Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext4/ialloc.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  BSD ufs-inspired inode and directory allocation by
  11 *  Stephen Tweedie (sct@redhat.com), 1993
  12 *  Big-endian to little-endian byte-swapping/bitmaps by
  13 *        David S. Miller (davem@caip.rutgers.edu), 1995
  14 */
  15
  16#include <linux/time.h>
  17#include <linux/fs.h>
  18#include <linux/stat.h>
  19#include <linux/string.h>
  20#include <linux/quotaops.h>
  21#include <linux/buffer_head.h>
  22#include <linux/random.h>
  23#include <linux/bitops.h>
  24#include <linux/blkdev.h>
  25#include <linux/cred.h>
  26
  27#include <asm/byteorder.h>
  28
  29#include "ext4.h"
  30#include "ext4_jbd2.h"
  31#include "xattr.h"
  32#include "acl.h"
  33
  34#include <trace/events/ext4.h>
  35
  36/*
  37 * ialloc.c contains the inodes allocation and deallocation routines
  38 */
  39
  40/*
  41 * The free inodes are managed by bitmaps.  A file system contains several
  42 * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
  43 * block for inodes, N blocks for the inode table and data blocks.
  44 *
  45 * The file system contains group descriptors which are located after the
  46 * super block.  Each descriptor contains the number of the bitmap block and
  47 * the free blocks count in the block.
  48 */
  49
  50/*
  51 * To avoid calling the atomic setbit hundreds or thousands of times, we only
  52 * need to use it within a single byte (to ensure we get endianness right).
  53 * We can use memset for the rest of the bitmap as there are no other users.
  54 */
  55void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
  56{
  57	int i;
  58
  59	if (start_bit >= end_bit)
  60		return;
  61
  62	ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
  63	for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
  64		ext4_set_bit(i, bitmap);
  65	if (i < end_bit)
  66		memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
  67}
  68
  69void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
  70{
  71	if (uptodate) {
  72		set_buffer_uptodate(bh);
  73		set_bitmap_uptodate(bh);
  74	}
  75	unlock_buffer(bh);
  76	put_bh(bh);
  77}
  78
  79static int ext4_validate_inode_bitmap(struct super_block *sb,
  80				      struct ext4_group_desc *desc,
  81				      ext4_group_t block_group,
  82				      struct buffer_head *bh)
  83{
  84	ext4_fsblk_t	blk;
  85	struct ext4_group_info *grp;
  86
  87	if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
  88		return 0;
  89
  90	grp = ext4_get_group_info(sb, block_group);
  91
  92	if (buffer_verified(bh))
  93		return 0;
  94	if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
  95		return -EFSCORRUPTED;
  96
  97	ext4_lock_group(sb, block_group);
  98	if (buffer_verified(bh))
  99		goto verified;
 100	blk = ext4_inode_bitmap(sb, desc);
 101	if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
 102					   EXT4_INODES_PER_GROUP(sb) / 8) ||
 103	    ext4_simulate_fail(sb, EXT4_SIM_IBITMAP_CRC)) {
 104		ext4_unlock_group(sb, block_group);
 105		ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
 106			   "inode_bitmap = %llu", block_group, blk);
 107		ext4_mark_group_bitmap_corrupted(sb, block_group,
 108					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
 109		return -EFSBADCRC;
 110	}
 111	set_buffer_verified(bh);
 112verified:
 113	ext4_unlock_group(sb, block_group);
 114	return 0;
 115}
 116
 117/*
 118 * Read the inode allocation bitmap for a given block_group, reading
 119 * into the specified slot in the superblock's bitmap cache.
 120 *
 121 * Return buffer_head of bitmap on success, or an ERR_PTR on error.
 122 */
 123static struct buffer_head *
 124ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
 125{
 126	struct ext4_group_desc *desc;
 127	struct ext4_sb_info *sbi = EXT4_SB(sb);
 128	struct buffer_head *bh = NULL;
 129	ext4_fsblk_t bitmap_blk;
 130	int err;
 131
 132	desc = ext4_get_group_desc(sb, block_group, NULL);
 133	if (!desc)
 134		return ERR_PTR(-EFSCORRUPTED);
 135
 136	bitmap_blk = ext4_inode_bitmap(sb, desc);
 137	if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) ||
 138	    (bitmap_blk >= ext4_blocks_count(sbi->s_es))) {
 139		ext4_error(sb, "Invalid inode bitmap blk %llu in "
 140			   "block_group %u", bitmap_blk, block_group);
 141		ext4_mark_group_bitmap_corrupted(sb, block_group,
 142					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
 143		return ERR_PTR(-EFSCORRUPTED);
 144	}
 145	bh = sb_getblk(sb, bitmap_blk);
 146	if (unlikely(!bh)) {
 147		ext4_warning(sb, "Cannot read inode bitmap - "
 148			     "block_group = %u, inode_bitmap = %llu",
 149			     block_group, bitmap_blk);
 150		return ERR_PTR(-ENOMEM);
 151	}
 152	if (bitmap_uptodate(bh))
 153		goto verify;
 154
 155	lock_buffer(bh);
 156	if (bitmap_uptodate(bh)) {
 157		unlock_buffer(bh);
 158		goto verify;
 159	}
 160
 161	ext4_lock_group(sb, block_group);
 162	if (ext4_has_group_desc_csum(sb) &&
 163	    (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) {
 164		if (block_group == 0) {
 165			ext4_unlock_group(sb, block_group);
 166			unlock_buffer(bh);
 167			ext4_error(sb, "Inode bitmap for bg 0 marked "
 168				   "uninitialized");
 169			err = -EFSCORRUPTED;
 170			goto out;
 171		}
 172		memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
 173		ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb),
 174				     sb->s_blocksize * 8, bh->b_data);
 175		set_bitmap_uptodate(bh);
 176		set_buffer_uptodate(bh);
 177		set_buffer_verified(bh);
 178		ext4_unlock_group(sb, block_group);
 179		unlock_buffer(bh);
 180		return bh;
 181	}
 182	ext4_unlock_group(sb, block_group);
 183
 184	if (buffer_uptodate(bh)) {
 185		/*
 186		 * if not uninit if bh is uptodate,
 187		 * bitmap is also uptodate
 188		 */
 189		set_bitmap_uptodate(bh);
 190		unlock_buffer(bh);
 191		goto verify;
 192	}
 193	/*
 194	 * submit the buffer_head for reading
 195	 */
 196	trace_ext4_load_inode_bitmap(sb, block_group);
 197	ext4_read_bh(bh, REQ_META | REQ_PRIO, ext4_end_bitmap_read);
 198	ext4_simulate_fail_bh(sb, bh, EXT4_SIM_IBITMAP_EIO);
 
 
 199	if (!buffer_uptodate(bh)) {
 200		put_bh(bh);
 201		ext4_error_err(sb, EIO, "Cannot read inode bitmap - "
 202			       "block_group = %u, inode_bitmap = %llu",
 203			       block_group, bitmap_blk);
 204		ext4_mark_group_bitmap_corrupted(sb, block_group,
 205				EXT4_GROUP_INFO_IBITMAP_CORRUPT);
 206		return ERR_PTR(-EIO);
 207	}
 208
 209verify:
 210	err = ext4_validate_inode_bitmap(sb, desc, block_group, bh);
 211	if (err)
 212		goto out;
 213	return bh;
 214out:
 215	put_bh(bh);
 216	return ERR_PTR(err);
 217}
 218
 219/*
 220 * NOTE! When we get the inode, we're the only people
 221 * that have access to it, and as such there are no
 222 * race conditions we have to worry about. The inode
 223 * is not on the hash-lists, and it cannot be reached
 224 * through the filesystem because the directory entry
 225 * has been deleted earlier.
 226 *
 227 * HOWEVER: we must make sure that we get no aliases,
 228 * which means that we have to call "clear_inode()"
 229 * _before_ we mark the inode not in use in the inode
 230 * bitmaps. Otherwise a newly created file might use
 231 * the same inode number (not actually the same pointer
 232 * though), and then we'd have two inodes sharing the
 233 * same inode number and space on the harddisk.
 234 */
 235void ext4_free_inode(handle_t *handle, struct inode *inode)
 236{
 237	struct super_block *sb = inode->i_sb;
 238	int is_directory;
 239	unsigned long ino;
 240	struct buffer_head *bitmap_bh = NULL;
 241	struct buffer_head *bh2;
 242	ext4_group_t block_group;
 243	unsigned long bit;
 244	struct ext4_group_desc *gdp;
 245	struct ext4_super_block *es;
 246	struct ext4_sb_info *sbi;
 247	int fatal = 0, err, count, cleared;
 248	struct ext4_group_info *grp;
 249
 250	if (!sb) {
 251		printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
 252		       "nonexistent device\n", __func__, __LINE__);
 253		return;
 254	}
 255	if (atomic_read(&inode->i_count) > 1) {
 256		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
 257			 __func__, __LINE__, inode->i_ino,
 258			 atomic_read(&inode->i_count));
 259		return;
 260	}
 261	if (inode->i_nlink) {
 262		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
 263			 __func__, __LINE__, inode->i_ino, inode->i_nlink);
 264		return;
 265	}
 266	sbi = EXT4_SB(sb);
 267
 268	ino = inode->i_ino;
 269	ext4_debug("freeing inode %lu\n", ino);
 270	trace_ext4_free_inode(inode);
 271
 
 
 
 
 272	dquot_initialize(inode);
 273	dquot_free_inode(inode);
 
 274
 275	is_directory = S_ISDIR(inode->i_mode);
 276
 277	/* Do this BEFORE marking the inode not in use or returning an error */
 278	ext4_clear_inode(inode);
 279
 280	es = sbi->s_es;
 281	if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
 282		ext4_error(sb, "reserved or nonexistent inode %lu", ino);
 283		goto error_return;
 284	}
 285	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
 286	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
 287	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
 288	/* Don't bother if the inode bitmap is corrupt. */
 
 289	if (IS_ERR(bitmap_bh)) {
 290		fatal = PTR_ERR(bitmap_bh);
 291		bitmap_bh = NULL;
 292		goto error_return;
 293	}
 294	if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
 295		grp = ext4_get_group_info(sb, block_group);
 296		if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) {
 297			fatal = -EFSCORRUPTED;
 298			goto error_return;
 299		}
 300	}
 301
 302	BUFFER_TRACE(bitmap_bh, "get_write_access");
 303	fatal = ext4_journal_get_write_access(handle, sb, bitmap_bh,
 304					      EXT4_JTR_NONE);
 305	if (fatal)
 306		goto error_return;
 307
 308	fatal = -ESRCH;
 309	gdp = ext4_get_group_desc(sb, block_group, &bh2);
 310	if (gdp) {
 311		BUFFER_TRACE(bh2, "get_write_access");
 312		fatal = ext4_journal_get_write_access(handle, sb, bh2,
 313						      EXT4_JTR_NONE);
 314	}
 315	ext4_lock_group(sb, block_group);
 316	cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
 317	if (fatal || !cleared) {
 318		ext4_unlock_group(sb, block_group);
 319		goto out;
 320	}
 321
 322	count = ext4_free_inodes_count(sb, gdp) + 1;
 323	ext4_free_inodes_set(sb, gdp, count);
 324	if (is_directory) {
 325		count = ext4_used_dirs_count(sb, gdp) - 1;
 326		ext4_used_dirs_set(sb, gdp, count);
 327		if (percpu_counter_initialized(&sbi->s_dirs_counter))
 328			percpu_counter_dec(&sbi->s_dirs_counter);
 329	}
 330	ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
 331				   EXT4_INODES_PER_GROUP(sb) / 8);
 332	ext4_group_desc_csum_set(sb, block_group, gdp);
 333	ext4_unlock_group(sb, block_group);
 334
 335	if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
 336		percpu_counter_inc(&sbi->s_freeinodes_counter);
 337	if (sbi->s_log_groups_per_flex) {
 338		struct flex_groups *fg;
 339
 340		fg = sbi_array_rcu_deref(sbi, s_flex_groups,
 341					 ext4_flex_group(sbi, block_group));
 342		atomic_inc(&fg->free_inodes);
 343		if (is_directory)
 344			atomic_dec(&fg->used_dirs);
 345	}
 346	BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
 347	fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
 348out:
 349	if (cleared) {
 350		BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
 351		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
 352		if (!fatal)
 353			fatal = err;
 354	} else {
 355		ext4_error(sb, "bit already cleared for inode %lu", ino);
 356		ext4_mark_group_bitmap_corrupted(sb, block_group,
 357					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
 358	}
 359
 360error_return:
 361	brelse(bitmap_bh);
 362	ext4_std_error(sb, fatal);
 363}
 364
 365struct orlov_stats {
 366	__u64 free_clusters;
 367	__u32 free_inodes;
 368	__u32 used_dirs;
 369};
 370
 371/*
 372 * Helper function for Orlov's allocator; returns critical information
 373 * for a particular block group or flex_bg.  If flex_size is 1, then g
 374 * is a block group number; otherwise it is flex_bg number.
 375 */
 376static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
 377			    int flex_size, struct orlov_stats *stats)
 378{
 379	struct ext4_group_desc *desc;
 
