Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.2.
   1/*
   2 * mpx.c - Memory Protection eXtensions
   3 *
   4 * Copyright (c) 2014, Intel Corporation.
   5 * Qiaowei Ren <qiaowei.ren@intel.com>
   6 * Dave Hansen <dave.hansen@intel.com>
   7 */
   8#include <linux/kernel.h>
   9#include <linux/slab.h>
  10#include <linux/syscalls.h>
  11#include <linux/sched/sysctl.h>
  12
  13#include <asm/insn.h>
  14#include <asm/mman.h>
  15#include <asm/mmu_context.h>
  16#include <asm/mpx.h>
  17#include <asm/processor.h>
  18#include <asm/fpu/internal.h>
  19
  20#define CREATE_TRACE_POINTS
  21#include <asm/trace/mpx.h>
  22
  23static inline unsigned long mpx_bd_size_bytes(struct mm_struct *mm)
  24{
  25	if (is_64bit_mm(mm))
  26		return MPX_BD_SIZE_BYTES_64;
  27	else
  28		return MPX_BD_SIZE_BYTES_32;
  29}
  30
  31static inline unsigned long mpx_bt_size_bytes(struct mm_struct *mm)
  32{
  33	if (is_64bit_mm(mm))
  34		return MPX_BT_SIZE_BYTES_64;
  35	else
  36		return MPX_BT_SIZE_BYTES_32;
  37}
  38
  39/*
  40 * This is really a simplified "vm_mmap". it only handles MPX
  41 * bounds tables (the bounds directory is user-allocated).
  42 */
  43static unsigned long mpx_mmap(unsigned long len)
  44{
  45	struct mm_struct *mm = current->mm;
  46	unsigned long addr, populate;
  47
  48	/* Only bounds table can be allocated here */
  49	if (len != mpx_bt_size_bytes(mm))
  50		return -EINVAL;
  51
  52	down_write(&mm->mmap_sem);
  53	addr = do_mmap(NULL, 0, len, PROT_READ | PROT_WRITE,
  54			MAP_ANONYMOUS | MAP_PRIVATE, VM_MPX, 0, &populate);
  55	up_write(&mm->mmap_sem);
  56	if (populate)
  57		mm_populate(addr, populate);
  58
  59	return addr;
  60}
  61
  62enum reg_type {
  63	REG_TYPE_RM = 0,
  64	REG_TYPE_INDEX,
  65	REG_TYPE_BASE,
  66};
  67
  68static int get_reg_offset(struct insn *insn, struct pt_regs *regs,
  69			  enum reg_type type)
  70{
  71	int regno = 0;
  72
  73	static const int regoff[] = {
  74		offsetof(struct pt_regs, ax),
  75		offsetof(struct pt_regs, cx),
  76		offsetof(struct pt_regs, dx),
  77		offsetof(struct pt_regs, bx),
  78		offsetof(struct pt_regs, sp),
  79		offsetof(struct pt_regs, bp),
  80		offsetof(struct pt_regs, si),
  81		offsetof(struct pt_regs, di),
  82#ifdef CONFIG_X86_64
  83		offsetof(struct pt_regs, r8),
  84		offsetof(struct pt_regs, r9),
  85		offsetof(struct pt_regs, r10),
  86		offsetof(struct pt_regs, r11),
  87		offsetof(struct pt_regs, r12),
  88		offsetof(struct pt_regs, r13),
  89		offsetof(struct pt_regs, r14),
  90		offsetof(struct pt_regs, r15),
  91#endif
  92	};
  93	int nr_registers = ARRAY_SIZE(regoff);
  94	/*
  95	 * Don't possibly decode a 32-bit instructions as
  96	 * reading a 64-bit-only register.
