Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/ext4/ialloc.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * BSD ufs-inspired inode and directory allocation by
11 * Stephen Tweedie (sct@redhat.com), 1993
12 * Big-endian to little-endian byte-swapping/bitmaps by
13 * David S. Miller (davem@caip.rutgers.edu), 1995
14 */
15
16#include <linux/time.h>
17#include <linux/fs.h>
18#include <linux/stat.h>
19#include <linux/string.h>
20#include <linux/quotaops.h>
21#include <linux/buffer_head.h>
22#include <linux/random.h>
23#include <linux/bitops.h>
24#include <linux/blkdev.h>
25#include <linux/cred.h>
26
27#include <asm/byteorder.h>
28
29#include "ext4.h"
30#include "ext4_jbd2.h"
31#include "xattr.h"
32#include "acl.h"
33
34#include <trace/events/ext4.h>
35
36/*
37 * ialloc.c contains the inodes allocation and deallocation routines
38 */
39
40/*
41 * The free inodes are managed by bitmaps. A file system contains several
42 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
43 * block for inodes, N blocks for the inode table and data blocks.
44 *
45 * The file system contains group descriptors which are located after the
46 * super block. Each descriptor contains the number of the bitmap block and
47 * the free blocks count in the block.
48 */
49
50/*
51 * To avoid calling the atomic setbit hundreds or thousands of times, we only
52 * need to use it within a single byte (to ensure we get endianness right).
53 * We can use memset for the rest of the bitmap as there are no other users.
54 */
55void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
56{
57 int i;
58
59 if (start_bit >= end_bit)
60 return;
61
62 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
63 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
64 ext4_set_bit(i, bitmap);
65 if (i < end_bit)
66 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
67}
68
69void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
70{
71 if (uptodate) {
72 set_buffer_uptodate(bh);
73 set_bitmap_uptodate(bh);
74 }
75 unlock_buffer(bh);
76 put_bh(bh);
77}
78
79static int ext4_validate_inode_bitmap(struct super_block *sb,
80 struct ext4_group_desc *desc,
81 ext4_group_t block_group,
82 struct buffer_head *bh)
83{
84 ext4_fsblk_t blk;
85 struct ext4_group_info *grp;
86
87 if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
88 return 0;
89
90 grp = ext4_get_group_info(sb, block_group);
91
92 if (buffer_verified(bh))
93 return 0;
94 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
95 return -EFSCORRUPTED;
96
97 ext4_lock_group(sb, block_group);
98 if (buffer_verified(bh))
99 goto verified;
100 blk = ext4_inode_bitmap(sb, desc);
101 if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
102 EXT4_INODES_PER_GROUP(sb) / 8) ||
103 ext4_simulate_fail(sb, EXT4_SIM_IBITMAP_CRC)) {
104 ext4_unlock_group(sb, block_group);
105 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
106 "inode_bitmap = %llu", block_group, blk);
107 ext4_mark_group_bitmap_corrupted(sb, block_group,
108 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
109 return -EFSBADCRC;
110 }
111 set_buffer_verified(bh);
112verified:
113 ext4_unlock_group(sb, block_group);
114 return 0;
115}
116
117/*
118 * Read the inode allocation bitmap for a given block_group, reading
119 * into the specified slot in the superblock's bitmap cache.
120 *
121 * Return buffer_head of bitmap on success, or an ERR_PTR on error.
122 */
123static struct buffer_head *
124ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
125{
126 struct ext4_group_desc *desc;
127 struct ext4_sb_info *sbi = EXT4_SB(sb);
128 struct buffer_head *bh = NULL;
129 ext4_fsblk_t bitmap_blk;
130 int err;
131
132 desc = ext4_get_group_desc(sb, block_group, NULL);
133 if (!desc)
134 return ERR_PTR(-EFSCORRUPTED);
135
136 bitmap_blk = ext4_inode_bitmap(sb, desc);
137 if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) ||
138 (bitmap_blk >= ext4_blocks_count(sbi->s_es))) {
139 ext4_error(sb, "Invalid inode bitmap blk %llu in "
140 "block_group %u", bitmap_blk, block_group);
141 ext4_mark_group_bitmap_corrupted(sb, block_group,
142 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
143 return ERR_PTR(-EFSCORRUPTED);
144 }
145 bh = sb_getblk(sb, bitmap_blk);
146 if (unlikely(!bh)) {
147 ext4_warning(sb, "Cannot read inode bitmap - "
148 "block_group = %u, inode_bitmap = %llu",
149 block_group, bitmap_blk);
150 return ERR_PTR(-ENOMEM);
151 }
152 if (bitmap_uptodate(bh))
153 goto verify;
154
155 lock_buffer(bh);
156 if (bitmap_uptodate(bh)) {
157 unlock_buffer(bh);
158 goto verify;
159 }
160
161 ext4_lock_group(sb, block_group);
162 if (ext4_has_group_desc_csum(sb) &&
163 (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) {
164 if (block_group == 0) {
165 ext4_unlock_group(sb, block_group);
166 unlock_buffer(bh);
167 ext4_error(sb, "Inode bitmap for bg 0 marked "
168 "uninitialized");
169 err = -EFSCORRUPTED;
170 goto out;
171 }
172 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
173 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb),
174 sb->s_blocksize * 8, bh->b_data);
175 set_bitmap_uptodate(bh);
176 set_buffer_uptodate(bh);
177 set_buffer_verified(bh);
178 ext4_unlock_group(sb, block_group);
179 unlock_buffer(bh);
180 return bh;
181 }
182 ext4_unlock_group(sb, block_group);
183
184 if (buffer_uptodate(bh)) {
185 /*
186 * if not uninit if bh is uptodate,
187 * bitmap is also uptodate
188 */
189 set_bitmap_uptodate(bh);
190 unlock_buffer(bh);
191 goto verify;
192 }
193 /*
194 * submit the buffer_head for reading
195 */
196 trace_ext4_load_inode_bitmap(sb, block_group);
197 ext4_read_bh(bh, REQ_META | REQ_PRIO, ext4_end_bitmap_read);
198 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_IBITMAP_EIO);
199 if (!buffer_uptodate(bh)) {
200 put_bh(bh);
201 ext4_error_err(sb, EIO, "Cannot read inode bitmap - "
202 "block_group = %u, inode_bitmap = %llu",
203 block_group, bitmap_blk);
204 ext4_mark_group_bitmap_corrupted(sb, block_group,
205 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
206 return ERR_PTR(-EIO);
207 }
208
209verify:
210 err = ext4_validate_inode_bitmap(sb, desc, block_group, bh);
211 if (err)
212 goto out;
213 return bh;
214out:
215 put_bh(bh);
216 return ERR_PTR(err);
217}
218
219/*
220 * NOTE! When we get the inode, we're the only people
221 * that have access to it, and as such there are no
222 * race conditions we have to worry about. The inode
223 * is not on the hash-lists, and it cannot be reached
224 * through the filesystem because the directory entry
225 * has been deleted earlier.
226 *
227 * HOWEVER: we must make sure that we get no aliases,
228 * which means that we have to call "clear_inode()"
229 * _before_ we mark the inode not in use in the inode
230 * bitmaps. Otherwise a newly created file might use
231 * the same inode number (not actually the same pointer
232 * though), and then we'd have two inodes sharing the
233 * same inode number and space on the harddisk.
234 */
235void ext4_free_inode(handle_t *handle, struct inode *inode)
236{
237 struct super_block *sb = inode->i_sb;
238 int is_directory;
239 unsigned long ino;
240 struct buffer_head *bitmap_bh = NULL;
241 struct buffer_head *bh2;
242 ext4_group_t block_group;
243 unsigned long bit;
244 struct ext4_group_desc *gdp;
245 struct ext4_super_block *es;
246 struct ext4_sb_info *sbi;
247 int fatal = 0, err, count, cleared;
248 struct ext4_group_info *grp;
249
250 if (!sb) {
251 printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
252 "nonexistent device\n", __func__, __LINE__);
253 return;
254 }
255 if (atomic_read(&inode->i_count) > 1) {
256 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
257 __func__, __LINE__, inode->i_ino,
258 atomic_read(&inode->i_count));
259 return;
260 }
261 if (inode->i_nlink) {
262 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
263 __func__, __LINE__, inode->i_ino, inode->i_nlink);
264 return;
265 }
266 sbi = EXT4_SB(sb);
267
268 ino = inode->i_ino;
269 ext4_debug("freeing inode %lu\n", ino);
270 trace_ext4_free_inode(inode);
271
272 dquot_initialize(inode);
273 dquot_free_inode(inode);
274
275 is_directory = S_ISDIR(inode->i_mode);
276
277 /* Do this BEFORE marking the inode not in use or returning an error */
278 ext4_clear_inode(inode);
279
280 es = sbi->s_es;
281 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
282 ext4_error(sb, "reserved or nonexistent inode %lu", ino);
283 goto error_return;
284 }
285 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
286 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
287 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
288 /* Don't bother if the inode bitmap is corrupt. */
289 if (IS_ERR(bitmap_bh)) {
290 fatal = PTR_ERR(bitmap_bh);
291 bitmap_bh = NULL;
292 goto error_return;
293 }
294 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
295 grp = ext4_get_group_info(sb, block_group);
296 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) {
297 fatal = -EFSCORRUPTED;
298 goto error_return;
299 }
300 }
301
302 BUFFER_TRACE(bitmap_bh, "get_write_access");
303 fatal = ext4_journal_get_write_access(handle, sb, bitmap_bh,
304 EXT4_JTR_NONE);
305 if (fatal)
306 goto error_return;
307
308 fatal = -ESRCH;
309 gdp = ext4_get_group_desc(sb, block_group, &bh2);
310 if (gdp) {
311 BUFFER_TRACE(bh2, "get_write_access");
312 fatal = ext4_journal_get_write_access(handle, sb, bh2,
313 EXT4_JTR_NONE);
314 }
315 ext4_lock_group(sb, block_group);
316 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
317 if (fatal || !cleared) {
318 ext4_unlock_group(sb, block_group);
319 goto out;
320 }
321
322 count = ext4_free_inodes_count(sb, gdp) + 1;
323 ext4_free_inodes_set(sb, gdp, count);
324 if (is_directory) {
325 count = ext4_used_dirs_count(sb, gdp) - 1;
326 ext4_used_dirs_set(sb, gdp, count);
327 if (percpu_counter_initialized(&sbi->s_dirs_counter))
328 percpu_counter_dec(&sbi->s_dirs_counter);
329 }
330 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
331 EXT4_INODES_PER_GROUP(sb) / 8);
332 ext4_group_desc_csum_set(sb, block_group, gdp);
333 ext4_unlock_group(sb, block_group);
334
335 if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
336 percpu_counter_inc(&sbi->s_freeinodes_counter);
337 if (sbi->s_log_groups_per_flex) {
338 struct flex_groups *fg;
339
340 fg = sbi_array_rcu_deref(sbi, s_flex_groups,
341 ext4_flex_group(sbi, block_group));
342 atomic_inc(&fg->free_inodes);
343 if (is_directory)
344 atomic_dec(&fg->used_dirs);
345 }
346 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
347 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
348out:
349 if (cleared) {
350 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
351 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
352 if (!fatal)
353 fatal = err;
354 } else {
355 ext4_error(sb, "bit already cleared for inode %lu", ino);
356 ext4_mark_group_bitmap_corrupted(sb, block_group,
357 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
358 }
359
360error_return:
361 brelse(bitmap_bh);
362 ext4_std_error(sb, fatal);
363}
364
365struct orlov_stats {
366 __u64 free_clusters;
367 __u32 free_inodes;
368 __u32 used_dirs;
369};
370
371/*
372 * Helper function for Orlov's allocator; returns critical information
373 * for a particular block group or flex_bg. If flex_size is 1, then g
374 * is a block group number; otherwise it is flex_bg number.
375 */
376static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
377 int flex_size, struct orlov_stats *stats)
378{
379 struct ext4_group_desc *desc;
380
381 if (flex_size > 1) {
382 struct flex_groups *fg = sbi_array_rcu_deref(EXT4_SB(sb),
383 s_flex_groups, g);
384 stats->free_inodes = atomic_read(&fg->free_inodes);
385 stats->free_clusters = atomic64_read(&fg->free_clusters);
386 stats->used_dirs = atomic_read(&fg->used_dirs);
387 return;
388 }
389
390 desc = ext4_get_group_desc(sb, g, NULL);
391 if (desc) {
392 stats->free_inodes = ext4_free_inodes_count(sb, desc);
393 stats->free_clusters = ext4_free_group_clusters(sb, desc);
394 stats->used_dirs = ext4_used_dirs_count(sb, desc);
395 } else {
396 stats->free_inodes = 0;
397 stats->free_clusters = 0;
398 stats->used_dirs = 0;
399 }
400}
401
402/*
403 * Orlov's allocator for directories.
