Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.2.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * mpx.c - Memory Protection eXtensions
  4 *
  5 * Copyright (c) 2014, Intel Corporation.
  6 * Qiaowei Ren <qiaowei.ren@intel.com>
  7 * Dave Hansen <dave.hansen@intel.com>
  8 */
  9#include <linux/kernel.h>
 10#include <linux/slab.h>
 11#include <linux/mm_types.h>
 12#include <linux/mman.h>
 13#include <linux/syscalls.h>
 14#include <linux/sched/sysctl.h>
 15
 16#include <asm/insn.h>
 17#include <asm/insn-eval.h>
 18#include <asm/mmu_context.h>
 19#include <asm/mpx.h>
 20#include <asm/processor.h>
 21#include <asm/fpu/internal.h>
 22
 23#define CREATE_TRACE_POINTS
 24#include <asm/trace/mpx.h>
 25
 26static inline unsigned long mpx_bd_size_bytes(struct mm_struct *mm)
 27{
 28	if (is_64bit_mm(mm))
 29		return MPX_BD_SIZE_BYTES_64;
 30	else
 31		return MPX_BD_SIZE_BYTES_32;
 32}
 33
 34static inline unsigned long mpx_bt_size_bytes(struct mm_struct *mm)
 35{
 36	if (is_64bit_mm(mm))
 37		return MPX_BT_SIZE_BYTES_64;
 38	else
 39		return MPX_BT_SIZE_BYTES_32;
 40}
 41
 42/*
 43 * This is really a simplified "vm_mmap". it only handles MPX
 44 * bounds tables (the bounds directory is user-allocated).
 45 */
 46static unsigned long mpx_mmap(unsigned long len)
 47{
 48	struct mm_struct *mm = current->mm;
 49	unsigned long addr, populate;
 50
 51	/* Only bounds table can be allocated here */
 52	if (len != mpx_bt_size_bytes(mm))
 53		return -EINVAL;
 54
 55	down_write(&mm->mmap_sem);
 56	addr = do_mmap(NULL, 0, len, PROT_READ | PROT_WRITE,
 57		       MAP_ANONYMOUS | MAP_PRIVATE, VM_MPX, 0, &populate, NULL);
 58	up_write(&mm->mmap_sem);
 59	if (populate)
 60		mm_populate(addr, populate);
 61
 62	return addr;
 63}
 64
 65static int mpx_insn_decode(struct insn *insn,
 66			   struct pt_regs *regs)
 67{
 68	unsigned char buf[MAX_INSN_SIZE];
 69	int x86_64 = !test_thread_flag(TIF_IA32);
 70	int not_copied;
 71	int nr_copied;
 72
 73	not_copied = copy_from_user(buf, (void __user *)regs->ip, sizeof(buf));
 74	nr_copied = sizeof(buf) - not_copied;
 75	/*
 76	 * The decoder _should_ fail nicely if we pass it a short buffer.
 77	 * But, let's not depend on that implementation detail.  If we
 78	 * did not get anything, just error out now.
 79	 */
 80	if (!nr_copied)
 81		return -EFAULT;
 82	insn_init(insn, buf, nr_copied, x86_64);
 83	insn_get_length(insn);
 84	/*
 85	 * copy_from_user() tries to get as many bytes as we could see in
 86	 * the largest possible instruction.  If the instruction we are
 87	 * after is shorter than that _and_ we attempt to copy from
 88	 * something unreadable, we might get a short read.  This is OK
 89	 * as long as the read did not stop in the middle of the
 90	 * instruction.  Check to see if we got a partial instruction.
 91	 */
 92	if (nr_copied < insn->length)
 93		return -EFAULT;
 94
 95	insn_get_opcode(insn);
 96	/*
 97	 * We only _really_ need to decode bndcl/bndcn/bndcu
 98	 * Error out on anything else.
 99	 */
100	if (insn->opcode.bytes[0] != 0x0f)
101		goto bad_opcode;
102	if ((insn->opcode.bytes[1] != 0x1a) &&
103	    (insn->opcode.bytes[1] != 0x1b))
104		goto bad_opcode;
105
106	return 0;
107bad_opcode:
108	return -EINVAL;
109}
110
111/*
112 * If a bounds overflow occurs then a #BR is generated. This
113 * function decodes MPX instructions to get violation address
114 * and set this address into extended struct siginfo.
