copy(&k.key, &b->key);
 428	SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
 429		       bset_sector_offset(&b->keys, i));
 430
 431	if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
 432		struct bio_vec *bv;
 433		void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
 434		struct bvec_iter_all iter_all;
 435
 436		bio_for_each_segment_all(bv, b->bio, iter_all) {
 437			memcpy(page_address(bv->bv_page), addr, PAGE_SIZE);
 438			addr += PAGE_SIZE;
 439		}
 440
 441		bch_submit_bbio(b->bio, b->c, &k.key, 0);
 442
 443		continue_at(cl, btree_node_write_done, NULL);
 444	} else {
 445		/*
 446		 * No problem for multipage bvec since the bio is
 447		 * just allocated
 448		 */
 449		b->bio->bi_vcnt = 0;
 450		bch_bio_map(b->bio, i);
 451
 452		bch_submit_bbio(b->bio, b->c, &k.key, 0);
 453
 454		closure_sync(cl);
 455		continue_at_nobarrier(cl, __btree_node_write_done, NULL);
 456	}
 457}
 458
 459void __bch_btree_node_write(struct btree *b, struct closure *parent)
 460{
 461	struct bset *i = btree_bset_last(b);
 462
 463	lockdep_assert_held(&b->write_lock);
 464
 465	trace_bcache_btree_write(b);
 466
 467	BUG_ON(current->bio_list);
 468	BUG_ON(b->written >= btree_blocks(b));
 469	BUG_ON(b->written && !i->keys);
 470	BUG_ON(btree_bset_first(b)->seq != i->seq);
 471	bch_check_keys(&b->keys, "writing");
 472
 473	cancel_delayed_work(&b->work);
 474
 475	/* If caller isn't waiting for write, parent refcount is cache set */
 476	down(&b->io_mutex);
 477	closure_init(&b->io, parent ?: &b->c->cl);
 478
 479	clear_bit(BTREE_NODE_dirty,	 &b->flags);
 480	change_bit(BTREE_NODE_write_idx, &b->flags);
 481
 482	do_btree_node_write(b);
 483
 484	atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
 485			&PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
 486
 487	b->written += set_blocks(i, block_bytes(b->c));
 488}
 489
 490void bch_btree_node_write(struct btree *b, struct closure *parent)
 491{
 492	unsigned int nsets = b->keys.nsets;
 493
 494	lockdep_assert_held(&b->lock);
 495
 496	__bch_btree_node_write(b, parent);
 497
 498	/*
 499	 * do verify if there was more than one set initially (i.e. we did a
 500	 * sort) and we sorted down to a single set:
 501	 */
 502	if (nsets && !b->keys.nsets)
 503		bch_btree_verify(b);
 504
 505	bch_btree_init_next(b);
 506}
 507
 508static void bch_btree_node_write_sync(struct btree *b)
 509{
 510	struct closure cl;
 511
 512	closure_init_stack(&cl);
 513
 514	mutex_lock(&b->write_lock);
 515	bch_btree_node_write(b, &cl);
 516	mutex_unlock(&b->write_lock);
 517
 518	closure_sync(&cl);
 519}
 520
 521static void btree_node_write_work(struct work_struct *w)
 522{
 523	struct btree *b = container_of(to_delayed_work(w), struct btree, work);
 524
 525	mutex_lock(&b->write_lock);
 526	if (btree_node_dirty(b))
 527		__bch_btree_node_write(b, NULL);
 528	mutex_unlock(&b->write_lock);
 529}
 530
 531static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
 532{
 533	struct bset *i = btree_bset_last(b);
 534	struct btree_write *w = btree_current_write(b);
 535
 536	lockdep_assert_held(&b->write_lock);
 537
 538	BUG_ON(!b->written);
 539	BUG_ON(!i->keys);
 540
 541	if (!btree_node_dirty(b))
 542		schedule_delayed_work(&b->work, 30 * HZ);
 543
 544	set_btree_node_dirty(b);
 545
 
 
 
 
 
 546	if (journal_ref) {
 547		if (w->journal &&
 548		    journal_pin_cmp(b->c, w->journal, journal_ref)) {
 549			atomic_dec_bug(w->journal);
 550			w->journal = NULL;
 551		}
 552
 553		if (!w->journal) {
 554			w->journal = journal_ref;
 555			atomic_inc(w->journal);
 556		}
 557	}
 558
 559	/* Force write if set is too big */
 560	if (set_bytes(i) > PAGE_SIZE - 48 &&
 561	    !current->bio_list)
 562		bch_btree_node_write(b, NULL);
 563}
 564
 565/*
 566 * Btree in memory cache - allocation/freeing
 567 * mca -> memory cache
 568 */
 569
 570#define mca_reserve(c)	(((c->root && c->root->level)		\
 571			  ? c->root->level : 1) * 8 + 16)
 572#define mca_can_free(c)						\
 573	max_t(int, 0, c->btree_cache_used - mca_reserve(c))
 574
 575static void mca_data_free(struct btree *b)
 576{
 577	BUG_ON(b->io_mutex.count != 1);
 578
 579	bch_btree_keys_free(&b->keys);
 580
 581	b->c->btree_cache_used--;
 582	list_move(&b->list, &b->c->btree_cache_freed);
 583}
 584
 585static void mca_bucket_free(struct btree *b)
 586{
 587	BUG_ON(btree_node_dirty(b));
 588
 589	b->key.ptr[0] = 0;
 590	hlist_del_init_rcu(&b->hash);
 591	list_move(&b->list, &b->c->btree_cache_freeable);
 592}
 593
 594static unsigned int btree_order(struct bkey *k)
 595{
 596	return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
 597}
 598
 599static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
 600{
 601	if (!bch_btree_keys_alloc(&b->keys,
 602				  max_t(unsigned int,
 603					ilog2(b->c->btree_pages),
 604					btree_order(k)),
 605				  gfp)) {
 606		b->c->btree_cache_used++;
 607		list_move(&b->list, &b->c->btree_cache);
 608	} else {
 609		list_move(&b->list, &b->c->btree_cache_freed);
 610	}
 611}
 612
 613static struct btree *mca_bucket_alloc(struct cache_set *c,
 614				      struct bkey *k, gfp_t gfp)
 615{
 616	/*
 617	 * kzalloc() is necessary here for initialization,
 618	 * see code comments in bch_btree_keys_init().
 619	 */
 620	struct btree *b = kzalloc(sizeof(struct btree), gfp);
 621
 622	if (!b)
 623		return NULL;
 624
 625	init_rwsem(&b->lock);
 626	lockdep_set_novalidate_class(&b->lock);
 627	mutex_init(&b->write_lock);
 628	lockdep_set_novalidate_class(&b->write_lock);
 629	INIT_LIST_HEAD(&b->list);
 630	INIT_DELAYED_WORK(&b->work, btree_node_write_work);
 631	b->c = c;
 632	sema_init(&b->io_mutex, 1);
 633
 634	mca_data_alloc(b, k, gfp);
 635	return b;
 636}
 637
 638static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
 639{
 640	struct closure cl;
 641
 642	closure_init_stack(&cl);
 643	lockdep_assert_held(&b->c->bucket_lock);
 644
 645	if (!down_write_trylock(&b->lock))
 646		return -ENOMEM;
 647
 648	BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
 649
 650	if (b->keys.page_order < min_order)
 651		goto out_unlock;
 652
 653	if (!flush) {
 654		if (btree_node_dirty(b))
 655			goto out_unlock;
 656
 657		if (down_trylock(&b->io_mutex))
 658			goto out_unlock;
 659		up(&b->io_mutex);
 660	}
 661
 662retry:
 663	/*
 664	 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by
 665	 * __bch_btree_node_write(). To avoid an extra flush, acquire
 666	 * b->write_lock before checking BTREE_NODE_dirty bit.
 667	 */
 668	mutex_lock(&b->write_lock);
 669	/*
 670	 * If this btree node is selected in btree_flush_write() by journal
 671	 * code, delay and retry until the node is flushed by journal code
 672	 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
 673	 */
 674	if (btree_node_journal_flush(b)) {
 675		pr_debug("bnode %p is flushing by journal, retry", b);
 676		mutex_unlock(&b->write_lock);
 677		udelay(1);
 678		goto retry;
 679	}
 680
 681	if (btree_node_dirty(b))
 682		__bch_btree_node_write(b, &cl);
 683	mutex_unlock(&b->write_lock);
 684
 685	closure_sync(&cl);
 686
 687	/* wait for any in flight btree write */
 688	down(&b->io_mutex);
 689	up(&b->io_mutex);
 690
 691	return 0;
 692out_unlock:
 693	rw_unlock(true, b);
 694	return -ENOMEM;
 695}
 696
 697static unsigned long bch_mca_scan(struct shrinker *shrink,
 698				  struct shrink_control *sc)
 699{
 700	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
 701	struct btree *b, *t;
 702	unsigned long i, nr = sc->nr_to_scan;
 703	unsigned long freed = 0;
 704	unsigned int btree_cache_used;
 705
 706	if (c->shrinker_disabled)
 707		return SHRINK_STOP;
 708
 709	if (c->btree_cache_alloc_lock)
 710		return SHRINK_STOP;
 711
 712	/* Return -1 if we can't do anything right now */
 713	if (sc->gfp_mask & __GFP_IO)
 714		mutex_lock(&c->bucket_lock);
 715	else if (!mutex_trylock(&c->bucket_lock))
 716		return -1;
 717
 718	/*
 719	 * It's _really_ critical that we don't free too many btree nodes - we
 720	 * have to always leave ourselves a reserve. The reserve is how we
 721	 * guarantee that allocating memory for a new btree node can always
 722	 * succeed, so that inserting keys into the btree can always succeed and
 723	 * IO can always make forward progress:
 724	 */
 725	nr /= c->btree_pages;
 