404 *
405 * We always try to spread first-level directories.
406 *
407 * If there are blockgroups with both free inodes and free clusters counts
408 * not worse than average we return one with smallest directory count.
409 * Otherwise we simply return a random group.
410 *
411 * For the rest rules look so:
412 *
413 * It's OK to put directory into a group unless
414 * it has too many directories already (max_dirs) or
415 * it has too few free inodes left (min_inodes) or
416 * it has too few free clusters left (min_clusters) or
417 * Parent's group is preferred, if it doesn't satisfy these
418 * conditions we search cyclically through the rest. If none
419 * of the groups look good we just look for a group with more
420 * free inodes than average (starting at parent's group).
421 */
422
423static int find_group_orlov(struct super_block *sb, struct inode *parent,
424 ext4_group_t *group, umode_t mode,
425 const struct qstr *qstr)
426{
427 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
428 struct ext4_sb_info *sbi = EXT4_SB(sb);
429 ext4_group_t real_ngroups = ext4_get_groups_count(sb);
430 int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
431 unsigned int freei, avefreei, grp_free;
432 ext4_fsblk_t freec, avefreec;
433 unsigned int ndirs;
434 int max_dirs, min_inodes;
435 ext4_grpblk_t min_clusters;
436 ext4_group_t i, grp, g, ngroups;
437 struct ext4_group_desc *desc;
438 struct orlov_stats stats;
439 int flex_size = ext4_flex_bg_size(sbi);
440 struct dx_hash_info hinfo;
441
442 ngroups = real_ngroups;
443 if (flex_size > 1) {
444 ngroups = (real_ngroups + flex_size - 1) >>
445 sbi->s_log_groups_per_flex;
446 parent_group >>= sbi->s_log_groups_per_flex;
447 }
448
449 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
450 avefreei = freei / ngroups;
451 freec = percpu_counter_read_positive(&sbi->s_freeclusters_counter);
452 avefreec = freec;
453 do_div(avefreec, ngroups);
454 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
455
456 if (S_ISDIR(mode) &&
457 ((parent == d_inode(sb->s_root)) ||
458 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
459 int best_ndir = inodes_per_group;
460 int ret = -1;
461
462 if (qstr) {
463 hinfo.hash_version = DX_HASH_HALF_MD4;
464 hinfo.seed = sbi->s_hash_seed;
465 ext4fs_dirhash(parent, qstr->name, qstr->len, &hinfo);
466 parent_group = hinfo.hash % ngroups;
467 } else
468 parent_group = get_random_u32_below(ngroups);
469 for (i = 0; i < ngroups; i++) {
470 g = (parent_group + i) % ngroups;
471 get_orlov_stats(sb, g, flex_size, &stats);
472 if (!stats.free_inodes)
473 continue;
474 if (stats.used_dirs >= best_ndir)
475 continue;
476 if (stats.free_inodes < avefreei)
477 continue;
478 if (stats.free_clusters < avefreec)
479 continue;
480 grp = g;
481 ret = 0;
482 best_ndir = stats.used_dirs;
483 }
484 if (ret)
485 goto fallback;
486 found_flex_bg:
487 if (flex_size == 1) {
488 *group = grp;
489 return 0;
490 }
491
492 /*
493 * We pack inodes at the beginning of the flexgroup's
494 * inode tables. Block allocation decisions will do
495 * something similar, although regular files will
496 * start at 2nd block group of the flexgroup. See
497 * ext4_ext_find_goal() and ext4_find_near().
498 */
499 grp *= flex_size;
500 for (i = 0; i < flex_size; i++) {
501 if (grp+i >= real_ngroups)
502 break;
503 desc = ext4_get_group_desc(sb, grp+i, NULL);
504 if (desc && ext4_free_inodes_count(sb, desc)) {
505 *group = grp+i;
506 return 0;
507 }
508 }
509 goto fallback;
510 }
511
512 max_dirs = ndirs / ngroups + inodes_per_group*flex_size / 16;
513 min_inodes = avefreei - inodes_per_group*flex_size / 4;
514 if (min_inodes < 1)
515 min_inodes = 1;
516 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
517
518 /*
519 * Start looking in the flex group where we last allocated an
520 * inode for this parent directory
521 */
522 if (EXT4_I(parent)->i_last_alloc_group != ~0) {
523 parent_group = EXT4_I(parent)->i_last_alloc_group;
524 if (flex_size > 1)
525 parent_group >>= sbi->s_log_groups_per_flex;
526 }
527
528 for (i = 0; i < ngroups; i++) {
529 grp = (parent_group + i) % ngroups;
530 get_orlov_stats(sb, grp, flex_size, &stats);
531 if (stats.used_dirs >= max_dirs)
532 continue;
533 if (stats.free_inodes < min_inodes)
534 continue;
535 if (stats.free_clusters < min_clusters)
536 continue;
537 goto found_flex_bg;
538 }
539
540fallback:
541 ngroups = real_ngroups;
542 avefreei = freei / ngroups;
543fallback_retry:
544 parent_group = EXT4_I(parent)->i_block_group;
545 for (i = 0; i < ngroups; i++) {
546 grp = (parent_group + i) % ngroups;
547 desc = ext4_get_group_desc(sb, grp, NULL);
548 if (desc) {
549 grp_free = ext4_free_inodes_count(sb, desc);
550 if (grp_free && grp_free >= avefreei) {
551 *group = grp;
552 return 0;
553 }
554 }
555 }
556
557 if (avefreei) {
558 /*
559 * The free-inodes counter is approximate, and for really small
560 * filesystems the above test can fail to find any blockgroups
561 */
562 avefreei = 0;
563 goto fallback_retry;
564 }
565
566 return -1;
567}
568
569static int find_group_other(struct super_block *sb, struct inode *parent,
570 ext4_group_t *group, umode_t mode)
571{
572 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
573 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
574 struct ext4_group_desc *desc;
575 int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
576
577 /*
578 * Try to place the inode is the same flex group as its
579 * parent. If we can't find space, use the Orlov algorithm to
580 * find another flex group, and store that information in the
581 * parent directory's inode information so that use that flex
582 * group for future allocations.
583 */
584 if (flex_size > 1) {
585 int retry = 0;
586
587 try_again:
588 parent_group &= ~(flex_size-1);
589 last = parent_group + flex_size;
590 if (last > ngroups)
591 last = ngroups;
592 for (i = parent_group; i < last; i++) {
593 desc = ext4_get_group_desc(sb, i, NULL);
594 if (desc && ext4_free_inodes_count(sb, desc)) {
595 *group = i;
596 return 0;
597 }
598 }
599 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
600 retry = 1;
601 parent_group = EXT4_I(parent)->i_last_alloc_group;
602 goto try_again;
603 }
604 /*
605 * If this didn't work, use the Orlov search algorithm
606 * to find a new flex group; we pass in the mode to
607 * avoid the topdir algorithms.
608 */
609 *group = parent_group + flex_size;
610 if (*group > ngroups)
611 *group = 0;
612 return find_group_orlov(sb, parent, group, mode, NULL);
613 }
614
615 /*
616 * Try to place the inode in its parent directory
617 */
618 *group = parent_group;
619 desc = ext4_get_group_desc(sb, *group, NULL);
620 if (desc && ext4_free_inodes_count(sb, desc) &&
621 ext4_free_group_clusters(sb, desc))
622 return 0;
623
624 /*
625 * We're going to place this inode in a different blockgroup from its
626 * parent. We want to cause files in a common directory to all land in
627 * the same blockgroup. But we want files which are in a different
628 * directory which shares a blockgroup with our parent to land in a
629 * different blockgroup.
630 *
631 * So add our directory's i_ino into the starting point for the hash.
632 */
633 *group = (*group + parent->i_ino) % ngroups;
634
635 /*
636 * Use a quadratic hash to find a group with a free inode and some free
637 * blocks.
638 */
639 for (i = 1; i < ngroups; i <<= 1) {
640 *group += i;
641 if (*group >= ngroups)
642 *group -= ngroups;
643 desc = ext4_get_group_desc(sb, *group, NULL);
644 if (desc && ext4_free_inodes_count(sb, desc) &&
645 ext4_free_group_clusters(sb, desc))
646 return 0;
647 }
648
649 /*
650 * That failed: try linear search for a free inode, even if that group
651 * has no free blocks.
652 */
653 *group = parent_group;
654 for (i = 0; i < ngroups; i++) {
655 if (++*group >= ngroups)
656 *group = 0;
657 desc = ext4_get_group_desc(sb, *group, NULL);
658 if (desc && ext4_free_inodes_count(sb, desc))
659 return 0;
660 }
661
662 return -1;
663}
664
665/*
666 * In no journal mode, if an inode has recently been deleted, we want
667 * to avoid reusing it until we're reasonably sure the inode table
668 * block has been written back to disk. (Yes, these values are
669 * somewhat arbitrary...)
670 */
671#define RECENTCY_MIN 60
672#define RECENTCY_DIRTY 300
673
674static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
675{
676 struct ext4_group_desc *gdp;
677 struct ext4_inode *raw_inode;
678 struct buffer_head *bh;
679 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
680 int offset, ret = 0;
681 int recentcy = RECENTCY_MIN;
682 u32 dtime, now;
683
684 gdp = ext4_get_group_desc(sb, group, NULL);
685 if (unlikely(!gdp))
686 return 0;
687
688 bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) +
689 (ino / inodes_per_block));
690 if (!bh || !buffer_uptodate(bh))
691 /*
692 * If the block is not in the buffer cache, then it
693 * must have been written out.
694 */
695 goto out;
696
697 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
698 raw_inode = (struct ext4_inode *) (bh->b_data + offset);
699
700 /* i_dtime is only 32 bits on disk, but we only care about relative
701 * times in the range of a few minutes (i.e. long enough to sync a
702 * recently-deleted inode to disk), so using the low 32 bits of the
703 * clock (a 68 year range) is enough, see time_before32() */
704 dtime = le32_to_cpu(raw_inode->i_dtime);
705 now = ktime_get_real_seconds();
706 if (buffer_dirty(bh))
707 recentcy += RECENTCY_DIRTY;
708
709 if (dtime && time_before32(dtime, now) &&
710 time_before32(now, dtime + recentcy))
711 ret = 1;
712out:
713 brelse(bh);
714 return ret;
715}
716
717static int find_inode_bit(struct super_block *sb, ext4_group_t group,
718 struct buffer_head *bitmap, unsigned long *ino)
719{
720 bool check_recently_deleted = EXT4_SB(sb)->s_journal == NULL;
721 unsigned long recently_deleted_ino = EXT4_INODES_PER_GROUP(sb);
722
723next:
724 *ino = ext4_find_next_zero_bit((unsigned long *)
725 bitmap->b_data,
726 EXT4_INODES_PER_GROUP(sb), *ino);
727 if (*ino >= EXT4_INODES_PER_GROUP(sb))
728 goto not_found;
729
730 if (check_recently_deleted && recently_deleted(sb, group, *ino)) {
731 recently_deleted_ino = *ino;
732 *ino = *ino + 1;
733 if (*ino < EXT4_INODES_PER_GROUP(sb))
734 goto next;
735 goto not_found;
736 }
737 return 1;
738not_found:
739 if (recently_deleted_ino >= EXT4_INODES_PER_GROUP(sb))
740 return 0;
741 /*
742 * Not reusing recently deleted inodes is mostly a preference. We don't
743 * want to report ENOSPC or skew allocation patterns because of that.
744 * So return even recently deleted inode if we could find better in the
745 * given range.