115 *
116 * Note that this is not a super precise way of doing this.
117 * Userspace could have, by the time we get here, written
118 * anything it wants in to the instructions.  We can not
119 * trust anything about it.  They might not be valid
120 * instructions or might encode invalid registers, etc...
121 */
122int mpx_fault_info(struct mpx_fault_info *info, struct pt_regs *regs)
123{
124	const struct mpx_bndreg_state *bndregs;
125	const struct mpx_bndreg *bndreg;
126	struct insn insn;
127	uint8_t bndregno;
128	int err;
129
130	err = mpx_insn_decode(&insn, regs);
131	if (err)
132		goto err_out;
133
134	/*
135	 * We know at this point that we are only dealing with
136	 * MPX instructions.
137	 */
138	insn_get_modrm(&insn);
139	bndregno = X86_MODRM_REG(insn.modrm.value);
140	if (bndregno > 3) {
141		err = -EINVAL;
142		goto err_out;
143	}
144	/* get bndregs field from current task's xsave area */
145	bndregs = get_xsave_field_ptr(XFEATURE_BNDREGS);
146	if (!bndregs) {
147		err = -EINVAL;
148		goto err_out;
149	}
150	/* now go select the individual register in the set of 4 */
151	bndreg = &bndregs->bndreg[bndregno];
152
153	/*
154	 * The registers are always 64-bit, but the upper 32
155	 * bits are ignored in 32-bit mode.  Also, note that the
156	 * upper bounds are architecturally represented in 1's
157	 * complement form.
158	 *
159	 * The 'unsigned long' cast is because the compiler
160	 * complains when casting from integers to different-size
161	 * pointers.
162	 */
163	info->lower = (void __user *)(unsigned long)bndreg->lower_bound;
164	info->upper = (void __user *)(unsigned long)~bndreg->upper_bound;
165	info->addr  = insn_get_addr_ref(&insn, regs);
166
167	/*
168	 * We were not able to extract an address from the instruction,
169	 * probably because there was something invalid in it.
170	 */
171	if (info->addr == (void __user *)-1) {
172		err = -EINVAL;
173		goto err_out;
174	}
175	trace_mpx_bounds_register_exception(info->addr, bndreg);
176	return 0;
177err_out:
178	/* info might be NULL, but kfree() handles that */
179	return err;
180}
181
182static __user void *mpx_get_bounds_dir(void)
183{
184	const struct mpx_bndcsr *bndcsr;
185
186	if (!cpu_feature_enabled(X86_FEATURE_MPX))
187		return MPX_INVALID_BOUNDS_DIR;
188
189	/*
190	 * The bounds directory pointer is stored in a register
191	 * only accessible if we first do an xsave.
192	 */
193	bndcsr = get_xsave_field_ptr(XFEATURE_BNDCSR);
194	if (!bndcsr)
195		return MPX_INVALID_BOUNDS_DIR;
196
197	/*
198	 * Make sure the register looks valid by checking the
199	 * enable bit.
200	 */
201	if (!(bndcsr->bndcfgu & MPX_BNDCFG_ENABLE_FLAG))
202		return MPX_INVALID_BOUNDS_DIR;
203
204	/*
205	 * Lastly, mask off the low bits used for configuration
206	 * flags, and return the address of the bounds table.
207	 */
208	return (void __user *)(unsigned long)
209		(bndcsr->bndcfgu & MPX_BNDCFG_ADDR_MASK);
210}
211
212int mpx_enable_management(void)
213{
214	void __user *bd_base = MPX_INVALID_BOUNDS_DIR;
215	struct mm_struct *mm = current->mm;
216	int ret = 0;
217
218	/*
219	 * runtime in the userspace will be responsible for allocation of
220	 * the bounds directory. Then, it will save the base of the bounds
221	 * directory into XSAVE/XRSTOR Save Area and enable MPX through
222	 * XRSTOR instruction.
223	 *
224	 * The copy_xregs_to_kernel() beneath get_xsave_field_ptr() is
225	 * expected to be relatively expensive. Storing the bounds
226	 * directory here means that we do not have to do xsave in the
227	 * unmap path; we can just use mm->context.bd_addr instead.