  97	 */
  98	if (IS_ENABLED(CONFIG_X86_64) && !insn->x86_64)
  99		nr_registers -= 8;
 100
 101	switch (type) {
 102	case REG_TYPE_RM:
 103		regno = X86_MODRM_RM(insn->modrm.value);
 104		if (X86_REX_B(insn->rex_prefix.value))
 105			regno += 8;
 106		break;
 107
 108	case REG_TYPE_INDEX:
 109		regno = X86_SIB_INDEX(insn->sib.value);
 110		if (X86_REX_X(insn->rex_prefix.value))
 111			regno += 8;
 112		break;
 113
 114	case REG_TYPE_BASE:
 115		regno = X86_SIB_BASE(insn->sib.value);
 116		if (X86_REX_B(insn->rex_prefix.value))
 117			regno += 8;
 118		break;
 119
 120	default:
 121		pr_err("invalid register type");
 122		BUG();
 123		break;
 124	}
 125
 126	if (regno >= nr_registers) {
 127		WARN_ONCE(1, "decoded an instruction with an invalid register");
 128		return -EINVAL;
 129	}
 130	return regoff[regno];
 131}
 132
 133/*
 134 * return the address being referenced be instruction
 135 * for rm=3 returning the content of the rm reg
 136 * for rm!=3 calculates the address using SIB and Disp
 137 */
 138static void __user *mpx_get_addr_ref(struct insn *insn, struct pt_regs *regs)
 139{
 140	unsigned long addr, base, indx;
 141	int addr_offset, base_offset, indx_offset;
 142	insn_byte_t sib;
 143
 144	insn_get_modrm(insn);
 145	insn_get_sib(insn);
 146	sib = insn->sib.value;
 147
 148	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
 149		addr_offset = get_reg_offset(insn, regs, REG_TYPE_RM);
 150		if (addr_offset < 0)
 151			goto out_err;
 152		addr = regs_get_register(regs, addr_offset);
 153	} else {
 154		if (insn->sib.nbytes) {
 155			base_offset = get_reg_offset(insn, regs, REG_TYPE_BASE);
 156			if (base_offset < 0)
 157				goto out_err;
 158
 159			indx_offset = get_reg_offset(insn, regs, REG_TYPE_INDEX);
 160			if (indx_offset < 0)
 161				goto out_err;
 162
 163			base = regs_get_register(regs, base_offset);
 164			indx = regs_get_register(regs, indx_offset);
 165			addr = base + indx * (1 << X86_SIB_SCALE(sib));
 166		} else {
 167			addr_offset = get_reg_offset(insn, regs, REG_TYPE_RM);
 168			if (addr_offset < 0)
 169				goto out_err;
 170			addr = regs_get_register(regs, addr_offset);
 171		}
 172		addr += insn->displacement.value;
 173	}
 174	return (void __user *)addr;
 175out_err:
 176	return (void __user *)-1;
 177}
 178
 179static int mpx_insn_decode(struct insn *insn,
 180			   struct pt_regs *regs)
 181{
 182	unsigned char buf[MAX_INSN_SIZE];
 183	int x86_64 = !test_thread_flag(TIF_IA32);
 184	int not_copied;
 185	int nr_copied;
 186
 187	not_copied = copy_from_user(buf, (void __user *)regs->ip, sizeof(buf));
 188	nr_copied = sizeof(buf) - not_copied;
 189	/*
 190	 * The decoder _should_ fail nicely if we pass it a short buffer.
 191	 * But, let's not depend on that implementation detail.  If we
 192	 * did not get anything, just error out now.
 193	 */
 194	if (!nr_copied)
 195		return -EFAULT;
 196	insn_init(insn, buf, nr_copied, x86_64);
 197	insn_get_length(insn);
 198	/*
 199	 * copy_from_user() tries to get as many bytes as we could see in
 200	 * the largest possible instruction.  If the instruction we are
 201	 * after is shorter than that _and_ we attempt to copy from
 202	 * something unreadable, we might get a short read.  This is OK
 203	 * as long as the read did not stop in the middle of the
 204	 * instruction.  Check to see if we got a partial instruction.
 205	 */
 206	if (nr_copied < insn->length)
 207		return -EFAULT;
 208
 209	insn_get_opcode(insn);
 210	/*
 211	 * We only _really_ need to decode bndcl/bndcn/bndcu
 212	 * Error out on anything else.
 213	 */
 214	if (insn->opcode.bytes[0] != 0x0f)
 215		goto bad_opcode;
 216	if ((insn->opcode.bytes[1] != 0x1a) &&
 217	    (insn->opcode.bytes[1] != 0x1b))
 218		goto bad_opcode;
 219
 220	return 0;
 221bad_opcode:
 222	return -EINVAL;
 223}
 224
 225/*
 226 * If a bounds overflow occurs then a #BR is generated. This
 227 * function decodes MPX instructions to get violation address
 228 * and set this address into extended struct siginfo.
 229 *
 230 * Note that this is not a super precise way of doing this.
 231 * Userspace could have, by the time we get here, written
 232 * anything it wants in to the instructions.  We can not
 233 * trust anything about it.  They might not be valid
 234 * instructions or might encode invalid registers, etc...
 235 *
 236 * The caller is expected to kfree() the returned siginfo_t.
 237 */
 238siginfo_t *mpx_generate_siginfo(struct pt_regs *regs)
 239{
 240	const struct mpx_bndreg_state *bndregs;
 241	const struct mpx_bndreg *bndreg;
 242	siginfo_t *info = NULL;
 243	struct insn insn;
 244	uint8_t bndregno;
 245	int err;
 246
 247	err = mpx_insn_decode(&insn, regs);
 248	if (err)
 249		goto err_out;
 250
 251	/*
 252	 * We know at this point that we are only dealing with
 253	 * MPX instructions.
 254	 */
 255	insn_get_modrm(&insn);
 256	bndregno = X86_MODRM_REG(insn.modrm.value);
 257	if (bndregno > 3) {
 258		err = -EINVAL;
 259		goto err_out;
 260	}
 261	/* get bndregs field from current task's xsave area */
 262	bndregs = get_xsave_field_ptr(XFEATURE_MASK_BNDREGS);
 263	if (!bndregs) {
 264		err = -EINVAL;
 265		goto err_out;
 266	}
 267	/* now go select the individual register in the set of 4 */
 268	bndreg = &bndregs->bndreg[bndregno];
 269
 270	info = kzalloc(sizeof(*info), GFP_KERNEL);
 271	if (!info) {
 272		err = -ENOMEM;
 273		goto err_out;
 274	}
 275	/*
 276	 * The registers are always 64-bit, but the upper 32
 277	 * bits are ignored in 32-bit mode.  Also, note that the
 278	 * upper bounds are architecturally represented in 1's
 279	 * complement form.