746 */
747 *ino = recently_deleted_ino;
748 return 1;
749}
750
751int ext4_mark_inode_used(struct super_block *sb, int ino)
752{
753 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
754 struct buffer_head *inode_bitmap_bh = NULL, *group_desc_bh = NULL;
755 struct ext4_group_desc *gdp;
756 ext4_group_t group;
757 int bit;
758 int err = -EFSCORRUPTED;
759
760 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino)
761 goto out;
762
763 group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
764 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
765 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
766 if (IS_ERR(inode_bitmap_bh))
767 return PTR_ERR(inode_bitmap_bh);
768
769 if (ext4_test_bit(bit, inode_bitmap_bh->b_data)) {
770 err = 0;
771 goto out;
772 }
773
774 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
775 if (!gdp || !group_desc_bh) {
776 err = -EINVAL;
777 goto out;
778 }
779
780 ext4_set_bit(bit, inode_bitmap_bh->b_data);
781
782 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
783 err = ext4_handle_dirty_metadata(NULL, NULL, inode_bitmap_bh);
784 if (err) {
785 ext4_std_error(sb, err);
786 goto out;
787 }
788 err = sync_dirty_buffer(inode_bitmap_bh);
789 if (err) {
790 ext4_std_error(sb, err);
791 goto out;
792 }
793
794 /* We may have to initialize the block bitmap if it isn't already */
795 if (ext4_has_group_desc_csum(sb) &&
796 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
797 struct buffer_head *block_bitmap_bh;
798
799 block_bitmap_bh = ext4_read_block_bitmap(sb, group);
800 if (IS_ERR(block_bitmap_bh)) {
801 err = PTR_ERR(block_bitmap_bh);
802 goto out;
803 }
804
805 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
806 err = ext4_handle_dirty_metadata(NULL, NULL, block_bitmap_bh);
807 sync_dirty_buffer(block_bitmap_bh);
808
809 /* recheck and clear flag under lock if we still need to */
810 ext4_lock_group(sb, group);
811 if (ext4_has_group_desc_csum(sb) &&
812 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
813 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
814 ext4_free_group_clusters_set(sb, gdp,
815 ext4_free_clusters_after_init(sb, group, gdp));
816 ext4_block_bitmap_csum_set(sb, group, gdp,
817 block_bitmap_bh);
818 ext4_group_desc_csum_set(sb, group, gdp);
819 }
820 ext4_unlock_group(sb, group);
821 brelse(block_bitmap_bh);
822
823 if (err) {
824 ext4_std_error(sb, err);
825 goto out;
826 }
827 }
828
829 /* Update the relevant bg descriptor fields */
830 if (ext4_has_group_desc_csum(sb)) {
831 int free;
832
833 ext4_lock_group(sb, group); /* while we modify the bg desc */
834 free = EXT4_INODES_PER_GROUP(sb) -
835 ext4_itable_unused_count(sb, gdp);
836 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
837 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
838 free = 0;
839 }
840
841 /*
842 * Check the relative inode number against the last used
843 * relative inode number in this group. if it is greater
844 * we need to update the bg_itable_unused count
845 */
846 if (bit >= free)
847 ext4_itable_unused_set(sb, gdp,
848 (EXT4_INODES_PER_GROUP(sb) - bit - 1));
849 } else {
850 ext4_lock_group(sb, group);
851 }
852
853 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
854 if (ext4_has_group_desc_csum(sb)) {
855 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
856 EXT4_INODES_PER_GROUP(sb) / 8);
857 ext4_group_desc_csum_set(sb, group, gdp);
858 }
859
860 ext4_unlock_group(sb, group);
861 err = ext4_handle_dirty_metadata(NULL, NULL, group_desc_bh);
862 sync_dirty_buffer(group_desc_bh);
863out:
864 return err;
865}
866
867static int ext4_xattr_credits_for_new_inode(struct inode *dir, mode_t mode,
868 bool encrypt)
869{
870 struct super_block *sb = dir->i_sb;
871 int nblocks = 0;
872#ifdef CONFIG_EXT4_FS_POSIX_ACL
873 struct posix_acl *p = get_inode_acl(dir, ACL_TYPE_DEFAULT);
874
875 if (IS_ERR(p))
876 return PTR_ERR(p);
877 if (p) {
878 int acl_size = p->a_count * sizeof(ext4_acl_entry);
879
880 nblocks += (S_ISDIR(mode) ? 2 : 1) *
881 __ext4_xattr_set_credits(sb, NULL /* inode */,
882 NULL /* block_bh */, acl_size,
883 true /* is_create */);
884 posix_acl_release(p);
885 }
886#endif
887
888#ifdef CONFIG_SECURITY
889 {
890 int num_security_xattrs = 1;
891
892#ifdef CONFIG_INTEGRITY
893 num_security_xattrs++;
894#endif
895 /*
896 * We assume that security xattrs are never more than 1k.
897 * In practice they are under 128 bytes.
898 */
899 nblocks += num_security_xattrs *
900 __ext4_xattr_set_credits(sb, NULL /* inode */,
901 NULL /* block_bh */, 1024,
902 true /* is_create */);
903 }
904#endif
905 if (encrypt)
906 nblocks += __ext4_xattr_set_credits(sb,
907 NULL /* inode */,
908 NULL /* block_bh */,
909 FSCRYPT_SET_CONTEXT_MAX_SIZE,
910 true /* is_create */);
911 return nblocks;
912}
913
914/*
915 * There are two policies for allocating an inode. If the new inode is
916 * a directory, then a forward search is made for a block group with both
917 * free space and a low directory-to-inode ratio; if that fails, then of
918 * the groups with above-average free space, that group with the fewest
919 * directories already is chosen.
920 *
921 * For other inodes, search forward from the parent directory's block
922 * group to find a free inode.
923 */
924struct inode *__ext4_new_inode(struct user_namespace *mnt_userns,
925 handle_t *handle, struct inode *dir,
926 umode_t mode, const struct qstr *qstr,
927 __u32 goal, uid_t *owner, __u32 i_flags,
928 int handle_type, unsigned int line_no,
929 int nblocks)
930{
931 struct super_block *sb;
932 struct buffer_head *inode_bitmap_bh = NULL;
933 struct buffer_head *group_desc_bh;
934 ext4_group_t ngroups, group = 0;
935 unsigned long ino = 0;
936 struct inode *inode;
937 struct ext4_group_desc *gdp = NULL;
938 struct ext4_inode_info *ei;
939 struct ext4_sb_info *sbi;
940 int ret2, err;
941 struct inode *ret;
942 ext4_group_t i;
943 ext4_group_t flex_group;
944 struct ext4_group_info *grp = NULL;
945 bool encrypt = false;
946
947 /* Cannot create files in a deleted directory */
948 if (!dir || !dir->i_nlink)
949 return ERR_PTR(-EPERM);
950
951 sb = dir->i_sb;
952 sbi = EXT4_SB(sb);
953
954 if (unlikely(ext4_forced_shutdown(sbi)))
955 return ERR_PTR(-EIO);
956
957 ngroups = ext4_get_groups_count(sb);
958 trace_ext4_request_inode(dir, mode);
959 inode = new_inode(sb);
960 if (!inode)
961 return ERR_PTR(-ENOMEM);
962 ei = EXT4_I(inode);
963
964 /*
965 * Initialize owners and quota early so that we don't have to account
966 * for quota initialization worst case in standard inode creating
967 * transaction
968 */
969 if (owner) {
970 inode->i_mode = mode;
971 i_uid_write(inode, owner[0]);
972 i_gid_write(inode, owner[1]);
973 } else if (test_opt(sb, GRPID)) {
974 inode->i_mode = mode;
975 inode_fsuid_set(inode, mnt_userns);
976 inode->i_gid = dir->i_gid;
977 } else
978 inode_init_owner(mnt_userns, inode, dir, mode);
979
980 if (ext4_has_feature_project(sb) &&
981 ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT))
982 ei->i_projid = EXT4_I(dir)->i_projid;
983 else
984 ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID);
985
986 if (!(i_flags & EXT4_EA_INODE_FL)) {
987 err = fscrypt_prepare_new_inode(dir, inode, &encrypt);
988 if (err)
989 goto out;
990 }
991
992 err = dquot_initialize(inode);
993 if (err)
994 goto out;
995
996 if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) {
997 ret2 = ext4_xattr_credits_for_new_inode(dir, mode, encrypt);
998 if (ret2 < 0) {
999 err = ret2;
1000 goto out;
1001 }
1002 nblocks += ret2;
1003 }
1004
1005 if (!goal)
1006 goal = sbi->s_inode_goal;
1007
1008 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
1009 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
1010 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
1011 ret2 = 0;
1012 goto got_group;
1013 }
1014
1015 if (S_ISDIR(mode))
1016 ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
1017 else
1018 ret2 = find_group_other(sb, dir, &group, mode);
1019
1020got_group:
1021 EXT4_I(dir)->i_last_alloc_group = group;
1022 err = -ENOSPC;
1023 if (ret2 == -1)
1024 goto out;
1025
1026 /*
1027 * Normally we will only go through one pass of this loop,
1028 * unless we get unlucky and it turns out the group we selected
1029 * had its last inode grabbed by someone else.
1030 */
1031 for (i = 0; i < ngroups; i++, ino = 0) {
1032 err = -EIO;
1033
1034 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1035 if (!gdp)
1036 goto out;
1037
1038 /*
1039 * Check free inodes count before loading bitmap.
1040 */
1041 if (ext4_free_inodes_count(sb, gdp) == 0)
1042 goto next_group;
1043
1044 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
1045 grp = ext4_get_group_info(sb, group);
1046 /*
1047 * Skip groups with already-known suspicious inode
1048 * tables
1049 */
1050 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
1051 goto next_group;
1052 }
1053
1054 brelse(inode_bitmap_bh);
1055 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
1056 /* Skip groups with suspicious inode tables */
1057 if (((!(sbi->s_mount_state & EXT4_FC_REPLAY))
1058 && EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) ||
1059 IS_ERR(inode_bitmap_bh)) {
1060 inode_bitmap_bh = NULL;
1061 goto next_group;
1062 }
1063
1064repeat_in_this_group:
1065 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
1066 if (!ret2)
1067 goto next_group;
1068
1069 if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) {
1070 ext4_error(sb, "reserved inode found cleared - "
1071 "inode=%lu", ino + 1);
1072 ext4_mark_group_bitmap_corrupted(sb, group,
1073 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
1074 goto next_group;
1075 }
1076
1077 if ((!(sbi->s_mount_state & EXT4_FC_REPLAY)) && !handle) {
1078 BUG_ON(nblocks <= 0);
1079 handle = __ext4_journal_start_sb(NULL, dir->i_sb,
1080 line_no, handle_type, nblocks, 0,
1081 ext4_trans_default_revoke_credits(sb));
1082 if (IS_ERR(handle)) {
1083 err = PTR_ERR(handle);
1084 ext4_std_error(sb, err);
1085 goto out;
1086 }
1087 }
1088 BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
1089 err = ext4_journal_get_write_access(handle, sb, inode_bitmap_bh,
1090 EXT4_JTR_NONE);
1091 if (err) {
1092 ext4_std_error(sb, err);
1093 goto out;
1094 }
1095 ext4_lock_group(sb, group);
1096 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
1097 if (ret2) {
1098 /* Someone already took the bit. Repeat the search
1099 * with lock held.
