Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
   4 *
   5 * Uses a block device as cache for other block devices; optimized for SSDs.
   6 * All allocation is done in buckets, which should match the erase block size
   7 * of the device.
   8 *
   9 * Buckets containing cached data are kept on a heap sorted by priority;
  10 * bucket priority is increased on cache hit, and periodically all the buckets
  11 * on the heap have their priority scaled down. This currently is just used as
  12 * an LRU but in the future should allow for more intelligent heuristics.
  13 *
  14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
  15 * counter. Garbage collection is used to remove stale pointers.
  16 *
  17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
  18 * as keys are inserted we only sort the pages that have not yet been written.
  19 * When garbage collection is run, we resort the entire node.
  20 *
  21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
  22 */
  23
  24#include "bcache.h"
  25#include "btree.h"
  26#include "debug.h"
  27#include "extents.h"
  28
  29#include <linux/slab.h>
  30#include <linux/bitops.h>
  31#include <linux/hash.h>
  32#include <linux/kthread.h>
  33#include <linux/prefetch.h>
  34#include <linux/random.h>
  35#include <linux/rcupdate.h>
  36#include <linux/sched/clock.h>
  37#include <linux/rculist.h>
  38#include <linux/delay.h>
  39#include <trace/events/bcache.h>
  40
  41/*
  42 * Todo:
  43 * register_bcache: Return errors out to userspace correctly
  44 *
  45 * Writeback: don't undirty key until after a cache flush
  46 *
  47 * Create an iterator for key pointers
  48 *
  49 * On btree write error, mark bucket such that it won't be freed from the cache
  50 *
  51 * Journalling:
  52 *   Check for bad keys in replay
  53 *   Propagate barriers
  54 *   Refcount journal entries in journal_replay
  55 *
  56 * Garbage collection:
  57 *   Finish incremental gc
  58 *   Gc should free old UUIDs, data for invalid UUIDs
  59 *
  60 * Provide a way to list backing device UUIDs we have data cached for, and
  61 * probably how long it's been since we've seen them, and a way to invalidate
  62 * dirty data for devices that will never be attached again
  63 *
  64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
  65 * that based on that and how much dirty data we have we can keep writeback
  66 * from being starved
  67 *
  68 * Add a tracepoint or somesuch to watch for writeback starvation
  69 *
  70 * When btree depth > 1 and splitting an interior node, we have to make sure
  71 * alloc_bucket() cannot fail. This should be true but is not completely
  72 * obvious.
  73 *
  74 * Plugging?
  75 *
  76 * If data write is less than hard sector size of ssd, round up offset in open
  77 * bucket to the next whole sector
  78 *
  79 * Superblock needs to be fleshed out for multiple cache devices
  80 *
  81 * Add a sysfs tunable for the number of writeback IOs in flight
  82 *
  83 * Add a sysfs tunable for the number of open data buckets
  84 *
  85 * IO tracking: Can we track when one process is doing io on behalf of another?
  86 * IO tracking: Don't use just an average, weigh more recent stuff higher
  87 *
  88 * Test module load/unload
  89 */
  90
  91#define MAX_NEED_GC		64
  92#define MAX_SAVE_PRIO		72
  93#define MAX_GC_TIMES		100
  94#define MIN_GC_NODES		100
  95#define GC_SLEEP_MS		100
  96
  97#define PTR_DIRTY_BIT		(((uint64_t) 1 << 36))
  98
  99#define PTR_HASH(c, k)							\
 100	(((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
 101
 102static struct workqueue_struct *btree_io_wq;
 103
 104#define insert_lock(s, b)	((b)->level <= (s)->lock)
 105
 106
 107static inline struct bset *write_block(struct btree *b)
 108{
 109	return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c->cache);
 110}
 111
 112static void bch_btree_init_next(struct btree *b)
 113{
 114	/* If not a leaf node, always sort */
 115	if (b->level && b->keys.nsets)
 116		bch_btree_sort(&b->keys, &b->c->sort);
 117	else
 118		bch_btree_sort_lazy(&b->keys, &b->c->sort);
 119
 120	if (b->written < btree_blocks(b))
 121		bch_bset_init_next(&b->keys, write_block(b),
 122				   bset_magic(&b->c->cache->sb));
 123
 124}
 125
 126/* Btree key manipulation */
 127
 128void bkey_put(struct cache_set *c, struct bkey *k)
 129{
 130	unsigned int i;
 131
 132	for (i = 0; i < KEY_PTRS(k); i++)
 133		if (ptr_available(c, k, i))
 134			atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
 135}
 136
 137/* Btree IO */
 138
 139static uint64_t btree_csum_set(struct btree *b, struct bset *i)
 140{
 141	uint64_t crc = b->key.ptr[0];
 142	void *data = (void *) i + 8, *end = bset_bkey_last(i);
 143
 144	crc = crc64_be(crc, data, end - data);
 145	return crc ^ 0xffffffffffffffffULL;
 146}
 147
 148void bch_btree_node_read_done(struct btree *b)
 149{
 150	const char *err = "bad btree header";
 151	struct bset *i = btree_bset_first(b);
 152	struct btree_iter *iter;
 153
 154	/*
 155	 * c->fill_iter can allocate an iterator with more memory space
 156	 * than static MAX_BSETS.
 157	 * See the comment arount cache_set->fill_iter.
 158	 */
 159	iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
 160	iter->size = b->c->cache->sb.bucket_size / b->c->cache->sb.block_size;
 161	iter->used = 0;
 162
 163#ifdef CONFIG_BCACHE_DEBUG
 164	iter->b = &b->keys;
 165#endif
 166
 167	if (!i->seq)
 168		goto err;
 169
 170	for (;
 171	     b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
 172	     i = write_block(b)) {
 173		err = "unsupported bset version";
 174		if (i->version > BCACHE_BSET_VERSION)
 175			goto err;
 176
 177		err = "bad btree header";
 178		if (b->written + set_blocks(i, block_bytes(b->c->cache)) >
 179		    btree_blocks(b))
 180			goto err;
 181
 182		err = "bad magic";
 183		if (i->magic != bset_magic(&b->c->cache->sb))
 184			goto err;
 185
 186		err = "bad checksum";
 187		switch (i->version) {
 188		case 0:
 189			if (i->csum != csum_set(i))
 190				goto err;
 191			break;
 192		case BCACHE_BSET_VERSION:
 193			if (i->csum != btree_csum_set(b, i))
 194				goto err;
 195			break;
 196		}
 197
 198		err = "empty set";
 199		if (i != b->keys.set[0].data && !i->keys)
 200			goto err;
 201
 202		bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
 203
 204		b->written += set_blocks(i, block_bytes(b->c->cache));
 205	}
 206
 207	err = "corrupted btree";
 208	for (i = write_block(b);
 209	     bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
 210	     i = ((void *) i) + block_bytes(b->c->cache))
 211		if (i->seq == b->keys.set[0].data->seq)
 212			goto err;
 213
 214	bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
 215
 216	i = b->keys.set[0].data;
 217	err = "short btree key";
 218	if (b->keys.set[0].size &&
 219	    bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
 220		goto err;
 221
 222	if (b->written < btree_blocks(b))
 223		bch_bset_init_next(&b->keys, write_block(b),
 224				   bset_magic(&b->c->cache->sb));
 225out:
 226	mempool_free(iter, &b->c->fill_iter);
 227	return;
 228err:
 229	set_btree_node_io_error(b);
 230	bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
 231			    err, PTR_BUCKET_NR(b->c, &b->key, 0),
 232			    bset_block_offset(b, i), i->keys);
 233	goto out;
 234}
 235
 236static void btree_node_read_endio(struct bio *bio)
 237{
 238	struct closure *cl = bio->bi_private;
 239
 240	closure_put(cl);
 241}
 242
 243static void bch_btree_node_read(struct btree *b)
 244{
 245	uint64_t start_time = local_clock();
 246	struct closure cl;
 247	struct bio *bio;
 248
 249	trace_bcache_btree_read(b);
 250
 251	closure_init_stack(&cl);
 252
 253	bio = bch_bbio_alloc(b->c);
 254	bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
 255	bio->bi_end_io	= btree_node_read_endio;
 256	bio->bi_private	= &cl;
 257	bio->bi_opf = REQ_OP_READ | REQ_META;
 258
 259	bch_bio_map(bio, b->keys.set[0].data);
 260
 261	bch_submit_bbio(bio, b->c, &b->key, 0);
 262	closure_sync(&cl);
 263
 264	if (bio->bi_status)
 265		set_btree_node_io_error(b);
 266
 267	bch_bbio_free(bio, b->c);
 268
 269	if (btree_node_io_error(b))
 270		goto err;
 271
 272	bch_btree_node_read_done(b);
 273	bch_time_stats_update(&b->c->btree_read_time, start_time);
 274
 275	return;
 276err:
 277	bch_cache_set_error(b->c, "io error reading bucket %zu",
 278			    PTR_BUCKET_NR(b->c, &b->key, 0));
 279}
 280
 281static void btree_complete_write(struct btree *b, struct btree_write *w)
 282{
 283	if (w->prio_blocked &&
 284	    !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
 285		wake_up_allocators(b->c);
 286
 287	if (w->journal) {
 288		atomic_dec_bug(w->journal);
 289		__closure_wake_up(&b->c->journal.wait);
 290	}
 291
 292	w->prio_blocked	= 0;
 293	w->journal	= NULL;
 294}
 295
 296static void btree_node_write_unlock(struct closure *cl)
 297{
 298	struct btree *b = container_of(cl, struct btree, io);
 299
 300	up(&b->io_mutex);
 301}
 302
 303static void __btree_node_write_done(struct closure *cl)
 304{
 305	struct btree *b = container_of(cl, struct btree, io);
 306	struct btree_write *w = btree_prev_write(b);
 307
 308	bch_bbio_free(b->bio, b->c);
 309	b->bio = NULL;
 310	btree_complete_write(b, w);
 311
 312	if (btree_node_dirty(b))
 313		queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
 314
 315	closure_return_with_destructor(cl, btree_node_write_unlock);
 316}
 317
 318static void btree_node_write_done(struct closure *cl)
 319{
 320	struct btree *b = container_of(cl, struct btree, io);
 321
 322	bio_free_pages(b->bio);
 323	__btree_node_write_done(cl);
 324}
 325
 326static void btree_node_write_endio(struct bio *bio)
 327{
 328	struct closure *cl = bio->bi_private;
 329	struct btree *b = container_of(cl, struct btree, io);
 330
 331	if (bio->bi_status)
 332		set_btree_node_io_error(b);
 333
 334	bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
 335	closure_put(cl);
 336}
 337
 338static void do_btree_node_write(struct btree *b)
 339{
 340	struct closure *cl = &b->io;
 341	struct bset *i = btree_bset_last(b);
 342	BKEY_PADDED(key) k;
 343
 344	i->version	= BCACHE_BSET_VERSION;
 345	i->csum		= btree_csum_set(b, i);
 346
 347	BUG_ON(b->bio);
 348	b->bio = bch_bbio_alloc(b->c);
 349
 350	b->bio->bi_end_io	= btree_node_write_endio;
 351	b->bio->bi_private	= cl;
 352	b->bio->bi_iter.bi_size	= roundup(set_bytes(i), block_bytes(b->c->cache));
 353	b->bio->bi_opf		= REQ_OP_WRITE | REQ_META | REQ_FUA;
 354	bch_bio_map(b->bio, i);
 355
 356	/*
 357	 * If we're appending to a leaf node, we don't technically need FUA -
 358	 * this write just needs to be persisted before the next journal write,
 359	 * which will be marked FLUSH|FUA.
 360	 *
 361	 * Similarly if we're writing a new btree root - the pointer is going to
 362	 * be in the next journal entry.
 363	 *
 364	 * But if we're writing a new btree node (that isn't a root) or
 365	 * appending to a non leaf btree node, we need either FUA or a flush
 366	 * when we write the parent with the new pointer. FUA is cheaper than a
 367	 * flush, and writes appending to leaf nodes aren't blocking anything so
 368	 * just make all btree node writes FUA to keep things sane.
 369	 */
 370
 371	bkey_copy(&k.key, &b->key);
 372	SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
 373		       bset_sector_offset(&b->keys, i));
 374
 375	if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
 376		struct bio_vec *bv;
 377		void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
 378		struct bvec_iter_all iter_all;
 379
 380		bio_for_each_segment_all(bv, b->bio, iter_all) {
 381			memcpy(page_address(bv->bv_page), addr, PAGE_SIZE);
 382			addr += PAGE_SIZE;
 383		}
 384
 385		bch_submit_bbio(b->bio, b->c, &k.key, 0);
 386
 387		continue_at(cl, btree_node_write_done, NULL);
 388	} else {
 389		/*
 390		 * No problem for multipage bvec since the bio is
 391		 * just allocated
 392		 */
 393		b->bio->bi_vcnt = 0;
 394		bch_bio_map(b->bio, i);
 395
 396		bch_submit_bbio(b->bio, b->c, &k.key, 0);
 397
 398		closure_sync(cl);
 399		continue_at_nobarrier(cl, __btree_node_write_done, NULL);
 400	}
 401}
 402
 403void __bch_btree_node_write(struct btree *b, struct closure *parent)
 404{
 405	struct bset *i = btree_bset_last(b);
 406
 407	lockdep_assert_held(&b->write_lock);
 408
 409	trace_bcache_btree_write(b);
 410
 411	BUG_ON(current->bio_list);
 412	BUG_ON(b->written >= btree_blocks(b));
 413	BUG_ON(b->written && !i->keys);
 414	BUG_ON(btree_bset_first(b)->seq != i->seq);
 415	bch_check_keys(&b->keys, "writing");
 416
 417	cancel_delayed_work(&b->work);
 418
 419	/* If caller isn't waiting for write, parent refcount is cache set */
 420	down(&b->io_mutex);
 421	closure_init(&b->io, parent ?: &b->c->cl);
 422
 423	clear_bit(BTREE_NODE_dirty,	 &b->flags);
 424	change_bit(BTREE_NODE_write_idx, &b->flags);
 425
 426	do_btree_node_write(b);
 427
 428	atomic_long_add(set_blocks(i, block_bytes(b->c->cache)) * b->c->cache->sb.block_size,
 429			&b->c->cache->btree_sectors_written);
 430
 431	b->written += set_blocks(i, block_bytes(b->c->cache));
 432}
 433
 434void bch_btree_node_write(struct btree *b, struct closure *parent)
 435{
 436	unsigned int nsets = b->keys.nsets;
 437
 438	lockdep_assert_held(&b->lock);
 439
 440	__bch_btree_node_write(b, parent);
 441
 442	/*
 443	 * do verify if there was more than one set initially (i.e. we did a
 444	 * sort) and we sorted down to a single set:
 445	 */
 446	if (nsets && !b->keys.nsets)
 447		bch_btree_verify(b);
 448
 449	bch_btree_init_next(b);
 450}
 451
 452static void bch_btree_node_write_sync(struct btree *b)
 453{
 454	struct closure cl;
 455
 456	closure_init_stack(&cl);
 457
 458	mutex_lock(&b->write_lock);
 459	bch_btree_node_write(b, &cl);
 460	mutex_unlock(&b->write_lock);
 461
 462	closure_sync(&cl);
 463}
 464
 465static void btree_node_write_work(struct work_struct *w)
 466{
 467	struct btree *b = container_of(to_delayed_work(w), struct btree, work);
 468
 469	mutex_lock(&b->write_lock);
 470	if (btree_node_dirty(b))
 471		__bch_btree_node_write(b, NULL);
 472	mutex_unlock(&b->write_lock);
 473}
 474
 475static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
 476{
 477	struct bset *i = btree_bset_last(b);
 478	struct btree_write *w = btree_current_write(b);
 479
 480	lockdep_assert_held(&b->write_lock);
 481
 482	BUG_ON(!b->written);
 483	BUG_ON(!i->keys);
 484
 485	if (!btree_node_dirty(b))
 486		queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
 487
 488	set_btree_node_dirty(b);
 489
 490	/*
 491	 * w->journal is always the oldest journal pin of all bkeys
 492	 * in the leaf node, to make sure the oldest jset seq won't
 493	 * be increased before this btree node is flushed.
 494	 */
 495	if (journal_ref) {
 496		if (w->journal &&
 497		    journal_pin_cmp(b->c, w->journal, journal_ref)) {
 498			atomic_dec_bug(w->journal);
 499			w->journal = NULL;
 500		}
 501
 502		if (!w->journal) {
 503			w->journal = journal_ref;
 504			atomic_inc(w->journal);
 505		}
 506	}
 507
 508	/* Force write if set is too big */
 509	if (set_bytes(i) > PAGE_SIZE - 48 &&
 510	    !current->bio_list)
 511		bch_btree_node_write(b, NULL);
 512}
 513
 514/*
 515 * Btree in memory cache - allocation/freeing
 516 * mca -> memory cache
 517 */
 518
 519#define mca_reserve(c)	(((!IS_ERR_OR_NULL(c->root) && c->root->level) \
 520			  ? c->root->level : 1) * 8 + 16)
 521#define mca_can_free(c)						\
 522	max_t(int, 0, c->btree_cache_used - mca_reserve(c))
 523
 524static void mca_data_free(struct btree *b)
 525{
 526	BUG_ON(b->io_mutex.count != 1);
 527
 528	bch_btree_keys_free(&b->keys);
 529
 530	b->c->btree_cache_used--;
 531	list_move(&b->list, &b->c->btree_cache_freed);
 532}
 533
 534static void mca_bucket_free(struct btree *b)
 535{
 536	BUG_ON(btree_node_dirty(b));
 537
 538	b->key.ptr[0] = 0;
 539	hlist_del_init_rcu(&b->hash);
 540	list_move(&b->list, &b->c->btree_cache_freeable);
 541}
 542
 543static unsigned int btree_order(struct bkey *k)
 544{
 545	return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
 546}
 547
 548static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
 549{
 550	if (!bch_btree_keys_alloc(&b->keys,
 551				  max_t(unsigned int,
 552					ilog2(b->c->btree_pages),
 553					btree_order(k)),
 554				  gfp)) {
 555		b->c->btree_cache_used++;
 556		list_move(&b->list, &b->c->btree_cache);
 557	} else {
 558		list_move(&b->list, &b->c->btree_cache_freed);
 559	}
 560}
 561
 562static struct btree *mca_bucket_alloc(struct cache_set *c,
 563				      struct bkey *k, gfp_t gfp)
 564{
 565	/*
 566	 * kzalloc() is necessary here for initialization,
 567	 * see code comments in bch_btree_keys_init().
 568	 */
 569	struct btree *b = kzalloc(sizeof(struct btree), gfp);
 570
 571	if (!b)
 572		return NULL;
 573
 574	init_rwsem(&b->lock);
 575	lockdep_set_novalidate_class(&b->lock);
 576	mutex_init(&b->write_lock);
 577	lockdep_set_novalidate_class(&b->write_lock);
 578	INIT_LIST_HEAD(&b->list);
 579	INIT_DELAYED_WORK(&b->work, btree_node_write_work);
 580	b->c = c;
 581	sema_init(&b->io_mutex, 1);
 582
 583	mca_data_alloc(b, k, gfp);
 584	return b;
 585}
 586
 587static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
 588{
 589	struct closure cl;
 590
 591	closure_init_stack(&cl);
 592	lockdep_assert_held(&b->c->bucket_lock);
 593
 594	if (!down_write_trylock(&b->lock))
 595		return -ENOMEM;
 596
 597	BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
 598
 599	if (b->keys.page_order < min_order)
 600		goto out_unlock;
 601
 602	if (!flush) {
 603		if (btree_node_dirty(b))
 604			goto out_unlock;
 605
 606		if (down_trylock(&b->io_mutex))
 607			goto out_unlock;
 608		up(&b->io_mutex);
 609	}
 610
 611retry:
 612	/*
 613	 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by
 614	 * __bch_btree_node_write(). To avoid an extra flush, acquire
 615	 * b->write_lock before checking BTREE_NODE_dirty bit.