228	 */
229	bd_base = mpx_get_bounds_dir();
230	down_write(&mm->mmap_sem);
231
232	/* MPX doesn't support addresses above 47 bits yet. */
233	if (find_vma(mm, DEFAULT_MAP_WINDOW)) {
234		pr_warn_once("%s (%d): MPX cannot handle addresses "
235				"above 47-bits. Disabling.",
236				current->comm, current->pid);
237		ret = -ENXIO;
238		goto out;
239	}
240	mm->context.bd_addr = bd_base;
241	if (mm->context.bd_addr == MPX_INVALID_BOUNDS_DIR)
242		ret = -ENXIO;
243out:
244	up_write(&mm->mmap_sem);
245	return ret;
246}
247
248int mpx_disable_management(void)
249{
250	struct mm_struct *mm = current->mm;
251
252	if (!cpu_feature_enabled(X86_FEATURE_MPX))
253		return -ENXIO;
254
255	down_write(&mm->mmap_sem);
256	mm->context.bd_addr = MPX_INVALID_BOUNDS_DIR;
257	up_write(&mm->mmap_sem);
258	return 0;
259}
260
261static int mpx_cmpxchg_bd_entry(struct mm_struct *mm,
262		unsigned long *curval,
263		unsigned long __user *addr,
264		unsigned long old_val, unsigned long new_val)
265{
266	int ret;
267	/*
268	 * user_atomic_cmpxchg_inatomic() actually uses sizeof()
269	 * the pointer that we pass to it to figure out how much
270	 * data to cmpxchg.  We have to be careful here not to
271	 * pass a pointer to a 64-bit data type when we only want
272	 * a 32-bit copy.
273	 */
274	if (is_64bit_mm(mm)) {
275		ret = user_atomic_cmpxchg_inatomic(curval,
276				addr, old_val, new_val);
277	} else {
278		u32 uninitialized_var(curval_32);
279		u32 old_val_32 = old_val;
280		u32 new_val_32 = new_val;
281		u32 __user *addr_32 = (u32 __user *)addr;
282
283		ret = user_atomic_cmpxchg_inatomic(&curval_32,
284				addr_32, old_val_32, new_val_32);
285		*curval = curval_32;
286	}
287	return ret;
288}
289
290/*
291 * With 32-bit mode, a bounds directory is 4MB, and the size of each
292 * bounds table is 16KB. With 64-bit mode, a bounds directory is 2GB,
293 * and the size of each bounds table is 4MB.
294 */
295static int allocate_bt(struct mm_struct *mm, long __user *bd_entry)
296{
297	unsigned long expected_old_val = 0;
298	unsigned long actual_old_val = 0;
299	unsigned long bt_addr;
300	unsigned long bd_new_entry;
301	int ret = 0;
302
303	/*
304	 * Carve the virtual space out of userspace for the new
305	 * bounds table:
306	 */
307	bt_addr = mpx_mmap(mpx_bt_size_bytes(mm));
308	if (IS_ERR((void *)bt_addr))
309		return PTR_ERR((void *)bt_addr);
310	/*
311	 * Set the valid flag (kinda like _PAGE_PRESENT in a pte)
312	 */
313	bd_new_entry = bt_addr | MPX_BD_ENTRY_VALID_FLAG;
314
315	/*
316	 * Go poke the address of the new bounds table in to the
317	 * bounds directory entry out in userspace memory.  Note:
318	 * we may race with another CPU instantiating the same table.
319	 * In that case the cmpxchg will see an unexpected
320	 * 'actual_old_val'.
321	 *
322	 * This can fault, but that's OK because we do not hold
323	 * mmap_sem at this point, unlike some of the other part
324	 * of the MPX code that have to pagefault_disable().
325	 */
326	ret = mpx_cmpxchg_bd_entry(mm, &actual_old_val,	bd_entry,
327				   expected_old_val, bd_new_entry);
328	if (ret)
329		goto out_unmap;
330
331	/*
332	 * The user_atomic_cmpxchg_inatomic() will only return nonzero
333	 * for faults, *not* if the cmpxchg itself fails.  Now we must
334	 * verify that the cmpxchg itself completed successfully.
335	 */
336	/*
337	 * We expected an empty 'expected_old_val', but instead found
338	 * an apparently valid entry.  Assume we raced with another
339	 * thread to instantiate this table and desclare succecss.