 
 726	nr = min_t(unsigned long, nr, mca_can_free(c));
 727
 728	i = 0;
 729	btree_cache_used = c->btree_cache_used;
 730	list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
 731		if (nr <= 0)
 732			goto out;
 733
 734		if (++i > 3 &&
 735		    !mca_reap(b, 0, false)) {
 736			mca_data_free(b);
 737			rw_unlock(true, b);
 738			freed++;
 739		}
 740		nr--;
 
 741	}
 742
 743	for (;  (nr--) && i < btree_cache_used; i++) {
 744		if (list_empty(&c->btree_cache))
 745			goto out;
 746
 747		b = list_first_entry(&c->btree_cache, struct btree, list);
 748		list_rotate_left(&c->btree_cache);
 749
 750		if (!b->accessed &&
 751		    !mca_reap(b, 0, false)) {
 752			mca_bucket_free(b);
 753			mca_data_free(b);
 754			rw_unlock(true, b);
 755			freed++;
 756		} else
 757			b->accessed = 0;
 
 
 758	}
 759out:
 760	mutex_unlock(&c->bucket_lock);
 761	return freed * c->btree_pages;
 762}
 763
 764static unsigned long bch_mca_count(struct shrinker *shrink,
 765				   struct shrink_control *sc)
 766{
 767	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
 768
 769	if (c->shrinker_disabled)
 770		return 0;
 771
 772	if (c->btree_cache_alloc_lock)
 773		return 0;
 774
 775	return mca_can_free(c) * c->btree_pages;
 776}
 777
 778void bch_btree_cache_free(struct cache_set *c)
 779{
 780	struct btree *b;
 781	struct closure cl;
 782
 783	closure_init_stack(&cl);
 784
 785	if (c->shrink.list.next)
 786		unregister_shrinker(&c->shrink);
 787
 788	mutex_lock(&c->bucket_lock);
 789
 790#ifdef CONFIG_BCACHE_DEBUG
 791	if (c->verify_data)
 792		list_move(&c->verify_data->list, &c->btree_cache);
 793
 794	free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
 795#endif
 796
 797	list_splice(&c->btree_cache_freeable,
 798		    &c->btree_cache);
 799
 800	while (!list_empty(&c->btree_cache)) {
 801		b = list_first_entry(&c->btree_cache, struct btree, list);
 802
 803		/*
 804		 * This function is called by cache_set_free(), no I/O
 805		 * request on cache now, it is unnecessary to acquire
 806		 * b->write_lock before clearing BTREE_NODE_dirty anymore.
 807		 */
 808		if (btree_node_dirty(b)) {
 809			btree_complete_write(b, btree_current_write(b));
 810			clear_bit(BTREE_NODE_dirty, &b->flags);
 811		}
 812		mca_data_free(b);
 813	}
 814
 815	while (!list_empty(&c->btree_cache_freed)) {
 816		b = list_first_entry(&c->btree_cache_freed,
 817				     struct btree, list);
 818		list_del(&b->list);
 819		cancel_delayed_work_sync(&b->work);
 820		kfree(b);
 821	}
 822
 823	mutex_unlock(&c->bucket_lock);
 824}
 825
 826int bch_btree_cache_alloc(struct cache_set *c)
 827{
 828	unsigned int i;
 829
 830	for (i = 0; i < mca_reserve(c); i++)
 831		if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
 832			return -ENOMEM;
 833
 834	list_splice_init(&c->btree_cache,
 835			 &c->btree_cache_freeable);
 836
 837#ifdef CONFIG_BCACHE_DEBUG
 838	mutex_init(&c->verify_lock);
 839
 840	c->verify_ondisk = (void *)
 841		__get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
 
 
 
 
 
 
 
 
 
 842
 843	c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
 844
 845	if (c->verify_data &&
 846	    c->verify_data->keys.set->data)
 847		list_del_init(&c->verify_data->list);
 848	else
 849		c->verify_data = NULL;
 850#endif
 851
 852	c->shrink.count_objects = bch_mca_count;
 853	c->shrink.scan_objects = bch_mca_scan;
 854	c->shrink.seeks = 4;
 855	c->shrink.batch = c->btree_pages * 2;
 856
 857	if (register_shrinker(&c->shrink))
 858		pr_warn("bcache: %s: could not register shrinker",
 859				__func__);
 860
 861	return 0;
 862}
 863
 864/* Btree in memory cache - hash table */
 865
 866static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
 867{
 868	return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
 869}
 870
 871static struct btree *mca_find(struct cache_set *c, struct bkey *k)
 872{
 873	struct btree *b;
 874
 875	rcu_read_lock();
 876	hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
 877		if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
 878			goto out;
 879	b = NULL;
 880out:
 881	rcu_read_unlock();
 882	return b;
 883}
 884
 885static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
 886{
 887	struct task_struct *old;
 888
 889	old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
 890	if (old && old != current) {
 891		if (op)
 892			prepare_to_wait(&c->btree_cache_wait, &op->wait,
 893					TASK_UNINTERRUPTIBLE);
 
 894		return -EINTR;
 895	}
 
 896
 897	return 0;
 898}
 899
 900static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
 901				     struct bkey *k)
 902{
 903	struct btree *b;
 904
 905	trace_bcache_btree_cache_cannibalize(c);
 906
 907	if (mca_cannibalize_lock(c, op))
 908		return ERR_PTR(-EINTR);
 909
 910	list_for_each_entry_reverse(b, &c->btree_cache, list)
 911		if (!mca_reap(b, btree_order(k), false))
 912			return b;
 913
 914	list_for_each_entry_reverse(b, &c->btree_cache, list)
 915		if (!mca_reap(b, btree_order(k), true))
 916			return b;
 917
 918	WARN(1, "btree cache cannibalize failed\n");
 919	return ERR_PTR(-ENOMEM);
 920}
 921
 922/*
 923 * We can only have one thread cannibalizing other cached btree nodes at a time,
 924 * or we'll deadlock. We use an open coded mutex to ensure that, which a
 925 * cannibalize_bucket() will take. This means every time we unlock the root of
 926 * the btree, we need to release this lock if we have it held.
 927 */
 928static void bch_cannibalize_unlock(struct cache_set *c)
 929{
 
 930	if (c->btree_cache_alloc_lock == current) {
 931		c->btree_cache_alloc_lock = NULL;
 932		wake_up(&c->btree_cache_wait);
 933	}
 
