Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2// rc-main.c - Remote Controller core module
   3//
   4// Copyright (C) 2009-2010 by Mauro Carvalho Chehab
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include <media/rc-core.h>
   9#include <linux/bsearch.h>
  10#include <linux/spinlock.h>
  11#include <linux/delay.h>
  12#include <linux/input.h>
  13#include <linux/leds.h>
  14#include <linux/slab.h>
  15#include <linux/idr.h>
  16#include <linux/device.h>
  17#include <linux/module.h>
  18#include "rc-core-priv.h"
  19
  20/* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
  21#define IR_TAB_MIN_SIZE	256
  22#define IR_TAB_MAX_SIZE	8192
  23
  24static const struct {
  25	const char *name;
  26	unsigned int repeat_period;
  27	unsigned int scancode_bits;
  28} protocols[] = {
  29	[RC_PROTO_UNKNOWN] = { .name = "unknown", .repeat_period = 125 },
  30	[RC_PROTO_OTHER] = { .name = "other", .repeat_period = 125 },
  31	[RC_PROTO_RC5] = { .name = "rc-5",
  32		.scancode_bits = 0x1f7f, .repeat_period = 114 },
  33	[RC_PROTO_RC5X_20] = { .name = "rc-5x-20",
  34		.scancode_bits = 0x1f7f3f, .repeat_period = 114 },
  35	[RC_PROTO_RC5_SZ] = { .name = "rc-5-sz",
  36		.scancode_bits = 0x2fff, .repeat_period = 114 },
  37	[RC_PROTO_JVC] = { .name = "jvc",
  38		.scancode_bits = 0xffff, .repeat_period = 125 },
  39	[RC_PROTO_SONY12] = { .name = "sony-12",
  40		.scancode_bits = 0x1f007f, .repeat_period = 100 },
  41	[RC_PROTO_SONY15] = { .name = "sony-15",
  42		.scancode_bits = 0xff007f, .repeat_period = 100 },
  43	[RC_PROTO_SONY20] = { .name = "sony-20",
  44		.scancode_bits = 0x1fff7f, .repeat_period = 100 },
  45	[RC_PROTO_NEC] = { .name = "nec",
  46		.scancode_bits = 0xffff, .repeat_period = 110 },
  47	[RC_PROTO_NECX] = { .name = "nec-x",
  48		.scancode_bits = 0xffffff, .repeat_period = 110 },
  49	[RC_PROTO_NEC32] = { .name = "nec-32",
  50		.scancode_bits = 0xffffffff, .repeat_period = 110 },
  51	[RC_PROTO_SANYO] = { .name = "sanyo",
  52		.scancode_bits = 0x1fffff, .repeat_period = 125 },
  53	[RC_PROTO_MCIR2_KBD] = { .name = "mcir2-kbd",
  54		.scancode_bits = 0xffffff, .repeat_period = 100 },
  55	[RC_PROTO_MCIR2_MSE] = { .name = "mcir2-mse",
  56		.scancode_bits = 0x1fffff, .repeat_period = 100 },
  57	[RC_PROTO_RC6_0] = { .name = "rc-6-0",
  58		.scancode_bits = 0xffff, .repeat_period = 114 },
  59	[RC_PROTO_RC6_6A_20] = { .name = "rc-6-6a-20",
  60		.scancode_bits = 0xfffff, .repeat_period = 114 },
  61	[RC_PROTO_RC6_6A_24] = { .name = "rc-6-6a-24",
  62		.scancode_bits = 0xffffff, .repeat_period = 114 },
  63	[RC_PROTO_RC6_6A_32] = { .name = "rc-6-6a-32",
  64		.scancode_bits = 0xffffffff, .repeat_period = 114 },
  65	[RC_PROTO_RC6_MCE] = { .name = "rc-6-mce",
  66		.scancode_bits = 0xffff7fff, .repeat_period = 114 },
  67	[RC_PROTO_SHARP] = { .name = "sharp",
  68		.scancode_bits = 0x1fff, .repeat_period = 125 },
  69	[RC_PROTO_XMP] = { .name = "xmp", .repeat_period = 125 },
  70	[RC_PROTO_CEC] = { .name = "cec", .repeat_period = 0 },
  71	[RC_PROTO_IMON] = { .name = "imon",
  72		.scancode_bits = 0x7fffffff, .repeat_period = 114 },
  73	[RC_PROTO_RCMM12] = { .name = "rc-mm-12",
  74		.scancode_bits = 0x00000fff, .repeat_period = 114 },
  75	[RC_PROTO_RCMM24] = { .name = "rc-mm-24",
  76		.scancode_bits = 0x00ffffff, .repeat_period = 114 },
  77	[RC_PROTO_RCMM32] = { .name = "rc-mm-32",
  78		.scancode_bits = 0xffffffff, .repeat_period = 114 },
  79	[RC_PROTO_XBOX_DVD] = { .name = "xbox-dvd", .repeat_period = 64 },
  80};
  81
  82/* Used to keep track of known keymaps */
  83static LIST_HEAD(rc_map_list);
  84static DEFINE_SPINLOCK(rc_map_lock);
  85static struct led_trigger *led_feedback;
  86
  87/* Used to keep track of rc devices */
  88static DEFINE_IDA(rc_ida);
  89
  90static struct rc_map_list *seek_rc_map(const char *name)
  91{
  92	struct rc_map_list *map = NULL;
  93
  94	spin_lock(&rc_map_lock);
  95	list_for_each_entry(map, &rc_map_list, list) {
  96		if (!strcmp(name, map->map.name)) {
  97			spin_unlock(&rc_map_lock);
  98			return map;
  99		}
 100	}
 101	spin_unlock(&rc_map_lock);
 102
 103	return NULL;
 104}
 105
 106struct rc_map *rc_map_get(const char *name)
 107{
 108
 109	struct rc_map_list *map;
 110
 111	map = seek_rc_map(name);
 112#ifdef CONFIG_MODULES
 113	if (!map) {
 114		int rc = request_module("%s", name);
 115		if (rc < 0) {
 116			pr_err("Couldn't load IR keymap %s\n", name);
 117			return NULL;
 118		}
 119		msleep(20);	/* Give some time for IR to register */
 120
 121		map = seek_rc_map(name);
 122	}
 123#endif
 124	if (!map) {
 125		pr_err("IR keymap %s not found\n", name);
 126		return NULL;
 127	}
 128
 129	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
 130
 131	return &map->map;
 132}
 133EXPORT_SYMBOL_GPL(rc_map_get);
 134
 135int rc_map_register(struct rc_map_list *map)
 136{
 137	spin_lock(&rc_map_lock);
 138	list_add_tail(&map->list, &rc_map_list);
 139	spin_unlock(&rc_map_lock);
 140	return 0;
 141}
 142EXPORT_SYMBOL_GPL(rc_map_register);
 143
 144void rc_map_unregister(struct rc_map_list *map)
 145{
 146	spin_lock(&rc_map_lock);
 147	list_del(&map->list);
 148	spin_unlock(&rc_map_lock);
 149}
 150EXPORT_SYMBOL_GPL(rc_map_unregister);
 151
 152
 153static struct rc_map_table empty[] = {
 154	{ 0x2a, KEY_COFFEE },
 155};
 156
 157static struct rc_map_list empty_map = {
 158	.map = {
 159		.scan     = empty,
 160		.size     = ARRAY_SIZE(empty),
 161		.rc_proto = RC_PROTO_UNKNOWN,	/* Legacy IR type */
 162		.name     = RC_MAP_EMPTY,
 163	}
 164};
 165
 166/**
 167 * scancode_to_u64() - converts scancode in &struct input_keymap_entry
 168 * @ke: keymap entry containing scancode to be converted.
 169 * @scancode: pointer to the location where converted scancode should
 170 *	be stored.
 171 *
 172 * This function is a version of input_scancode_to_scalar specialized for
 173 * rc-core.