 616	 */
 617	mutex_lock(&b->write_lock);
 618	/*
 619	 * If this btree node is selected in btree_flush_write() by journal
 620	 * code, delay and retry until the node is flushed by journal code
 621	 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
 622	 */
 623	if (btree_node_journal_flush(b)) {
 624		pr_debug("bnode %p is flushing by journal, retry\n", b);
 625		mutex_unlock(&b->write_lock);
 626		udelay(1);
 627		goto retry;
 628	}
 629
 630	if (btree_node_dirty(b))
 631		__bch_btree_node_write(b, &cl);
 632	mutex_unlock(&b->write_lock);
 633
 634	closure_sync(&cl);
 635
 636	/* wait for any in flight btree write */
 637	down(&b->io_mutex);
 638	up(&b->io_mutex);
 639
 640	return 0;
 641out_unlock:
 642	rw_unlock(true, b);
 643	return -ENOMEM;
 644}
 645
 646static unsigned long bch_mca_scan(struct shrinker *shrink,
 647				  struct shrink_control *sc)
 648{
 649	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
 650	struct btree *b, *t;
 651	unsigned long i, nr = sc->nr_to_scan;
 652	unsigned long freed = 0;
 653	unsigned int btree_cache_used;
 654
 655	if (c->shrinker_disabled)
 656		return SHRINK_STOP;
 657
 658	if (c->btree_cache_alloc_lock)
 659		return SHRINK_STOP;
 660
 661	/* Return -1 if we can't do anything right now */
 662	if (sc->gfp_mask & __GFP_IO)
 663		mutex_lock(&c->bucket_lock);
 664	else if (!mutex_trylock(&c->bucket_lock))
 665		return -1;
 666
 667	/*
 668	 * It's _really_ critical that we don't free too many btree nodes - we
 669	 * have to always leave ourselves a reserve. The reserve is how we
 670	 * guarantee that allocating memory for a new btree node can always
 671	 * succeed, so that inserting keys into the btree can always succeed and
 672	 * IO can always make forward progress:
 673	 */
 674	nr /= c->btree_pages;
 675	if (nr == 0)
 676		nr = 1;
 677	nr = min_t(unsigned long, nr, mca_can_free(c));
 678
 679	i = 0;
 680	btree_cache_used = c->btree_cache_used;
 681	list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) {
 682		if (nr <= 0)
 683			goto out;
 684
 685		if (!mca_reap(b, 0, false)) {
 686			mca_data_free(b);
 687			rw_unlock(true, b);
 688			freed++;
 689		}
 690		nr--;
 691		i++;
 692	}
 693
 694	list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) {
 695		if (nr <= 0 || i >= btree_cache_used)
 696			goto out;
 697
 698		if (!mca_reap(b, 0, false)) {
 699			mca_bucket_free(b);
 700			mca_data_free(b);
 701			rw_unlock(true, b);
 702			freed++;
 703		}
 704
 705		nr--;
 706		i++;
 707	}
 708out:
 709	mutex_unlock(&c->bucket_lock);
 710	return freed * c->btree_pages;
 711}
 712
 713static unsigned long bch_mca_count(struct shrinker *shrink,
 714				   struct shrink_control *sc)
 715{
 716	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
 717
 718	if (c->shrinker_disabled)
 719		return 0;
 720
 721	if (c->btree_cache_alloc_lock)
 722		return 0;
 723
 724	return mca_can_free(c) * c->btree_pages;
 725}
 726
 727void bch_btree_cache_free(struct cache_set *c)
 728{
 729	struct btree *b;
 730	struct closure cl;
 731
 732	closure_init_stack(&cl);
 733
 734	if (c->shrink.list.next)
 735		unregister_shrinker(&c->shrink);
 736
 737	mutex_lock(&c->bucket_lock);
 738
 739#ifdef CONFIG_BCACHE_DEBUG
 740	if (c->verify_data)
 741		list_move(&c->verify_data->list, &c->btree_cache);
 742
 743	free_pages((unsigned long) c->verify_ondisk, ilog2(meta_bucket_pages(&c->cache->sb)));
 744#endif
 745
 746	list_splice(&c->btree_cache_freeable,
 747		    &c->btree_cache);
 748
 749	while (!list_empty(&c->btree_cache)) {
 750		b = list_first_entry(&c->btree_cache, struct btree, list);
 751
 752		/*
 753		 * This function is called by cache_set_free(), no I/O
 754		 * request on cache now, it is unnecessary to acquire
 755		 * b->write_lock before clearing BTREE_NODE_dirty anymore.
 756		 */
 757		if (btree_node_dirty(b)) {
 758			btree_complete_write(b, btree_current_write(b));
 759			clear_bit(BTREE_NODE_dirty, &b->flags);
 760		}
 761		mca_data_free(b);
 762	}
 763
 764	while (!list_empty(&c->btree_cache_freed)) {
 765		b = list_first_entry(&c->btree_cache_freed,
 766				     struct btree, list);
 767		list_del(&b->list);
 768		cancel_delayed_work_sync(&b->work);
 769		kfree(b);
 770	}
 771
 772	mutex_unlock(&c->bucket_lock);
 773}
 774
 775int bch_btree_cache_alloc(struct cache_set *c)
 776{
 777	unsigned int i;
 778
 779	for (i = 0; i < mca_reserve(c); i++)
 780		if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
 781			return -ENOMEM;
 782
 783	list_splice_init(&c->btree_cache,
 784			 &c->btree_cache_freeable);
 785
 786#ifdef CONFIG_BCACHE_DEBUG
 787	mutex_init(&c->verify_lock);
 788
 789	c->verify_ondisk = (void *)
 790		__get_free_pages(GFP_KERNEL|__GFP_COMP,
 791				 ilog2(meta_bucket_pages(&c->cache->sb)));
 792	if (!c->verify_ondisk) {
 793		/*
 794		 * Don't worry about the mca_rereserve buckets
 795		 * allocated in previous for-loop, they will be
 796		 * handled properly in bch_cache_set_unregister().
 797		 */
 798		return -ENOMEM;
 799	}
 800
 801	c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
 802
 803	if (c->verify_data &&
 804	    c->verify_data->keys.set->data)
 805		list_del_init(&c->verify_data->list);
 806	else
 807		c->verify_data = NULL;
 808#endif
 809
 810	c->shrink.count_objects = bch_mca_count;
 811	c->shrink.scan_objects = bch_mca_scan;
 812	c->shrink.seeks = 4;
 813	c->shrink.batch = c->btree_pages * 2;
 814
 815	if (register_shrinker(&c->shrink, "md-bcache:%pU", c->set_uuid))
 816		pr_warn("bcache: %s: could not register shrinker\n",
 817				__func__);
 818
 819	return 0;
 820}
 821
 822/* Btree in memory cache - hash table */
 823
 824static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
 825{
 826	return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
 827}
 828
 829static struct btree *mca_find(struct cache_set *c, struct bkey *k)
 830{
 831	struct btree *b;
 832
 833	rcu_read_lock();
 834	hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
 835		if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
 836			goto out;
 837	b = NULL;
 838out:
 839	rcu_read_unlock();
 840	return b;
 841}
 842
 843static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
 844{
 845	spin_lock(&c->btree_cannibalize_lock);
 846	if (likely(c->btree_cache_alloc_lock == NULL)) {
 847		c->btree_cache_alloc_lock = current;
 848	} else if (c->btree_cache_alloc_lock != current) {
 849		if (op)
 850			prepare_to_wait(&c->btree_cache_wait, &op->wait,
 851					TASK_UNINTERRUPTIBLE);
 852		spin_unlock(&c->btree_cannibalize_lock);
 853		return -EINTR;
 854	}
 855	spin_unlock(&c->btree_cannibalize_lock);
 856
 857	return 0;
 858}
 859
 860static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
 861				     struct bkey *k)
 862{
 863	struct btree *b;
 864
 865	trace_bcache_btree_cache_cannibalize(c);
 866
 867	if (mca_cannibalize_lock(c, op))
 868		return ERR_PTR(-EINTR);
 869
 870	list_for_each_entry_reverse(b, &c->btree_cache, list)
 871		if (!mca_reap(b, btree_order(k), false))
 872			return b;
 873
 874	list_for_each_entry_reverse(b, &c->btree_cache, list)
 875		if (!mca_reap(b, btree_order(k), true))
 876			return b;
 877
 878	WARN(1, "btree cache cannibalize failed\n");
 879	return ERR_PTR(-ENOMEM);
 880}
 881
 882/*
 883 * We can only have one thread cannibalizing other cached btree nodes at a time,
 884 * or we'll deadlock. We use an open coded mutex to ensure that, which a
 885 * cannibalize_bucket() will take. This means every time we unlock the root of
 886 * the btree, we need to release this lock if we have it held.
 887 */
 888static void bch_cannibalize_unlock(struct cache_set *c)
 889{
 890	spin_lock(&c->btree_cannibalize_lock);
 891	if (c->btree_cache_alloc_lock == current) {
 892		c->btree_cache_alloc_lock = NULL;
 893		wake_up(&c->btree_cache_wait);
 894	}
 895	spin_unlock(&c->btree_cannibalize_lock);
 896}
 897
 898static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
 899			       struct bkey *k, int level)
 900{
 901	struct btree *b;
 902
 903	BUG_ON(current->bio_list);
 904
 905	lockdep_assert_held(&c->bucket_lock);
 906
 907	if (mca_find(c, k))
 908		return NULL;
 909
 910	/* btree_free() doesn't free memory; it sticks the node on the end of
 911	 * the list. Check if there's any freed nodes there:
 912	 */
 913	list_for_each_entry(b, &c->btree_cache_freeable, list)
 914		if (!mca_reap(b, btree_order(k), false))
 915			goto out;
 916
 917	/* We never free struct btree itself, just the memory that holds the on
 918	 * disk node. Check the freed list before allocating a new one:
 919	 */
 920	list_for_each_entry(b, &c->btree_cache_freed, list)
 921		if (!mca_reap(b, 0, false)) {
 922			mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
 923			if (!b->keys.set[0].data)
 924				goto err;
 925			else
 926				goto out;
 927		}
 928
 929	b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
 930	if (!b)
 931		goto err;
 932
 933	BUG_ON(!down_write_trylock(&b->lock));
 934	if (!b->keys.set->data)
 935		goto err;
 936out:
 937	BUG_ON(b->io_mutex.count != 1);
 938
 939	bkey_copy(&b->key, k);
 940	list_move(&b->list, &c->btree_cache);
 941	hlist_del_init_rcu(&b->hash);
 942	hlist_add_head_rcu(&b->hash, mca_hash(c, k));
 943
 944	lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
 945	b->parent	= (void *) ~0UL;
 946	b->flags	= 0;
 947	b->written	= 0;
 948	b->level	= level;
 949
 950	if (!b->level)
 951		bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
 952				    &b->c->expensive_debug_checks);
 953	else
 954		bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
 955				    &b->c->expensive_debug_checks);
 956
 957	return b;
 958err:
 959	if (b)
 960		rw_unlock(true, b);
 961
 962	b = mca_cannibalize(c, op, k);
 963	if (!IS_ERR(b))
 964		goto out;
 965
 966	return b;
 967}
 968
 969/*
 970 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
 971 * in from disk if necessary.
 972 *
 973 * If IO is necessary and running under submit_bio_noacct, returns -EAGAIN.
 974 *
 975 * The btree node will have either a read or a write lock held, depending on
 976 * level and op->lock.
 977 */
 978struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
 979				 struct bkey *k, int level, bool write,
 980				 struct btree *parent)
 981{
 982	int i = 0;
 983	struct btree *b;
 984
 985	BUG_ON(level < 0);
 986retry:
 987	b = mca_find(c, k);
 988
 989	if (!b) {
 990		if (current->bio_list)
 991			return ERR_PTR(-EAGAIN);
 992
 993		mutex_lock(&c->bucket_lock);
 994		b = mca_alloc(c, op, k, level);
 995		mutex_unlock(&c->bucket_lock);
 996
 997		if (!b)
 998			goto retry;
 999		if (IS_ERR(b))
1000			return b;
1001
1002		bch_btree_node_read(b);
1003
1004		if (!write)
1005			downgrade_write(&b->lock);
1006	} else {
1007		rw_lock(write, b, level);
1008		if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1009			rw_unlock(write, b);
1010			goto retry;
1011		}
1012		BUG_ON(b->level != level);
1013	}
1014
1015	if (btree_node_io_error(b)) {
1016		rw_unlock(write, b);
1017		return ERR_PTR(-EIO);
1018	}
1019
1020	BUG_ON(!b->written);
1021
1022	b->parent = parent;
1023
1024	for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1025		prefetch(b->keys.set[i].tree);
1026		prefetch(b->keys.set[i].data);
1027	}
1028
1029	for (; i <= b->keys.nsets; i++)
1030		prefetch(b->keys.set[i].data);
1031
1032	return b;
1033}
1034
1035static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1036{
1037	struct btree *b;
1038
1039	mutex_lock(&parent->c->bucket_lock);
1040	b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1041	mutex_unlock(&parent->c->bucket_lock);
1042
1043	if (!IS_ERR_OR_NULL(b)) {
1044		b->parent = parent;
1045		bch_btree_node_read(b);
1046		rw_unlock(true, b);
1047	}
1048}
1049
1050/* Btree alloc */
1051
1052static void btree_node_free(struct btree *b)
1053{
1054	trace_bcache_btree_node_free(b);
1055
1056	BUG_ON(b == b->c->root);
1057
1058retry:
1059	mutex_lock(&b->write_lock);
1060	/*
1061	 * If the btree node is selected and flushing in btree_flush_write(),
1062	 * delay and retry until the BTREE_NODE_journal_flush bit cleared,
1063	 * then it is safe to free the btree node here. Otherwise this btree
1064	 * node will be in race condition.
1065	 */
1066	if (btree_node_journal_flush(b)) {
1067		mutex_unlock(&b->write_lock);
1068		pr_debug("bnode %p journal_flush set, retry\n", b);
1069		udelay(1);
1070		goto retry;
1071	}
1072
1073	if (btree_node_dirty(b)) {
1074		btree_complete_write(b, btree_current_write(b));
1075		clear_bit(BTREE_NODE_dirty, &b->flags);
1076	}
1077
1078	mutex_unlock(&b->write_lock);
1079
1080	cancel_delayed_work(&b->work);
1081
1082	mutex_lock(&b->c->bucket_lock);
1083	bch_bucket_free(b->c, &b->key);
1084	mca_bucket_free(b);
1085	mutex_unlock(&b->c->bucket_lock);
1086}
1087
1088struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1089				     int level, bool wait,
1090				     struct btree *parent)
1091{
1092	BKEY_PADDED(key) k;
1093	struct btree *b = ERR_PTR(-EAGAIN);
1094
1095	mutex_lock(&c->bucket_lock);
1096retry:
1097	if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, wait))
1098		goto err;
1099
1100	bkey_put(c, &k.key);
1101	SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1102
1103	b = mca_alloc(c, op, &k.key, level);
1104	if (IS_ERR(b))
1105		goto err_free;
1106
1107	if (!b) {
1108		cache_bug(c,
1109			"Tried to allocate bucket that was in btree cache");
1110		goto retry;
1111	}
1112
1113	b->parent = parent;
1114	bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->cache->sb));
1115
1116	mutex_unlock(&c->bucket_lock);
1117
1118	trace_bcache_btree_node_alloc(b);
1119	return b;
1120err_free:
1121	bch_bucket_free(c, &k.key);
1122err:
1123	mutex_unlock(&c->bucket_lock);
1124
1125	trace_bcache_btree_node_alloc_fail(c);
1126	return b;
1127}
1128
1129static struct btree *bch_btree_node_alloc(struct cache_set *c,
1130					  struct btree_op *op, int level,
1131					  struct btree *parent)
1132{
1133	return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1134}
1135
1136static struct btree *btree_node_alloc_replacement(struct btree *b,
1137						  struct btree_op *op)
1138{
1139	struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1140
1141	if (!IS_ERR_OR_NULL(n)) {
1142		mutex_lock(&n->write_lock);
1143		bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1144		bkey_copy_key(&n->key, &b->key);
1145		mutex_unlock(&n->write_lock);
1146	}
1147
1148	return n;
1149}
1150
1151static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1152{
1153	unsigned int i;
1154
1155	mutex_lock(&b->c->bucket_lock);
1156
1157	atomic_inc(&b->c->prio_blocked);
1158
1159	bkey_copy(k, &b->key);
1160	bkey_copy_key(k, &ZERO_KEY);
1161
1162	for (i = 0; i < KEY_PTRS(k); i++)
1163		SET_PTR_GEN(k, i,
1164			    bch_inc_gen(b->c->cache,
1165					PTR_BUCKET(b->c, &b->key, i)));
1166
1167	mutex_unlock(&b->c->bucket_lock);
1168}
1169
1170static int btree_check_reserve(struct btree *b, struct btree_op *op)
1171{
1172	struct cache_set *c = b->c;
1173	struct cache *ca = c->cache;
1174	unsigned int reserve = (c->root->level - b->level) * 2 + 1;
1175
1176	mutex_lock(&c->bucket_lock);
1177
1178	if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1179		if (op)
1180			prepare_to_wait(&c->btree_cache_wait, &op->wait,
1181					TASK_UNINTERRUPTIBLE);
1182		mutex_unlock(&c->bucket_lock);
1183		return -EINTR;
1184	}
1185
1186	mutex_unlock(&c->bucket_lock);
1187
1188	return mca_cannibalize_lock(b->c, op);
1189}
1190
1191/* Garbage collection */
1192
1193static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1194				    struct bkey *k)
1195{
1196	uint8_t stale = 0;
1197	unsigned int i;
1198	struct bucket *g;
1199
1200	/*
1201	 * ptr_invalid() can't return true for the keys that mark btree nodes as
1202	 * freed, but since ptr_bad() returns true we'll never actually use them
1203	 * for anything and thus we don't want mark their pointers here
1204	 */
1205	if (!bkey_cmp(k, &ZERO_KEY))
1206		return stale;
1207
1208	for (i = 0; i < KEY_PTRS(k); i++) {
1209		if (!ptr_available(c, k, i))
1210			continue;
1211
1212		g = PTR_BUCKET(c, k, i);
1213
1214		if (gen_after(g->last_gc, PTR_GEN(k, i)))
1215			g->last_gc = PTR_GEN(k, i);
1216
1217		if (ptr_stale(c, k, i)) {
1218			stale = max(stale, ptr_stale(c, k, i));
1219			continue;
1220		}
1221
1222		cache_bug_on(GC_MARK(g) &&
1223			     (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1224			     c, "inconsistent ptrs: mark = %llu, level = %i",
1225			     GC_MARK(g), level);
1226
1227		if (level)
1228			SET_GC_MARK(g, GC_MARK_METADATA);
1229		else if (KEY_DIRTY(k))
1230			SET_GC_MARK(g, GC_MARK_DIRTY);
1231		else if (!GC_MARK(g))
1232			SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1233
1234		/* guard against overflow */
1235		SET_GC_SECTORS_USED(g, min_t(unsigned int,
1236					     GC_SECTORS_USED(g) + KEY_SIZE(k),
1237					     MAX_GC_SECTORS_USED));
1238
1239		BUG_ON(!GC_SECTORS_USED(g));
1240	}
1241
1242	return stale;
1243}
1244
1245#define btree_mark_key(b, k)	__bch_btree_mark_key(b->c, b->level, k)
1246
1247void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1248{
1249	unsigned int i;
1250
1251	for (i = 0; i < KEY_PTRS(k); i++)
1252		if (ptr_available(c, k, i) &&
1253		    !ptr_stale(c, k, i)) {
1254			struct bucket *b = PTR_BUCKET(c, k, i);
1255
1256			b->gen = PTR_GEN(k, i);
1257
1258			if (level && bkey_cmp(k, &ZERO_KEY))
1259				b->prio = BTREE_PRIO;
1260			else if (!level && b->prio == BTREE_PRIO)
1261				b->prio = INITIAL_PRIO;
1262		}
1263
1264	__bch_btree_mark_key(c, level, k);
1265}
1266
1267void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1268{
1269	stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1270}
1271
1272static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1273{
1274	uint8_t stale = 0;
1275	unsigned int keys = 0, good_keys = 0;
1276	struct bkey *k;
1277	struct btree_iter iter;
1278	struct bset_tree *t;
1279
1280	gc->nodes++;
1281
1282	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1283		stale = max(stale, btree_mark_key(b, k));
1284		keys++;
1285
1286		if (bch_ptr_bad(&b->keys, k))
1287			continue;
1288
1289		gc->key_bytes += bkey_u64s(k);
1290		gc->nkeys++;
1291		good_keys++;
1292
1293		gc->data += KEY_SIZE(k);
1294	}
1295
1296	for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1297		btree_bug_on(t->size &&
1298			     bset_written(&b->keys, t) &&
1299			     bkey_cmp(&b->key, &t->end) < 0,
1300			     b, "found short btree key in gc");
1301
1302	if (b->c->gc_always_rewrite)
1303		return true;
1304
1305	if (stale > 10)
1306		return true;
1307
1308	if ((keys - good_keys) * 2 > keys)
1309		return true;
1310
1311	return false;
1312}
1313
1314#define GC_MERGE_NODES	4U
1315
1316struct gc_merge_info {
1317	struct btree	*b;
1318	unsigned int	keys;
1319};
1320
1321static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1322				 struct keylist *insert_keys,
1323				 atomic_t *journal_ref,
1324				 struct bkey *replace_key);
1325
1326static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1327			     struct gc_stat *gc, struct gc_merge_info *r)
1328{
1329	unsigned int i, nodes = 0, keys = 0, blocks;
1330	struct btree *new_nodes[GC_MERGE_NODES];
1331	struct keylist keylist;
1332	struct closure cl;
1333	struct bkey *k;
1334
1335	bch_keylist_init(&keylist);
1336
1337	if (btree_check_reserve(b, NULL))
1338		return 0;
1339
1340	memset(new_nodes, 0, sizeof(new_nodes));
1341	closure_init_stack(&cl);
1342
1343	while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1344		keys += r[nodes++].keys;
1345
1346	blocks = btree_default_blocks(b->c) * 2 / 3;
1347
1348	if (nodes < 2 ||
1349	    __set_blocks(b->keys.set[0].data, keys,
1350			 block_bytes(b->c->cache)) > blocks * (nodes - 1))
1351		return 0;
1352
1353	for (i = 0; i < nodes; i++) {
1354		new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1355		if (IS_ERR_OR_NULL(new_nodes[i]))
1356			goto out_nocoalesce;
1357	}
1358
1359	/*
1360	 * We have to check the reserve here, after we've allocated our new
1361	 * nodes, to make sure the insert below will succeed - we also check
1362	 * before as an optimization to potentially avoid a bunch of expensive
1363	 * allocs/sorts
1364	 */
1365	if (btree_check_reserve(b, NULL))
1366		goto out_nocoalesce;
1367
1368	for (i = 0; i < nodes; i++)
1369		mutex_lock(&new_nodes[i]->write_lock);
1370
1371	for (i = nodes - 1; i > 0; --i) {
1372		struct bset *n1 = btree_bset_first(new_nodes[i]);
1373		struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1374		struct bkey *k, *last = NULL;
1375
1376		keys = 0;
1377
1378		if (i > 1) {
1379			for (k = n2->start;
1380			     k < bset_bkey_last(n2);
1381			     k = bkey_next(k)) {
1382				if (__set_blocks(n1, n1->keys + keys +
1383						 bkey_u64s(k),
1384						 block_bytes(b->c->cache)) > blocks)
1385					break;
1386
1387				last = k;
1388				keys += bkey_u64s(k);
1389			}
1390		} else {
1391			/*
1392			 * Last node we're not getting rid of - we're getting
1393			 * rid of the node at r[0]. Have to try and fit all of
1394			 * the remaining keys into this node; we can't ensure
1395			 * they will always fit due to rounding and variable
1396			 * length keys (shouldn't be possible in practice,
1397			 * though)
1398			 */
1399			if (__set_blocks(n1, n1->keys + n2->keys,
1400					 block_bytes(b->c->cache)) >
1401			    btree_blocks(new_nodes[i]))
1402				goto out_unlock_nocoalesce;
1403
1404			keys = n2->keys;
1405			/* Take the key of the node we're getting rid of */
1406			last = &r->b->key;
1407		}
1408
1409		BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c->cache)) >
1410		       btree_blocks(new_nodes[i]));
1411
1412		if (last)
1413			bkey_copy_key(&new_nodes[i]->key, last);
1414
1415		memcpy(bset_bkey_last(n1),
1416		       n2->start,
1417		       (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1418
1419		n1->keys += keys;
1420		r[i].keys = n1->keys;
1421
1422		memmove(n2->start,
1423			bset_bkey_idx(n2, keys),
1424			(void *) bset_bkey_last(n2) -
1425			(void *) bset_bkey_idx(n2, keys));
1426
1427		n2->keys -= keys;
1428
1429		if (__bch_keylist_realloc(&keylist,
1430					  bkey_u64s(&new_nodes[i]->key)))
1431			goto out_unlock_nocoalesce;
1432
1433		bch_btree_node_write(new_nodes[i], &cl);
1434		bch_keylist_add(&keylist, &new_nodes[i]->key);
1435	}
1436
1437	for (i = 0; i < nodes; i++)
1438		mutex_unlock(&new_nodes[i]->write_lock);
1439
1440	closure_sync(&cl);
1441
1442	/* We emptied out this node */
1443	BUG_ON(btree_bset_first(new_nodes[0])->keys);
1444	btree_node_free(new_nodes[0]);
1445	rw_unlock(true, new_nodes[0]);
1446	new_nodes[0] = NULL;
1447
1448	for (i = 0; i < nodes; i++) {
1449		if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1450			goto out_nocoalesce;
1451
1452		make_btree_freeing_key(r[i].b, keylist.top);
1453		bch_keylist_push(&keylist);
1454	}
1455
1456	bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1457	BUG_ON(!bch_keylist_empty(&keylist));
1458
1459	for (i = 0; i < nodes; i++) {
1460		btree_node_free(r[i].b);
1461		rw_unlock(true, r[i].b);
1462
1463		r[i].b = new_nodes[i];
1464	}
1465
1466	memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1467	r[nodes - 1].b = ERR_PTR(-EINTR);
1468
1469	trace_bcache_btree_gc_coalesce(nodes);
1470	gc->nodes--;
1471
1472	bch_keylist_free(&keylist);
1473
1474	/* Invalidated our iterator */
1475	return -EINTR;
1476
1477out_unlock_nocoalesce:
1478	for (i = 0; i < nodes; i++)
1479		mutex_unlock(&new_nodes[i]->write_lock);
1480
1481out_nocoalesce:
1482	closure_sync(&cl);
1483
1484	while ((k = bch_keylist_pop(&keylist)))
1485		if (!bkey_cmp(k, &ZERO_KEY))
1486			atomic_dec(&b->c->prio_blocked);
1487	bch_keylist_free(&keylist);
1488
1489	for (i = 0; i < nodes; i++)
1490		if (!IS_ERR_OR_NULL(new_nodes[i])) {
1491			btree_node_free(new_nodes[i]);
1492			rw_unlock(true, new_nodes[i]);
1493		}
1494	return 0;
1495}
1496
1497static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1498				 struct btree *replace)
1499{
1500	struct keylist keys;
1501	struct btree *n;
1502
1503	if (btree_check_reserve(b, NULL))
1504		return 0;
1505
1506	n = btree_node_alloc_replacement(replace, NULL);
1507
1508	/* recheck reserve after allocating replacement node */
1509	if (btree_check_reserve(b, NULL)) {
1510		btree_node_free(n);
1511		rw_unlock(true, n);
1512		return 0;
1513	}
1514
1515	bch_btree_node_write_sync(n);
1516
1517	bch_keylist_init(&keys);
1518	bch_keylist_add(&keys, &n->key);
1519
1520	make_btree_freeing_key(replace, keys.top);
1521	bch_keylist_push(&keys);
1522
1523	bch_btree_insert_node(b, op, &keys, NULL, NULL);
1524	BUG_ON(!bch_keylist_empty(&keys));
1525
1526	btree_node_free(replace);
1527	rw_unlock(true, n);
1528
1529	/* Invalidated our iterator */
1530	return -EINTR;
1531}
1532
1533static unsigned int btree_gc_count_keys(struct btree *b)
1534{
1535	struct bkey *k;
1536	struct btree_iter iter;
1537	unsigned int ret = 0;
1538
1539	for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1540		ret += bkey_u64s(k);
1541
1542	return ret;
1543}
1544
1545static size_t btree_gc_min_nodes(struct cache_set *c)
1546{
1547	size_t min_nodes;
1548
1549	/*
1550	 * Since incremental GC would stop 100ms when front
1551	 * side I/O comes, so when there are many btree nodes,
1552	 * if GC only processes constant (100) nodes each time,
1553	 * GC would last a long time, and the front side I/Os
1554	 * would run out of the buckets (since no new bucket
1555	 * can be allocated during GC), and be blocked again.