1100 */
1101 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
1102 if (ret2) {
1103 ext4_set_bit(ino, inode_bitmap_bh->b_data);
1104 ret2 = 0;
1105 } else {
1106 ret2 = 1; /* we didn't grab the inode */
1107 }
1108 }
1109 ext4_unlock_group(sb, group);
1110 ino++; /* the inode bitmap is zero-based */
1111 if (!ret2)
1112 goto got; /* we grabbed the inode! */
1113
1114 if (ino < EXT4_INODES_PER_GROUP(sb))
1115 goto repeat_in_this_group;
1116next_group:
1117 if (++group == ngroups)
1118 group = 0;
1119 }
1120 err = -ENOSPC;
1121 goto out;
1122
1123got:
1124 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
1125 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
1126 if (err) {
1127 ext4_std_error(sb, err);
1128 goto out;
1129 }
1130
1131 BUFFER_TRACE(group_desc_bh, "get_write_access");
1132 err = ext4_journal_get_write_access(handle, sb, group_desc_bh,
1133 EXT4_JTR_NONE);
1134 if (err) {
1135 ext4_std_error(sb, err);
1136 goto out;
1137 }
1138
1139 /* We may have to initialize the block bitmap if it isn't already */
1140 if (ext4_has_group_desc_csum(sb) &&
1141 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
1142 struct buffer_head *block_bitmap_bh;
1143
1144 block_bitmap_bh = ext4_read_block_bitmap(sb, group);
1145 if (IS_ERR(block_bitmap_bh)) {
1146 err = PTR_ERR(block_bitmap_bh);
1147 goto out;
1148 }
1149 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
1150 err = ext4_journal_get_write_access(handle, sb, block_bitmap_bh,
1151 EXT4_JTR_NONE);
1152 if (err) {
1153 brelse(block_bitmap_bh);
1154 ext4_std_error(sb, err);
1155 goto out;
1156 }
1157
1158 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
1159 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
1160
1161 /* recheck and clear flag under lock if we still need to */
1162 ext4_lock_group(sb, group);
1163 if (ext4_has_group_desc_csum(sb) &&
1164 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
1165 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
1166 ext4_free_group_clusters_set(sb, gdp,
1167 ext4_free_clusters_after_init(sb, group, gdp));
1168 ext4_block_bitmap_csum_set(sb, group, gdp,
1169 block_bitmap_bh);
1170 ext4_group_desc_csum_set(sb, group, gdp);
1171 }
1172 ext4_unlock_group(sb, group);
1173 brelse(block_bitmap_bh);
1174
1175 if (err) {
1176 ext4_std_error(sb, err);
1177 goto out;
1178 }
1179 }
1180
1181 /* Update the relevant bg descriptor fields */
1182 if (ext4_has_group_desc_csum(sb)) {
1183 int free;
1184 struct ext4_group_info *grp = NULL;
1185
1186 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
1187 grp = ext4_get_group_info(sb, group);
1188 down_read(&grp->alloc_sem); /*
1189 * protect vs itable
1190 * lazyinit
1191 */
1192 }
1193 ext4_lock_group(sb, group); /* while we modify the bg desc */
1194 free = EXT4_INODES_PER_GROUP(sb) -
1195 ext4_itable_unused_count(sb, gdp);
1196 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
1197 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
1198 free = 0;
1199 }
1200 /*
1201 * Check the relative inode number against the last used
1202 * relative inode number in this group. if it is greater
1203 * we need to update the bg_itable_unused count
1204 */
1205 if (ino > free)
1206 ext4_itable_unused_set(sb, gdp,
1207 (EXT4_INODES_PER_GROUP(sb) - ino));
1208 if (!(sbi->s_mount_state & EXT4_FC_REPLAY))
1209 up_read(&grp->alloc_sem);
1210 } else {
1211 ext4_lock_group(sb, group);
1212 }
1213
1214 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
1215 if (S_ISDIR(mode)) {
1216 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
1217 if (sbi->s_log_groups_per_flex) {
1218 ext4_group_t f = ext4_flex_group(sbi, group);
1219
1220 atomic_inc(&sbi_array_rcu_deref(sbi, s_flex_groups,
1221 f)->used_dirs);
1222 }
1223 }
1224 if (ext4_has_group_desc_csum(sb)) {
1225 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
1226 EXT4_INODES_PER_GROUP(sb) / 8);
1227 ext4_group_desc_csum_set(sb, group, gdp);
1228 }
1229 ext4_unlock_group(sb, group);
1230
1231 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
1232 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
1233 if (err) {
1234 ext4_std_error(sb, err);
1235 goto out;
1236 }
1237
1238 percpu_counter_dec(&sbi->s_freeinodes_counter);
1239 if (S_ISDIR(mode))
1240 percpu_counter_inc(&sbi->s_dirs_counter);
1241
1242 if (sbi->s_log_groups_per_flex) {
1243 flex_group = ext4_flex_group(sbi, group);
1244 atomic_dec(&sbi_array_rcu_deref(sbi, s_flex_groups,
1245 flex_group)->free_inodes);
1246 }
1247
1248 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
1249 /* This is the optimal IO size (for stat), not the fs block size */
1250 inode->i_blocks = 0;
1251 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1252 ei->i_crtime = inode->i_mtime;
1253
1254 memset(ei->i_data, 0, sizeof(ei->i_data));
1255 ei->i_dir_start_lookup = 0;
1256 ei->i_disksize = 0;
1257
1258 /* Don't inherit extent flag from directory, amongst others. */
1259 ei->i_flags =
1260 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
1261 ei->i_flags |= i_flags;
1262 ei->i_file_acl = 0;
1263 ei->i_dtime = 0;
1264 ei->i_block_group = group;
1265 ei->i_last_alloc_group = ~0;
1266
1267 ext4_set_inode_flags(inode, true);
1268 if (IS_DIRSYNC(inode))
1269 ext4_handle_sync(handle);
1270 if (insert_inode_locked(inode) < 0) {
1271 /*
1272 * Likely a bitmap corruption causing inode to be allocated
1273 * twice.
1274 */
1275 err = -EIO;
1276 ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
1277 inode->i_ino);
1278 ext4_mark_group_bitmap_corrupted(sb, group,
1279 EXT4_GROUP_INFO_IBITMAP_CORRUPT);
1280 goto out;
1281 }
1282 inode->i_generation = get_random_u32();
1283
1284 /* Precompute checksum seed for inode metadata */
1285 if (ext4_has_metadata_csum(sb)) {
1286 __u32 csum;
1287 __le32 inum = cpu_to_le32(inode->i_ino);
1288 __le32 gen = cpu_to_le32(inode->i_generation);
1289 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
1290 sizeof(inum));
1291 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
1292 sizeof(gen));
1293 }
1294
1295 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1296 ext4_set_inode_state(inode, EXT4_STATE_NEW);
1297
1298 ei->i_extra_isize = sbi->s_want_extra_isize;
1299 ei->i_inline_off = 0;
1300 if (ext4_has_feature_inline_data(sb) &&
1301 (!(ei->i_flags & EXT4_DAX_FL) || S_ISDIR(mode)))
1302 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1303 ret = inode;
1304 err = dquot_alloc_inode(inode);
1305 if (err)
1306 goto fail_drop;
1307
1308 /*
1309 * Since the encryption xattr will always be unique, create it first so
1310 * that it's less likely to end up in an external xattr block and
1311 * prevent its deduplication.
1312 */
1313 if (encrypt) {
1314 err = fscrypt_set_context(inode, handle);
1315 if (err)
1316 goto fail_free_drop;
1317 }
1318
1319 if (!(ei->i_flags & EXT4_EA_INODE_FL)) {
1320 err = ext4_init_acl(handle, inode, dir);
1321 if (err)
1322 goto fail_free_drop;
1323
1324 err = ext4_init_security(handle, inode, dir, qstr);
1325 if (err)
1326 goto fail_free_drop;
1327 }
1328
1329 if (ext4_has_feature_extents(sb)) {
1330 /* set extent flag only for directory, file and normal symlink*/
1331 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1332 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1333 ext4_ext_tree_init(handle, inode);
1334 }
1335 }
1336
1337 if (ext4_handle_valid(handle)) {
1338 ei->i_sync_tid = handle->h_transaction->t_tid;
1339 ei->i_datasync_tid = handle->h_transaction->t_tid;
1340 }
1341
1342 err = ext4_mark_inode_dirty(handle, inode);
1343 if (err) {
1344 ext4_std_error(sb, err);
1345 goto fail_free_drop;
1346 }
1347
1348 ext4_debug("allocating inode %lu\n", inode->i_ino);
1349 trace_ext4_allocate_inode(inode, dir, mode);
1350 brelse(inode_bitmap_bh);
1351 return ret;
1352
1353fail_free_drop:
1354 dquot_free_inode(inode);
1355fail_drop:
1356 clear_nlink(inode);
1357 unlock_new_inode(inode);
1358out:
1359 dquot_drop(inode);
1360 inode->i_flags |= S_NOQUOTA;
1361 iput(inode);
1362 brelse(inode_bitmap_bh);
1363 return ERR_PTR(err);
1364}
1365
1366/* Verify that we are loading a valid orphan from disk */
1367struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1368{
1369 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1370 ext4_group_t block_group;
1371 int bit;
1372 struct buffer_head *bitmap_bh = NULL;
1373 struct inode *inode = NULL;
1374 int err = -EFSCORRUPTED;
1375
1376 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino)
1377 goto bad_orphan;
1378
1379 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1380 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1381 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1382 if (IS_ERR(bitmap_bh))
1383 return ERR_CAST(bitmap_bh);
1384
1385 /* Having the inode bit set should be a 100% indicator that this
1386 * is a valid orphan (no e2fsck run on fs). Orphans also include
1387 * inodes that were being truncated, so we can't check i_nlink==0.
1388 */
1389 if (!ext4_test_bit(bit, bitmap_bh->b_data))
1390 goto bad_orphan;
1391
1392 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1393 if (IS_ERR(inode)) {
1394 err = PTR_ERR(inode);
1395 ext4_error_err(sb, -err,
1396 "couldn't read orphan inode %lu (err %d)",
1397 ino, err);
1398 brelse(bitmap_bh);
1399 return inode;
1400 }
1401
1402 /*
1403 * If the orphans has i_nlinks > 0 then it should be able to
1404 * be truncated, otherwise it won't be removed from the orphan
1405 * list during processing and an infinite loop will result.
1406 * Similarly, it must not be a bad inode.
1407 */
1408 if ((inode->i_nlink && !ext4_can_truncate(inode)) ||
1409 is_bad_inode(inode))
1410 goto bad_orphan;
1411
1412 if (NEXT_ORPHAN(inode) > max_ino)
1413 goto bad_orphan;
1414 brelse(bitmap_bh);
1415 return inode;
1416
1417bad_orphan:
1418 ext4_error(sb, "bad orphan inode %lu", ino);
1419 if (bitmap_bh)
1420 printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1421 bit, (unsigned long long)bitmap_bh->b_blocknr,
1422 ext4_test_bit(bit, bitmap_bh->b_data));
1423 if (inode) {
1424 printk(KERN_ERR "is_bad_inode(inode)=%d\n",
1425 is_bad_inode(inode));
1426 printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n",
1427 NEXT_ORPHAN(inode));
1428 printk(KERN_ERR "max_ino=%lu\n", max_ino);
1429 printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink);
1430 /* Avoid freeing blocks if we got a bad deleted inode */
1431 if (inode->i_nlink == 0)
1432 inode->i_blocks = 0;
1433 iput(inode);
1434 }
1435 brelse(bitmap_bh);
1436 return ERR_PTR(err);
1437}
1438
1439unsigned long ext4_count_free_inodes(struct super_block *sb)
1440{
1441 unsigned long desc_count;
1442 struct ext4_group_desc *gdp;
1443 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1444#ifdef EXT4FS_DEBUG
1445 struct ext4_super_block *es;
1446 unsigned long bitmap_count, x;
1447 struct buffer_head *bitmap_bh = NULL;
1448
1449 es = EXT4_SB(sb)->s_es;
1450 desc_count = 0;
1451 bitmap_count = 0;
1452 gdp = NULL;
1453 for (i = 0; i < ngroups; i++) {
1454 gdp = ext4_get_group_desc(sb, i, NULL);
1455 if (!gdp)
1456 continue;
1457 desc_count += ext4_free_inodes_count(sb, gdp);
1458 brelse(bitmap_bh);
1459 bitmap_bh = ext4_read_inode_bitmap(sb, i);
1460 if (IS_ERR(bitmap_bh)) {
1461 bitmap_bh = NULL;
1462 continue;
1463 }
1464
1465 x = ext4_count_free(bitmap_bh->b_data,
1466 EXT4_INODES_PER_GROUP(sb) / 8);
1467 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1468 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1469 bitmap_count += x;
1470 }
1471 brelse(bitmap_bh);
1472 printk(KERN_DEBUG "ext4_count_free_inodes: "
1473 "stored = %u, computed = %lu, %lu\n",
1474 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1475 return desc_count;
1476#else
1477 desc_count = 0;
1478 for (i = 0; i < ngroups; i++) {
1479 gdp = ext4_get_group_desc(sb, i, NULL);
1480 if (!gdp)
1481 continue;
1482 desc_count += ext4_free_inodes_count(sb, gdp);
1483 cond_resched();
1484 }
1485 return desc_count;
1486#endif
1487}
1488
1489/* Called at mount-time, super-block is locked */
1490unsigned long ext4_count_dirs(struct super_block * sb)
1491{
1492 unsigned long count = 0;
1493 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1494
1495 for (i = 0; i < ngroups; i++) {
1496 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1497 if (!gdp)
1498 continue;
1499 count += ext4_used_dirs_count(sb, gdp);
1500 }
1501 return count;
1502}
1503
1504/*
1505 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1506 * inode table. Must be called without any spinlock held. The only place
1507 * where it is called from on active part of filesystem is ext4lazyinit
1508 * thread, so we do not need any special locks, however we have to prevent
1509 * inode allocation from the current group, so we take alloc_sem lock, to
1510 * block ext4_new_inode() until we are finished.