 174 */
 175static int scancode_to_u64(const struct input_keymap_entry *ke, u64 *scancode)
 176{
 177	switch (ke->len) {
 178	case 1:
 179		*scancode = *((u8 *)ke->scancode);
 180		break;
 181
 182	case 2:
 183		*scancode = *((u16 *)ke->scancode);
 184		break;
 185
 186	case 4:
 187		*scancode = *((u32 *)ke->scancode);
 188		break;
 189
 190	case 8:
 191		*scancode = *((u64 *)ke->scancode);
 192		break;
 193
 194	default:
 195		return -EINVAL;
 196	}
 197
 198	return 0;
 199}
 200
 201/**
 202 * ir_create_table() - initializes a scancode table
 203 * @dev:	the rc_dev device
 204 * @rc_map:	the rc_map to initialize
 205 * @name:	name to assign to the table
 206 * @rc_proto:	ir type to assign to the new table
 207 * @size:	initial size of the table
 208 *
 209 * This routine will initialize the rc_map and will allocate
 210 * memory to hold at least the specified number of elements.
 211 *
 212 * return:	zero on success or a negative error code
 213 */
 214static int ir_create_table(struct rc_dev *dev, struct rc_map *rc_map,
 215			   const char *name, u64 rc_proto, size_t size)
 216{
 217	rc_map->name = kstrdup(name, GFP_KERNEL);
 218	if (!rc_map->name)
 219		return -ENOMEM;
 220	rc_map->rc_proto = rc_proto;
 221	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
 222	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
 223	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
 224	if (!rc_map->scan) {
 225		kfree(rc_map->name);
 226		rc_map->name = NULL;
 227		return -ENOMEM;
 228	}
 229
 230	dev_dbg(&dev->dev, "Allocated space for %u keycode entries (%u bytes)\n",
 231		rc_map->size, rc_map->alloc);
 232	return 0;
 233}
 234
 235/**
 236 * ir_free_table() - frees memory allocated by a scancode table
 237 * @rc_map:	the table whose mappings need to be freed
 238 *
 239 * This routine will free memory alloctaed for key mappings used by given
 240 * scancode table.
 241 */
 242static void ir_free_table(struct rc_map *rc_map)
 243{
 244	rc_map->size = 0;
 245	kfree(rc_map->name);
 246	rc_map->name = NULL;
 247	kfree(rc_map->scan);
 248	rc_map->scan = NULL;
 249}
 250
 251/**
 252 * ir_resize_table() - resizes a scancode table if necessary
 253 * @dev:	the rc_dev device
 254 * @rc_map:	the rc_map to resize
 255 * @gfp_flags:	gfp flags to use when allocating memory
 256 *
 257 * This routine will shrink the rc_map if it has lots of
 258 * unused entries and grow it if it is full.
 259 *
 260 * return:	zero on success or a negative error code
 261 */
 262static int ir_resize_table(struct rc_dev *dev, struct rc_map *rc_map,
 263			   gfp_t gfp_flags)
 264{
 265	unsigned int oldalloc = rc_map->alloc;
 266	unsigned int newalloc = oldalloc;
 267	struct rc_map_table *oldscan = rc_map->scan;
 268	struct rc_map_table *newscan;
 269
 270	if (rc_map->size == rc_map->len) {
 271		/* All entries in use -> grow keytable */
 272		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
 273			return -ENOMEM;
 274
 275		newalloc *= 2;
 276		dev_dbg(&dev->dev, "Growing table to %u bytes\n", newalloc);
 277	}
 278
 279	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
 280		/* Less than 1/3 of entries in use -> shrink keytable */
 281		newalloc /= 2;
 282		dev_dbg(&dev->dev, "Shrinking table to %u bytes\n", newalloc);
 283	}
 284
 285	if (newalloc == oldalloc)
 286		return 0;
 287
 288	newscan = kmalloc(newalloc, gfp_flags);
 289	if (!newscan)
 290		return -ENOMEM;
 291
 292	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
 293	rc_map->scan = newscan;
 294	rc_map->alloc = newalloc;
 295	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
 296	kfree(oldscan);
 297	return 0;
 298}
 299
 300/**
 301 * ir_update_mapping() - set a keycode in the scancode->keycode table
 302 * @dev:	the struct rc_dev device descriptor
 303 * @rc_map:	scancode table to be adjusted
 304 * @index:	index of the mapping that needs to be updated
 305 * @new_keycode: the desired keycode
 306 *
 307 * This routine is used to update scancode->keycode mapping at given
 308 * position.
 309 *
 310 * return:	previous keycode assigned to the mapping
 311 *
 312 */
 313static unsigned int ir_update_mapping(struct rc_dev *dev,
 314				      struct rc_map *rc_map,
 315				      unsigned int index,
 316				      unsigned int new_keycode)
 317{
 318	int old_keycode = rc_map->scan[index].keycode;
 319	int i;
 320
 321	/* Did the user wish to remove the mapping? */
 322	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
 323		dev_dbg(&dev->dev, "#%d: Deleting scan 0x%04llx\n",
 324			index, rc_map->scan[index].scancode);
 325		rc_map->len--;
 326		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
 327			(rc_map->len - index) * sizeof(struct rc_map_table));
 328	} else {
 329		dev_dbg(&dev->dev, "#%d: %s scan 0x%04llx with key 0x%04x\n",
 330			index,
 331			old_keycode == KEY_RESERVED ? "New" : "Replacing",
 332			rc_map->scan[index].scancode, new_keycode);
 333		rc_map->scan[index].keycode = new_keycode;
 334		__set_bit(new_keycode, dev->input_dev->keybit);
 335	}
 336
 337	if (old_keycode != KEY_RESERVED) {
 338		/* A previous mapping was updated... */
 339		__clear_bit(old_keycode, dev->input_dev->keybit);
 340		/* ... but another scancode might use the same keycode */
 341		for (i = 0; i < rc_map->len; i++) {
 342			if (rc_map->scan[i].keycode == old_keycode) {
 343				__set_bit(old_keycode, dev->input_dev->keybit);
 344				break;
 345			}
 346		}
 347
 348		/* Possibly shrink the keytable, failure is not a problem */
 349		ir_resize_table(dev, rc_map, GFP_ATOMIC);
 350	}
 351
 352	return old_keycode;
 353}
 354
 355/**
 356 * ir_establish_scancode() - set a keycode in the scancode->keycode table
 357 * @dev:	the struct rc_dev device descriptor
 358 * @rc_map:	scancode table to be searched
 359 * @scancode:	the desired scancode
 360 * @resize:	controls whether we allowed to resize the table to
 361 *		accommodate not yet present scancodes
 362 *
 363 * This routine is used to locate given scancode in rc_map.
 364 * If scancode is not yet present the routine will allocate a new slot
 365 * for it.
 366 *
 367 * return:	index of the mapping containing scancode in question
 368 *		or -1U in case of failure.
 369 */
 370static unsigned int ir_establish_scancode(struct rc_dev *dev,
 371					  struct rc_map *rc_map,
 372					  u64 scancode, bool resize)
 
 373{
 374	unsigned int i;
 375
 376	/*
 377	 * Unfortunately, some hardware-based IR decoders don't provide
 378	 * all bits for the complete IR code. In general, they provide only
 379	 * the command part of the IR code. Yet, as it is possible to replace
 380	 * the provided IR with another one, it is needed to allow loading
 381	 * IR tables from other remotes. So, we support specifying a mask to
 382	 * indicate the valid bits of the scancodes.
 383	 */
 384	if (dev->scancode_mask)
 385		scancode &= dev->scancode_mask;
 386
 387	/* First check if we already have a mapping for this ir command */
 388	for (i = 0; i < rc_map->len; i++) {
 389		if (rc_map->scan[i].scancode == scancode)
 390			return i;
 391
 392		/* Keytable is sorted from lowest to highest scancode */
 393		if (rc_map->scan[i].scancode >= scancode)
 394			break;
 395	}
 396
 397	/* No previous mapping found, we might need to grow the table */
 398	if (rc_map->size == rc_map->len) {
 399		if (!resize || ir_resize_table(dev, rc_map, GFP_ATOMIC))
 400			return -1U;
 401	}
 402
 403	/* i is the proper index to insert our new keycode */
 404	if (i < rc_map->len)
 405		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
 406			(rc_map->len - i) * sizeof(struct rc_map_table));
 407	rc_map->scan[i].scancode = scancode;
 408	rc_map->scan[i].keycode = KEY_RESERVED;
 409	rc_map->len++;
 410
 411	return i;
 412}
 413
 414/**
 415 * ir_setkeycode() - set a keycode in the scancode->keycode table
 416 * @idev:	the struct input_dev device descriptor
 417 * @ke:		Input keymap entry
 418 * @old_keycode: result
 419 *
 420 * This routine is used to handle evdev EVIOCSKEY ioctl.
 421 *
 422 * return:	-EINVAL if the keycode could not be inserted, otherwise zero.
