Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Driver for Atmel AT32 and AT91 SPI Controllers
4 *
5 * Copyright (C) 2006 Atmel Corporation
6 */
7
8#include <linux/kernel.h>
9#include <linux/clk.h>
10#include <linux/module.h>
11#include <linux/platform_device.h>
12#include <linux/delay.h>
13#include <linux/dma-mapping.h>
14#include <linux/dmaengine.h>
15#include <linux/err.h>
16#include <linux/interrupt.h>
17#include <linux/spi/spi.h>
18#include <linux/slab.h>
19#include <linux/of.h>
20
21#include <linux/io.h>
22#include <linux/gpio/consumer.h>
23#include <linux/pinctrl/consumer.h>
24#include <linux/pm_runtime.h>
25#include <trace/events/spi.h>
26
27/* SPI register offsets */
28#define SPI_CR 0x0000
29#define SPI_MR 0x0004
30#define SPI_RDR 0x0008
31#define SPI_TDR 0x000c
32#define SPI_SR 0x0010
33#define SPI_IER 0x0014
34#define SPI_IDR 0x0018
35#define SPI_IMR 0x001c
36#define SPI_CSR0 0x0030
37#define SPI_CSR1 0x0034
38#define SPI_CSR2 0x0038
39#define SPI_CSR3 0x003c
40#define SPI_FMR 0x0040
41#define SPI_FLR 0x0044
42#define SPI_VERSION 0x00fc
43#define SPI_RPR 0x0100
44#define SPI_RCR 0x0104
45#define SPI_TPR 0x0108
46#define SPI_TCR 0x010c
47#define SPI_RNPR 0x0110
48#define SPI_RNCR 0x0114
49#define SPI_TNPR 0x0118
50#define SPI_TNCR 0x011c
51#define SPI_PTCR 0x0120
52#define SPI_PTSR 0x0124
53
54/* Bitfields in CR */
55#define SPI_SPIEN_OFFSET 0
56#define SPI_SPIEN_SIZE 1
57#define SPI_SPIDIS_OFFSET 1
58#define SPI_SPIDIS_SIZE 1
59#define SPI_SWRST_OFFSET 7
60#define SPI_SWRST_SIZE 1
61#define SPI_LASTXFER_OFFSET 24
62#define SPI_LASTXFER_SIZE 1
63#define SPI_TXFCLR_OFFSET 16
64#define SPI_TXFCLR_SIZE 1
65#define SPI_RXFCLR_OFFSET 17
66#define SPI_RXFCLR_SIZE 1
67#define SPI_FIFOEN_OFFSET 30
68#define SPI_FIFOEN_SIZE 1
69#define SPI_FIFODIS_OFFSET 31
70#define SPI_FIFODIS_SIZE 1
71
72/* Bitfields in MR */
73#define SPI_MSTR_OFFSET 0
74#define SPI_MSTR_SIZE 1
75#define SPI_PS_OFFSET 1
76#define SPI_PS_SIZE 1
77#define SPI_PCSDEC_OFFSET 2
78#define SPI_PCSDEC_SIZE 1
79#define SPI_FDIV_OFFSET 3
80#define SPI_FDIV_SIZE 1
81#define SPI_MODFDIS_OFFSET 4
82#define SPI_MODFDIS_SIZE 1
83#define SPI_WDRBT_OFFSET 5
84#define SPI_WDRBT_SIZE 1
85#define SPI_LLB_OFFSET 7
86#define SPI_LLB_SIZE 1
87#define SPI_PCS_OFFSET 16
88#define SPI_PCS_SIZE 4
89#define SPI_DLYBCS_OFFSET 24
90#define SPI_DLYBCS_SIZE 8
91
92/* Bitfields in RDR */
93#define SPI_RD_OFFSET 0
94#define SPI_RD_SIZE 16
95
96/* Bitfields in TDR */
97#define SPI_TD_OFFSET 0
98#define SPI_TD_SIZE 16
99
100/* Bitfields in SR */
101#define SPI_RDRF_OFFSET 0
102#define SPI_RDRF_SIZE 1
103#define SPI_TDRE_OFFSET 1
104#define SPI_TDRE_SIZE 1
105#define SPI_MODF_OFFSET 2
106#define SPI_MODF_SIZE 1
107#define SPI_OVRES_OFFSET 3
108#define SPI_OVRES_SIZE 1
109#define SPI_ENDRX_OFFSET 4
110#define SPI_ENDRX_SIZE 1
111#define SPI_ENDTX_OFFSET 5
112#define SPI_ENDTX_SIZE 1
113#define SPI_RXBUFF_OFFSET 6
114#define SPI_RXBUFF_SIZE 1
115#define SPI_TXBUFE_OFFSET 7
116#define SPI_TXBUFE_SIZE 1
117#define SPI_NSSR_OFFSET 8
118#define SPI_NSSR_SIZE 1
119#define SPI_TXEMPTY_OFFSET 9
120#define SPI_TXEMPTY_SIZE 1
121#define SPI_SPIENS_OFFSET 16
122#define SPI_SPIENS_SIZE 1
123#define SPI_TXFEF_OFFSET 24
124#define SPI_TXFEF_SIZE 1
125#define SPI_TXFFF_OFFSET 25
126#define SPI_TXFFF_SIZE 1
127#define SPI_TXFTHF_OFFSET 26
128#define SPI_TXFTHF_SIZE 1
129#define SPI_RXFEF_OFFSET 27
130#define SPI_RXFEF_SIZE 1
131#define SPI_RXFFF_OFFSET 28
132#define SPI_RXFFF_SIZE 1
133#define SPI_RXFTHF_OFFSET 29
134#define SPI_RXFTHF_SIZE 1
135#define SPI_TXFPTEF_OFFSET 30
136#define SPI_TXFPTEF_SIZE 1
137#define SPI_RXFPTEF_OFFSET 31
138#define SPI_RXFPTEF_SIZE 1
139
140/* Bitfields in CSR0 */
141#define SPI_CPOL_OFFSET 0
142#define SPI_CPOL_SIZE 1
143#define SPI_NCPHA_OFFSET 1
144#define SPI_NCPHA_SIZE 1
145#define SPI_CSAAT_OFFSET 3
146#define SPI_CSAAT_SIZE 1
147#define SPI_BITS_OFFSET 4
148#define SPI_BITS_SIZE 4
149#define SPI_SCBR_OFFSET 8
150#define SPI_SCBR_SIZE 8
151#define SPI_DLYBS_OFFSET 16
152#define SPI_DLYBS_SIZE 8
153#define SPI_DLYBCT_OFFSET 24
154#define SPI_DLYBCT_SIZE 8
155
156/* Bitfields in RCR */
157#define SPI_RXCTR_OFFSET 0
158#define SPI_RXCTR_SIZE 16
159
160/* Bitfields in TCR */
161#define SPI_TXCTR_OFFSET 0
162#define SPI_TXCTR_SIZE 16
163
164/* Bitfields in RNCR */
165#define SPI_RXNCR_OFFSET 0
166#define SPI_RXNCR_SIZE 16
167
168/* Bitfields in TNCR */
169#define SPI_TXNCR_OFFSET 0
170#define SPI_TXNCR_SIZE 16
171
172/* Bitfields in PTCR */
173#define SPI_RXTEN_OFFSET 0
174#define SPI_RXTEN_SIZE 1
175#define SPI_RXTDIS_OFFSET 1
176#define SPI_RXTDIS_SIZE 1
177#define SPI_TXTEN_OFFSET 8
178#define SPI_TXTEN_SIZE 1
179#define SPI_TXTDIS_OFFSET 9
180#define SPI_TXTDIS_SIZE 1
181
182/* Bitfields in FMR */
183#define SPI_TXRDYM_OFFSET 0
184#define SPI_TXRDYM_SIZE 2
185#define SPI_RXRDYM_OFFSET 4
186#define SPI_RXRDYM_SIZE 2
187#define SPI_TXFTHRES_OFFSET 16
188#define SPI_TXFTHRES_SIZE 6
189#define SPI_RXFTHRES_OFFSET 24
190#define SPI_RXFTHRES_SIZE 6
191
192/* Bitfields in FLR */
193#define SPI_TXFL_OFFSET 0
194#define SPI_TXFL_SIZE 6
195#define SPI_RXFL_OFFSET 16
196#define SPI_RXFL_SIZE 6
197
198/* Constants for BITS */
199#define SPI_BITS_8_BPT 0
200#define SPI_BITS_9_BPT 1
201#define SPI_BITS_10_BPT 2
202#define SPI_BITS_11_BPT 3
203#define SPI_BITS_12_BPT 4
204#define SPI_BITS_13_BPT 5
205#define SPI_BITS_14_BPT 6
206#define SPI_BITS_15_BPT 7
207#define SPI_BITS_16_BPT 8
208#define SPI_ONE_DATA 0
209#define SPI_TWO_DATA 1
210#define SPI_FOUR_DATA 2
211
212/* Bit manipulation macros */
213#define SPI_BIT(name) \
214 (1 << SPI_##name##_OFFSET)
215#define SPI_BF(name, value) \
216 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
217#define SPI_BFEXT(name, value) \
218 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
219#define SPI_BFINS(name, value, old) \
220 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
221 | SPI_BF(name, value))
222
223/* Register access macros */
224#define spi_readl(port, reg) \
225 readl_relaxed((port)->regs + SPI_##reg)
226#define spi_writel(port, reg, value) \
227 writel_relaxed((value), (port)->regs + SPI_##reg)
228#define spi_writew(port, reg, value) \
229 writew_relaxed((value), (port)->regs + SPI_##reg)
230
231/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
232 * cache operations; better heuristics consider wordsize and bitrate.
233 */
234#define DMA_MIN_BYTES 16
235
236#define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
237
238#define AUTOSUSPEND_TIMEOUT 2000
239
240struct atmel_spi_caps {
241 bool is_spi2;
242 bool has_wdrbt;
243 bool has_dma_support;
244 bool has_pdc_support;
245};
246
247/*
248 * The core SPI transfer engine just talks to a register bank to set up
249 * DMA transfers; transfer queue progress is driven by IRQs. The clock
250 * framework provides the base clock, subdivided for each spi_device.
251 */
252struct atmel_spi {
253 spinlock_t lock;
254 unsigned long flags;
255
256 phys_addr_t phybase;
257 void __iomem *regs;
258 int irq;
259 struct clk *clk;
260 struct platform_device *pdev;
261 unsigned long spi_clk;
262
263 struct spi_transfer *current_transfer;
264 int current_remaining_bytes;
265 int done_status;
266 dma_addr_t dma_addr_rx_bbuf;
267 dma_addr_t dma_addr_tx_bbuf;
268 void *addr_rx_bbuf;
269 void *addr_tx_bbuf;
270
271 struct completion xfer_completion;
272
273 struct atmel_spi_caps caps;
274
275 bool use_dma;
276 bool use_pdc;
277
278 bool keep_cs;
279
280 u32 fifo_size;
281 u8 native_cs_free;
282 u8 native_cs_for_gpio;
283};
284
285/* Controller-specific per-slave state */
286struct atmel_spi_device {
287 u32 csr;
288};
289
290#define SPI_MAX_DMA_XFER 65535 /* true for both PDC and DMA */
291#define INVALID_DMA_ADDRESS 0xffffffff
292
293/*
294 * Version 2 of the SPI controller has
295 * - CR.LASTXFER
296 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
297 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
298 * - SPI_CSRx.CSAAT
299 * - SPI_CSRx.SBCR allows faster clocking
300 */
301static bool atmel_spi_is_v2(struct atmel_spi *as)
302{
303 return as->caps.is_spi2;
304}
305
306/*
307 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
308 * they assume that spi slave device state will not change on deselect, so
309 * that automagic deselection is OK. ("NPCSx rises if no data is to be
310 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
311 * controllers have CSAAT and friends.
312 *
313 * Even controller newer than ar91rm9200, using GPIOs can make sens as
314 * it lets us support active-high chipselects despite the controller's
315 * belief that only active-low devices/systems exists.
316 *
317 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
318 * right when driven with GPIO. ("Mode Fault does not allow more than one
319 * Master on Chip Select 0.") No workaround exists for that ... so for
320 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
321 * and (c) will trigger that first erratum in some cases.
322 */
323
324static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
325{
326 struct atmel_spi_device *asd = spi->controller_state;
327 int chip_select;
328 u32 mr;
329
330 if (spi->cs_gpiod)
331 chip_select = as->native_cs_for_gpio;
332 else
333 chip_select = spi->chip_select;
334
335 if (atmel_spi_is_v2(as)) {
336 spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
337 /* For the low SPI version, there is a issue that PDC transfer
338 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
339 */
340 spi_writel(as, CSR0, asd->csr);
341 if (as->caps.has_wdrbt) {
342 spi_writel(as, MR,
343 SPI_BF(PCS, ~(0x01 << chip_select))
344 | SPI_BIT(WDRBT)
345 | SPI_BIT(MODFDIS)
346 | SPI_BIT(MSTR));
347 } else {
348 spi_writel(as, MR,
349 SPI_BF(PCS, ~(0x01 << chip_select))
350 | SPI_BIT(MODFDIS)
351 | SPI_BIT(MSTR));
352 }
353
354 mr = spi_readl(as, MR);
355 } else {
356 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
357 int i;
358 u32 csr;
359
360 /* Make sure clock polarity is correct */
361 for (i = 0; i < spi->master->num_chipselect; i++) {
362 csr = spi_readl(as, CSR0 + 4 * i);
363 if ((csr ^ cpol) & SPI_BIT(CPOL))
364 spi_writel(as, CSR0 + 4 * i,
365 csr ^ SPI_BIT(CPOL));
366 }
367
368 mr = spi_readl(as, MR);
369 mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
370 spi_writel(as, MR, mr);
371 }
372
373 dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
374}
375
376static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
377{
378 int chip_select;
379 u32 mr;
380
381 if (spi->cs_gpiod)
382 chip_select = as->native_cs_for_gpio;
383 else
384 chip_select = spi->chip_select;
385
386 /* only deactivate *this* device; sometimes transfers to
387 * another device may be active when this routine is called.