 380
 381	if (flex_size > 1) {
 382		struct flex_groups *fg = sbi_array_rcu_deref(EXT4_SB(sb),
 383							     s_flex_groups, g);
 384		stats->free_inodes = atomic_read(&fg->free_inodes);
 385		stats->free_clusters = atomic64_read(&fg->free_clusters);
 386		stats->used_dirs = atomic_read(&fg->used_dirs);
 387		return;
 388	}
 389
 390	desc = ext4_get_group_desc(sb, g, NULL);
 391	if (desc) {
 392		stats->free_inodes = ext4_free_inodes_count(sb, desc);
 393		stats->free_clusters = ext4_free_group_clusters(sb, desc);
 394		stats->used_dirs = ext4_used_dirs_count(sb, desc);
 395	} else {
 396		stats->free_inodes = 0;
 397		stats->free_clusters = 0;
 398		stats->used_dirs = 0;
 399	}
 400}
 401
 402/*
 403 * Orlov's allocator for directories.
 404 *
 405 * We always try to spread first-level directories.
 406 *
 407 * If there are blockgroups with both free inodes and free clusters counts
 408 * not worse than average we return one with smallest directory count.
 409 * Otherwise we simply return a random group.
 410 *
 411 * For the rest rules look so:
 412 *
 413 * It's OK to put directory into a group unless
 414 * it has too many directories already (max_dirs) or
 415 * it has too few free inodes left (min_inodes) or
 416 * it has too few free clusters left (min_clusters) or
 417 * Parent's group is preferred, if it doesn't satisfy these
 418 * conditions we search cyclically through the rest. If none
 419 * of the groups look good we just look for a group with more
 420 * free inodes than average (starting at parent's group).
 421 */
 422
 423static int find_group_orlov(struct super_block *sb, struct inode *parent,
 424			    ext4_group_t *group, umode_t mode,
 425			    const struct qstr *qstr)
 426{
 427	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
 428	struct ext4_sb_info *sbi = EXT4_SB(sb);
 429	ext4_group_t real_ngroups = ext4_get_groups_count(sb);
 430	int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
 431	unsigned int freei, avefreei, grp_free;
 432	ext4_fsblk_t freec, avefreec;
 433	unsigned int ndirs;
 434	int max_dirs, min_inodes;
 435	ext4_grpblk_t min_clusters;
 436	ext4_group_t i, grp, g, ngroups;
 437	struct ext4_group_desc *desc;
 438	struct orlov_stats stats;
 439	int flex_size = ext4_flex_bg_size(sbi);
 440	struct dx_hash_info hinfo;
 441
 442	ngroups = real_ngroups;
 443	if (flex_size > 1) {
 444		ngroups = (real_ngroups + flex_size - 1) >>
 445			sbi->s_log_groups_per_flex;
 446		parent_group >>= sbi->s_log_groups_per_flex;
 447	}
 448
 449	freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
 450	avefreei = freei / ngroups;
 451	freec = percpu_counter_read_positive(&sbi->s_freeclusters_counter);
 452	avefreec = freec;
 
 453	do_div(avefreec, ngroups);
 454	ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
 455
 456	if (S_ISDIR(mode) &&
 457	    ((parent == d_inode(sb->s_root)) ||
 458	     (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
 459		int best_ndir = inodes_per_group;
 460		int ret = -1;
 461
 462		if (qstr) {
 463			hinfo.hash_version = DX_HASH_HALF_MD4;
 464			hinfo.seed = sbi->s_hash_seed;
 465			ext4fs_dirhash(parent, qstr->name, qstr->len, &hinfo);
 466			parent_group = hinfo.hash % ngroups;
 467		} else
 468			parent_group = get_random_u32_below(ngroups);
 