 423 */
 424static int ir_setkeycode(struct input_dev *idev,
 425			 const struct input_keymap_entry *ke,
 426			 unsigned int *old_keycode)
 427{
 428	struct rc_dev *rdev = input_get_drvdata(idev);
 429	struct rc_map *rc_map = &rdev->rc_map;
 430	unsigned int index;
 431	u64 scancode;
 432	int retval = 0;
 433	unsigned long flags;
 434
 435	spin_lock_irqsave(&rc_map->lock, flags);
 436
 437	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
 438		index = ke->index;
 439		if (index >= rc_map->len) {
 440			retval = -EINVAL;
 441			goto out;
 442		}
 443	} else {
 444		retval = scancode_to_u64(ke, &scancode);
 445		if (retval)
 446			goto out;
 447
 448		index = ir_establish_scancode(rdev, rc_map, scancode, true);
 449		if (index >= rc_map->len) {
 450			retval = -ENOMEM;
 451			goto out;
 452		}
 453	}
 454
 455	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
 456
 457out:
 458	spin_unlock_irqrestore(&rc_map->lock, flags);
 459	return retval;
 460}
 461
 462/**
 463 * ir_setkeytable() - sets several entries in the scancode->keycode table
 464 * @dev:	the struct rc_dev device descriptor
 465 * @from:	the struct rc_map to copy entries from
 466 *
 467 * This routine is used to handle table initialization.
 468 *
 469 * return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
 470 */
 471static int ir_setkeytable(struct rc_dev *dev, const struct rc_map *from)
 
 472{
 473	struct rc_map *rc_map = &dev->rc_map;
 474	unsigned int i, index;
 475	int rc;
 476
 477	rc = ir_create_table(dev, rc_map, from->name, from->rc_proto,
 478			     from->size);
 479	if (rc)
 480		return rc;
 481
 482	for (i = 0; i < from->size; i++) {
 483		index = ir_establish_scancode(dev, rc_map,
 484					      from->scan[i].scancode, false);
 485		if (index >= rc_map->len) {
 486			rc = -ENOMEM;
 487			break;
 488		}
 489
 490		ir_update_mapping(dev, rc_map, index,
 491				  from->scan[i].keycode);
 492	}
 493
 494	if (rc)
 495		ir_free_table(rc_map);
 496
 497	return rc;
 498}
 499
 500static int rc_map_cmp(const void *key, const void *elt)
 501{
 502	const u64 *scancode = key;
 503	const struct rc_map_table *e = elt;
 504
 505	if (*scancode < e->scancode)
 506		return -1;
 507	else if (*scancode > e->scancode)
 508		return 1;
 509	return 0;
 510}
 511
 512/**
 513 * ir_lookup_by_scancode() - locate mapping by scancode
 514 * @rc_map:	the struct rc_map to search
 515 * @scancode:	scancode to look for in the table
 516 *
 517 * This routine performs binary search in RC keykeymap table for
 518 * given scancode.
 519 *
 520 * return:	index in the table, -1U if not found
 521 */
 522static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
 523					  u64 scancode)
 524{
 525	struct rc_map_table *res;
 526
 527	res = bsearch(&scancode, rc_map->scan, rc_map->len,
 528		      sizeof(struct rc_map_table), rc_map_cmp);
 529	if (!res)
 530		return -1U;
 531	else
 532		return res - rc_map->scan;
 533}
 534
 535/**
 536 * ir_getkeycode() - get a keycode from the scancode->keycode table
 537 * @idev:	the struct input_dev device descriptor
 538 * @ke:		Input keymap entry
 539 *
 540 * This routine is used to handle evdev EVIOCGKEY ioctl.
 541 *
 542 * return:	always returns zero.
 543 */
 544static int ir_getkeycode(struct input_dev *idev,
 545			 struct input_keymap_entry *ke)
 546{
 547	struct rc_dev *rdev = input_get_drvdata(idev);
 548	struct rc_map *rc_map = &rdev->rc_map;
 549	struct rc_map_table *entry;
 550	unsigned long flags;
 551	unsigned int index;
 552	u64 scancode;
 553	int retval;
 554
 555	spin_lock_irqsave(&rc_map->lock, flags);
 556
 557	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
 558		index = ke->index;
 559	} else {
 560		retval = scancode_to_u64(ke, &scancode);
 561		if (retval)
 562			goto out;
 563
 564		index = ir_lookup_by_scancode(rc_map, scancode);
 565	}
 566
 567	if (index < rc_map->len) {
 568		entry = &rc_map->scan[index];
 569
 570		ke->index = index;
 571		ke->keycode = entry->keycode;
 572		ke->len = sizeof(entry->scancode);
 573		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
 
 574	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
 575		/*
 576		 * We do not really know the valid range of scancodes
 577		 * so let's respond with KEY_RESERVED to anything we
 578		 * do not have mapping for [yet].
 579		 */
 580		ke->index = index;
 581		ke->keycode = KEY_RESERVED;
 582	} else {
 583		retval = -EINVAL;
 584		goto out;
 585	}
 586
 587	retval = 0;
 588
 589out:
 590	spin_unlock_irqrestore(&rc_map->lock, flags);
 591	return retval;
 592}
 593
 594/**
 595 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
 596 * @dev:	the struct rc_dev descriptor of the device
 597 * @scancode:	the scancode to look for
 598 *
 599 * This routine is used by drivers which need to convert a scancode to a
 600 * keycode. Normally it should not be used since drivers should have no
 601 * interest in keycodes.
 602 *
 603 * return:	the corresponding keycode, or KEY_RESERVED
 604 */
 605u32 rc_g_keycode_from_table(struct rc_dev *dev, u64 scancode)
 606{
 607	struct rc_map *rc_map = &dev->rc_map;
 608	unsigned int keycode;
 609	unsigned int index;
 610	unsigned long flags;
 611
 612	spin_lock_irqsave(&rc_map->lock, flags);
 613
 614	index = ir_lookup_by_scancode(rc_map, scancode);
 615	keycode = index < rc_map->len ?
 616			rc_map->scan[index].keycode : KEY_RESERVED;
 617
 618	spin_unlock_irqrestore(&rc_map->lock, flags);
 619
 620	if (keycode != KEY_RESERVED)
 621		dev_dbg(&dev->dev, "%s: scancode 0x%04llx keycode 0x%02x\n",
 622			dev->device_name, scancode, keycode);
 623
 624	return keycode;
 625}
 626EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
 627
 628/**
 629 * ir_do_keyup() - internal function to signal the release of a keypress
 630 * @dev:	the struct rc_dev descriptor of the device
 631 * @sync:	whether or not to call input_sync
 632 *
 633 * This function is used internally to release a keypress, it must be
 634 * called with keylock held.
 635 */
 636static void ir_do_keyup(struct rc_dev *dev, bool sync)
 637{
 638	if (!dev->keypressed)
 639		return;
 640
 641	dev_dbg(&dev->dev, "keyup key 0x%04x\n", dev->last_keycode);
 642	del_timer(&dev->timer_repeat);
 643	input_report_key(dev->input_dev, dev->last_keycode, 0);
 644	led_trigger_event(led_feedback, LED_OFF);
 645	if (sync)
 646		input_sync(dev->input_dev);
 647	dev->keypressed = false;
 648}
 649
 650/**
 651 * rc_keyup() - signals the release of a keypress
 652 * @dev:	the struct rc_dev descriptor of the device
 653 *
 654 * This routine is used to signal that a key has been released on the
 655 * remote control.
 656 */
 657void rc_keyup(struct rc_dev *dev)
 658{
 659	unsigned long flags;
 660
 661	spin_lock_irqsave(&dev->keylock, flags);
 662	ir_do_keyup(dev, true);
 663	spin_unlock_irqrestore(&dev->keylock, flags);
 664}
 665EXPORT_SYMBOL_GPL(rc_keyup);
 666
 667/**
 668 * ir_timer_keyup() - generates a keyup event after a timeout
 669 *
 670 * @t:		a pointer to the struct timer_list
 671 *
 672 * This routine will generate a keyup event some time after a keydown event
 673 * is generated when no further activity has been detected.
 674 */
 675static void ir_timer_keyup(struct timer_list *t)
 676{
 677	struct rc_dev *dev = from_timer(dev, t, timer_keyup);
 678	unsigned long flags;
 679
 680	/*
 681	 * ir->keyup_jiffies is used to prevent a race condition if a
 682	 * hardware interrupt occurs at this point and the keyup timer
 683	 * event is moved further into the future as a result.