1556	 * So GC should not process constant nodes, but varied
1557	 * nodes according to the number of btree nodes, which
1558	 * realized by dividing GC into constant(100) times,
1559	 * so when there are many btree nodes, GC can process
1560	 * more nodes each time, otherwise, GC will process less
1561	 * nodes each time (but no less than MIN_GC_NODES)
1562	 */
1563	min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1564	if (min_nodes < MIN_GC_NODES)
1565		min_nodes = MIN_GC_NODES;
1566
1567	return min_nodes;
1568}
1569
1570
1571static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1572			    struct closure *writes, struct gc_stat *gc)
1573{
1574	int ret = 0;
1575	bool should_rewrite;
1576	struct bkey *k;
1577	struct btree_iter iter;
1578	struct gc_merge_info r[GC_MERGE_NODES];
1579	struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1580
1581	bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1582
1583	for (i = r; i < r + ARRAY_SIZE(r); i++)
1584		i->b = ERR_PTR(-EINTR);
1585
1586	while (1) {
1587		k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1588		if (k) {
1589			r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1590						  true, b);
1591			if (IS_ERR(r->b)) {
1592				ret = PTR_ERR(r->b);
1593				break;
1594			}
1595
1596			r->keys = btree_gc_count_keys(r->b);
1597
1598			ret = btree_gc_coalesce(b, op, gc, r);
1599			if (ret)
1600				break;
1601		}
1602
1603		if (!last->b)
1604			break;
1605
1606		if (!IS_ERR(last->b)) {
1607			should_rewrite = btree_gc_mark_node(last->b, gc);
1608			if (should_rewrite) {
1609				ret = btree_gc_rewrite_node(b, op, last->b);
1610				if (ret)
1611					break;
1612			}
1613
1614			if (last->b->level) {
1615				ret = btree_gc_recurse(last->b, op, writes, gc);
1616				if (ret)
1617					break;
1618			}
1619
1620			bkey_copy_key(&b->c->gc_done, &last->b->key);
1621
1622			/*
1623			 * Must flush leaf nodes before gc ends, since replace
1624			 * operations aren't journalled
1625			 */
1626			mutex_lock(&last->b->write_lock);
1627			if (btree_node_dirty(last->b))
1628				bch_btree_node_write(last->b, writes);
1629			mutex_unlock(&last->b->write_lock);
1630			rw_unlock(true, last->b);
1631		}
1632
1633		memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1634		r->b = NULL;
1635
1636		if (atomic_read(&b->c->search_inflight) &&
1637		    gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
1638			gc->nodes_pre =  gc->nodes;
1639			ret = -EAGAIN;
1640			break;
1641		}
1642
1643		if (need_resched()) {
1644			ret = -EAGAIN;
1645			break;
1646		}
1647	}
1648
1649	for (i = r; i < r + ARRAY_SIZE(r); i++)
1650		if (!IS_ERR_OR_NULL(i->b)) {
1651			mutex_lock(&i->b->write_lock);
1652			if (btree_node_dirty(i->b))
1653				bch_btree_node_write(i->b, writes);
1654			mutex_unlock(&i->b->write_lock);
1655			rw_unlock(true, i->b);
1656		}
1657
1658	return ret;
1659}
1660
1661static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1662			     struct closure *writes, struct gc_stat *gc)
1663{
1664	struct btree *n = NULL;
1665	int ret = 0;
1666	bool should_rewrite;
1667
1668	should_rewrite = btree_gc_mark_node(b, gc);
1669	if (should_rewrite) {
1670		n = btree_node_alloc_replacement(b, NULL);
1671
1672		if (!IS_ERR_OR_NULL(n)) {
1673			bch_btree_node_write_sync(n);
1674
1675			bch_btree_set_root(n);
1676			btree_node_free(b);
1677			rw_unlock(true, n);
1678
1679			return -EINTR;
1680		}
1681	}
1682
1683	__bch_btree_mark_key(b->c, b->level + 1, &b->key);
1684
1685	if (b->level) {
1686		ret = btree_gc_recurse(b, op, writes, gc);
1687		if (ret)
1688			return ret;
1689	}
1690
1691	bkey_copy_key(&b->c->gc_done, &b->key);
1692
1693	return ret;
1694}
1695
1696static void btree_gc_start(struct cache_set *c)
1697{
1698	struct cache *ca;
1699	struct bucket *b;
1700
1701	if (!c->gc_mark_valid)
1702		return;
1703
1704	mutex_lock(&c->bucket_lock);
1705
1706	c->gc_mark_valid = 0;
1707	c->gc_done = ZERO_KEY;
1708
1709	ca = c->cache;
1710	for_each_bucket(b, ca) {
1711		b->last_gc = b->gen;
1712		if (!atomic_read(&b->pin)) {
1713			SET_GC_MARK(b, 0);
1714			SET_GC_SECTORS_USED(b, 0);
1715		}
1716	}
1717
1718	mutex_unlock(&c->bucket_lock);
1719}
1720
1721static void bch_btree_gc_finish(struct cache_set *c)
1722{
1723	struct bucket *b;
1724	struct cache *ca;
1725	unsigned int i, j;
1726	uint64_t *k;
1727
1728	mutex_lock(&c->bucket_lock);
1729
1730	set_gc_sectors(c);
1731	c->gc_mark_valid = 1;
1732	c->need_gc	= 0;
1733
1734	for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1735		SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1736			    GC_MARK_METADATA);
1737
1738	/* don't reclaim buckets to which writeback keys point */
1739	rcu_read_lock();
1740	for (i = 0; i < c->devices_max_used; i++) {
1741		struct bcache_device *d = c->devices[i];
1742		struct cached_dev *dc;
1743		struct keybuf_key *w, *n;
1744
1745		if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1746			continue;
1747		dc = container_of(d, struct cached_dev, disk);
1748
1749		spin_lock(&dc->writeback_keys.lock);
1750		rbtree_postorder_for_each_entry_safe(w, n,
1751					&dc->writeback_keys.keys, node)
1752			for (j = 0; j < KEY_PTRS(&w->key); j++)
1753				SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1754					    GC_MARK_DIRTY);
1755		spin_unlock(&dc->writeback_keys.lock);
1756	}
1757	rcu_read_unlock();
1758
1759	c->avail_nbuckets = 0;
1760
1761	ca = c->cache;
1762	ca->invalidate_needs_gc = 0;
1763
1764	for (k = ca->sb.d; k < ca->sb.d + ca->sb.keys; k++)
1765		SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
1766
1767	for (k = ca->prio_buckets;
1768	     k < ca->prio_buckets + prio_buckets(ca) * 2; k++)
1769		SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
1770
1771	for_each_bucket(b, ca) {
1772		c->need_gc	= max(c->need_gc, bucket_gc_gen(b));
1773
1774		if (atomic_read(&b->pin))
1775			continue;
1776
1777		BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1778
1779		if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1780			c->avail_nbuckets++;
1781	}
1782
1783	mutex_unlock(&c->bucket_lock);
1784}
1785
1786static void bch_btree_gc(struct cache_set *c)
1787{
1788	int ret;
1789	struct gc_stat stats;
1790	struct closure writes;
1791	struct btree_op op;
1792	uint64_t start_time = local_clock();
1793
1794	trace_bcache_gc_start(c);
1795
1796	memset(&stats, 0, sizeof(struct gc_stat));
1797	closure_init_stack(&writes);
1798	bch_btree_op_init(&op, SHRT_MAX);
1799
1800	btree_gc_start(c);
1801
1802	/* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1803	do {
1804		ret = bcache_btree_root(gc_root, c, &op, &writes, &stats);
1805		closure_sync(&writes);
1806		cond_resched();
1807
1808		if (ret == -EAGAIN)
1809			schedule_timeout_interruptible(msecs_to_jiffies
1810						       (GC_SLEEP_MS));
1811		else if (ret)
1812			pr_warn("gc failed!\n");
1813	} while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1814
1815	bch_btree_gc_finish(c);
1816	wake_up_allocators(c);
1817
1818	bch_time_stats_update(&c->btree_gc_time, start_time);
1819
1820	stats.key_bytes *= sizeof(uint64_t);
1821	stats.data	<<= 9;
1822	bch_update_bucket_in_use(c, &stats);
1823	memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1824
1825	trace_bcache_gc_end(c);
1826
1827	bch_moving_gc(c);
1828}
1829
1830static bool gc_should_run(struct cache_set *c)
1831{
1832	struct cache *ca = c->cache;
1833
1834	if (ca->invalidate_needs_gc)
1835		return true;
1836
1837	if (atomic_read(&c->sectors_to_gc) < 0)
1838		return true;
1839
1840	return false;
1841}
1842
1843static int bch_gc_thread(void *arg)
1844{
1845	struct cache_set *c = arg;
1846
1847	while (1) {
1848		wait_event_interruptible(c->gc_wait,
1849			   kthread_should_stop() ||
1850			   test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1851			   gc_should_run(c));
1852
1853		if (kthread_should_stop() ||
1854		    test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1855			break;
1856
1857		set_gc_sectors(c);
1858		bch_btree_gc(c);
1859	}
1860
1861	wait_for_kthread_stop();
1862	return 0;
1863}
1864
1865int bch_gc_thread_start(struct cache_set *c)
1866{
1867	c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1868	return PTR_ERR_OR_ZERO(c->gc_thread);
1869}
1870
1871/* Initial partial gc */
1872
1873static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1874{
1875	int ret = 0;
1876	struct bkey *k, *p = NULL;
1877	struct btree_iter iter;
1878
1879	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1880		bch_initial_mark_key(b->c, b->level, k);
1881
1882	bch_initial_mark_key(b->c, b->level + 1, &b->key);
1883
1884	if (b->level) {
1885		bch_btree_iter_init(&b->keys, &iter, NULL);
1886
1887		do {
1888			k = bch_btree_iter_next_filter(&iter, &b->keys,
1889						       bch_ptr_bad);
1890			if (k) {
1891				btree_node_prefetch(b, k);
1892				/*
1893				 * initiallize c->gc_stats.nodes
1894				 * for incremental GC
1895				 */
1896				b->c->gc_stats.nodes++;
1897			}
1898
1899			if (p)
1900				ret = bcache_btree(check_recurse, p, b, op);
1901
1902			p = k;
1903		} while (p && !ret);
1904	}
1905
1906	return ret;
1907}
1908
1909
1910static int bch_btree_check_thread(void *arg)
1911{
1912	int ret;
1913	struct btree_check_info *info = arg;
1914	struct btree_check_state *check_state = info->state;
1915	struct cache_set *c = check_state->c;
1916	struct btree_iter iter;
1917	struct bkey *k, *p;
1918	int cur_idx, prev_idx, skip_nr;
1919
1920	k = p = NULL;
1921	cur_idx = prev_idx = 0;
1922	ret = 0;
1923
1924	/* root node keys are checked before thread created */
1925	bch_btree_iter_init(&c->root->keys, &iter, NULL);
1926	k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
1927	BUG_ON(!k);
1928
1929	p = k;
1930	while (k) {
1931		/*
1932		 * Fetch a root node key index, skip the keys which
1933		 * should be fetched by other threads, then check the
1934		 * sub-tree indexed by the fetched key.
1935		 */
1936		spin_lock(&check_state->idx_lock);
1937		cur_idx = check_state->key_idx;
1938		check_state->key_idx++;
1939		spin_unlock(&check_state->idx_lock);
1940
1941		skip_nr = cur_idx - prev_idx;
1942
1943		while (skip_nr) {
1944			k = bch_btree_iter_next_filter(&iter,
1945						       &c->root->keys,
1946						       bch_ptr_bad);
1947			if (k)
1948				p = k;
1949			else {
1950				/*
1951				 * No more keys to check in root node,
1952				 * current checking threads are enough,
1953				 * stop creating more.
1954				 */
1955				atomic_set(&check_state->enough, 1);
1956				/* Update check_state->enough earlier */
1957				smp_mb__after_atomic();
1958				goto out;
1959			}
1960			skip_nr--;
1961			cond_resched();
1962		}
1963
1964		if (p) {
1965			struct btree_op op;
1966
1967			btree_node_prefetch(c->root, p);
1968			c->gc_stats.nodes++;
1969			bch_btree_op_init(&op, 0);
1970			ret = bcache_btree(check_recurse, p, c->root, &op);
1971			if (ret)
1972				goto out;
1973		}
1974		p = NULL;
1975		prev_idx = cur_idx;
1976		cond_resched();
1977	}
1978
1979out:
1980	info->result = ret;
1981	/* update check_state->started among all CPUs */
1982	smp_mb__before_atomic();
1983	if (atomic_dec_and_test(&check_state->started))
1984		wake_up(&check_state->wait);
1985
1986	return ret;
1987}
1988
1989
1990
1991static int bch_btree_chkthread_nr(void)
1992{
1993	int n = num_online_cpus()/2;
1994
1995	if (n == 0)
1996		n = 1;
1997	else if (n > BCH_BTR_CHKTHREAD_MAX)
1998		n = BCH_BTR_CHKTHREAD_MAX;
1999
2000	return n;
2001}
2002
2003int bch_btree_check(struct cache_set *c)
2004{
2005	int ret = 0;
2006	int i;
2007	struct bkey *k = NULL;
2008	struct btree_iter iter;
2009	struct btree_check_state check_state;
 
2010
2011	/* check and mark root node keys */
2012	for_each_key_filter(&c->root->keys, k, &iter, bch_ptr_invalid)
2013		bch_initial_mark_key(c, c->root->level, k);
2014
2015	bch_initial_mark_key(c, c->root->level + 1, &c->root->key);
2016
2017	if (c->root->level == 0)
2018		return 0;
2019
2020	memset(&check_state, 0, sizeof(struct btree_check_state));
2021	check_state.c = c;
2022	check_state.total_threads = bch_btree_chkthread_nr();
2023	check_state.key_idx = 0;
2024	spin_lock_init(&check_state.idx_lock);
2025	atomic_set(&check_state.started, 0);
2026	atomic_set(&check_state.enough, 0);
2027	init_waitqueue_head(&check_state.wait);
 
 
 
2028
2029	rw_lock(0, c->root, c->root->level);
2030	/*
2031	 * Run multiple threads to check btree nodes in parallel,
2032	 * if check_state.enough is non-zero, it means current
2033	 * running check threads are enough, unncessary to create
2034	 * more.
2035	 */
2036	for (i = 0; i < check_state.total_threads; i++) {
2037		/* fetch latest check_state.enough earlier */
2038		smp_mb__before_atomic();
2039		if (atomic_read(&check_state.enough))
2040			break;
2041
2042		check_state.infos[i].result = 0;
2043		check_state.infos[i].state = &check_state;
 
 
2044
2045		check_state.infos[i].thread =
2046			kthread_run(bch_btree_check_thread,
2047				    &check_state.infos[i],
2048				    "bch_btrchk[%d]", i);
2049		if (IS_ERR(check_state.infos[i].thread)) {
2050			pr_err("fails to run thread bch_btrchk[%d]\n", i);
2051			for (--i; i >= 0; i--)
2052				kthread_stop(check_state.infos[i].thread);
2053			ret = -ENOMEM;
2054			goto out;
2055		}
2056		atomic_inc(&check_state.started);
2057	}
2058
2059	/*
2060	 * Must wait for all threads to stop.
2061	 */
2062	wait_event(check_state.wait, atomic_read(&check_state.started) == 0);
2063
2064	for (i = 0; i < check_state.total_threads; i++) {
2065		if (check_state.infos[i].result) {
2066			ret = check_state.infos[i].result;
2067			goto out;
2068		}
2069	}
2070
2071out:
2072	rw_unlock(0, c->root);
2073	return ret;
2074}
2075
2076void bch_initial_gc_finish(struct cache_set *c)
2077{
2078	struct cache *ca = c->cache;
2079	struct bucket *b;
2080
2081	bch_btree_gc_finish(c);
2082
2083	mutex_lock(&c->bucket_lock);
2084
2085	/*
2086	 * We need to put some unused buckets directly on the prio freelist in
2087	 * order to get the allocator thread started - it needs freed buckets in
2088	 * order to rewrite the prios and gens, and it needs to rewrite prios
2089	 * and gens in order to free buckets.