 469		for (i = 0; i < ngroups; i++) {
 470			g = (parent_group + i) % ngroups;
 471			get_orlov_stats(sb, g, flex_size, &stats);
 472			if (!stats.free_inodes)
 473				continue;
 474			if (stats.used_dirs >= best_ndir)
 475				continue;
 476			if (stats.free_inodes < avefreei)
 477				continue;
 478			if (stats.free_clusters < avefreec)
 479				continue;
 480			grp = g;
 481			ret = 0;
 482			best_ndir = stats.used_dirs;
 483		}
 484		if (ret)
 485			goto fallback;
 486	found_flex_bg:
 487		if (flex_size == 1) {
 488			*group = grp;
 489			return 0;
 490		}
 491
 492		/*
 493		 * We pack inodes at the beginning of the flexgroup's
 494		 * inode tables.  Block allocation decisions will do
 495		 * something similar, although regular files will
 496		 * start at 2nd block group of the flexgroup.  See
 497		 * ext4_ext_find_goal() and ext4_find_near().
 498		 */
 499		grp *= flex_size;
 500		for (i = 0; i < flex_size; i++) {
 501			if (grp+i >= real_ngroups)
 502				break;
 503			desc = ext4_get_group_desc(sb, grp+i, NULL);
 504			if (desc && ext4_free_inodes_count(sb, desc)) {
 505				*group = grp+i;
 506				return 0;
 507			}
 508		}
 509		goto fallback;
 510	}
 511
 512	max_dirs = ndirs / ngroups + inodes_per_group*flex_size / 16;
 513	min_inodes = avefreei - inodes_per_group*flex_size / 4;
 514	if (min_inodes < 1)
 515		min_inodes = 1;
 516	min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
 517
 518	/*
 519	 * Start looking in the flex group where we last allocated an
 520	 * inode for this parent directory
 521	 */
 522	if (EXT4_I(parent)->i_last_alloc_group != ~0) {
 523		parent_group = EXT4_I(parent)->i_last_alloc_group;
 524		if (flex_size > 1)
 525			parent_group >>= sbi->s_log_groups_per_flex;
 526	}
 527
 528	for (i = 0; i < ngroups; i++) {
 529		grp = (parent_group + i) % ngroups;
 530		get_orlov_stats(sb, grp, flex_size, &stats);
 531		if (stats.used_dirs >= max_dirs)
 532			continue;
 533		if (stats.free_inodes < min_inodes)
 534			continue;
 535		if (stats.free_clusters < min_clusters)
 536			continue;
 537		goto found_flex_bg;
 538	}
 539
 540fallback:
 541	ngroups = real_ngroups;
 542	avefreei = freei / ngroups;
 543fallback_retry:
 544	parent_group = EXT4_I(parent)->i_block_group;
 545	for (i = 0; i < ngroups; i++) {
 546		grp = (parent_group + i) % ngroups;
 547		desc = ext4_get_group_desc(sb, grp, NULL);
 548		if (desc) {
 549			grp_free = ext4_free_inodes_count(sb, desc);
 550			if (grp_free && grp_free >= avefreei) {
 551				*group = grp;
 552				return 0;
 553			}
 554		}
 555	}
 556
 557	if (avefreei) {
 558		/*
 559		 * The free-inodes counter is approximate, and for really small
 560		 * filesystems the above test can fail to find any blockgroups
 561		 */
 562		avefreei = 0;
 563		goto fallback_retry;
 564	}
 565
 566	return -1;
 567}
 568
 569static int find_group_other(struct super_block *sb, struct inode *parent,
 570			    ext4_group_t *group, umode_t mode)
 571{
 572	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
 573	ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
 574	struct ext4_group_desc *desc;
 575	int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
 576
 577	/*
 578	 * Try to place the inode is the same flex group as its
 579	 * parent.  If we can't find space, use the Orlov algorithm to
 580	 * find another flex group, and store that information in the
 581	 * parent directory's inode information so that use that flex
 582	 * group for future allocations.
 583	 */
 584	if (flex_size > 1) {
 585		int retry = 0;
 586
 587	try_again:
 588		parent_group &= ~(flex_size-1);
 589		last = parent_group + flex_size;
 590		if (last > ngroups)
 591			last = ngroups;
 592		for  (i = parent_group; i < last; i++) {
 593			desc = ext4_get_group_desc(sb, i, NULL);
 594			if (desc && ext4_free_inodes_count(sb, desc)) {
 595				*group = i;
 596				return 0;
 597			}
 598		}
 599		if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
 600			retry = 1;
 601			parent_group = EXT4_I(parent)->i_last_alloc_group;
 602			goto try_again;
 603		}
 604		/*
 605		 * If this didn't work, use the Orlov search algorithm
 606		 * to find a new flex group; we pass in the mode to
 607		 * avoid the topdir algorithms.
 608		 */
 609		*group = parent_group + flex_size;
 610		if (*group > ngroups)
 611			*group = 0;
 612		return find_group_orlov(sb, parent, group, mode, NULL);
 613	}
 614
 615	/*
 616	 * Try to place the inode in its parent directory
 617	 */
 618	*group = parent_group;
 619	desc = ext4_get_group_desc(sb, *group, NULL);
 620	if (desc && ext4_free_inodes_count(sb, desc) &&
 621	    ext4_free_group_clusters(sb, desc))
 622		return 0;
 623
 624	/*
 625	 * We're going to place this inode in a different blockgroup from its
 626	 * parent.  We want to cause files in a common directory to all land in
 627	 * the same blockgroup.  But we want files which are in a different
 628	 * directory which shares a blockgroup with our parent to land in a
 629	 * different blockgroup.
 630	 *
 631	 * So add our directory's i_ino into the starting point for the hash.
 632	 */
 633	*group = (*group + parent->i_ino) % ngroups;
 634
 635	/*
 636	 * Use a quadratic hash to find a group with a free inode and some free
 637	 * blocks.
 638	 */
 639	for (i = 1; i < ngroups; i <<= 1) {
 640		*group += i;
 641		if (*group >= ngroups)
 642			*group -= ngroups;
 643		desc = ext4_get_group_desc(sb, *group, NULL);
 644		if (desc && ext4_free_inodes_count(sb, desc) &&
 645		    ext4_free_group_clusters(sb, desc))
 646			return 0;
 647	}
 648
 649	/*
 650	 * That failed: try linear search for a free inode, even if that group
 651	 * has no free blocks.
 652	 */
 653	*group = parent_group;
 654	for (i = 0; i < ngroups; i++) {
 655		if (++*group >= ngroups)
 656			*group = 0;
 657		desc = ext4_get_group_desc(sb, *group, NULL);
 658		if (desc && ext4_free_inodes_count(sb, desc))
 659			return 0;
 660	}
 661
 662	return -1;
 663}
 664
 665/*
 666 * In no journal mode, if an inode has recently been deleted, we want
 667 * to avoid reusing it until we're reasonably sure the inode table
 668 * block has been written back to disk.  (Yes, these values are
 669 * somewhat arbitrary...)
 670 */
 671#define RECENTCY_MIN	60
 672#define RECENTCY_DIRTY	300
 673
 674static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
 675{
 676	struct ext4_group_desc	*gdp;
 677	struct ext4_inode	*raw_inode;
 678	struct buffer_head	*bh;
 679	int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
 680	int offset, ret = 0;
 681	int recentcy = RECENTCY_MIN;
 682	u32 dtime, now;
 683
 684	gdp = ext4_get_group_desc(sb, group, NULL);
 685	if (unlikely(!gdp))
 686		return 0;
 687
 688	bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) +
 689		       (ino / inodes_per_block));
 690	if (!bh || !buffer_uptodate(bh))
 691		/*
 692		 * If the block is not in the buffer cache, then it
 693		 * must have been written out.
 694		 */
 695		goto out;
 696
 697	offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
 698	raw_inode = (struct ext4_inode *) (bh->b_data + offset);
 699
 700	/* i_dtime is only 32 bits on disk, but we only care about relative
 701	 * times in the range of a few minutes (i.e. long enough to sync a
 702	 * recently-deleted inode to disk), so using the low 32 bits of the
 703	 * clock (a 68 year range) is enough, see time_before32() */
 704	dtime = le32_to_cpu(raw_inode->i_dtime);
 705	now = ktime_get_real_seconds();
 706	if (buffer_dirty(bh))
 707		recentcy += RECENTCY_DIRTY;
 708
 709	if (dtime && time_before32(dtime, now) &&
 710	    time_before32(now, dtime + recentcy))
 711		ret = 1;
 712out:
 713	brelse(bh);
 714	return ret;
 715}
 716
 717static int find_inode_bit(struct super_block *sb, ext4_group_t group,
 718			  struct buffer_head *bitmap, unsigned long *ino)
 719{
 720	bool check_recently_deleted = EXT4_SB(sb)->s_journal == NULL;
 721	unsigned long recently_deleted_ino = EXT4_INODES_PER_GROUP(sb);
 722
 723next:
 724	*ino = ext4_find_next_zero_bit((unsigned long *)
 725				       bitmap->b_data,
 726				       EXT4_INODES_PER_GROUP(sb), *ino);
 727	if (*ino >= EXT4_INODES_PER_GROUP(sb))
 728		goto not_found;
 729
 730	if (check_recently_deleted && recently_deleted(sb, group, *ino)) {
 731		recently_deleted_ino = *ino;
 732		*ino = *ino + 1;
 733		if (*ino < EXT4_INODES_PER_GROUP(sb))
 734			goto next;
 735		goto not_found;
 736	}
 737	return 1;
 738not_found:
 739	if (recently_deleted_ino >= EXT4_INODES_PER_GROUP(sb))
 740		return 0;
 741	/*
 742	 * Not reusing recently deleted inodes is mostly a preference. We don't
 743	 * want to report ENOSPC or skew allocation patterns because of that.
 744	 * So return even recently deleted inode if we could find better in the
 745	 * given range.
 746	 */
 747	*ino = recently_deleted_ino;
 748	return 1;
 749}
 750
 751int ext4_mark_inode_used(struct super_block *sb, int ino)
 752{
 753	unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
 754	struct buffer_head *inode_bitmap_bh = NULL, *group_desc_bh = NULL;
 755	struct ext4_group_desc *gdp;
 756	ext4_group_t group;
 757	int bit;
 758	int err = -EFSCORRUPTED;
 759
 760	if (ino < EXT4_FIRST_INO(sb) || ino > max_ino)
 761		goto out;
 762
 763	group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
 764	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
 765	inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
 766	if (IS_ERR(inode_bitmap_bh))
 767		return PTR_ERR(inode_bitmap_bh);
 768
 769	if (ext4_test_bit(bit, inode_bitmap_bh->b_data)) {
 770		err = 0;
 771		goto out;
 772	}
 773
 774	gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
 775	if (!gdp || !group_desc_bh) {
 776		err = -EINVAL;
 777		goto out;
 778	}
 779
 780	ext4_set_bit(bit, inode_bitmap_bh->b_data);
 781
 782	BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
 783	err = ext4_handle_dirty_metadata(NULL, NULL, inode_bitmap_bh);
 784	if (err) {
 785		ext4_std_error(sb, err);
 786		goto out;
 787	}
 788	err = sync_dirty_buffer(inode_bitmap_bh);
 789	if (err) {
 790		ext4_std_error(sb, err);
 791		goto out;
 792	}
 793
 794	/* We may have to initialize the block bitmap if it isn't already */
 795	if (ext4_has_group_desc_csum(sb) &&
 796	    gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
 797		struct buffer_head *block_bitmap_bh;
 798
 799		block_bitmap_bh = ext4_read_block_bitmap(sb, group);
 800		if (IS_ERR(block_bitmap_bh)) {
 801			err = PTR_ERR(block_bitmap_bh);
 802			goto out;
 803		}
 804
 805		BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
 806		err = ext4_handle_dirty_metadata(NULL, NULL, block_bitmap_bh);
 807		sync_dirty_buffer(block_bitmap_bh);
 808
 809		/* recheck and clear flag under lock if we still need to */
 810		ext4_lock_group(sb, group);
 811		if (ext4_has_group_desc_csum(sb) &&
 812		    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
 813			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
 814			ext4_free_group_clusters_set(sb, gdp,
 815				ext4_free_clusters_after_init(sb, group, gdp));
 816			ext4_block_bitmap_csum_set(sb, group, gdp,
 817						   block_bitmap_bh);
 818			ext4_group_desc_csum_set(sb, group, gdp);
 819		}
 820		ext4_unlock_group(sb, group);
 821		brelse(block_bitmap_bh);
 822
 823		if (err) {
 824			ext4_std_error(sb, err);
 825			goto out;
 826		}
 827	}
 828
 829	/* Update the relevant bg descriptor fields */
 830	if (ext4_has_group_desc_csum(sb)) {
 831		int free;
 832
 833		ext4_lock_group(sb, group); /* while we modify the bg desc */
 834		free = EXT4_INODES_PER_GROUP(sb) -
 835			ext4_itable_unused_count(sb, gdp);
 836		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
 837			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
 838			free = 0;
 839		}
 840
 841		/*
 842		 * Check the relative inode number against the last used
 843		 * relative inode number in this group. if it is greater
 844		 * we need to update the bg_itable_unused count
 845		 */
 846		if (bit >= free)
 847			ext4_itable_unused_set(sb, gdp,
 848					(EXT4_INODES_PER_GROUP(sb) - bit - 1));
 849	} else {
 850		ext4_lock_group(sb, group);
 851	}
 852
 853	ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
 854	if (ext4_has_group_desc_csum(sb)) {
 855		ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
 856					   EXT4_INODES_PER_GROUP(sb) / 8);
 857		ext4_group_desc_csum_set(sb, group, gdp);
 858	}
 859
 860	ext4_unlock_group(sb, group);
 861	err = ext4_handle_dirty_metadata(NULL, NULL, group_desc_bh);
 862	sync_dirty_buffer(group_desc_bh);
 863out:
 864	return err;
 865}
 866
 867static int ext4_xattr_credits_for_new_inode(struct inode *dir, mode_t mode,
 868					    bool encrypt)
 869{
 870	struct super_block *sb = dir->i_sb;
 871	int nblocks = 0;
 872#ifdef CONFIG_EXT4_FS_POSIX_ACL
 873	struct posix_acl *p = get_inode_acl(dir, ACL_TYPE_DEFAULT);
 874
 875	if (IS_ERR(p))
 876		return PTR_ERR(p);
 877	if (p) {
 878		int acl_size = p->a_count * sizeof(ext4_acl_entry);
 879
 880		nblocks += (S_ISDIR(mode) ? 2 : 1) *
 881			__ext4_xattr_set_credits(sb, NULL /* inode */,
 882						 NULL /* block_bh */, acl_size,
 883						 true /* is_create */);
 884		posix_acl_release(p);
 885	}
 886#endif
 887
 888#ifdef CONFIG_SECURITY
 889	{
 890		int num_security_xattrs = 1;
 891
 892#ifdef CONFIG_INTEGRITY
 893		num_security_xattrs++;
 894#endif
 895		/*
 896		 * We assume that security xattrs are never more than 1k.
 897		 * In practice they are under 128 bytes.
 898		 */
 899		nblocks += num_security_xattrs *
 900			__ext4_xattr_set_credits(sb, NULL /* inode */,
 901						 NULL /* block_bh */, 1024,
 902						 true /* is_create */);
 903	}
 904#endif
 905	if (encrypt)
 906		nblocks += __ext4_xattr_set_credits(sb,
 907						    NULL /* inode */,
 908						    NULL /* block_bh */,
 909						    FSCRYPT_SET_CONTEXT_MAX_SIZE,
 910						    true /* is_create */);
 911	return nblocks;
 912}
 913
 914/*
 915 * There are two policies for allocating an inode.  If the new inode is
 916 * a directory, then a forward search is made for a block group with both
 917 * free space and a low directory-to-inode ratio; if that fails, then of
 918 * the groups with above-average free space, that group with the fewest
 919 * directories already is chosen.
 920 *
 921 * For other inodes, search forward from the parent directory's block
 922 * group to find a free inode.
 923 */
 924struct inode *__ext4_new_inode(struct user_namespace *mnt_userns,
 925			       handle_t *handle, struct inode *dir,
 926			       umode_t mode, const struct qstr *qstr,
 927			       __u32 goal, uid_t *owner, __u32 i_flags,
 928			       int handle_type, unsigned int line_no,
 929			       int nblocks)
 930{
 931	struct super_block *sb;
 932	struct buffer_head *inode_bitmap_bh = NULL;
 933	struct buffer_head *group_desc_bh;
 934	ext4_group_t ngroups, group = 0;
 935	unsigned long ino = 0;
 936	struct inode *inode;
 937	struct ext4_group_desc *gdp = NULL;
 938	struct ext4_inode_info *ei;
 939	struct ext4_sb_info *sbi;
 940	int ret2, err;
 941	struct inode *ret;
 942	ext4_group_t i;
 943	ext4_group_t flex_group;
 944	struct ext4_group_info *grp = NULL;
 945	bool encrypt = false;
 946
 947	/* Cannot create files in a deleted directory */
 948	if (!dir || !dir->i_nlink)
 949		return ERR_PTR(-EPERM);
 950
 951	sb = dir->i_sb;
 952	sbi = EXT4_SB(sb);
 953
 954	if (unlikely(ext4_forced_shutdown(sbi)))
 955		return ERR_PTR(-EIO);
 956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 957	ngroups = ext4_get_groups_count(sb);
 958	trace_ext4_request_inode(dir, mode);
 959	inode = new_inode(sb);
 960	if (!inode)
 961		return ERR_PTR(-ENOMEM);
 962	ei = EXT4_I(inode);
 963
 964	/*
 965	 * Initialize owners and quota early so that we don't have to account
 966	 * for quota initialization worst case in standard inode creating
 967	 * transaction
 968	 */
 969	if (owner) {
 970		inode->i_mode = mode;
 971		i_uid_write(inode, owner[0]);
 972		i_gid_write(inode, owner[1]);
 973	} else if (test_opt(sb, GRPID)) {
 974		inode->i_mode = mode;
 975		inode_fsuid_set(inode, mnt_userns);
 976		inode->i_gid = dir->i_gid;
 977	} else
 978		inode_init_owner(mnt_userns, inode, dir, mode);
 979
 980	if (ext4_has_feature_project(sb) &&
 981	    ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT))
 982		ei->i_projid = EXT4_I(dir)->i_projid;
 983	else
 984		ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID);
 985
 986	if (!(i_flags & EXT4_EA_INODE_FL)) {
 987		err = fscrypt_prepare_new_inode(dir, inode, &encrypt);
 988		if (err)
 989			goto out;
 990	}
 991
 992	err = dquot_initialize(inode);
 993	if (err)
 994		goto out;
 995
 996	if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) {
 997		ret2 = ext4_xattr_credits_for_new_inode(dir, mode, encrypt);
 998		if (ret2 < 0) {
 999			err = ret2;
1000			goto out;
1001		}
1002		nblocks += ret2;
1003	}
1004
1005	if (!goal)
1006		goal = sbi->s_inode_goal;
1007
1008	if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
1009		group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
1010		ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
1011		ret2 = 0;
1012		goto got_group;
1013	}
1014
1015	if (S_ISDIR(mode))
1016		ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
1017	else
1018		ret2 = find_group_other(sb, dir, &group, mode);
1019
1020got_group:
1021	EXT4_I(dir)->i_last_alloc_group = group;
1022	err = -ENOSPC;
1023	if (ret2 == -1)
1024		goto out;
1025
1026	/*
1027	 * Normally we will only go through one pass of this loop,
1028	 * unless we get unlucky and it turns out the group we selected
1029	 * had its last inode grabbed by someone else.
1030	 */
1031	for (i = 0; i < ngroups; i++, ino = 0) {
1032		err = -EIO;
1033
1034		gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1035		if (!gdp)
1036			goto out;
1037
1038		/*
1039		 * Check free inodes count before loading bitmap.
1040		 */
1041		if (ext4_free_inodes_count(sb, gdp) == 0)
1042			goto next_group;
1043
1044		if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
1045			grp = ext4_get_group_info(sb, group);
1046			/*
1047			 * Skip groups with already-known suspicious inode
1048			 * tables
1049			 */
1050			if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
1051				goto next_group;
1052		}
1053
1054		brelse(inode_bitmap_bh);
1055		inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
1056		/* Skip groups with suspicious inode tables */
1057		if (((!(sbi->s_mount_state & EXT4_FC_REPLAY))
1058		     && EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) ||
1059		    IS_ERR(inode_bitmap_bh)) {
1060			inode_bitmap_bh = NULL;
1061			goto next_group;
1062		}
1063
1064repeat_in_this_group:
1065		ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
1066		if (!ret2)
1067			goto next_group;
1068
1069		if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) {
1070			ext4_error(sb, "reserved inode found cleared - "
1071				   "inode=%lu", ino + 1);
1072			ext4_mark_group_bitmap_corrupted(sb, group,
1073					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
1074			goto next_group;
1075		}
1076
1077		if ((!(sbi->s_mount_state & EXT4_FC_REPLAY)) && !handle) {
1078			BUG_ON(nblocks <= 0);
1079			handle = __ext4_journal_start_sb(NULL, dir->i_sb,
1080				 line_no, handle_type, nblocks, 0,
1081				 ext4_trans_default_revoke_credits(sb));
1082			if (IS_ERR(handle)) {
1083				err = PTR_ERR(handle);
1084				ext4_std_error(sb, err);
1085				goto out;
1086			}
1087		}
1088		BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
1089		err = ext4_journal_get_write_access(handle, sb, inode_bitmap_bh,
1090						    EXT4_JTR_NONE);