388 */
389 mr = spi_readl(as, MR);
390 if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
391 mr = SPI_BFINS(PCS, 0xf, mr);
392 spi_writel(as, MR, mr);
393 }
394
395 dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
396
397 if (!spi->cs_gpiod)
398 spi_writel(as, CR, SPI_BIT(LASTXFER));
399}
400
401static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
402{
403 spin_lock_irqsave(&as->lock, as->flags);
404}
405
406static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
407{
408 spin_unlock_irqrestore(&as->lock, as->flags);
409}
410
411static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
412{
413 return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
414}
415
416static inline bool atmel_spi_use_dma(struct atmel_spi *as,
417 struct spi_transfer *xfer)
418{
419 return as->use_dma && xfer->len >= DMA_MIN_BYTES;
420}
421
422static bool atmel_spi_can_dma(struct spi_master *master,
423 struct spi_device *spi,
424 struct spi_transfer *xfer)
425{
426 struct atmel_spi *as = spi_master_get_devdata(master);
427
428 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
429 return atmel_spi_use_dma(as, xfer) &&
430 !atmel_spi_is_vmalloc_xfer(xfer);
431 else
432 return atmel_spi_use_dma(as, xfer);
433
434}
435
436static int atmel_spi_dma_slave_config(struct atmel_spi *as, u8 bits_per_word)
437{
438 struct spi_master *master = platform_get_drvdata(as->pdev);
439 struct dma_slave_config slave_config;
440 int err = 0;
441
442 if (bits_per_word > 8) {
443 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
444 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
445 } else {
446 slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
447 slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
448 }
449
450 slave_config.dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
451 slave_config.src_addr = (dma_addr_t)as->phybase + SPI_RDR;
452 slave_config.src_maxburst = 1;
453 slave_config.dst_maxburst = 1;
454 slave_config.device_fc = false;
455
456 /*
457 * This driver uses fixed peripheral select mode (PS bit set to '0' in
458 * the Mode Register).
459 * So according to the datasheet, when FIFOs are available (and
460 * enabled), the Transmit FIFO operates in Multiple Data Mode.
461 * In this mode, up to 2 data, not 4, can be written into the Transmit
462 * Data Register in a single access.
463 * However, the first data has to be written into the lowest 16 bits and
464 * the second data into the highest 16 bits of the Transmit
465 * Data Register. For 8bit data (the most frequent case), it would
466 * require to rework tx_buf so each data would actually fit 16 bits.
467 * So we'd rather write only one data at the time. Hence the transmit
468 * path works the same whether FIFOs are available (and enabled) or not.
469 */
470 if (dmaengine_slave_config(master->dma_tx, &slave_config)) {
471 dev_err(&as->pdev->dev,
472 "failed to configure tx dma channel\n");
473 err = -EINVAL;
474 }
475
476 /*
477 * This driver configures the spi controller for master mode (MSTR bit
478 * set to '1' in the Mode Register).
479 * So according to the datasheet, when FIFOs are available (and
480 * enabled), the Receive FIFO operates in Single Data Mode.
481 * So the receive path works the same whether FIFOs are available (and
482 * enabled) or not.
483 */
484 if (dmaengine_slave_config(master->dma_rx, &slave_config)) {
485 dev_err(&as->pdev->dev,
486 "failed to configure rx dma channel\n");
487 err = -EINVAL;
488 }
489
490 return err;
491}
492
493static int atmel_spi_configure_dma(struct spi_master *master,
494 struct atmel_spi *as)
495{
496 struct device *dev = &as->pdev->dev;
497 int err;
498
499 master->dma_tx = dma_request_chan(dev, "tx");
500 if (IS_ERR(master->dma_tx)) {
501 err = PTR_ERR(master->dma_tx);
502 dev_dbg(dev, "No TX DMA channel, DMA is disabled\n");
503 goto error_clear;
504 }
505
506 master->dma_rx = dma_request_chan(dev, "rx");
507 if (IS_ERR(master->dma_rx)) {
508 err = PTR_ERR(master->dma_rx);
509 /*
510 * No reason to check EPROBE_DEFER here since we have already
511 * requested tx channel.
512 */
513 dev_dbg(dev, "No RX DMA channel, DMA is disabled\n");
514 goto error;
515 }
516
517 err = atmel_spi_dma_slave_config(as, 8);
518 if (err)
519 goto error;
520
521 dev_info(&as->pdev->dev,
522 "Using %s (tx) and %s (rx) for DMA transfers\n",
523 dma_chan_name(master->dma_tx),
524 dma_chan_name(master->dma_rx));
525
526 return 0;
527error:
528 if (!IS_ERR(master->dma_rx))
529 dma_release_channel(master->dma_rx);
530 if (!IS_ERR(master->dma_tx))
531 dma_release_channel(master->dma_tx);
532error_clear:
533 master->dma_tx = master->dma_rx = NULL;
534 return err;
535}
536
537static void atmel_spi_stop_dma(struct spi_master *master)
538{
539 if (master->dma_rx)
540 dmaengine_terminate_all(master->dma_rx);
541 if (master->dma_tx)
542 dmaengine_terminate_all(master->dma_tx);
543}
544
545static void atmel_spi_release_dma(struct spi_master *master)
546{
547 if (master->dma_rx) {
548 dma_release_channel(master->dma_rx);
549 master->dma_rx = NULL;
550 }
551 if (master->dma_tx) {
552 dma_release_channel(master->dma_tx);
553 master->dma_tx = NULL;
554 }
555}
556
557/* This function is called by the DMA driver from tasklet context */
558static void dma_callback(void *data)
559{
560 struct spi_master *master = data;
561 struct atmel_spi *as = spi_master_get_devdata(master);
562
563 if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
564 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
565 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
566 as->current_transfer->len);
567 }
568 complete(&as->xfer_completion);
569}
570
571/*
572 * Next transfer using PIO without FIFO.
573 */
574static void atmel_spi_next_xfer_single(struct spi_master *master,
575 struct spi_transfer *xfer)
576{
577 struct atmel_spi *as = spi_master_get_devdata(master);
578 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
579
580 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
581
582 /* Make sure data is not remaining in RDR */
583 spi_readl(as, RDR);
584 while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
585 spi_readl(as, RDR);
586 cpu_relax();
587 }
588
589 if (xfer->bits_per_word > 8)
590 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
591 else
592 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
593
594 dev_dbg(master->dev.parent,
595 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
596 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
597 xfer->bits_per_word);
598
599 /* Enable relevant interrupts */
600 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
601}
602
603/*
604 * Next transfer using PIO with FIFO.
605 */
606static void atmel_spi_next_xfer_fifo(struct spi_master *master,
607 struct spi_transfer *xfer)
608{
609 struct atmel_spi *as = spi_master_get_devdata(master);
610 u32 current_remaining_data, num_data;
611 u32 offset = xfer->len - as->current_remaining_bytes;
612 const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
613 const u8 *bytes = (const u8 *)((u8 *)xfer->tx_buf + offset);
614 u16 td0, td1;
615 u32 fifomr;
616
617 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
618
619 /* Compute the number of data to transfer in the current iteration */
620 current_remaining_data = ((xfer->bits_per_word > 8) ?
621 ((u32)as->current_remaining_bytes >> 1) :
622 (u32)as->current_remaining_bytes);
623 num_data = min(current_remaining_data, as->fifo_size);
624
625 /* Flush RX and TX FIFOs */
626 spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
627 while (spi_readl(as, FLR))
628 cpu_relax();
629
630 /* Set RX FIFO Threshold to the number of data to transfer */
631 fifomr = spi_readl(as, FMR);
632 spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
633
634 /* Clear FIFO flags in the Status Register, especially RXFTHF */
635 (void)spi_readl(as, SR);
636
637 /* Fill TX FIFO */
638 while (num_data >= 2) {
639 if (xfer->bits_per_word > 8) {
640 td0 = *words++;
641 td1 = *words++;
642 } else {
643 td0 = *bytes++;
644 td1 = *bytes++;
645 }
646
647 spi_writel(as, TDR, (td1 << 16) | td0);
648 num_data -= 2;
649 }
650
651 if (num_data) {
652 if (xfer->bits_per_word > 8)
653 td0 = *words++;
654 else
655 td0 = *bytes++;
656
657 spi_writew(as, TDR, td0);
658 num_data--;
659 }
660
661 dev_dbg(master->dev.parent,
662 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
663 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
664 xfer->bits_per_word);
665
666 /*
667 * Enable RX FIFO Threshold Flag interrupt to be notified about
668 * transfer completion.
669 */
670 spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
671}
672
673/*
674 * Next transfer using PIO.
675 */
676static void atmel_spi_next_xfer_pio(struct spi_master *master,
677 struct spi_transfer *xfer)
678{
679 struct atmel_spi *as = spi_master_get_devdata(master);
680
681 if (as->fifo_size)
682 atmel_spi_next_xfer_fifo(master, xfer);
683 else
684 atmel_spi_next_xfer_single(master, xfer);
685}
686
687/*
688 * Submit next transfer for DMA.
689 */
690static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
691 struct spi_transfer *xfer,
692 u32 *plen)
693{
694 struct atmel_spi *as = spi_master_get_devdata(master);
695 struct dma_chan *rxchan = master->dma_rx;
696 struct dma_chan *txchan = master->dma_tx;
697 struct dma_async_tx_descriptor *rxdesc;
698 struct dma_async_tx_descriptor *txdesc;
699 dma_cookie_t cookie;
700
701 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
702
703 /* Check that the channels are available */
704 if (!rxchan || !txchan)
705 return -ENODEV;
706
707
708 *plen = xfer->len;
709
710 if (atmel_spi_dma_slave_config(as, xfer->bits_per_word))
711 goto err_exit;
712
713 /* Send both scatterlists */
714 if (atmel_spi_is_vmalloc_xfer(xfer) &&
715 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
716 rxdesc = dmaengine_prep_slave_single(rxchan,
717 as->dma_addr_rx_bbuf,
718 xfer->len,
719 DMA_DEV_TO_MEM,
720 DMA_PREP_INTERRUPT |
721 DMA_CTRL_ACK);
722 } else {
723 rxdesc = dmaengine_prep_slave_sg(rxchan,
724 xfer->rx_sg.sgl,
725 xfer->rx_sg.nents,
726 DMA_DEV_TO_MEM,
727 DMA_PREP_INTERRUPT |
728 DMA_CTRL_ACK);
729 }
730 if (!rxdesc)
731 goto err_dma;
732
733 if (atmel_spi_is_vmalloc_xfer(xfer) &&
734 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
735 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
736 txdesc = dmaengine_prep_slave_single(txchan,
737 as->dma_addr_tx_bbuf,
738 xfer->len, DMA_MEM_TO_DEV,
739 DMA_PREP_INTERRUPT |
740 DMA_CTRL_ACK);
741 } else {
742 txdesc = dmaengine_prep_slave_sg(txchan,
743 xfer->tx_sg.sgl,
744 xfer->tx_sg.nents,
745 DMA_MEM_TO_DEV,
746 DMA_PREP_INTERRUPT |
747 DMA_CTRL_ACK);
748 }
749 if (!txdesc)
750 goto err_dma;
751
752 dev_dbg(master->dev.parent,
753 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
754 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
755 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
756
757 /* Enable relevant interrupts */
758 spi_writel(as, IER, SPI_BIT(OVRES));
759
760 /* Put the callback on the RX transfer only, that should finish last */
761 rxdesc->callback = dma_callback;
762 rxdesc->callback_param = master;
763
764 /* Submit and fire RX and TX with TX last so we're ready to read! */
765 cookie = rxdesc->tx_submit(rxdesc);
766 if (dma_submit_error(cookie))
767 goto err_dma;
768 cookie = txdesc->tx_submit(txdesc);
769 if (dma_submit_error(cookie))
770 goto err_dma;
771 rxchan->device->device_issue_pending(rxchan);
772 txchan->device->device_issue_pending(txchan);
773
774 return 0;
775
776err_dma:
777 spi_writel(as, IDR, SPI_BIT(OVRES));
778 atmel_spi_stop_dma(master);
779err_exit:
780 return -ENOMEM;
781}
782
783static void atmel_spi_next_xfer_data(struct spi_master *master,
784 struct spi_transfer *xfer,
785 dma_addr_t *tx_dma,
786 dma_addr_t *rx_dma,
787 u32 *plen)
788{
789 *rx_dma = xfer->rx_dma + xfer->len - *plen;
790 *tx_dma = xfer->tx_dma + xfer->len - *plen;
791 if (*plen > master->max_dma_len)
792 *plen = master->max_dma_len;
793}
794
795static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
796 struct spi_device *spi,
797 struct spi_transfer *xfer)
798{
799 u32 scbr, csr;
800 unsigned long bus_hz;
801 int chip_select;
802
803 if (spi->cs_gpiod)
804 chip_select = as->native_cs_for_gpio;
805 else
806 chip_select = spi->chip_select;
807
808 /* v1 chips start out at half the peripheral bus speed. */
809 bus_hz = as->spi_clk;
810 if (!atmel_spi_is_v2(as))
811 bus_hz /= 2;
812
813 /*
814 * Calculate the lowest divider that satisfies the
815 * constraint, assuming div32/fdiv/mbz == 0.
816 */
817 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
818
819 /*
820 * If the resulting divider doesn't fit into the
821 * register bitfield, we can't satisfy the constraint.
822 */
823 if (scbr >= (1 << SPI_SCBR_SIZE)) {
824 dev_err(&spi->dev,
825 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
826 xfer->speed_hz, scbr, bus_hz/255);
827 return -EINVAL;
828 }
829 if (scbr == 0) {
830 dev_err(&spi->dev,
831 "setup: %d Hz too high, scbr %u; max %ld Hz\n",
832 xfer->speed_hz, scbr, bus_hz);
833 return -EINVAL;
834 }
835 csr = spi_readl(as, CSR0 + 4 * chip_select);
836 csr = SPI_BFINS(SCBR, scbr, csr);
837 spi_writel(as, CSR0 + 4 * chip_select, csr);
838 xfer->effective_speed_hz = bus_hz / scbr;
839
840 return 0;
841}
842
843/*
844 * Submit next transfer for PDC.