2090	 *
2091	 * This is only safe for buckets that have no live data in them, which
2092	 * there should always be some of.
2093	 */
2094	for_each_bucket(b, ca) {
2095		if (fifo_full(&ca->free[RESERVE_PRIO]) &&
2096		    fifo_full(&ca->free[RESERVE_BTREE]))
2097			break;
2098
2099		if (bch_can_invalidate_bucket(ca, b) &&
2100		    !GC_MARK(b)) {
2101			__bch_invalidate_one_bucket(ca, b);
2102			if (!fifo_push(&ca->free[RESERVE_PRIO],
2103			   b - ca->buckets))
2104				fifo_push(&ca->free[RESERVE_BTREE],
2105					  b - ca->buckets);
2106		}
2107	}
2108
2109	mutex_unlock(&c->bucket_lock);
2110}
2111
2112/* Btree insertion */
2113
2114static bool btree_insert_key(struct btree *b, struct bkey *k,
2115			     struct bkey *replace_key)
2116{
2117	unsigned int status;
2118
2119	BUG_ON(bkey_cmp(k, &b->key) > 0);
2120
2121	status = bch_btree_insert_key(&b->keys, k, replace_key);
2122	if (status != BTREE_INSERT_STATUS_NO_INSERT) {
2123		bch_check_keys(&b->keys, "%u for %s", status,
2124			       replace_key ? "replace" : "insert");
2125
2126		trace_bcache_btree_insert_key(b, k, replace_key != NULL,
2127					      status);
2128		return true;
2129	} else
2130		return false;
2131}
2132
2133static size_t insert_u64s_remaining(struct btree *b)
2134{
2135	long ret = bch_btree_keys_u64s_remaining(&b->keys);
2136
2137	/*
2138	 * Might land in the middle of an existing extent and have to split it
2139	 */
2140	if (b->keys.ops->is_extents)
2141		ret -= KEY_MAX_U64S;
2142
2143	return max(ret, 0L);
2144}
2145
2146static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
2147				  struct keylist *insert_keys,
2148				  struct bkey *replace_key)
2149{
2150	bool ret = false;
2151	int oldsize = bch_count_data(&b->keys);
2152
2153	while (!bch_keylist_empty(insert_keys)) {
2154		struct bkey *k = insert_keys->keys;
2155
2156		if (bkey_u64s(k) > insert_u64s_remaining(b))
2157			break;
2158
2159		if (bkey_cmp(k, &b->key) <= 0) {
2160			if (!b->level)
2161				bkey_put(b->c, k);
2162
2163			ret |= btree_insert_key(b, k, replace_key);
2164			bch_keylist_pop_front(insert_keys);
2165		} else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
2166			BKEY_PADDED(key) temp;
2167			bkey_copy(&temp.key, insert_keys->keys);
2168
2169			bch_cut_back(&b->key, &temp.key);
2170			bch_cut_front(&b->key, insert_keys->keys);
2171
2172			ret |= btree_insert_key(b, &temp.key, replace_key);
2173			break;
2174		} else {
2175			break;
2176		}
2177	}
2178
2179	if (!ret)
2180		op->insert_collision = true;
2181
2182	BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2183
2184	BUG_ON(bch_count_data(&b->keys) < oldsize);
2185	return ret;
2186}
2187
2188static int btree_split(struct btree *b, struct btree_op *op,
2189		       struct keylist *insert_keys,
2190		       struct bkey *replace_key)
2191{
2192	bool split;
2193	struct btree *n1, *n2 = NULL, *n3 = NULL;
2194	uint64_t start_time = local_clock();
2195	struct closure cl;
2196	struct keylist parent_keys;
2197
2198	closure_init_stack(&cl);
2199	bch_keylist_init(&parent_keys);
2200
2201	if (btree_check_reserve(b, op)) {
2202		if (!b->level)
2203			return -EINTR;
2204		else
2205			WARN(1, "insufficient reserve for split\n");
2206	}
2207
2208	n1 = btree_node_alloc_replacement(b, op);
2209	if (IS_ERR(n1))
2210		goto err;
2211
2212	split = set_blocks(btree_bset_first(n1),
2213			   block_bytes(n1->c->cache)) > (btree_blocks(b) * 4) / 5;
2214
2215	if (split) {
2216		unsigned int keys = 0;
2217
2218		trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2219
2220		n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2221		if (IS_ERR(n2))
2222			goto err_free1;
2223
2224		if (!b->parent) {
2225			n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2226			if (IS_ERR(n3))
2227				goto err_free2;
2228		}
2229
2230		mutex_lock(&n1->write_lock);
2231		mutex_lock(&n2->write_lock);
2232
2233		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2234
2235		/*
2236		 * Has to be a linear search because we don't have an auxiliary
2237		 * search tree yet
2238		 */
2239
2240		while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2241			keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2242							keys));
2243
2244		bkey_copy_key(&n1->key,
2245			      bset_bkey_idx(btree_bset_first(n1), keys));
2246		keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2247
2248		btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2249		btree_bset_first(n1)->keys = keys;
2250
2251		memcpy(btree_bset_first(n2)->start,
2252		       bset_bkey_last(btree_bset_first(n1)),
2253		       btree_bset_first(n2)->keys * sizeof(uint64_t));
2254
2255		bkey_copy_key(&n2->key, &b->key);
2256
2257		bch_keylist_add(&parent_keys, &n2->key);
2258		bch_btree_node_write(n2, &cl);
2259		mutex_unlock(&n2->write_lock);
2260		rw_unlock(true, n2);
2261	} else {
2262		trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2263
2264		mutex_lock(&n1->write_lock);
2265		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2266	}
2267
2268	bch_keylist_add(&parent_keys, &n1->key);
2269	bch_btree_node_write(n1, &cl);
2270	mutex_unlock(&n1->write_lock);
2271
2272	if (n3) {
2273		/* Depth increases, make a new root */
2274		mutex_lock(&n3->write_lock);
2275		bkey_copy_key(&n3->key, &MAX_KEY);
2276		bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2277		bch_btree_node_write(n3, &cl);
2278		mutex_unlock(&n3->write_lock);
2279
2280		closure_sync(&cl);
2281		bch_btree_set_root(n3);
2282		rw_unlock(true, n3);
2283	} else if (!b->parent) {
2284		/* Root filled up but didn't need to be split */
2285		closure_sync(&cl);
2286		bch_btree_set_root(n1);
2287	} else {
2288		/* Split a non root node */
2289		closure_sync(&cl);
2290		make_btree_freeing_key(b, parent_keys.top);
2291		bch_keylist_push(&parent_keys);
2292
2293		bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2294		BUG_ON(!bch_keylist_empty(&parent_keys));
2295	}
2296
2297	btree_node_free(b);
2298	rw_unlock(true, n1);
2299
2300	bch_time_stats_update(&b->c->btree_split_time, start_time);
2301
2302	return 0;
2303err_free2:
2304	bkey_put(b->c, &n2->key);
2305	btree_node_free(n2);
2306	rw_unlock(true, n2);
2307err_free1:
2308	bkey_put(b->c, &n1->key);
2309	btree_node_free(n1);
2310	rw_unlock(true, n1);
2311err:
2312	WARN(1, "bcache: btree split failed (level %u)", b->level);
2313
2314	if (n3 == ERR_PTR(-EAGAIN) ||
2315	    n2 == ERR_PTR(-EAGAIN) ||
2316	    n1 == ERR_PTR(-EAGAIN))
2317		return -EAGAIN;
2318
2319	return -ENOMEM;
2320}
2321
2322static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2323				 struct keylist *insert_keys,
2324				 atomic_t *journal_ref,
2325				 struct bkey *replace_key)
2326{
2327	struct closure cl;
2328
2329	BUG_ON(b->level && replace_key);
2330
2331	closure_init_stack(&cl);
2332
2333	mutex_lock(&b->write_lock);
2334
2335	if (write_block(b) != btree_bset_last(b) &&
2336	    b->keys.last_set_unwritten)
2337		bch_btree_init_next(b); /* just wrote a set */
2338
2339	if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2340		mutex_unlock(&b->write_lock);
2341		goto split;
2342	}
2343
2344	BUG_ON(write_block(b) != btree_bset_last(b));
2345
2346	if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2347		if (!b->level)
2348			bch_btree_leaf_dirty(b, journal_ref);
2349		else
2350			bch_btree_node_write(b, &cl);
2351	}
2352
2353	mutex_unlock(&b->write_lock);
2354
2355	/* wait for btree node write if necessary, after unlock */
2356	closure_sync(&cl);
2357
2358	return 0;
2359split:
2360	if (current->bio_list) {
2361		op->lock = b->c->root->level + 1;
2362		return -EAGAIN;
2363	} else if (op->lock <= b->c->root->level) {
2364		op->lock = b->c->root->level + 1;
2365		return -EINTR;
2366	} else {
2367		/* Invalidated all iterators */
2368		int ret = btree_split(b, op, insert_keys, replace_key);
2369
2370		if (bch_keylist_empty(insert_keys))
2371			return 0;
2372		else if (!ret)
2373			return -EINTR;
2374		return ret;
2375	}
2376}
2377
2378int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2379			       struct bkey *check_key)
2380{
2381	int ret = -EINTR;
2382	uint64_t btree_ptr = b->key.ptr[0];
2383	unsigned long seq = b->seq;
2384	struct keylist insert;
2385	bool upgrade = op->lock == -1;
2386
2387	bch_keylist_init(&insert);
2388
2389	if (upgrade) {
2390		rw_unlock(false, b);
2391		rw_lock(true, b, b->level);
2392
2393		if (b->key.ptr[0] != btree_ptr ||
2394		    b->seq != seq + 1) {
2395			op->lock = b->level;
2396			goto out;
2397		}
2398	}
2399
2400	SET_KEY_PTRS(check_key, 1);
2401	get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2402
2403	SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2404
2405	bch_keylist_add(&insert, check_key);
2406
2407	ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2408
2409	BUG_ON(!ret && !bch_keylist_empty(&insert));
2410out:
2411	if (upgrade)
2412		downgrade_write(&b->lock);
2413	return ret;
2414}
2415
2416struct btree_insert_op {
2417	struct btree_op	op;
2418	struct keylist	*keys;
2419	atomic_t	*journal_ref;
2420	struct bkey	*replace_key;
2421};
2422
2423static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2424{
2425	struct btree_insert_op *op = container_of(b_op,
2426					struct btree_insert_op, op);
2427
2428	int ret = bch_btree_insert_node(b, &op->op, op->keys,
2429					op->journal_ref, op->replace_key);
2430	if (ret && !bch_keylist_empty(op->keys))
2431		return ret;
2432	else
2433		return MAP_DONE;
2434}
2435
2436int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2437		     atomic_t *journal_ref, struct bkey *replace_key)
2438{
2439	struct btree_insert_op op;
2440	int ret = 0;
2441
2442	BUG_ON(current->bio_list);
2443	BUG_ON(bch_keylist_empty(keys));
2444
2445	bch_btree_op_init(&op.op, 0);
2446	op.keys		= keys;
2447	op.journal_ref	= journal_ref;
2448	op.replace_key	= replace_key;
2449
2450	while (!ret && !bch_keylist_empty(keys)) {
2451		op.op.lock = 0;
2452		ret = bch_btree_map_leaf_nodes(&op.op, c,
2453					       &START_KEY(keys->keys),
2454					       btree_insert_fn);
2455	}
2456
2457	if (ret) {
2458		struct bkey *k;
2459
2460		pr_err("error %i\n", ret);
2461
2462		while ((k = bch_keylist_pop(keys)))
2463			bkey_put(c, k);
2464	} else if (op.op.insert_collision)
2465		ret = -ESRCH;
2466
2467	return ret;
2468}
2469
2470void bch_btree_set_root(struct btree *b)
2471{
2472	unsigned int i;
2473	struct closure cl;
2474
2475	closure_init_stack(&cl);
2476
2477	trace_bcache_btree_set_root(b);
2478
2479	BUG_ON(!b->written);
2480
2481	for (i = 0; i < KEY_PTRS(&b->key); i++)
2482		BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2483
2484	mutex_lock(&b->c->bucket_lock);
2485	list_del_init(&b->list);
2486	mutex_unlock(&b->c->bucket_lock);
2487
2488	b->c->root = b;
2489
2490	bch_journal_meta(b->c, &cl);
2491	closure_sync(&cl);
2492}
2493
2494/* Map across nodes or keys */
2495
2496static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2497				       struct bkey *from,
2498				       btree_map_nodes_fn *fn, int flags)
2499{
2500	int ret = MAP_CONTINUE;
2501
2502	if (b->level) {
2503		struct bkey *k;
2504		struct btree_iter iter;
2505
2506		bch_btree_iter_init(&b->keys, &iter, from);
2507
2508		while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2509						       bch_ptr_bad))) {
2510			ret = bcache_btree(map_nodes_recurse, k, b,
2511				    op, from, fn, flags);
2512			from = NULL;
2513
2514			if (ret != MAP_CONTINUE)
2515				return ret;
2516		}
2517	}
2518
2519	if (!b->level || flags == MAP_ALL_NODES)
2520		ret = fn(op, b);
2521
2522	return ret;
2523}
2524
2525int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2526			  struct bkey *from, btree_map_nodes_fn *fn, int flags)
2527{
2528	return bcache_btree_root(map_nodes_recurse, c, op, from, fn, flags);
2529}
2530
2531int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2532				      struct bkey *from, btree_map_keys_fn *fn,
2533				      int flags)
2534{
2535	int ret = MAP_CONTINUE;
2536	struct bkey *k;
2537	struct btree_iter iter;
2538
2539	bch_btree_iter_init(&b->keys, &iter, from);
2540
2541	while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2542		ret = !b->level
2543			? fn(op, b, k)
2544			: bcache_btree(map_keys_recurse, k,
2545				       b, op, from, fn, flags);
2546		from = NULL;
2547
2548		if (ret != MAP_CONTINUE)
2549			return ret;
2550	}
2551
2552	if (!b->level && (flags & MAP_END_KEY))
2553		ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2554				     KEY_OFFSET(&b->key), 0));
2555
2556	return ret;
2557}
2558
2559int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2560		       struct bkey *from, btree_map_keys_fn *fn, int flags)
2561{
2562	return bcache_btree_root(map_keys_recurse, c, op, from, fn, flags);
2563}
2564
2565/* Keybuf code */
2566
2567static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2568{
2569	/* Overlapping keys compare equal */
2570	if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2571		return -1;
2572	if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2573		return 1;
2574	return 0;
2575}
2576
2577static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2578					    struct keybuf_key *r)
2579{
2580	return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2581}
2582
2583struct refill {
2584	struct btree_op	op;
2585	unsigned int	nr_found;
2586	struct keybuf	*buf;
2587	struct bkey	*end;
2588	keybuf_pred_fn	*pred;
2589};
2590
2591static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2592			    struct bkey *k)
2593{
2594	struct refill *refill = container_of(op, struct refill, op);
2595	struct keybuf *buf = refill->buf;
2596	int ret = MAP_CONTINUE;
2597
2598	if (bkey_cmp(k, refill->end) > 0) {
2599		ret = MAP_DONE;
2600		goto out;
2601	}
2602
2603	if (!KEY_SIZE(k)) /* end key */
2604		goto out;
2605
2606	if (refill->pred(buf, k)) {
2607		struct keybuf_key *w;
2608
2609		spin_lock(&buf->lock);
2610
2611		w = array_alloc(&buf->freelist);
2612		if (!w) {
2613			spin_unlock(&buf->lock);
2614			return MAP_DONE;
2615		}
2616
2617		w->private = NULL;
2618		bkey_copy(&w->key, k);
2619
2620		if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2621			array_free(&buf->freelist, w);
2622		else
2623			refill->nr_found++;
2624
2625		if (array_freelist_empty(&buf->freelist))
2626			ret = MAP_DONE;
2627
2628		spin_unlock(&buf->lock);
2629	}
2630out:
2631	buf->last_scanned = *k;
2632	return ret;
2633}
2634
2635void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2636		       struct bkey *end, keybuf_pred_fn *pred)
2637{
2638	struct bkey start = buf->last_scanned;
2639	struct refill refill;
2640
2641	cond_resched();
2642
2643	bch_btree_op_init(&refill.op, -1);
2644	refill.nr_found	= 0;
2645	refill.buf	= buf;
2646	refill.end	= end;
2647	refill.pred	= pred;
2648
2649	bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2650			   refill_keybuf_fn, MAP_END_KEY);
2651
2652	trace_bcache_keyscan(refill.nr_found,
2653			     KEY_INODE(&start), KEY_OFFSET(&start),
2654			     KEY_INODE(&buf->last_scanned),
2655			     KEY_OFFSET(&buf->last_scanned));
2656
2657	spin_lock(&buf->lock);
2658
2659	if (!RB_EMPTY_ROOT(&buf->keys)) {
2660		struct keybuf_key *w;
2661
2662		w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2663		buf->start	= START_KEY(&w->key);
2664
2665		w = RB_LAST(&buf->keys, struct keybuf_key, node);
2666		buf->end	= w->key;
2667	} else {
2668		buf->start	= MAX_KEY;
2669		buf->end	= MAX_KEY;
2670	}
2671
2672	spin_unlock(&buf->lock);
2673}
2674
2675static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2676{
2677	rb_erase(&w->node, &buf->keys);
2678	array_free(&buf->freelist, w);
2679}
2680
2681void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2682{
2683	spin_lock(&buf->lock);
2684	__bch_keybuf_del(buf, w);
2685	spin_unlock(&buf->lock);
2686}
2687
2688bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2689				  struct bkey *end)
2690{
2691	bool ret = false;
2692	struct keybuf_key *p, *w, s;
2693
2694	s.key = *start;
2695
2696	if (bkey_cmp(end, &buf->start) <= 0 ||
2697	    bkey_cmp(start, &buf->end) >= 0)
2698		return false;
2699
2700	spin_lock(&buf->lock);
2701	w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2702
2703	while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2704		p = w;
2705		w = RB_NEXT(w, node);
2706
2707		if (p->private)
2708			ret = true;
2709		else
2710			__bch_keybuf_del(buf, p);
2711	}
2712
2713	spin_unlock(&buf->lock);
2714	return ret;
2715}
2716
2717struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2718{
2719	struct keybuf_key *w;
2720
2721	spin_lock(&buf->lock);
2722
2723	w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2724
2725	while (w && w->private)
2726		w = RB_NEXT(w, node);
2727
2728	if (w)
2729		w->private = ERR_PTR(-EINTR);
2730
2731	spin_unlock(&buf->lock);
2732	return w;
2733}
2734
2735struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2736					  struct keybuf *buf,
2737					  struct bkey *end,
2738					  keybuf_pred_fn *pred)
2739{
2740	struct keybuf_key *ret;
2741
2742	while (1) {
2743		ret = bch_keybuf_next(buf);
2744		if (ret)
2745			break;
2746
2747		if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2748			pr_debug("scan finished\n");
2749			break;
2750		}
2751
2752		bch_refill_keybuf(c, buf, end, pred);
2753	}
2754
2755	return ret;
2756}
2757
2758void bch_keybuf_init(struct keybuf *buf)
2759{
2760	buf->last_scanned	= MAX_KEY;
2761	buf->keys		= RB_ROOT;
2762
2763	spin_lock_init(&buf->lock);
2764	array_allocator_init(&buf->freelist);
2765}
2766
2767void bch_btree_exit(void)
2768{
2769	if (btree_io_wq)
2770		destroy_workqueue(btree_io_wq);
2771}
2772
2773int __init bch_btree_init(void)
2774{
2775	btree_io_wq = alloc_workqueue("bch_btree_io", WQ_MEM_RECLAIM, 0);
2776	if (!btree_io_wq)
2777		return -ENOMEM;
2778
2779	return 0;
2780}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
   4 *
   5 * Uses a block device as cache for other block devices; optimized for SSDs.
   6 * All allocation is done in buckets, which should match the erase block size
   7 * of the device.
   8 *
   9 * Buckets containing cached data are kept on a heap sorted by priority;
  10 * bucket priority is increased on cache hit, and periodically all the buckets
  11 * on the heap have their priority scaled down. This currently is just used as
  12 * an LRU but in the future should allow for more intelligent heuristics.
  13 *
  14 * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
  15 * counter. Garbage collection is used to remove stale pointers.
  16 *
  17 * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
  18 * as keys are inserted we only sort the pages that have not yet been written.
  19 * When garbage collection is run, we resort the entire node.