1511 */
1512int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1513 int barrier)
1514{
1515 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1516 struct ext4_sb_info *sbi = EXT4_SB(sb);
1517 struct ext4_group_desc *gdp = NULL;
1518 struct buffer_head *group_desc_bh;
1519 handle_t *handle;
1520 ext4_fsblk_t blk;
1521 int num, ret = 0, used_blks = 0;
1522 unsigned long used_inos = 0;
1523
1524 /* This should not happen, but just to be sure check this */
1525 if (sb_rdonly(sb)) {
1526 ret = 1;
1527 goto out;
1528 }
1529
1530 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1531 if (!gdp)
1532 goto out;
1533
1534 /*
1535 * We do not need to lock this, because we are the only one
1536 * handling this flag.
1537 */
1538 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1539 goto out;
1540
1541 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1542 if (IS_ERR(handle)) {
1543 ret = PTR_ERR(handle);
1544 goto out;
1545 }
1546
1547 down_write(&grp->alloc_sem);
1548 /*
1549 * If inode bitmap was already initialized there may be some
1550 * used inodes so we need to skip blocks with used inodes in
1551 * inode table.
1552 */
1553 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) {
1554 used_inos = EXT4_INODES_PER_GROUP(sb) -
1555 ext4_itable_unused_count(sb, gdp);
1556 used_blks = DIV_ROUND_UP(used_inos, sbi->s_inodes_per_block);
1557
1558 /* Bogus inode unused count? */
1559 if (used_blks < 0 || used_blks > sbi->s_itb_per_group) {
1560 ext4_error(sb, "Something is wrong with group %u: "
1561 "used itable blocks: %d; "
1562 "itable unused count: %u",
1563 group, used_blks,
1564 ext4_itable_unused_count(sb, gdp));
1565 ret = 1;
1566 goto err_out;
1567 }
1568
1569 used_inos += group * EXT4_INODES_PER_GROUP(sb);
1570 /*
1571 * Are there some uninitialized inodes in the inode table
1572 * before the first normal inode?
1573 */
1574 if ((used_blks != sbi->s_itb_per_group) &&
1575 (used_inos < EXT4_FIRST_INO(sb))) {
1576 ext4_error(sb, "Something is wrong with group %u: "
1577 "itable unused count: %u; "
1578 "itables initialized count: %ld",
1579 group, ext4_itable_unused_count(sb, gdp),
1580 used_inos);
1581 ret = 1;
1582 goto err_out;
1583 }
1584 }
1585
1586 blk = ext4_inode_table(sb, gdp) + used_blks;
1587 num = sbi->s_itb_per_group - used_blks;
1588
1589 BUFFER_TRACE(group_desc_bh, "get_write_access");
1590 ret = ext4_journal_get_write_access(handle, sb, group_desc_bh,
1591 EXT4_JTR_NONE);
1592 if (ret)
1593 goto err_out;
1594
1595 /*
1596 * Skip zeroout if the inode table is full. But we set the ZEROED
1597 * flag anyway, because obviously, when it is full it does not need
1598 * further zeroing.
1599 */
1600 if (unlikely(num == 0))
1601 goto skip_zeroout;
1602
1603 ext4_debug("going to zero out inode table in group %d\n",
1604 group);
1605 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1606 if (ret < 0)
1607 goto err_out;
1608 if (barrier)
1609 blkdev_issue_flush(sb->s_bdev);
1610
1611skip_zeroout:
1612 ext4_lock_group(sb, group);
1613 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1614 ext4_group_desc_csum_set(sb, group, gdp);
1615 ext4_unlock_group(sb, group);
1616
1617 BUFFER_TRACE(group_desc_bh,
1618 "call ext4_handle_dirty_metadata");
1619 ret = ext4_handle_dirty_metadata(handle, NULL,
1620 group_desc_bh);
1621
1622err_out:
1623 up_write(&grp->alloc_sem);
1624 ext4_journal_stop(handle);
1625out:
1626 return ret;
1627}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/ext4/ialloc.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * BSD ufs-inspired inode and directory allocation by
11 * Stephen Tweedie (sct@redhat.com), 1993
12 * Big-endian to little-endian byte-swapping/bitmaps by
13 * David S. Miller (davem@caip.rutgers.edu), 1995
14 */
15
16#include <linux/time.h>
17#include <linux/fs.h>
18#include <linux/stat.h>
19#include <linux/string.h>
20#include <linux/quotaops.h>
21#include <linux/buffer_head.h>
22#include <linux/random.h>
23#include <linux/bitops.h>
24#include <linux/blkdev.h>
25#include <linux/cred.h>
26
27#include <asm/byteorder.h>
28
29#include "ext4.h"
30#include "ext4_jbd2.h"
31#include "xattr.h"
32#include "acl.h"
33
34#include <trace/events/ext4.h>
35
36/*
37 * ialloc.c contains the inodes allocation and deallocation routines
38 */
39
40/*
41 * The free inodes are managed by bitmaps. A file system contains several
42 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
43 * block for inodes, N blocks for the inode table and data blocks.
44 *
45 * The file system contains group descriptors which are located after the
46 * super block. Each descriptor contains the number of the bitmap block and
47 * the free blocks count in the block.
48 */
49
50/*
51 * To avoid calling the atomic setbit hundreds or thousands of times, we only
52 * need to use it within a single byte (to ensure we get endianness right).
53 * We can use memset for the rest of the bitmap as there are no other users.
54 */
55void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
56{
57 int i;
58
59 if (start_bit >= end_bit)
60 return;
61
62 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
63 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
64 ext4_set_bit(i, bitmap);
65 if (i < end_bit)
66 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
67}
68
69void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
70{
71 if (uptodate) {
72 set_buffer_uptodate(bh);
73 set_bitmap_uptodate(bh);
74 }
75 unlock_buffer(bh);
76 put_bh(bh);
77}
78
79static int ext4_validate_inode_bitmap(struct super_block *sb,
80 struct ext4_group_desc *desc,
81 ext4_group_t block_group,
82 struct buffer_head *bh)
83{
84 ext4_fsblk_t blk;
85 struct ext4_group_info *grp = ext4_get_group_info(sb, block_group);
86 struct ext4_sb_info *sbi = EXT4_SB(sb);
87
88 if (buffer_verified(bh))
89 return 0;
90 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
91 return -EFSCORRUPTED;
92
93 ext4_lock_group(sb, block_group);
94 blk = ext4_inode_bitmap(sb, desc);
95 if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
96 EXT4_INODES_PER_GROUP(sb) / 8)) {
97 ext4_unlock_group(sb, block_group);
98 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
99 "inode_bitmap = %llu", block_group, blk);
100 grp = ext4_get_group_info(sb, block_group);
101 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
102 int count;
103 count = ext4_free_inodes_count(sb, desc);
104 percpu_counter_sub(&sbi->s_freeinodes_counter,
105 count);
106 }
107 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
108 return -EFSBADCRC;
109 }
110 set_buffer_verified(bh);
111 ext4_unlock_group(sb, block_group);
112 return 0;
113}
114
115/*
116 * Read the inode allocation bitmap for a given block_group, reading
117 * into the specified slot in the superblock's bitmap cache.
118 *
119 * Return buffer_head of bitmap on success or NULL.
120 */
121static struct buffer_head *
122ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
123{
124 struct ext4_group_desc *desc;
125 struct ext4_sb_info *sbi = EXT4_SB(sb);
126 struct buffer_head *bh = NULL;
127 ext4_fsblk_t bitmap_blk;
128 int err;
129
130 desc = ext4_get_group_desc(sb, block_group, NULL);
131 if (!desc)
132 return ERR_PTR(-EFSCORRUPTED);
133
134 bitmap_blk = ext4_inode_bitmap(sb, desc);
135 if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) ||
136 (bitmap_blk >= ext4_blocks_count(sbi->s_es))) {
137 ext4_error(sb, "Invalid inode bitmap blk %llu in "
138 "block_group %u", bitmap_blk, block_group);
139 return ERR_PTR(-EFSCORRUPTED);
140 }
141 bh = sb_getblk(sb, bitmap_blk);
142 if (unlikely(!bh)) {
143 ext4_error(sb, "Cannot read inode bitmap - "
144 "block_group = %u, inode_bitmap = %llu",
145 block_group, bitmap_blk);
146 return ERR_PTR(-EIO);
147 }
148 if (bitmap_uptodate(bh))
149 goto verify;
150
151 lock_buffer(bh);
152 if (bitmap_uptodate(bh)) {
153 unlock_buffer(bh);
154 goto verify;
155 }
156
157 ext4_lock_group(sb, block_group);
158 if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
159 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
160 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb),
161 sb->s_blocksize * 8, bh->b_data);
162 set_bitmap_uptodate(bh);
163 set_buffer_uptodate(bh);
164 set_buffer_verified(bh);
165 ext4_unlock_group(sb, block_group);
166 unlock_buffer(bh);
167 return bh;
168 }
169 ext4_unlock_group(sb, block_group);
170
171 if (buffer_uptodate(bh)) {
172 /*
173 * if not uninit if bh is uptodate,
174 * bitmap is also uptodate
175 */
176 set_bitmap_uptodate(bh);
177 unlock_buffer(bh);
178 goto verify;
179 }
180 /*
181 * submit the buffer_head for reading
182 */
183 trace_ext4_load_inode_bitmap(sb, block_group);
184 bh->b_end_io = ext4_end_bitmap_read;
185 get_bh(bh);
186 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
187 wait_on_buffer(bh);
188 if (!buffer_uptodate(bh)) {
189 put_bh(bh);
190 ext4_error(sb, "Cannot read inode bitmap - "
191 "block_group = %u, inode_bitmap = %llu",
192 block_group, bitmap_blk);
193 return ERR_PTR(-EIO);
194 }
195
196verify:
197 err = ext4_validate_inode_bitmap(sb, desc, block_group, bh);
198 if (err)
199 goto out;
200 return bh;
201out:
202 put_bh(bh);
203 return ERR_PTR(err);
204}
205
206/*
207 * NOTE! When we get the inode, we're the only people
208 * that have access to it, and as such there are no
209 * race conditions we have to worry about. The inode
210 * is not on the hash-lists, and it cannot be reached
211 * through the filesystem because the directory entry
212 * has been deleted earlier.
213 *
214 * HOWEVER: we must make sure that we get no aliases,
215 * which means that we have to call "clear_inode()"
216 * _before_ we mark the inode not in use in the inode
217 * bitmaps. Otherwise a newly created file might use
218 * the same inode number (not actually the same pointer
219 * though), and then we'd have two inodes sharing the
220 * same inode number and space on the harddisk.
221 */
222void ext4_free_inode(handle_t *handle, struct inode *inode)
223{
224 struct super_block *sb = inode->i_sb;
225 int is_directory;
226 unsigned long ino;
227 struct buffer_head *bitmap_bh = NULL;
228 struct buffer_head *bh2;
229 ext4_group_t block_group;
230 unsigned long bit;
231 struct ext4_group_desc *gdp;
232 struct ext4_super_block *es;
233 struct ext4_sb_info *sbi;
234 int fatal = 0, err, count, cleared;
235 struct ext4_group_info *grp;
236
237 if (!sb) {
238 printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
239 "nonexistent device\n", __func__, __LINE__);
240 return;
241 }
242 if (atomic_read(&inode->i_count) > 1) {
243 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
244 __func__, __LINE__, inode->i_ino,
245 atomic_read(&inode->i_count));
246 return;
247 }
248 if (inode->i_nlink) {
249 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
250 __func__, __LINE__, inode->i_ino, inode->i_nlink);
251 return;
252 }
253 sbi = EXT4_SB(sb);
254
255 ino = inode->i_ino;
256 ext4_debug("freeing inode %lu\n", ino);
257 trace_ext4_free_inode(inode);
258
259 /*
260 * Note: we must free any quota before locking the superblock,
261 * as writing the quota to disk may need the lock as well.