845 * lock is held, spi irq is blocked
846 */
847static void atmel_spi_pdc_next_xfer(struct spi_master *master,
848 struct spi_transfer *xfer)
849{
850 struct atmel_spi *as = spi_master_get_devdata(master);
851 u32 len;
852 dma_addr_t tx_dma, rx_dma;
853
854 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
855
856 len = as->current_remaining_bytes;
857 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
858 as->current_remaining_bytes -= len;
859
860 spi_writel(as, RPR, rx_dma);
861 spi_writel(as, TPR, tx_dma);
862
863 if (xfer->bits_per_word > 8)
864 len >>= 1;
865 spi_writel(as, RCR, len);
866 spi_writel(as, TCR, len);
867
868 dev_dbg(&master->dev,
869 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
870 xfer, xfer->len, xfer->tx_buf,
871 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
872 (unsigned long long)xfer->rx_dma);
873
874 if (as->current_remaining_bytes) {
875 len = as->current_remaining_bytes;
876 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
877 as->current_remaining_bytes -= len;
878
879 spi_writel(as, RNPR, rx_dma);
880 spi_writel(as, TNPR, tx_dma);
881
882 if (xfer->bits_per_word > 8)
883 len >>= 1;
884 spi_writel(as, RNCR, len);
885 spi_writel(as, TNCR, len);
886
887 dev_dbg(&master->dev,
888 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
889 xfer, xfer->len, xfer->tx_buf,
890 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
891 (unsigned long long)xfer->rx_dma);
892 }
893
894 /* REVISIT: We're waiting for RXBUFF before we start the next
895 * transfer because we need to handle some difficult timing
896 * issues otherwise. If we wait for TXBUFE in one transfer and
897 * then starts waiting for RXBUFF in the next, it's difficult
898 * to tell the difference between the RXBUFF interrupt we're
899 * actually waiting for and the RXBUFF interrupt of the
900 * previous transfer.
901 *
902 * It should be doable, though. Just not now...
903 */
904 spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
905 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
906}
907
908/*
909 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
910 * - The buffer is either valid for CPU access, else NULL
911 * - If the buffer is valid, so is its DMA address
912 *
913 * This driver manages the dma address unless message->is_dma_mapped.
914 */
915static int
916atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
917{
918 struct device *dev = &as->pdev->dev;
919
920 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
921 if (xfer->tx_buf) {
922 /* tx_buf is a const void* where we need a void * for the dma
923 * mapping */
924 void *nonconst_tx = (void *)xfer->tx_buf;
925
926 xfer->tx_dma = dma_map_single(dev,
927 nonconst_tx, xfer->len,
928 DMA_TO_DEVICE);
929 if (dma_mapping_error(dev, xfer->tx_dma))
930 return -ENOMEM;
931 }
932 if (xfer->rx_buf) {
933 xfer->rx_dma = dma_map_single(dev,
934 xfer->rx_buf, xfer->len,
935 DMA_FROM_DEVICE);
936 if (dma_mapping_error(dev, xfer->rx_dma)) {
937 if (xfer->tx_buf)
938 dma_unmap_single(dev,
939 xfer->tx_dma, xfer->len,
940 DMA_TO_DEVICE);
941 return -ENOMEM;
942 }
943 }
944 return 0;
945}
946
947static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
948 struct spi_transfer *xfer)
949{
950 if (xfer->tx_dma != INVALID_DMA_ADDRESS)
951 dma_unmap_single(master->dev.parent, xfer->tx_dma,
952 xfer->len, DMA_TO_DEVICE);
953 if (xfer->rx_dma != INVALID_DMA_ADDRESS)
954 dma_unmap_single(master->dev.parent, xfer->rx_dma,
955 xfer->len, DMA_FROM_DEVICE);
956}
957
958static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
959{
960 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
961}
962
963static void
964atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
965{
966 u8 *rxp;
967 u16 *rxp16;
968 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
969
970 if (xfer->bits_per_word > 8) {
971 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
972 *rxp16 = spi_readl(as, RDR);
973 } else {
974 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
975 *rxp = spi_readl(as, RDR);
976 }
977 if (xfer->bits_per_word > 8) {
978 if (as->current_remaining_bytes > 2)
979 as->current_remaining_bytes -= 2;
980 else
981 as->current_remaining_bytes = 0;
982 } else {
983 as->current_remaining_bytes--;
984 }
985}
986
987static void
988atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
989{
990 u32 fifolr = spi_readl(as, FLR);
991 u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
992 u32 offset = xfer->len - as->current_remaining_bytes;
993 u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
994 u8 *bytes = (u8 *)((u8 *)xfer->rx_buf + offset);
995 u16 rd; /* RD field is the lowest 16 bits of RDR */
996
997 /* Update the number of remaining bytes to transfer */
998 num_bytes = ((xfer->bits_per_word > 8) ?
999 (num_data << 1) :
1000 num_data);
1001
1002 if (as->current_remaining_bytes > num_bytes)
1003 as->current_remaining_bytes -= num_bytes;
1004 else
1005 as->current_remaining_bytes = 0;
1006
1007 /* Handle odd number of bytes when data are more than 8bit width */
1008 if (xfer->bits_per_word > 8)
1009 as->current_remaining_bytes &= ~0x1;
1010
1011 /* Read data */
1012 while (num_data) {
1013 rd = spi_readl(as, RDR);
1014 if (xfer->bits_per_word > 8)
1015 *words++ = rd;
1016 else
1017 *bytes++ = rd;
1018 num_data--;
1019 }
1020}
1021
1022/* Called from IRQ
1023 *
1024 * Must update "current_remaining_bytes" to keep track of data
1025 * to transfer.
1026 */
1027static void
1028atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1029{
1030 if (as->fifo_size)
1031 atmel_spi_pump_fifo_data(as, xfer);
1032 else
1033 atmel_spi_pump_single_data(as, xfer);
1034}
1035
1036/* Interrupt
1037 *
1038 */
1039static irqreturn_t
1040atmel_spi_pio_interrupt(int irq, void *dev_id)
1041{
1042 struct spi_master *master = dev_id;
1043 struct atmel_spi *as = spi_master_get_devdata(master);
1044 u32 status, pending, imr;
1045 struct spi_transfer *xfer;
1046 int ret = IRQ_NONE;
1047
1048 imr = spi_readl(as, IMR);
1049 status = spi_readl(as, SR);
1050 pending = status & imr;
1051
1052 if (pending & SPI_BIT(OVRES)) {
1053 ret = IRQ_HANDLED;
1054 spi_writel(as, IDR, SPI_BIT(OVRES));
1055 dev_warn(master->dev.parent, "overrun\n");
1056
1057 /*
1058 * When we get an overrun, we disregard the current
1059 * transfer. Data will not be copied back from any
1060 * bounce buffer and msg->actual_len will not be
1061 * updated with the last xfer.
1062 *
1063 * We will also not process any remaning transfers in
1064 * the message.
1065 */
1066 as->done_status = -EIO;
1067 smp_wmb();
1068
1069 /* Clear any overrun happening while cleaning up */
1070 spi_readl(as, SR);
1071
1072 complete(&as->xfer_completion);
1073
1074 } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1075 atmel_spi_lock(as);
1076
1077 if (as->current_remaining_bytes) {
1078 ret = IRQ_HANDLED;
1079 xfer = as->current_transfer;
1080 atmel_spi_pump_pio_data(as, xfer);
1081 if (!as->current_remaining_bytes)
1082 spi_writel(as, IDR, pending);
1083
1084 complete(&as->xfer_completion);
1085 }
1086
1087 atmel_spi_unlock(as);
1088 } else {
1089 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1090 ret = IRQ_HANDLED;
1091 spi_writel(as, IDR, pending);
1092 }
1093
1094 return ret;
1095}
1096
1097static irqreturn_t
1098atmel_spi_pdc_interrupt(int irq, void *dev_id)
1099{
1100 struct spi_master *master = dev_id;
1101 struct atmel_spi *as = spi_master_get_devdata(master);
1102 u32 status, pending, imr;
1103 int ret = IRQ_NONE;
1104
1105 imr = spi_readl(as, IMR);
1106 status = spi_readl(as, SR);
1107 pending = status & imr;
1108
1109 if (pending & SPI_BIT(OVRES)) {
1110
1111 ret = IRQ_HANDLED;
1112
1113 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1114 | SPI_BIT(OVRES)));
1115
1116 /* Clear any overrun happening while cleaning up */
1117 spi_readl(as, SR);
1118
1119 as->done_status = -EIO;
1120
1121 complete(&as->xfer_completion);
1122
1123 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1124 ret = IRQ_HANDLED;
1125
1126 spi_writel(as, IDR, pending);
1127
1128 complete(&as->xfer_completion);
1129 }
1130
1131 return ret;
1132}
1133
1134static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
1135{
1136 struct spi_delay *delay = &spi->word_delay;
1137 u32 value = delay->value;
1138
1139 switch (delay->unit) {
1140 case SPI_DELAY_UNIT_NSECS:
1141 value /= 1000;
1142 break;
1143 case SPI_DELAY_UNIT_USECS:
1144 break;
1145 default:
1146 return -EINVAL;
1147 }
1148
1149 return (as->spi_clk / 1000000 * value) >> 5;
1150}
1151
1152static void initialize_native_cs_for_gpio(struct atmel_spi *as)
1153{
1154 int i;
1155 struct spi_master *master = platform_get_drvdata(as->pdev);
1156
1157 if (!as->native_cs_free)
1158 return; /* already initialized */
1159
1160 if (!master->cs_gpiods)
1161 return; /* No CS GPIO */
1162
1163 /*
1164 * On the first version of the controller (AT91RM9200), CS0
1165 * can't be used associated with GPIO
1166 */
1167 if (atmel_spi_is_v2(as))
1168 i = 0;
1169 else
1170 i = 1;
1171
1172 for (; i < 4; i++)
1173 if (master->cs_gpiods[i])
1174 as->native_cs_free |= BIT(i);
1175
1176 if (as->native_cs_free)
1177 as->native_cs_for_gpio = ffs(as->native_cs_free);
1178}
1179
1180static int atmel_spi_setup(struct spi_device *spi)
1181{
1182 struct atmel_spi *as;
1183 struct atmel_spi_device *asd;
1184 u32 csr;
1185 unsigned int bits = spi->bits_per_word;
1186 int chip_select;
1187 int word_delay_csr;
1188
1189 as = spi_master_get_devdata(spi->master);
1190
1191 /* see notes above re chipselect */
1192 if (!spi->cs_gpiod && (spi->mode & SPI_CS_HIGH)) {
1193 dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
1194 return -EINVAL;
1195 }
1196
1197 /* Setup() is called during spi_register_controller(aka
1198 * spi_register_master) but after all membmers of the cs_gpiod
1199 * array have been filled, so we can looked for which native
1200 * CS will be free for using with GPIO
1201 */
1202 initialize_native_cs_for_gpio(as);
1203
1204 if (spi->cs_gpiod && as->native_cs_free) {
1205 dev_err(&spi->dev,
1206 "No native CS available to support this GPIO CS\n");
1207 return -EBUSY;
1208 }
1209
1210 if (spi->cs_gpiod)
1211 chip_select = as->native_cs_for_gpio;
1212 else
1213 chip_select = spi->chip_select;
1214
1215 csr = SPI_BF(BITS, bits - 8);
1216 if (spi->mode & SPI_CPOL)
1217 csr |= SPI_BIT(CPOL);
1218 if (!(spi->mode & SPI_CPHA))
1219 csr |= SPI_BIT(NCPHA);
1220
1221 if (!spi->cs_gpiod)
1222 csr |= SPI_BIT(CSAAT);
1223 csr |= SPI_BF(DLYBS, 0);
1224
1225 word_delay_csr = atmel_word_delay_csr(spi, as);
1226 if (word_delay_csr < 0)
1227 return word_delay_csr;
1228
1229 /* DLYBCT adds delays between words. This is useful for slow devices
1230 * that need a bit of time to setup the next transfer.
1231 */
1232 csr |= SPI_BF(DLYBCT, word_delay_csr);
1233
1234 asd = spi->controller_state;
1235 if (!asd) {
1236 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1237 if (!asd)
1238 return -ENOMEM;
1239
1240 spi->controller_state = asd;
1241 }
1242
1243 asd->csr = csr;
1244
1245 dev_dbg(&spi->dev,
1246 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1247 bits, spi->mode, spi->chip_select, csr);
1248
1249 if (!atmel_spi_is_v2(as))
1250 spi_writel(as, CSR0 + 4 * chip_select, csr);
1251
1252 return 0;
1253}
1254
1255static void atmel_spi_set_cs(struct spi_device *spi, bool enable)
1256{
1257 struct atmel_spi *as = spi_master_get_devdata(spi->master);
1258 /* the core doesn't really pass us enable/disable, but CS HIGH vs CS LOW
1259 * since we already have routines for activate/deactivate translate
1260 * high/low to active/inactive
1261 */
1262 enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
1263
1264 if (enable) {
1265 cs_activate(as, spi);
1266 } else {
1267 cs_deactivate(as, spi);
1268 }
1269
1270}
1271
1272static int atmel_spi_one_transfer(struct spi_master *master,
1273 struct spi_device *spi,
1274 struct spi_transfer *xfer)
1275{
1276 struct atmel_spi *as;
1277 u8 bits;
1278 u32 len;
1279 struct atmel_spi_device *asd;
1280 int timeout;
1281 int ret;
1282 unsigned long dma_timeout;
1283
1284 as = spi_master_get_devdata(master);
1285
1286 asd = spi->controller_state;
1287 bits = (asd->csr >> 4) & 0xf;
1288 if (bits != xfer->bits_per_word - 8) {
1289 dev_dbg(&spi->dev,
1290 "you can't yet change bits_per_word in transfers\n");
1291 return -ENOPROTOOPT;
1292 }
1293
1294 /*
1295 * DMA map early, for performance (empties dcache ASAP) and
1296 * better fault reporting.