 934}
 935
 936static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
 937			       struct bkey *k, int level)
 938{
 939	struct btree *b;
 940
 941	BUG_ON(current->bio_list);
 942
 943	lockdep_assert_held(&c->bucket_lock);
 944
 945	if (mca_find(c, k))
 946		return NULL;
 947
 948	/* btree_free() doesn't free memory; it sticks the node on the end of
 949	 * the list. Check if there's any freed nodes there:
 950	 */
 951	list_for_each_entry(b, &c->btree_cache_freeable, list)
 952		if (!mca_reap(b, btree_order(k), false))
 953			goto out;
 954
 955	/* We never free struct btree itself, just the memory that holds the on
 956	 * disk node. Check the freed list before allocating a new one:
 957	 */
 958	list_for_each_entry(b, &c->btree_cache_freed, list)
 959		if (!mca_reap(b, 0, false)) {
 960			mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
 961			if (!b->keys.set[0].data)
 962				goto err;
 963			else
 964				goto out;
 965		}
 966
 967	b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
 968	if (!b)
 969		goto err;
 970
 971	BUG_ON(!down_write_trylock(&b->lock));
 972	if (!b->keys.set->data)
 973		goto err;
 974out:
 975	BUG_ON(b->io_mutex.count != 1);
 976
 977	bkey_copy(&b->key, k);
 978	list_move(&b->list, &c->btree_cache);
 979	hlist_del_init_rcu(&b->hash);
 980	hlist_add_head_rcu(&b->hash, mca_hash(c, k));
 981
 982	lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
 983	b->parent	= (void *) ~0UL;
 984	b->flags	= 0;
 985	b->written	= 0;
 986	b->level	= level;
 987
 988	if (!b->level)
 989		bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
 990				    &b->c->expensive_debug_checks);
 991	else
 992		bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
 993				    &b->c->expensive_debug_checks);
 994
 995	return b;
 996err:
 997	if (b)
 998		rw_unlock(true, b);
 999
1000	b = mca_cannibalize(c, op, k);
1001	if (!IS_ERR(b))
1002		goto out;
1003
1004	return b;
1005}
1006
1007/*
1008 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
1009 * in from disk if necessary.
1010 *
1011 * If IO is necessary and running under generic_make_request, returns -EAGAIN.
1012 *
1013 * The btree node will have either a read or a write lock held, depending on
1014 * level and op->lock.
1015 */
1016struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
1017				 struct bkey *k, int level, bool write,
1018				 struct btree *parent)
1019{
1020	int i = 0;
1021	struct btree *b;
1022
1023	BUG_ON(level < 0);
1024retry:
1025	b = mca_find(c, k);
1026
1027	if (!b) {
1028		if (current->bio_list)
1029			return ERR_PTR(-EAGAIN);
1030
1031		mutex_lock(&c->bucket_lock);
1032		b = mca_alloc(c, op, k, level);
1033		mutex_unlock(&c->bucket_lock);
1034
1035		if (!b)
1036			goto retry;
1037		if (IS_ERR(b))
1038			return b;
1039
1040		bch_btree_node_read(b);
1041
1042		if (!write)
1043			downgrade_write(&b->lock);
1044	} else {
1045		rw_lock(write, b, level);
1046		if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1047			rw_unlock(write, b);
1048			goto retry;
1049		}
1050		BUG_ON(b->level != level);
1051	}
1052
1053	if (btree_node_io_error(b)) {
1054		rw_unlock(write, b);
1055		return ERR_PTR(-EIO);
1056	}
1057
1058	BUG_ON(!b->written);
1059
1060	b->parent = parent;
1061	b->accessed = 1;
1062
1063	for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1064		prefetch(b->keys.set[i].tree);
1065		prefetch(b->keys.set[i].data);
1066	}
1067
1068	for (; i <= b->keys.nsets; i++)
1069		prefetch(b->keys.set[i].data);
1070
1071	return b;
1072}
1073
1074static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1075{
1076	struct btree *b;
1077
1078	mutex_lock(&parent->c->bucket_lock);
1079	b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1080	mutex_unlock(&parent->c->bucket_lock);
1081
1082	if (!IS_ERR_OR_NULL(b)) {
1083		b->parent = parent;
1084		bch_btree_node_read(b);
1085		rw_unlock(true, b);
1086	}
1087}
1088
1089/* Btree alloc */
1090
1091static void btree_node_free(struct btree *b)
1092{
1093	trace_bcache_btree_node_free(b);
1094
1095	BUG_ON(b == b->c->root);
1096
1097retry:
1098	mutex_lock(&b->write_lock);
1099	/*
1100	 * If the btree node is selected and flushing in btree_flush_write(),
1101	 * delay and retry until the BTREE_NODE_journal_flush bit cleared,
1102	 * then it is safe to free the btree node here. Otherwise this btree
1103	 * node will be in race condition.
1104	 */
1105	if (btree_node_journal_flush(b)) {
1106		mutex_unlock(&b->write_lock);
1107		pr_debug("bnode %p journal_flush set, retry", b);
1108		udelay(1);
1109		goto retry;
1110	}
1111
1112	if (btree_node_dirty(b)) {
1113		btree_complete_write(b, btree_current_write(b));
1114		clear_bit(BTREE_NODE_dirty, &b->flags);
1115	}
1116
1117	mutex_unlock(&b->write_lock);
1118
1119	cancel_delayed_work(&b->work);
1120
1121	mutex_lock(&b->c->bucket_lock);
1122	bch_bucket_free(b->c, &b->key);
1123	mca_bucket_free(b);
1124	mutex_unlock(&b->c->bucket_lock);
1125}
1126
1127struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1128				     int level, bool wait,
1129				     struct btree *parent)
1130{
1131	BKEY_PADDED(key) k;
1132	struct btree *b = ERR_PTR(-EAGAIN);
1133
1134	mutex_lock(&c->bucket_lock);
1135retry:
1136	if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, wait))
1137		goto err;
1138
1139	bkey_put(c, &k.key);
1140	SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1141
1142	b = mca_alloc(c, op, &k.key, level);
1143	if (IS_ERR(b))
1144		goto err_free;
1145
1146	if (!b) {
1147		cache_bug(c,
1148			"Tried to allocate bucket that was in btree cache");
1149		goto retry;
1150	}
1151
1152	b->accessed = 1;
1153	b->parent = parent;
1154	bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
1155
1156	mutex_unlock(&c->bucket_lock);
1157
1158	trace_bcache_btree_node_alloc(b);
1159	return b;
1160err_free:
1161	bch_bucket_free(c, &k.key);
1162err:
1163	mutex_unlock(&c->bucket_lock);
1164
1165	trace_bcache_btree_node_alloc_fail(c);
1166	return b;
1167}
1168
1169static struct btree *bch_btree_node_alloc(struct cache_set *c,
1170					  struct btree_op *op, int level,
1171					  struct btree *parent)
1172{
1173	return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1174}
1175
1176static struct btree *btree_node_alloc_replacement(struct btree *b,
1177						  struct btree_op *op)
1178{
1179	struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1180
1181	if (!IS_ERR_OR_NULL(n)) {
1182		mutex_lock(&n->write_lock);
1183		bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1184		bkey_copy_key(&n->key, &b->key);
1185		mutex_unlock(&n->write_lock);
1186	}
1187
1188	return n;
1189}
1190
1191static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1192{
1193	unsigned int i;
1194
1195	mutex_lock(&b->c->bucket_lock);
1196
1197	atomic_inc(&b->c->prio_blocked);
1198
1199	bkey_copy(k, &b->key);
1200	bkey_copy_key(k, &ZERO_KEY);
1201
1202	for (i = 0; i < KEY_PTRS(k); i++)
1203		SET_PTR_GEN(k, i,
1204			    bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
1205					PTR_BUCKET(b->c, &b->key, i)));
1206
1207	mutex_unlock(&b->c->bucket_lock);
1208}
1209
1210static int btree_check_reserve(struct btree *b, struct btree_op *op)
1211{
1212	struct cache_set *c = b->c;
1213	struct cache *ca;
1214	unsigned int i, reserve = (c->root->level - b->level) * 2 + 1;
1215
1216	mutex_lock(&c->bucket_lock);
1217
1218	for_each_cache(ca, c, i)
1219		if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1220			if (op)
1221				prepare_to_wait(&c->btree_cache_wait, &op->wait,
1222						TASK_UNINTERRUPTIBLE);
1223			mutex_unlock(&c->bucket_lock);
1224			return -EINTR;
1225		}
1226
1227	mutex_unlock(&c->bucket_lock);
1228
1229	return mca_cannibalize_lock(b->c, op);
1230}
1231
1232/* Garbage collection */
1233
1234static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1235				    struct bkey *k)