262 */
263 dquot_initialize(inode);
264 dquot_free_inode(inode);
265 dquot_drop(inode);
266
267 is_directory = S_ISDIR(inode->i_mode);
268
269 /* Do this BEFORE marking the inode not in use or returning an error */
270 ext4_clear_inode(inode);
271
272 es = sbi->s_es;
273 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
274 ext4_error(sb, "reserved or nonexistent inode %lu", ino);
275 goto error_return;
276 }
277 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
278 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
279 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
280 /* Don't bother if the inode bitmap is corrupt. */
281 grp = ext4_get_group_info(sb, block_group);
282 if (IS_ERR(bitmap_bh)) {
283 fatal = PTR_ERR(bitmap_bh);
284 bitmap_bh = NULL;
285 goto error_return;
286 }
287 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) {
288 fatal = -EFSCORRUPTED;
289 goto error_return;
290 }
291
292 BUFFER_TRACE(bitmap_bh, "get_write_access");
293 fatal = ext4_journal_get_write_access(handle, bitmap_bh);
294 if (fatal)
295 goto error_return;
296
297 fatal = -ESRCH;
298 gdp = ext4_get_group_desc(sb, block_group, &bh2);
299 if (gdp) {
300 BUFFER_TRACE(bh2, "get_write_access");
301 fatal = ext4_journal_get_write_access(handle, bh2);
302 }
303 ext4_lock_group(sb, block_group);
304 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
305 if (fatal || !cleared) {
306 ext4_unlock_group(sb, block_group);
307 goto out;
308 }
309
310 count = ext4_free_inodes_count(sb, gdp) + 1;
311 ext4_free_inodes_set(sb, gdp, count);
312 if (is_directory) {
313 count = ext4_used_dirs_count(sb, gdp) - 1;
314 ext4_used_dirs_set(sb, gdp, count);
315 percpu_counter_dec(&sbi->s_dirs_counter);
316 }
317 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
318 EXT4_INODES_PER_GROUP(sb) / 8);
319 ext4_group_desc_csum_set(sb, block_group, gdp);
320 ext4_unlock_group(sb, block_group);
321
322 percpu_counter_inc(&sbi->s_freeinodes_counter);
323 if (sbi->s_log_groups_per_flex) {
324 ext4_group_t f = ext4_flex_group(sbi, block_group);
325
326 atomic_inc(&sbi->s_flex_groups[f].free_inodes);
327 if (is_directory)
328 atomic_dec(&sbi->s_flex_groups[f].used_dirs);
329 }
330 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
331 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
332out:
333 if (cleared) {
334 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
335 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
336 if (!fatal)
337 fatal = err;
338 } else {
339 ext4_error(sb, "bit already cleared for inode %lu", ino);
340 if (gdp && !EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
341 int count;
342 count = ext4_free_inodes_count(sb, gdp);
343 percpu_counter_sub(&sbi->s_freeinodes_counter,
344 count);
345 }
346 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
347 }
348
349error_return:
350 brelse(bitmap_bh);
351 ext4_std_error(sb, fatal);
352}
353
354struct orlov_stats {
355 __u64 free_clusters;
356 __u32 free_inodes;
357 __u32 used_dirs;
358};
359
360/*
361 * Helper function for Orlov's allocator; returns critical information
362 * for a particular block group or flex_bg. If flex_size is 1, then g
363 * is a block group number; otherwise it is flex_bg number.
364 */
365static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
366 int flex_size, struct orlov_stats *stats)
367{
368 struct ext4_group_desc *desc;
369 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
370
371 if (flex_size > 1) {
372 stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
373 stats->free_clusters = atomic64_read(&flex_group[g].free_clusters);
374 stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
375 return;
376 }
377
378 desc = ext4_get_group_desc(sb, g, NULL);
379 if (desc) {
380 stats->free_inodes = ext4_free_inodes_count(sb, desc);
381 stats->free_clusters = ext4_free_group_clusters(sb, desc);
382 stats->used_dirs = ext4_used_dirs_count(sb, desc);
383 } else {
384 stats->free_inodes = 0;
385 stats->free_clusters = 0;
386 stats->used_dirs = 0;
387 }
388}
389
390/*
391 * Orlov's allocator for directories.
392 *
393 * We always try to spread first-level directories.
394 *
395 * If there are blockgroups with both free inodes and free blocks counts
396 * not worse than average we return one with smallest directory count.
397 * Otherwise we simply return a random group.
398 *
399 * For the rest rules look so:
400 *
401 * It's OK to put directory into a group unless
402 * it has too many directories already (max_dirs) or
403 * it has too few free inodes left (min_inodes) or
404 * it has too few free blocks left (min_blocks) or
405 * Parent's group is preferred, if it doesn't satisfy these
406 * conditions we search cyclically through the rest. If none
407 * of the groups look good we just look for a group with more
408 * free inodes than average (starting at parent's group).
409 */
410
411static int find_group_orlov(struct super_block *sb, struct inode *parent,
412 ext4_group_t *group, umode_t mode,
413 const struct qstr *qstr)
414{
415 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
416 struct ext4_sb_info *sbi = EXT4_SB(sb);
417 ext4_group_t real_ngroups = ext4_get_groups_count(sb);
418 int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
419 unsigned int freei, avefreei, grp_free;
420 ext4_fsblk_t freeb, avefreec;
421 unsigned int ndirs;
422 int max_dirs, min_inodes;
423 ext4_grpblk_t min_clusters;
424 ext4_group_t i, grp, g, ngroups;
425 struct ext4_group_desc *desc;
426 struct orlov_stats stats;
427 int flex_size = ext4_flex_bg_size(sbi);
428 struct dx_hash_info hinfo;
429
430 ngroups = real_ngroups;
431 if (flex_size > 1) {
432 ngroups = (real_ngroups + flex_size - 1) >>
433 sbi->s_log_groups_per_flex;
434 parent_group >>= sbi->s_log_groups_per_flex;
435 }
436
437 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
438 avefreei = freei / ngroups;
439 freeb = EXT4_C2B(sbi,
440 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
441 avefreec = freeb;
442 do_div(avefreec, ngroups);
443 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
444
445 if (S_ISDIR(mode) &&
446 ((parent == d_inode(sb->s_root)) ||
447 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
448 int best_ndir = inodes_per_group;
449 int ret = -1;
450
451 if (qstr) {
452 hinfo.hash_version = DX_HASH_HALF_MD4;
453 hinfo.seed = sbi->s_hash_seed;
454 ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
455 grp = hinfo.hash;
456 } else
457 grp = prandom_u32();
458 parent_group = (unsigned)grp % ngroups;
459 for (i = 0; i < ngroups; i++) {
460 g = (parent_group + i) % ngroups;
461 get_orlov_stats(sb, g, flex_size, &stats);
462 if (!stats.free_inodes)
463 continue;
464 if (stats.used_dirs >= best_ndir)
465 continue;
466 if (stats.free_inodes < avefreei)
467 continue;
468 if (stats.free_clusters < avefreec)
469 continue;
470 grp = g;
471 ret = 0;
472 best_ndir = stats.used_dirs;
473 }
474 if (ret)
475 goto fallback;
476 found_flex_bg:
477 if (flex_size == 1) {
478 *group = grp;
479 return 0;
480 }
481
482 /*
483 * We pack inodes at the beginning of the flexgroup's
484 * inode tables. Block allocation decisions will do
485 * something similar, although regular files will
486 * start at 2nd block group of the flexgroup. See
487 * ext4_ext_find_goal() and ext4_find_near().
488 */
489 grp *= flex_size;
490 for (i = 0; i < flex_size; i++) {
491 if (grp+i >= real_ngroups)
492 break;
493 desc = ext4_get_group_desc(sb, grp+i, NULL);
494 if (desc && ext4_free_inodes_count(sb, desc)) {
495 *group = grp+i;
496 return 0;
497 }
498 }
499 goto fallback;
500 }
501
502 max_dirs = ndirs / ngroups + inodes_per_group / 16;
503 min_inodes = avefreei - inodes_per_group*flex_size / 4;
504 if (min_inodes < 1)
505 min_inodes = 1;
506 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
507
508 /*
509 * Start looking in the flex group where we last allocated an
510 * inode for this parent directory
511 */
512 if (EXT4_I(parent)->i_last_alloc_group != ~0) {
513 parent_group = EXT4_I(parent)->i_last_alloc_group;
514 if (flex_size > 1)
515 parent_group >>= sbi->s_log_groups_per_flex;
516 }
517
518 for (i = 0; i < ngroups; i++) {
519 grp = (parent_group + i) % ngroups;
520 get_orlov_stats(sb, grp, flex_size, &stats);
521 if (stats.used_dirs >= max_dirs)
522 continue;
523 if (stats.free_inodes < min_inodes)
524 continue;
525 if (stats.free_clusters < min_clusters)
526 continue;
527 goto found_flex_bg;
528 }
529
530fallback:
531 ngroups = real_ngroups;
532 avefreei = freei / ngroups;
533fallback_retry:
534 parent_group = EXT4_I(parent)->i_block_group;
535 for (i = 0; i < ngroups; i++) {
536 grp = (parent_group + i) % ngroups;
537 desc = ext4_get_group_desc(sb, grp, NULL);
538 if (desc) {
539 grp_free = ext4_free_inodes_count(sb, desc);
540 if (grp_free && grp_free >= avefreei) {
541 *group = grp;
542 return 0;
543 }
544 }
545 }
546
547 if (avefreei) {
548 /*
549 * The free-inodes counter is approximate, and for really small
550 * filesystems the above test can fail to find any blockgroups
551 */
552 avefreei = 0;
553 goto fallback_retry;
554 }
555
556 return -1;
557}
558
559static int find_group_other(struct super_block *sb, struct inode *parent,
560 ext4_group_t *group, umode_t mode)
561{
562 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
563 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
564 struct ext4_group_desc *desc;
565 int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
566
567 /*
568 * Try to place the inode is the same flex group as its
569 * parent. If we can't find space, use the Orlov algorithm to
570 * find another flex group, and store that information in the
571 * parent directory's inode information so that use that flex
572 * group for future allocations.
573 */
574 if (flex_size > 1) {
575 int retry = 0;
576
577 try_again:
578 parent_group &= ~(flex_size-1);
579 last = parent_group + flex_size;
580 if (last > ngroups)
581 last = ngroups;
582 for (i = parent_group; i < last; i++) {
583 desc = ext4_get_group_desc(sb, i, NULL);
584 if (desc && ext4_free_inodes_count(sb, desc)) {
585 *group = i;
586 return 0;
587 }
588 }
589 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
590 retry = 1;
591 parent_group = EXT4_I(parent)->i_last_alloc_group;
592 goto try_again;
593 }
594 /*
595 * If this didn't work, use the Orlov search algorithm
596 * to find a new flex group; we pass in the mode to
597 * avoid the topdir algorithms.
598 */
599 *group = parent_group + flex_size;
600 if (*group > ngroups)
601 *group = 0;
602 return find_group_orlov(sb, parent, group, mode, NULL);
603 }
604
605 /*
606 * Try to place the inode in its parent directory
607 */
608 *group = parent_group;
609 desc = ext4_get_group_desc(sb, *group, NULL);
610 if (desc && ext4_free_inodes_count(sb, desc) &&
611 ext4_free_group_clusters(sb, desc))
612 return 0;
613
614 /*
615 * We're going to place this inode in a different blockgroup from its
616 * parent. We want to cause files in a common directory to all land in
617 * the same blockgroup. But we want files which are in a different
618 * directory which shares a blockgroup with our parent to land in a
619 * different blockgroup.
620 *
621 * So add our directory's i_ino into the starting point for the hash.
622 */
623 *group = (*group + parent->i_ino) % ngroups;
624
625 /*
626 * Use a quadratic hash to find a group with a free inode and some free
627 * blocks.
628 */
629 for (i = 1; i < ngroups; i <<= 1) {
630 *group += i;
631 if (*group >= ngroups)
632 *group -= ngroups;
633 desc = ext4_get_group_desc(sb, *group, NULL);
634 if (desc && ext4_free_inodes_count(sb, desc) &&
635 ext4_free_group_clusters(sb, desc))
636 return 0;
637 }
638
639 /*
640 * That failed: try linear search for a free inode, even if that group
641 * has no free blocks.
642 */
643 *group = parent_group;
644 for (i = 0; i < ngroups; i++) {
645 if (++*group >= ngroups)
646 *group = 0;
647 desc = ext4_get_group_desc(sb, *group, NULL);
648 if (desc && ext4_free_inodes_count(sb, desc))
649 return 0;
650 }
651
652 return -1;
653}
654
655/*
656 * In no journal mode, if an inode has recently been deleted, we want
657 * to avoid reusing it until we're reasonably sure the inode table
658 * block has been written back to disk. (Yes, these values are
659 * somewhat arbitrary...)
660 */
661#define RECENTCY_MIN 5
662#define RECENTCY_DIRTY 300
663
664static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
665{
666 struct ext4_group_desc *gdp;
667 struct ext4_inode *raw_inode;
668 struct buffer_head *bh;
669 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
670 int offset, ret = 0;
671 int recentcy = RECENTCY_MIN;
672 u32 dtime, now;
673
674 gdp = ext4_get_group_desc(sb, group, NULL);
675 if (unlikely(!gdp))
676 return 0;
677
678 bh = sb_find_get_block(sb, ext4_inode_table(sb, gdp) +
679 (ino / inodes_per_block));
680 if (!bh || !buffer_uptodate(bh))
681 /*
682 * If the block is not in the buffer cache, then it
683 * must have been written out.