340	 */
341	if (actual_old_val & MPX_BD_ENTRY_VALID_FLAG) {
342		ret = 0;
343		goto out_unmap;
344	}
345	/*
346	 * We found a non-empty bd_entry but it did not have the
347	 * VALID_FLAG set.  Return an error which will result in
348	 * a SEGV since this probably means that somebody scribbled
349	 * some invalid data in to a bounds table.
350	 */
351	if (expected_old_val != actual_old_val) {
352		ret = -EINVAL;
353		goto out_unmap;
354	}
355	trace_mpx_new_bounds_table(bt_addr);
356	return 0;
357out_unmap:
358	vm_munmap(bt_addr, mpx_bt_size_bytes(mm));
359	return ret;
360}
361
362/*
363 * When a BNDSTX instruction attempts to save bounds to a bounds
364 * table, it will first attempt to look up the table in the
365 * first-level bounds directory.  If it does not find a table in
366 * the directory, a #BR is generated and we get here in order to
367 * allocate a new table.
368 *
369 * With 32-bit mode, the size of BD is 4MB, and the size of each
370 * bound table is 16KB. With 64-bit mode, the size of BD is 2GB,
371 * and the size of each bound table is 4MB.
372 */
373static int do_mpx_bt_fault(void)
374{
375	unsigned long bd_entry, bd_base;
376	const struct mpx_bndcsr *bndcsr;
377	struct mm_struct *mm = current->mm;
378
379	bndcsr = get_xsave_field_ptr(XFEATURE_BNDCSR);
380	if (!bndcsr)
381		return -EINVAL;
382	/*
383	 * Mask off the preserve and enable bits
384	 */
385	bd_base = bndcsr->bndcfgu & MPX_BNDCFG_ADDR_MASK;
386	/*
387	 * The hardware provides the address of the missing or invalid
388	 * entry via BNDSTATUS, so we don't have to go look it up.
389	 */
390	bd_entry = bndcsr->bndstatus & MPX_BNDSTA_ADDR_MASK;
391	/*
392	 * Make sure the directory entry is within where we think
393	 * the directory is.
394	 */
395	if ((bd_entry < bd_base) ||
396	    (bd_entry >= bd_base + mpx_bd_size_bytes(mm)))
397		return -EINVAL;
398
399	return allocate_bt(mm, (long __user *)bd_entry);
400}
401
402int mpx_handle_bd_fault(void)
403{
404	/*
405	 * Userspace never asked us to manage the bounds tables,
406	 * so refuse to help.
407	 */
408	if (!kernel_managing_mpx_tables(current->mm))
409		return -EINVAL;
410
411	return do_mpx_bt_fault();
412}
413
414/*
415 * A thin wrapper around get_user_pages().  Returns 0 if the
416 * fault was resolved or -errno if not.
417 */
418static int mpx_resolve_fault(long __user *addr, int write)
419{
420	long gup_ret;
421	int nr_pages = 1;
422
423	gup_ret = get_user_pages((unsigned long)addr, nr_pages,
424			write ? FOLL_WRITE : 0,	NULL, NULL);
425	/*
426	 * get_user_pages() returns number of pages gotten.
427	 * 0 means we failed to fault in and get anything,
428	 * probably because 'addr' is bad.
429	 */
430	if (!gup_ret)
431		return -EFAULT;
432	/* Other error, return it */
433	if (gup_ret < 0)
434		return gup_ret;
435	/* must have gup'd a page and gup_ret>0, success */
436	return 0;
437}
438
439static unsigned long mpx_bd_entry_to_bt_addr(struct mm_struct *mm,
440					     unsigned long bd_entry)
441{
442	unsigned long bt_addr = bd_entry;
443	int align_to_bytes;
444	/*
445	 * Bit 0 in a bt_entry is always the valid bit.
446	 */
447	bt_addr &= ~MPX_BD_ENTRY_VALID_FLAG;
448	/*
449	 * Tables are naturally aligned at 8-byte boundaries
450	 * on 64-bit and 4-byte boundaries on 32-bit.  The
451	 * documentation makes it appear that the low bits
452	 * are ignored by the hardware, so we do the same.
453	 */
454	if (is_64bit_mm(mm))
455		align_to_bytes = 8;
456	else
457		align_to_bytes = 4;
458	bt_addr &= ~(align_to_bytes-1);
459	return bt_addr;
460}
461
462/*
463 * We only want to do a 4-byte get_user() on 32-bit.  Otherwise,
464 * we might run off the end of the bounds table if we are on
465 * a 64-bit kernel and try to get 8 bytes.