 280	 *
 281	 * The 'unsigned long' cast is because the compiler
 282	 * complains when casting from integers to different-size
 283	 * pointers.
 284	 */
 285	info->si_lower = (void __user *)(unsigned long)bndreg->lower_bound;
 286	info->si_upper = (void __user *)(unsigned long)~bndreg->upper_bound;
 287	info->si_addr_lsb = 0;
 288	info->si_signo = SIGSEGV;
 289	info->si_errno = 0;
 290	info->si_code = SEGV_BNDERR;
 291	info->si_addr = mpx_get_addr_ref(&insn, regs);
 292	/*
 293	 * We were not able to extract an address from the instruction,
 294	 * probably because there was something invalid in it.
 295	 */
 296	if (info->si_addr == (void *)-1) {
 297		err = -EINVAL;
 298		goto err_out;
 299	}
 300	trace_mpx_bounds_register_exception(info->si_addr, bndreg);
 301	return info;
 302err_out:
 303	/* info might be NULL, but kfree() handles that */
 304	kfree(info);
 305	return ERR_PTR(err);
 306}
 307
 308static __user void *mpx_get_bounds_dir(void)
 309{
 310	const struct mpx_bndcsr *bndcsr;
 311
 312	if (!cpu_feature_enabled(X86_FEATURE_MPX))
 313		return MPX_INVALID_BOUNDS_DIR;
 314
 315	/*
 316	 * The bounds directory pointer is stored in a register
 317	 * only accessible if we first do an xsave.
 318	 */
 319	bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
 320	if (!bndcsr)
 321		return MPX_INVALID_BOUNDS_DIR;
 322
 323	/*
 324	 * Make sure the register looks valid by checking the
 325	 * enable bit.
 326	 */
 327	if (!(bndcsr->bndcfgu & MPX_BNDCFG_ENABLE_FLAG))
 328		return MPX_INVALID_BOUNDS_DIR;
 329
 330	/*
 331	 * Lastly, mask off the low bits used for configuration
 332	 * flags, and return the address of the bounds table.
 333	 */
 334	return (void __user *)(unsigned long)
 335		(bndcsr->bndcfgu & MPX_BNDCFG_ADDR_MASK);
 336}
 337
 338int mpx_enable_management(void)
 339{
 340	void __user *bd_base = MPX_INVALID_BOUNDS_DIR;
 341	struct mm_struct *mm = current->mm;
 342	int ret = 0;
 343
 344	/*
 345	 * runtime in the userspace will be responsible for allocation of
 346	 * the bounds directory. Then, it will save the base of the bounds
 347	 * directory into XSAVE/XRSTOR Save Area and enable MPX through
 348	 * XRSTOR instruction.
 349	 *
 350	 * The copy_xregs_to_kernel() beneath get_xsave_field_ptr() is
 351	 * expected to be relatively expensive. Storing the bounds
 352	 * directory here means that we do not have to do xsave in the
 353	 * unmap path; we can just use mm->bd_addr instead.
 354	 */
 355	bd_base = mpx_get_bounds_dir();
 356	down_write(&mm->mmap_sem);
 357	mm->bd_addr = bd_base;
 358	if (mm->bd_addr == MPX_INVALID_BOUNDS_DIR)
 359		ret = -ENXIO;
 360
 361	up_write(&mm->mmap_sem);
 362	return ret;
 363}
 364
 365int mpx_disable_management(void)
 366{
 367	struct mm_struct *mm = current->mm;
 368
 369	if (!cpu_feature_enabled(X86_FEATURE_MPX))
 370		return -ENXIO;
 371
 372	down_write(&mm->mmap_sem);
 373	mm->bd_addr = MPX_INVALID_BOUNDS_DIR;
 374	up_write(&mm->mmap_sem);
 375	return 0;
 376}
 377
 378static int mpx_cmpxchg_bd_entry(struct mm_struct *mm,
 379		unsigned long *curval,
 380		unsigned long __user *addr,
 381		unsigned long old_val, unsigned long new_val)
 382{
 383	int ret;
 384	/*
 385	 * user_atomic_cmpxchg_inatomic() actually uses sizeof()
 386	 * the pointer that we pass to it to figure out how much
 387	 * data to cmpxchg.  We have to be careful here not to
 388	 * pass a pointer to a 64-bit data type when we only want
 389	 * a 32-bit copy.