1236{
1237	uint8_t stale = 0;
1238	unsigned int i;
1239	struct bucket *g;
1240
1241	/*
1242	 * ptr_invalid() can't return true for the keys that mark btree nodes as
1243	 * freed, but since ptr_bad() returns true we'll never actually use them
1244	 * for anything and thus we don't want mark their pointers here
1245	 */
1246	if (!bkey_cmp(k, &ZERO_KEY))
1247		return stale;
1248
1249	for (i = 0; i < KEY_PTRS(k); i++) {
1250		if (!ptr_available(c, k, i))
1251			continue;
1252
1253		g = PTR_BUCKET(c, k, i);
1254
1255		if (gen_after(g->last_gc, PTR_GEN(k, i)))
1256			g->last_gc = PTR_GEN(k, i);
1257
1258		if (ptr_stale(c, k, i)) {
1259			stale = max(stale, ptr_stale(c, k, i));
1260			continue;
1261		}
1262
1263		cache_bug_on(GC_MARK(g) &&
1264			     (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1265			     c, "inconsistent ptrs: mark = %llu, level = %i",
1266			     GC_MARK(g), level);
1267
1268		if (level)
1269			SET_GC_MARK(g, GC_MARK_METADATA);
1270		else if (KEY_DIRTY(k))
1271			SET_GC_MARK(g, GC_MARK_DIRTY);
1272		else if (!GC_MARK(g))
1273			SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1274
1275		/* guard against overflow */
1276		SET_GC_SECTORS_USED(g, min_t(unsigned int,
1277					     GC_SECTORS_USED(g) + KEY_SIZE(k),
1278					     MAX_GC_SECTORS_USED));
1279
1280		BUG_ON(!GC_SECTORS_USED(g));
1281	}
1282
1283	return stale;
1284}
1285
1286#define btree_mark_key(b, k)	__bch_btree_mark_key(b->c, b->level, k)
1287
1288void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1289{
1290	unsigned int i;
1291
1292	for (i = 0; i < KEY_PTRS(k); i++)
1293		if (ptr_available(c, k, i) &&
1294		    !ptr_stale(c, k, i)) {
1295			struct bucket *b = PTR_BUCKET(c, k, i);
1296
1297			b->gen = PTR_GEN(k, i);
1298
1299			if (level && bkey_cmp(k, &ZERO_KEY))
1300				b->prio = BTREE_PRIO;
1301			else if (!level && b->prio == BTREE_PRIO)
1302				b->prio = INITIAL_PRIO;
1303		}
1304
1305	__bch_btree_mark_key(c, level, k);
1306}
1307
1308void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1309{
1310	stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1311}
1312
1313static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1314{
1315	uint8_t stale = 0;
1316	unsigned int keys = 0, good_keys = 0;
1317	struct bkey *k;
1318	struct btree_iter iter;
1319	struct bset_tree *t;
1320
1321	gc->nodes++;
1322
1323	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1324		stale = max(stale, btree_mark_key(b, k));
1325		keys++;
1326
1327		if (bch_ptr_bad(&b->keys, k))
1328			continue;
1329
1330		gc->key_bytes += bkey_u64s(k);
1331		gc->nkeys++;
1332		good_keys++;
1333
1334		gc->data += KEY_SIZE(k);
1335	}
1336
1337	for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1338		btree_bug_on(t->size &&
1339			     bset_written(&b->keys, t) &&
1340			     bkey_cmp(&b->key, &t->end) < 0,
1341			     b, "found short btree key in gc");
1342
1343	if (b->c->gc_always_rewrite)
1344		return true;
1345
1346	if (stale > 10)
1347		return true;
1348
1349	if ((keys - good_keys) * 2 > keys)
1350		return true;
1351
1352	return false;
1353}
1354
1355#define GC_MERGE_NODES	4U
1356
1357struct gc_merge_info {
1358	struct btree	*b;
1359	unsigned int	keys;
1360};
1361
1362static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1363				 struct keylist *insert_keys,
1364				 atomic_t *journal_ref,
1365				 struct bkey *replace_key);
1366
1367static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1368			     struct gc_stat *gc, struct gc_merge_info *r)
1369{
1370	unsigned int i, nodes = 0, keys = 0, blocks;
1371	struct btree *new_nodes[GC_MERGE_NODES];
1372	struct keylist keylist;
1373	struct closure cl;
1374	struct bkey *k;
1375
1376	bch_keylist_init(&keylist);
1377
1378	if (btree_check_reserve(b, NULL))
1379		return 0;
1380
1381	memset(new_nodes, 0, sizeof(new_nodes));
1382	closure_init_stack(&cl);
1383
1384	while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1385		keys += r[nodes++].keys;
1386
1387	blocks = btree_default_blocks(b->c) * 2 / 3;
1388
1389	if (nodes < 2 ||
1390	    __set_blocks(b->keys.set[0].data, keys,
1391			 block_bytes(b->c)) > blocks * (nodes - 1))
1392		return 0;
1393
1394	for (i = 0; i < nodes; i++) {
1395		new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1396		if (IS_ERR_OR_NULL(new_nodes[i]))
1397			goto out_nocoalesce;
1398	}
1399
1400	/*
1401	 * We have to check the reserve here, after we've allocated our new
1402	 * nodes, to make sure the insert below will succeed - we also check
1403	 * before as an optimization to potentially avoid a bunch of expensive
1404	 * allocs/sorts
1405	 */
1406	if (btree_check_reserve(b, NULL))
1407		goto out_nocoalesce;
1408
1409	for (i = 0; i < nodes; i++)
1410		mutex_lock(&new_nodes[i]->write_lock);
1411
1412	for (i = nodes - 1; i > 0; --i) {
1413		struct bset *n1 = btree_bset_first(new_nodes[i]);
1414		struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1415		struct bkey *k, *last = NULL;
1416
1417		keys = 0;
1418
1419		if (i > 1) {
1420			for (k = n2->start;
1421			     k < bset_bkey_last(n2);
1422			     k = bkey_next(k)) {
1423				if (__set_blocks(n1, n1->keys + keys +
1424						 bkey_u64s(k),
1425						 block_bytes(b->c)) > blocks)
1426					break;
1427
1428				last = k;
1429				keys += bkey_u64s(k);
1430			}
1431		} else {
1432			/*
1433			 * Last node we're not getting rid of - we're getting
1434			 * rid of the node at r[0]. Have to try and fit all of
1435			 * the remaining keys into this node; we can't ensure
1436			 * they will always fit due to rounding and variable
1437			 * length keys (shouldn't be possible in practice,
1438			 * though)
1439			 */
1440			if (__set_blocks(n1, n1->keys + n2->keys,
1441					 block_bytes(b->c)) >
1442			    btree_blocks(new_nodes[i]))
1443				goto out_nocoalesce;
1444
1445			keys = n2->keys;
1446			/* Take the key of the node we're getting rid of */
1447			last = &r->b->key;
1448		}
1449
1450		BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
1451		       btree_blocks(new_nodes[i]));
1452
1453		if (last)
1454			bkey_copy_key(&new_nodes[i]->key, last);
1455
1456		memcpy(bset_bkey_last(n1),
1457		       n2->start,
1458		       (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1459
1460		n1->keys += keys;
1461		r[i].keys = n1->keys;
1462
1463		memmove(n2->start,
1464			bset_bkey_idx(n2, keys),
1465			(void *) bset_bkey_last(n2) -
1466			(void *) bset_bkey_idx(n2, keys));
1467
1468		n2->keys -= keys;
1469
1470		if (__bch_keylist_realloc(&keylist,
1471					  bkey_u64s(&new_nodes[i]->key)))
1472			goto out_nocoalesce;
1473
1474		bch_btree_node_write(new_nodes[i], &cl);
1475		bch_keylist_add(&keylist, &new_nodes[i]->key);
1476	}
1477
1478	for (i = 0; i < nodes; i++)
1479		mutex_unlock(&new_nodes[i]->write_lock);
1480
1481	closure_sync(&cl);
1482
1483	/* We emptied out this node */
1484	BUG_ON(btree_bset_first(new_nodes[0])->keys);
1485	btree_node_free(new_nodes[0]);
1486	rw_unlock(true, new_nodes[0]);
1487	new_nodes[0] = NULL;
1488
1489	for (i = 0; i < nodes; i++) {
1490		if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1491			goto out_nocoalesce;
1492
1493		make_btree_freeing_key(r[i].b, keylist.top);
1494		bch_keylist_push(&keylist);
1495	}
1496
1497	bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1498	BUG_ON(!bch_keylist_empty(&keylist));
1499
1500	for (i = 0; i < nodes; i++) {
1501		btree_node_free(r[i].b);
1502		rw_unlock(true, r[i].b);
1503
1504		r[i].b = new_nodes[i];
1505	}
1506
1507	memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1508	r[nodes - 1].b = ERR_PTR(-EINTR);
1509
1510	trace_bcache_btree_gc_coalesce(nodes);
1511	gc->nodes--;
1512
1513	bch_keylist_free(&keylist);
1514
1515	/* Invalidated our iterator */
1516	return -EINTR;
1517
 