1297 */
1298 if ((!master->cur_msg->is_dma_mapped)
1299 && as->use_pdc) {
1300 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1301 return -ENOMEM;
1302 }
1303
1304 atmel_spi_set_xfer_speed(as, spi, xfer);
1305
1306 as->done_status = 0;
1307 as->current_transfer = xfer;
1308 as->current_remaining_bytes = xfer->len;
1309 while (as->current_remaining_bytes) {
1310 reinit_completion(&as->xfer_completion);
1311
1312 if (as->use_pdc) {
1313 atmel_spi_lock(as);
1314 atmel_spi_pdc_next_xfer(master, xfer);
1315 atmel_spi_unlock(as);
1316 } else if (atmel_spi_use_dma(as, xfer)) {
1317 len = as->current_remaining_bytes;
1318 ret = atmel_spi_next_xfer_dma_submit(master,
1319 xfer, &len);
1320 if (ret) {
1321 dev_err(&spi->dev,
1322 "unable to use DMA, fallback to PIO\n");
1323 as->done_status = ret;
1324 break;
1325 } else {
1326 as->current_remaining_bytes -= len;
1327 if (as->current_remaining_bytes < 0)
1328 as->current_remaining_bytes = 0;
1329 }
1330 } else {
1331 atmel_spi_lock(as);
1332 atmel_spi_next_xfer_pio(master, xfer);
1333 atmel_spi_unlock(as);
1334 }
1335
1336 dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1337 SPI_DMA_TIMEOUT);
1338 if (WARN_ON(dma_timeout == 0)) {
1339 dev_err(&spi->dev, "spi transfer timeout\n");
1340 as->done_status = -EIO;
1341 }
1342
1343 if (as->done_status)
1344 break;
1345 }
1346
1347 if (as->done_status) {
1348 if (as->use_pdc) {
1349 dev_warn(master->dev.parent,
1350 "overrun (%u/%u remaining)\n",
1351 spi_readl(as, TCR), spi_readl(as, RCR));
1352
1353 /*
1354 * Clean up DMA registers and make sure the data
1355 * registers are empty.
1356 */
1357 spi_writel(as, RNCR, 0);
1358 spi_writel(as, TNCR, 0);
1359 spi_writel(as, RCR, 0);
1360 spi_writel(as, TCR, 0);
1361 for (timeout = 1000; timeout; timeout--)
1362 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1363 break;
1364 if (!timeout)
1365 dev_warn(master->dev.parent,
1366 "timeout waiting for TXEMPTY");
1367 while (spi_readl(as, SR) & SPI_BIT(RDRF))
1368 spi_readl(as, RDR);
1369
1370 /* Clear any overrun happening while cleaning up */
1371 spi_readl(as, SR);
1372
1373 } else if (atmel_spi_use_dma(as, xfer)) {
1374 atmel_spi_stop_dma(master);
1375 }
1376 }
1377
1378 if (!master->cur_msg->is_dma_mapped
1379 && as->use_pdc)
1380 atmel_spi_dma_unmap_xfer(master, xfer);
1381
1382 if (as->use_pdc)
1383 atmel_spi_disable_pdc_transfer(as);
1384
1385 return as->done_status;
1386}
1387
1388static void atmel_spi_cleanup(struct spi_device *spi)
1389{
1390 struct atmel_spi_device *asd = spi->controller_state;
1391
1392 if (!asd)
1393 return;
1394
1395 spi->controller_state = NULL;
1396 kfree(asd);
1397}
1398
1399static inline unsigned int atmel_get_version(struct atmel_spi *as)
1400{
1401 return spi_readl(as, VERSION) & 0x00000fff;
1402}
1403
1404static void atmel_get_caps(struct atmel_spi *as)
1405{
1406 unsigned int version;
1407
1408 version = atmel_get_version(as);
1409
1410 as->caps.is_spi2 = version > 0x121;
1411 as->caps.has_wdrbt = version >= 0x210;
1412 as->caps.has_dma_support = version >= 0x212;
1413 as->caps.has_pdc_support = version < 0x212;
1414}
1415
1416static void atmel_spi_init(struct atmel_spi *as)
1417{
1418 spi_writel(as, CR, SPI_BIT(SWRST));
1419 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1420
1421 /* It is recommended to enable FIFOs first thing after reset */
1422 if (as->fifo_size)
1423 spi_writel(as, CR, SPI_BIT(FIFOEN));
1424
1425 if (as->caps.has_wdrbt) {
1426 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1427 | SPI_BIT(MSTR));
1428 } else {
1429 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1430 }
1431
1432 if (as->use_pdc)
1433 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1434 spi_writel(as, CR, SPI_BIT(SPIEN));
1435}
1436
1437static int atmel_spi_probe(struct platform_device *pdev)
1438{
1439 struct resource *regs;
1440 int irq;
1441 struct clk *clk;
1442 int ret;
1443 struct spi_master *master;
1444 struct atmel_spi *as;
1445
1446 /* Select default pin state */
1447 pinctrl_pm_select_default_state(&pdev->dev);
1448
1449 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1450 if (!regs)
1451 return -ENXIO;
1452
1453 irq = platform_get_irq(pdev, 0);
1454 if (irq < 0)
1455 return irq;
1456
1457 clk = devm_clk_get(&pdev->dev, "spi_clk");
1458 if (IS_ERR(clk))
1459 return PTR_ERR(clk);
1460
1461 /* setup spi core then atmel-specific driver state */
1462 master = spi_alloc_master(&pdev->dev, sizeof(*as));
1463 if (!master)
1464 return -ENOMEM;
1465
1466 /* the spi->mode bits understood by this driver: */
1467 master->use_gpio_descriptors = true;
1468 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1469 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1470 master->dev.of_node = pdev->dev.of_node;
1471 master->bus_num = pdev->id;
1472 master->num_chipselect = 4;
1473 master->setup = atmel_spi_setup;
1474 master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX |
1475 SPI_MASTER_GPIO_SS);
1476 master->transfer_one = atmel_spi_one_transfer;
1477 master->set_cs = atmel_spi_set_cs;
1478 master->cleanup = atmel_spi_cleanup;
1479 master->auto_runtime_pm = true;
1480 master->max_dma_len = SPI_MAX_DMA_XFER;
1481 master->can_dma = atmel_spi_can_dma;
1482 platform_set_drvdata(pdev, master);
1483
1484 as = spi_master_get_devdata(master);
1485
1486 spin_lock_init(&as->lock);
1487
1488 as->pdev = pdev;
1489 as->regs = devm_ioremap_resource(&pdev->dev, regs);
1490 if (IS_ERR(as->regs)) {
1491 ret = PTR_ERR(as->regs);
1492 goto out_unmap_regs;
1493 }
1494 as->phybase = regs->start;
1495 as->irq = irq;
1496 as->clk = clk;
1497
1498 init_completion(&as->xfer_completion);
1499
1500 atmel_get_caps(as);
1501
1502 as->use_dma = false;
1503 as->use_pdc = false;
1504 if (as->caps.has_dma_support) {
1505 ret = atmel_spi_configure_dma(master, as);
1506 if (ret == 0) {
1507 as->use_dma = true;
1508 } else if (ret == -EPROBE_DEFER) {
1509 goto out_unmap_regs;
1510 }
1511 } else if (as->caps.has_pdc_support) {
1512 as->use_pdc = true;
1513 }
1514
1515 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1516 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1517 SPI_MAX_DMA_XFER,
1518 &as->dma_addr_rx_bbuf,
1519 GFP_KERNEL | GFP_DMA);
1520 if (!as->addr_rx_bbuf) {
1521 as->use_dma = false;
1522 } else {
1523 as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1524 SPI_MAX_DMA_XFER,
1525 &as->dma_addr_tx_bbuf,
1526 GFP_KERNEL | GFP_DMA);
1527 if (!as->addr_tx_bbuf) {
1528 as->use_dma = false;
1529 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1530 as->addr_rx_bbuf,
1531 as->dma_addr_rx_bbuf);
1532 }
1533 }
1534 if (!as->use_dma)
1535 dev_info(master->dev.parent,
1536 " can not allocate dma coherent memory\n");
1537 }
1538
1539 if (as->caps.has_dma_support && !as->use_dma)
1540 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1541
1542 if (as->use_pdc) {
1543 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1544 0, dev_name(&pdev->dev), master);
1545 } else {
1546 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1547 0, dev_name(&pdev->dev), master);
1548 }
1549 if (ret)
1550 goto out_unmap_regs;
1551
1552 /* Initialize the hardware */
1553 ret = clk_prepare_enable(clk);
1554 if (ret)
1555 goto out_free_irq;
1556
1557 as->spi_clk = clk_get_rate(clk);
1558
1559 as->fifo_size = 0;
1560 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1561 &as->fifo_size)) {
1562 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1563 }
1564
1565 atmel_spi_init(as);
1566
1567 pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1568 pm_runtime_use_autosuspend(&pdev->dev);
1569 pm_runtime_set_active(&pdev->dev);
1570 pm_runtime_enable(&pdev->dev);
1571
1572 ret = devm_spi_register_master(&pdev->dev, master);
1573 if (ret)
1574 goto out_free_dma;
1575
1576 /* go! */
1577 dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1578 atmel_get_version(as), (unsigned long)regs->start,
1579 irq);
1580
1581 return 0;
1582
1583out_free_dma:
1584 pm_runtime_disable(&pdev->dev);
1585 pm_runtime_set_suspended(&pdev->dev);
1586
1587 if (as->use_dma)
1588 atmel_spi_release_dma(master);
1589
1590 spi_writel(as, CR, SPI_BIT(SWRST));
1591 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1592 clk_disable_unprepare(clk);
1593out_free_irq:
1594out_unmap_regs:
1595 spi_master_put(master);
1596 return ret;
1597}
1598
1599static int atmel_spi_remove(struct platform_device *pdev)
1600{
1601 struct spi_master *master = platform_get_drvdata(pdev);
1602 struct atmel_spi *as = spi_master_get_devdata(master);
1603
1604 pm_runtime_get_sync(&pdev->dev);
1605
1606 /* reset the hardware and block queue progress */
1607 if (as->use_dma) {
1608 atmel_spi_stop_dma(master);
1609 atmel_spi_release_dma(master);
1610 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1611 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1612 as->addr_tx_bbuf,
1613 as->dma_addr_tx_bbuf);
1614 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1615 as->addr_rx_bbuf,
1616 as->dma_addr_rx_bbuf);
1617 }
1618 }
1619
1620 spin_lock_irq(&as->lock);
1621 spi_writel(as, CR, SPI_BIT(SWRST));
1622 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1623 spi_readl(as, SR);
1624 spin_unlock_irq(&as->lock);
1625
1626 clk_disable_unprepare(as->clk);
1627
1628 pm_runtime_put_noidle(&pdev->dev);
1629 pm_runtime_disable(&pdev->dev);
1630
1631 return 0;
1632}
1633
1634static int atmel_spi_runtime_suspend(struct device *dev)
1635{
1636 struct spi_master *master = dev_get_drvdata(dev);
1637 struct atmel_spi *as = spi_master_get_devdata(master);
1638
1639 clk_disable_unprepare(as->clk);
1640 pinctrl_pm_select_sleep_state(dev);
1641
1642 return 0;
1643}
1644
1645static int atmel_spi_runtime_resume(struct device *dev)
1646{
1647 struct spi_master *master = dev_get_drvdata(dev);
1648 struct atmel_spi *as = spi_master_get_devdata(master);
1649
1650 pinctrl_pm_select_default_state(dev);
1651
1652 return clk_prepare_enable(as->clk);
1653}
1654
1655static int atmel_spi_suspend(struct device *dev)
1656{
1657 struct spi_master *master = dev_get_drvdata(dev);
1658 int ret;
1659
1660 /* Stop the queue running */
1661 ret = spi_master_suspend(master);
1662 if (ret)
1663 return ret;
1664
1665 if (!pm_runtime_suspended(dev))
1666 atmel_spi_runtime_suspend(dev);
1667
1668 return 0;
1669}
1670
1671static int atmel_spi_resume(struct device *dev)
1672{
1673 struct spi_master *master = dev_get_drvdata(dev);
1674 struct atmel_spi *as = spi_master_get_devdata(master);
1675 int ret;
1676
1677 ret = clk_prepare_enable(as->clk);
1678 if (ret)
1679 return ret;
1680
1681 atmel_spi_init(as);
1682
1683 clk_disable_unprepare(as->clk);
1684
1685 if (!pm_runtime_suspended(dev)) {
1686 ret = atmel_spi_runtime_resume(dev);
1687 if (ret)
1688 return ret;
1689 }
1690
1691 /* Start the queue running */
1692 return spi_master_resume(master);
1693}
1694
1695static const struct dev_pm_ops atmel_spi_pm_ops = {
1696 SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1697 RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1698 atmel_spi_runtime_resume, NULL)
1699};
1700
1701static const struct of_device_id atmel_spi_dt_ids[] = {
1702 { .compatible = "atmel,at91rm9200-spi" },
1703 { /* sentinel */ }
1704};
1705
1706MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1707
1708static struct platform_driver atmel_spi_driver = {
1709 .driver = {
1710 .name = "atmel_spi",
1711 .pm = pm_ptr(&atmel_spi_pm_ops),
1712 .of_match_table = atmel_spi_dt_ids,
1713 },
1714 .probe = atmel_spi_probe,
1715 .remove = atmel_spi_remove,
1716};
1717module_platform_driver(atmel_spi_driver);
1718
1719MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1720MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1721MODULE_LICENSE("GPL");