466 */
467static int get_user_bd_entry(struct mm_struct *mm, unsigned long *bd_entry_ret,
468		long __user *bd_entry_ptr)
469{
470	u32 bd_entry_32;
471	int ret;
472
473	if (is_64bit_mm(mm))
474		return get_user(*bd_entry_ret, bd_entry_ptr);
475
476	/*
477	 * Note that get_user() uses the type of the *pointer* to
478	 * establish the size of the get, not the destination.
479	 */
480	ret = get_user(bd_entry_32, (u32 __user *)bd_entry_ptr);
481	*bd_entry_ret = bd_entry_32;
482	return ret;
483}
484
485/*
486 * Get the base of bounds tables pointed by specific bounds
487 * directory entry.
488 */
489static int get_bt_addr(struct mm_struct *mm,
490			long __user *bd_entry_ptr,
491			unsigned long *bt_addr_result)
492{
493	int ret;
494	int valid_bit;
495	unsigned long bd_entry;
496	unsigned long bt_addr;
497
498	if (!access_ok((bd_entry_ptr), sizeof(*bd_entry_ptr)))
499		return -EFAULT;
500
501	while (1) {
502		int need_write = 0;
503
504		pagefault_disable();
505		ret = get_user_bd_entry(mm, &bd_entry, bd_entry_ptr);
506		pagefault_enable();
507		if (!ret)
508			break;
509		if (ret == -EFAULT)
510			ret = mpx_resolve_fault(bd_entry_ptr, need_write);
511		/*
512		 * If we could not resolve the fault, consider it
513		 * userspace's fault and error out.
514		 */
515		if (ret)
516			return ret;
517	}
518
519	valid_bit = bd_entry & MPX_BD_ENTRY_VALID_FLAG;
520	bt_addr = mpx_bd_entry_to_bt_addr(mm, bd_entry);
521
522	/*
523	 * When the kernel is managing bounds tables, a bounds directory
524	 * entry will either have a valid address (plus the valid bit)
525	 * *OR* be completely empty. If we see a !valid entry *and* some
526	 * data in the address field, we know something is wrong. This
527	 * -EINVAL return will cause a SIGSEGV.
528	 */
529	if (!valid_bit && bt_addr)
530		return -EINVAL;
531	/*
532	 * Do we have an completely zeroed bt entry?  That is OK.  It
533	 * just means there was no bounds table for this memory.  Make
534	 * sure to distinguish this from -EINVAL, which will cause
535	 * a SEGV.
536	 */
537	if (!valid_bit)
538		return -ENOENT;
539
540	*bt_addr_result = bt_addr;
541	return 0;
542}
543
544static inline int bt_entry_size_bytes(struct mm_struct *mm)
545{
546	if (is_64bit_mm(mm))
547		return MPX_BT_ENTRY_BYTES_64;
548	else
549		return MPX_BT_ENTRY_BYTES_32;
550}
551
552/*
553 * Take a virtual address and turns it in to the offset in bytes
554 * inside of the bounds table where the bounds table entry
555 * controlling 'addr' can be found.
556 */
557static unsigned long mpx_get_bt_entry_offset_bytes(struct mm_struct *mm,
558		unsigned long addr)
559{
560	unsigned long bt_table_nr_entries;
561	unsigned long offset = addr;
562
563	if (is_64bit_mm(mm)) {
564		/* Bottom 3 bits are ignored on 64-bit */
565		offset >>= 3;
566		bt_table_nr_entries = MPX_BT_NR_ENTRIES_64;
567	} else {
568		/* Bottom 2 bits are ignored on 32-bit */
569		offset >>= 2;
570		bt_table_nr_entries = MPX_BT_NR_ENTRIES_32;
571	}
572	/*
573	 * We know the size of the table in to which we are
574	 * indexing, and we have eliminated all the low bits
575	 * which are ignored for indexing.
576	 *
577	 * Mask out all the high bits which we do not need
578	 * to index in to the table.  Note that the tables
579	 * are always powers of two so this gives us a proper
580	 * mask.
581	 */
582	offset &= (bt_table_nr_entries-1);
583	/*
584	 * We now have an entry offset in terms of *entries* in
585	 * the table.  We need to scale it back up to bytes.
586	 */
587	offset *= bt_entry_size_bytes(mm);
588	return offset;
589}
590
591/*
592 * How much virtual address space does a single bounds
593 * directory entry cover?