1091		if (err) {
1092			ext4_std_error(sb, err);
1093			goto out;
1094		}
1095		ext4_lock_group(sb, group);
1096		ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
1097		if (ret2) {
1098			/* Someone already took the bit. Repeat the search
1099			 * with lock held.
1100			 */
1101			ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
1102			if (ret2) {
1103				ext4_set_bit(ino, inode_bitmap_bh->b_data);
1104				ret2 = 0;
1105			} else {
1106				ret2 = 1; /* we didn't grab the inode */
1107			}
1108		}
1109		ext4_unlock_group(sb, group);
1110		ino++;		/* the inode bitmap is zero-based */
1111		if (!ret2)
1112			goto got; /* we grabbed the inode! */
1113
1114		if (ino < EXT4_INODES_PER_GROUP(sb))
1115			goto repeat_in_this_group;
1116next_group:
1117		if (++group == ngroups)
1118			group = 0;
1119	}
1120	err = -ENOSPC;
1121	goto out;
1122
1123got:
1124	BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
1125	err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
1126	if (err) {
1127		ext4_std_error(sb, err);
1128		goto out;
1129	}
1130
1131	BUFFER_TRACE(group_desc_bh, "get_write_access");
1132	err = ext4_journal_get_write_access(handle, sb, group_desc_bh,
1133					    EXT4_JTR_NONE);
1134	if (err) {
1135		ext4_std_error(sb, err);
1136		goto out;
1137	}
1138
1139	/* We may have to initialize the block bitmap if it isn't already */
1140	if (ext4_has_group_desc_csum(sb) &&
1141	    gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
1142		struct buffer_head *block_bitmap_bh;
1143
1144		block_bitmap_bh = ext4_read_block_bitmap(sb, group);
1145		if (IS_ERR(block_bitmap_bh)) {
1146			err = PTR_ERR(block_bitmap_bh);
1147			goto out;
1148		}
1149		BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
1150		err = ext4_journal_get_write_access(handle, sb, block_bitmap_bh,
1151						    EXT4_JTR_NONE);
1152		if (err) {
1153			brelse(block_bitmap_bh);
1154			ext4_std_error(sb, err);
1155			goto out;
1156		}
1157
1158		BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
1159		err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
1160
1161		/* recheck and clear flag under lock if we still need to */
1162		ext4_lock_group(sb, group);
1163		if (ext4_has_group_desc_csum(sb) &&
1164		    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
1165			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
1166			ext4_free_group_clusters_set(sb, gdp,
1167				ext4_free_clusters_after_init(sb, group, gdp));
1168			ext4_block_bitmap_csum_set(sb, group, gdp,
1169						   block_bitmap_bh);
1170			ext4_group_desc_csum_set(sb, group, gdp);
1171		}
1172		ext4_unlock_group(sb, group);
1173		brelse(block_bitmap_bh);
1174
1175		if (err) {
1176			ext4_std_error(sb, err);
1177			goto out;
1178		}
1179	}
1180
1181	/* Update the relevant bg descriptor fields */
1182	if (ext4_has_group_desc_csum(sb)) {
1183		int free;
1184		struct ext4_group_info *grp = NULL;
1185
1186		if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
1187			grp = ext4_get_group_info(sb, group);
1188			down_read(&grp->alloc_sem); /*
1189						     * protect vs itable
1190						     * lazyinit
1191						     */
1192		}
1193		ext4_lock_group(sb, group); /* while we modify the bg desc */
1194		free = EXT4_INODES_PER_GROUP(sb) -
1195			ext4_itable_unused_count(sb, gdp);
1196		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
1197			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
1198			free = 0;
1199		}
1200		/*
1201		 * Check the relative inode number against the last used
1202		 * relative inode number in this group. if it is greater
1203		 * we need to update the bg_itable_unused count
1204		 */
1205		if (ino > free)
1206			ext4_itable_unused_set(sb, gdp,
1207					(EXT4_INODES_PER_GROUP(sb) - ino));
1208		if (!(sbi->s_mount_state & EXT4_FC_REPLAY))
1209			up_read(&grp->alloc_sem);
1210	} else {
1211		ext4_lock_group(sb, group);
1212	}
1213
1214	ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
1215	if (S_ISDIR(mode)) {
1216		ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
1217		if (sbi->s_log_groups_per_flex) {
1218			ext4_group_t f = ext4_flex_group(sbi, group);
1219
1220			atomic_inc(&sbi_array_rcu_deref(sbi, s_flex_groups,
1221							f)->used_dirs);
1222		}
1223	}
1224	if (ext4_has_group_desc_csum(sb)) {
1225		ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
1226					   EXT4_INODES_PER_GROUP(sb) / 8);
1227		ext4_group_desc_csum_set(sb, group, gdp);
1228	}
1229	ext4_unlock_group(sb, group);
1230
1231	BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
1232	err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
1233	if (err) {
1234		ext4_std_error(sb, err);
1235		goto out;
1236	}
1237
1238	percpu_counter_dec(&sbi->s_freeinodes_counter);
1239	if (S_ISDIR(mode))
1240		percpu_counter_inc(&sbi->s_dirs_counter);
1241
1242	if (sbi->s_log_groups_per_flex) {
1243		flex_group = ext4_flex_group(sbi, group);
1244		atomic_dec(&sbi_array_rcu_deref(sbi, s_flex_groups,
1245						flex_group)->free_inodes);
1246	}
1247
1248	inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
1249	/* This is the optimal IO size (for stat), not the fs block size */
1250	inode->i_blocks = 0;
1251	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1252	ei->i_crtime = inode->i_mtime;
1253
1254	memset(ei->i_data, 0, sizeof(ei->i_data));
1255	ei->i_dir_start_lookup = 0;
1256	ei->i_disksize = 0;
1257
1258	/* Don't inherit extent flag from directory, amongst others. */
1259	ei->i_flags =
1260		ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
1261	ei->i_flags |= i_flags;
1262	ei->i_file_acl = 0;
1263	ei->i_dtime = 0;
1264	ei->i_block_group = group;
1265	ei->i_last_alloc_group = ~0;
1266
1267	ext4_set_inode_flags(inode, true);
1268	if (IS_DIRSYNC(inode))
1269		ext4_handle_sync(handle);
1270	if (insert_inode_locked(inode) < 0) {
1271		/*
1272		 * Likely a bitmap corruption causing inode to be allocated
1273		 * twice.
1274		 */
1275		err = -EIO;
1276		ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
1277			   inode->i_ino);
1278		ext4_mark_group_bitmap_corrupted(sb, group,
1279					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
1280		goto out;
1281	}
1282	inode->i_generation = get_random_u32();
1283
1284	/* Precompute checksum seed for inode metadata */
1285	if (ext4_has_metadata_csum(sb)) {
1286		__u32 csum;
1287		__le32 inum = cpu_to_le32(inode->i_ino);
1288		__le32 gen = cpu_to_le32(inode->i_generation);
1289		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
1290				   sizeof(inum));
1291		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
1292					      sizeof(gen));
1293	}
1294
1295	ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1296	ext4_set_inode_state(inode, EXT4_STATE_NEW);
1297
1298	ei->i_extra_isize = sbi->s_want_extra_isize;
1299	ei->i_inline_off = 0;
1300	if (ext4_has_feature_inline_data(sb) &&
1301	    (!(ei->i_flags & EXT4_DAX_FL) || S_ISDIR(mode)))
1302		ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1303	ret = inode;
1304	err = dquot_alloc_inode(inode);
1305	if (err)
1306		goto fail_drop;
1307
1308	/*
1309	 * Since the encryption xattr will always be unique, create it first so
1310	 * that it's less likely to end up in an external xattr block and
1311	 * prevent its deduplication.
1312	 */
1313	if (encrypt) {
1314		err = fscrypt_set_context(inode, handle);
1315		if (err)
1316			goto fail_free_drop;
1317	}
1318
1319	if (!(ei->i_flags & EXT4_EA_INODE_FL)) {
1320		err = ext4_init_acl(handle, inode, dir);
1321		if (err)
1322			goto fail_free_drop;
1323
1324		err = ext4_init_security(handle, inode, dir, qstr);
1325		if (err)
1326			goto fail_free_drop;
1327	}
1328
1329	if (ext4_has_feature_extents(sb)) {
1330		/* set extent flag only for directory, file and normal symlink*/
1331		if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1332			ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1333			ext4_ext_tree_init(handle, inode);
1334		}
1335	}
1336
1337	if (ext4_handle_valid(handle)) {
1338		ei->i_sync_tid = handle->h_transaction->t_tid;
1339		ei->i_datasync_tid = handle->h_transaction->t_tid;
1340	}
1341
1342	err = ext4_mark_inode_dirty(handle, inode);
1343	if (err) {
1344		ext4_std_error(sb, err);
1345		goto fail_free_drop;
1346	}
1347
1348	ext4_debug("allocating inode %lu\n", inode->i_ino);
1349	trace_ext4_allocate_inode(inode, dir, mode);
1350	brelse(inode_bitmap_bh);
1351	return ret;
1352
1353fail_free_drop:
1354	dquot_free_inode(inode);
1355fail_drop:
1356	clear_nlink(inode);
1357	unlock_new_inode(inode);
1358out:
1359	dquot_drop(inode);
1360	inode->i_flags |= S_NOQUOTA;
1361	iput(inode);
1362	brelse(inode_bitmap_bh);
1363	return ERR_PTR(err);
1364}
1365
1366/* Verify that we are loading a valid orphan from disk */
1367struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1368{
1369	unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1370	ext4_group_t block_group;
1371	int bit;
1372	struct buffer_head *bitmap_bh = NULL;
1373	struct inode *inode = NULL;
1374	int err = -EFSCORRUPTED;
1375
1376	if (ino < EXT4_FIRST_INO(sb) || ino > max_ino)
1377		goto bad_orphan;
1378
1379	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1380	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1381	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1382	if (IS_ERR(bitmap_bh))
1383		return ERR_CAST(bitmap_bh);
1384
1385	/* Having the inode bit set should be a 100% indicator that this
1386	 * is a valid orphan (no e2fsck run on fs).  Orphans also include
1387	 * inodes that were being truncated, so we can't check i_nlink==0.
1388	 */
1389	if (!ext4_test_bit(bit, bitmap_bh->b_data))
1390		goto bad_orphan;
1391
1392	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1393	if (IS_ERR(inode)) {
1394		err = PTR_ERR(inode);
1395		ext4_error_err(sb, -err,
1396			       "couldn't read orphan inode %lu (err %d)",
1397			       ino, err);
1398		brelse(bitmap_bh);
1399		return inode;
1400	}
1401
1402	/*
1403	 * If the orphans has i_nlinks > 0 then it should be able to
1404	 * be truncated, otherwise it won't be removed from the orphan
1405	 * list during processing and an infinite loop will result.
1406	 * Similarly, it must not be a bad inode.
1407	 */
1408	if ((inode->i_nlink && !ext4_can_truncate(inode)) ||
1409	    is_bad_inode(inode))
1410		goto bad_orphan;
1411
1412	if (NEXT_ORPHAN(inode) > max_ino)
1413		goto bad_orphan;
1414	brelse(bitmap_bh);
1415	return inode;
1416
1417bad_orphan:
1418	ext4_error(sb, "bad orphan inode %lu", ino);
1419	if (bitmap_bh)
1420		printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1421		       bit, (unsigned long long)bitmap_bh->b_blocknr,
1422		       ext4_test_bit(bit, bitmap_bh->b_data));
1423	if (inode) {
1424		printk(KERN_ERR "is_bad_inode(inode)=%d\n",
1425		       is_bad_inode(inode));
1426		printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n",
1427		       NEXT_ORPHAN(inode));
1428		printk(KERN_ERR "max_ino=%lu\n", max_ino);
1429		printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink);
1430		/* Avoid freeing blocks if we got a bad deleted inode */
1431		if (inode->i_nlink == 0)
1432			inode->i_blocks = 0;
1433		iput(inode);
1434	}
1435	brelse(bitmap_bh);
1436	return ERR_PTR(err);
1437}
1438
1439unsigned long ext4_count_free_inodes(struct super_block *sb)
1440{
1441	unsigned long desc_count;
1442	struct ext4_group_desc *gdp;
1443	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1444#ifdef EXT4FS_DEBUG
1445	struct ext4_super_block *es;
1446	unsigned long bitmap_count, x;
1447	struct buffer_head *bitmap_bh = NULL;
1448
1449	es = EXT4_SB(sb)->s_es;
1450	desc_count = 0;
1451	bitmap_count = 0;
1452	gdp = NULL;
1453	for (i = 0; i < ngroups; i++) {
1454		gdp = ext4_get_group_desc(sb, i, NULL);
1455		if (!gdp)
1456			continue;
1457		desc_count += ext4_free_inodes_count(sb, gdp);
1458		brelse(bitmap_bh);
1459		bitmap_bh = ext4_read_inode_bitmap(sb, i);
1460		if (IS_ERR(bitmap_bh)) {
1461			bitmap_bh = NULL;
1462			continue;
1463		}
1464
1465		x = ext4_count_free(bitmap_bh->b_data,
1466				    EXT4_INODES_PER_GROUP(sb) / 8);
1467		printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1468			(unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1469		bitmap_count += x;
1470	}
1471	brelse(bitmap_bh);
1472	printk(KERN_DEBUG "ext4_count_free_inodes: "
1473	       "stored = %u, computed = %lu, %lu\n",
1474	       le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1475	return desc_count;
1476#else
1477	desc_count = 0;
1478	for (i = 0; i < ngroups; i++) {
1479		gdp = ext4_get_group_desc(sb, i, NULL);
1480		if (!gdp)
1481			continue;
1482		desc_count += ext4_free_inodes_count(sb, gdp);
1483		cond_resched();
1484	}
1485	return desc_count;
1486#endif
1487}
1488
1489/* Called at mount-time, super-block is locked */
1490unsigned long ext4_count_dirs(struct super_block * sb)
1491{
1492	unsigned long count = 0;
1493	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1494
1495	for (i = 0; i < ngroups; i++) {
1496		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1497		if (!gdp)
1498			continue;
1499		count += ext4_used_dirs_count(sb, gdp);
1500	}
1501	return count;
1502}
1503
1504/*
1505 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1506 * inode table. Must be called without any spinlock held. The only place
1507 * where it is called from on active part of filesystem is ext4lazyinit
1508 * thread, so we do not need any special locks, however we have to prevent
1509 * inode allocation from the current group, so we take alloc_sem lock, to
1510 * block ext4_new_inode() until we are finished.
1511 */
1512int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1513				 int barrier)
1514{
1515	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1516	struct ext4_sb_info *sbi = EXT4_SB(sb);
1517	struct ext4_group_desc *gdp = NULL;
1518	struct buffer_head *group_desc_bh;
1519	handle_t *handle;
1520	ext4_fsblk_t blk;
1521	int num, ret = 0, used_blks = 0;
1522	unsigned long used_inos = 0;
1523
1524	/* This should not happen, but just to be sure check this */
1525	if (sb_rdonly(sb)) {
1526		ret = 1;
1527		goto out;
1528	}
1529
1530	gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1531	if (!gdp)
1532		goto out;
1533
1534	/*
1535	 * We do not need to lock this, because we are the only one
1536	 * handling this flag.
1537	 */
1538	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1539		goto out;
1540
1541	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1542	if (IS_ERR(handle)) {
1543		ret = PTR_ERR(handle);
1544		goto out;
1545	}
1546
1547	down_write(&grp->alloc_sem);
1548	/*
1549	 * If inode bitmap was already initialized there may be some
1550	 * used inodes so we need to skip blocks with used inodes in
1551	 * inode table.
1552	 */
1553	if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) {
1554		used_inos = EXT4_INODES_PER_GROUP(sb) -
1555			    ext4_itable_unused_count(sb, gdp);
1556		used_blks = DIV_ROUND_UP(used_inos, sbi->s_inodes_per_block);
1557
1558		/* Bogus inode unused count? */
1559		if (used_blks < 0 || used_blks > sbi->s_itb_per_group) {
1560			ext4_error(sb, "Something is wrong with group %u: "
1561				   "used itable blocks: %d; "
1562				   "itable unused count: %u",
1563				   group, used_blks,
1564				   ext4_itable_unused_count(sb, gdp));
1565			ret = 1;
1566			goto err_out;
1567		}
1568
1569		used_inos += group * EXT4_INODES_PER_GROUP(sb);
1570		/*
1571		 * Are there some uninitialized inodes in the inode table
1572		 * before the first normal inode?
1573		 */
1574		if ((used_blks != sbi->s_itb_per_group) &&
1575		     (used_inos < EXT4_FIRST_INO(sb))) {
1576			ext4_error(sb, "Something is wrong with group %u: "
1577				   "itable unused count: %u; "
1578				   "itables initialized count: %ld",
1579				   group, ext4_itable_unused_count(sb, gdp),
1580				   used_inos);
1581			ret = 1;
1582			goto err_out;
1583		}
1584	}
1585
1586	blk = ext4_inode_table(sb, gdp) + used_blks;
1587	num = sbi->s_itb_per_group - used_blks;
1588
1589	BUFFER_TRACE(group_desc_bh, "get_write_access");
1590	ret = ext4_journal_get_write_access(handle, sb, group_desc_bh,
1591					    EXT4_JTR_NONE);
1592	if (ret)
1593		goto err_out;
1594
1595	/*
1596	 * Skip zeroout if the inode table is full. But we set the ZEROED
1597	 * flag anyway, because obviously, when it is full it does not need
1598	 * further zeroing.
1599	 */
1600	if (unlikely(num == 0))
1601		goto skip_zeroout;
1602
1603	ext4_debug("going to zero out inode table in group %d\n",
1604		   group);
1605	ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1606	if (ret < 0)
1607		goto err_out;
1608	if (barrier)
1609		blkdev_issue_flush(sb->s_bdev);
1610
1611skip_zeroout:
1612	ext4_lock_group(sb, group);
1613	gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1614	ext4_group_desc_csum_set(sb, group, gdp);
1615	ext4_unlock_group(sb, group);
1616
1617	BUFFER_TRACE(group_desc_bh,
1618		     "call ext4_handle_dirty_metadata");
1619	ret = ext4_handle_dirty_metadata(handle, NULL,
1620					 group_desc_bh);
1621
1622err_out:
1623	up_write(&grp->alloc_sem);
1624	ext4_journal_stop(handle);
1625out:
1626	return ret;
1627}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext4/ialloc.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  BSD ufs-inspired inode and directory allocation by
  11 *  Stephen Tweedie (sct@redhat.com), 1993
  12 *  Big-endian to little-endian byte-swapping/bitmaps by
  13 *        David S. Miller (davem@caip.rutgers.edu), 1995
  14 */
  15
  16#include <linux/time.h>
  17#include <linux/fs.h>
  18#include <linux/stat.h>
  19#include <linux/string.h>
  20#include <linux/quotaops.h>
  21#include <linux/buffer_head.h>
  22#include <linux/random.h>
  23#include <linux/bitops.h>
  24#include <linux/blkdev.h>
  25#include <linux/cred.h>
  26
  27#include <asm/byteorder.h>
  28
  29#include "ext4.h"
  30#include "ext4_jbd2.h"
  31#include "xattr.h"
  32#include "acl.h"
  33
  34#include <trace/events/ext4.h>
  35
  36/*
  37 * ialloc.c contains the inodes allocation and deallocation routines
  38 */
  39
  40/*
  41 * The free inodes are managed by bitmaps.  A file system contains several
  42 * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap
  43 * block for inodes, N blocks for the inode table and data blocks.
  44 *
  45 * The file system contains group descriptors which are located after the
  46 * super block.  Each descriptor contains the number of the bitmap block and
  47 * the free blocks count in the block.
  48 */
  49
  50/*
  51 * To avoid calling the atomic setbit hundreds or thousands of times, we only
  52 * need to use it within a single byte (to ensure we get endianness right).
  53 * We can use memset for the rest of the bitmap as there are no other users.
  54 */
  55void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
  56{
  57	int i;
  58
  59	if (start_bit >= end_bit)
  60		return;
  61
  62	ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
  63	for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
  64		ext4_set_bit(i, bitmap);
  65	if (i < end_bit)
  66		memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
  67}
  68
  69void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
  70{
  71	if (uptodate) {
  72		set_buffer_uptodate(bh);
  73		set_bitmap_uptodate(bh);
  74	}
  75	unlock_buffer(bh);
  76	put_bh(bh);
  77}
  78
  79static int ext4_validate_inode_bitmap(struct super_block *sb,
  80				      struct ext4_group_desc *desc,
  81				      ext4_group_t block_group,
  82				      struct buffer_head *bh)
  83{
  84	ext4_fsblk_t	blk;
  85	struct ext4_group_info *grp = ext4_get_group_info(sb, block_group);
 