 390	 */
 391	if (is_64bit_mm(mm)) {
 392		ret = user_atomic_cmpxchg_inatomic(curval,
 393				addr, old_val, new_val);
 394	} else {
 395		u32 uninitialized_var(curval_32);
 396		u32 old_val_32 = old_val;
 397		u32 new_val_32 = new_val;
 398		u32 __user *addr_32 = (u32 __user *)addr;
 399
 400		ret = user_atomic_cmpxchg_inatomic(&curval_32,
 401				addr_32, old_val_32, new_val_32);
 402		*curval = curval_32;
 403	}
 404	return ret;
 405}
 406
 407/*
 408 * With 32-bit mode, a bounds directory is 4MB, and the size of each
 409 * bounds table is 16KB. With 64-bit mode, a bounds directory is 2GB,
 410 * and the size of each bounds table is 4MB.
 411 */
 412static int allocate_bt(struct mm_struct *mm, long __user *bd_entry)
 413{
 414	unsigned long expected_old_val = 0;
 415	unsigned long actual_old_val = 0;
 416	unsigned long bt_addr;
 417	unsigned long bd_new_entry;
 418	int ret = 0;
 419
 420	/*
 421	 * Carve the virtual space out of userspace for the new
 422	 * bounds table:
 423	 */
 424	bt_addr = mpx_mmap(mpx_bt_size_bytes(mm));
 425	if (IS_ERR((void *)bt_addr))
 426		return PTR_ERR((void *)bt_addr);
 427	/*
 428	 * Set the valid flag (kinda like _PAGE_PRESENT in a pte)
 429	 */
 430	bd_new_entry = bt_addr | MPX_BD_ENTRY_VALID_FLAG;
 431
 432	/*
 433	 * Go poke the address of the new bounds table in to the
 434	 * bounds directory entry out in userspace memory.  Note:
 435	 * we may race with another CPU instantiating the same table.
 436	 * In that case the cmpxchg will see an unexpected
 437	 * 'actual_old_val'.
 438	 *
 439	 * This can fault, but that's OK because we do not hold
 440	 * mmap_sem at this point, unlike some of the other part
 441	 * of the MPX code that have to pagefault_disable().
 442	 */
 443	ret = mpx_cmpxchg_bd_entry(mm, &actual_old_val,	bd_entry,
 444				   expected_old_val, bd_new_entry);
 445	if (ret)
 446		goto out_unmap;
 447
 448	/*
 449	 * The user_atomic_cmpxchg_inatomic() will only return nonzero
 450	 * for faults, *not* if the cmpxchg itself fails.  Now we must
 451	 * verify that the cmpxchg itself completed successfully.
 452	 */
 453	/*
 454	 * We expected an empty 'expected_old_val', but instead found
 455	 * an apparently valid entry.  Assume we raced with another
 456	 * thread to instantiate this table and desclare succecss.
 457	 */
 458	if (actual_old_val & MPX_BD_ENTRY_VALID_FLAG) {
 459		ret = 0;
 460		goto out_unmap;
 461	}
 462	/*
 463	 * We found a non-empty bd_entry but it did not have the
 464	 * VALID_FLAG set.  Return an error which will result in
 465	 * a SEGV since this probably means that somebody scribbled
 466	 * some invalid data in to a bounds table.
 467	 */
 468	if (expected_old_val != actual_old_val) {
 469		ret = -EINVAL;
 470		goto out_unmap;
 471	}
 472	trace_mpx_new_bounds_table(bt_addr);
 473	return 0;
 474out_unmap:
 475	vm_munmap(bt_addr, mpx_bt_size_bytes(mm));
 476	return ret;
 477}
 478
 479/*
 480 * When a BNDSTX instruction attempts to save bounds to a bounds
 481 * table, it will first attempt to look up the table in the
 482 * first-level bounds directory.  If it does not find a table in
 483 * the directory, a #BR is generated and we get here in order to
 484 * allocate a new table.
 485 *
 486 * With 32-bit mode, the size of BD is 4MB, and the size of each
 487 * bound table is 16KB. With 64-bit mode, the size of BD is 2GB,
 488 * and the size of each bound table is 4MB.
 489 */
 490static int do_mpx_bt_fault(void)
 491{
 492	unsigned long bd_entry, bd_base;
 493	const struct mpx_bndcsr *bndcsr;
 494	struct mm_struct *mm = current->mm;
 495
 496	bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR);
 497	if (!bndcsr)
 498		return -EINVAL;
 499	/*
 500	 * Mask off the preserve and enable bits
 501	 */
 502	bd_base = bndcsr->bndcfgu & MPX_BNDCFG_ADDR_MASK;
 503	/*
 504	 * The hardware provides the address of the missing or invalid
 505	 * entry via BNDSTATUS, so we don't have to go look it up.
 506	 */
 507	bd_entry = bndcsr->bndstatus & MPX_BNDSTA_ADDR_MASK;
 508	/*
 509	 * Make sure the directory entry is within where we think
 510	 * the directory is.
 511	 */
 512	if ((bd_entry < bd_base) ||
 513	    (bd_entry >= bd_base + mpx_bd_size_bytes(mm)))
 514		return -EINVAL;
 515
 516	return allocate_bt(mm, (long __user *)bd_entry);
 517}
 518
 519int mpx_handle_bd_fault(void)
 520{
 521	/*
 522	 * Userspace never asked us to manage the bounds tables,
 523	 * so refuse to help.