1722MODULE_ALIAS("platform:atmel_spi");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Driver for Atmel AT32 and AT91 SPI Controllers
4 *
5 * Copyright (C) 2006 Atmel Corporation
6 */
7
8#include <linux/kernel.h>
9#include <linux/clk.h>
10#include <linux/module.h>
11#include <linux/platform_device.h>
12#include <linux/delay.h>
13#include <linux/dma-mapping.h>
14#include <linux/dmaengine.h>
15#include <linux/err.h>
16#include <linux/interrupt.h>
17#include <linux/spi/spi.h>
18#include <linux/slab.h>
19#include <linux/platform_data/dma-atmel.h>
20#include <linux/of.h>
21
22#include <linux/io.h>
23#include <linux/gpio/consumer.h>
24#include <linux/pinctrl/consumer.h>
25#include <linux/pm_runtime.h>
26#include <trace/events/spi.h>
27
28/* SPI register offsets */
29#define SPI_CR 0x0000
30#define SPI_MR 0x0004
31#define SPI_RDR 0x0008
32#define SPI_TDR 0x000c
33#define SPI_SR 0x0010
34#define SPI_IER 0x0014
35#define SPI_IDR 0x0018
36#define SPI_IMR 0x001c
37#define SPI_CSR0 0x0030
38#define SPI_CSR1 0x0034
39#define SPI_CSR2 0x0038
40#define SPI_CSR3 0x003c
41#define SPI_FMR 0x0040
42#define SPI_FLR 0x0044
43#define SPI_VERSION 0x00fc
44#define SPI_RPR 0x0100
45#define SPI_RCR 0x0104
46#define SPI_TPR 0x0108
47#define SPI_TCR 0x010c
48#define SPI_RNPR 0x0110
49#define SPI_RNCR 0x0114
50#define SPI_TNPR 0x0118
51#define SPI_TNCR 0x011c
52#define SPI_PTCR 0x0120
53#define SPI_PTSR 0x0124
54
55/* Bitfields in CR */
56#define SPI_SPIEN_OFFSET 0
57#define SPI_SPIEN_SIZE 1
58#define SPI_SPIDIS_OFFSET 1
59#define SPI_SPIDIS_SIZE 1
60#define SPI_SWRST_OFFSET 7
61#define SPI_SWRST_SIZE 1
62#define SPI_LASTXFER_OFFSET 24
63#define SPI_LASTXFER_SIZE 1
64#define SPI_TXFCLR_OFFSET 16
65#define SPI_TXFCLR_SIZE 1
66#define SPI_RXFCLR_OFFSET 17
67#define SPI_RXFCLR_SIZE 1
68#define SPI_FIFOEN_OFFSET 30
69#define SPI_FIFOEN_SIZE 1
70#define SPI_FIFODIS_OFFSET 31
71#define SPI_FIFODIS_SIZE 1
72
73/* Bitfields in MR */
74#define SPI_MSTR_OFFSET 0
75#define SPI_MSTR_SIZE 1
76#define SPI_PS_OFFSET 1
77#define SPI_PS_SIZE 1
78#define SPI_PCSDEC_OFFSET 2
79#define SPI_PCSDEC_SIZE 1
80#define SPI_FDIV_OFFSET 3
81#define SPI_FDIV_SIZE 1
82#define SPI_MODFDIS_OFFSET 4
83#define SPI_MODFDIS_SIZE 1
84#define SPI_WDRBT_OFFSET 5
85#define SPI_WDRBT_SIZE 1
86#define SPI_LLB_OFFSET 7
87#define SPI_LLB_SIZE 1
88#define SPI_PCS_OFFSET 16
89#define SPI_PCS_SIZE 4
90#define SPI_DLYBCS_OFFSET 24
91#define SPI_DLYBCS_SIZE 8
92
93/* Bitfields in RDR */
94#define SPI_RD_OFFSET 0
95#define SPI_RD_SIZE 16
96
97/* Bitfields in TDR */
98#define SPI_TD_OFFSET 0
99#define SPI_TD_SIZE 16
100
101/* Bitfields in SR */
102#define SPI_RDRF_OFFSET 0
103#define SPI_RDRF_SIZE 1
104#define SPI_TDRE_OFFSET 1
105#define SPI_TDRE_SIZE 1
106#define SPI_MODF_OFFSET 2
107#define SPI_MODF_SIZE 1
108#define SPI_OVRES_OFFSET 3
109#define SPI_OVRES_SIZE 1
110#define SPI_ENDRX_OFFSET 4
111#define SPI_ENDRX_SIZE 1
112#define SPI_ENDTX_OFFSET 5
113#define SPI_ENDTX_SIZE 1
114#define SPI_RXBUFF_OFFSET 6
115#define SPI_RXBUFF_SIZE 1
116#define SPI_TXBUFE_OFFSET 7
117#define SPI_TXBUFE_SIZE 1
118#define SPI_NSSR_OFFSET 8
119#define SPI_NSSR_SIZE 1
120#define SPI_TXEMPTY_OFFSET 9
121#define SPI_TXEMPTY_SIZE 1
122#define SPI_SPIENS_OFFSET 16
123#define SPI_SPIENS_SIZE 1
124#define SPI_TXFEF_OFFSET 24
125#define SPI_TXFEF_SIZE 1
126#define SPI_TXFFF_OFFSET 25
127#define SPI_TXFFF_SIZE 1
128#define SPI_TXFTHF_OFFSET 26
129#define SPI_TXFTHF_SIZE 1
130#define SPI_RXFEF_OFFSET 27
131#define SPI_RXFEF_SIZE 1
132#define SPI_RXFFF_OFFSET 28
133#define SPI_RXFFF_SIZE 1
134#define SPI_RXFTHF_OFFSET 29
135#define SPI_RXFTHF_SIZE 1
136#define SPI_TXFPTEF_OFFSET 30
137#define SPI_TXFPTEF_SIZE 1
138#define SPI_RXFPTEF_OFFSET 31
139#define SPI_RXFPTEF_SIZE 1
140
141/* Bitfields in CSR0 */
142#define SPI_CPOL_OFFSET 0
143#define SPI_CPOL_SIZE 1
144#define SPI_NCPHA_OFFSET 1
145#define SPI_NCPHA_SIZE 1
146#define SPI_CSAAT_OFFSET 3
147#define SPI_CSAAT_SIZE 1
148#define SPI_BITS_OFFSET 4
149#define SPI_BITS_SIZE 4
150#define SPI_SCBR_OFFSET 8
151#define SPI_SCBR_SIZE 8
152#define SPI_DLYBS_OFFSET 16
153#define SPI_DLYBS_SIZE 8
154#define SPI_DLYBCT_OFFSET 24
155#define SPI_DLYBCT_SIZE 8
156
157/* Bitfields in RCR */
158#define SPI_RXCTR_OFFSET 0
159#define SPI_RXCTR_SIZE 16
160
161/* Bitfields in TCR */
162#define SPI_TXCTR_OFFSET 0
163#define SPI_TXCTR_SIZE 16
164
165/* Bitfields in RNCR */
166#define SPI_RXNCR_OFFSET 0
167#define SPI_RXNCR_SIZE 16
168
169/* Bitfields in TNCR */
170#define SPI_TXNCR_OFFSET 0
171#define SPI_TXNCR_SIZE 16
172
173/* Bitfields in PTCR */
174#define SPI_RXTEN_OFFSET 0
175#define SPI_RXTEN_SIZE 1
176#define SPI_RXTDIS_OFFSET 1
177#define SPI_RXTDIS_SIZE 1
178#define SPI_TXTEN_OFFSET 8
179#define SPI_TXTEN_SIZE 1
180#define SPI_TXTDIS_OFFSET 9
181#define SPI_TXTDIS_SIZE 1
182
183/* Bitfields in FMR */
184#define SPI_TXRDYM_OFFSET 0
185#define SPI_TXRDYM_SIZE 2
186#define SPI_RXRDYM_OFFSET 4
187#define SPI_RXRDYM_SIZE 2
188#define SPI_TXFTHRES_OFFSET 16
189#define SPI_TXFTHRES_SIZE 6
190#define SPI_RXFTHRES_OFFSET 24
191#define SPI_RXFTHRES_SIZE 6
192
193/* Bitfields in FLR */
194#define SPI_TXFL_OFFSET 0
195#define SPI_TXFL_SIZE 6
196#define SPI_RXFL_OFFSET 16
197#define SPI_RXFL_SIZE 6
198
199/* Constants for BITS */
200#define SPI_BITS_8_BPT 0
201#define SPI_BITS_9_BPT 1
202#define SPI_BITS_10_BPT 2
203#define SPI_BITS_11_BPT 3
204#define SPI_BITS_12_BPT 4
205#define SPI_BITS_13_BPT 5
206#define SPI_BITS_14_BPT 6
207#define SPI_BITS_15_BPT 7
208#define SPI_BITS_16_BPT 8
209#define SPI_ONE_DATA 0
210#define SPI_TWO_DATA 1
211#define SPI_FOUR_DATA 2
212
213/* Bit manipulation macros */
214#define SPI_BIT(name) \
215 (1 << SPI_##name##_OFFSET)
216#define SPI_BF(name, value) \
217 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
218#define SPI_BFEXT(name, value) \
219 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
220#define SPI_BFINS(name, value, old) \
221 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
222 | SPI_BF(name, value))
223
224/* Register access macros */
225#ifdef CONFIG_AVR32
226#define spi_readl(port, reg) \
227 __raw_readl((port)->regs + SPI_##reg)
228#define spi_writel(port, reg, value) \
229 __raw_writel((value), (port)->regs + SPI_##reg)
230
231#define spi_readw(port, reg) \
232 __raw_readw((port)->regs + SPI_##reg)
233#define spi_writew(port, reg, value) \
234 __raw_writew((value), (port)->regs + SPI_##reg)
235
236#define spi_readb(port, reg) \
237 __raw_readb((port)->regs + SPI_##reg)
238#define spi_writeb(port, reg, value) \
239 __raw_writeb((value), (port)->regs + SPI_##reg)
240#else
241#define spi_readl(port, reg) \
242 readl_relaxed((port)->regs + SPI_##reg)
243#define spi_writel(port, reg, value) \
244 writel_relaxed((value), (port)->regs + SPI_##reg)
245
246#define spi_readw(port, reg) \
247 readw_relaxed((port)->regs + SPI_##reg)
248#define spi_writew(port, reg, value) \
249 writew_relaxed((value), (port)->regs + SPI_##reg)
250
251#define spi_readb(port, reg) \
252 readb_relaxed((port)->regs + SPI_##reg)
253#define spi_writeb(port, reg, value) \
254 writeb_relaxed((value), (port)->regs + SPI_##reg)
255#endif
256/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
257 * cache operations; better heuristics consider wordsize and bitrate.
258 */
259#define DMA_MIN_BYTES 16
260
261#define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
262
263#define AUTOSUSPEND_TIMEOUT 2000
264
265struct atmel_spi_caps {
266 bool is_spi2;
267 bool has_wdrbt;
268 bool has_dma_support;
269 bool has_pdc_support;
270};
271
272/*
273 * The core SPI transfer engine just talks to a register bank to set up
274 * DMA transfers; transfer queue progress is driven by IRQs. The clock
275 * framework provides the base clock, subdivided for each spi_device.
276 */
277struct atmel_spi {
278 spinlock_t lock;
279 unsigned long flags;
280
281 phys_addr_t phybase;
282 void __iomem *regs;
283 int irq;
284 struct clk *clk;
285 struct platform_device *pdev;
286 unsigned long spi_clk;
287
288 struct spi_transfer *current_transfer;
289 int current_remaining_bytes;
290 int done_status;
291 dma_addr_t dma_addr_rx_bbuf;
292 dma_addr_t dma_addr_tx_bbuf;
293 void *addr_rx_bbuf;
294 void *addr_tx_bbuf;
295
296 struct completion xfer_completion;
297
298 struct atmel_spi_caps caps;
299
300 bool use_dma;
301 bool use_pdc;
302 bool use_cs_gpios;
303
304 bool keep_cs;
305 bool cs_active;
306
307 u32 fifo_size;
308};
309
310/* Controller-specific per-slave state */
311struct atmel_spi_device {
312 struct gpio_desc *npcs_pin;
313 u32 csr;
314};
315
316#define SPI_MAX_DMA_XFER 65535 /* true for both PDC and DMA */
317#define INVALID_DMA_ADDRESS 0xffffffff
318
319/*
320 * Version 2 of the SPI controller has
321 * - CR.LASTXFER
322 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
323 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
324 * - SPI_CSRx.CSAAT
325 * - SPI_CSRx.SBCR allows faster clocking
326 */
327static bool atmel_spi_is_v2(struct atmel_spi *as)
328{
329 return as->caps.is_spi2;
330}
331
332/*
333 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
334 * they assume that spi slave device state will not change on deselect, so
335 * that automagic deselection is OK. ("NPCSx rises if no data is to be
336 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
337 * controllers have CSAAT and friends.
338 *
339 * Since the CSAAT functionality is a bit weird on newer controllers as
340 * well, we use GPIO to control nCSx pins on all controllers, updating
341 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us
342 * support active-high chipselects despite the controller's belief that
343 * only active-low devices/systems exists.
344 *
345 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
346 * right when driven with GPIO. ("Mode Fault does not allow more than one
347 * Master on Chip Select 0.") No workaround exists for that ... so for
348 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
349 * and (c) will trigger that first erratum in some cases.
350 */
351
352static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
353{
354 struct atmel_spi_device *asd = spi->controller_state;
355 u32 mr;
356
357 if (atmel_spi_is_v2(as)) {
358 spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
359 /* For the low SPI version, there is a issue that PDC transfer
360 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
361 */
362 spi_writel(as, CSR0, asd->csr);
363 if (as->caps.has_wdrbt) {
364 spi_writel(as, MR,
365 SPI_BF(PCS, ~(0x01 << spi->chip_select))
366 | SPI_BIT(WDRBT)
367 | SPI_BIT(MODFDIS)
368 | SPI_BIT(MSTR));
369 } else {
370 spi_writel(as, MR,
371 SPI_BF(PCS, ~(0x01 << spi->chip_select))
372 | SPI_BIT(MODFDIS)
373 | SPI_BIT(MSTR));
374 }
375
376 mr = spi_readl(as, MR);
377 if (as->use_cs_gpios)
378 gpiod_set_value(asd->npcs_pin, 1);
379 } else {
380 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
381 int i;
382 u32 csr;
383
384 /* Make sure clock polarity is correct */
385 for (i = 0; i < spi->master->num_chipselect; i++) {
386 csr = spi_readl(as, CSR0 + 4 * i);
387 if ((csr ^ cpol) & SPI_BIT(CPOL))
388 spi_writel(as, CSR0 + 4 * i,
389 csr ^ SPI_BIT(CPOL));
390 }
391
392 mr = spi_readl(as, MR);
393 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
394 if (as->use_cs_gpios && spi->chip_select != 0)
395 gpiod_set_value(asd->npcs_pin, 1);
396 spi_writel(as, MR, mr);
397 }
398
399 dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
400}
401
402static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
403{
404 struct atmel_spi_device *asd = spi->controller_state;
405 u32 mr;
406
407 /* only deactivate *this* device; sometimes transfers to
408 * another device may be active when this routine is called.