 
 
 
 
  86
  87	if (buffer_verified(bh))
  88		return 0;
  89	if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
  90		return -EFSCORRUPTED;
  91
  92	ext4_lock_group(sb, block_group);
  93	if (buffer_verified(bh))
  94		goto verified;
  95	blk = ext4_inode_bitmap(sb, desc);
  96	if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
  97					   EXT4_INODES_PER_GROUP(sb) / 8)) {
 
  98		ext4_unlock_group(sb, block_group);
  99		ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
 100			   "inode_bitmap = %llu", block_group, blk);
 101		ext4_mark_group_bitmap_corrupted(sb, block_group,
 102					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
 103		return -EFSBADCRC;
 104	}
 105	set_buffer_verified(bh);
 106verified:
 107	ext4_unlock_group(sb, block_group);
 108	return 0;
 109}
 110
 111/*
 112 * Read the inode allocation bitmap for a given block_group, reading
 113 * into the specified slot in the superblock's bitmap cache.
 114 *
 115 * Return buffer_head of bitmap on success or NULL.
 116 */
 117static struct buffer_head *
 118ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
 119{
 120	struct ext4_group_desc *desc;
 121	struct ext4_sb_info *sbi = EXT4_SB(sb);
 122	struct buffer_head *bh = NULL;
 123	ext4_fsblk_t bitmap_blk;
 124	int err;
 125
 126	desc = ext4_get_group_desc(sb, block_group, NULL);
 127	if (!desc)
 128		return ERR_PTR(-EFSCORRUPTED);
 129
 130	bitmap_blk = ext4_inode_bitmap(sb, desc);
 131	if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) ||
 132	    (bitmap_blk >= ext4_blocks_count(sbi->s_es))) {
 133		ext4_error(sb, "Invalid inode bitmap blk %llu in "
 134			   "block_group %u", bitmap_blk, block_group);
 135		ext4_mark_group_bitmap_corrupted(sb, block_group,
 136					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
 137		return ERR_PTR(-EFSCORRUPTED);
 138	}
 139	bh = sb_getblk(sb, bitmap_blk);
 140	if (unlikely(!bh)) {
 141		ext4_warning(sb, "Cannot read inode bitmap - "
 142			     "block_group = %u, inode_bitmap = %llu",
 143			     block_group, bitmap_blk);
 144		return ERR_PTR(-ENOMEM);
 145	}
 146	if (bitmap_uptodate(bh))
 147		goto verify;
 148
 149	lock_buffer(bh);
 150	if (bitmap_uptodate(bh)) {
 151		unlock_buffer(bh);
 152		goto verify;
 153	}
 154
 155	ext4_lock_group(sb, block_group);
 156	if (ext4_has_group_desc_csum(sb) &&
 157	    (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) {
 158		if (block_group == 0) {
 159			ext4_unlock_group(sb, block_group);
 160			unlock_buffer(bh);
 161			ext4_error(sb, "Inode bitmap for bg 0 marked "
 162				   "uninitialized");
 163			err = -EFSCORRUPTED;
 164			goto out;
 165		}
 166		memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
 167		ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb),
 168				     sb->s_blocksize * 8, bh->b_data);
 169		set_bitmap_uptodate(bh);
 170		set_buffer_uptodate(bh);
 171		set_buffer_verified(bh);
 172		ext4_unlock_group(sb, block_group);
 173		unlock_buffer(bh);
 174		return bh;
 175	}
 176	ext4_unlock_group(sb, block_group);
 177
 178	if (buffer_uptodate(bh)) {
 179		/*
 180		 * if not uninit if bh is uptodate,
 181		 * bitmap is also uptodate
 182		 */
 183		set_bitmap_uptodate(bh);
 184		unlock_buffer(bh);
 185		goto verify;
 186	}
 187	/*
 188	 * submit the buffer_head for reading
 189	 */
 190	trace_ext4_load_inode_bitmap(sb, block_group);
 191	bh->b_end_io = ext4_end_bitmap_read;
 192	get_bh(bh);
 193	submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
 194	wait_on_buffer(bh);
 195	if (!buffer_uptodate(bh)) {
 196		put_bh(bh);
 197		ext4_error(sb, "Cannot read inode bitmap - "
 198			   "block_group = %u, inode_bitmap = %llu",
 199			   block_group, bitmap_blk);
 200		ext4_mark_group_bitmap_corrupted(sb, block_group,
 201				EXT4_GROUP_INFO_IBITMAP_CORRUPT);
 202		return ERR_PTR(-EIO);
 203	}
 204
 205verify:
 206	err = ext4_validate_inode_bitmap(sb, desc, block_group, bh);
 207	if (err)
 208		goto out;
 209	return bh;
 210out:
 211	put_bh(bh);
 212	return ERR_PTR(err);
 213}
 214
 215/*
 216 * NOTE! When we get the inode, we're the only people
 217 * that have access to it, and as such there are no
 218 * race conditions we have to worry about. The inode
 219 * is not on the hash-lists, and it cannot be reached
 220 * through the filesystem because the directory entry
 221 * has been deleted earlier.
 222 *
 223 * HOWEVER: we must make sure that we get no aliases,
 224 * which means that we have to call "clear_inode()"
 225 * _before_ we mark the inode not in use in the inode
 226 * bitmaps. Otherwise a newly created file might use
 227 * the same inode number (not actually the same pointer
 228 * though), and then we'd have two inodes sharing the
 229 * same inode number and space on the harddisk.
 230 */
 231void ext4_free_inode(handle_t *handle, struct inode *inode)
 232{
 233	struct super_block *sb = inode->i_sb;
 234	int is_directory;
 235	unsigned long ino;
 236	struct buffer_head *bitmap_bh = NULL;
 237	struct buffer_head *bh2;
 238	ext4_group_t block_group;
 239	unsigned long bit;
 240	struct ext4_group_desc *gdp;
 241	struct ext4_super_block *es;
 242	struct ext4_sb_info *sbi;
 243	int fatal = 0, err, count, cleared;
 244	struct ext4_group_info *grp;
 245
 246	if (!sb) {
 247		printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
 248		       "nonexistent device\n", __func__, __LINE__);
 249		return;
 250	}
 251	if (atomic_read(&inode->i_count) > 1) {
 252		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
 253			 __func__, __LINE__, inode->i_ino,
 254			 atomic_read(&inode->i_count));
 255		return;
 256	}
 257	if (inode->i_nlink) {
 258		ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
 259			 __func__, __LINE__, inode->i_ino, inode->i_nlink);
 260		return;
 261	}
 262	sbi = EXT4_SB(sb);
 263
 264	ino = inode->i_ino;
 265	ext4_debug("freeing inode %lu\n", ino);
 266	trace_ext4_free_inode(inode);
 267
 268	/*
 269	 * Note: we must free any quota before locking the superblock,
 270	 * as writing the quota to disk may need the lock as well.
 271	 */
 272	dquot_initialize(inode);
 273	dquot_free_inode(inode);
 274	dquot_drop(inode);
 275
 276	is_directory = S_ISDIR(inode->i_mode);
 277
 278	/* Do this BEFORE marking the inode not in use or returning an error */
 279	ext4_clear_inode(inode);
 280
 281	es = sbi->s_es;
 282	if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
 283		ext4_error(sb, "reserved or nonexistent inode %lu", ino);
 284		goto error_return;
 285	}
 286	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
 287	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
 288	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
 289	/* Don't bother if the inode bitmap is corrupt. */
 290	grp = ext4_get_group_info(sb, block_group);
 291	if (IS_ERR(bitmap_bh)) {
 292		fatal = PTR_ERR(bitmap_bh);
 293		bitmap_bh = NULL;
 294		goto error_return;
 295	}
 296	if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) {
 297		fatal = -EFSCORRUPTED;
 298		goto error_return;
 