594 *
595 * Note, we need a long long because 4GB doesn't fit in
596 * to a long on 32-bit.
597 */
598static inline unsigned long bd_entry_virt_space(struct mm_struct *mm)
599{
600	unsigned long long virt_space;
601	unsigned long long GB = (1ULL << 30);
602
603	/*
604	 * This covers 32-bit emulation as well as 32-bit kernels
605	 * running on 64-bit hardware.
606	 */
607	if (!is_64bit_mm(mm))
608		return (4ULL * GB) / MPX_BD_NR_ENTRIES_32;
609
610	/*
611	 * 'x86_virt_bits' returns what the hardware is capable
612	 * of, and returns the full >32-bit address space when
613	 * running 32-bit kernels on 64-bit hardware.
614	 */
615	virt_space = (1ULL << boot_cpu_data.x86_virt_bits);
616	return virt_space / MPX_BD_NR_ENTRIES_64;
617}
618
619/*
620 * Free the backing physical pages of bounds table 'bt_addr'.
621 * Assume start...end is within that bounds table.
622 */
623static noinline int zap_bt_entries_mapping(struct mm_struct *mm,
624		unsigned long bt_addr,
625		unsigned long start_mapping, unsigned long end_mapping)
626{
627	struct vm_area_struct *vma;
628	unsigned long addr, len;
629	unsigned long start;
630	unsigned long end;
631
632	/*
633	 * if we 'end' on a boundary, the offset will be 0 which
634	 * is not what we want.  Back it up a byte to get the
635	 * last bt entry.  Then once we have the entry itself,
636	 * move 'end' back up by the table entry size.
637	 */
638	start = bt_addr + mpx_get_bt_entry_offset_bytes(mm, start_mapping);
639	end   = bt_addr + mpx_get_bt_entry_offset_bytes(mm, end_mapping - 1);
640	/*
641	 * Move end back up by one entry.  Among other things
642	 * this ensures that it remains page-aligned and does
643	 * not screw up zap_page_range()
644	 */
645	end += bt_entry_size_bytes(mm);
646
647	/*
648	 * Find the first overlapping vma. If vma->vm_start > start, there
649	 * will be a hole in the bounds table. This -EINVAL return will
650	 * cause a SIGSEGV.
651	 */
652	vma = find_vma(mm, start);
653	if (!vma || vma->vm_start > start)
654		return -EINVAL;
655
656	/*
657	 * A NUMA policy on a VM_MPX VMA could cause this bounds table to
658	 * be split. So we need to look across the entire 'start -> end'
659	 * range of this bounds table, find all of the VM_MPX VMAs, and
660	 * zap only those.
661	 */
662	addr = start;
663	while (vma && vma->vm_start < end) {
664		/*
665		 * We followed a bounds directory entry down
666		 * here.  If we find a non-MPX VMA, that's bad,
667		 * so stop immediately and return an error.  This
668		 * probably results in a SIGSEGV.
669		 */
670		if (!(vma->vm_flags & VM_MPX))
671			return -EINVAL;
672
673		len = min(vma->vm_end, end) - addr;
674		zap_page_range(vma, addr, len);
675		trace_mpx_unmap_zap(addr, addr+len);
676
677		vma = vma->vm_next;
678		addr = vma->vm_start;
679	}
680	return 0;
681}
682
683static unsigned long mpx_get_bd_entry_offset(struct mm_struct *mm,
684		unsigned long addr)
685{
686	/*
687	 * There are several ways to derive the bd offsets.  We
688	 * use the following approach here:
689	 * 1. We know the size of the virtual address space
690	 * 2. We know the number of entries in a bounds table
691	 * 3. We know that each entry covers a fixed amount of
692	 *    virtual address space.
693	 * So, we can just divide the virtual address by the
694	 * virtual space used by one entry to determine which
695	 * entry "controls" the given virtual address.
696	 */
697	if (is_64bit_mm(mm)) {
698		int bd_entry_size = 8; /* 64-bit pointer */
699		/*
700		 * Take the 64-bit addressing hole in to account.