409 */
410 mr = spi_readl(as, MR);
411 if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
412 mr = SPI_BFINS(PCS, 0xf, mr);
413 spi_writel(as, MR, mr);
414 }
415
416 dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
417
418 if (!as->use_cs_gpios)
419 spi_writel(as, CR, SPI_BIT(LASTXFER));
420 else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
421 gpiod_set_value(asd->npcs_pin, 0);
422}
423
424static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
425{
426 spin_lock_irqsave(&as->lock, as->flags);
427}
428
429static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
430{
431 spin_unlock_irqrestore(&as->lock, as->flags);
432}
433
434static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
435{
436 return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
437}
438
439static inline bool atmel_spi_use_dma(struct atmel_spi *as,
440 struct spi_transfer *xfer)
441{
442 return as->use_dma && xfer->len >= DMA_MIN_BYTES;
443}
444
445static bool atmel_spi_can_dma(struct spi_master *master,
446 struct spi_device *spi,
447 struct spi_transfer *xfer)
448{
449 struct atmel_spi *as = spi_master_get_devdata(master);
450
451 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
452 return atmel_spi_use_dma(as, xfer) &&
453 !atmel_spi_is_vmalloc_xfer(xfer);
454 else
455 return atmel_spi_use_dma(as, xfer);
456
457}
458
459static int atmel_spi_dma_slave_config(struct atmel_spi *as,
460 struct dma_slave_config *slave_config,
461 u8 bits_per_word)
462{
463 struct spi_master *master = platform_get_drvdata(as->pdev);
464 int err = 0;
465
466 if (bits_per_word > 8) {
467 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
468 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
469 } else {
470 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
471 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
472 }
473
474 slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
475 slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
476 slave_config->src_maxburst = 1;
477 slave_config->dst_maxburst = 1;
478 slave_config->device_fc = false;
479
480 /*
481 * This driver uses fixed peripheral select mode (PS bit set to '0' in
482 * the Mode Register).
483 * So according to the datasheet, when FIFOs are available (and
484 * enabled), the Transmit FIFO operates in Multiple Data Mode.
485 * In this mode, up to 2 data, not 4, can be written into the Transmit
486 * Data Register in a single access.
487 * However, the first data has to be written into the lowest 16 bits and
488 * the second data into the highest 16 bits of the Transmit
489 * Data Register. For 8bit data (the most frequent case), it would
490 * require to rework tx_buf so each data would actualy fit 16 bits.
491 * So we'd rather write only one data at the time. Hence the transmit
492 * path works the same whether FIFOs are available (and enabled) or not.
493 */
494 slave_config->direction = DMA_MEM_TO_DEV;
495 if (dmaengine_slave_config(master->dma_tx, slave_config)) {
496 dev_err(&as->pdev->dev,
497 "failed to configure tx dma channel\n");
498 err = -EINVAL;
499 }
500
501 /*
502 * This driver configures the spi controller for master mode (MSTR bit
503 * set to '1' in the Mode Register).
504 * So according to the datasheet, when FIFOs are available (and
505 * enabled), the Receive FIFO operates in Single Data Mode.
506 * So the receive path works the same whether FIFOs are available (and
507 * enabled) or not.
508 */
509 slave_config->direction = DMA_DEV_TO_MEM;
510 if (dmaengine_slave_config(master->dma_rx, slave_config)) {
511 dev_err(&as->pdev->dev,
512 "failed to configure rx dma channel\n");
513 err = -EINVAL;
514 }
515
516 return err;
517}
518
519static int atmel_spi_configure_dma(struct spi_master *master,
520 struct atmel_spi *as)
521{
522 struct dma_slave_config slave_config;
523 struct device *dev = &as->pdev->dev;
524 int err;
525
526 dma_cap_mask_t mask;
527 dma_cap_zero(mask);
528 dma_cap_set(DMA_SLAVE, mask);
529
530 master->dma_tx = dma_request_slave_channel_reason(dev, "tx");
531 if (IS_ERR(master->dma_tx)) {
532 err = PTR_ERR(master->dma_tx);
533 if (err == -EPROBE_DEFER) {
534 dev_warn(dev, "no DMA channel available at the moment\n");
535 goto error_clear;
536 }
537 dev_err(dev,
538 "DMA TX channel not available, SPI unable to use DMA\n");
539 err = -EBUSY;
540 goto error_clear;
541 }
542
543 /*
544 * No reason to check EPROBE_DEFER here since we have already requested
545 * tx channel. If it fails here, it's for another reason.
546 */
547 master->dma_rx = dma_request_slave_channel(dev, "rx");
548
549 if (!master->dma_rx) {
550 dev_err(dev,
551 "DMA RX channel not available, SPI unable to use DMA\n");
552 err = -EBUSY;
553 goto error;
554 }
555
556 err = atmel_spi_dma_slave_config(as, &slave_config, 8);
557 if (err)
558 goto error;
559
560 dev_info(&as->pdev->dev,
561 "Using %s (tx) and %s (rx) for DMA transfers\n",
562 dma_chan_name(master->dma_tx),
563 dma_chan_name(master->dma_rx));
564
565 return 0;
566error:
567 if (master->dma_rx)
568 dma_release_channel(master->dma_rx);
569 if (!IS_ERR(master->dma_tx))
570 dma_release_channel(master->dma_tx);
571error_clear:
572 master->dma_tx = master->dma_rx = NULL;
573 return err;
574}
575
576static void atmel_spi_stop_dma(struct spi_master *master)
577{
578 if (master->dma_rx)
579 dmaengine_terminate_all(master->dma_rx);
580 if (master->dma_tx)
581 dmaengine_terminate_all(master->dma_tx);
582}
583
584static void atmel_spi_release_dma(struct spi_master *master)
585{
586 if (master->dma_rx) {
587 dma_release_channel(master->dma_rx);
588 master->dma_rx = NULL;
589 }
590 if (master->dma_tx) {
591 dma_release_channel(master->dma_tx);
592 master->dma_tx = NULL;
593 }
594}
595
596/* This function is called by the DMA driver from tasklet context */
597static void dma_callback(void *data)
598{
599 struct spi_master *master = data;
600 struct atmel_spi *as = spi_master_get_devdata(master);
601
602 if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
603 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
604 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
605 as->current_transfer->len);
606 }
607 complete(&as->xfer_completion);
608}
609
610/*
611 * Next transfer using PIO without FIFO.
612 */
613static void atmel_spi_next_xfer_single(struct spi_master *master,
614 struct spi_transfer *xfer)
615{
616 struct atmel_spi *as = spi_master_get_devdata(master);
617 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
618
619 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
620
621 /* Make sure data is not remaining in RDR */
622 spi_readl(as, RDR);
623 while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
624 spi_readl(as, RDR);
625 cpu_relax();
626 }
627
628 if (xfer->bits_per_word > 8)
629 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
630 else
631 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
632
633 dev_dbg(master->dev.parent,
634 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
635 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
636 xfer->bits_per_word);
637
638 /* Enable relevant interrupts */
639 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
640}
641
642/*
643 * Next transfer using PIO with FIFO.
644 */
645static void atmel_spi_next_xfer_fifo(struct spi_master *master,
646 struct spi_transfer *xfer)
647{
648 struct atmel_spi *as = spi_master_get_devdata(master);
649 u32 current_remaining_data, num_data;
650 u32 offset = xfer->len - as->current_remaining_bytes;
651 const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
652 const u8 *bytes = (const u8 *)((u8 *)xfer->tx_buf + offset);
653 u16 td0, td1;
654 u32 fifomr;
655
656 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
657
658 /* Compute the number of data to transfer in the current iteration */
659 current_remaining_data = ((xfer->bits_per_word > 8) ?
660 ((u32)as->current_remaining_bytes >> 1) :
661 (u32)as->current_remaining_bytes);
662 num_data = min(current_remaining_data, as->fifo_size);
663
664 /* Flush RX and TX FIFOs */
665 spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
666 while (spi_readl(as, FLR))
667 cpu_relax();
668
669 /* Set RX FIFO Threshold to the number of data to transfer */
670 fifomr = spi_readl(as, FMR);
671 spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
672
673 /* Clear FIFO flags in the Status Register, especially RXFTHF */
674 (void)spi_readl(as, SR);
675
676 /* Fill TX FIFO */
677 while (num_data >= 2) {
678 if (xfer->bits_per_word > 8) {
679 td0 = *words++;
680 td1 = *words++;
681 } else {
682 td0 = *bytes++;
683 td1 = *bytes++;
684 }
685
686 spi_writel(as, TDR, (td1 << 16) | td0);
687 num_data -= 2;
688 }
689
690 if (num_data) {
691 if (xfer->bits_per_word > 8)
692 td0 = *words++;
693 else
694 td0 = *bytes++;
695
696 spi_writew(as, TDR, td0);
697 num_data--;
698 }
699
700 dev_dbg(master->dev.parent,
701 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
702 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
703 xfer->bits_per_word);
704
705 /*
706 * Enable RX FIFO Threshold Flag interrupt to be notified about
707 * transfer completion.
708 */
709 spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
710}
711
712/*
713 * Next transfer using PIO.
714 */
715static void atmel_spi_next_xfer_pio(struct spi_master *master,
716 struct spi_transfer *xfer)
717{
718 struct atmel_spi *as = spi_master_get_devdata(master);
719
720 if (as->fifo_size)
721 atmel_spi_next_xfer_fifo(master, xfer);
722 else
723 atmel_spi_next_xfer_single(master, xfer);
724}
725
726/*
727 * Submit next transfer for DMA.
728 */
729static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
730 struct spi_transfer *xfer,
731 u32 *plen)
732{
733 struct atmel_spi *as = spi_master_get_devdata(master);
734 struct dma_chan *rxchan = master->dma_rx;
735 struct dma_chan *txchan = master->dma_tx;
736 struct dma_async_tx_descriptor *rxdesc;
737 struct dma_async_tx_descriptor *txdesc;
738 struct dma_slave_config slave_config;
739 dma_cookie_t cookie;
740
741 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
742
743 /* Check that the channels are available */
744 if (!rxchan || !txchan)
745 return -ENODEV;
746
747 /* release lock for DMA operations */
748 atmel_spi_unlock(as);
749
750 *plen = xfer->len;
751
752 if (atmel_spi_dma_slave_config(as, &slave_config,
753 xfer->bits_per_word))
754 goto err_exit;
755
756 /* Send both scatterlists */
757 if (atmel_spi_is_vmalloc_xfer(xfer) &&
758 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
759 rxdesc = dmaengine_prep_slave_single(rxchan,
760 as->dma_addr_rx_bbuf,
761 xfer->len,
762 DMA_DEV_TO_MEM,
763 DMA_PREP_INTERRUPT |
764 DMA_CTRL_ACK);
765 } else {
766 rxdesc = dmaengine_prep_slave_sg(rxchan,
767 xfer->rx_sg.sgl,
768 xfer->rx_sg.nents,
769 DMA_DEV_TO_MEM,
770 DMA_PREP_INTERRUPT |
771 DMA_CTRL_ACK);
772 }
773 if (!rxdesc)
774 goto err_dma;
775
776 if (atmel_spi_is_vmalloc_xfer(xfer) &&
777 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
778 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
779 txdesc = dmaengine_prep_slave_single(txchan,
780 as->dma_addr_tx_bbuf,
781 xfer->len, DMA_MEM_TO_DEV,
782 DMA_PREP_INTERRUPT |
783 DMA_CTRL_ACK);
784 } else {
785 txdesc = dmaengine_prep_slave_sg(txchan,
786 xfer->tx_sg.sgl,
787 xfer->tx_sg.nents,
788 DMA_MEM_TO_DEV,
789 DMA_PREP_INTERRUPT |
790 DMA_CTRL_ACK);
791 }
792 if (!txdesc)
793 goto err_dma;
794
795 dev_dbg(master->dev.parent,
796 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
797 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
798 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
799
800 /* Enable relevant interrupts */
801 spi_writel(as, IER, SPI_BIT(OVRES));
802
803 /* Put the callback on the RX transfer only, that should finish last */
804 rxdesc->callback = dma_callback;
805 rxdesc->callback_param = master;
806
807 /* Submit and fire RX and TX with TX last so we're ready to read! */
808 cookie = rxdesc->tx_submit(rxdesc);
809 if (dma_submit_error(cookie))
810 goto err_dma;
811 cookie = txdesc->tx_submit(txdesc);
812 if (dma_submit_error(cookie))
813 goto err_dma;
814 rxchan->device->device_issue_pending(rxchan);
815 txchan->device->device_issue_pending(txchan);
816
817 /* take back lock */
818 atmel_spi_lock(as);
819 return 0;
820
821err_dma:
822 spi_writel(as, IDR, SPI_BIT(OVRES));
823 atmel_spi_stop_dma(master);
824err_exit:
825 atmel_spi_lock(as);
826 return -ENOMEM;
827}
828
829static void atmel_spi_next_xfer_data(struct spi_master *master,
830 struct spi_transfer *xfer,
831 dma_addr_t *tx_dma,
832 dma_addr_t *rx_dma,
833 u32 *plen)
834{
835 *rx_dma = xfer->rx_dma + xfer->len - *plen;
836 *tx_dma = xfer->tx_dma + xfer->len - *plen;
837 if (*plen > master->max_dma_len)
838 *plen = master->max_dma_len;
839}
840
841static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
842 struct spi_device *spi,
843 struct spi_transfer *xfer)
844{
845 u32 scbr, csr;
846 unsigned long bus_hz;
847
848 /* v1 chips start out at half the peripheral bus speed. */
849 bus_hz = as->spi_clk;
850 if (!atmel_spi_is_v2(as))
851 bus_hz /= 2;
852
853 /*
854 * Calculate the lowest divider that satisfies the
855 * constraint, assuming div32/fdiv/mbz == 0.
856 */
857 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
858
859 /*
860 * If the resulting divider doesn't fit into the
861 * register bitfield, we can't satisfy the constraint.
862 */
863 if (scbr >= (1 << SPI_SCBR_SIZE)) {
864 dev_err(&spi->dev,
865 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
866 xfer->speed_hz, scbr, bus_hz/255);
867 return -EINVAL;
868 }
869 if (scbr == 0) {
870 dev_err(&spi->dev,
871 "setup: %d Hz too high, scbr %u; max %ld Hz\n",
872 xfer->speed_hz, scbr, bus_hz);
873 return -EINVAL;
874 }
875 csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
876 csr = SPI_BFINS(SCBR, scbr, csr);
877 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
878
879 return 0;
880}
881
882/*
883 * Submit next transfer for PDC.