 684	 *
 685	 * The timer will then be reactivated and this function called
 686	 * again in the future. We need to exit gracefully in that case
 687	 * to allow the input subsystem to do its auto-repeat magic or
 688	 * a keyup event might follow immediately after the keydown.
 689	 */
 690	spin_lock_irqsave(&dev->keylock, flags);
 691	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
 692		ir_do_keyup(dev, true);
 693	spin_unlock_irqrestore(&dev->keylock, flags);
 694}
 695
 696/**
 697 * ir_timer_repeat() - generates a repeat event after a timeout
 698 *
 699 * @t:		a pointer to the struct timer_list
 700 *
 701 * This routine will generate a soft repeat event every REP_PERIOD
 702 * milliseconds.
 703 */
 704static void ir_timer_repeat(struct timer_list *t)
 705{
 706	struct rc_dev *dev = from_timer(dev, t, timer_repeat);
 707	struct input_dev *input = dev->input_dev;
 708	unsigned long flags;
 709
 710	spin_lock_irqsave(&dev->keylock, flags);
 711	if (dev->keypressed) {
 712		input_event(input, EV_KEY, dev->last_keycode, 2);
 713		input_sync(input);
 714		if (input->rep[REP_PERIOD])
 715			mod_timer(&dev->timer_repeat, jiffies +
 716				  msecs_to_jiffies(input->rep[REP_PERIOD]));
 717	}
 718	spin_unlock_irqrestore(&dev->keylock, flags);
 719}
 720
 721static unsigned int repeat_period(int protocol)
 722{
 723	if (protocol >= ARRAY_SIZE(protocols))
 724		return 100;
 725
 726	return protocols[protocol].repeat_period;
 727}
 728
 729/**
 730 * rc_repeat() - signals that a key is still pressed
 731 * @dev:	the struct rc_dev descriptor of the device
 732 *
 733 * This routine is used by IR decoders when a repeat message which does
 734 * not include the necessary bits to reproduce the scancode has been
 735 * received.
 736 */
 737void rc_repeat(struct rc_dev *dev)
 738{
 739	unsigned long flags;
 740	unsigned int timeout = usecs_to_jiffies(dev->timeout) +
 741		msecs_to_jiffies(repeat_period(dev->last_protocol));
 742	struct lirc_scancode sc = {
 743		.scancode = dev->last_scancode, .rc_proto = dev->last_protocol,
 744		.keycode = dev->keypressed ? dev->last_keycode : KEY_RESERVED,
 745		.flags = LIRC_SCANCODE_FLAG_REPEAT |
 746			 (dev->last_toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0)
 747	};
 748
 749	if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
 750		lirc_scancode_event(dev, &sc);
 751
 752	spin_lock_irqsave(&dev->keylock, flags);
 753
 754	if (dev->last_scancode <= U32_MAX) {
 755		input_event(dev->input_dev, EV_MSC, MSC_SCAN,
 756			    dev->last_scancode);
 757		input_sync(dev->input_dev);
 758	}
 759
 760	if (dev->keypressed) {
 761		dev->keyup_jiffies = jiffies + timeout;
 762		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
 763	}
 764
 765	spin_unlock_irqrestore(&dev->keylock, flags);
 766}
 767EXPORT_SYMBOL_GPL(rc_repeat);
 768
 769/**
 770 * ir_do_keydown() - internal function to process a keypress
 771 * @dev:	the struct rc_dev descriptor of the device
 772 * @protocol:	the protocol of the keypress
 773 * @scancode:   the scancode of the keypress
 774 * @keycode:    the keycode of the keypress
 775 * @toggle:     the toggle value of the keypress
 776 *
 777 * This function is used internally to register a keypress, it must be
 778 * called with keylock held.
 779 */
 780static void ir_do_keydown(struct rc_dev *dev, enum rc_proto protocol,
 781			  u64 scancode, u32 keycode, u8 toggle)
 782{
 783	bool new_event = (!dev->keypressed		 ||
 784			  dev->last_protocol != protocol ||
 785			  dev->last_scancode != scancode ||
 786			  dev->last_toggle   != toggle);
 787	struct lirc_scancode sc = {
 788		.scancode = scancode, .rc_proto = protocol,
 789		.flags = (toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0) |
 790			 (!new_event ? LIRC_SCANCODE_FLAG_REPEAT : 0),
 791		.keycode = keycode
 792	};
 793
 794	if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
 795		lirc_scancode_event(dev, &sc);
 796
 797	if (new_event && dev->keypressed)
 798		ir_do_keyup(dev, false);
 799
 800	if (scancode <= U32_MAX)
 801		input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
 802
 803	dev->last_protocol = protocol;
 804	dev->last_scancode = scancode;
 805	dev->last_toggle = toggle;
 806	dev->last_keycode = keycode;
 807
 808	if (new_event && keycode != KEY_RESERVED) {
 809		/* Register a keypress */
 810		dev->keypressed = true;
 811
 812		dev_dbg(&dev->dev, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08llx\n",
 813			dev->device_name, keycode, protocol, scancode);
 814		input_report_key(dev->input_dev, keycode, 1);
 815
 816		led_trigger_event(led_feedback, LED_FULL);
 817	}
 818
 819	/*
 820	 * For CEC, start sending repeat messages as soon as the first
 821	 * repeated message is sent, as long as REP_DELAY = 0 and REP_PERIOD
 822	 * is non-zero. Otherwise, the input layer will generate repeat
 823	 * messages.
 824	 */
 825	if (!new_event && keycode != KEY_RESERVED &&
 826	    dev->allowed_protocols == RC_PROTO_BIT_CEC &&
 827	    !timer_pending(&dev->timer_repeat) &&
 828	    dev->input_dev->rep[REP_PERIOD] &&
 829	    !dev->input_dev->rep[REP_DELAY]) {
 830		input_event(dev->input_dev, EV_KEY, keycode, 2);
 831		mod_timer(&dev->timer_repeat, jiffies +
 832			  msecs_to_jiffies(dev->input_dev->rep[REP_PERIOD]));
 833	}
 834
 835	input_sync(dev->input_dev);
 836}
 837
 838/**
 839 * rc_keydown() - generates input event for a key press
 840 * @dev:	the struct rc_dev descriptor of the device
 841 * @protocol:	the protocol for the keypress
 842 * @scancode:	the scancode for the keypress
 843 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 844 *              support toggle values, this should be set to zero)
 845 *
 846 * This routine is used to signal that a key has been pressed on the
 847 * remote control.
 848 */
 849void rc_keydown(struct rc_dev *dev, enum rc_proto protocol, u64 scancode,
 850		u8 toggle)
 851{
 852	unsigned long flags;
 853	u32 keycode = rc_g_keycode_from_table(dev, scancode);
 854
 855	spin_lock_irqsave(&dev->keylock, flags);
 856	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
 857
 858	if (dev->keypressed) {
 859		dev->keyup_jiffies = jiffies + usecs_to_jiffies(dev->timeout) +
 860			msecs_to_jiffies(repeat_period(protocol));
 861		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
 862	}
 863	spin_unlock_irqrestore(&dev->keylock, flags);
 864}
 865EXPORT_SYMBOL_GPL(rc_keydown);
 866
 867/**
 868 * rc_keydown_notimeout() - generates input event for a key press without
 869 *                          an automatic keyup event at a later time
 870 * @dev:	the struct rc_dev descriptor of the device
 871 * @protocol:	the protocol for the keypress
 872 * @scancode:	the scancode for the keypress
 873 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 874 *              support toggle values, this should be set to zero)
 875 *
 876 * This routine is used to signal that a key has been pressed on the
 877 * remote control. The driver must manually call rc_keyup() at a later stage.
 878 */
 879void rc_keydown_notimeout(struct rc_dev *dev, enum rc_proto protocol,
 880			  u64 scancode, u8 toggle)
 881{
 882	unsigned long flags;
 883	u32 keycode = rc_g_keycode_from_table(dev, scancode);
 884
 885	spin_lock_irqsave(&dev->keylock, flags);
 886	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
 887	spin_unlock_irqrestore(&dev->keylock, flags);
 888}
 889EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
 890
 891/**
 892 * rc_validate_scancode() - checks that a scancode is valid for a protocol.