  20 *
  21 * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
  22 */
  23
  24#include "bcache.h"
  25#include "btree.h"
  26#include "debug.h"
  27#include "extents.h"
  28
  29#include <linux/slab.h>
  30#include <linux/bitops.h>
  31#include <linux/hash.h>
  32#include <linux/kthread.h>
  33#include <linux/prefetch.h>
  34#include <linux/random.h>
  35#include <linux/rcupdate.h>
  36#include <linux/sched/clock.h>
  37#include <linux/rculist.h>
  38#include <linux/delay.h>
  39#include <trace/events/bcache.h>
  40
  41/*
  42 * Todo:
  43 * register_bcache: Return errors out to userspace correctly
  44 *
  45 * Writeback: don't undirty key until after a cache flush
  46 *
  47 * Create an iterator for key pointers
  48 *
  49 * On btree write error, mark bucket such that it won't be freed from the cache
  50 *
  51 * Journalling:
  52 *   Check for bad keys in replay
  53 *   Propagate barriers
  54 *   Refcount journal entries in journal_replay
  55 *
  56 * Garbage collection:
  57 *   Finish incremental gc
  58 *   Gc should free old UUIDs, data for invalid UUIDs
  59 *
  60 * Provide a way to list backing device UUIDs we have data cached for, and
  61 * probably how long it's been since we've seen them, and a way to invalidate
  62 * dirty data for devices that will never be attached again
  63 *
  64 * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
  65 * that based on that and how much dirty data we have we can keep writeback
  66 * from being starved
  67 *
  68 * Add a tracepoint or somesuch to watch for writeback starvation
  69 *
  70 * When btree depth > 1 and splitting an interior node, we have to make sure
  71 * alloc_bucket() cannot fail. This should be true but is not completely
  72 * obvious.
  73 *
  74 * Plugging?
  75 *
  76 * If data write is less than hard sector size of ssd, round up offset in open
  77 * bucket to the next whole sector
  78 *
  79 * Superblock needs to be fleshed out for multiple cache devices
  80 *
  81 * Add a sysfs tunable for the number of writeback IOs in flight
  82 *
  83 * Add a sysfs tunable for the number of open data buckets
  84 *
  85 * IO tracking: Can we track when one process is doing io on behalf of another?
  86 * IO tracking: Don't use just an average, weigh more recent stuff higher
  87 *
  88 * Test module load/unload
  89 */
  90
  91#define MAX_NEED_GC		64
  92#define MAX_SAVE_PRIO		72
  93#define MAX_GC_TIMES		100
  94#define MIN_GC_NODES		100
  95#define GC_SLEEP_MS		100
  96
  97#define PTR_DIRTY_BIT		(((uint64_t) 1 << 36))
  98
  99#define PTR_HASH(c, k)							\
 100	(((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
 101
 102static struct workqueue_struct *btree_io_wq;
 103
 104#define insert_lock(s, b)	((b)->level <= (s)->lock)
 105
 106
 107static inline struct bset *write_block(struct btree *b)
 108{
 109	return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c->cache);
 110}
 111
 112static void bch_btree_init_next(struct btree *b)
 113{
 114	/* If not a leaf node, always sort */
 115	if (b->level && b->keys.nsets)
 116		bch_btree_sort(&b->keys, &b->c->sort);
 117	else
 118		bch_btree_sort_lazy(&b->keys, &b->c->sort);
 119
 120	if (b->written < btree_blocks(b))
 121		bch_bset_init_next(&b->keys, write_block(b),
 122				   bset_magic(&b->c->cache->sb));
 123
 124}
 125
 126/* Btree key manipulation */
 127
 128void bkey_put(struct cache_set *c, struct bkey *k)
 129{
 130	unsigned int i;
 131
 132	for (i = 0; i < KEY_PTRS(k); i++)
 133		if (ptr_available(c, k, i))
 134			atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
 135}
 136
 137/* Btree IO */
 138
 139static uint64_t btree_csum_set(struct btree *b, struct bset *i)
 140{
 141	uint64_t crc = b->key.ptr[0];
 142	void *data = (void *) i + 8, *end = bset_bkey_last(i);
 143
 144	crc = bch_crc64_update(crc, data, end - data);
 145	return crc ^ 0xffffffffffffffffULL;
 146}
 147
 148void bch_btree_node_read_done(struct btree *b)
 149{
 150	const char *err = "bad btree header";
 151	struct bset *i = btree_bset_first(b);
 152	struct btree_iter *iter;
 153
 154	/*
 155	 * c->fill_iter can allocate an iterator with more memory space
 156	 * than static MAX_BSETS.
 157	 * See the comment arount cache_set->fill_iter.
 158	 */
 159	iter = mempool_alloc(&b->c->fill_iter, GFP_NOIO);
 160	iter->size = b->c->cache->sb.bucket_size / b->c->cache->sb.block_size;
 161	iter->used = 0;
 162
 163#ifdef CONFIG_BCACHE_DEBUG
 164	iter->b = &b->keys;
 165#endif
 166
 167	if (!i->seq)
 168		goto err;
 169
 170	for (;
 171	     b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
 172	     i = write_block(b)) {
 173		err = "unsupported bset version";
 174		if (i->version > BCACHE_BSET_VERSION)
 175			goto err;
 176
 177		err = "bad btree header";
 178		if (b->written + set_blocks(i, block_bytes(b->c->cache)) >
 179		    btree_blocks(b))
 180			goto err;
 181
 182		err = "bad magic";
 183		if (i->magic != bset_magic(&b->c->cache->sb))
 184			goto err;
 185
 186		err = "bad checksum";
 187		switch (i->version) {
 188		case 0:
 189			if (i->csum != csum_set(i))
 190				goto err;
 191			break;
 192		case BCACHE_BSET_VERSION:
 193			if (i->csum != btree_csum_set(b, i))
 194				goto err;
 195			break;
 196		}
 197
 198		err = "empty set";
 199		if (i != b->keys.set[0].data && !i->keys)
 200			goto err;
 201
 202		bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
 203
 204		b->written += set_blocks(i, block_bytes(b->c->cache));
 205	}
 206
 207	err = "corrupted btree";
 208	for (i = write_block(b);
 209	     bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
 210	     i = ((void *) i) + block_bytes(b->c->cache))
 211		if (i->seq == b->keys.set[0].data->seq)
 212			goto err;
 213
 214	bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
 215
 216	i = b->keys.set[0].data;
 217	err = "short btree key";
 218	if (b->keys.set[0].size &&
 219	    bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
 220		goto err;
 221
 222	if (b->written < btree_blocks(b))
 223		bch_bset_init_next(&b->keys, write_block(b),
 224				   bset_magic(&b->c->cache->sb));
 225out:
 226	mempool_free(iter, &b->c->fill_iter);
 227	return;
 228err:
 229	set_btree_node_io_error(b);
 230	bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
 231			    err, PTR_BUCKET_NR(b->c, &b->key, 0),
 232			    bset_block_offset(b, i), i->keys);
 233	goto out;
 234}
 235
 236static void btree_node_read_endio(struct bio *bio)
 237{
 238	struct closure *cl = bio->bi_private;
 239
 240	closure_put(cl);
 241}
 242
 243static void bch_btree_node_read(struct btree *b)
 244{
 245	uint64_t start_time = local_clock();
 246	struct closure cl;
 247	struct bio *bio;
 248
 249	trace_bcache_btree_read(b);
 250
 251	closure_init_stack(&cl);
 252
 253	bio = bch_bbio_alloc(b->c);
 254	bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
 255	bio->bi_end_io	= btree_node_read_endio;
 256	bio->bi_private	= &cl;
 257	bio->bi_opf = REQ_OP_READ | REQ_META;
 258
 259	bch_bio_map(bio, b->keys.set[0].data);
 260
 261	bch_submit_bbio(bio, b->c, &b->key, 0);
 262	closure_sync(&cl);
 263
 264	if (bio->bi_status)
 265		set_btree_node_io_error(b);
 266
 267	bch_bbio_free(bio, b->c);
 268
 269	if (btree_node_io_error(b))
 270		goto err;
 271
 272	bch_btree_node_read_done(b);
 273	bch_time_stats_update(&b->c->btree_read_time, start_time);
 274
 275	return;
 276err:
 277	bch_cache_set_error(b->c, "io error reading bucket %zu",
 278			    PTR_BUCKET_NR(b->c, &b->key, 0));
 279}
 280
 281static void btree_complete_write(struct btree *b, struct btree_write *w)
 282{
 283	if (w->prio_blocked &&
 284	    !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
 285		wake_up_allocators(b->c);
 286
 287	if (w->journal) {
 288		atomic_dec_bug(w->journal);
 289		__closure_wake_up(&b->c->journal.wait);
 290	}
 291
 292	w->prio_blocked	= 0;
 293	w->journal	= NULL;
 294}
 295
 296static void btree_node_write_unlock(struct closure *cl)
 297{
 298	struct btree *b = container_of(cl, struct btree, io);
 299
 300	up(&b->io_mutex);
 301}
 302
 303static void __btree_node_write_done(struct closure *cl)
 304{
 305	struct btree *b = container_of(cl, struct btree, io);
 306	struct btree_write *w = btree_prev_write(b);
 307
 308	bch_bbio_free(b->bio, b->c);
 309	b->bio = NULL;
 310	btree_complete_write(b, w);
 311
 312	if (btree_node_dirty(b))
 313		queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
 314
 315	closure_return_with_destructor(cl, btree_node_write_unlock);
 316}
 317
 318static void btree_node_write_done(struct closure *cl)
 319{
 320	struct btree *b = container_of(cl, struct btree, io);
 321
 322	bio_free_pages(b->bio);
 323	__btree_node_write_done(cl);
 324}
 325
 326static void btree_node_write_endio(struct bio *bio)
 327{
 328	struct closure *cl = bio->bi_private;
 329	struct btree *b = container_of(cl, struct btree, io);
 330
 331	if (bio->bi_status)
 332		set_btree_node_io_error(b);
 333
 334	bch_bbio_count_io_errors(b->c, bio, bio->bi_status, "writing btree");
 335	closure_put(cl);
 336}
 337
 338static void do_btree_node_write(struct btree *b)
 339{
 340	struct closure *cl = &b->io;
 341	struct bset *i = btree_bset_last(b);
 342	BKEY_PADDED(key) k;
 343
 344	i->version	= BCACHE_BSET_VERSION;
 345	i->csum		= btree_csum_set(b, i);
 346
 347	BUG_ON(b->bio);
 348	b->bio = bch_bbio_alloc(b->c);
 349
 350	b->bio->bi_end_io	= btree_node_write_endio;
 351	b->bio->bi_private	= cl;
 352	b->bio->bi_iter.bi_size	= roundup(set_bytes(i), block_bytes(b->c->cache));
 353	b->bio->bi_opf		= REQ_OP_WRITE | REQ_META | REQ_FUA;
 354	bch_bio_map(b->bio, i);
 355
 356	/*
 357	 * If we're appending to a leaf node, we don't technically need FUA -
 358	 * this write just needs to be persisted before the next journal write,
 359	 * which will be marked FLUSH|FUA.
 360	 *
 361	 * Similarly if we're writing a new btree root - the pointer is going to
 362	 * be in the next journal entry.
 363	 *
 364	 * But if we're writing a new btree node (that isn't a root) or
 365	 * appending to a non leaf btree node, we need either FUA or a flush
 366	 * when we write the parent with the new pointer. FUA is cheaper than a
 367	 * flush, and writes appending to leaf nodes aren't blocking anything so
 368	 * just make all btree node writes FUA to keep things sane.
 369	 */
 370
 371	bkey_copy(&k.key, &b->key);
 372	SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
 373		       bset_sector_offset(&b->keys, i));
 374
 375	if (!bch_bio_alloc_pages(b->bio, __GFP_NOWARN|GFP_NOWAIT)) {
 376		struct bio_vec *bv;
 377		void *addr = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
 378		struct bvec_iter_all iter_all;
 379
 380		bio_for_each_segment_all(bv, b->bio, iter_all) {
 381			memcpy(page_address(bv->bv_page), addr, PAGE_SIZE);
 382			addr += PAGE_SIZE;
 383		}
 384
 385		bch_submit_bbio(b->bio, b->c, &k.key, 0);
 386
 387		continue_at(cl, btree_node_write_done, NULL);
 388	} else {
 389		/*
 390		 * No problem for multipage bvec since the bio is
 391		 * just allocated
 392		 */
 393		b->bio->bi_vcnt = 0;
 394		bch_bio_map(b->bio, i);
 395
 396		bch_submit_bbio(b->bio, b->c, &k.key, 0);
 397
 398		closure_sync(cl);
 399		continue_at_nobarrier(cl, __btree_node_write_done, NULL);
 400	}
 401}
 402
 403void __bch_btree_node_write(struct btree *b, struct closure *parent)
 404{
 405	struct bset *i = btree_bset_last(b);
 406
 407	lockdep_assert_held(&b->write_lock);
 408
 409	trace_bcache_btree_write(b);
 410
 411	BUG_ON(current->bio_list);
 412	BUG_ON(b->written >= btree_blocks(b));
 413	BUG_ON(b->written && !i->keys);
 414	BUG_ON(btree_bset_first(b)->seq != i->seq);
 415	bch_check_keys(&b->keys, "writing");
 416
 417	cancel_delayed_work(&b->work);
 418
 419	/* If caller isn't waiting for write, parent refcount is cache set */
 420	down(&b->io_mutex);
 421	closure_init(&b->io, parent ?: &b->c->cl);
 422
 423	clear_bit(BTREE_NODE_dirty,	 &b->flags);
 424	change_bit(BTREE_NODE_write_idx, &b->flags);
 425
 426	do_btree_node_write(b);
 427
 428	atomic_long_add(set_blocks(i, block_bytes(b->c->cache)) * b->c->cache->sb.block_size,
 429			&b->c->cache->btree_sectors_written);
 430
 431	b->written += set_blocks(i, block_bytes(b->c->cache));
 432}
 433
 434void bch_btree_node_write(struct btree *b, struct closure *parent)
 435{
 436	unsigned int nsets = b->keys.nsets;
 437
 438	lockdep_assert_held(&b->lock);
 439
 440	__bch_btree_node_write(b, parent);
 441
 442	/*
 443	 * do verify if there was more than one set initially (i.e. we did a
 444	 * sort) and we sorted down to a single set:
 445	 */
 446	if (nsets && !b->keys.nsets)
 447		bch_btree_verify(b);
 448
 449	bch_btree_init_next(b);
 450}
 451
 452static void bch_btree_node_write_sync(struct btree *b)
 453{
 454	struct closure cl;
 455
 456	closure_init_stack(&cl);
 457
 458	mutex_lock(&b->write_lock);
 459	bch_btree_node_write(b, &cl);
 460	mutex_unlock(&b->write_lock);
 461
 462	closure_sync(&cl);
 463}
 464
 465static void btree_node_write_work(struct work_struct *w)
 466{
 467	struct btree *b = container_of(to_delayed_work(w), struct btree, work);
 468
 469	mutex_lock(&b->write_lock);
 470	if (btree_node_dirty(b))
 471		__bch_btree_node_write(b, NULL);
 472	mutex_unlock(&b->write_lock);
 473}
 474
 475static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
 476{
 477	struct bset *i = btree_bset_last(b);
 478	struct btree_write *w = btree_current_write(b);
 479
 480	lockdep_assert_held(&b->write_lock);
 481
 482	BUG_ON(!b->written);
 483	BUG_ON(!i->keys);
 484
 485	if (!btree_node_dirty(b))
 486		queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
 487
 488	set_btree_node_dirty(b);
 489
 490	/*
 491	 * w->journal is always the oldest journal pin of all bkeys
 492	 * in the leaf node, to make sure the oldest jset seq won't
 493	 * be increased before this btree node is flushed.
 494	 */
 495	if (journal_ref) {
 496		if (w->journal &&
 497		    journal_pin_cmp(b->c, w->journal, journal_ref)) {
 498			atomic_dec_bug(w->journal);
 499			w->journal = NULL;
 500		}
 501
 502		if (!w->journal) {
 503			w->journal = journal_ref;
 504			atomic_inc(w->journal);
 505		}
 506	}
 507
 508	/* Force write if set is too big */
 509	if (set_bytes(i) > PAGE_SIZE - 48 &&
 510	    !current->bio_list)
 511		bch_btree_node_write(b, NULL);
 512}
 513
 514/*
 515 * Btree in memory cache - allocation/freeing
 516 * mca -> memory cache
 517 */
 518
 519#define mca_reserve(c)	(((!IS_ERR_OR_NULL(c->root) && c->root->level) \
 520			  ? c->root->level : 1) * 8 + 16)
 521#define mca_can_free(c)						\
 522	max_t(int, 0, c->btree_cache_used - mca_reserve(c))
 523
 524static void mca_data_free(struct btree *b)
 525{
 526	BUG_ON(b->io_mutex.count != 1);
 527
 528	bch_btree_keys_free(&b->keys);
 529
 530	b->c->btree_cache_used--;
 531	list_move(&b->list, &b->c->btree_cache_freed);
 532}
 533
 534static void mca_bucket_free(struct btree *b)
 535{
 536	BUG_ON(btree_node_dirty(b));
 537
 538	b->key.ptr[0] = 0;
 539	hlist_del_init_rcu(&b->hash);
 540	list_move(&b->list, &b->c->btree_cache_freeable);
 541}
 542
 543static unsigned int btree_order(struct bkey *k)
 544{
 545	return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
 546}
 547
 548static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
 549{
 550	if (!bch_btree_keys_alloc(&b->keys,
 551				  max_t(unsigned int,
 552					ilog2(b->c->btree_pages),
 553					btree_order(k)),
 554				  gfp)) {
 555		b->c->btree_cache_used++;
 556		list_move(&b->list, &b->c->btree_cache);
 557	} else {
 558		list_move(&b->list, &b->c->btree_cache_freed);
 559	}
 560}
 561
 562static struct btree *mca_bucket_alloc(struct cache_set *c,
 563				      struct bkey *k, gfp_t gfp)
 564{
 565	/*
 566	 * kzalloc() is necessary here for initialization,
 567	 * see code comments in bch_btree_keys_init().
 568	 */
 569	struct btree *b = kzalloc(sizeof(struct btree), gfp);
 570
 571	if (!b)
 572		return NULL;
 573
 574	init_rwsem(&b->lock);
 575	lockdep_set_novalidate_class(&b->lock);
 576	mutex_init(&b->write_lock);
 577	lockdep_set_novalidate_class(&b->write_lock);
 578	INIT_LIST_HEAD(&b->list);
 579	INIT_DELAYED_WORK(&b->work, btree_node_write_work);
 580	b->c = c;
 581	sema_init(&b->io_mutex, 1);
 582
 583	mca_data_alloc(b, k, gfp);
 584	return b;
 585}
 586
 587static int mca_reap(struct btree *b, unsigned int min_order, bool flush)
 588{
 589	struct closure cl;
 590
 591	closure_init_stack(&cl);
 592	lockdep_assert_held(&b->c->bucket_lock);
 593
 594	if (!down_write_trylock(&b->lock))
 595		return -ENOMEM;
 596
 597	BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
 598
 599	if (b->keys.page_order < min_order)
 600		goto out_unlock;
 601
 602	if (!flush) {
 603		if (btree_node_dirty(b))
 604			goto out_unlock;
 605
 606		if (down_trylock(&b->io_mutex))
 607			goto out_unlock;
 608		up(&b->io_mutex);
 609	}
 610
 611retry:
 612	/*
 613	 * BTREE_NODE_dirty might be cleared in btree_flush_btree() by
 614	 * __bch_btree_node_write(). To avoid an extra flush, acquire
 615	 * b->write_lock before checking BTREE_NODE_dirty bit.
 616	 */
 617	mutex_lock(&b->write_lock);
 618	/*
 619	 * If this btree node is selected in btree_flush_write() by journal
 620	 * code, delay and retry until the node is flushed by journal code
 621	 * and BTREE_NODE_journal_flush bit cleared by btree_flush_write().
 622	 */
 623	if (btree_node_journal_flush(b)) {
 624		pr_debug("bnode %p is flushing by journal, retry\n", b);
 625		mutex_unlock(&b->write_lock);
 626		udelay(1);
 627		goto retry;
 628	}
 629
 630	if (btree_node_dirty(b))
 631		__bch_btree_node_write(b, &cl);
 632	mutex_unlock(&b->write_lock);
 633
 634	closure_sync(&cl);
 635
 636	/* wait for any in flight btree write */
 637	down(&b->io_mutex);
 638	up(&b->io_mutex);
 639
 640	return 0;
 641out_unlock:
 642	rw_unlock(true, b);
 643	return -ENOMEM;
 644}
 645
 646static unsigned long bch_mca_scan(struct shrinker *shrink,
 647				  struct shrink_control *sc)
 648{
 649	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
 650	struct btree *b, *t;
 651	unsigned long i, nr = sc->nr_to_scan;
 652	unsigned long freed = 0;
 653	unsigned int btree_cache_used;
 654
 655	if (c->shrinker_disabled)
 656		return SHRINK_STOP;
 657
 658	if (c->btree_cache_alloc_lock)
 659		return SHRINK_STOP;
 660
 661	/* Return -1 if we can't do anything right now */
 662	if (sc->gfp_mask & __GFP_IO)
 663		mutex_lock(&c->bucket_lock);
 664	else if (!mutex_trylock(&c->bucket_lock))
 665		return -1;
 666
 667	/*
 668	 * It's _really_ critical that we don't free too many btree nodes - we
 669	 * have to always leave ourselves a reserve. The reserve is how we
 670	 * guarantee that allocating memory for a new btree node can always
 671	 * succeed, so that inserting keys into the btree can always succeed and
 672	 * IO can always make forward progress:
 673	 */
 674	nr /= c->btree_pages;
 675	if (nr == 0)
 676		nr = 1;
 677	nr = min_t(unsigned long, nr, mca_can_free(c));
 678
 679	i = 0;
 680	btree_cache_used = c->btree_cache_used;
 681	list_for_each_entry_safe_reverse(b, t, &c->btree_cache_freeable, list) {
 682		if (nr <= 0)
 683			goto out;
 684
 685		if (!mca_reap(b, 0, false)) {
 686			mca_data_free(b);
 687			rw_unlock(true, b);
 688			freed++;
 689		}
 690		nr--;
 691		i++;
 692	}
 693
 694	list_for_each_entry_safe_reverse(b, t, &c->btree_cache, list) {
 695		if (nr <= 0 || i >= btree_cache_used)
 696			goto out;
 697
 698		if (!mca_reap(b, 0, false)) {
 699			mca_bucket_free(b);
 700			mca_data_free(b);
 701			rw_unlock(true, b);
 702			freed++;
 703		}
 704
 705		nr--;
 706		i++;
 707	}
 708out:
 709	mutex_unlock(&c->bucket_lock);
 710	return freed * c->btree_pages;
 711}
 712
 713static unsigned long bch_mca_count(struct shrinker *shrink,
 714				   struct shrink_control *sc)
 715{
 716	struct cache_set *c = container_of(shrink, struct cache_set, shrink);
 717
 718	if (c->shrinker_disabled)
 719		return 0;
 720
 721	if (c->btree_cache_alloc_lock)
 722		return 0;
 723
 724	return mca_can_free(c) * c->btree_pages;
 725}
 726
 727void bch_btree_cache_free(struct cache_set *c)
 728{
 729	struct btree *b;
 730	struct closure cl;
 731
 732	closure_init_stack(&cl);
 733
 734	if (c->shrink.list.next)
 735		unregister_shrinker(&c->shrink);
 736
 737	mutex_lock(&c->bucket_lock);
 738
 739#ifdef CONFIG_BCACHE_DEBUG
 740	if (c->verify_data)
 741		list_move(&c->verify_data->list, &c->btree_cache);
 742
 743	free_pages((unsigned long) c->verify_ondisk, ilog2(meta_bucket_pages(&c->cache->sb)));
 744#endif
 745
 746	list_splice(&c->btree_cache_freeable,
 747		    &c->btree_cache);
 748
 749	while (!list_empty(&c->btree_cache)) {
 750		b = list_first_entry(&c->btree_cache, struct btree, list);
 751
 752		/*
 753		 * This function is called by cache_set_free(), no I/O
 754		 * request on cache now, it is unnecessary to acquire
 755		 * b->write_lock before clearing BTREE_NODE_dirty anymore.