 
 
 
1518out_nocoalesce:
1519	closure_sync(&cl);
1520
1521	while ((k = bch_keylist_pop(&keylist)))
1522		if (!bkey_cmp(k, &ZERO_KEY))
1523			atomic_dec(&b->c->prio_blocked);
1524	bch_keylist_free(&keylist);
1525
1526	for (i = 0; i < nodes; i++)
1527		if (!IS_ERR_OR_NULL(new_nodes[i])) {
1528			btree_node_free(new_nodes[i]);
1529			rw_unlock(true, new_nodes[i]);
1530		}
1531	return 0;
1532}
1533
1534static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1535				 struct btree *replace)
1536{
1537	struct keylist keys;
1538	struct btree *n;
1539
1540	if (btree_check_reserve(b, NULL))
1541		return 0;
1542
1543	n = btree_node_alloc_replacement(replace, NULL);
1544
1545	/* recheck reserve after allocating replacement node */
1546	if (btree_check_reserve(b, NULL)) {
1547		btree_node_free(n);
1548		rw_unlock(true, n);
1549		return 0;
1550	}
1551
1552	bch_btree_node_write_sync(n);
1553
1554	bch_keylist_init(&keys);
1555	bch_keylist_add(&keys, &n->key);
1556
1557	make_btree_freeing_key(replace, keys.top);
1558	bch_keylist_push(&keys);
1559
1560	bch_btree_insert_node(b, op, &keys, NULL, NULL);
1561	BUG_ON(!bch_keylist_empty(&keys));
1562
1563	btree_node_free(replace);
1564	rw_unlock(true, n);
1565
1566	/* Invalidated our iterator */
1567	return -EINTR;
1568}
1569
1570static unsigned int btree_gc_count_keys(struct btree *b)
1571{
1572	struct bkey *k;
1573	struct btree_iter iter;
1574	unsigned int ret = 0;
1575
1576	for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1577		ret += bkey_u64s(k);
1578
1579	return ret;
1580}
1581
1582static size_t btree_gc_min_nodes(struct cache_set *c)
1583{
1584	size_t min_nodes;
1585
1586	/*
1587	 * Since incremental GC would stop 100ms when front
1588	 * side I/O comes, so when there are many btree nodes,
1589	 * if GC only processes constant (100) nodes each time,
1590	 * GC would last a long time, and the front side I/Os
1591	 * would run out of the buckets (since no new bucket
1592	 * can be allocated during GC), and be blocked again.
1593	 * So GC should not process constant nodes, but varied
1594	 * nodes according to the number of btree nodes, which
1595	 * realized by dividing GC into constant(100) times,
1596	 * so when there are many btree nodes, GC can process
1597	 * more nodes each time, otherwise, GC will process less
1598	 * nodes each time (but no less than MIN_GC_NODES)
1599	 */
1600	min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1601	if (min_nodes < MIN_GC_NODES)
1602		min_nodes = MIN_GC_NODES;
1603
1604	return min_nodes;
1605}
1606
1607
1608static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1609			    struct closure *writes, struct gc_stat *gc)
1610{
1611	int ret = 0;
1612	bool should_rewrite;
1613	struct bkey *k;
1614	struct btree_iter iter;
1615	struct gc_merge_info r[GC_MERGE_NODES];
1616	struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1617
1618	bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1619
1620	for (i = r; i < r + ARRAY_SIZE(r); i++)
1621		i->b = ERR_PTR(-EINTR);
1622
1623	while (1) {
1624		k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1625		if (k) {
1626			r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1627						  true, b);
1628			if (IS_ERR(r->b)) {
1629				ret = PTR_ERR(r->b);
1630				break;
1631			}
1632
1633			r->keys = btree_gc_count_keys(r->b);
1634
1635			ret = btree_gc_coalesce(b, op, gc, r);
1636			if (ret)
1637				break;
1638		}
1639
1640		if (!last->b)
1641			break;
1642
1643		if (!IS_ERR(last->b)) {
1644			should_rewrite = btree_gc_mark_node(last->b, gc);
1645			if (should_rewrite) {
1646				ret = btree_gc_rewrite_node(b, op, last->b);
1647				if (ret)
1648					break;
1649			}
1650
1651			if (last->b->level) {
1652				ret = btree_gc_recurse(last->b, op, writes, gc);
1653				if (ret)
1654					break;
1655			}
1656
1657			bkey_copy_key(&b->c->gc_done, &last->b->key);
1658
1659			/*
1660			 * Must flush leaf nodes before gc ends, since replace
1661			 * operations aren't journalled
1662			 */
1663			mutex_lock(&last->b->write_lock);
1664			if (btree_node_dirty(last->b))
1665				bch_btree_node_write(last->b, writes);
1666			mutex_unlock(&last->b->write_lock);
1667			rw_unlock(true, last->b);
1668		}
1669
1670		memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1671		r->b = NULL;
1672
1673		if (atomic_read(&b->c->search_inflight) &&
1674		    gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
1675			gc->nodes_pre =  gc->nodes;
1676			ret = -EAGAIN;
1677			break;
1678		}
1679
1680		if (need_resched()) {
1681			ret = -EAGAIN;
1682			break;
1683		}
1684	}
1685
1686	for (i = r; i < r + ARRAY_SIZE(r); i++)
1687		if (!IS_ERR_OR_NULL(i->b)) {
1688			mutex_lock(&i->b->write_lock);
1689			if (btree_node_dirty(i->b))
1690				bch_btree_node_write(i->b, writes);
1691			mutex_unlock(&i->b->write_lock);
1692			rw_unlock(true, i->b);
1693		}
1694
1695	return ret;
1696}
1697
1698static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1699			     struct closure *writes, struct gc_stat *gc)
1700{
1701	struct btree *n = NULL;
1702	int ret = 0;
1703	bool should_rewrite;
1704
1705	should_rewrite = btree_gc_mark_node(b, gc);
1706	if (should_rewrite) {
1707		n = btree_node_alloc_replacement(b, NULL);
1708
1709		if (!IS_ERR_OR_NULL(n)) {
1710			bch_btree_node_write_sync(n);
1711
1712			bch_btree_set_root(n);
1713			btree_node_free(b);
1714			rw_unlock(true, n);
1715
1716			return -EINTR;
1717		}
1718	}
1719
1720	__bch_btree_mark_key(b->c, b->level + 1, &b->key);
1721
1722	if (b->level) {
1723		ret = btree_gc_recurse(b, op, writes, gc);
1724		if (ret)
1725			return ret;
1726	}
1727
1728	bkey_copy_key(&b->c->gc_done, &b->key);
1729
1730	return ret;
1731}
1732
1733static void btree_gc_start(struct cache_set *c)
1734{
1735	struct cache *ca;
1736	struct bucket *b;
1737	unsigned int i;
1738
1739	if (!c->gc_mark_valid)
1740		return;
1741
1742	mutex_lock(&c->bucket_lock);
1743
1744	c->gc_mark_valid = 0;
1745	c->gc_done = ZERO_KEY;
1746
1747	for_each_cache(ca, c, i)
1748		for_each_bucket(b, ca) {
1749			b->last_gc = b->gen;
1750			if (!atomic_read(&b->pin)) {
1751				SET_GC_MARK(b, 0);
1752				SET_GC_SECTORS_USED(b, 0);
1753			}
1754		}
 
1755
1756	mutex_unlock(&c->bucket_lock);
1757}
1758
1759static void bch_btree_gc_finish(struct cache_set *c)
1760{
1761	struct bucket *b;
1762	struct cache *ca;
1763	unsigned int i;
 