701		 */
702		addr &= ((1UL << boot_cpu_data.x86_virt_bits) - 1);
703		return (addr / bd_entry_virt_space(mm)) * bd_entry_size;
704	} else {
705		int bd_entry_size = 4; /* 32-bit pointer */
706		/*
707		 * 32-bit has no hole so this case needs no mask
708		 */
709		return (addr / bd_entry_virt_space(mm)) * bd_entry_size;
710	}
711	/*
712	 * The two return calls above are exact copies.  If we
713	 * pull out a single copy and put it in here, gcc won't
714	 * realize that we're doing a power-of-2 divide and use
715	 * shifts.  It uses a real divide.  If we put them up
716	 * there, it manages to figure it out (gcc 4.8.3).
717	 */
718}
719
720static int unmap_entire_bt(struct mm_struct *mm,
721		long __user *bd_entry, unsigned long bt_addr)
722{
723	unsigned long expected_old_val = bt_addr | MPX_BD_ENTRY_VALID_FLAG;
724	unsigned long uninitialized_var(actual_old_val);
725	int ret;
726
727	while (1) {
728		int need_write = 1;
729		unsigned long cleared_bd_entry = 0;
730
731		pagefault_disable();
732		ret = mpx_cmpxchg_bd_entry(mm, &actual_old_val,
733				bd_entry, expected_old_val, cleared_bd_entry);
734		pagefault_enable();
735		if (!ret)
736			break;
737		if (ret == -EFAULT)
738			ret = mpx_resolve_fault(bd_entry, need_write);
739		/*
740		 * If we could not resolve the fault, consider it
741		 * userspace's fault and error out.
742		 */
743		if (ret)
744			return ret;
745	}
746	/*
747	 * The cmpxchg was performed, check the results.
748	 */
749	if (actual_old_val != expected_old_val) {
750		/*
751		 * Someone else raced with us to unmap the table.
752		 * That is OK, since we were both trying to do
753		 * the same thing.  Declare success.
754		 */
755		if (!actual_old_val)
756			return 0;
757		/*
758		 * Something messed with the bounds directory
759		 * entry.  We hold mmap_sem for read or write
760		 * here, so it could not be a _new_ bounds table
761		 * that someone just allocated.  Something is
762		 * wrong, so pass up the error and SIGSEGV.
763		 */
764		return -EINVAL;
765	}
766	/*
767	 * Note, we are likely being called under do_munmap() already. To
768	 * avoid recursion, do_munmap() will check whether it comes
769	 * from one bounds table through VM_MPX flag.
770	 */
771	return do_munmap(mm, bt_addr, mpx_bt_size_bytes(mm), NULL);
772}
773
774static int try_unmap_single_bt(struct mm_struct *mm,
775	       unsigned long start, unsigned long end)
776{
777	struct vm_area_struct *next;
778	struct vm_area_struct *prev;
779	/*
780	 * "bta" == Bounds Table Area: the area controlled by the
781	 * bounds table that we are unmapping.
782	 */
783	unsigned long bta_start_vaddr = start & ~(bd_entry_virt_space(mm)-1);
784	unsigned long bta_end_vaddr = bta_start_vaddr + bd_entry_virt_space(mm);
785	unsigned long uninitialized_var(bt_addr);
786	void __user *bde_vaddr;
787	int ret;
788	/*
789	 * We already unlinked the VMAs from the mm's rbtree so 'start'
790	 * is guaranteed to be in a hole. This gets us the first VMA
791	 * before the hole in to 'prev' and the next VMA after the hole
792	 * in to 'next'.
793	 */
794	next = find_vma_prev(mm, start, &prev);
795	/*
796	 * Do not count other MPX bounds table VMAs as neighbors.
797	 * Although theoretically possible, we do not allow bounds
798	 * tables for bounds tables so our heads do not explode.
799	 * If we count them as neighbors here, we may end up with
800	 * lots of tables even though we have no actual table
801	 * entries in use.
802	 */
803	while (next && (next->vm_flags & VM_MPX))
804		next = next->vm_next;
805	while (prev && (prev->vm_flags & VM_MPX))
806		prev = prev->vm_prev;
807	/*
808	 * We know 'start' and 'end' lie within an area controlled
809	 * by a single bounds table.  See if there are any other
810	 * VMAs controlled by that bounds table.  If there are not
811	 * then we can "expand" the are we are unmapping to possibly
812	 * cover the entire table.