 893 *	For nec, it should do the opposite of ir_nec_bytes_to_scancode()
 894 * @proto:	protocol
 895 * @scancode:	scancode
 896 */
 897bool rc_validate_scancode(enum rc_proto proto, u32 scancode)
 898{
 899	switch (proto) {
 900	/*
 901	 * NECX has a 16-bit address; if the lower 8 bits match the upper
 902	 * 8 bits inverted, then the address would match regular nec.
 903	 */
 904	case RC_PROTO_NECX:
 905		if ((((scancode >> 16) ^ ~(scancode >> 8)) & 0xff) == 0)
 906			return false;
 907		break;
 908	/*
 909	 * NEC32 has a 16 bit address and 16 bit command. If the lower 8 bits
 910	 * of the command match the upper 8 bits inverted, then it would
 911	 * be either NEC or NECX.
 912	 */
 913	case RC_PROTO_NEC32:
 914		if ((((scancode >> 8) ^ ~scancode) & 0xff) == 0)
 915			return false;
 916		break;
 917	/*
 918	 * If the customer code (top 32-bit) is 0x800f, it is MCE else it
 919	 * is regular mode-6a 32 bit
 920	 */
 921	case RC_PROTO_RC6_MCE:
 922		if ((scancode & 0xffff0000) != 0x800f0000)
 923			return false;
 924		break;
 925	case RC_PROTO_RC6_6A_32:
 926		if ((scancode & 0xffff0000) == 0x800f0000)
 927			return false;
 928		break;
 929	default:
 930		break;
 931	}
 932
 933	return true;
 934}
 935
 936/**
 937 * rc_validate_filter() - checks that the scancode and mask are valid and
 938 *			  provides sensible defaults
 939 * @dev:	the struct rc_dev descriptor of the device
 940 * @filter:	the scancode and mask
 941 *
 942 * return:	0 or -EINVAL if the filter is not valid
 943 */
 944static int rc_validate_filter(struct rc_dev *dev,
 945			      struct rc_scancode_filter *filter)
 946{
 947	u32 mask, s = filter->data;
 948	enum rc_proto protocol = dev->wakeup_protocol;
 949
 950	if (protocol >= ARRAY_SIZE(protocols))
 951		return -EINVAL;
 952
 953	mask = protocols[protocol].scancode_bits;
 954
 955	if (!rc_validate_scancode(protocol, s))
 956		return -EINVAL;
 957
 958	filter->data &= mask;
 959	filter->mask &= mask;
 960
 961	/*
 962	 * If we have to raw encode the IR for wakeup, we cannot have a mask
 963	 */
 964	if (dev->encode_wakeup && filter->mask != 0 && filter->mask != mask)
 965		return -EINVAL;
 966
 967	return 0;
 968}
 969
 970int rc_open(struct rc_dev *rdev)
 971{
 972	int rval = 0;
 973
 974	if (!rdev)
 975		return -EINVAL;
 976
 977	mutex_lock(&rdev->lock);
 978
 979	if (!rdev->registered) {
 980		rval = -ENODEV;
 981	} else {
 982		if (!rdev->users++ && rdev->open)
 983			rval = rdev->open(rdev);
 984
 985		if (rval)
 986			rdev->users--;
 987	}
 988
 989	mutex_unlock(&rdev->lock);
 990
 991	return rval;
 992}
 993
 994static int ir_open(struct input_dev *idev)
 995{
 996	struct rc_dev *rdev = input_get_drvdata(idev);
 997
 998	return rc_open(rdev);
 999}
1000
1001void rc_close(struct rc_dev *rdev)
1002{
1003	if (rdev) {
1004		mutex_lock(&rdev->lock);
1005
1006		if (!--rdev->users && rdev->close && rdev->registered)
1007			rdev->close(rdev);
1008
1009		mutex_unlock(&rdev->lock);
1010	}
1011}
1012
1013static void ir_close(struct input_dev *idev)
1014{
1015	struct rc_dev *rdev = input_get_drvdata(idev);
1016	rc_close(rdev);
1017}
1018
1019/* class for /sys/class/rc */
1020static char *rc_devnode(const struct device *dev, umode_t *mode)
1021{
1022	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
1023}
1024
1025static struct class rc_class = {
1026	.name		= "rc",
1027	.devnode	= rc_devnode,
1028};
1029
1030/*
1031 * These are the protocol textual descriptions that are
1032 * used by the sysfs protocols file. Note that the order
1033 * of the entries is relevant.
1034 */
1035static const struct {
1036	u64	type;
1037	const char	*name;
1038	const char	*module_name;
1039} proto_names[] = {
1040	{ RC_PROTO_BIT_NONE,	"none",		NULL			},
1041	{ RC_PROTO_BIT_OTHER,	"other",	NULL			},
1042	{ RC_PROTO_BIT_UNKNOWN,	"unknown",	NULL			},
1043	{ RC_PROTO_BIT_RC5 |
1044	  RC_PROTO_BIT_RC5X_20,	"rc-5",		"ir-rc5-decoder"	},
1045	{ RC_PROTO_BIT_NEC |
1046	  RC_PROTO_BIT_NECX |
1047	  RC_PROTO_BIT_NEC32,	"nec",		"ir-nec-decoder"	},
1048	{ RC_PROTO_BIT_RC6_0 |
1049	  RC_PROTO_BIT_RC6_6A_20 |
1050	  RC_PROTO_BIT_RC6_6A_24 |
1051	  RC_PROTO_BIT_RC6_6A_32 |
1052	  RC_PROTO_BIT_RC6_MCE,	"rc-6",		"ir-rc6-decoder"	},
1053	{ RC_PROTO_BIT_JVC,	"jvc",		"ir-jvc-decoder"	},
1054	{ RC_PROTO_BIT_SONY12 |
1055	  RC_PROTO_BIT_SONY15 |
1056	  RC_PROTO_BIT_SONY20,	"sony",		"ir-sony-decoder"	},
1057	{ RC_PROTO_BIT_RC5_SZ,	"rc-5-sz",	"ir-rc5-decoder"	},
1058	{ RC_PROTO_BIT_SANYO,	"sanyo",	"ir-sanyo-decoder"	},
1059	{ RC_PROTO_BIT_SHARP,	"sharp",	"ir-sharp-decoder"	},
1060	{ RC_PROTO_BIT_MCIR2_KBD |
1061	  RC_PROTO_BIT_MCIR2_MSE, "mce_kbd",	"ir-mce_kbd-decoder"	},
1062	{ RC_PROTO_BIT_XMP,	"xmp",		"ir-xmp-decoder"	},
1063	{ RC_PROTO_BIT_CEC,	"cec",		NULL			},
1064	{ RC_PROTO_BIT_IMON,	"imon",		"ir-imon-decoder"	},
1065	{ RC_PROTO_BIT_RCMM12 |
1066	  RC_PROTO_BIT_RCMM24 |
1067	  RC_PROTO_BIT_RCMM32,	"rc-mm",	"ir-rcmm-decoder"	},
1068	{ RC_PROTO_BIT_XBOX_DVD, "xbox-dvd",	NULL			},
1069};
1070
1071/**
1072 * struct rc_filter_attribute - Device attribute relating to a filter type.
1073 * @attr:	Device attribute.
1074 * @type:	Filter type.
1075 * @mask:	false for filter value, true for filter mask.
1076 */
1077struct rc_filter_attribute {
1078	struct device_attribute		attr;
1079	enum rc_filter_type		type;
1080	bool				mask;
1081};
1082#define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
1083
1084#define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)	\
1085	struct rc_filter_attribute dev_attr_##_name = {			\
1086		.attr = __ATTR(_name, _mode, _show, _store),		\
1087		.type = (_type),					\
1088		.mask = (_mask),					\
1089	}
1090
1091/**
1092 * show_protocols() - shows the current IR protocol(s)
1093 * @device:	the device descriptor
1094 * @mattr:	the device attribute struct
1095 * @buf:	a pointer to the output buffer
1096 *
1097 * This routine is a callback routine for input read the IR protocol type(s).
1098 * it is triggered by reading /sys/class/rc/rc?/protocols.
1099 * It returns the protocol names of supported protocols.
1100 * Enabled protocols are printed in brackets.
1101 *
1102 * dev->lock is taken to guard against races between
1103 * store_protocols and show_protocols.