684 */
685 goto out;
686
687 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
688 raw_inode = (struct ext4_inode *) (bh->b_data + offset);
689
690 /* i_dtime is only 32 bits on disk, but we only care about relative
691 * times in the range of a few minutes (i.e. long enough to sync a
692 * recently-deleted inode to disk), so using the low 32 bits of the
693 * clock (a 68 year range) is enough, see time_before32() */
694 dtime = le32_to_cpu(raw_inode->i_dtime);
695 now = ktime_get_real_seconds();
696 if (buffer_dirty(bh))
697 recentcy += RECENTCY_DIRTY;
698
699 if (dtime && time_before32(dtime, now) &&
700 time_before32(now, dtime + recentcy))
701 ret = 1;
702out:
703 brelse(bh);
704 return ret;
705}
706
707static int find_inode_bit(struct super_block *sb, ext4_group_t group,
708 struct buffer_head *bitmap, unsigned long *ino)
709{
710next:
711 *ino = ext4_find_next_zero_bit((unsigned long *)
712 bitmap->b_data,
713 EXT4_INODES_PER_GROUP(sb), *ino);
714 if (*ino >= EXT4_INODES_PER_GROUP(sb))
715 return 0;
716
717 if ((EXT4_SB(sb)->s_journal == NULL) &&
718 recently_deleted(sb, group, *ino)) {
719 *ino = *ino + 1;
720 if (*ino < EXT4_INODES_PER_GROUP(sb))
721 goto next;
722 return 0;
723 }
724
725 return 1;
726}
727
728/*
729 * There are two policies for allocating an inode. If the new inode is
730 * a directory, then a forward search is made for a block group with both
731 * free space and a low directory-to-inode ratio; if that fails, then of
732 * the groups with above-average free space, that group with the fewest
733 * directories already is chosen.
734 *
735 * For other inodes, search forward from the parent directory's block
736 * group to find a free inode.
737 */
738struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
739 umode_t mode, const struct qstr *qstr,
740 __u32 goal, uid_t *owner, __u32 i_flags,
741 int handle_type, unsigned int line_no,
742 int nblocks)
743{
744 struct super_block *sb;
745 struct buffer_head *inode_bitmap_bh = NULL;
746 struct buffer_head *group_desc_bh;
747 ext4_group_t ngroups, group = 0;
748 unsigned long ino = 0;
749 struct inode *inode;
750 struct ext4_group_desc *gdp = NULL;
751 struct ext4_inode_info *ei;
752 struct ext4_sb_info *sbi;
753 int ret2, err;
754 struct inode *ret;
755 ext4_group_t i;
756 ext4_group_t flex_group;
757 struct ext4_group_info *grp;
758 int encrypt = 0;
759
760 /* Cannot create files in a deleted directory */
761 if (!dir || !dir->i_nlink)
762 return ERR_PTR(-EPERM);
763
764 sb = dir->i_sb;
765 sbi = EXT4_SB(sb);
766
767 if (unlikely(ext4_forced_shutdown(sbi)))
768 return ERR_PTR(-EIO);
769
770 if ((ext4_encrypted_inode(dir) || DUMMY_ENCRYPTION_ENABLED(sbi)) &&
771 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)) &&
772 !(i_flags & EXT4_EA_INODE_FL)) {
773 err = fscrypt_get_encryption_info(dir);
774 if (err)
775 return ERR_PTR(err);
776 if (!fscrypt_has_encryption_key(dir))
777 return ERR_PTR(-ENOKEY);
778 encrypt = 1;
779 }
780
781 if (!handle && sbi->s_journal && !(i_flags & EXT4_EA_INODE_FL)) {
782#ifdef CONFIG_EXT4_FS_POSIX_ACL
783 struct posix_acl *p = get_acl(dir, ACL_TYPE_DEFAULT);
784
785 if (IS_ERR(p))
786 return ERR_CAST(p);
787 if (p) {
788 int acl_size = p->a_count * sizeof(ext4_acl_entry);
789
790 nblocks += (S_ISDIR(mode) ? 2 : 1) *
791 __ext4_xattr_set_credits(sb, NULL /* inode */,
792 NULL /* block_bh */, acl_size,
793 true /* is_create */);
794 posix_acl_release(p);
795 }
796#endif
797
798#ifdef CONFIG_SECURITY
799 {
800 int num_security_xattrs = 1;
801
802#ifdef CONFIG_INTEGRITY
803 num_security_xattrs++;
804#endif
805 /*
806 * We assume that security xattrs are never
807 * more than 1k. In practice they are under
808 * 128 bytes.
809 */
810 nblocks += num_security_xattrs *
811 __ext4_xattr_set_credits(sb, NULL /* inode */,
812 NULL /* block_bh */, 1024,
813 true /* is_create */);
814 }
815#endif
816 if (encrypt)
817 nblocks += __ext4_xattr_set_credits(sb,
818 NULL /* inode */, NULL /* block_bh */,
819 FSCRYPT_SET_CONTEXT_MAX_SIZE,
820 true /* is_create */);
821 }
822
823 ngroups = ext4_get_groups_count(sb);
824 trace_ext4_request_inode(dir, mode);
825 inode = new_inode(sb);
826 if (!inode)
827 return ERR_PTR(-ENOMEM);
828 ei = EXT4_I(inode);
829
830 /*
831 * Initialize owners and quota early so that we don't have to account
832 * for quota initialization worst case in standard inode creating
833 * transaction
834 */
835 if (owner) {
836 inode->i_mode = mode;
837 i_uid_write(inode, owner[0]);
838 i_gid_write(inode, owner[1]);
839 } else if (test_opt(sb, GRPID)) {
840 inode->i_mode = mode;
841 inode->i_uid = current_fsuid();
842 inode->i_gid = dir->i_gid;
843 } else
844 inode_init_owner(inode, dir, mode);
845
846 if (ext4_has_feature_project(sb) &&
847 ext4_test_inode_flag(dir, EXT4_INODE_PROJINHERIT))
848 ei->i_projid = EXT4_I(dir)->i_projid;
849 else
850 ei->i_projid = make_kprojid(&init_user_ns, EXT4_DEF_PROJID);
851
852 err = dquot_initialize(inode);
853 if (err)
854 goto out;
855
856 if (!goal)
857 goal = sbi->s_inode_goal;
858
859 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
860 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
861 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
862 ret2 = 0;
863 goto got_group;
864 }
865
866 if (S_ISDIR(mode))
867 ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
868 else
869 ret2 = find_group_other(sb, dir, &group, mode);
870
871got_group:
872 EXT4_I(dir)->i_last_alloc_group = group;
873 err = -ENOSPC;
874 if (ret2 == -1)
875 goto out;
876
877 /*
878 * Normally we will only go through one pass of this loop,
879 * unless we get unlucky and it turns out the group we selected
880 * had its last inode grabbed by someone else.
881 */
882 for (i = 0; i < ngroups; i++, ino = 0) {
883 err = -EIO;
884
885 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
886 if (!gdp)
887 goto out;
888
889 /*
890 * Check free inodes count before loading bitmap.
891 */
892 if (ext4_free_inodes_count(sb, gdp) == 0)
893 goto next_group;
894
895 grp = ext4_get_group_info(sb, group);
896 /* Skip groups with already-known suspicious inode tables */
897 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
898 goto next_group;
899
900 brelse(inode_bitmap_bh);
901 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
902 /* Skip groups with suspicious inode tables */
903 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) ||
904 IS_ERR(inode_bitmap_bh)) {
905 inode_bitmap_bh = NULL;
906 goto next_group;
907 }
908
909repeat_in_this_group:
910 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
911 if (!ret2)
912 goto next_group;
913
914 if (group == 0 && (ino + 1) < EXT4_FIRST_INO(sb)) {
915 ext4_error(sb, "reserved inode found cleared - "
916 "inode=%lu", ino + 1);
917 goto next_group;
918 }
919
920 if (!handle) {
921 BUG_ON(nblocks <= 0);
922 handle = __ext4_journal_start_sb(dir->i_sb, line_no,
923 handle_type, nblocks,
924 0);
925 if (IS_ERR(handle)) {
926 err = PTR_ERR(handle);
927 ext4_std_error(sb, err);
928 goto out;
929 }
930 }
931 BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
932 err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
933 if (err) {
934 ext4_std_error(sb, err);
935 goto out;
936 }
937 ext4_lock_group(sb, group);
938 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
939 if (ret2) {
940 /* Someone already took the bit. Repeat the search
941 * with lock held.
942 */
943 ret2 = find_inode_bit(sb, group, inode_bitmap_bh, &ino);
944 if (ret2) {
945 ext4_set_bit(ino, inode_bitmap_bh->b_data);
946 ret2 = 0;
947 } else {
948 ret2 = 1; /* we didn't grab the inode */
949 }
950 }
951 ext4_unlock_group(sb, group);
952 ino++; /* the inode bitmap is zero-based */
953 if (!ret2)
954 goto got; /* we grabbed the inode! */
955
956 if (ino < EXT4_INODES_PER_GROUP(sb))
957 goto repeat_in_this_group;
958next_group:
959 if (++group == ngroups)
960 group = 0;
961 }
962 err = -ENOSPC;
963 goto out;
964
965got:
966 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
967 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
968 if (err) {
969 ext4_std_error(sb, err);
970 goto out;
971 }
972
973 BUFFER_TRACE(group_desc_bh, "get_write_access");
974 err = ext4_journal_get_write_access(handle, group_desc_bh);
975 if (err) {
976 ext4_std_error(sb, err);
977 goto out;
978 }
979
980 /* We may have to initialize the block bitmap if it isn't already */
981 if (ext4_has_group_desc_csum(sb) &&
982 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
983 struct buffer_head *block_bitmap_bh;
984
985 block_bitmap_bh = ext4_read_block_bitmap(sb, group);
986 if (IS_ERR(block_bitmap_bh)) {
987 err = PTR_ERR(block_bitmap_bh);
988 goto out;
989 }
990 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
991 err = ext4_journal_get_write_access(handle, block_bitmap_bh);
992 if (err) {
993 brelse(block_bitmap_bh);
994 ext4_std_error(sb, err);
995 goto out;
996 }
997
998 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
999 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
1000
1001 /* recheck and clear flag under lock if we still need to */
1002 ext4_lock_group(sb, group);
1003 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
1004 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
1005 ext4_free_group_clusters_set(sb, gdp,
1006 ext4_free_clusters_after_init(sb, group, gdp));
1007 ext4_block_bitmap_csum_set(sb, group, gdp,
1008 block_bitmap_bh);
1009 ext4_group_desc_csum_set(sb, group, gdp);
1010 }
1011 ext4_unlock_group(sb, group);
1012 brelse(block_bitmap_bh);
1013
1014 if (err) {
1015 ext4_std_error(sb, err);
1016 goto out;
1017 }
1018 }
1019
1020 /* Update the relevant bg descriptor fields */
1021 if (ext4_has_group_desc_csum(sb)) {
1022 int free;
1023 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1024
1025 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
1026 ext4_lock_group(sb, group); /* while we modify the bg desc */
1027 free = EXT4_INODES_PER_GROUP(sb) -
1028 ext4_itable_unused_count(sb, gdp);
1029 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
1030 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
1031 free = 0;
1032 }
1033 /*
1034 * Check the relative inode number against the last used
1035 * relative inode number in this group. if it is greater
1036 * we need to update the bg_itable_unused count
1037 */
1038 if (ino > free)
1039 ext4_itable_unused_set(sb, gdp,
1040 (EXT4_INODES_PER_GROUP(sb) - ino));
1041 up_read(&grp->alloc_sem);
1042 } else {
1043 ext4_lock_group(sb, group);
1044 }
1045
1046 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
1047 if (S_ISDIR(mode)) {
1048 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
1049 if (sbi->s_log_groups_per_flex) {
1050 ext4_group_t f = ext4_flex_group(sbi, group);
1051
1052 atomic_inc(&sbi->s_flex_groups[f].used_dirs);
1053 }
1054 }
1055 if (ext4_has_group_desc_csum(sb)) {
1056 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
1057 EXT4_INODES_PER_GROUP(sb) / 8);
1058 ext4_group_desc_csum_set(sb, group, gdp);
1059 }
1060 ext4_unlock_group(sb, group);
1061
1062 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
1063 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
1064 if (err) {
1065 ext4_std_error(sb, err);
1066 goto out;
1067 }
1068
1069 percpu_counter_dec(&sbi->s_freeinodes_counter);
1070 if (S_ISDIR(mode))
1071 percpu_counter_inc(&sbi->s_dirs_counter);
1072
1073 if (sbi->s_log_groups_per_flex) {
1074 flex_group = ext4_flex_group(sbi, group);
1075 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
1076 }
1077
1078 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
1079 /* This is the optimal IO size (for stat), not the fs block size */
1080 inode->i_blocks = 0;
1081 inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
1082 current_time(inode);
1083
1084 memset(ei->i_data, 0, sizeof(ei->i_data));
1085 ei->i_dir_start_lookup = 0;
1086 ei->i_disksize = 0;
1087
1088 /* Don't inherit extent flag from directory, amongst others. */
1089 ei->i_flags =
1090 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
1091 ei->i_flags |= i_flags;
1092 ei->i_file_acl = 0;
1093 ei->i_dtime = 0;
1094 ei->i_block_group = group;
1095 ei->i_last_alloc_group = ~0;
1096
1097 ext4_set_inode_flags(inode);
1098 if (IS_DIRSYNC(inode))
1099 ext4_handle_sync(handle);
1100 if (insert_inode_locked(inode) < 0) {
1101 /*
1102 * Likely a bitmap corruption causing inode to be allocated
1103 * twice.