 524	 */
 525	if (!kernel_managing_mpx_tables(current->mm))
 526		return -EINVAL;
 527
 528	if (do_mpx_bt_fault()) {
 529		force_sig(SIGSEGV, current);
 530		/*
 531		 * The force_sig() is essentially "handling" this
 532		 * exception, so we do not pass up the error
 533		 * from do_mpx_bt_fault().
 534		 */
 535	}
 536	return 0;
 537}
 538
 539/*
 540 * A thin wrapper around get_user_pages().  Returns 0 if the
 541 * fault was resolved or -errno if not.
 542 */
 543static int mpx_resolve_fault(long __user *addr, int write)
 544{
 545	long gup_ret;
 546	int nr_pages = 1;
 547	int force = 0;
 548
 549	gup_ret = get_user_pages((unsigned long)addr, nr_pages, write,
 550			force, NULL, NULL);
 551	/*
 552	 * get_user_pages() returns number of pages gotten.
 553	 * 0 means we failed to fault in and get anything,
 554	 * probably because 'addr' is bad.
 555	 */
 556	if (!gup_ret)
 557		return -EFAULT;
 558	/* Other error, return it */
 559	if (gup_ret < 0)
 560		return gup_ret;
 561	/* must have gup'd a page and gup_ret>0, success */
 562	return 0;
 563}
 564
 565static unsigned long mpx_bd_entry_to_bt_addr(struct mm_struct *mm,
 566					     unsigned long bd_entry)
 567{
 568	unsigned long bt_addr = bd_entry;
 569	int align_to_bytes;
 570	/*
 571	 * Bit 0 in a bt_entry is always the valid bit.
 572	 */
 573	bt_addr &= ~MPX_BD_ENTRY_VALID_FLAG;
 574	/*
 575	 * Tables are naturally aligned at 8-byte boundaries
 576	 * on 64-bit and 4-byte boundaries on 32-bit.  The
 577	 * documentation makes it appear that the low bits
 578	 * are ignored by the hardware, so we do the same.
 579	 */
 580	if (is_64bit_mm(mm))
 581		align_to_bytes = 8;
 582	else
 583		align_to_bytes = 4;
 584	bt_addr &= ~(align_to_bytes-1);
 585	return bt_addr;
 586}
 587
 588/*
 589 * We only want to do a 4-byte get_user() on 32-bit.  Otherwise,
 590 * we might run off the end of the bounds table if we are on
 591 * a 64-bit kernel and try to get 8 bytes.
 592 */
 593int get_user_bd_entry(struct mm_struct *mm, unsigned long *bd_entry_ret,
 594		long __user *bd_entry_ptr)
 595{
 596	u32 bd_entry_32;
 597	int ret;
 598
 599	if (is_64bit_mm(mm))
 600		return get_user(*bd_entry_ret, bd_entry_ptr);
 601
 602	/*
 603	 * Note that get_user() uses the type of the *pointer* to
 604	 * establish the size of the get, not the destination.
 605	 */
 606	ret = get_user(bd_entry_32, (u32 __user *)bd_entry_ptr);
 607	*bd_entry_ret = bd_entry_32;
 608	return ret;
 609}
 610
 611/*
 612 * Get the base of bounds tables pointed by specific bounds
 613 * directory entry.
 614 */
 615static int get_bt_addr(struct mm_struct *mm,
 616			long __user *bd_entry_ptr,
 617			unsigned long *bt_addr_result)
 618{
 619	int ret;
 620	int valid_bit;
 621	unsigned long bd_entry;
 622	unsigned long bt_addr;
 623
 624	if (!access_ok(VERIFY_READ, (bd_entry_ptr), sizeof(*bd_entry_ptr)))
 625		return -EFAULT;
 626
 627	while (1) {
 628		int need_write = 0;
 629
 630		pagefault_disable();
 631		ret = get_user_bd_entry(mm, &bd_entry, bd_entry_ptr);
 632		pagefault_enable();
 633		if (!ret)
 634			break;
 635		if (ret == -EFAULT)
 636			ret = mpx_resolve_fault(bd_entry_ptr, need_write);
 637		/*
 638		 * If we could not resolve the fault, consider it
 639		 * userspace's fault and error out.
 640		 */
 641		if (ret)
 642			return ret;
 643	}
 644
 645	valid_bit = bd_entry & MPX_BD_ENTRY_VALID_FLAG;
 646	bt_addr = mpx_bd_entry_to_bt_addr(mm, bd_entry);
 647
 648	/*
 649	 * When the kernel is managing bounds tables, a bounds directory
 650	 * entry will either have a valid address (plus the valid bit)
 651	 * *OR* be completely empty. If we see a !valid entry *and* some
 652	 * data in the address field, we know something is wrong. This
 653	 * -EINVAL return will cause a SIGSEGV.