1104 */
1105static ssize_t show_protocols(struct device *device,
1106			      struct device_attribute *mattr, char *buf)
1107{
1108	struct rc_dev *dev = to_rc_dev(device);
1109	u64 allowed, enabled;
1110	char *tmp = buf;
1111	int i;
1112
1113	mutex_lock(&dev->lock);
1114
1115	enabled = dev->enabled_protocols;
1116	allowed = dev->allowed_protocols;
1117	if (dev->raw && !allowed)
1118		allowed = ir_raw_get_allowed_protocols();
1119
1120	mutex_unlock(&dev->lock);
1121
1122	dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
1123		__func__, (long long)allowed, (long long)enabled);
1124
1125	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1126		if (allowed & enabled & proto_names[i].type)
1127			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
1128		else if (allowed & proto_names[i].type)
1129			tmp += sprintf(tmp, "%s ", proto_names[i].name);
1130
1131		if (allowed & proto_names[i].type)
1132			allowed &= ~proto_names[i].type;
1133	}
1134
1135#ifdef CONFIG_LIRC
1136	if (dev->driver_type == RC_DRIVER_IR_RAW)
1137		tmp += sprintf(tmp, "[lirc] ");
1138#endif
1139
1140	if (tmp != buf)
1141		tmp--;
1142	*tmp = '\n';
1143
1144	return tmp + 1 - buf;
1145}
1146
1147/**
1148 * parse_protocol_change() - parses a protocol change request
1149 * @dev:	rc_dev device
1150 * @protocols:	pointer to the bitmask of current protocols
1151 * @buf:	pointer to the buffer with a list of changes
1152 *
1153 * Writing "+proto" will add a protocol to the protocol mask.
1154 * Writing "-proto" will remove a protocol from protocol mask.
1155 * Writing "proto" will enable only "proto".
1156 * Writing "none" will disable all protocols.
1157 * Returns the number of changes performed or a negative error code.
1158 */
1159static int parse_protocol_change(struct rc_dev *dev, u64 *protocols,
1160				 const char *buf)
1161{
1162	const char *tmp;
1163	unsigned count = 0;
1164	bool enable, disable;
1165	u64 mask;
1166	int i;
1167
1168	while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
1169		if (!*tmp)
1170			break;
1171
1172		if (*tmp == '+') {
1173			enable = true;
1174			disable = false;
1175			tmp++;
1176		} else if (*tmp == '-') {
1177			enable = false;
1178			disable = true;
1179			tmp++;
1180		} else {
1181			enable = false;
1182			disable = false;
1183		}
1184
1185		for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1186			if (!strcasecmp(tmp, proto_names[i].name)) {
1187				mask = proto_names[i].type;
1188				break;
1189			}
1190		}
1191
1192		if (i == ARRAY_SIZE(proto_names)) {
1193			if (!strcasecmp(tmp, "lirc"))
1194				mask = 0;
1195			else {
1196				dev_dbg(&dev->dev, "Unknown protocol: '%s'\n",
1197					tmp);
1198				return -EINVAL;
1199			}
1200		}
1201
1202		count++;
1203
1204		if (enable)
1205			*protocols |= mask;
1206		else if (disable)
1207			*protocols &= ~mask;
1208		else
1209			*protocols = mask;
1210	}
1211
1212	if (!count) {
1213		dev_dbg(&dev->dev, "Protocol not specified\n");
1214		return -EINVAL;
1215	}
1216
1217	return count;
1218}
1219
1220void ir_raw_load_modules(u64 *protocols)
1221{
1222	u64 available;
1223	int i, ret;
1224
1225	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1226		if (proto_names[i].type == RC_PROTO_BIT_NONE ||
1227		    proto_names[i].type & (RC_PROTO_BIT_OTHER |
1228					   RC_PROTO_BIT_UNKNOWN))
1229			continue;
1230
1231		available = ir_raw_get_allowed_protocols();
1232		if (!(*protocols & proto_names[i].type & ~available))
1233			continue;
1234
1235		if (!proto_names[i].module_name) {
1236			pr_err("Can't enable IR protocol %s\n",
1237			       proto_names[i].name);
1238			*protocols &= ~proto_names[i].type;
1239			continue;
1240		}
1241
1242		ret = request_module("%s", proto_names[i].module_name);
1243		if (ret < 0) {
1244			pr_err("Couldn't load IR protocol module %s\n",
1245			       proto_names[i].module_name);
1246			*protocols &= ~proto_names[i].type;
1247			continue;
1248		}
1249		msleep(20);
1250		available = ir_raw_get_allowed_protocols();
1251		if (!(*protocols & proto_names[i].type & ~available))
1252			continue;
1253
1254		pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
1255		       proto_names[i].module_name,
1256		       proto_names[i].name);
1257		*protocols &= ~proto_names[i].type;
1258	}
1259}
1260
1261/**
1262 * store_protocols() - changes the current/wakeup IR protocol(s)
1263 * @device:	the device descriptor
1264 * @mattr:	the device attribute struct
1265 * @buf:	a pointer to the input buffer
1266 * @len:	length of the input buffer
1267 *
1268 * This routine is for changing the IR protocol type.
1269 * It is triggered by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1270 * See parse_protocol_change() for the valid commands.
1271 * Returns @len on success or a negative error code.
1272 *
1273 * dev->lock is taken to guard against races between
1274 * store_protocols and show_protocols.
1275 */
1276static ssize_t store_protocols(struct device *device,
1277			       struct device_attribute *mattr,
1278			       const char *buf, size_t len)
1279{
1280	struct rc_dev *dev = to_rc_dev(device);
1281	u64 *current_protocols;
1282	struct rc_scancode_filter *filter;
1283	u64 old_protocols, new_protocols;
1284	ssize_t rc;
1285
1286	dev_dbg(&dev->dev, "Normal protocol change requested\n");
1287	current_protocols = &dev->enabled_protocols;
1288	filter = &dev->scancode_filter;
1289
1290	if (!dev->change_protocol) {
1291		dev_dbg(&dev->dev, "Protocol switching not supported\n");
1292		return -EINVAL;
1293	}
1294
1295	mutex_lock(&dev->lock);
1296	if (!dev->registered) {
1297		mutex_unlock(&dev->lock);
1298		return -ENODEV;
1299	}
1300
1301	old_protocols = *current_protocols;
1302	new_protocols = old_protocols;
1303	rc = parse_protocol_change(dev, &new_protocols, buf);
1304	if (rc < 0)
1305		goto out;
1306
1307	if (dev->driver_type == RC_DRIVER_IR_RAW)
1308		ir_raw_load_modules(&new_protocols);
1309
1310	rc = dev->change_protocol(dev, &new_protocols);
1311	if (rc < 0) {
1312		dev_dbg(&dev->dev, "Error setting protocols to 0x%llx\n",
1313			(long long)new_protocols);
1314		goto out;
1315	}
1316
1317	if (new_protocols != old_protocols) {
1318		*current_protocols = new_protocols;
1319		dev_dbg(&dev->dev, "Protocols changed to 0x%llx\n",
1320			(long long)new_protocols);
1321	}
1322
1323	/*
1324	 * If a protocol change was attempted the filter may need updating, even
1325	 * if the actual protocol mask hasn't changed (since the driver may have
1326	 * cleared the filter).
1327	 * Try setting the same filter with the new protocol (if any).
1328	 * Fall back to clearing the filter.
1329	 */
1330	if (dev->s_filter && filter->mask) {
1331		if (new_protocols)
1332			rc = dev->s_filter(dev, filter);
1333		else
1334			rc = -1;
1335
1336		if (rc < 0) {
1337			filter->data = 0;
1338			filter->mask = 0;
1339			dev->s_filter(dev, filter);
1340		}
1341	}
1342
1343	rc = len;
1344
1345out:
1346	mutex_unlock(&dev->lock);
1347	return rc;
1348}
1349
1350/**
1351 * show_filter() - shows the current scancode filter value or mask
1352 * @device:	the device descriptor
1353 * @attr:	the device attribute struct
1354 * @buf:	a pointer to the output buffer
1355 *
1356 * This routine is a callback routine to read a scancode filter value or mask.
1357 * It is triggered by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1358 * It prints the current scancode filter value or mask of the appropriate filter
1359 * type in hexadecimal into @buf and returns the size of the buffer.
1360 *
1361 * Bits of the filter value corresponding to set bits in the filter mask are
1362 * compared against input scancodes and non-matching scancodes are discarded.
1363 *
1364 * dev->lock is taken to guard against races between
1365 * store_filter and show_filter.