884 * lock is held, spi irq is blocked
885 */
886static void atmel_spi_pdc_next_xfer(struct spi_master *master,
887 struct spi_message *msg,
888 struct spi_transfer *xfer)
889{
890 struct atmel_spi *as = spi_master_get_devdata(master);
891 u32 len;
892 dma_addr_t tx_dma, rx_dma;
893
894 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
895
896 len = as->current_remaining_bytes;
897 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
898 as->current_remaining_bytes -= len;
899
900 spi_writel(as, RPR, rx_dma);
901 spi_writel(as, TPR, tx_dma);
902
903 if (msg->spi->bits_per_word > 8)
904 len >>= 1;
905 spi_writel(as, RCR, len);
906 spi_writel(as, TCR, len);
907
908 dev_dbg(&msg->spi->dev,
909 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
910 xfer, xfer->len, xfer->tx_buf,
911 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
912 (unsigned long long)xfer->rx_dma);
913
914 if (as->current_remaining_bytes) {
915 len = as->current_remaining_bytes;
916 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
917 as->current_remaining_bytes -= len;
918
919 spi_writel(as, RNPR, rx_dma);
920 spi_writel(as, TNPR, tx_dma);
921
922 if (msg->spi->bits_per_word > 8)
923 len >>= 1;
924 spi_writel(as, RNCR, len);
925 spi_writel(as, TNCR, len);
926
927 dev_dbg(&msg->spi->dev,
928 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
929 xfer, xfer->len, xfer->tx_buf,
930 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
931 (unsigned long long)xfer->rx_dma);
932 }
933
934 /* REVISIT: We're waiting for RXBUFF before we start the next
935 * transfer because we need to handle some difficult timing
936 * issues otherwise. If we wait for TXBUFE in one transfer and
937 * then starts waiting for RXBUFF in the next, it's difficult
938 * to tell the difference between the RXBUFF interrupt we're
939 * actually waiting for and the RXBUFF interrupt of the
940 * previous transfer.
941 *
942 * It should be doable, though. Just not now...
943 */
944 spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
945 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
946}
947
948/*
949 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
950 * - The buffer is either valid for CPU access, else NULL
951 * - If the buffer is valid, so is its DMA address
952 *
953 * This driver manages the dma address unless message->is_dma_mapped.
954 */
955static int
956atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
957{
958 struct device *dev = &as->pdev->dev;
959
960 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
961 if (xfer->tx_buf) {
962 /* tx_buf is a const void* where we need a void * for the dma
963 * mapping */
964 void *nonconst_tx = (void *)xfer->tx_buf;
965
966 xfer->tx_dma = dma_map_single(dev,
967 nonconst_tx, xfer->len,
968 DMA_TO_DEVICE);
969 if (dma_mapping_error(dev, xfer->tx_dma))
970 return -ENOMEM;
971 }
972 if (xfer->rx_buf) {
973 xfer->rx_dma = dma_map_single(dev,
974 xfer->rx_buf, xfer->len,
975 DMA_FROM_DEVICE);
976 if (dma_mapping_error(dev, xfer->rx_dma)) {
977 if (xfer->tx_buf)
978 dma_unmap_single(dev,
979 xfer->tx_dma, xfer->len,
980 DMA_TO_DEVICE);
981 return -ENOMEM;
982 }
983 }
984 return 0;
985}
986
987static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
988 struct spi_transfer *xfer)
989{
990 if (xfer->tx_dma != INVALID_DMA_ADDRESS)
991 dma_unmap_single(master->dev.parent, xfer->tx_dma,
992 xfer->len, DMA_TO_DEVICE);
993 if (xfer->rx_dma != INVALID_DMA_ADDRESS)
994 dma_unmap_single(master->dev.parent, xfer->rx_dma,
995 xfer->len, DMA_FROM_DEVICE);
996}
997
998static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
999{
1000 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1001}
1002
1003static void
1004atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1005{
1006 u8 *rxp;
1007 u16 *rxp16;
1008 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
1009
1010 if (xfer->bits_per_word > 8) {
1011 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1012 *rxp16 = spi_readl(as, RDR);
1013 } else {
1014 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1015 *rxp = spi_readl(as, RDR);
1016 }
1017 if (xfer->bits_per_word > 8) {
1018 if (as->current_remaining_bytes > 2)
1019 as->current_remaining_bytes -= 2;
1020 else
1021 as->current_remaining_bytes = 0;
1022 } else {
1023 as->current_remaining_bytes--;
1024 }
1025}
1026
1027static void
1028atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1029{
1030 u32 fifolr = spi_readl(as, FLR);
1031 u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1032 u32 offset = xfer->len - as->current_remaining_bytes;
1033 u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1034 u8 *bytes = (u8 *)((u8 *)xfer->rx_buf + offset);
1035 u16 rd; /* RD field is the lowest 16 bits of RDR */
1036
1037 /* Update the number of remaining bytes to transfer */
1038 num_bytes = ((xfer->bits_per_word > 8) ?
1039 (num_data << 1) :
1040 num_data);
1041
1042 if (as->current_remaining_bytes > num_bytes)
1043 as->current_remaining_bytes -= num_bytes;
1044 else
1045 as->current_remaining_bytes = 0;
1046
1047 /* Handle odd number of bytes when data are more than 8bit width */
1048 if (xfer->bits_per_word > 8)
1049 as->current_remaining_bytes &= ~0x1;
1050
1051 /* Read data */
1052 while (num_data) {
1053 rd = spi_readl(as, RDR);
1054 if (xfer->bits_per_word > 8)
1055 *words++ = rd;
1056 else
1057 *bytes++ = rd;
1058 num_data--;
1059 }
1060}
1061
1062/* Called from IRQ
1063 *
1064 * Must update "current_remaining_bytes" to keep track of data
1065 * to transfer.
1066 */
1067static void
1068atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1069{
1070 if (as->fifo_size)
1071 atmel_spi_pump_fifo_data(as, xfer);
1072 else
1073 atmel_spi_pump_single_data(as, xfer);
1074}
1075
1076/* Interrupt
1077 *
1078 * No need for locking in this Interrupt handler: done_status is the
1079 * only information modified.
1080 */
1081static irqreturn_t
1082atmel_spi_pio_interrupt(int irq, void *dev_id)
1083{
1084 struct spi_master *master = dev_id;
1085 struct atmel_spi *as = spi_master_get_devdata(master);
1086 u32 status, pending, imr;
1087 struct spi_transfer *xfer;
1088 int ret = IRQ_NONE;
1089
1090 imr = spi_readl(as, IMR);
1091 status = spi_readl(as, SR);
1092 pending = status & imr;
1093
1094 if (pending & SPI_BIT(OVRES)) {
1095 ret = IRQ_HANDLED;
1096 spi_writel(as, IDR, SPI_BIT(OVRES));
1097 dev_warn(master->dev.parent, "overrun\n");
1098
1099 /*
1100 * When we get an overrun, we disregard the current
1101 * transfer. Data will not be copied back from any
1102 * bounce buffer and msg->actual_len will not be
1103 * updated with the last xfer.
1104 *
1105 * We will also not process any remaning transfers in
1106 * the message.
1107 */
1108 as->done_status = -EIO;
1109 smp_wmb();
1110
1111 /* Clear any overrun happening while cleaning up */
1112 spi_readl(as, SR);
1113
1114 complete(&as->xfer_completion);
1115
1116 } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1117 atmel_spi_lock(as);
1118
1119 if (as->current_remaining_bytes) {
1120 ret = IRQ_HANDLED;
1121 xfer = as->current_transfer;
1122 atmel_spi_pump_pio_data(as, xfer);
1123 if (!as->current_remaining_bytes)
1124 spi_writel(as, IDR, pending);
1125
1126 complete(&as->xfer_completion);
1127 }
1128
1129 atmel_spi_unlock(as);
1130 } else {
1131 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1132 ret = IRQ_HANDLED;
1133 spi_writel(as, IDR, pending);
1134 }
1135
1136 return ret;
1137}
1138
1139static irqreturn_t
1140atmel_spi_pdc_interrupt(int irq, void *dev_id)
1141{
1142 struct spi_master *master = dev_id;
1143 struct atmel_spi *as = spi_master_get_devdata(master);
1144 u32 status, pending, imr;
1145 int ret = IRQ_NONE;
1146
1147 imr = spi_readl(as, IMR);
1148 status = spi_readl(as, SR);
1149 pending = status & imr;
1150
1151 if (pending & SPI_BIT(OVRES)) {
1152
1153 ret = IRQ_HANDLED;
1154
1155 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1156 | SPI_BIT(OVRES)));
1157
1158 /* Clear any overrun happening while cleaning up */
1159 spi_readl(as, SR);
1160
1161 as->done_status = -EIO;
1162
1163 complete(&as->xfer_completion);
1164
1165 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1166 ret = IRQ_HANDLED;
1167
1168 spi_writel(as, IDR, pending);
1169
1170 complete(&as->xfer_completion);
1171 }
1172
1173 return ret;
1174}
1175
1176static int atmel_spi_setup(struct spi_device *spi)
1177{
1178 struct atmel_spi *as;
1179 struct atmel_spi_device *asd;
1180 u32 csr;
1181 unsigned int bits = spi->bits_per_word;
1182
1183 as = spi_master_get_devdata(spi->master);
1184
1185 /* see notes above re chipselect */
1186 if (!atmel_spi_is_v2(as)
1187 && spi->chip_select == 0
1188 && (spi->mode & SPI_CS_HIGH)) {
1189 dev_dbg(&spi->dev, "setup: can't be active-high\n");
1190 return -EINVAL;
1191 }
1192
1193 csr = SPI_BF(BITS, bits - 8);
1194 if (spi->mode & SPI_CPOL)
1195 csr |= SPI_BIT(CPOL);
1196 if (!(spi->mode & SPI_CPHA))
1197 csr |= SPI_BIT(NCPHA);
1198 if (!as->use_cs_gpios)
1199 csr |= SPI_BIT(CSAAT);
1200
1201 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1202 */
1203 csr |= SPI_BF(DLYBS, 0);
1204
1205 /* DLYBCT adds delays between words. This is useful for slow devices
1206 * that need a bit of time to setup the next transfer.
1207 */
1208 csr |= SPI_BF(DLYBCT,
1209 (as->spi_clk / 1000000 * spi->word_delay_usecs) >> 5);
1210
1211 asd = spi->controller_state;
1212 if (!asd) {
1213 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1214 if (!asd)
1215 return -ENOMEM;
1216
1217 /*
1218 * If use_cs_gpios is true this means that we have "cs-gpios"
1219 * defined in the device tree node so we should have
1220 * gotten the GPIO lines from the device tree inside the
1221 * SPI core. Warn if this is not the case but continue since
1222 * CS GPIOs are after all optional.
1223 */
1224 if (as->use_cs_gpios) {
1225 if (!spi->cs_gpiod) {
1226 dev_err(&spi->dev,
1227 "host claims to use CS GPIOs but no CS found in DT by the SPI core\n");
1228 }
1229 asd->npcs_pin = spi->cs_gpiod;
1230 }
1231
1232 spi->controller_state = asd;
1233 }
1234
1235 asd->csr = csr;
1236
1237 dev_dbg(&spi->dev,
1238 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1239 bits, spi->mode, spi->chip_select, csr);
1240
1241 if (!atmel_spi_is_v2(as))
1242 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
1243
1244 return 0;
1245}
1246
1247static int atmel_spi_one_transfer(struct spi_master *master,
1248 struct spi_message *msg,
1249 struct spi_transfer *xfer)
1250{
1251 struct atmel_spi *as;
1252 struct spi_device *spi = msg->spi;
1253 u8 bits;
1254 u32 len;
1255 struct atmel_spi_device *asd;
1256 int timeout;
1257 int ret;
1258 unsigned long dma_timeout;
1259
1260 as = spi_master_get_devdata(master);
1261
1262 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1263 dev_dbg(&spi->dev, "missing rx or tx buf\n");
1264 return -EINVAL;
1265 }
1266
1267 asd = spi->controller_state;
1268 bits = (asd->csr >> 4) & 0xf;
1269 if (bits != xfer->bits_per_word - 8) {
1270 dev_dbg(&spi->dev,
1271 "you can't yet change bits_per_word in transfers\n");
1272 return -ENOPROTOOPT;
1273 }
1274
1275 /*
1276 * DMA map early, for performance (empties dcache ASAP) and
1277 * better fault reporting.
1278 */
1279 if ((!msg->is_dma_mapped)
1280 && as->use_pdc) {
1281 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1282 return -ENOMEM;
1283 }
1284
1285 atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1286
1287 as->done_status = 0;
1288 as->current_transfer = xfer;
1289 as->current_remaining_bytes = xfer->len;
1290 while (as->current_remaining_bytes) {
1291 reinit_completion(&as->xfer_completion);
1292
1293 if (as->use_pdc) {
1294 atmel_spi_pdc_next_xfer(master, msg, xfer);
1295 } else if (atmel_spi_use_dma(as, xfer)) {
1296 len = as->current_remaining_bytes;
1297 ret = atmel_spi_next_xfer_dma_submit(master,
1298 xfer, &len);
1299 if (ret) {
1300 dev_err(&spi->dev,
1301 "unable to use DMA, fallback to PIO\n");
1302 atmel_spi_next_xfer_pio(master, xfer);
1303 } else {
1304 as->current_remaining_bytes -= len;
1305 if (as->current_remaining_bytes < 0)
1306 as->current_remaining_bytes = 0;
1307 }
1308 } else {
1309 atmel_spi_next_xfer_pio(master, xfer);
1310 }
1311
1312 /* interrupts are disabled, so free the lock for schedule */
1313 atmel_spi_unlock(as);
1314 dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1315 SPI_DMA_TIMEOUT);
1316 atmel_spi_lock(as);
1317 if (WARN_ON(dma_timeout == 0)) {
1318 dev_err(&spi->dev, "spi transfer timeout\n");
1319 as->done_status = -EIO;
1320 }
1321
1322 if (as->done_status)
1323 break;
1324 }
1325
1326 if (as->done_status) {
1327 if (as->use_pdc) {
1328 dev_warn(master->dev.parent,
1329 "overrun (%u/%u remaining)\n",
1330 spi_readl(as, TCR), spi_readl(as, RCR));
1331
1332 /*
1333 * Clean up DMA registers and make sure the data
1334 * registers are empty.