1764
1765	mutex_lock(&c->bucket_lock);
1766
1767	set_gc_sectors(c);
1768	c->gc_mark_valid = 1;
1769	c->need_gc	= 0;
1770
1771	for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1772		SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1773			    GC_MARK_METADATA);
1774
1775	/* don't reclaim buckets to which writeback keys point */
1776	rcu_read_lock();
1777	for (i = 0; i < c->devices_max_used; i++) {
1778		struct bcache_device *d = c->devices[i];
1779		struct cached_dev *dc;
1780		struct keybuf_key *w, *n;
1781		unsigned int j;
1782
1783		if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1784			continue;
1785		dc = container_of(d, struct cached_dev, disk);
1786
1787		spin_lock(&dc->writeback_keys.lock);
1788		rbtree_postorder_for_each_entry_safe(w, n,
1789					&dc->writeback_keys.keys, node)
1790			for (j = 0; j < KEY_PTRS(&w->key); j++)
1791				SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1792					    GC_MARK_DIRTY);
1793		spin_unlock(&dc->writeback_keys.lock);
1794	}
1795	rcu_read_unlock();
1796
1797	c->avail_nbuckets = 0;
1798	for_each_cache(ca, c, i) {
1799		uint64_t *i;
1800
1801		ca->invalidate_needs_gc = 0;
 
1802
1803		for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
1804			SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1805
1806		for (i = ca->prio_buckets;
1807		     i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
1808			SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
1809
1810		for_each_bucket(b, ca) {
1811			c->need_gc	= max(c->need_gc, bucket_gc_gen(b));
1812
1813			if (atomic_read(&b->pin))
1814				continue;
1815
1816			BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1817
1818			if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1819				c->avail_nbuckets++;
1820		}
1821	}
1822
1823	mutex_unlock(&c->bucket_lock);
1824}
1825
1826static void bch_btree_gc(struct cache_set *c)
1827{
1828	int ret;
1829	struct gc_stat stats;
1830	struct closure writes;
1831	struct btree_op op;
1832	uint64_t start_time = local_clock();
1833
1834	trace_bcache_gc_start(c);
1835
1836	memset(&stats, 0, sizeof(struct gc_stat));
1837	closure_init_stack(&writes);
1838	bch_btree_op_init(&op, SHRT_MAX);
1839
1840	btree_gc_start(c);
1841
1842	/* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1843	do {
1844		ret = btree_root(gc_root, c, &op, &writes, &stats);
1845		closure_sync(&writes);
1846		cond_resched();
1847
1848		if (ret == -EAGAIN)
1849			schedule_timeout_interruptible(msecs_to_jiffies
1850						       (GC_SLEEP_MS));
1851		else if (ret)
1852			pr_warn("gc failed!");
1853	} while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1854
1855	bch_btree_gc_finish(c);
1856	wake_up_allocators(c);
1857
1858	bch_time_stats_update(&c->btree_gc_time, start_time);
1859
1860	stats.key_bytes *= sizeof(uint64_t);
1861	stats.data	<<= 9;
1862	bch_update_bucket_in_use(c, &stats);
1863	memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1864
1865	trace_bcache_gc_end(c);
1866
1867	bch_moving_gc(c);
1868}
1869
1870static bool gc_should_run(struct cache_set *c)
1871{
1872	struct cache *ca;
1873	unsigned int i;
1874
1875	for_each_cache(ca, c, i)
1876		if (ca->invalidate_needs_gc)
1877			return true;
1878
1879	if (atomic_read(&c->sectors_to_gc) < 0)
1880		return true;
1881
1882	return false;
1883}
1884
1885static int bch_gc_thread(void *arg)
1886{
1887	struct cache_set *c = arg;
1888
1889	while (1) {
1890		wait_event_interruptible(c->gc_wait,
1891			   kthread_should_stop() ||
1892			   test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1893			   gc_should_run(c));
1894
1895		if (kthread_should_stop() ||
1896		    test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1897			break;
1898
1899		set_gc_sectors(c);
1900		bch_btree_gc(c);
1901	}
1902
1903	wait_for_kthread_stop();
1904	return 0;
1905}
1906
1907int bch_gc_thread_start(struct cache_set *c)
1908{
1909	c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1910	return PTR_ERR_OR_ZERO(c->gc_thread);
1911}
1912
1913/* Initial partial gc */
1914
1915static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1916{
1917	int ret = 0;
1918	struct bkey *k, *p = NULL;
1919	struct btree_iter iter;
1920
1921	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1922		bch_initial_mark_key(b->c, b->level, k);
1923
1924	bch_initial_mark_key(b->c, b->level + 1, &b->key);
1925
1926	if (b->level) {
1927		bch_btree_iter_init(&b->keys, &iter, NULL);
1928
1929		do {
1930			k = bch_btree_iter_next_filter(&iter, &b->keys,
1931						       bch_ptr_bad);
1932			if (k) {
1933				btree_node_prefetch(b, k);
1934				/*
1935				 * initiallize c->gc_stats.nodes
1936				 * for incremental GC
1937				 */
1938				b->c->gc_stats.nodes++;
1939			}
1940
1941			if (p)
1942				ret = btree(check_recurse, p, b, op);
1943
1944			p = k;
1945		} while (p && !ret);
1946	}
1947
1948	return ret;
1949}
1950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1951int bch_btree_check(struct cache_set *c)
1952{
1953	struct btree_op op;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1954
1955	bch_btree_op_init(&op, SHRT_MAX);
 
 
 
 
 
1956
1957	return btree_root(check_recurse, c, &op);
 