 
 
 299	}
 300
 301	BUFFER_TRACE(bitmap_bh, "get_write_access");
 302	fatal = ext4_journal_get_write_access(handle, bitmap_bh);
 
 303	if (fatal)
 304		goto error_return;
 305
 306	fatal = -ESRCH;
 307	gdp = ext4_get_group_desc(sb, block_group, &bh2);
 308	if (gdp) {
 309		BUFFER_TRACE(bh2, "get_write_access");
 310		fatal = ext4_journal_get_write_access(handle, bh2);
 
 311	}
 312	ext4_lock_group(sb, block_group);
 313	cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
 314	if (fatal || !cleared) {
 315		ext4_unlock_group(sb, block_group);
 316		goto out;
 317	}
 318
 319	count = ext4_free_inodes_count(sb, gdp) + 1;
 320	ext4_free_inodes_set(sb, gdp, count);
 321	if (is_directory) {
 322		count = ext4_used_dirs_count(sb, gdp) - 1;
 323		ext4_used_dirs_set(sb, gdp, count);
 324		percpu_counter_dec(&sbi->s_dirs_counter);
 
 325	}
 326	ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
 327				   EXT4_INODES_PER_GROUP(sb) / 8);
 328	ext4_group_desc_csum_set(sb, block_group, gdp);
 329	ext4_unlock_group(sb, block_group);
 330
 331	percpu_counter_inc(&sbi->s_freeinodes_counter);
 
 332	if (sbi->s_log_groups_per_flex) {
 333		ext4_group_t f = ext4_flex_group(sbi, block_group);
 334
 335		atomic_inc(&sbi->s_flex_groups[f].free_inodes);
 
 
 336		if (is_directory)
 337			atomic_dec(&sbi->s_flex_groups[f].used_dirs);
 338	}
 339	BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
 340	fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
 341out:
 342	if (cleared) {
 343		BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
 344		err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
 345		if (!fatal)
 346			fatal = err;
 347	} else {
 348		ext4_error(sb, "bit already cleared for inode %lu", ino);
 349		ext4_mark_group_bitmap_corrupted(sb, block_group,
 350					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
 351	}
 352
 353error_return:
 354	brelse(bitmap_bh);
 355	ext4_std_error(sb, fatal);
 356}
 357
 358struct orlov_stats {
 359	__u64 free_clusters;
 360	__u32 free_inodes;
 361	__u32 used_dirs;
 362};
 363
 364/*
 365 * Helper function for Orlov's allocator; returns critical information
 366 * for a particular block group or flex_bg.  If flex_size is 1, then g
 367 * is a block group number; otherwise it is flex_bg number.
 368 */
 369static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
 370			    int flex_size, struct orlov_stats *stats)
 371{
 372	struct ext4_group_desc *desc;
 373	struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
 374
 375	if (flex_size > 1) {
 376		stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
 377		stats->free_clusters = atomic64_read(&flex_group[g].free_clusters);
 378		stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
 
 
 379		return;
 380	}
 381
 382	desc = ext4_get_group_desc(sb, g, NULL);
 383	if (desc) {
 384		stats->free_inodes = ext4_free_inodes_count(sb, desc);
 385		stats->free_clusters = ext4_free_group_clusters(sb, desc);
 386		stats->used_dirs = ext4_used_dirs_count(sb, desc);
 387	} else {
 388		stats->free_inodes = 0;
 389		stats->free_clusters = 0;
 390		stats->used_dirs = 0;
 391	}
 392}
 393
 394/*
 395 * Orlov's allocator for directories.
 396 *
 397 * We always try to spread first-level directories.
 398 *
 399 * If there are blockgroups with both free inodes and free blocks counts
 400 * not worse than average we return one with smallest directory count.
 401 * Otherwise we simply return a random group.
 402 *
 403 * For the rest rules look so:
 404 *
 405 * It's OK to put directory into a group unless
 406 * it has too many directories already (max_dirs) or
 407 * it has too few free inodes left (min_inodes) or
 408 * it has too few free blocks left (min_blocks) or
 409 * Parent's group is preferred, if it doesn't satisfy these
 410 * conditions we search cyclically through the rest. If none
 411 * of the groups look good we just look for a group with more
 412 * free inodes than average (starting at parent's group).
 413 */
 414
 415static int find_group_orlov(struct super_block *sb, struct inode *parent,
 416			    ext4_group_t *group, umode_t mode,
 417			    const struct qstr *qstr)
 418{
 419	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
 420	struct ext4_sb_info *sbi = EXT4_SB(sb);
 421	ext4_group_t real_ngroups = ext4_get_groups_count(sb);
 422	int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
 423	unsigned int freei, avefreei, grp_free;
 424	ext4_fsblk_t freeb, avefreec;
 425	unsigned int ndirs;
 426	int max_dirs, min_inodes;
 427	ext4_grpblk_t min_clusters;
 428	ext4_group_t i, grp, g, ngroups;
 429	struct ext4_group_desc *desc;
 430	struct orlov_stats stats;
 431	int flex_size = ext4_flex_bg_size(sbi);
 432	struct dx_hash_info hinfo;
 433
 434	ngroups = real_ngroups;
 435	if (flex_size > 1) {
 436		ngroups = (real_ngroups + flex_size - 1) >>
 437			sbi->s_log_groups_per_flex;
 438		parent_group >>= sbi->s_log_groups_per_flex;
 439	}
 440
 441	freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
 442	avefreei = freei / ngroups;
 443	freeb = EXT4_C2B(sbi,
 444		percpu_counter_read_positive(&sbi->s_freeclusters_counter));
 445	avefreec = freeb;
 446	do_div(avefreec, ngroups);
 447	ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
 448
 449	if (S_ISDIR(mode) &&
 450	    ((parent == d_inode(sb->s_root)) ||
 451	     (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
 452		int best_ndir = inodes_per_group;
 453		int ret = -1;
 454
 455		if (qstr) {
 456			hinfo.hash_version = DX_HASH_HALF_MD4;
 457			hinfo.seed = sbi->s_hash_seed;
 458			ext4fs_dirhash(parent, qstr->name, qstr->len, &hinfo);
 459			grp = hinfo.hash;
 460		} else
 461			grp = prandom_u32();
 462		parent_group = (unsigned)grp % ngroups;
 463		for (i = 0; i < ngroups; i++) {
 464			g = (parent_group + i) % ngroups;
 465			get_orlov_stats(sb, g, flex_size, &stats);
 466			if (!stats.free_inodes)
 467				continue;
 468			if (stats.used_dirs >= best_ndir)
 469				continue;
 470			if (stats.free_inodes < avefreei)
 471				continue;
 472			if (stats.free_clusters < avefreec)
 473				continue;
 474			grp = g;
 475			ret = 0;
 476			best_ndir = stats.used_dirs;
 477		}
 478		if (ret)
 479			goto fallback;
 480	found_flex_bg:
 481		if (flex_size == 1) {
 482			*group = grp;
 483			return 0;
 484		}
 485
 486		/*
 487		 * We pack inodes at the beginning of the flexgroup's
 488		 * inode tables.  Block allocation decisions will do
 489		 * something similar, although regular files will
 490		 * start at 2nd block group of the flexgroup.  See
 491		 * ext4_ext_find_goal() and ext4_find_near().
 492		 */
 493		grp *= flex_size;
 494		for (i = 0; i < flex_size; i++) {
 495			if (grp+i >= real_ngroups)
 496				break;
 497			desc = ext4_get_group_desc(sb, grp+i, NULL);
 498			if (desc && ext4_free_inodes_count(sb, desc)) {
 499				*group = grp+i;
 500				return 0;
 501			}
 502		}
 503		goto fallback;
 504	}
 505
 506	max_dirs = ndirs / ngroups + inodes_per_group / 16;
 507	min_inodes = avefreei - inodes_per_group*flex_size / 4;
 508	if (min_inodes < 1)
 509		min_inodes = 1;
 510	min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
 511
 512	/*
 513	 * Start looking in the flex group where we last allocated an
 514	 * inode for this parent directory
 515	 */
 516	if (EXT4_I(parent)->i_last_alloc_group != ~0) {
 517		parent_group = EXT4_I(parent)->i_last_alloc_group;
 518		if (flex_size > 1)
 519			parent_group >>= sbi->s_log_groups_per_flex;
 520	}
 521
 522	for (i = 0; i < ngroups; i++) {
 523		grp = (parent_group + i) % ngroups;
 524		get_orlov_stats(sb, grp, flex_size, &stats);
 525		if (stats.used_dirs >= max_dirs)
 526			continue;
 527		if (stats.free_inodes < min_inodes)
 528			continue;
 529		if (stats.free_clusters < min_clusters)
 530			continue;
 531		goto found_flex_bg;
 532	}
 533
 534fallback:
 535	ngroups = real_ngroups;
 536	avefreei = freei / ngroups;
 537fallback_retry:
 538	parent_group = EXT4_I(parent)->i_block_group;
 539	for (i = 0; i < ngroups; i++) {
 540		grp = (parent_group + i) % ngroups;
 541		desc = ext4_get_group_desc(sb, grp, NULL);
 542		if (desc) {
 543			grp_free = ext4_free_inodes_count(sb, desc);
 544			if (grp_free && grp_free >= avefreei) {
 545				*group = grp;
 546				return 0;
 547			}
 548		}
 549	}
 550
 551	if (avefreei) {
 552		/*
 553		 * The free-inodes counter is approximate, and for really small
 554		 * filesystems the above test can fail to find any blockgroups
 555		 */
 556		avefreei = 0;
 557		goto fallback_retry;
 558	}
 559
 560	return -1;
 561}
 562
 563static int find_group_other(struct super_block *sb, struct inode *parent,
 564			    ext4_group_t *group, umode_t mode)
 565{
 566	ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
 567	ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
 568	struct ext4_group_desc *desc;
 569	int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
 570
 571	/*
 572	 * Try to place the inode is the same flex group as its
 573	 * parent.  If we can't find space, use the Orlov algorithm to
 574	 * find another flex group, and store that information in the
 575	 * parent directory's inode information so that use that flex
 576	 * group for future allocations.
 577	 */
 578	if (flex_size > 1) {
 579		int retry = 0;
 580
 581	try_again:
 582		parent_group &= ~(flex_size-1);
 583		last = parent_group + flex_size;
 584		if (last > ngroups)
 585			last = ngroups;
 586		for  (i = parent_group; i < last; i++) {
 587			desc = ext4_get_group_desc(sb, i, NULL);
 588			if (desc && ext4_free_inodes_count(sb, desc)) {
 589				*group = i;
 590				return 0;
 591			}
 592		}
 593		if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
 594			retry = 1;
 595			parent_group = EXT4_I(parent)->i_last_alloc_group;
 596			goto try_again;
 597		}
 598		/*
 599		 * If this didn't work, use the Orlov search algorithm
 600		 * to find a new flex group; we pass in the mode to
 601		 * avoid the topdir algorithms.
 602		 */
 603		*group = parent_group + flex_size;
 604		if (*group > ngroups)
 605			*group = 0;
 606		return find_group_orlov(sb, parent, group, mode, NULL);
 607	}
 608
 609	/*
 610	 * Try to place the inode in its parent directory
 611	 */
 612	*group = parent_group;
 613	desc = ext4_get_group_desc(sb, *group, NULL);
 614	if (desc && ext4_free_inodes_count(sb, desc) &&
 615	    ext4_free_group_clusters(sb, desc))
 616		return 0;
 617
 618	/*
 619	 * We're going to place this inode in a different blockgroup from its
 620	 * parent.  We want to cause files in a common directory to all land in
 621	 * the same blockgroup.  But we want files which are in a different
 622	 * directory which shares a blockgroup with our parent to land in a
 623	 * different blockgroup.
 624	 *
 625	 * So add our directory's i_ino into the starting point for the hash.
 626	 */
 627	*group = (*group + parent->i_ino) % ngroups;
 628
 629	/*
 630	 * Use a quadratic hash to find a group with a free inode and some free
 631	 * blocks.
 632	 */
 633	for (i = 1; i < ngroups; i <<= 1) {
 634		*group += i;
 635		if (*group >= ngroups)
 636			*group -= ngroups;
 637		desc = ext4_get_group_desc(sb, *group, NULL);
 638		if (desc && ext4_free_inodes_count(sb, desc) &&
 639		    ext4_free_group_clusters(sb, desc))
 640			return 0;
 641	}
 642
 643	/*
 644	 * That failed: try linear search for a free inode, even if that group
 645	 * has no free blocks.
 646	 */
 647	*group = parent_group;
 648	for (i = 0; i < ngroups; i++) {
 649		if (++*group >= ngroups)
 650			*group = 0;
 651		desc = ext4_get_group_desc(sb, *group, NULL);
 652		if (desc && ext4_free_inodes_count(sb, desc))
 653			return 0;
 654	}
 655
 656	return -1;
 657}
 658
 659/*
 660 * In no journal mode, if an inode has recently been deleted, we want
 661 * to avoid reusing it until we're reasonably sure the inode table
 662 * block has been written back to disk.  (Yes, these values are
 663 * somewhat arbitrary...)
 664 */
 665#define RECENTCY_MIN	5
 666#define RECENTCY_DIRTY	300
 667
 668static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
 669{
 670	struct ext4_group_desc	*gdp;
 671	struct ext4_inode	*raw_inode;
 672	struct buffer_head	*bh;
 673	int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
 674	int offset, ret = 0;
 675	int recentcy = RECENTCY_MIN;
 676	u32 dtime, now;
 677
 678	gdp = ext4_get_group_desc(sb, group, NULL);
 679	if (unlikely(!gdp))
 680		return 0;
 681
 682	bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) +
 683		       (ino / inodes_per_block));
 684	if (!bh || !buffer_uptodate(bh))
 685		/*
 686		 * If the block is not in the buffer cache, then it
 687		 * must have been written out.
 688		 */
 689		goto out;
 690
 691	offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
 692	raw_inode = (struct ext4_inode *) (bh->b_data + offset);
 693
 694	/* i_dtime is only 32 bits on disk, but we only care about relative
 695	 * times in the range of a few minutes (i.e. long enough to sync a
 696	 * recently-deleted inode to disk), so using the low 32 bits of the
 697	 * clock (a 68 year range) is enough, see time_before32() */
 698	dtime = le32_to_cpu(raw_inode->i_dtime);
 699	now = ktime_get_real_seconds();
 700	if (buffer_dirty(bh))
 701		recentcy += RECENTCY_DIRTY;
 702
 703	if (dtime && time_before32(dtime, now) &&
 704	    time_before32(now, dtime + recentcy))
 705		ret = 1;
 706out:
 707	brelse(bh);
 708	return ret;
 709}
 710
 711static int find_inode_bit(struct super_block *sb, ext4_group_t group,
 712			  struct buffer_head *bitmap, unsigned long *ino)
 713{
 