1366 */
1367static ssize_t show_filter(struct device *device,
1368			   struct device_attribute *attr,
1369			   char *buf)
1370{
1371	struct rc_dev *dev = to_rc_dev(device);
1372	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1373	struct rc_scancode_filter *filter;
1374	u32 val;
1375
1376	mutex_lock(&dev->lock);
1377
1378	if (fattr->type == RC_FILTER_NORMAL)
1379		filter = &dev->scancode_filter;
1380	else
1381		filter = &dev->scancode_wakeup_filter;
1382
1383	if (fattr->mask)
1384		val = filter->mask;
1385	else
1386		val = filter->data;
1387	mutex_unlock(&dev->lock);
1388
1389	return sprintf(buf, "%#x\n", val);
1390}
1391
1392/**
1393 * store_filter() - changes the scancode filter value
1394 * @device:	the device descriptor
1395 * @attr:	the device attribute struct
1396 * @buf:	a pointer to the input buffer
1397 * @len:	length of the input buffer
1398 *
1399 * This routine is for changing a scancode filter value or mask.
1400 * It is triggered by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1401 * Returns -EINVAL if an invalid filter value for the current protocol was
1402 * specified or if scancode filtering is not supported by the driver, otherwise
1403 * returns @len.
1404 *
1405 * Bits of the filter value corresponding to set bits in the filter mask are
1406 * compared against input scancodes and non-matching scancodes are discarded.
1407 *
1408 * dev->lock is taken to guard against races between
1409 * store_filter and show_filter.
1410 */
1411static ssize_t store_filter(struct device *device,
1412			    struct device_attribute *attr,
1413			    const char *buf, size_t len)
1414{
1415	struct rc_dev *dev = to_rc_dev(device);
1416	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1417	struct rc_scancode_filter new_filter, *filter;
1418	int ret;
1419	unsigned long val;
1420	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1421
1422	ret = kstrtoul(buf, 0, &val);
1423	if (ret < 0)
1424		return ret;
1425
1426	if (fattr->type == RC_FILTER_NORMAL) {
1427		set_filter = dev->s_filter;
1428		filter = &dev->scancode_filter;
1429	} else {
1430		set_filter = dev->s_wakeup_filter;
1431		filter = &dev->scancode_wakeup_filter;
1432	}
1433
1434	if (!set_filter)
1435		return -EINVAL;
1436
1437	mutex_lock(&dev->lock);
1438	if (!dev->registered) {
1439		mutex_unlock(&dev->lock);
1440		return -ENODEV;
1441	}
1442
1443	new_filter = *filter;
1444	if (fattr->mask)
1445		new_filter.mask = val;
1446	else
1447		new_filter.data = val;
1448
1449	if (fattr->type == RC_FILTER_WAKEUP) {
1450		/*
1451		 * Refuse to set a filter unless a protocol is enabled
1452		 * and the filter is valid for that protocol
1453		 */
1454		if (dev->wakeup_protocol != RC_PROTO_UNKNOWN)
1455			ret = rc_validate_filter(dev, &new_filter);
1456		else
1457			ret = -EINVAL;
1458
1459		if (ret != 0)
1460			goto unlock;
1461	}
1462
1463	if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols &&
1464	    val) {
1465		/* refuse to set a filter unless a protocol is enabled */
1466		ret = -EINVAL;
1467		goto unlock;
1468	}
1469
1470	ret = set_filter(dev, &new_filter);
1471	if (ret < 0)
1472		goto unlock;
1473
1474	*filter = new_filter;
1475
1476unlock:
1477	mutex_unlock(&dev->lock);
1478	return (ret < 0) ? ret : len;
1479}
1480
1481/**
1482 * show_wakeup_protocols() - shows the wakeup IR protocol
1483 * @device:	the device descriptor
1484 * @mattr:	the device attribute struct
1485 * @buf:	a pointer to the output buffer
1486 *
1487 * This routine is a callback routine for input read the IR protocol type(s).
1488 * it is triggered by reading /sys/class/rc/rc?/wakeup_protocols.
1489 * It returns the protocol names of supported protocols.
1490 * The enabled protocols are printed in brackets.
1491 *
1492 * dev->lock is taken to guard against races between
1493 * store_wakeup_protocols and show_wakeup_protocols.
1494 */
1495static ssize_t show_wakeup_protocols(struct device *device,
1496				     struct device_attribute *mattr,
1497				     char *buf)
1498{
1499	struct rc_dev *dev = to_rc_dev(device);
1500	u64 allowed;
1501	enum rc_proto enabled;
1502	char *tmp = buf;
1503	int i;
1504
1505	mutex_lock(&dev->lock);
1506
1507	allowed = dev->allowed_wakeup_protocols;
1508	enabled = dev->wakeup_protocol;
1509
1510	mutex_unlock(&dev->lock);
1511
1512	dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - %d\n",
1513		__func__, (long long)allowed, enabled);
1514
1515	for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1516		if (allowed & (1ULL << i)) {
1517			if (i == enabled)
1518				tmp += sprintf(tmp, "[%s] ", protocols[i].name);
1519			else
1520				tmp += sprintf(tmp, "%s ", protocols[i].name);
1521		}
1522	}
1523
1524	if (tmp != buf)
1525		tmp--;
1526	*tmp = '\n';
1527
1528	return tmp + 1 - buf;
1529}
1530
1531/**
1532 * store_wakeup_protocols() - changes the wakeup IR protocol(s)
1533 * @device:	the device descriptor
1534 * @mattr:	the device attribute struct
1535 * @buf:	a pointer to the input buffer
1536 * @len:	length of the input buffer
1537 *
1538 * This routine is for changing the IR protocol type.
1539 * It is triggered by writing to /sys/class/rc/rc?/wakeup_protocols.
1540 * Returns @len on success or a negative error code.
1541 *
1542 * dev->lock is taken to guard against races between
1543 * store_wakeup_protocols and show_wakeup_protocols.