 
1958}
1959
1960void bch_initial_gc_finish(struct cache_set *c)
1961{
1962	struct cache *ca;
1963	struct bucket *b;
1964	unsigned int i;
1965
1966	bch_btree_gc_finish(c);
1967
1968	mutex_lock(&c->bucket_lock);
1969
1970	/*
1971	 * We need to put some unused buckets directly on the prio freelist in
1972	 * order to get the allocator thread started - it needs freed buckets in
1973	 * order to rewrite the prios and gens, and it needs to rewrite prios
1974	 * and gens in order to free buckets.
1975	 *
1976	 * This is only safe for buckets that have no live data in them, which
1977	 * there should always be some of.
1978	 */
1979	for_each_cache(ca, c, i) {
1980		for_each_bucket(b, ca) {
1981			if (fifo_full(&ca->free[RESERVE_PRIO]) &&
1982			    fifo_full(&ca->free[RESERVE_BTREE]))
1983				break;
1984
1985			if (bch_can_invalidate_bucket(ca, b) &&
1986			    !GC_MARK(b)) {
1987				__bch_invalidate_one_bucket(ca, b);
1988				if (!fifo_push(&ca->free[RESERVE_PRIO],
1989				   b - ca->buckets))
1990					fifo_push(&ca->free[RESERVE_BTREE],
1991						  b - ca->buckets);
1992			}
1993		}
1994	}
1995
1996	mutex_unlock(&c->bucket_lock);
1997}
1998
1999/* Btree insertion */
2000
2001static bool btree_insert_key(struct btree *b, struct bkey *k,
2002			     struct bkey *replace_key)
2003{
2004	unsigned int status;
2005
2006	BUG_ON(bkey_cmp(k, &b->key) > 0);
2007
2008	status = bch_btree_insert_key(&b->keys, k, replace_key);
2009	if (status != BTREE_INSERT_STATUS_NO_INSERT) {
2010		bch_check_keys(&b->keys, "%u for %s", status,
2011			       replace_key ? "replace" : "insert");
2012
2013		trace_bcache_btree_insert_key(b, k, replace_key != NULL,
2014					      status);
2015		return true;
2016	} else
2017		return false;
2018}
2019
2020static size_t insert_u64s_remaining(struct btree *b)
2021{
2022	long ret = bch_btree_keys_u64s_remaining(&b->keys);
2023
2024	/*
2025	 * Might land in the middle of an existing extent and have to split it
2026	 */
2027	if (b->keys.ops->is_extents)
2028		ret -= KEY_MAX_U64S;
2029
2030	return max(ret, 0L);
2031}
2032
2033static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
2034				  struct keylist *insert_keys,
2035				  struct bkey *replace_key)
2036{
2037	bool ret = false;
2038	int oldsize = bch_count_data(&b->keys);
2039
2040	while (!bch_keylist_empty(insert_keys)) {
2041		struct bkey *k = insert_keys->keys;
2042
2043		if (bkey_u64s(k) > insert_u64s_remaining(b))
2044			break;
2045
2046		if (bkey_cmp(k, &b->key) <= 0) {
2047			if (!b->level)
2048				bkey_put(b->c, k);
2049
2050			ret |= btree_insert_key(b, k, replace_key);
2051			bch_keylist_pop_front(insert_keys);
2052		} else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
2053			BKEY_PADDED(key) temp;
2054			bkey_copy(&temp.key, insert_keys->keys);
2055
2056			bch_cut_back(&b->key, &temp.key);
2057			bch_cut_front(&b->key, insert_keys->keys);
2058
2059			ret |= btree_insert_key(b, &temp.key, replace_key);
2060			break;
2061		} else {
2062			break;
2063		}
2064	}
2065
2066	if (!ret)
2067		op->insert_collision = true;
2068
2069	BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2070
2071	BUG_ON(bch_count_data(&b->keys) < oldsize);
2072	return ret;
2073}
2074
2075static int btree_split(struct btree *b, struct btree_op *op,
2076		       struct keylist *insert_keys,
2077		       struct bkey *replace_key)
2078{
2079	bool split;
2080	struct btree *n1, *n2 = NULL, *n3 = NULL;
2081	uint64_t start_time = local_clock();
2082	struct closure cl;
2083	struct keylist parent_keys;
2084
2085	closure_init_stack(&cl);
2086	bch_keylist_init(&parent_keys);
2087
2088	if (btree_check_reserve(b, op)) {
2089		if (!b->level)
2090			return -EINTR;
2091		else
2092			WARN(1, "insufficient reserve for split\n");
2093	}
2094
2095	n1 = btree_node_alloc_replacement(b, op);
2096	if (IS_ERR(n1))
2097		goto err;
2098
2099	split = set_blocks(btree_bset_first(n1),
2100			   block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
2101
2102	if (split) {
2103		unsigned int keys = 0;
2104
2105		trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2106
2107		n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2108		if (IS_ERR(n2))
2109			goto err_free1;
2110
2111		if (!b->parent) {
2112			n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2113			if (IS_ERR(n3))
2114				goto err_free2;
2115		}
2116
2117		mutex_lock(&n1->write_lock);
2118		mutex_lock(&n2->write_lock);
2119
2120		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2121
2122		/*
2123		 * Has to be a linear search because we don't have an auxiliary
2124		 * search tree yet
2125		 */
2126
2127		while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2128			keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2129							keys));
2130
2131		bkey_copy_key(&n1->key,
2132			      bset_bkey_idx(btree_bset_first(n1), keys));
2133		keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2134
2135		btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2136		btree_bset_first(n1)->keys = keys;
2137
2138		memcpy(btree_bset_first(n2)->start,
2139		       bset_bkey_last(btree_bset_first(n1)),
2140		       btree_bset_first(n2)->keys * sizeof(uint64_t));
2141
2142		bkey_copy_key(&n2->key, &b->key);
2143
2144		bch_keylist_add(&parent_keys, &n2->key);
2145		bch_btree_node_write(n2, &cl);
2146		mutex_unlock(&n2->write_lock);
2147		rw_unlock(true, n2);
2148	} else {
2149		trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2150
2151		mutex_lock(&n1->write_lock);
2152		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2153	}
2154
2155	bch_keylist_add(&parent_keys, &n1->key);
2156	bch_btree_node_write(n1, &cl);
2157	mutex_unlock(&n1->write_lock);
2158
2159	if (n3) {
2160		/* Depth increases, make a new root */
2161		mutex_lock(&n3->write_lock);
2162		bkey_copy_key(&n3->key, &MAX_KEY);
2163		bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2164		bch_btree_node_write(n3, &cl);
2165		mutex_unlock(&n3->write_lock);
2166
2167		closure_sync(&cl);
2168		bch_btree_set_root(n3);
2169		rw_unlock(true, n3);
2170	} else if (!b->parent) {
2171		/* Root filled up but didn't need to be split */
2172		closure_sync(&cl);
2173		bch_btree_set_root(n1);
2174	} else {
2175		/* Split a non root node */
2176		closure_sync(&cl);
2177		make_btree_freeing_key(b, parent_keys.top);
2178		bch_keylist_push(&parent_keys);
2179
2180		bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2181		BUG_ON(!bch_keylist_empty(&parent_keys));
2182	}
2183
2184	btree_node_free(b);
2185	rw_unlock(true, n1);
2186
2187	bch_time_stats_update(&b->c->btree_split_time, start_time);
2188
2189	return 0;
2190err_free2:
2191	bkey_put(b->c, &n2->key);
2192	btree_node_free(n2);
2193	rw_unlock(true, n2);
2194err_free1:
2195	bkey_put(b->c, &n1->key);
2196	btree_node_free(n1);
2197	rw_unlock(true, n1);
2198err:
2199	WARN(1, "bcache: btree split failed (level %u)", b->level);
2200
2201	if (n3 == ERR_PTR(-EAGAIN) ||
2202	    n2 == ERR_PTR(-EAGAIN) ||
2203	    n1 == ERR_PTR(-EAGAIN))
2204		return -EAGAIN;
2205
2206	return -ENOMEM;
2207}
2208
2209static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2210				 struct keylist *insert_keys,
2211				 atomic_t *journal_ref,
2212				 struct bkey *replace_key)
2213{
2214	struct closure cl;
2215
2216	BUG_ON(b->level && replace_key);
2217
2218	closure_init_stack(&cl);
2219
2220	mutex_lock(&b->write_lock);
2221
2222	if (write_block(b) != btree_bset_last(b) &&
2223	    b->keys.last_set_unwritten)
2224		bch_btree_init_next(b); /* just wrote a set */
2225
2226	if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2227		mutex_unlock(&b->write_lock);
2228		goto split;
2229	}
2230
2231	BUG_ON(write_block(b) != btree_bset_last(b));
2232
2233	if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2234		if (!b->level)
2235			bch_btree_leaf_dirty(b, journal_ref);
2236		else
2237			bch_btree_node_write(b, &cl);
2238	}
2239
2240	mutex_unlock(&b->write_lock);
2241
2242	/* wait for btree node write if necessary, after unlock */
2243	closure_sync(&cl);
2244
2245	return 0;
2246split:
2247	if (current->bio_list) {
2248		op->lock = b->c->root->level + 1;
2249		return -EAGAIN;
2250	} else if (op->lock <= b->c->root->level) {
2251		op->lock = b->c->root->level + 1;
2252		return -EINTR;
2253	} else {
2254		/* Invalidated all iterators */
2255		int ret = btree_split(b, op, insert_keys, replace_key);
2256
2257		if (bch_keylist_empty(insert_keys))
2258			return 0;
2259		else if (!ret)
2260			return -EINTR;
2261		return ret;
2262	}
2263}
2264
2265int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2266			       struct bkey *check_key)
2267{
2268	int ret = -EINTR;
2269	uint64_t btree_ptr = b->key.ptr[0];
2270	unsigned long seq = b->seq;
2271	struct keylist insert;
2272	bool upgrade = op->lock == -1;
2273
2274	bch_keylist_init(&insert);
2275
2276	if (upgrade) {
2277		rw_unlock(false, b);
2278		rw_lock(true, b, b->level);
2279
2280		if (b->key.ptr[0] != btree_ptr ||
2281		    b->seq != seq + 1) {
2282			op->lock = b->level;
2283			goto out;
2284		}
2285	}
2286
2287	SET_KEY_PTRS(check_key, 1);
2288	get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2289
2290	SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2291
2292	bch_keylist_add(&insert, check_key);
2293
2294	ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2295
2296	BUG_ON(!ret && !bch_keylist_empty(&insert));
2297out:
2298	if (upgrade)
2299		downgrade_write(&b->lock);
2300	return ret;
2301}
2302
2303struct btree_insert_op {
2304	struct btree_op	op;
2305	struct keylist	*keys;
2306	atomic_t	*journal_ref;
2307	struct bkey	*replace_key;
2308};
2309
2310static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2311{
2312	struct btree_insert_op *op = container_of(b_op,
2313					struct btree_insert_op, op);
2314
2315	int ret = bch_btree_insert_node(b, &op->op, op->keys,
2316					op->journal_ref, op->replace_key);
2317	if (ret && !bch_keylist_empty(op->keys))
2318		return ret;
2319	else
2320		return MAP_DONE;
2321}
2322
2323int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2324		     atomic_t *journal_ref, struct bkey *replace_key)
2325{
2326	struct btree_insert_op op;
2327	int ret = 0;
2328
2329	BUG_ON(current->bio_list);
2330	BUG_ON(bch_keylist_empty(keys));
2331
2332	bch_btree_op_init(&op.op, 0);
2333	op.keys		= keys;
2334	op.journal_ref	= journal_ref;
2335	op.replace_key	= replace_key;
2336
2337	while (!ret && !bch_keylist_empty(keys)) {
2338		op.op.lock = 0;
2339		ret = bch_btree_map_leaf_nodes(&op.op, c,
2340					       &START_KEY(keys->keys),
2341					       btree_insert_fn);
2342	}
2343
2344	if (ret) {
2345		struct bkey *k;
2346
2347		pr_err("error %i", ret);
2348
2349		while ((k = bch_keylist_pop(keys)))
2350			bkey_put(c, k);
2351	} else if (op.op.insert_collision)
2352		ret = -ESRCH;
2353
2354	return ret;
2355}
2356
2357void bch_btree_set_root(struct btree *b)
2358{
2359	unsigned int i;
2360	struct closure cl;
2361
2362	closure_init_stack(&cl);
2363
2364	trace_bcache_btree_set_root(b);
2365
2366	BUG_ON(!b->written);
2367
2368	for (i = 0; i < KEY_PTRS(&b->key); i++)
2369		BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2370
2371	mutex_lock(&b->c->bucket_lock);
2372	list_del_init(&b->list);
2373	mutex_unlock(&b->c->bucket_lock);
2374
2375	b->c->root = b;
2376
2377	bch_journal_meta(b->c, &cl);
2378	closure_sync(&cl);
2379}
2380
2381/* Map across nodes or keys */
2382
2383static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2384				       struct bkey *from,
2385				       btree_map_nodes_fn *fn, int flags)
2386{
2387	int ret = MAP_CONTINUE;
2388
2389	if (b->level) {
2390		struct bkey *k;
2391		struct btree_iter iter;
2392
2393		bch_btree_iter_init(&b->keys, &iter, from);
2394
2395		while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2396						       bch_ptr_bad))) {
2397			ret = btree(map_nodes_recurse, k, b,
2398				    op, from, fn, flags);
2399			from = NULL;
2400
2401			if (ret != MAP_CONTINUE)
2402				return ret;
2403		}
2404	}
2405
2406	if (!b->level || flags == MAP_ALL_NODES)
2407		ret = fn(op, b);
2408
2409	return ret;
2410}
2411
2412int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2413			  struct bkey *from, btree_map_nodes_fn *fn, int flags)
2414{
2415	return btree_root(map_nodes_recurse, c, op, from, fn, flags);
2416}
2417
2418static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2419				      struct bkey *from, btree_map_keys_fn *fn,
2420				      int flags)
2421{
2422	int ret = MAP_CONTINUE;
2423	struct bkey *k;
2424	struct btree_iter iter;
2425
2426	bch_btree_iter_init(&b->keys, &iter, from);
2427
2428	while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2429		ret = !b->level
2430			? fn(op, b, k)
2431			: btree(map_keys_recurse, k, b, op, from, fn, flags);
 