 
 
 714next:
 715	*ino = ext4_find_next_zero_bit((unsigned long *)
 716				       bitmap->b_data,
 717				       EXT4_INODES_PER_GROUP(sb), *ino);
 718	if (*ino >= EXT4_INODES_PER_GROUP(sb))
 719		return 0;
 720
 721	if ((EXT4_SB(sb)->s_journal == NULL) &&
 722	    recently_deleted(sb, group, *ino)) {
 723		*ino = *ino + 1;
 724		if (*ino < EXT4_INODES_PER_GROUP(sb))
 725			goto next;
 
 
 
 
 
 726		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 727	}
 728
 729	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 730}
 731
 732/*
 733 * There are two policies for allocating an inode.  If the new inode is
 734 * a directory, then a forward search is made for a block group with both
 735 * free space and a low directory-to-inode ratio; if that fails, then of
 736 * the groups with above-average free space, that group with the fewest
 737 * directories already is chosen.
 738 *
 739 * For other inodes, search forward from the parent directory's block
 740 * group to find a free inode.
 741 */
 742struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
 
 743			       umode_t mode, const struct qstr *qstr,
 744			       __u32 goal, uid_t *owner, __u32 i_flags,
 745			       int handle_type, unsigned int line_no,
 746			       int nblocks)
 747{
 748	struct super_block *sb;
 749	struct buffer_head *inode_bitmap_bh = NULL;
 750	struct buffer_head *group_desc_bh;
 751	ext4_group_t ngroups, group = 0;
 752	unsigned long ino = 0;
 753	struct inode *inode;
 754	struct ext4_group_desc *gdp = NULL;
 755	struct ext4_inode_info *ei;
 756	struct ext4_sb_info *sbi;
 757	int ret2, err;
 758	struct inode *ret;
 759	ext4_group_t i;
 760	ext4_group_t flex_group;
 761	struct ext4_group_info *grp;
 762	int encrypt = 0;
 763
 764	/* Cannot create files in a deleted directory */
 765	if (!dir || !dir->i_nlink)
 766		return ERR_PTR(-EPERM);
 767
 768	sb = dir->i_sb;
 769	sbi = EXT4_SB(sb);
 770
 771	if (unlikely(ext4_forced_shutdown(sbi)))
 772		return ERR_PTR(-EIO);
 773
 774	if ((IS_ENCRYPTED(dir) || DUMMY_ENCRYPTION_ENABLED(sbi)) &&
 775	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) &&
 776	    !(i_flags & EXT4_EA_INODE_FL)) {
 777		err = fscrypt_get_encryption_info(dir);
 778		if (err)
 779			return ERR_PTR(err);
 780		if (!fscrypt_has_encryption_key(dir))
 781			return ERR_PTR(-ENOKEY);
 782		encrypt = 1;
 783	}
 784
 785	if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) {
 786#ifdef CONFIG_EXT4_FS_POSIX_ACL
 787		struct posix_acl *p = get_acl(dir, ACL_TYPE_DEFAULT);
 788
 789		if (IS_ERR(p))
 790			return ERR_CAST(p);
 791		if (p) {
 792			int acl_size = p->a_count * sizeof(ext4_acl_entry);
 793
 794			nblocks += (S_ISDIR(mode) ? 2 : 1) *
 795				__ext4_xattr_set_credits(sb, NULL /* inode */,
 796					NULL /* block_bh */, acl_size,
 797					true /* is_create */);
 798			posix_acl_release(p);
 799		}
 800#endif
 801
 802#ifdef CONFIG_SECURITY
 803		{
 804			int num_security_xattrs = 1;
 805
 806#ifdef CONFIG_INTEGRITY
 807			num_security_xattrs++;
 808#endif
 809			/*
 810			 * We assume that security xattrs are never
 811			 * more than 1k.  In practice they are under
 812			 * 128 bytes.
 813			 */
 814			nblocks += num_security_xattrs *
 815				__ext4_xattr_set_credits(sb, NULL /* inode */,
 816					NULL /* block_bh */, 1024,
 817					true /* is_create */);
 818		}
 819#endif
 820		if (encrypt)
 821			nblocks += __ext4_xattr_set_credits(sb,
 822					NULL /* inode */, NULL /* block_bh */,
 823					FSCRYPT_SET_CONTEXT_MAX_SIZE,
 824					true /* is_create */);
 825	}
 826
 827	ngroups = ext4_get_groups_count(sb);
 828	trace_ext4_request_inode(dir, mode);
 829	inode = new_inode(sb);
 830	if (!inode)
 831		return ERR_PTR(-ENOMEM);
 832	ei = EXT4_I(inode);
 833
 834	/*
 835	 * Initialize owners and quota early so that we don't have to account
 836	 * for quota initialization worst case in standard inode creating
 837	 * transaction
 838	 */
 839	if (owner) {
 840		inode->i_mode = mode;
 841		i_uid_write(inode, owner[0]);
 842		i_gid_write(inode, owner[1]);
 843	} else if (test_opt(sb, GRPID)) {
 844		inode->i_mode = mode;
 845		inode->i_uid = current_fsuid();
 846		inode->i_gid = dir->i_gid;
 847	} else
 848		inode_init_owner(inode, dir, mode);
 849
 850	if (ext4_has_feature_project(sb) &&
 851	    ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT))
 852		ei->i_projid = EXT4_I(dir)->i_projid;
 853	else
 854		ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID);
 855
 
 
 
 
 
 
 856	err = dquot_initialize(inode);
 857	if (err)
 858		goto out;
 859
 
 
 
 
 
 
 
 
 
 860	if (!goal)
 861		goal = sbi->s_inode_goal;
 862
 863	if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
 864		group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
 865		ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
 866		ret2 = 0;
 867		goto got_group;
 868	}
 869
 870	if (S_ISDIR(mode))
 871		ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
 872	else
 873		ret2 = find_group_other(sb, dir, &group, mode);
 874
 875got_group:
 876	EXT4_I(dir)->i_last_alloc_group = group;
 877	err = -ENOSPC;
 878	if (ret2 == -1)
 879		goto out;
 880
 881	/*
 882	 * Normally we will only go through one pass of this loop,
 883	 * unless we get unlucky and it turns out the group we selected
 884	 * had its last inode grabbed by someone else.
 885	 */
 886	for (i = 0; i < ngroups; i++, ino = 0) {
 887		err = -EIO;
 888
 889		gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
 890		if (!gdp)
 891			goto out;
 892
 893		/*
 894		 * Check free inodes count before loading bitmap.
 895		 */
 896		if (ext4_free_inodes_count(sb, gdp) == 0)
 897			goto next_group;
 898
 899		grp = ext4_get_group_info(sb, group);
 900		/* Skip groups with already-known suspicious inode tables */
 901		if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
 902			goto next_group;
 
 
 
 
 
 903
 904		brelse(inode_bitmap_bh);
 905		inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
 906		/* Skip groups with suspicious inode tables */
 907		if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) ||
 
 908		    IS_ERR(inode_bitmap_bh)) {
 909			inode_bitmap_bh = NULL;
 910			goto next_group;
 911		}
 912
 913repeat_in_this_group:
 914		ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
 915		if (!ret2)
 916			goto next_group;
 917
 918		if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) {
 919			ext4_error(sb, "reserved inode found cleared - "
 920				   "inode=%lu", ino + 1);
 921			ext4_mark_group_bitmap_corrupted(sb, group,
 922					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
 923			goto next_group;
 924		}
 925
 926		if (!handle) {
 927			BUG_ON(nblocks <= 0);
 928			handle = __ext4_journal_start_sb(dir->i_sb, line_no,
 929							 handle_type, nblocks,
 930							 0);
 931			if (IS_ERR(handle)) {
 932				err = PTR_ERR(handle);
 933				ext4_std_error(sb, err);
 934				goto out;
 935			}
 936		}
 937		BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
 938		err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
 
 939		if (err) {
 940			ext4_std_error(sb, err);
 941			goto out;
 942		}
 943		ext4_lock_group(sb, group);
 944		ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
 945		if (ret2) {
 946			/* Someone already took the bit. Repeat the search
 947			 * with lock held.
 948			 */
 949			ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
 950			if (ret2) {
 951				ext4_set_bit(ino, inode_bitmap_bh->b_data);
 952				ret2 = 0;
 953			} else {
 954				ret2 = 1; /* we didn't grab the inode */
 955			}
 956		}
 957		ext4_unlock_group(sb, group);
 958		ino++;		/* the inode bitmap is zero-based */
 959		if (!ret2)
 960			goto got; /* we grabbed the inode! */
 961
 962		if (ino < EXT4_INODES_PER_GROUP(sb))
 963			goto repeat_in_this_group;
 964next_group:
 965		if (++group == ngroups)
 966			group = 0;
 967	}
 968	err = -ENOSPC;
 969	goto out;
 970
 971got:
 972	BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
 973	err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
 974	if (err) {
 975		ext4_std_error(sb, err);
 976		goto out;
 977	}
 978
 979	BUFFER_TRACE(group_desc_bh, "get_write_access");
 980	err = ext4_journal_get_write_access(handle, group_desc_bh);
 
 981	if (err) {
 982		ext4_std_error(sb, err);
 983		goto out;
 984	}
 985
 986	/* We may have to initialize the block bitmap if it isn't already */
 987	if (ext4_has_group_desc_csum(sb) &&
 988	    gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
 989		struct buffer_head *block_bitmap_bh;
 990
 991		block_bitmap_bh = ext4_read_block_bitmap(sb, group);
 992		if (IS_ERR(block_bitmap_bh)) {
 993			err = PTR_ERR(block_bitmap_bh);
 994			goto out;
 995		}
 996		BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
 997		err = ext4_journal_get_write_access(handle, block_bitmap_bh);
 
 998		if (err) {
 999			brelse(block_bitmap_bh);
1000			ext4_std_error(sb, err);
1001			goto out;
1002		}
1003
1004		BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
1005		err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
1006
1007		/* recheck and clear flag under lock if we still need to */
1008		ext4_lock_group(sb, group);
1009		if (ext4_has_group_desc_csum(sb) &&
1010		    (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
1011			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
1012			ext4_free_group_clusters_set(sb, gdp,
1013				ext4_free_clusters_after_init(sb, group, gdp));
1014			ext4_block_bitmap_csum_set(sb, group, gdp,
1015						   block_bitmap_bh);
1016			ext4_group_desc_csum_set(sb, group, gdp);
1017		}
1018		ext4_unlock_group(sb, group);
1019		brelse(block_bitmap_bh);
1020
1021		if (err) {
1022			ext4_std_error(sb, err);
1023			goto out;
1024		}
1025	}
1026
1027	/* Update the relevant bg descriptor fields */
1028	if (ext4_has_group_desc_csum(sb)) {
1029		int free;
1030		struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1031
1032		down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
 
 
 
 
 
 
1033		ext4_lock_group(sb, group); /* while we modify the bg desc */
1034		free = EXT4_INODES_PER_GROUP(sb) -
1035			ext4_itable_unused_count(sb, gdp);
1036		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
1037			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
1038			free = 0;
1039		}
1040		/*
1041		 * Check the relative inode number against the last used
1042		 * relative inode number in this group. if it is greater
1043		 * we need to update the bg_itable_unused count
1044		 */
1045		if (ino > free)
1046			ext4_itable_unused_set(sb, gdp,
1047					(EXT4_INODES_PER_GROUP(sb) - ino));
1048		up_read(&grp->alloc_sem);
 