 654	 */
 655	if (!valid_bit && bt_addr)
 656		return -EINVAL;
 657	/*
 658	 * Do we have an completely zeroed bt entry?  That is OK.  It
 659	 * just means there was no bounds table for this memory.  Make
 660	 * sure to distinguish this from -EINVAL, which will cause
 661	 * a SEGV.
 662	 */
 663	if (!valid_bit)
 664		return -ENOENT;
 665
 666	*bt_addr_result = bt_addr;
 667	return 0;
 668}
 669
 670static inline int bt_entry_size_bytes(struct mm_struct *mm)
 671{
 672	if (is_64bit_mm(mm))
 673		return MPX_BT_ENTRY_BYTES_64;
 674	else
 675		return MPX_BT_ENTRY_BYTES_32;
 676}
 677
 678/*
 679 * Take a virtual address and turns it in to the offset in bytes
 680 * inside of the bounds table where the bounds table entry
 681 * controlling 'addr' can be found.
 682 */
 683static unsigned long mpx_get_bt_entry_offset_bytes(struct mm_struct *mm,
 684		unsigned long addr)
 685{
 686	unsigned long bt_table_nr_entries;
 687	unsigned long offset = addr;
 688
 689	if (is_64bit_mm(mm)) {
 690		/* Bottom 3 bits are ignored on 64-bit */
 691		offset >>= 3;
 692		bt_table_nr_entries = MPX_BT_NR_ENTRIES_64;
 693	} else {
 694		/* Bottom 2 bits are ignored on 32-bit */
 695		offset >>= 2;
 696		bt_table_nr_entries = MPX_BT_NR_ENTRIES_32;
 697	}
 698	/*
 699	 * We know the size of the table in to which we are
 700	 * indexing, and we have eliminated all the low bits
 701	 * which are ignored for indexing.
 702	 *
 703	 * Mask out all the high bits which we do not need
 704	 * to index in to the table.  Note that the tables
 705	 * are always powers of two so this gives us a proper
 706	 * mask.
 707	 */
 708	offset &= (bt_table_nr_entries-1);
 709	/*
 710	 * We now have an entry offset in terms of *entries* in
 711	 * the table.  We need to scale it back up to bytes.
 712	 */
 713	offset *= bt_entry_size_bytes(mm);
 714	return offset;
 715}
 716
 717/*
 718 * How much virtual address space does a single bounds
 719 * directory entry cover?
 720 *
 721 * Note, we need a long long because 4GB doesn't fit in
 722 * to a long on 32-bit.
 723 */
 724static inline unsigned long bd_entry_virt_space(struct mm_struct *mm)
 725{
 726	unsigned long long virt_space;
 727	unsigned long long GB = (1ULL << 30);
 728
 729	/*
 730	 * This covers 32-bit emulation as well as 32-bit kernels
 731	 * running on 64-bit hardware.
 732	 */
 733	if (!is_64bit_mm(mm))
 734		return (4ULL * GB) / MPX_BD_NR_ENTRIES_32;
 735
 736	/*
 737	 * 'x86_virt_bits' returns what the hardware is capable
 738	 * of, and returns the full >32-bit address space when
 739	 * running 32-bit kernels on 64-bit hardware.
 740	 */
 741	virt_space = (1ULL << boot_cpu_data.x86_virt_bits);
 742	return virt_space / MPX_BD_NR_ENTRIES_64;
 743}
 744
 745/*
 746 * Free the backing physical pages of bounds table 'bt_addr'.
 747 * Assume start...end is within that bounds table.
 748 */
 749static noinline int zap_bt_entries_mapping(struct mm_struct *mm,
 750		unsigned long bt_addr,
 751		unsigned long start_mapping, unsigned long end_mapping)
 752{
 753	struct vm_area_struct *vma;
 754	unsigned long addr, len;
 755	unsigned long start;
 756	unsigned long end;
 757
 758	/*
 759	 * if we 'end' on a boundary, the offset will be 0 which
 760	 * is not what we want.  Back it up a byte to get the
 761	 * last bt entry.  Then once we have the entry itself,
 762	 * move 'end' back up by the table entry size.
 763	 */
 764	start = bt_addr + mpx_get_bt_entry_offset_bytes(mm, start_mapping);
 765	end   = bt_addr + mpx_get_bt_entry_offset_bytes(mm, end_mapping - 1);
 766	/*
 767	 * Move end back up by one entry.  Among other things
 768	 * this ensures that it remains page-aligned and does
 769	 * not screw up zap_page_range()
 770	 */
 771	end += bt_entry_size_bytes(mm);
 772
 773	/*
 774	 * Find the first overlapping vma. If vma->vm_start > start, there
 775	 * will be a hole in the bounds table. This -EINVAL return will
 776	 * cause a SIGSEGV.
 777	 */
 778	vma = find_vma(mm, start);
 779	if (!vma || vma->vm_start > start)
 780		return -EINVAL;
 781
 782	/*
 783	 * A NUMA policy on a VM_MPX VMA could cause this bounds table to
 784	 * be split. So we need to look across the entire 'start -> end'
 785	 * range of this bounds table, find all of the VM_MPX VMAs, and
 786	 * zap only those.