2432		from = NULL;
2433
2434		if (ret != MAP_CONTINUE)
2435			return ret;
2436	}
2437
2438	if (!b->level && (flags & MAP_END_KEY))
2439		ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2440				     KEY_OFFSET(&b->key), 0));
2441
2442	return ret;
2443}
2444
2445int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2446		       struct bkey *from, btree_map_keys_fn *fn, int flags)
2447{
2448	return btree_root(map_keys_recurse, c, op, from, fn, flags);
2449}
2450
2451/* Keybuf code */
2452
2453static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2454{
2455	/* Overlapping keys compare equal */
2456	if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2457		return -1;
2458	if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2459		return 1;
2460	return 0;
2461}
2462
2463static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2464					    struct keybuf_key *r)
2465{
2466	return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2467}
2468
2469struct refill {
2470	struct btree_op	op;
2471	unsigned int	nr_found;
2472	struct keybuf	*buf;
2473	struct bkey	*end;
2474	keybuf_pred_fn	*pred;
2475};
2476
2477static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2478			    struct bkey *k)
2479{
2480	struct refill *refill = container_of(op, struct refill, op);
2481	struct keybuf *buf = refill->buf;
2482	int ret = MAP_CONTINUE;
2483
2484	if (bkey_cmp(k, refill->end) > 0) {
2485		ret = MAP_DONE;
2486		goto out;
2487	}
2488
2489	if (!KEY_SIZE(k)) /* end key */
2490		goto out;
2491
2492	if (refill->pred(buf, k)) {
2493		struct keybuf_key *w;
2494
2495		spin_lock(&buf->lock);
2496
2497		w = array_alloc(&buf->freelist);
2498		if (!w) {
2499			spin_unlock(&buf->lock);
2500			return MAP_DONE;
2501		}
2502
2503		w->private = NULL;
2504		bkey_copy(&w->key, k);
2505
2506		if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2507			array_free(&buf->freelist, w);
2508		else
2509			refill->nr_found++;
2510
2511		if (array_freelist_empty(&buf->freelist))
2512			ret = MAP_DONE;
2513
2514		spin_unlock(&buf->lock);
2515	}
2516out:
2517	buf->last_scanned = *k;
2518	return ret;
2519}
2520
2521void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2522		       struct bkey *end, keybuf_pred_fn *pred)
2523{
2524	struct bkey start = buf->last_scanned;
2525	struct refill refill;
2526
2527	cond_resched();
2528
2529	bch_btree_op_init(&refill.op, -1);
2530	refill.nr_found	= 0;
2531	refill.buf	= buf;
2532	refill.end	= end;
2533	refill.pred	= pred;
2534
2535	bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2536			   refill_keybuf_fn, MAP_END_KEY);
2537
2538	trace_bcache_keyscan(refill.nr_found,
2539			     KEY_INODE(&start), KEY_OFFSET(&start),
2540			     KEY_INODE(&buf->last_scanned),
2541			     KEY_OFFSET(&buf->last_scanned));
2542
2543	spin_lock(&buf->lock);
2544
2545	if (!RB_EMPTY_ROOT(&buf->keys)) {
2546		struct keybuf_key *w;
2547
2548		w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2549		buf->start	= START_KEY(&w->key);
2550
2551		w = RB_LAST(&buf->keys, struct keybuf_key, node);
2552		buf->end	= w->key;
2553	} else {
2554		buf->start	= MAX_KEY;
2555		buf->end	= MAX_KEY;
2556	}
2557
2558	spin_unlock(&buf->lock);
2559}
2560
2561static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2562{
2563	rb_erase(&w->node, &buf->keys);
2564	array_free(&buf->freelist, w);
2565}
2566
2567void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2568{
2569	spin_lock(&buf->lock);
2570	__bch_keybuf_del(buf, w);
2571	spin_unlock(&buf->lock);
2572}
2573
2574bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2575				  struct bkey *end)
2576{
2577	bool ret = false;
2578	struct keybuf_key *p, *w, s;
2579
2580	s.key = *start;
2581
2582	if (bkey_cmp(end, &buf->start) <= 0 ||
2583	    bkey_cmp(start, &buf->end) >= 0)
2584		return false;
2585
2586	spin_lock(&buf->lock);
2587	w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2588
2589	while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2590		p = w;
2591		w = RB_NEXT(w, node);
2592
2593		if (p->private)
2594			ret = true;
2595		else
2596			__bch_keybuf_del(buf, p);
2597	}
2598
2599	spin_unlock(&buf->lock);
2600	return ret;
2601}
2602
2603struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2604{
2605	struct keybuf_key *w;
2606
2607	spin_lock(&buf->lock);
2608
2609	w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2610
2611	while (w && w->private)
2612		w = RB_NEXT(w, node);
2613
2614	if (w)
2615		w->private = ERR_PTR(-EINTR);
2616
2617	spin_unlock(&buf->lock);
2618	return w;
2619}
2620
2621struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2622					  struct keybuf *buf,
2623					  struct bkey *end,
2624					  keybuf_pred_fn *pred)
2625{
2626	struct keybuf_key *ret;
2627
2628	while (1) {
2629		ret = bch_keybuf_next(buf);
2630		if (ret)
2631			break;
2632
2633		if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2634			pr_debug("scan finished");
2635			break;
2636		}
2637
2638		bch_refill_keybuf(c, buf, end, pred);
2639	}
2640
2641	return ret;
2642}
2643
2644void bch_keybuf_init(struct keybuf *buf)
2645{
2646	buf->last_scanned	= MAX_KEY;
2647	buf->keys		= RB_ROOT;
2648
2649	spin_lock_init(&buf->lock);
2650	array_allocator_init(&buf->freelist);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2651}