1049	} else {
1050		ext4_lock_group(sb, group);
1051	}
1052
1053	ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
1054	if (S_ISDIR(mode)) {
1055		ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
1056		if (sbi->s_log_groups_per_flex) {
1057			ext4_group_t f = ext4_flex_group(sbi, group);
1058
1059			atomic_inc(&sbi->s_flex_groups[f].used_dirs);
 
1060		}
1061	}
1062	if (ext4_has_group_desc_csum(sb)) {
1063		ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
1064					   EXT4_INODES_PER_GROUP(sb) / 8);
1065		ext4_group_desc_csum_set(sb, group, gdp);
1066	}
1067	ext4_unlock_group(sb, group);
1068
1069	BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
1070	err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
1071	if (err) {
1072		ext4_std_error(sb, err);
1073		goto out;
1074	}
1075
1076	percpu_counter_dec(&sbi->s_freeinodes_counter);
1077	if (S_ISDIR(mode))
1078		percpu_counter_inc(&sbi->s_dirs_counter);
1079
1080	if (sbi->s_log_groups_per_flex) {
1081		flex_group = ext4_flex_group(sbi, group);
1082		atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
 
1083	}
1084
1085	inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
1086	/* This is the optimal IO size (for stat), not the fs block size */
1087	inode->i_blocks = 0;
1088	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1089	ei->i_crtime = inode->i_mtime;
1090
1091	memset(ei->i_data, 0, sizeof(ei->i_data));
1092	ei->i_dir_start_lookup = 0;
1093	ei->i_disksize = 0;
1094
1095	/* Don't inherit extent flag from directory, amongst others. */
1096	ei->i_flags =
1097		ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
1098	ei->i_flags |= i_flags;
1099	ei->i_file_acl = 0;
1100	ei->i_dtime = 0;
1101	ei->i_block_group = group;
1102	ei->i_last_alloc_group = ~0;
1103
1104	ext4_set_inode_flags(inode);
1105	if (IS_DIRSYNC(inode))
1106		ext4_handle_sync(handle);
1107	if (insert_inode_locked(inode) < 0) {
1108		/*
1109		 * Likely a bitmap corruption causing inode to be allocated
1110		 * twice.
1111		 */
1112		err = -EIO;
1113		ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
1114			   inode->i_ino);
1115		ext4_mark_group_bitmap_corrupted(sb, group,
1116					EXT4_GROUP_INFO_IBITMAP_CORRUPT);
1117		goto out;
1118	}
1119	inode->i_generation = prandom_u32();
1120
1121	/* Precompute checksum seed for inode metadata */
1122	if (ext4_has_metadata_csum(sb)) {
1123		__u32 csum;
1124		__le32 inum = cpu_to_le32(inode->i_ino);
1125		__le32 gen = cpu_to_le32(inode->i_generation);
1126		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
1127				   sizeof(inum));
1128		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
1129					      sizeof(gen));
1130	}
1131
1132	ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1133	ext4_set_inode_state(inode, EXT4_STATE_NEW);
1134
1135	ei->i_extra_isize = sbi->s_want_extra_isize;
1136	ei->i_inline_off = 0;
1137	if (ext4_has_feature_inline_data(sb))
 
1138		ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1139	ret = inode;
1140	err = dquot_alloc_inode(inode);
1141	if (err)
1142		goto fail_drop;
1143
1144	/*
1145	 * Since the encryption xattr will always be unique, create it first so
1146	 * that it's less likely to end up in an external xattr block and
1147	 * prevent its deduplication.
1148	 */
1149	if (encrypt) {
1150		err = fscrypt_inherit_context(dir, inode, handle, true);
1151		if (err)
1152			goto fail_free_drop;
1153	}
1154
1155	if (!(ei->i_flags & EXT4_EA_INODE_FL)) {
1156		err = ext4_init_acl(handle, inode, dir);
1157		if (err)
1158			goto fail_free_drop;
1159
1160		err = ext4_init_security(handle, inode, dir, qstr);
1161		if (err)
1162			goto fail_free_drop;
1163	}
1164
1165	if (ext4_has_feature_extents(sb)) {
1166		/* set extent flag only for directory, file and normal symlink*/
1167		if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1168			ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1169			ext4_ext_tree_init(handle, inode);
1170		}
1171	}
1172
1173	if (ext4_handle_valid(handle)) {
1174		ei->i_sync_tid = handle->h_transaction->t_tid;
1175		ei->i_datasync_tid = handle->h_transaction->t_tid;
1176	}
1177
1178	err = ext4_mark_inode_dirty(handle, inode);
1179	if (err) {
1180		ext4_std_error(sb, err);
1181		goto fail_free_drop;
1182	}
1183
1184	ext4_debug("allocating inode %lu\n", inode->i_ino);
1185	trace_ext4_allocate_inode(inode, dir, mode);
1186	brelse(inode_bitmap_bh);
1187	return ret;
1188
1189fail_free_drop:
1190	dquot_free_inode(inode);
1191fail_drop:
1192	clear_nlink(inode);
1193	unlock_new_inode(inode);
1194out:
1195	dquot_drop(inode);
1196	inode->i_flags |= S_NOQUOTA;
1197	iput(inode);
1198	brelse(inode_bitmap_bh);
1199	return ERR_PTR(err);
1200}
1201
1202/* Verify that we are loading a valid orphan from disk */
1203struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1204{
1205	unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1206	ext4_group_t block_group;
1207	int bit;
1208	struct buffer_head *bitmap_bh = NULL;
1209	struct inode *inode = NULL;
1210	int err = -EFSCORRUPTED;
1211
1212	if (ino < EXT4_FIRST_INO(sb) || ino > max_ino)
1213		goto bad_orphan;
1214
1215	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1216	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1217	bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1218	if (IS_ERR(bitmap_bh))
1219		return ERR_CAST(bitmap_bh);
1220
1221	/* Having the inode bit set should be a 100% indicator that this
1222	 * is a valid orphan (no e2fsck run on fs).  Orphans also include
1223	 * inodes that were being truncated, so we can't check i_nlink==0.
1224	 */
1225	if (!ext4_test_bit(bit, bitmap_bh->b_data))
1226		goto bad_orphan;
1227
1228	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1229	if (IS_ERR(inode)) {
1230		err = PTR_ERR(inode);
1231		ext4_error(sb, "couldn't read orphan inode %lu (err %d)",
1232			   ino, err);
 
 
1233		return inode;
1234	}
1235
1236	/*
1237	 * If the orphans has i_nlinks > 0 then it should be able to
1238	 * be truncated, otherwise it won't be removed from the orphan
1239	 * list during processing and an infinite loop will result.
1240	 * Similarly, it must not be a bad inode.
1241	 */
1242	if ((inode->i_nlink && !ext4_can_truncate(inode)) ||
1243	    is_bad_inode(inode))
1244		goto bad_orphan;
1245
1246	if (NEXT_ORPHAN(inode) > max_ino)
1247		goto bad_orphan;
1248	brelse(bitmap_bh);
1249	return inode;
1250
1251bad_orphan:
1252	ext4_error(sb, "bad orphan inode %lu", ino);
1253	if (bitmap_bh)
1254		printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1255		       bit, (unsigned long long)bitmap_bh->b_blocknr,
1256		       ext4_test_bit(bit, bitmap_bh->b_data));
1257	if (inode) {
1258		printk(KERN_ERR "is_bad_inode(inode)=%d\n",
1259		       is_bad_inode(inode));
1260		printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n",
1261		       NEXT_ORPHAN(inode));
1262		printk(KERN_ERR "max_ino=%lu\n", max_ino);
1263		printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink);
1264		/* Avoid freeing blocks if we got a bad deleted inode */
1265		if (inode->i_nlink == 0)
1266			inode->i_blocks = 0;
1267		iput(inode);
1268	}
1269	brelse(bitmap_bh);
1270	return ERR_PTR(err);
1271}
1272
1273unsigned long ext4_count_free_inodes(struct super_block *sb)
1274{
1275	unsigned long desc_count;
1276	struct ext4_group_desc *gdp;
1277	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1278#ifdef EXT4FS_DEBUG
1279	struct ext4_super_block *es;
1280	unsigned long bitmap_count, x;
1281	struct buffer_head *bitmap_bh = NULL;
1282
1283	es = EXT4_SB(sb)->s_es;
1284	desc_count = 0;
1285	bitmap_count = 0;
1286	gdp = NULL;
1287	for (i = 0; i < ngroups; i++) {
1288		gdp = ext4_get_group_desc(sb, i, NULL);
1289		if (!gdp)
1290			continue;
1291		desc_count += ext4_free_inodes_count(sb, gdp);
1292		brelse(bitmap_bh);
1293		bitmap_bh = ext4_read_inode_bitmap(sb, i);
1294		if (IS_ERR(bitmap_bh)) {
1295			bitmap_bh = NULL;
1296			continue;
1297		}
1298
1299		x = ext4_count_free(bitmap_bh->b_data,
1300				    EXT4_INODES_PER_GROUP(sb) / 8);
1301		printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1302			(unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1303		bitmap_count += x;
1304	}
1305	brelse(bitmap_bh);
1306	printk(KERN_DEBUG "ext4_count_free_inodes: "
1307	       "stored = %u, computed = %lu, %lu\n",
1308	       le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1309	return desc_count;
1310#else
1311	desc_count = 0;
1312	for (i = 0; i < ngroups; i++) {
1313		gdp = ext4_get_group_desc(sb, i, NULL);
1314		if (!gdp)
1315			continue;
1316		desc_count += ext4_free_inodes_count(sb, gdp);
1317		cond_resched();
1318	}
1319	return desc_count;
1320#endif
1321}
1322
1323/* Called at mount-time, super-block is locked */
1324unsigned long ext4_count_dirs(struct super_block * sb)
1325{
1326	unsigned long count = 0;
1327	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1328
1329	for (i = 0; i < ngroups; i++) {
1330		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1331		if (!gdp)
1332			continue;
1333		count += ext4_used_dirs_count(sb, gdp);
1334	}
1335	return count;
1336}
1337
1338/*
1339 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1340 * inode table. Must be called without any spinlock held. The only place
1341 * where it is called from on active part of filesystem is ext4lazyinit
1342 * thread, so we do not need any special locks, however we have to prevent
1343 * inode allocation from the current group, so we take alloc_sem lock, to
1344 * block ext4_new_inode() until we are finished.
1345 */
1346int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1347				 int barrier)
1348{
1349	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1350	struct ext4_sb_info *sbi = EXT4_SB(sb);
1351	struct ext4_group_desc *gdp = NULL;
1352	struct buffer_head *group_desc_bh;
1353	handle_t *handle;
1354	ext4_fsblk_t blk;
1355	int num, ret = 0, used_blks = 0;
 
1356
1357	/* This should not happen, but just to be sure check this */
1358	if (sb_rdonly(sb)) {
1359		ret = 1;
1360		goto out;
1361	}
1362
1363	gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1364	if (!gdp)
1365		goto out;
1366
1367	/*
1368	 * We do not need to lock this, because we are the only one
1369	 * handling this flag.
1370	 */
1371	if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1372		goto out;
1373
1374	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1375	if (IS_ERR(handle)) {
1376		ret = PTR_ERR(handle);
1377		goto out;
1378	}
1379
1380	down_write(&grp->alloc_sem);
1381	/*
1382	 * If inode bitmap was already initialized there may be some
1383	 * used inodes so we need to skip blocks with used inodes in
1384	 * inode table.
1385	 */
1386	if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1387		used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1388			    ext4_itable_unused_count(sb, gdp)),
1389			    sbi->s_inodes_per_block);
1390
1391	if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group) ||
1392	    ((group == 0) && ((EXT4_INODES_PER_GROUP(sb) -
1393			       ext4_itable_unused_count(sb, gdp)) <
1394			      EXT4_FIRST_INO(sb)))) {
1395		ext4_error(sb, "Something is wrong with group %u: "
1396			   "used itable blocks: %d; "
1397			   "itable unused count: %u",
1398			   group, used_blks,
1399			   ext4_itable_unused_count(sb, gdp));
1400		ret = 1;
1401		goto err_out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1402	}
1403
1404	blk = ext4_inode_table(sb, gdp) + used_blks;
1405	num = sbi->s_itb_per_group - used_blks;
1406
1407	BUFFER_TRACE(group_desc_bh, "get_write_access");
1408	ret = ext4_journal_get_write_access(handle,
1409					    group_desc_bh);
1410	if (ret)
1411		goto err_out;
1412
1413	/*
1414	 * Skip zeroout if the inode table is full. But we set the ZEROED
1415	 * flag anyway, because obviously, when it is full it does not need
1416	 * further zeroing.
1417	 */
1418	if (unlikely(num == 0))
1419		goto skip_zeroout;
1420
1421	ext4_debug("going to zero out inode table in group %d\n",
1422		   group);
1423	ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1424	if (ret < 0)
1425		goto err_out;
1426	if (barrier)
1427		blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1428
1429skip_zeroout:
1430	ext4_lock_group(sb, group);
1431	gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1432	ext4_group_desc_csum_set(sb, group, gdp);
1433	ext4_unlock_group(sb, group);
1434
1435	BUFFER_TRACE(group_desc_bh,
1436		     "call ext4_handle_dirty_metadata");
1437	ret = ext4_handle_dirty_metadata(handle, NULL,
1438					 group_desc_bh);
1439
1440err_out:
1441	up_write(&grp->alloc_sem);
1442	ext4_journal_stop(handle);
1443out:
1444	return ret;
1445}