 787	 */
 788	addr = start;
 789	while (vma && vma->vm_start < end) {
 790		/*
 791		 * We followed a bounds directory entry down
 792		 * here.  If we find a non-MPX VMA, that's bad,
 793		 * so stop immediately and return an error.  This
 794		 * probably results in a SIGSEGV.
 795		 */
 796		if (!(vma->vm_flags & VM_MPX))
 797			return -EINVAL;
 798
 799		len = min(vma->vm_end, end) - addr;
 800		zap_page_range(vma, addr, len, NULL);
 801		trace_mpx_unmap_zap(addr, addr+len);
 802
 803		vma = vma->vm_next;
 804		addr = vma->vm_start;
 805	}
 806	return 0;
 807}
 808
 809static unsigned long mpx_get_bd_entry_offset(struct mm_struct *mm,
 810		unsigned long addr)
 811{
 812	/*
 813	 * There are several ways to derive the bd offsets.  We
 814	 * use the following approach here:
 815	 * 1. We know the size of the virtual address space
 816	 * 2. We know the number of entries in a bounds table
 817	 * 3. We know that each entry covers a fixed amount of
 818	 *    virtual address space.
 819	 * So, we can just divide the virtual address by the
 820	 * virtual space used by one entry to determine which
 821	 * entry "controls" the given virtual address.
 822	 */
 823	if (is_64bit_mm(mm)) {
 824		int bd_entry_size = 8; /* 64-bit pointer */
 825		/*
 826		 * Take the 64-bit addressing hole in to account.
 827		 */
 828		addr &= ((1UL << boot_cpu_data.x86_virt_bits) - 1);
 829		return (addr / bd_entry_virt_space(mm)) * bd_entry_size;
 830	} else {
 831		int bd_entry_size = 4; /* 32-bit pointer */
 832		/*
 833		 * 32-bit has no hole so this case needs no mask
 834		 */
 835		return (addr / bd_entry_virt_space(mm)) * bd_entry_size;
 836	}
 837	/*
 838	 * The two return calls above are exact copies.  If we
 839	 * pull out a single copy and put it in here, gcc won't
 840	 * realize that we're doing a power-of-2 divide and use
 841	 * shifts.  It uses a real divide.  If we put them up
 842	 * there, it manages to figure it out (gcc 4.8.3).
 843	 */
 844}
 845
 846static int unmap_entire_bt(struct mm_struct *mm,
 847		long __user *bd_entry, unsigned long bt_addr)
 848{
 849	unsigned long expected_old_val = bt_addr | MPX_BD_ENTRY_VALID_FLAG;
 850	unsigned long uninitialized_var(actual_old_val);
 851	int ret;
 852
 853	while (1) {
 854		int need_write = 1;
 855		unsigned long cleared_bd_entry = 0;
 856
 857		pagefault_disable();
 858		ret = mpx_cmpxchg_bd_entry(mm, &actual_old_val,
 859				bd_entry, expected_old_val, cleared_bd_entry);
 860		pagefault_enable();
 861		if (!ret)
 862			break;
 863		if (ret == -EFAULT)
 864			ret = mpx_resolve_fault(bd_entry, need_write);
 865		/*
 866		 * If we could not resolve the fault, consider it
 867		 * userspace's fault and error out.
 868		 */
 869		if (ret)
 870			return ret;
 871	}
 872	/*
 873	 * The cmpxchg was performed, check the results.
 874	 */
 875	if (actual_old_val != expected_old_val) {
 876		/*
 877		 * Someone else raced with us to unmap the table.
 878		 * That is OK, since we were both trying to do
 879		 * the same thing.  Declare success.
 880		 */
 881		if (!actual_old_val)
 882			return 0;
 883		/*
 884		 * Something messed with the bounds directory
 885		 * entry.  We hold mmap_sem for read or write
 886		 * here, so it could not be a _new_ bounds table
 887		 * that someone just allocated.  Something is
 888		 * wrong, so pass up the error and SIGSEGV.
 889		 */
 890		return -EINVAL;
 891	}
 892	/*
 893	 * Note, we are likely being called under do_munmap() already. To
 894	 * avoid recursion, do_munmap() will check whether it comes
 895	 * from one bounds table through VM_MPX flag.
 896	 */
 897	return do_munmap(mm, bt_addr, mpx_bt_size_bytes(mm));
 898}
 899
 900static int try_unmap_single_bt(struct mm_struct *mm,
 901	       unsigned long start, unsigned long end)
 902{
 903	struct vm_area_struct *next;
 904	struct vm_area_struct *prev;
 905	/*
 906	 * "bta" == Bounds Table Area: the area controlled by the
 907	 * bounds table that we are unmapping.
 908	 */
 909	unsigned long bta_start_vaddr = start & ~(bd_entry_virt_space(mm)-1);
 910	unsigned long bta_end_vaddr = bta_start_vaddr + bd_entry_virt_space(mm);
 911	unsigned long uninitialized_var(bt_addr);
 912	void __user *bde_vaddr;
 913	int ret;
 914	/*
 915	 * We already unlinked the VMAs from the mm's rbtree so 'start'
 916	 * is guaranteed to be in a hole. This gets us the first VMA
 917	 * before the hole in to 'prev' and the next VMA after the hole
 918	 * in to 'next'.