 756		 */
 757		if (btree_node_dirty(b)) {
 758			btree_complete_write(b, btree_current_write(b));
 759			clear_bit(BTREE_NODE_dirty, &b->flags);
 760		}
 761		mca_data_free(b);
 762	}
 763
 764	while (!list_empty(&c->btree_cache_freed)) {
 765		b = list_first_entry(&c->btree_cache_freed,
 766				     struct btree, list);
 767		list_del(&b->list);
 768		cancel_delayed_work_sync(&b->work);
 769		kfree(b);
 770	}
 771
 772	mutex_unlock(&c->bucket_lock);
 773}
 774
 775int bch_btree_cache_alloc(struct cache_set *c)
 776{
 777	unsigned int i;
 778
 779	for (i = 0; i < mca_reserve(c); i++)
 780		if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
 781			return -ENOMEM;
 782
 783	list_splice_init(&c->btree_cache,
 784			 &c->btree_cache_freeable);
 785
 786#ifdef CONFIG_BCACHE_DEBUG
 787	mutex_init(&c->verify_lock);
 788
 789	c->verify_ondisk = (void *)
 790		__get_free_pages(GFP_KERNEL|__GFP_COMP,
 791				 ilog2(meta_bucket_pages(&c->cache->sb)));
 792	if (!c->verify_ondisk) {
 793		/*
 794		 * Don't worry about the mca_rereserve buckets
 795		 * allocated in previous for-loop, they will be
 796		 * handled properly in bch_cache_set_unregister().
 797		 */
 798		return -ENOMEM;
 799	}
 800
 801	c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
 802
 803	if (c->verify_data &&
 804	    c->verify_data->keys.set->data)
 805		list_del_init(&c->verify_data->list);
 806	else
 807		c->verify_data = NULL;
 808#endif
 809
 810	c->shrink.count_objects = bch_mca_count;
 811	c->shrink.scan_objects = bch_mca_scan;
 812	c->shrink.seeks = 4;
 813	c->shrink.batch = c->btree_pages * 2;
 814
 815	if (register_shrinker(&c->shrink))
 816		pr_warn("bcache: %s: could not register shrinker\n",
 817				__func__);
 818
 819	return 0;
 820}
 821
 822/* Btree in memory cache - hash table */
 823
 824static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
 825{
 826	return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
 827}
 828
 829static struct btree *mca_find(struct cache_set *c, struct bkey *k)
 830{
 831	struct btree *b;
 832
 833	rcu_read_lock();
 834	hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
 835		if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
 836			goto out;
 837	b = NULL;
 838out:
 839	rcu_read_unlock();
 840	return b;
 841}
 842
 843static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
 844{
 845	spin_lock(&c->btree_cannibalize_lock);
 846	if (likely(c->btree_cache_alloc_lock == NULL)) {
 847		c->btree_cache_alloc_lock = current;
 848	} else if (c->btree_cache_alloc_lock != current) {
 849		if (op)
 850			prepare_to_wait(&c->btree_cache_wait, &op->wait,
 851					TASK_UNINTERRUPTIBLE);
 852		spin_unlock(&c->btree_cannibalize_lock);
 853		return -EINTR;
 854	}
 855	spin_unlock(&c->btree_cannibalize_lock);
 856
 857	return 0;
 858}
 859
 860static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
 861				     struct bkey *k)
 862{
 863	struct btree *b;
 864
 865	trace_bcache_btree_cache_cannibalize(c);
 866
 867	if (mca_cannibalize_lock(c, op))
 868		return ERR_PTR(-EINTR);
 869
 870	list_for_each_entry_reverse(b, &c->btree_cache, list)
 871		if (!mca_reap(b, btree_order(k), false))
 872			return b;
 873
 874	list_for_each_entry_reverse(b, &c->btree_cache, list)
 875		if (!mca_reap(b, btree_order(k), true))
 876			return b;
 877
 878	WARN(1, "btree cache cannibalize failed\n");
 879	return ERR_PTR(-ENOMEM);
 880}
 881
 882/*
 883 * We can only have one thread cannibalizing other cached btree nodes at a time,
 884 * or we'll deadlock. We use an open coded mutex to ensure that, which a
 885 * cannibalize_bucket() will take. This means every time we unlock the root of
 886 * the btree, we need to release this lock if we have it held.
 887 */
 888static void bch_cannibalize_unlock(struct cache_set *c)
 889{
 890	spin_lock(&c->btree_cannibalize_lock);
 891	if (c->btree_cache_alloc_lock == current) {
 892		c->btree_cache_alloc_lock = NULL;
 893		wake_up(&c->btree_cache_wait);
 894	}
 895	spin_unlock(&c->btree_cannibalize_lock);
 896}
 897
 898static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
 899			       struct bkey *k, int level)
 900{
 901	struct btree *b;
 902
 903	BUG_ON(current->bio_list);
 904
 905	lockdep_assert_held(&c->bucket_lock);
 906
 907	if (mca_find(c, k))
 908		return NULL;
 909
 910	/* btree_free() doesn't free memory; it sticks the node on the end of
 911	 * the list. Check if there's any freed nodes there:
 912	 */
 913	list_for_each_entry(b, &c->btree_cache_freeable, list)
 914		if (!mca_reap(b, btree_order(k), false))
 915			goto out;
 916
 917	/* We never free struct btree itself, just the memory that holds the on
 918	 * disk node. Check the freed list before allocating a new one:
 919	 */
 920	list_for_each_entry(b, &c->btree_cache_freed, list)
 921		if (!mca_reap(b, 0, false)) {
 922			mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
 923			if (!b->keys.set[0].data)
 924				goto err;
 925			else
 926				goto out;
 927		}
 928
 929	b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
 930	if (!b)
 931		goto err;
 932
 933	BUG_ON(!down_write_trylock(&b->lock));
 934	if (!b->keys.set->data)
 935		goto err;
 936out:
 937	BUG_ON(b->io_mutex.count != 1);
 938
 939	bkey_copy(&b->key, k);
 940	list_move(&b->list, &c->btree_cache);
 941	hlist_del_init_rcu(&b->hash);
 942	hlist_add_head_rcu(&b->hash, mca_hash(c, k));
 943
 944	lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
 945	b->parent	= (void *) ~0UL;
 946	b->flags	= 0;
 947	b->written	= 0;
 948	b->level	= level;
 949
 950	if (!b->level)
 951		bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
 952				    &b->c->expensive_debug_checks);
 953	else
 954		bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
 955				    &b->c->expensive_debug_checks);
 956
 957	return b;
 958err:
 959	if (b)
 960		rw_unlock(true, b);
 961
 962	b = mca_cannibalize(c, op, k);
 963	if (!IS_ERR(b))
 964		goto out;
 965
 966	return b;
 967}
 968
 969/*
 970 * bch_btree_node_get - find a btree node in the cache and lock it, reading it
 971 * in from disk if necessary.
 972 *
 973 * If IO is necessary and running under submit_bio_noacct, returns -EAGAIN.
 974 *
 975 * The btree node will have either a read or a write lock held, depending on
 976 * level and op->lock.
 977 */
 978struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
 979				 struct bkey *k, int level, bool write,
 980				 struct btree *parent)
 981{
 982	int i = 0;
 983	struct btree *b;
 984
 985	BUG_ON(level < 0);
 986retry:
 987	b = mca_find(c, k);
 988
 989	if (!b) {
 990		if (current->bio_list)
 991			return ERR_PTR(-EAGAIN);
 992
 993		mutex_lock(&c->bucket_lock);
 994		b = mca_alloc(c, op, k, level);
 995		mutex_unlock(&c->bucket_lock);
 996
 997		if (!b)
 998			goto retry;
 999		if (IS_ERR(b))
1000			return b;
1001
1002		bch_btree_node_read(b);
1003
1004		if (!write)
1005			downgrade_write(&b->lock);
1006	} else {
1007		rw_lock(write, b, level);
1008		if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
1009			rw_unlock(write, b);
1010			goto retry;
1011		}
1012		BUG_ON(b->level != level);
1013	}
1014
1015	if (btree_node_io_error(b)) {
1016		rw_unlock(write, b);
1017		return ERR_PTR(-EIO);
1018	}
1019
1020	BUG_ON(!b->written);
1021
1022	b->parent = parent;
1023
1024	for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
1025		prefetch(b->keys.set[i].tree);
1026		prefetch(b->keys.set[i].data);
1027	}
1028
1029	for (; i <= b->keys.nsets; i++)
1030		prefetch(b->keys.set[i].data);
1031
1032	return b;
1033}
1034
1035static void btree_node_prefetch(struct btree *parent, struct bkey *k)
1036{
1037	struct btree *b;
1038
1039	mutex_lock(&parent->c->bucket_lock);
1040	b = mca_alloc(parent->c, NULL, k, parent->level - 1);
1041	mutex_unlock(&parent->c->bucket_lock);
1042
1043	if (!IS_ERR_OR_NULL(b)) {
1044		b->parent = parent;
1045		bch_btree_node_read(b);
1046		rw_unlock(true, b);
1047	}
1048}
1049
1050/* Btree alloc */
1051
1052static void btree_node_free(struct btree *b)
1053{
1054	trace_bcache_btree_node_free(b);
1055
1056	BUG_ON(b == b->c->root);
1057
1058retry:
1059	mutex_lock(&b->write_lock);
1060	/*
1061	 * If the btree node is selected and flushing in btree_flush_write(),
1062	 * delay and retry until the BTREE_NODE_journal_flush bit cleared,
1063	 * then it is safe to free the btree node here. Otherwise this btree
1064	 * node will be in race condition.
1065	 */
1066	if (btree_node_journal_flush(b)) {
1067		mutex_unlock(&b->write_lock);
1068		pr_debug("bnode %p journal_flush set, retry\n", b);
1069		udelay(1);
1070		goto retry;
1071	}
1072
1073	if (btree_node_dirty(b)) {
1074		btree_complete_write(b, btree_current_write(b));
1075		clear_bit(BTREE_NODE_dirty, &b->flags);
1076	}
1077
1078	mutex_unlock(&b->write_lock);
1079
1080	cancel_delayed_work(&b->work);
1081
1082	mutex_lock(&b->c->bucket_lock);
1083	bch_bucket_free(b->c, &b->key);
1084	mca_bucket_free(b);
1085	mutex_unlock(&b->c->bucket_lock);
1086}
1087
1088struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
1089				     int level, bool wait,
1090				     struct btree *parent)
1091{
1092	BKEY_PADDED(key) k;
1093	struct btree *b = ERR_PTR(-EAGAIN);
1094
1095	mutex_lock(&c->bucket_lock);
1096retry:
1097	if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, wait))
1098		goto err;
1099
1100	bkey_put(c, &k.key);
1101	SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
1102
1103	b = mca_alloc(c, op, &k.key, level);
1104	if (IS_ERR(b))
1105		goto err_free;
1106
1107	if (!b) {
1108		cache_bug(c,
1109			"Tried to allocate bucket that was in btree cache");
1110		goto retry;
1111	}
1112
1113	b->parent = parent;
1114	bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->cache->sb));
1115
1116	mutex_unlock(&c->bucket_lock);
1117
1118	trace_bcache_btree_node_alloc(b);
1119	return b;
1120err_free:
1121	bch_bucket_free(c, &k.key);
1122err:
1123	mutex_unlock(&c->bucket_lock);
1124
1125	trace_bcache_btree_node_alloc_fail(c);
1126	return b;
1127}
1128
1129static struct btree *bch_btree_node_alloc(struct cache_set *c,
1130					  struct btree_op *op, int level,
1131					  struct btree *parent)
1132{
1133	return __bch_btree_node_alloc(c, op, level, op != NULL, parent);
1134}
1135
1136static struct btree *btree_node_alloc_replacement(struct btree *b,
1137						  struct btree_op *op)
1138{
1139	struct btree *n = bch_btree_node_alloc(b->c, op, b->level, b->parent);
1140
1141	if (!IS_ERR_OR_NULL(n)) {
1142		mutex_lock(&n->write_lock);
1143		bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
1144		bkey_copy_key(&n->key, &b->key);
1145		mutex_unlock(&n->write_lock);
1146	}
1147
1148	return n;
1149}
1150
1151static void make_btree_freeing_key(struct btree *b, struct bkey *k)
1152{
1153	unsigned int i;
1154
1155	mutex_lock(&b->c->bucket_lock);
1156
1157	atomic_inc(&b->c->prio_blocked);
1158
1159	bkey_copy(k, &b->key);
1160	bkey_copy_key(k, &ZERO_KEY);
1161
1162	for (i = 0; i < KEY_PTRS(k); i++)
1163		SET_PTR_GEN(k, i,
1164			    bch_inc_gen(b->c->cache,
1165					PTR_BUCKET(b->c, &b->key, i)));
1166
1167	mutex_unlock(&b->c->bucket_lock);
1168}
1169
1170static int btree_check_reserve(struct btree *b, struct btree_op *op)
1171{
1172	struct cache_set *c = b->c;
1173	struct cache *ca = c->cache;
1174	unsigned int reserve = (c->root->level - b->level) * 2 + 1;
1175
1176	mutex_lock(&c->bucket_lock);
1177
1178	if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
1179		if (op)
1180			prepare_to_wait(&c->btree_cache_wait, &op->wait,
1181					TASK_UNINTERRUPTIBLE);
1182		mutex_unlock(&c->bucket_lock);
1183		return -EINTR;
1184	}
1185
1186	mutex_unlock(&c->bucket_lock);
1187
1188	return mca_cannibalize_lock(b->c, op);
1189}
1190
1191/* Garbage collection */
1192
1193static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
1194				    struct bkey *k)
1195{
1196	uint8_t stale = 0;
1197	unsigned int i;
1198	struct bucket *g;
1199
1200	/*
1201	 * ptr_invalid() can't return true for the keys that mark btree nodes as
1202	 * freed, but since ptr_bad() returns true we'll never actually use them
1203	 * for anything and thus we don't want mark their pointers here
1204	 */
1205	if (!bkey_cmp(k, &ZERO_KEY))
1206		return stale;
1207
1208	for (i = 0; i < KEY_PTRS(k); i++) {
1209		if (!ptr_available(c, k, i))
1210			continue;
1211
1212		g = PTR_BUCKET(c, k, i);
1213
1214		if (gen_after(g->last_gc, PTR_GEN(k, i)))
1215			g->last_gc = PTR_GEN(k, i);
1216
1217		if (ptr_stale(c, k, i)) {
1218			stale = max(stale, ptr_stale(c, k, i));
1219			continue;
1220		}
1221
1222		cache_bug_on(GC_MARK(g) &&
1223			     (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
1224			     c, "inconsistent ptrs: mark = %llu, level = %i",
1225			     GC_MARK(g), level);
1226
1227		if (level)
1228			SET_GC_MARK(g, GC_MARK_METADATA);
1229		else if (KEY_DIRTY(k))
1230			SET_GC_MARK(g, GC_MARK_DIRTY);
1231		else if (!GC_MARK(g))
1232			SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
1233
1234		/* guard against overflow */
1235		SET_GC_SECTORS_USED(g, min_t(unsigned int,
1236					     GC_SECTORS_USED(g) + KEY_SIZE(k),
1237					     MAX_GC_SECTORS_USED));
1238
1239		BUG_ON(!GC_SECTORS_USED(g));
1240	}
1241
1242	return stale;
1243}
1244
1245#define btree_mark_key(b, k)	__bch_btree_mark_key(b->c, b->level, k)
1246
1247void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
1248{
1249	unsigned int i;
1250
1251	for (i = 0; i < KEY_PTRS(k); i++)
1252		if (ptr_available(c, k, i) &&
1253		    !ptr_stale(c, k, i)) {
1254			struct bucket *b = PTR_BUCKET(c, k, i);
1255
1256			b->gen = PTR_GEN(k, i);
1257
1258			if (level && bkey_cmp(k, &ZERO_KEY))
1259				b->prio = BTREE_PRIO;
1260			else if (!level && b->prio == BTREE_PRIO)
1261				b->prio = INITIAL_PRIO;
1262		}
1263
1264	__bch_btree_mark_key(c, level, k);
1265}
1266
1267void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats)
1268{
1269	stats->in_use = (c->nbuckets - c->avail_nbuckets) * 100 / c->nbuckets;
1270}
1271
1272static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
1273{
1274	uint8_t stale = 0;
1275	unsigned int keys = 0, good_keys = 0;
1276	struct bkey *k;
1277	struct btree_iter iter;
1278	struct bset_tree *t;
1279
1280	gc->nodes++;
1281
1282	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
1283		stale = max(stale, btree_mark_key(b, k));
1284		keys++;
1285
1286		if (bch_ptr_bad(&b->keys, k))
1287			continue;
1288
1289		gc->key_bytes += bkey_u64s(k);
1290		gc->nkeys++;
1291		good_keys++;
1292
1293		gc->data += KEY_SIZE(k);
1294	}
1295
1296	for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
1297		btree_bug_on(t->size &&
1298			     bset_written(&b->keys, t) &&
1299			     bkey_cmp(&b->key, &t->end) < 0,
1300			     b, "found short btree key in gc");
1301
1302	if (b->c->gc_always_rewrite)
1303		return true;
1304
1305	if (stale > 10)
1306		return true;
1307
1308	if ((keys - good_keys) * 2 > keys)
1309		return true;
1310
1311	return false;
1312}
1313
1314#define GC_MERGE_NODES	4U
1315
1316struct gc_merge_info {
1317	struct btree	*b;
1318	unsigned int	keys;
1319};
1320
1321static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
1322				 struct keylist *insert_keys,
1323				 atomic_t *journal_ref,
1324				 struct bkey *replace_key);
1325
1326static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
1327			     struct gc_stat *gc, struct gc_merge_info *r)
1328{
1329	unsigned int i, nodes = 0, keys = 0, blocks;
1330	struct btree *new_nodes[GC_MERGE_NODES];
1331	struct keylist keylist;
1332	struct closure cl;
1333	struct bkey *k;
1334
1335	bch_keylist_init(&keylist);
1336
1337	if (btree_check_reserve(b, NULL))
1338		return 0;
1339
1340	memset(new_nodes, 0, sizeof(new_nodes));
1341	closure_init_stack(&cl);
1342
1343	while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
1344		keys += r[nodes++].keys;
1345
1346	blocks = btree_default_blocks(b->c) * 2 / 3;
1347
1348	if (nodes < 2 ||
1349	    __set_blocks(b->keys.set[0].data, keys,
1350			 block_bytes(b->c->cache)) > blocks * (nodes - 1))
1351		return 0;
1352
1353	for (i = 0; i < nodes; i++) {
1354		new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
1355		if (IS_ERR_OR_NULL(new_nodes[i]))
1356			goto out_nocoalesce;
1357	}
1358
1359	/*
1360	 * We have to check the reserve here, after we've allocated our new
1361	 * nodes, to make sure the insert below will succeed - we also check
1362	 * before as an optimization to potentially avoid a bunch of expensive
1363	 * allocs/sorts
1364	 */
1365	if (btree_check_reserve(b, NULL))
1366		goto out_nocoalesce;
1367
1368	for (i = 0; i < nodes; i++)
1369		mutex_lock(&new_nodes[i]->write_lock);
1370
1371	for (i = nodes - 1; i > 0; --i) {
1372		struct bset *n1 = btree_bset_first(new_nodes[i]);
1373		struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
1374		struct bkey *k, *last = NULL;
1375
1376		keys = 0;
1377
1378		if (i > 1) {
1379			for (k = n2->start;
1380			     k < bset_bkey_last(n2);
1381			     k = bkey_next(k)) {
1382				if (__set_blocks(n1, n1->keys + keys +
1383						 bkey_u64s(k),
1384						 block_bytes(b->c->cache)) > blocks)
1385					break;
1386
1387				last = k;
1388				keys += bkey_u64s(k);
1389			}
1390		} else {
1391			/*
1392			 * Last node we're not getting rid of - we're getting
1393			 * rid of the node at r[0]. Have to try and fit all of
1394			 * the remaining keys into this node; we can't ensure
1395			 * they will always fit due to rounding and variable
1396			 * length keys (shouldn't be possible in practice,
1397			 * though)
1398			 */
1399			if (__set_blocks(n1, n1->keys + n2->keys,
1400					 block_bytes(b->c->cache)) >
1401			    btree_blocks(new_nodes[i]))
1402				goto out_unlock_nocoalesce;
1403
1404			keys = n2->keys;
1405			/* Take the key of the node we're getting rid of */
1406			last = &r->b->key;
1407		}
1408
1409		BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c->cache)) >
1410		       btree_blocks(new_nodes[i]));
1411
1412		if (last)
1413			bkey_copy_key(&new_nodes[i]->key, last);
1414
1415		memcpy(bset_bkey_last(n1),
1416		       n2->start,
1417		       (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
1418
1419		n1->keys += keys;
1420		r[i].keys = n1->keys;
1421
1422		memmove(n2->start,
1423			bset_bkey_idx(n2, keys),
1424			(void *) bset_bkey_last(n2) -
1425			(void *) bset_bkey_idx(n2, keys));
1426
1427		n2->keys -= keys;
1428
1429		if (__bch_keylist_realloc(&keylist,
1430					  bkey_u64s(&new_nodes[i]->key)))
1431			goto out_unlock_nocoalesce;
1432
1433		bch_btree_node_write(new_nodes[i], &cl);
1434		bch_keylist_add(&keylist, &new_nodes[i]->key);
1435	}
1436
1437	for (i = 0; i < nodes; i++)
1438		mutex_unlock(&new_nodes[i]->write_lock);
1439
1440	closure_sync(&cl);
1441
1442	/* We emptied out this node */
1443	BUG_ON(btree_bset_first(new_nodes[0])->keys);
1444	btree_node_free(new_nodes[0]);
1445	rw_unlock(true, new_nodes[0]);
1446	new_nodes[0] = NULL;
1447
1448	for (i = 0; i < nodes; i++) {
1449		if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
1450			goto out_nocoalesce;
1451
1452		make_btree_freeing_key(r[i].b, keylist.top);
1453		bch_keylist_push(&keylist);
1454	}
1455
1456	bch_btree_insert_node(b, op, &keylist, NULL, NULL);
1457	BUG_ON(!bch_keylist_empty(&keylist));
1458
1459	for (i = 0; i < nodes; i++) {
1460		btree_node_free(r[i].b);
1461		rw_unlock(true, r[i].b);
1462
1463		r[i].b = new_nodes[i];
1464	}
1465
1466	memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
1467	r[nodes - 1].b = ERR_PTR(-EINTR);
1468
1469	trace_bcache_btree_gc_coalesce(nodes);
1470	gc->nodes--;
1471
1472	bch_keylist_free(&keylist);
1473
1474	/* Invalidated our iterator */
1475	return -EINTR;
1476
1477out_unlock_nocoalesce:
1478	for (i = 0; i < nodes; i++)
1479		mutex_unlock(&new_nodes[i]->write_lock);
1480
1481out_nocoalesce:
1482	closure_sync(&cl);
1483
1484	while ((k = bch_keylist_pop(&keylist)))
1485		if (!bkey_cmp(k, &ZERO_KEY))
1486			atomic_dec(&b->c->prio_blocked);
1487	bch_keylist_free(&keylist);
1488
1489	for (i = 0; i < nodes; i++)
1490		if (!IS_ERR_OR_NULL(new_nodes[i])) {
1491			btree_node_free(new_nodes[i]);
1492			rw_unlock(true, new_nodes[i]);
1493		}
1494	return 0;
1495}
1496
1497static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
1498				 struct btree *replace)
1499{
1500	struct keylist keys;
1501	struct btree *n;
1502
1503	if (btree_check_reserve(b, NULL))
1504		return 0;
1505
1506	n = btree_node_alloc_replacement(replace, NULL);
1507
1508	/* recheck reserve after allocating replacement node */
1509	if (btree_check_reserve(b, NULL)) {
1510		btree_node_free(n);
1511		rw_unlock(true, n);
1512		return 0;
1513	}
1514
1515	bch_btree_node_write_sync(n);
1516
1517	bch_keylist_init(&keys);
1518	bch_keylist_add(&keys, &n->key);
1519
1520	make_btree_freeing_key(replace, keys.top);
1521	bch_keylist_push(&keys);
1522
1523	bch_btree_insert_node(b, op, &keys, NULL, NULL);
1524	BUG_ON(!bch_keylist_empty(&keys));
1525
1526	btree_node_free(replace);
1527	rw_unlock(true, n);
1528
1529	/* Invalidated our iterator */
1530	return -EINTR;
1531}
1532
1533static unsigned int btree_gc_count_keys(struct btree *b)
1534{
1535	struct bkey *k;
1536	struct btree_iter iter;
1537	unsigned int ret = 0;
1538
1539	for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
1540		ret += bkey_u64s(k);
1541
1542	return ret;
1543}
1544
1545static size_t btree_gc_min_nodes(struct cache_set *c)
1546{
1547	size_t min_nodes;
1548
1549	/*
1550	 * Since incremental GC would stop 100ms when front
1551	 * side I/O comes, so when there are many btree nodes,
1552	 * if GC only processes constant (100) nodes each time,
1553	 * GC would last a long time, and the front side I/Os
1554	 * would run out of the buckets (since no new bucket
1555	 * can be allocated during GC), and be blocked again.