1335 */
1336 spi_writel(as, RNCR, 0);
1337 spi_writel(as, TNCR, 0);
1338 spi_writel(as, RCR, 0);
1339 spi_writel(as, TCR, 0);
1340 for (timeout = 1000; timeout; timeout--)
1341 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1342 break;
1343 if (!timeout)
1344 dev_warn(master->dev.parent,
1345 "timeout waiting for TXEMPTY");
1346 while (spi_readl(as, SR) & SPI_BIT(RDRF))
1347 spi_readl(as, RDR);
1348
1349 /* Clear any overrun happening while cleaning up */
1350 spi_readl(as, SR);
1351
1352 } else if (atmel_spi_use_dma(as, xfer)) {
1353 atmel_spi_stop_dma(master);
1354 }
1355
1356 if (!msg->is_dma_mapped
1357 && as->use_pdc)
1358 atmel_spi_dma_unmap_xfer(master, xfer);
1359
1360 return 0;
1361
1362 } else {
1363 /* only update length if no error */
1364 msg->actual_length += xfer->len;
1365 }
1366
1367 if (!msg->is_dma_mapped
1368 && as->use_pdc)
1369 atmel_spi_dma_unmap_xfer(master, xfer);
1370
1371 if (xfer->delay_usecs)
1372 udelay(xfer->delay_usecs);
1373
1374 if (xfer->cs_change) {
1375 if (list_is_last(&xfer->transfer_list,
1376 &msg->transfers)) {
1377 as->keep_cs = true;
1378 } else {
1379 as->cs_active = !as->cs_active;
1380 if (as->cs_active)
1381 cs_activate(as, msg->spi);
1382 else
1383 cs_deactivate(as, msg->spi);
1384 }
1385 }
1386
1387 return 0;
1388}
1389
1390static int atmel_spi_transfer_one_message(struct spi_master *master,
1391 struct spi_message *msg)
1392{
1393 struct atmel_spi *as;
1394 struct spi_transfer *xfer;
1395 struct spi_device *spi = msg->spi;
1396 int ret = 0;
1397
1398 as = spi_master_get_devdata(master);
1399
1400 dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1401 msg, dev_name(&spi->dev));
1402
1403 atmel_spi_lock(as);
1404 cs_activate(as, spi);
1405
1406 as->cs_active = true;
1407 as->keep_cs = false;
1408
1409 msg->status = 0;
1410 msg->actual_length = 0;
1411
1412 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1413 trace_spi_transfer_start(msg, xfer);
1414
1415 ret = atmel_spi_one_transfer(master, msg, xfer);
1416 if (ret)
1417 goto msg_done;
1418
1419 trace_spi_transfer_stop(msg, xfer);
1420 }
1421
1422 if (as->use_pdc)
1423 atmel_spi_disable_pdc_transfer(as);
1424
1425 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1426 dev_dbg(&spi->dev,
1427 " xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1428 xfer, xfer->len,
1429 xfer->tx_buf, &xfer->tx_dma,
1430 xfer->rx_buf, &xfer->rx_dma);
1431 }
1432
1433msg_done:
1434 if (!as->keep_cs)
1435 cs_deactivate(as, msg->spi);
1436
1437 atmel_spi_unlock(as);
1438
1439 msg->status = as->done_status;
1440 spi_finalize_current_message(spi->master);
1441
1442 return ret;
1443}
1444
1445static void atmel_spi_cleanup(struct spi_device *spi)
1446{
1447 struct atmel_spi_device *asd = spi->controller_state;
1448
1449 if (!asd)
1450 return;
1451
1452 spi->controller_state = NULL;
1453 kfree(asd);
1454}
1455
1456static inline unsigned int atmel_get_version(struct atmel_spi *as)
1457{
1458 return spi_readl(as, VERSION) & 0x00000fff;
1459}
1460
1461static void atmel_get_caps(struct atmel_spi *as)
1462{
1463 unsigned int version;
1464
1465 version = atmel_get_version(as);
1466
1467 as->caps.is_spi2 = version > 0x121;
1468 as->caps.has_wdrbt = version >= 0x210;
1469 as->caps.has_dma_support = version >= 0x212;
1470 as->caps.has_pdc_support = version < 0x212;
1471}
1472
1473static void atmel_spi_init(struct atmel_spi *as)
1474{
1475 spi_writel(as, CR, SPI_BIT(SWRST));
1476 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1477
1478 /* It is recommended to enable FIFOs first thing after reset */
1479 if (as->fifo_size)
1480 spi_writel(as, CR, SPI_BIT(FIFOEN));
1481
1482 if (as->caps.has_wdrbt) {
1483 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1484 | SPI_BIT(MSTR));
1485 } else {
1486 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1487 }
1488
1489 if (as->use_pdc)
1490 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1491 spi_writel(as, CR, SPI_BIT(SPIEN));
1492}
1493
1494static int atmel_spi_probe(struct platform_device *pdev)
1495{
1496 struct resource *regs;
1497 int irq;
1498 struct clk *clk;
1499 int ret;
1500 struct spi_master *master;
1501 struct atmel_spi *as;
1502
1503 /* Select default pin state */
1504 pinctrl_pm_select_default_state(&pdev->dev);
1505
1506 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1507 if (!regs)
1508 return -ENXIO;
1509
1510 irq = platform_get_irq(pdev, 0);
1511 if (irq < 0)
1512 return irq;
1513
1514 clk = devm_clk_get(&pdev->dev, "spi_clk");
1515 if (IS_ERR(clk))
1516 return PTR_ERR(clk);
1517
1518 /* setup spi core then atmel-specific driver state */
1519 ret = -ENOMEM;
1520 master = spi_alloc_master(&pdev->dev, sizeof(*as));
1521 if (!master)
1522 goto out_free;
1523
1524 /* the spi->mode bits understood by this driver: */
1525 master->use_gpio_descriptors = true;
1526 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1527 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1528 master->dev.of_node = pdev->dev.of_node;
1529 master->bus_num = pdev->id;
1530 master->num_chipselect = master->dev.of_node ? 0 : 4;
1531 master->setup = atmel_spi_setup;
1532 master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
1533 master->transfer_one_message = atmel_spi_transfer_one_message;
1534 master->cleanup = atmel_spi_cleanup;
1535 master->auto_runtime_pm = true;
1536 master->max_dma_len = SPI_MAX_DMA_XFER;
1537 master->can_dma = atmel_spi_can_dma;
1538 platform_set_drvdata(pdev, master);
1539
1540 as = spi_master_get_devdata(master);
1541
1542 spin_lock_init(&as->lock);
1543
1544 as->pdev = pdev;
1545 as->regs = devm_ioremap_resource(&pdev->dev, regs);
1546 if (IS_ERR(as->regs)) {
1547 ret = PTR_ERR(as->regs);
1548 goto out_unmap_regs;
1549 }
1550 as->phybase = regs->start;
1551 as->irq = irq;
1552 as->clk = clk;
1553
1554 init_completion(&as->xfer_completion);
1555
1556 atmel_get_caps(as);
1557
1558 /*
1559 * If there are chip selects in the device tree, those will be
1560 * discovered by the SPI core when registering the SPI master
1561 * and assigned to each SPI device.
1562 */
1563 as->use_cs_gpios = true;
1564 if (atmel_spi_is_v2(as) &&
1565 pdev->dev.of_node &&
1566 !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
1567 as->use_cs_gpios = false;
1568 master->num_chipselect = 4;
1569 }
1570
1571 as->use_dma = false;
1572 as->use_pdc = false;
1573 if (as->caps.has_dma_support) {
1574 ret = atmel_spi_configure_dma(master, as);
1575 if (ret == 0) {
1576 as->use_dma = true;
1577 } else if (ret == -EPROBE_DEFER) {
1578 return ret;
1579 }
1580 } else if (as->caps.has_pdc_support) {
1581 as->use_pdc = true;
1582 }
1583
1584 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1585 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1586 SPI_MAX_DMA_XFER,
1587 &as->dma_addr_rx_bbuf,
1588 GFP_KERNEL | GFP_DMA);
1589 if (!as->addr_rx_bbuf) {
1590 as->use_dma = false;
1591 } else {
1592 as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1593 SPI_MAX_DMA_XFER,
1594 &as->dma_addr_tx_bbuf,
1595 GFP_KERNEL | GFP_DMA);
1596 if (!as->addr_tx_bbuf) {
1597 as->use_dma = false;
1598 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1599 as->addr_rx_bbuf,
1600 as->dma_addr_rx_bbuf);
1601 }
1602 }
1603 if (!as->use_dma)
1604 dev_info(master->dev.parent,
1605 " can not allocate dma coherent memory\n");
1606 }
1607
1608 if (as->caps.has_dma_support && !as->use_dma)
1609 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1610
1611 if (as->use_pdc) {
1612 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1613 0, dev_name(&pdev->dev), master);
1614 } else {
1615 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1616 0, dev_name(&pdev->dev), master);
1617 }
1618 if (ret)
1619 goto out_unmap_regs;
1620
1621 /* Initialize the hardware */
1622 ret = clk_prepare_enable(clk);
1623 if (ret)
1624 goto out_free_irq;
1625
1626 as->spi_clk = clk_get_rate(clk);
1627
1628 as->fifo_size = 0;
1629 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1630 &as->fifo_size)) {
1631 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1632 }
1633
1634 atmel_spi_init(as);
1635
1636 pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1637 pm_runtime_use_autosuspend(&pdev->dev);
1638 pm_runtime_set_active(&pdev->dev);
1639 pm_runtime_enable(&pdev->dev);
1640
1641 ret = devm_spi_register_master(&pdev->dev, master);
1642 if (ret)
1643 goto out_free_dma;
1644
1645 /* go! */
1646 dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1647 atmel_get_version(as), (unsigned long)regs->start,
1648 irq);
1649
1650 return 0;
1651
1652out_free_dma:
1653 pm_runtime_disable(&pdev->dev);
1654 pm_runtime_set_suspended(&pdev->dev);
1655
1656 if (as->use_dma)
1657 atmel_spi_release_dma(master);
1658
1659 spi_writel(as, CR, SPI_BIT(SWRST));
1660 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1661 clk_disable_unprepare(clk);
1662out_free_irq:
1663out_unmap_regs:
1664out_free:
1665 spi_master_put(master);
1666 return ret;
1667}
1668
1669static int atmel_spi_remove(struct platform_device *pdev)
1670{
1671 struct spi_master *master = platform_get_drvdata(pdev);
1672 struct atmel_spi *as = spi_master_get_devdata(master);
1673
1674 pm_runtime_get_sync(&pdev->dev);
1675
1676 /* reset the hardware and block queue progress */
1677 if (as->use_dma) {
1678 atmel_spi_stop_dma(master);
1679 atmel_spi_release_dma(master);
1680 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1681 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1682 as->addr_tx_bbuf,
1683 as->dma_addr_tx_bbuf);
1684 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1685 as->addr_rx_bbuf,
1686 as->dma_addr_rx_bbuf);
1687 }
1688 }
1689
1690 spin_lock_irq(&as->lock);
1691 spi_writel(as, CR, SPI_BIT(SWRST));
1692 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1693 spi_readl(as, SR);
1694 spin_unlock_irq(&as->lock);
1695
1696 clk_disable_unprepare(as->clk);
1697
1698 pm_runtime_put_noidle(&pdev->dev);
1699 pm_runtime_disable(&pdev->dev);
1700
1701 return 0;
1702}
1703
1704#ifdef CONFIG_PM
1705static int atmel_spi_runtime_suspend(struct device *dev)
1706{
1707 struct spi_master *master = dev_get_drvdata(dev);
1708 struct atmel_spi *as = spi_master_get_devdata(master);
1709
1710 clk_disable_unprepare(as->clk);
1711 pinctrl_pm_select_sleep_state(dev);
1712
1713 return 0;
1714}
1715
1716static int atmel_spi_runtime_resume(struct device *dev)
1717{
1718 struct spi_master *master = dev_get_drvdata(dev);
1719 struct atmel_spi *as = spi_master_get_devdata(master);
1720
1721 pinctrl_pm_select_default_state(dev);
1722
1723 return clk_prepare_enable(as->clk);
1724}
1725
1726#ifdef CONFIG_PM_SLEEP
1727static int atmel_spi_suspend(struct device *dev)
1728{
1729 struct spi_master *master = dev_get_drvdata(dev);
1730 int ret;
1731
1732 /* Stop the queue running */
1733 ret = spi_master_suspend(master);
1734 if (ret)
1735 return ret;
1736
1737 if (!pm_runtime_suspended(dev))
1738 atmel_spi_runtime_suspend(dev);
1739
1740 return 0;
1741}
1742
1743static int atmel_spi_resume(struct device *dev)
1744{
1745 struct spi_master *master = dev_get_drvdata(dev);
1746 struct atmel_spi *as = spi_master_get_devdata(master);
1747 int ret;
1748
1749 ret = clk_prepare_enable(as->clk);
1750 if (ret)
1751 return ret;
1752
1753 atmel_spi_init(as);
1754
1755 clk_disable_unprepare(as->clk);
1756
1757 if (!pm_runtime_suspended(dev)) {
1758 ret = atmel_spi_runtime_resume(dev);
1759 if (ret)
1760 return ret;
1761 }
1762
1763 /* Start the queue running */
1764 return spi_master_resume(master);
1765}
1766#endif
1767
1768static const struct dev_pm_ops atmel_spi_pm_ops = {
1769 SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1770 SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1771 atmel_spi_runtime_resume, NULL)
1772};
1773#define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops)
1774#else
1775#define ATMEL_SPI_PM_OPS NULL
1776#endif
1777
1778#if defined(CONFIG_OF)
1779static const struct of_device_id atmel_spi_dt_ids[] = {
1780 { .compatible = "atmel,at91rm9200-spi" },
1781 { /* sentinel */ }
1782};
1783
1784MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1785#endif
1786
1787static struct platform_driver atmel_spi_driver = {
1788 .driver = {
1789 .name = "atmel_spi",
1790 .pm = ATMEL_SPI_PM_OPS,
1791 .of_match_table = of_match_ptr(atmel_spi_dt_ids),
1792 },
1793 .probe = atmel_spi_probe,
1794 .remove = atmel_spi_remove,
1795};
1796module_platform_driver(atmel_spi_driver);
1797
1798MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1799MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1800MODULE_LICENSE("GPL");
1801MODULE_ALIAS("platform:atmel_spi");