 919	 */
 920	next = find_vma_prev(mm, start, &prev);
 921	/*
 922	 * Do not count other MPX bounds table VMAs as neighbors.
 923	 * Although theoretically possible, we do not allow bounds
 924	 * tables for bounds tables so our heads do not explode.
 925	 * If we count them as neighbors here, we may end up with
 926	 * lots of tables even though we have no actual table
 927	 * entries in use.
 928	 */
 929	while (next && (next->vm_flags & VM_MPX))
 930		next = next->vm_next;
 931	while (prev && (prev->vm_flags & VM_MPX))
 932		prev = prev->vm_prev;
 933	/*
 934	 * We know 'start' and 'end' lie within an area controlled
 935	 * by a single bounds table.  See if there are any other
 936	 * VMAs controlled by that bounds table.  If there are not
 937	 * then we can "expand" the are we are unmapping to possibly
 938	 * cover the entire table.
 939	 */
 940	next = find_vma_prev(mm, start, &prev);
 941	if ((!prev || prev->vm_end <= bta_start_vaddr) &&
 942	    (!next || next->vm_start >= bta_end_vaddr)) {
 943		/*
 944		 * No neighbor VMAs controlled by same bounds
 945		 * table.  Try to unmap the whole thing
 946		 */
 947		start = bta_start_vaddr;
 948		end = bta_end_vaddr;
 949	}
 950
 951	bde_vaddr = mm->bd_addr + mpx_get_bd_entry_offset(mm, start);
 952	ret = get_bt_addr(mm, bde_vaddr, &bt_addr);
 953	/*
 954	 * No bounds table there, so nothing to unmap.
 955	 */
 956	if (ret == -ENOENT) {
 957		ret = 0;
 958		return 0;
 959	}
 960	if (ret)
 961		return ret;
 962	/*
 963	 * We are unmapping an entire table.  Either because the
 964	 * unmap that started this whole process was large enough
 965	 * to cover an entire table, or that the unmap was small
 966	 * but was the area covered by a bounds table.
 967	 */
 968	if ((start == bta_start_vaddr) &&
 969	    (end == bta_end_vaddr))
 970		return unmap_entire_bt(mm, bde_vaddr, bt_addr);
 971	return zap_bt_entries_mapping(mm, bt_addr, start, end);
 972}
 973
 974static int mpx_unmap_tables(struct mm_struct *mm,
 975		unsigned long start, unsigned long end)
 976{
 977	unsigned long one_unmap_start;
 978	trace_mpx_unmap_search(start, end);
 979
 980	one_unmap_start = start;
 981	while (one_unmap_start < end) {
 982		int ret;
 983		unsigned long next_unmap_start = ALIGN(one_unmap_start+1,
 984						       bd_entry_virt_space(mm));
 985		unsigned long one_unmap_end = end;
 986		/*
 987		 * if the end is beyond the current bounds table,
 988		 * move it back so we only deal with a single one
 989		 * at a time
 990		 */
 991		if (one_unmap_end > next_unmap_start)
 992			one_unmap_end = next_unmap_start;
 993		ret = try_unmap_single_bt(mm, one_unmap_start, one_unmap_end);
 994		if (ret)
 995			return ret;
 996
 997		one_unmap_start = next_unmap_start;
 998	}
 999	return 0;
1000}
1001
1002/*
1003 * Free unused bounds tables covered in a virtual address region being
1004 * munmap()ed. Assume end > start.
1005 *
1006 * This function will be called by do_munmap(), and the VMAs covering
1007 * the virtual address region start...end have already been split if
1008 * necessary, and the 'vma' is the first vma in this range (start -> end).
1009 */
1010void mpx_notify_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
1011		unsigned long start, unsigned long end)
1012{
1013	int ret;
1014
1015	/*
1016	 * Refuse to do anything unless userspace has asked
1017	 * the kernel to help manage the bounds tables,
1018	 */
1019	if (!kernel_managing_mpx_tables(current->mm))
1020		return;
1021	/*
1022	 * This will look across the entire 'start -> end' range,
1023	 * and find all of the non-VM_MPX VMAs.
1024	 *
1025	 * To avoid recursion, if a VM_MPX vma is found in the range
1026	 * (start->end), we will not continue follow-up work. This
1027	 * recursion represents having bounds tables for bounds tables,
1028	 * which should not occur normally. Being strict about it here
1029	 * helps ensure that we do not have an exploitable stack overflow.
1030	 */
1031	do {
1032		if (vma->vm_flags & VM_MPX)
1033			return;
1034		vma = vma->vm_next;
1035	} while (vma && vma->vm_start < end);
1036
1037	ret = mpx_unmap_tables(mm, start, end);
1038	if (ret)
1039		force_sig(SIGSEGV, current);
1040}