813	 */
814	next = find_vma_prev(mm, start, &prev);
815	if ((!prev || prev->vm_end <= bta_start_vaddr) &&
816	    (!next || next->vm_start >= bta_end_vaddr)) {
817		/*
818		 * No neighbor VMAs controlled by same bounds
819		 * table.  Try to unmap the whole thing
820		 */
821		start = bta_start_vaddr;
822		end = bta_end_vaddr;
823	}
824
825	bde_vaddr = mm->context.bd_addr + mpx_get_bd_entry_offset(mm, start);
826	ret = get_bt_addr(mm, bde_vaddr, &bt_addr);
827	/*
828	 * No bounds table there, so nothing to unmap.
829	 */
830	if (ret == -ENOENT) {
831		ret = 0;
832		return 0;
833	}
834	if (ret)
835		return ret;
836	/*
837	 * We are unmapping an entire table.  Either because the
838	 * unmap that started this whole process was large enough
839	 * to cover an entire table, or that the unmap was small
840	 * but was the area covered by a bounds table.
841	 */
842	if ((start == bta_start_vaddr) &&
843	    (end == bta_end_vaddr))
844		return unmap_entire_bt(mm, bde_vaddr, bt_addr);
845	return zap_bt_entries_mapping(mm, bt_addr, start, end);
846}
847
848static int mpx_unmap_tables(struct mm_struct *mm,
849		unsigned long start, unsigned long end)
850{
851	unsigned long one_unmap_start;
852	trace_mpx_unmap_search(start, end);
853
854	one_unmap_start = start;
855	while (one_unmap_start < end) {
856		int ret;
857		unsigned long next_unmap_start = ALIGN(one_unmap_start+1,
858						       bd_entry_virt_space(mm));
859		unsigned long one_unmap_end = end;
860		/*
861		 * if the end is beyond the current bounds table,
862		 * move it back so we only deal with a single one
863		 * at a time
864		 */
865		if (one_unmap_end > next_unmap_start)
866			one_unmap_end = next_unmap_start;
867		ret = try_unmap_single_bt(mm, one_unmap_start, one_unmap_end);
868		if (ret)
869			return ret;
870
871		one_unmap_start = next_unmap_start;
872	}
873	return 0;
874}
875
876/*
877 * Free unused bounds tables covered in a virtual address region being
878 * munmap()ed. Assume end > start.
879 *
880 * This function will be called by do_munmap(), and the VMAs covering
881 * the virtual address region start...end have already been split if
882 * necessary, and the 'vma' is the first vma in this range (start -> end).
883 */
884void mpx_notify_unmap(struct mm_struct *mm, unsigned long start,
885		      unsigned long end)
886{
887	struct vm_area_struct *vma;
888	int ret;
889
890	/*
891	 * Refuse to do anything unless userspace has asked
892	 * the kernel to help manage the bounds tables,
893	 */
894	if (!kernel_managing_mpx_tables(current->mm))
895		return;
896	/*
897	 * This will look across the entire 'start -> end' range,
898	 * and find all of the non-VM_MPX VMAs.
899	 *
900	 * To avoid recursion, if a VM_MPX vma is found in the range
901	 * (start->end), we will not continue follow-up work. This
902	 * recursion represents having bounds tables for bounds tables,
903	 * which should not occur normally. Being strict about it here
904	 * helps ensure that we do not have an exploitable stack overflow.
905	 */
906	vma = find_vma(mm, start);
907	while (vma && vma->vm_start < end) {
908		if (vma->vm_flags & VM_MPX)
909			return;
910		vma = vma->vm_next;
911	}
912
913	ret = mpx_unmap_tables(mm, start, end);
914	if (ret)
915		force_sig(SIGSEGV);
916}
917
918/* MPX cannot handle addresses above 47 bits yet. */
919unsigned long mpx_unmapped_area_check(unsigned long addr, unsigned long len,
920		unsigned long flags)
921{
922	if (!kernel_managing_mpx_tables(current->mm))
923		return addr;
924	if (addr + len <= DEFAULT_MAP_WINDOW)
925		return addr;
926	if (flags & MAP_FIXED)
927		return -ENOMEM;
928
929	/*
930	 * Requested len is larger than the whole area we're allowed to map in.
931	 * Resetting hinting address wouldn't do much good -- fail early.
932	 */
933	if (len > DEFAULT_MAP_WINDOW)
934		return -ENOMEM;
935
936	/* Look for unmap area within DEFAULT_MAP_WINDOW */
937	return 0;
938}