1556	 * So GC should not process constant nodes, but varied
1557	 * nodes according to the number of btree nodes, which
1558	 * realized by dividing GC into constant(100) times,
1559	 * so when there are many btree nodes, GC can process
1560	 * more nodes each time, otherwise, GC will process less
1561	 * nodes each time (but no less than MIN_GC_NODES)
1562	 */
1563	min_nodes = c->gc_stats.nodes / MAX_GC_TIMES;
1564	if (min_nodes < MIN_GC_NODES)
1565		min_nodes = MIN_GC_NODES;
1566
1567	return min_nodes;
1568}
1569
1570
1571static int btree_gc_recurse(struct btree *b, struct btree_op *op,
1572			    struct closure *writes, struct gc_stat *gc)
1573{
1574	int ret = 0;
1575	bool should_rewrite;
1576	struct bkey *k;
1577	struct btree_iter iter;
1578	struct gc_merge_info r[GC_MERGE_NODES];
1579	struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
1580
1581	bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
1582
1583	for (i = r; i < r + ARRAY_SIZE(r); i++)
1584		i->b = ERR_PTR(-EINTR);
1585
1586	while (1) {
1587		k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
1588		if (k) {
1589			r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
1590						  true, b);
1591			if (IS_ERR(r->b)) {
1592				ret = PTR_ERR(r->b);
1593				break;
1594			}
1595
1596			r->keys = btree_gc_count_keys(r->b);
1597
1598			ret = btree_gc_coalesce(b, op, gc, r);
1599			if (ret)
1600				break;
1601		}
1602
1603		if (!last->b)
1604			break;
1605
1606		if (!IS_ERR(last->b)) {
1607			should_rewrite = btree_gc_mark_node(last->b, gc);
1608			if (should_rewrite) {
1609				ret = btree_gc_rewrite_node(b, op, last->b);
1610				if (ret)
1611					break;
1612			}
1613
1614			if (last->b->level) {
1615				ret = btree_gc_recurse(last->b, op, writes, gc);
1616				if (ret)
1617					break;
1618			}
1619
1620			bkey_copy_key(&b->c->gc_done, &last->b->key);
1621
1622			/*
1623			 * Must flush leaf nodes before gc ends, since replace
1624			 * operations aren't journalled
1625			 */
1626			mutex_lock(&last->b->write_lock);
1627			if (btree_node_dirty(last->b))
1628				bch_btree_node_write(last->b, writes);
1629			mutex_unlock(&last->b->write_lock);
1630			rw_unlock(true, last->b);
1631		}
1632
1633		memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
1634		r->b = NULL;
1635
1636		if (atomic_read(&b->c->search_inflight) &&
1637		    gc->nodes >= gc->nodes_pre + btree_gc_min_nodes(b->c)) {
1638			gc->nodes_pre =  gc->nodes;
1639			ret = -EAGAIN;
1640			break;
1641		}
1642
1643		if (need_resched()) {
1644			ret = -EAGAIN;
1645			break;
1646		}
1647	}
1648
1649	for (i = r; i < r + ARRAY_SIZE(r); i++)
1650		if (!IS_ERR_OR_NULL(i->b)) {
1651			mutex_lock(&i->b->write_lock);
1652			if (btree_node_dirty(i->b))
1653				bch_btree_node_write(i->b, writes);
1654			mutex_unlock(&i->b->write_lock);
1655			rw_unlock(true, i->b);
1656		}
1657
1658	return ret;
1659}
1660
1661static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
1662			     struct closure *writes, struct gc_stat *gc)
1663{
1664	struct btree *n = NULL;
1665	int ret = 0;
1666	bool should_rewrite;
1667
1668	should_rewrite = btree_gc_mark_node(b, gc);
1669	if (should_rewrite) {
1670		n = btree_node_alloc_replacement(b, NULL);
1671
1672		if (!IS_ERR_OR_NULL(n)) {
1673			bch_btree_node_write_sync(n);
1674
1675			bch_btree_set_root(n);
1676			btree_node_free(b);
1677			rw_unlock(true, n);
1678
1679			return -EINTR;
1680		}
1681	}
1682
1683	__bch_btree_mark_key(b->c, b->level + 1, &b->key);
1684
1685	if (b->level) {
1686		ret = btree_gc_recurse(b, op, writes, gc);
1687		if (ret)
1688			return ret;
1689	}
1690
1691	bkey_copy_key(&b->c->gc_done, &b->key);
1692
1693	return ret;
1694}
1695
1696static void btree_gc_start(struct cache_set *c)
1697{
1698	struct cache *ca;
1699	struct bucket *b;
1700
1701	if (!c->gc_mark_valid)
1702		return;
1703
1704	mutex_lock(&c->bucket_lock);
1705
1706	c->gc_mark_valid = 0;
1707	c->gc_done = ZERO_KEY;
1708
1709	ca = c->cache;
1710	for_each_bucket(b, ca) {
1711		b->last_gc = b->gen;
1712		if (!atomic_read(&b->pin)) {
1713			SET_GC_MARK(b, 0);
1714			SET_GC_SECTORS_USED(b, 0);
1715		}
1716	}
1717
1718	mutex_unlock(&c->bucket_lock);
1719}
1720
1721static void bch_btree_gc_finish(struct cache_set *c)
1722{
1723	struct bucket *b;
1724	struct cache *ca;
1725	unsigned int i, j;
1726	uint64_t *k;
1727
1728	mutex_lock(&c->bucket_lock);
1729
1730	set_gc_sectors(c);
1731	c->gc_mark_valid = 1;
1732	c->need_gc	= 0;
1733
1734	for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
1735		SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
1736			    GC_MARK_METADATA);
1737
1738	/* don't reclaim buckets to which writeback keys point */
1739	rcu_read_lock();
1740	for (i = 0; i < c->devices_max_used; i++) {
1741		struct bcache_device *d = c->devices[i];
1742		struct cached_dev *dc;
1743		struct keybuf_key *w, *n;
1744
1745		if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
1746			continue;
1747		dc = container_of(d, struct cached_dev, disk);
1748
1749		spin_lock(&dc->writeback_keys.lock);
1750		rbtree_postorder_for_each_entry_safe(w, n,
1751					&dc->writeback_keys.keys, node)
1752			for (j = 0; j < KEY_PTRS(&w->key); j++)
1753				SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
1754					    GC_MARK_DIRTY);
1755		spin_unlock(&dc->writeback_keys.lock);
1756	}
1757	rcu_read_unlock();
1758
1759	c->avail_nbuckets = 0;
1760
1761	ca = c->cache;
1762	ca->invalidate_needs_gc = 0;
1763
1764	for (k = ca->sb.d; k < ca->sb.d + ca->sb.keys; k++)
1765		SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
1766
1767	for (k = ca->prio_buckets;
1768	     k < ca->prio_buckets + prio_buckets(ca) * 2; k++)
1769		SET_GC_MARK(ca->buckets + *k, GC_MARK_METADATA);
1770
1771	for_each_bucket(b, ca) {
1772		c->need_gc	= max(c->need_gc, bucket_gc_gen(b));
1773
1774		if (atomic_read(&b->pin))
1775			continue;
1776
1777		BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
1778
1779		if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
1780			c->avail_nbuckets++;
1781	}
1782
1783	mutex_unlock(&c->bucket_lock);
1784}
1785
1786static void bch_btree_gc(struct cache_set *c)
1787{
1788	int ret;
1789	struct gc_stat stats;
1790	struct closure writes;
1791	struct btree_op op;
1792	uint64_t start_time = local_clock();
1793
1794	trace_bcache_gc_start(c);
1795
1796	memset(&stats, 0, sizeof(struct gc_stat));
1797	closure_init_stack(&writes);
1798	bch_btree_op_init(&op, SHRT_MAX);
1799
1800	btree_gc_start(c);
1801
1802	/* if CACHE_SET_IO_DISABLE set, gc thread should stop too */
1803	do {
1804		ret = bcache_btree_root(gc_root, c, &op, &writes, &stats);
1805		closure_sync(&writes);
1806		cond_resched();
1807
1808		if (ret == -EAGAIN)
1809			schedule_timeout_interruptible(msecs_to_jiffies
1810						       (GC_SLEEP_MS));
1811		else if (ret)
1812			pr_warn("gc failed!\n");
1813	} while (ret && !test_bit(CACHE_SET_IO_DISABLE, &c->flags));
1814
1815	bch_btree_gc_finish(c);
1816	wake_up_allocators(c);
1817
1818	bch_time_stats_update(&c->btree_gc_time, start_time);
1819
1820	stats.key_bytes *= sizeof(uint64_t);
1821	stats.data	<<= 9;
1822	bch_update_bucket_in_use(c, &stats);
1823	memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
1824
1825	trace_bcache_gc_end(c);
1826
1827	bch_moving_gc(c);
1828}
1829
1830static bool gc_should_run(struct cache_set *c)
1831{
1832	struct cache *ca = c->cache;
1833
1834	if (ca->invalidate_needs_gc)
1835		return true;
1836
1837	if (atomic_read(&c->sectors_to_gc) < 0)
1838		return true;
1839
1840	return false;
1841}
1842
1843static int bch_gc_thread(void *arg)
1844{
1845	struct cache_set *c = arg;
1846
1847	while (1) {
1848		wait_event_interruptible(c->gc_wait,
1849			   kthread_should_stop() ||
1850			   test_bit(CACHE_SET_IO_DISABLE, &c->flags) ||
1851			   gc_should_run(c));
1852
1853		if (kthread_should_stop() ||
1854		    test_bit(CACHE_SET_IO_DISABLE, &c->flags))
1855			break;
1856
1857		set_gc_sectors(c);
1858		bch_btree_gc(c);
1859	}
1860
1861	wait_for_kthread_stop();
1862	return 0;
1863}
1864
1865int bch_gc_thread_start(struct cache_set *c)
1866{
1867	c->gc_thread = kthread_run(bch_gc_thread, c, "bcache_gc");
1868	return PTR_ERR_OR_ZERO(c->gc_thread);
1869}
1870
1871/* Initial partial gc */
1872
1873static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
1874{
1875	int ret = 0;
1876	struct bkey *k, *p = NULL;
1877	struct btree_iter iter;
1878
1879	for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
1880		bch_initial_mark_key(b->c, b->level, k);
1881
1882	bch_initial_mark_key(b->c, b->level + 1, &b->key);
1883
1884	if (b->level) {
1885		bch_btree_iter_init(&b->keys, &iter, NULL);
1886
1887		do {
1888			k = bch_btree_iter_next_filter(&iter, &b->keys,
1889						       bch_ptr_bad);
1890			if (k) {
1891				btree_node_prefetch(b, k);
1892				/*
1893				 * initiallize c->gc_stats.nodes
1894				 * for incremental GC
1895				 */
1896				b->c->gc_stats.nodes++;
1897			}
1898
1899			if (p)
1900				ret = bcache_btree(check_recurse, p, b, op);
1901
1902			p = k;
1903		} while (p && !ret);
1904	}
1905
1906	return ret;
1907}
1908
1909
1910static int bch_btree_check_thread(void *arg)
1911{
1912	int ret;
1913	struct btree_check_info *info = arg;
1914	struct btree_check_state *check_state = info->state;
1915	struct cache_set *c = check_state->c;
1916	struct btree_iter iter;
1917	struct bkey *k, *p;
1918	int cur_idx, prev_idx, skip_nr;
1919
1920	k = p = NULL;
1921	cur_idx = prev_idx = 0;
1922	ret = 0;
1923
1924	/* root node keys are checked before thread created */
1925	bch_btree_iter_init(&c->root->keys, &iter, NULL);
1926	k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad);
1927	BUG_ON(!k);
1928
1929	p = k;
1930	while (k) {
1931		/*
1932		 * Fetch a root node key index, skip the keys which
1933		 * should be fetched by other threads, then check the
1934		 * sub-tree indexed by the fetched key.
1935		 */
1936		spin_lock(&check_state->idx_lock);
1937		cur_idx = check_state->key_idx;
1938		check_state->key_idx++;
1939		spin_unlock(&check_state->idx_lock);
1940
1941		skip_nr = cur_idx - prev_idx;
1942
1943		while (skip_nr) {
1944			k = bch_btree_iter_next_filter(&iter,
1945						       &c->root->keys,
1946						       bch_ptr_bad);
1947			if (k)
1948				p = k;
1949			else {
1950				/*
1951				 * No more keys to check in root node,
1952				 * current checking threads are enough,
1953				 * stop creating more.
1954				 */
1955				atomic_set(&check_state->enough, 1);
1956				/* Update check_state->enough earlier */
1957				smp_mb__after_atomic();
1958				goto out;
1959			}
1960			skip_nr--;
1961			cond_resched();
1962		}
1963
1964		if (p) {
1965			struct btree_op op;
1966
1967			btree_node_prefetch(c->root, p);
1968			c->gc_stats.nodes++;
1969			bch_btree_op_init(&op, 0);
1970			ret = bcache_btree(check_recurse, p, c->root, &op);
1971			if (ret)
1972				goto out;
1973		}
1974		p = NULL;
1975		prev_idx = cur_idx;
1976		cond_resched();
1977	}
1978
1979out:
1980	info->result = ret;
1981	/* update check_state->started among all CPUs */
1982	smp_mb__before_atomic();
1983	if (atomic_dec_and_test(&check_state->started))
1984		wake_up(&check_state->wait);
1985
1986	return ret;
1987}
1988
1989
1990
1991static int bch_btree_chkthread_nr(void)
1992{
1993	int n = num_online_cpus()/2;
1994
1995	if (n == 0)
1996		n = 1;
1997	else if (n > BCH_BTR_CHKTHREAD_MAX)
1998		n = BCH_BTR_CHKTHREAD_MAX;
1999
2000	return n;
2001}
2002
2003int bch_btree_check(struct cache_set *c)
2004{
2005	int ret = 0;
2006	int i;
2007	struct bkey *k = NULL;
2008	struct btree_iter iter;
2009	struct btree_check_state *check_state;
2010	char name[32];
2011
2012	/* check and mark root node keys */
2013	for_each_key_filter(&c->root->keys, k, &iter, bch_ptr_invalid)
2014		bch_initial_mark_key(c, c->root->level, k);
2015
2016	bch_initial_mark_key(c, c->root->level + 1, &c->root->key);
2017
2018	if (c->root->level == 0)
2019		return 0;
2020
2021	check_state = kzalloc(sizeof(struct btree_check_state), GFP_KERNEL);
2022	if (!check_state)
2023		return -ENOMEM;
2024
2025	check_state->c = c;
2026	check_state->total_threads = bch_btree_chkthread_nr();
2027	check_state->key_idx = 0;
2028	spin_lock_init(&check_state->idx_lock);
2029	atomic_set(&check_state->started, 0);
2030	atomic_set(&check_state->enough, 0);
2031	init_waitqueue_head(&check_state->wait);
2032
 
2033	/*
2034	 * Run multiple threads to check btree nodes in parallel,
2035	 * if check_state->enough is non-zero, it means current
2036	 * running check threads are enough, unncessary to create
2037	 * more.