1104 */
1105 err = -EIO;
1106 ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
1107 inode->i_ino);
1108 goto out;
1109 }
1110 inode->i_generation = prandom_u32();
1111
1112 /* Precompute checksum seed for inode metadata */
1113 if (ext4_has_metadata_csum(sb)) {
1114 __u32 csum;
1115 __le32 inum = cpu_to_le32(inode->i_ino);
1116 __le32 gen = cpu_to_le32(inode->i_generation);
1117 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
1118 sizeof(inum));
1119 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
1120 sizeof(gen));
1121 }
1122
1123 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1124 ext4_set_inode_state(inode, EXT4_STATE_NEW);
1125
1126 ei->i_extra_isize = sbi->s_want_extra_isize;
1127 ei->i_inline_off = 0;
1128 if (ext4_has_feature_inline_data(sb))
1129 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1130 ret = inode;
1131 err = dquot_alloc_inode(inode);
1132 if (err)
1133 goto fail_drop;
1134
1135 /*
1136 * Since the encryption xattr will always be unique, create it first so
1137 * that it's less likely to end up in an external xattr block and
1138 * prevent its deduplication.
1139 */
1140 if (encrypt) {
1141 err = fscrypt_inherit_context(dir, inode, handle, true);
1142 if (err)
1143 goto fail_free_drop;
1144 }
1145
1146 if (!(ei->i_flags & EXT4_EA_INODE_FL)) {
1147 err = ext4_init_acl(handle, inode, dir);
1148 if (err)
1149 goto fail_free_drop;
1150
1151 err = ext4_init_security(handle, inode, dir, qstr);
1152 if (err)
1153 goto fail_free_drop;
1154 }
1155
1156 if (ext4_has_feature_extents(sb)) {
1157 /* set extent flag only for directory, file and normal symlink*/
1158 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1159 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1160 ext4_ext_tree_init(handle, inode);
1161 }
1162 }
1163
1164 if (ext4_handle_valid(handle)) {
1165 ei->i_sync_tid = handle->h_transaction->t_tid;
1166 ei->i_datasync_tid = handle->h_transaction->t_tid;
1167 }
1168
1169 err = ext4_mark_inode_dirty(handle, inode);
1170 if (err) {
1171 ext4_std_error(sb, err);
1172 goto fail_free_drop;
1173 }
1174
1175 ext4_debug("allocating inode %lu\n", inode->i_ino);
1176 trace_ext4_allocate_inode(inode, dir, mode);
1177 brelse(inode_bitmap_bh);
1178 return ret;
1179
1180fail_free_drop:
1181 dquot_free_inode(inode);
1182fail_drop:
1183 clear_nlink(inode);
1184 unlock_new_inode(inode);
1185out:
1186 dquot_drop(inode);
1187 inode->i_flags |= S_NOQUOTA;
1188 iput(inode);
1189 brelse(inode_bitmap_bh);
1190 return ERR_PTR(err);
1191}
1192
1193/* Verify that we are loading a valid orphan from disk */
1194struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1195{
1196 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1197 ext4_group_t block_group;
1198 int bit;
1199 struct buffer_head *bitmap_bh = NULL;
1200 struct inode *inode = NULL;
1201 int err = -EFSCORRUPTED;
1202
1203 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino)
1204 goto bad_orphan;
1205
1206 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1207 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1208 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1209 if (IS_ERR(bitmap_bh)) {
1210 ext4_error(sb, "inode bitmap error %ld for orphan %lu",
1211 ino, PTR_ERR(bitmap_bh));
1212 return (struct inode *) bitmap_bh;
1213 }
1214
1215 /* Having the inode bit set should be a 100% indicator that this
1216 * is a valid orphan (no e2fsck run on fs). Orphans also include
1217 * inodes that were being truncated, so we can't check i_nlink==0.
1218 */
1219 if (!ext4_test_bit(bit, bitmap_bh->b_data))
1220 goto bad_orphan;
1221
1222 inode = ext4_iget(sb, ino);
1223 if (IS_ERR(inode)) {
1224 err = PTR_ERR(inode);
1225 ext4_error(sb, "couldn't read orphan inode %lu (err %d)",
1226 ino, err);
1227 return inode;
1228 }
1229
1230 /*
1231 * If the orphans has i_nlinks > 0 then it should be able to
1232 * be truncated, otherwise it won't be removed from the orphan
1233 * list during processing and an infinite loop will result.
1234 * Similarly, it must not be a bad inode.
1235 */
1236 if ((inode->i_nlink && !ext4_can_truncate(inode)) ||
1237 is_bad_inode(inode))
1238 goto bad_orphan;
1239
1240 if (NEXT_ORPHAN(inode) > max_ino)
1241 goto bad_orphan;
1242 brelse(bitmap_bh);
1243 return inode;
1244
1245bad_orphan:
1246 ext4_error(sb, "bad orphan inode %lu", ino);
1247 if (bitmap_bh)
1248 printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1249 bit, (unsigned long long)bitmap_bh->b_blocknr,
1250 ext4_test_bit(bit, bitmap_bh->b_data));
1251 if (inode) {
1252 printk(KERN_ERR "is_bad_inode(inode)=%d\n",
1253 is_bad_inode(inode));
1254 printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n",
1255 NEXT_ORPHAN(inode));
1256 printk(KERN_ERR "max_ino=%lu\n", max_ino);
1257 printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink);
1258 /* Avoid freeing blocks if we got a bad deleted inode */
1259 if (inode->i_nlink == 0)
1260 inode->i_blocks = 0;
1261 iput(inode);
1262 }
1263 brelse(bitmap_bh);
1264 return ERR_PTR(err);
1265}
1266
1267unsigned long ext4_count_free_inodes(struct super_block *sb)
1268{
1269 unsigned long desc_count;
1270 struct ext4_group_desc *gdp;
1271 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1272#ifdef EXT4FS_DEBUG
1273 struct ext4_super_block *es;
1274 unsigned long bitmap_count, x;
1275 struct buffer_head *bitmap_bh = NULL;
1276
1277 es = EXT4_SB(sb)->s_es;
1278 desc_count = 0;
1279 bitmap_count = 0;
1280 gdp = NULL;
1281 for (i = 0; i < ngroups; i++) {
1282 gdp = ext4_get_group_desc(sb, i, NULL);
1283 if (!gdp)
1284 continue;
1285 desc_count += ext4_free_inodes_count(sb, gdp);
1286 brelse(bitmap_bh);
1287 bitmap_bh = ext4_read_inode_bitmap(sb, i);
1288 if (IS_ERR(bitmap_bh)) {
1289 bitmap_bh = NULL;
1290 continue;
1291 }
1292
1293 x = ext4_count_free(bitmap_bh->b_data,
1294 EXT4_INODES_PER_GROUP(sb) / 8);
1295 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1296 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1297 bitmap_count += x;
1298 }
1299 brelse(bitmap_bh);
1300 printk(KERN_DEBUG "ext4_count_free_inodes: "
1301 "stored = %u, computed = %lu, %lu\n",
1302 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1303 return desc_count;
1304#else
1305 desc_count = 0;
1306 for (i = 0; i < ngroups; i++) {
1307 gdp = ext4_get_group_desc(sb, i, NULL);
1308 if (!gdp)
1309 continue;
1310 desc_count += ext4_free_inodes_count(sb, gdp);
1311 cond_resched();
1312 }
1313 return desc_count;
1314#endif
1315}
1316
1317/* Called at mount-time, super-block is locked */
1318unsigned long ext4_count_dirs(struct super_block * sb)
1319{
1320 unsigned long count = 0;
1321 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1322
1323 for (i = 0; i < ngroups; i++) {
1324 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1325 if (!gdp)
1326 continue;
1327 count += ext4_used_dirs_count(sb, gdp);
1328 }
1329 return count;
1330}
1331
1332/*
1333 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1334 * inode table. Must be called without any spinlock held. The only place
1335 * where it is called from on active part of filesystem is ext4lazyinit
1336 * thread, so we do not need any special locks, however we have to prevent
1337 * inode allocation from the current group, so we take alloc_sem lock, to
1338 * block ext4_new_inode() until we are finished.
1339 */
1340int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1341 int barrier)
1342{
1343 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1344 struct ext4_sb_info *sbi = EXT4_SB(sb);
1345 struct ext4_group_desc *gdp = NULL;
1346 struct buffer_head *group_desc_bh;
1347 handle_t *handle;
1348 ext4_fsblk_t blk;
1349 int num, ret = 0, used_blks = 0;
1350
1351 /* This should not happen, but just to be sure check this */
1352 if (sb_rdonly(sb)) {
1353 ret = 1;
1354 goto out;
1355 }
1356
1357 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1358 if (!gdp)
1359 goto out;
1360
1361 /*
1362 * We do not need to lock this, because we are the only one
1363 * handling this flag.
1364 */
1365 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1366 goto out;
1367
1368 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1369 if (IS_ERR(handle)) {
1370 ret = PTR_ERR(handle);
1371 goto out;
1372 }
1373
1374 down_write(&grp->alloc_sem);
1375 /*
1376 * If inode bitmap was already initialized there may be some
1377 * used inodes so we need to skip blocks with used inodes in
1378 * inode table.
1379 */
1380 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1381 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1382 ext4_itable_unused_count(sb, gdp)),
1383 sbi->s_inodes_per_block);
1384
1385 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
1386 ext4_error(sb, "Something is wrong with group %u: "
1387 "used itable blocks: %d; "
1388 "itable unused count: %u",
1389 group, used_blks,
1390 ext4_itable_unused_count(sb, gdp));
1391 ret = 1;
1392 goto err_out;
1393 }
1394
1395 blk = ext4_inode_table(sb, gdp) + used_blks;
1396 num = sbi->s_itb_per_group - used_blks;
1397
1398 BUFFER_TRACE(group_desc_bh, "get_write_access");
1399 ret = ext4_journal_get_write_access(handle,
1400 group_desc_bh);
1401 if (ret)
1402 goto err_out;
1403
1404 /*
1405 * Skip zeroout if the inode table is full. But we set the ZEROED
1406 * flag anyway, because obviously, when it is full it does not need
1407 * further zeroing.
1408 */
1409 if (unlikely(num == 0))
1410 goto skip_zeroout;
1411
1412 ext4_debug("going to zero out inode table in group %d\n",
1413 group);
1414 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1415 if (ret < 0)
1416 goto err_out;
1417 if (barrier)
1418 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1419
1420skip_zeroout:
1421 ext4_lock_group(sb, group);
1422 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1423 ext4_group_desc_csum_set(sb, group, gdp);
1424 ext4_unlock_group(sb, group);
1425
1426 BUFFER_TRACE(group_desc_bh,
1427 "call ext4_handle_dirty_metadata");
1428 ret = ext4_handle_dirty_metadata(handle, NULL,
1429 group_desc_bh);
1430
1431err_out:
1432 up_write(&grp->alloc_sem);
1433 ext4_journal_stop(handle);
1434out:
1435 return ret;
1436}