2038	 */
2039	for (i = 0; i < check_state->total_threads; i++) {
2040		/* fetch latest check_state->enough earlier */
2041		smp_mb__before_atomic();
2042		if (atomic_read(&check_state->enough))
2043			break;
2044
2045		check_state->infos[i].result = 0;
2046		check_state->infos[i].state = check_state;
2047		snprintf(name, sizeof(name), "bch_btrchk[%u]", i);
2048		atomic_inc(&check_state->started);
2049
2050		check_state->infos[i].thread =
2051			kthread_run(bch_btree_check_thread,
2052				    &check_state->infos[i],
2053				    name);
2054		if (IS_ERR(check_state->infos[i].thread)) {
2055			pr_err("fails to run thread bch_btrchk[%d]\n", i);
2056			for (--i; i >= 0; i--)
2057				kthread_stop(check_state->infos[i].thread);
2058			ret = -ENOMEM;
2059			goto out;
2060		}
 
2061	}
2062
2063	wait_event_interruptible(check_state->wait,
2064				 atomic_read(&check_state->started) == 0 ||
2065				  test_bit(CACHE_SET_IO_DISABLE, &c->flags));
2066
2067	for (i = 0; i < check_state->total_threads; i++) {
2068		if (check_state->infos[i].result) {
2069			ret = check_state->infos[i].result;
 
2070			goto out;
2071		}
2072	}
2073
2074out:
2075	kfree(check_state);
2076	return ret;
2077}
2078
2079void bch_initial_gc_finish(struct cache_set *c)
2080{
2081	struct cache *ca = c->cache;
2082	struct bucket *b;
2083
2084	bch_btree_gc_finish(c);
2085
2086	mutex_lock(&c->bucket_lock);
2087
2088	/*
2089	 * We need to put some unused buckets directly on the prio freelist in
2090	 * order to get the allocator thread started - it needs freed buckets in
2091	 * order to rewrite the prios and gens, and it needs to rewrite prios
2092	 * and gens in order to free buckets.
2093	 *
2094	 * This is only safe for buckets that have no live data in them, which
2095	 * there should always be some of.
2096	 */
2097	for_each_bucket(b, ca) {
2098		if (fifo_full(&ca->free[RESERVE_PRIO]) &&
2099		    fifo_full(&ca->free[RESERVE_BTREE]))
2100			break;
2101
2102		if (bch_can_invalidate_bucket(ca, b) &&
2103		    !GC_MARK(b)) {
2104			__bch_invalidate_one_bucket(ca, b);
2105			if (!fifo_push(&ca->free[RESERVE_PRIO],
2106			   b - ca->buckets))
2107				fifo_push(&ca->free[RESERVE_BTREE],
2108					  b - ca->buckets);
2109		}
2110	}
2111
2112	mutex_unlock(&c->bucket_lock);
2113}
2114
2115/* Btree insertion */
2116
2117static bool btree_insert_key(struct btree *b, struct bkey *k,
2118			     struct bkey *replace_key)
2119{
2120	unsigned int status;
2121
2122	BUG_ON(bkey_cmp(k, &b->key) > 0);
2123
2124	status = bch_btree_insert_key(&b->keys, k, replace_key);
2125	if (status != BTREE_INSERT_STATUS_NO_INSERT) {
2126		bch_check_keys(&b->keys, "%u for %s", status,
2127			       replace_key ? "replace" : "insert");
2128
2129		trace_bcache_btree_insert_key(b, k, replace_key != NULL,
2130					      status);
2131		return true;
2132	} else
2133		return false;
2134}
2135
2136static size_t insert_u64s_remaining(struct btree *b)
2137{
2138	long ret = bch_btree_keys_u64s_remaining(&b->keys);
2139
2140	/*
2141	 * Might land in the middle of an existing extent and have to split it
2142	 */
2143	if (b->keys.ops->is_extents)
2144		ret -= KEY_MAX_U64S;
2145
2146	return max(ret, 0L);
2147}
2148
2149static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
2150				  struct keylist *insert_keys,
2151				  struct bkey *replace_key)
2152{
2153	bool ret = false;
2154	int oldsize = bch_count_data(&b->keys);
2155
2156	while (!bch_keylist_empty(insert_keys)) {
2157		struct bkey *k = insert_keys->keys;
2158
2159		if (bkey_u64s(k) > insert_u64s_remaining(b))
2160			break;
2161
2162		if (bkey_cmp(k, &b->key) <= 0) {
2163			if (!b->level)
2164				bkey_put(b->c, k);
2165
2166			ret |= btree_insert_key(b, k, replace_key);
2167			bch_keylist_pop_front(insert_keys);
2168		} else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
2169			BKEY_PADDED(key) temp;
2170			bkey_copy(&temp.key, insert_keys->keys);
2171
2172			bch_cut_back(&b->key, &temp.key);
2173			bch_cut_front(&b->key, insert_keys->keys);
2174
2175			ret |= btree_insert_key(b, &temp.key, replace_key);
2176			break;
2177		} else {
2178			break;
2179		}
2180	}
2181
2182	if (!ret)
2183		op->insert_collision = true;
2184
2185	BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
2186
2187	BUG_ON(bch_count_data(&b->keys) < oldsize);
2188	return ret;
2189}
2190
2191static int btree_split(struct btree *b, struct btree_op *op,
2192		       struct keylist *insert_keys,
2193		       struct bkey *replace_key)
2194{
2195	bool split;
2196	struct btree *n1, *n2 = NULL, *n3 = NULL;
2197	uint64_t start_time = local_clock();
2198	struct closure cl;
2199	struct keylist parent_keys;
2200
2201	closure_init_stack(&cl);
2202	bch_keylist_init(&parent_keys);
2203
2204	if (btree_check_reserve(b, op)) {
2205		if (!b->level)
2206			return -EINTR;
2207		else
2208			WARN(1, "insufficient reserve for split\n");
2209	}
2210
2211	n1 = btree_node_alloc_replacement(b, op);
2212	if (IS_ERR(n1))
2213		goto err;
2214
2215	split = set_blocks(btree_bset_first(n1),
2216			   block_bytes(n1->c->cache)) > (btree_blocks(b) * 4) / 5;
2217
2218	if (split) {
2219		unsigned int keys = 0;
2220
2221		trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
2222
2223		n2 = bch_btree_node_alloc(b->c, op, b->level, b->parent);
2224		if (IS_ERR(n2))
2225			goto err_free1;
2226
2227		if (!b->parent) {
2228			n3 = bch_btree_node_alloc(b->c, op, b->level + 1, NULL);
2229			if (IS_ERR(n3))
2230				goto err_free2;
2231		}
2232
2233		mutex_lock(&n1->write_lock);
2234		mutex_lock(&n2->write_lock);
2235
2236		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2237
2238		/*
2239		 * Has to be a linear search because we don't have an auxiliary
2240		 * search tree yet
2241		 */
2242
2243		while (keys < (btree_bset_first(n1)->keys * 3) / 5)
2244			keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
2245							keys));
2246
2247		bkey_copy_key(&n1->key,
2248			      bset_bkey_idx(btree_bset_first(n1), keys));
2249		keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
2250
2251		btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
2252		btree_bset_first(n1)->keys = keys;
2253
2254		memcpy(btree_bset_first(n2)->start,
2255		       bset_bkey_last(btree_bset_first(n1)),
2256		       btree_bset_first(n2)->keys * sizeof(uint64_t));
2257
2258		bkey_copy_key(&n2->key, &b->key);
2259
2260		bch_keylist_add(&parent_keys, &n2->key);
2261		bch_btree_node_write(n2, &cl);
2262		mutex_unlock(&n2->write_lock);
2263		rw_unlock(true, n2);
2264	} else {
2265		trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
2266
2267		mutex_lock(&n1->write_lock);
2268		bch_btree_insert_keys(n1, op, insert_keys, replace_key);
2269	}
2270
2271	bch_keylist_add(&parent_keys, &n1->key);
2272	bch_btree_node_write(n1, &cl);
2273	mutex_unlock(&n1->write_lock);
2274
2275	if (n3) {
2276		/* Depth increases, make a new root */
2277		mutex_lock(&n3->write_lock);
2278		bkey_copy_key(&n3->key, &MAX_KEY);
2279		bch_btree_insert_keys(n3, op, &parent_keys, NULL);
2280		bch_btree_node_write(n3, &cl);
2281		mutex_unlock(&n3->write_lock);
2282
2283		closure_sync(&cl);
2284		bch_btree_set_root(n3);
2285		rw_unlock(true, n3);
2286	} else if (!b->parent) {
2287		/* Root filled up but didn't need to be split */
2288		closure_sync(&cl);
2289		bch_btree_set_root(n1);
2290	} else {
2291		/* Split a non root node */
2292		closure_sync(&cl);
2293		make_btree_freeing_key(b, parent_keys.top);
2294		bch_keylist_push(&parent_keys);
2295
2296		bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
2297		BUG_ON(!bch_keylist_empty(&parent_keys));
2298	}
2299
2300	btree_node_free(b);
2301	rw_unlock(true, n1);
2302
2303	bch_time_stats_update(&b->c->btree_split_time, start_time);
2304
2305	return 0;
2306err_free2:
2307	bkey_put(b->c, &n2->key);
2308	btree_node_free(n2);
2309	rw_unlock(true, n2);
2310err_free1:
2311	bkey_put(b->c, &n1->key);
2312	btree_node_free(n1);
2313	rw_unlock(true, n1);
2314err:
2315	WARN(1, "bcache: btree split failed (level %u)", b->level);
2316
2317	if (n3 == ERR_PTR(-EAGAIN) ||
2318	    n2 == ERR_PTR(-EAGAIN) ||
2319	    n1 == ERR_PTR(-EAGAIN))
2320		return -EAGAIN;
2321
2322	return -ENOMEM;
2323}
2324
2325static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
2326				 struct keylist *insert_keys,
2327				 atomic_t *journal_ref,
2328				 struct bkey *replace_key)
2329{
2330	struct closure cl;
2331
2332	BUG_ON(b->level && replace_key);
2333
2334	closure_init_stack(&cl);
2335
2336	mutex_lock(&b->write_lock);
2337
2338	if (write_block(b) != btree_bset_last(b) &&
2339	    b->keys.last_set_unwritten)
2340		bch_btree_init_next(b); /* just wrote a set */
2341
2342	if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
2343		mutex_unlock(&b->write_lock);
2344		goto split;
2345	}
2346
2347	BUG_ON(write_block(b) != btree_bset_last(b));
2348
2349	if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
2350		if (!b->level)
2351			bch_btree_leaf_dirty(b, journal_ref);
2352		else
2353			bch_btree_node_write(b, &cl);
2354	}
2355
2356	mutex_unlock(&b->write_lock);
2357
2358	/* wait for btree node write if necessary, after unlock */
2359	closure_sync(&cl);
2360
2361	return 0;
2362split:
2363	if (current->bio_list) {
2364		op->lock = b->c->root->level + 1;
2365		return -EAGAIN;
2366	} else if (op->lock <= b->c->root->level) {
2367		op->lock = b->c->root->level + 1;
2368		return -EINTR;
2369	} else {
2370		/* Invalidated all iterators */
2371		int ret = btree_split(b, op, insert_keys, replace_key);
2372
2373		if (bch_keylist_empty(insert_keys))
2374			return 0;
2375		else if (!ret)
2376			return -EINTR;
2377		return ret;
2378	}
2379}
2380
2381int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
2382			       struct bkey *check_key)
2383{
2384	int ret = -EINTR;
2385	uint64_t btree_ptr = b->key.ptr[0];
2386	unsigned long seq = b->seq;
2387	struct keylist insert;
2388	bool upgrade = op->lock == -1;
2389
2390	bch_keylist_init(&insert);
2391
2392	if (upgrade) {
2393		rw_unlock(false, b);
2394		rw_lock(true, b, b->level);
2395
2396		if (b->key.ptr[0] != btree_ptr ||
2397		    b->seq != seq + 1) {
2398			op->lock = b->level;
2399			goto out;
2400		}
2401	}
2402
2403	SET_KEY_PTRS(check_key, 1);
2404	get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
2405
2406	SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
2407
2408	bch_keylist_add(&insert, check_key);
2409
2410	ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
2411
2412	BUG_ON(!ret && !bch_keylist_empty(&insert));
2413out:
2414	if (upgrade)
2415		downgrade_write(&b->lock);
2416	return ret;
2417}
2418
2419struct btree_insert_op {
2420	struct btree_op	op;
2421	struct keylist	*keys;
2422	atomic_t	*journal_ref;
2423	struct bkey	*replace_key;
2424};
2425
2426static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
2427{
2428	struct btree_insert_op *op = container_of(b_op,
2429					struct btree_insert_op, op);
2430
2431	int ret = bch_btree_insert_node(b, &op->op, op->keys,
2432					op->journal_ref, op->replace_key);
2433	if (ret && !bch_keylist_empty(op->keys))
2434		return ret;
2435	else
2436		return MAP_DONE;
2437}
2438
2439int bch_btree_insert(struct cache_set *c, struct keylist *keys,
2440		     atomic_t *journal_ref, struct bkey *replace_key)
2441{
2442	struct btree_insert_op op;
2443	int ret = 0;
2444
2445	BUG_ON(current->bio_list);
2446	BUG_ON(bch_keylist_empty(keys));
2447
2448	bch_btree_op_init(&op.op, 0);
2449	op.keys		= keys;
2450	op.journal_ref	= journal_ref;
2451	op.replace_key	= replace_key;
2452
2453	while (!ret && !bch_keylist_empty(keys)) {
2454		op.op.lock = 0;
2455		ret = bch_btree_map_leaf_nodes(&op.op, c,
2456					       &START_KEY(keys->keys),
2457					       btree_insert_fn);
2458	}
2459
2460	if (ret) {
2461		struct bkey *k;
2462
2463		pr_err("error %i\n", ret);
2464
2465		while ((k = bch_keylist_pop(keys)))
2466			bkey_put(c, k);
2467	} else if (op.op.insert_collision)
2468		ret = -ESRCH;
2469
2470	return ret;
2471}
2472
2473void bch_btree_set_root(struct btree *b)
2474{
2475	unsigned int i;
2476	struct closure cl;
2477
2478	closure_init_stack(&cl);
2479
2480	trace_bcache_btree_set_root(b);
2481
2482	BUG_ON(!b->written);
2483
2484	for (i = 0; i < KEY_PTRS(&b->key); i++)
2485		BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
2486
2487	mutex_lock(&b->c->bucket_lock);
2488	list_del_init(&b->list);
2489	mutex_unlock(&b->c->bucket_lock);
2490
2491	b->c->root = b;
2492
2493	bch_journal_meta(b->c, &cl);
2494	closure_sync(&cl);
2495}
2496
2497/* Map across nodes or keys */
2498
2499static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
2500				       struct bkey *from,
2501				       btree_map_nodes_fn *fn, int flags)
2502{
2503	int ret = MAP_CONTINUE;
2504
2505	if (b->level) {
2506		struct bkey *k;
2507		struct btree_iter iter;
2508
2509		bch_btree_iter_init(&b->keys, &iter, from);
2510
2511		while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
2512						       bch_ptr_bad))) {
2513			ret = bcache_btree(map_nodes_recurse, k, b,
2514				    op, from, fn, flags);
2515			from = NULL;
2516
2517			if (ret != MAP_CONTINUE)
2518				return ret;
2519		}
2520	}
2521
2522	if (!b->level || flags == MAP_ALL_NODES)
2523		ret = fn(op, b);
2524
2525	return ret;
2526}
2527
2528int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
2529			  struct bkey *from, btree_map_nodes_fn *fn, int flags)
2530{
2531	return bcache_btree_root(map_nodes_recurse, c, op, from, fn, flags);
2532}
2533
2534int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
2535				      struct bkey *from, btree_map_keys_fn *fn,
2536				      int flags)
2537{
2538	int ret = MAP_CONTINUE;
2539	struct bkey *k;
2540	struct btree_iter iter;
2541
2542	bch_btree_iter_init(&b->keys, &iter, from);
2543
2544	while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
2545		ret = !b->level
2546			? fn(op, b, k)
2547			: bcache_btree(map_keys_recurse, k,
2548				       b, op, from, fn, flags);
2549		from = NULL;
2550
2551		if (ret != MAP_CONTINUE)
2552			return ret;
2553	}
2554
2555	if (!b->level && (flags & MAP_END_KEY))
2556		ret = fn(op, b, &KEY(KEY_INODE(&b->key),
2557				     KEY_OFFSET(&b->key), 0));
2558
2559	return ret;
2560}
2561
2562int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
2563		       struct bkey *from, btree_map_keys_fn *fn, int flags)
2564{
2565	return bcache_btree_root(map_keys_recurse, c, op, from, fn, flags);
2566}
2567
2568/* Keybuf code */
2569
2570static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
2571{
2572	/* Overlapping keys compare equal */
2573	if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
2574		return -1;
2575	if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
2576		return 1;
2577	return 0;
2578}
2579
2580static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
2581					    struct keybuf_key *r)
2582{
2583	return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
2584}
2585
2586struct refill {
2587	struct btree_op	op;
2588	unsigned int	nr_found;
2589	struct keybuf	*buf;
2590	struct bkey	*end;
2591	keybuf_pred_fn	*pred;
2592};
2593
2594static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
2595			    struct bkey *k)
2596{
2597	struct refill *refill = container_of(op, struct refill, op);
2598	struct keybuf *buf = refill->buf;
2599	int ret = MAP_CONTINUE;
2600
2601	if (bkey_cmp(k, refill->end) > 0) {
2602		ret = MAP_DONE;
2603		goto out;
2604	}
2605
2606	if (!KEY_SIZE(k)) /* end key */
2607		goto out;
2608
2609	if (refill->pred(buf, k)) {
2610		struct keybuf_key *w;
2611
2612		spin_lock(&buf->lock);
2613
2614		w = array_alloc(&buf->freelist);
2615		if (!w) {
2616			spin_unlock(&buf->lock);
2617			return MAP_DONE;
2618		}
2619
2620		w->private = NULL;
2621		bkey_copy(&w->key, k);
2622
2623		if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
2624			array_free(&buf->freelist, w);
2625		else
2626			refill->nr_found++;
2627
2628		if (array_freelist_empty(&buf->freelist))
2629			ret = MAP_DONE;
2630
2631		spin_unlock(&buf->lock);
2632	}
2633out:
2634	buf->last_scanned = *k;
2635	return ret;
2636}
2637
2638void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
2639		       struct bkey *end, keybuf_pred_fn *pred)
2640{
2641	struct bkey start = buf->last_scanned;
2642	struct refill refill;
2643
2644	cond_resched();
2645
2646	bch_btree_op_init(&refill.op, -1);
2647	refill.nr_found	= 0;
2648	refill.buf	= buf;
2649	refill.end	= end;
2650	refill.pred	= pred;
2651
2652	bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
2653			   refill_keybuf_fn, MAP_END_KEY);
2654
2655	trace_bcache_keyscan(refill.nr_found,
2656			     KEY_INODE(&start), KEY_OFFSET(&start),
2657			     KEY_INODE(&buf->last_scanned),
2658			     KEY_OFFSET(&buf->last_scanned));
2659
2660	spin_lock(&buf->lock);
2661
2662	if (!RB_EMPTY_ROOT(&buf->keys)) {
2663		struct keybuf_key *w;
2664
2665		w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2666		buf->start	= START_KEY(&w->key);
2667
2668		w = RB_LAST(&buf->keys, struct keybuf_key, node);
2669		buf->end	= w->key;
2670	} else {
2671		buf->start	= MAX_KEY;
2672		buf->end	= MAX_KEY;
2673	}
2674
2675	spin_unlock(&buf->lock);
2676}
2677
2678static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2679{
2680	rb_erase(&w->node, &buf->keys);
2681	array_free(&buf->freelist, w);
2682}
2683
2684void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
2685{
2686	spin_lock(&buf->lock);
2687	__bch_keybuf_del(buf, w);
2688	spin_unlock(&buf->lock);
2689}
2690
2691bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
2692				  struct bkey *end)
2693{
2694	bool ret = false;
2695	struct keybuf_key *p, *w, s;
2696
2697	s.key = *start;
2698
2699	if (bkey_cmp(end, &buf->start) <= 0 ||
2700	    bkey_cmp(start, &buf->end) >= 0)
2701		return false;
2702
2703	spin_lock(&buf->lock);
2704	w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
2705
2706	while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
2707		p = w;
2708		w = RB_NEXT(w, node);
2709
2710		if (p->private)
2711			ret = true;
2712		else
2713			__bch_keybuf_del(buf, p);
2714	}
2715
2716	spin_unlock(&buf->lock);
2717	return ret;
2718}
2719
2720struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
2721{
2722	struct keybuf_key *w;
2723
2724	spin_lock(&buf->lock);
2725
2726	w = RB_FIRST(&buf->keys, struct keybuf_key, node);
2727
2728	while (w && w->private)
2729		w = RB_NEXT(w, node);
2730
2731	if (w)
2732		w->private = ERR_PTR(-EINTR);
2733
2734	spin_unlock(&buf->lock);
2735	return w;
2736}
2737
2738struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
2739					  struct keybuf *buf,
2740					  struct bkey *end,
2741					  keybuf_pred_fn *pred)
2742{
2743	struct keybuf_key *ret;
2744
2745	while (1) {
2746		ret = bch_keybuf_next(buf);
2747		if (ret)
2748			break;
2749
2750		if (bkey_cmp(&buf->last_scanned, end) >= 0) {
2751			pr_debug("scan finished\n");
2752			break;
2753		}
2754
2755		bch_refill_keybuf(c, buf, end, pred);
2756	}
2757
2758	return ret;
2759}
2760
2761void bch_keybuf_init(struct keybuf *buf)
2762{
2763	buf->last_scanned	= MAX_KEY;
2764	buf->keys		= RB_ROOT;
2765
2766	spin_lock_init(&buf->lock);
2767	array_allocator_init(&buf->freelist);
2768}
2769
2770void bch_btree_exit(void)
2771{
2772	if (btree_io_wq)
2773		destroy_workqueue(btree_io_wq);
2774}
2775
2776int __init bch_btree_init(void)
2777{
2778	btree_io_wq = alloc_workqueue("bch_btree_io", WQ_MEM_RECLAIM, 0);
2779	if (!btree_io_wq)
2780		return -ENOMEM;
2781
2782	return 0;
2783}