1544 */
1545static ssize_t store_wakeup_protocols(struct device *device,
1546				      struct device_attribute *mattr,
1547				      const char *buf, size_t len)
1548{
1549	struct rc_dev *dev = to_rc_dev(device);
1550	enum rc_proto protocol = RC_PROTO_UNKNOWN;
1551	ssize_t rc;
1552	u64 allowed;
1553	int i;
1554
1555	mutex_lock(&dev->lock);
1556	if (!dev->registered) {
1557		mutex_unlock(&dev->lock);
1558		return -ENODEV;
1559	}
1560
1561	allowed = dev->allowed_wakeup_protocols;
1562
1563	if (!sysfs_streq(buf, "none")) {
1564		for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1565			if ((allowed & (1ULL << i)) &&
1566			    sysfs_streq(buf, protocols[i].name)) {
1567				protocol = i;
1568				break;
1569			}
1570		}
1571
1572		if (i == ARRAY_SIZE(protocols)) {
1573			rc = -EINVAL;
1574			goto out;
1575		}
1576
1577		if (dev->encode_wakeup) {
1578			u64 mask = 1ULL << protocol;
1579
1580			ir_raw_load_modules(&mask);
1581			if (!mask) {
1582				rc = -EINVAL;
1583				goto out;
1584			}
1585		}
1586	}
1587
1588	if (dev->wakeup_protocol != protocol) {
1589		dev->wakeup_protocol = protocol;
1590		dev_dbg(&dev->dev, "Wakeup protocol changed to %d\n", protocol);
1591
1592		if (protocol == RC_PROTO_RC6_MCE)
1593			dev->scancode_wakeup_filter.data = 0x800f0000;
1594		else
1595			dev->scancode_wakeup_filter.data = 0;
1596		dev->scancode_wakeup_filter.mask = 0;
1597
1598		rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter);
1599		if (rc == 0)
1600			rc = len;
1601	} else {
1602		rc = len;
1603	}
1604
1605out:
1606	mutex_unlock(&dev->lock);
1607	return rc;
1608}
1609
1610static void rc_dev_release(struct device *device)
1611{
1612	struct rc_dev *dev = to_rc_dev(device);
1613
1614	kfree(dev);
1615}
1616
 
 
 
 
 
 
 
1617static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1618{
1619	struct rc_dev *dev = to_rc_dev(device);
1620	int ret = 0;
1621
1622	mutex_lock(&dev->lock);
1623
1624	if (!dev->registered)
1625		ret = -ENODEV;
1626	if (ret == 0 && dev->rc_map.name)
1627		ret = add_uevent_var(env, "NAME=%s", dev->rc_map.name);
1628	if (ret == 0 && dev->driver_name)
1629		ret = add_uevent_var(env, "DRV_NAME=%s", dev->driver_name);
1630	if (ret == 0 && dev->device_name)
1631		ret = add_uevent_var(env, "DEV_NAME=%s", dev->device_name);
1632
1633	mutex_unlock(&dev->lock);
1634
1635	return ret;
1636}
1637
1638/*
1639 * Static device attribute struct with the sysfs attributes for IR's
1640 */
1641static struct device_attribute dev_attr_ro_protocols =
1642__ATTR(protocols, 0444, show_protocols, NULL);
1643static struct device_attribute dev_attr_rw_protocols =
1644__ATTR(protocols, 0644, show_protocols, store_protocols);
1645static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols,
1646		   store_wakeup_protocols);
1647static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1648		      show_filter, store_filter, RC_FILTER_NORMAL, false);
1649static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1650		      show_filter, store_filter, RC_FILTER_NORMAL, true);
1651static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1652		      show_filter, store_filter, RC_FILTER_WAKEUP, false);
1653static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1654		      show_filter, store_filter, RC_FILTER_WAKEUP, true);
1655
1656static struct attribute *rc_dev_rw_protocol_attrs[] = {
1657	&dev_attr_rw_protocols.attr,
1658	NULL,
1659};
1660
1661static const struct attribute_group rc_dev_rw_protocol_attr_grp = {
1662	.attrs	= rc_dev_rw_protocol_attrs,
1663};
1664
1665static struct attribute *rc_dev_ro_protocol_attrs[] = {
1666	&dev_attr_ro_protocols.attr,
1667	NULL,
1668};
1669
1670static const struct attribute_group rc_dev_ro_protocol_attr_grp = {
1671	.attrs	= rc_dev_ro_protocol_attrs,
1672};
1673
1674static struct attribute *rc_dev_filter_attrs[] = {
1675	&dev_attr_filter.attr.attr,
1676	&dev_attr_filter_mask.attr.attr,
1677	NULL,
1678};
1679
1680static const struct attribute_group rc_dev_filter_attr_grp = {
1681	.attrs	= rc_dev_filter_attrs,
1682};
1683
1684static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1685	&dev_attr_wakeup_filter.attr.attr,
1686	&dev_attr_wakeup_filter_mask.attr.attr,
1687	&dev_attr_wakeup_protocols.attr,
1688	NULL,
1689};
1690
1691static const struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1692	.attrs	= rc_dev_wakeup_filter_attrs,
1693};
1694
1695static const struct device_type rc_dev_type = {
1696	.release	= rc_dev_release,
1697	.uevent		= rc_dev_uevent,
1698};
1699
1700struct rc_dev *rc_allocate_device(enum rc_driver_type type)
1701{
1702	struct rc_dev *dev;
1703
1704	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1705	if (!dev)
1706		return NULL;
1707
1708	if (type != RC_DRIVER_IR_RAW_TX) {
1709		dev->input_dev = input_allocate_device();
1710		if (!dev->input_dev) {
1711			kfree(dev);
1712			return NULL;
1713		}
1714
1715		dev->input_dev->getkeycode = ir_getkeycode;
1716		dev->input_dev->setkeycode = ir_setkeycode;
1717		input_set_drvdata(dev->input_dev, dev);
1718
1719		dev->timeout = IR_DEFAULT_TIMEOUT;
1720		timer_setup(&dev->timer_keyup, ir_timer_keyup, 0);
1721		timer_setup(&dev->timer_repeat, ir_timer_repeat, 0);
1722
1723		spin_lock_init(&dev->rc_map.lock);
1724		spin_lock_init(&dev->keylock);
1725	}
1726	mutex_init(&dev->lock);
1727
1728	dev->dev.type = &rc_dev_type;
1729	dev->dev.class = &rc_class;
1730	device_initialize(&dev->dev);
1731
1732	dev->driver_type = type;
1733
1734	__module_get(THIS_MODULE);
1735	return dev;
1736}
1737EXPORT_SYMBOL_GPL(rc_allocate_device);
1738
1739void rc_free_device(struct rc_dev *dev)
1740{
1741	if (!dev)
1742		return;
1743
1744	input_free_device(dev->input_dev);
1745
1746	put_device(&dev->dev);
1747
1748	/* kfree(dev) will be called by the callback function
1749	   rc_dev_release() */
1750
1751	module_put(THIS_MODULE);
1752}
1753EXPORT_SYMBOL_GPL(rc_free_device);
1754
1755static void devm_rc_alloc_release(struct device *dev, void *res)
1756{
1757	rc_free_device(*(struct rc_dev **)res);
1758}
1759
1760struct rc_dev *devm_rc_allocate_device(struct device *dev,
1761				       enum rc_driver_type type)
1762{
1763	struct rc_dev **dr, *rc;
1764
1765	dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
1766	if (!dr)
1767		return NULL;
1768
1769	rc = rc_allocate_device(type);
1770	if (!rc) {
1771		devres_free(dr);
1772		return NULL;
1773	}
1774
1775	rc->dev.parent = dev;
1776	rc->managed_alloc = true;
1777	*dr = rc;
1778	devres_add(dev, dr);
1779
1780	return rc;
1781}
1782EXPORT_SYMBOL_GPL(devm_rc_allocate_device);
1783
1784static int rc_prepare_rx_device(struct rc_dev *dev)
1785{
1786	int rc;
1787	struct rc_map *rc_map;
1788	u64 rc_proto;
1789
1790	if (!dev->map_name)
1791		return -EINVAL;
1792
1793	rc_map = rc_map_get(dev->map_name);
1794	if (!rc_map)
1795		rc_map = rc_map_get(RC_MAP_EMPTY);
1796	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1797		return -EINVAL;
1798
1799	rc = ir_setkeytable(dev, rc_map);
1800	if (rc)
1801		return rc;
1802
1803	rc_proto = BIT_ULL(rc_map->rc_proto);
1804
1805	if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1806		dev->enabled_protocols = dev->allowed_protocols;
1807
1808	if (dev->driver_type == RC_DRIVER_IR_RAW)
1809		ir_raw_load_modules(&rc_proto);
1810
1811	if (dev->change_protocol) {
1812		rc = dev->change_protocol(dev, &rc_proto);
1813		if (rc < 0)
1814			goto out_table;
1815		dev->enabled_protocols = rc_proto;
1816	}
1817
1818	/* Keyboard events */
1819	set_bit(EV_KEY, dev->input_dev->evbit);
1820	set_bit(EV_REP, dev->input_dev->evbit);
1821	set_bit(EV_MSC, dev->input_dev->evbit);
1822	set_bit(MSC_SCAN, dev->input_dev->mscbit);
1823
1824	/* Pointer/mouse events */
1825	set_bit(INPUT_PROP_POINTING_STICK, dev->input_dev->propbit);
1826	set_bit(EV_REL, dev->input_dev->evbit);
1827	set_bit(REL_X, dev->input_dev->relbit);
1828	set_bit(REL_Y, dev->input_dev->relbit);
1829
1830	if (dev->open)
1831		dev->input_dev->open = ir_open;
1832	if (dev->close)
1833		dev->input_dev->close = ir_close;
1834
1835	dev->input_dev->dev.parent = &dev->dev;
1836	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1837	dev->input_dev->phys = dev->input_phys;
1838	dev->input_dev->name = dev->device_name;
1839
1840	return 0;
1841
1842out_table:
1843	ir_free_table(&dev->rc_map);
1844
1845	return rc;
1846}
1847
1848static int rc_setup_rx_device(struct rc_dev *dev)
1849{
1850	int rc;
1851
1852	/* rc_open will be called here */
1853	rc = input_register_device(dev->input_dev);
1854	if (rc)
1855		return rc;
1856
1857	/*
1858	 * Default delay of 250ms is too short for some protocols, especially
1859	 * since the timeout is currently set to 250ms. Increase it to 500ms,
1860	 * to avoid wrong repetition of the keycodes. Note that this must be
1861	 * set after the call to input_register_device().
1862	 */
1863	if (dev->allowed_protocols == RC_PROTO_BIT_CEC)
1864		dev->input_dev->rep[REP_DELAY] = 0;
1865	else
1866		dev->input_dev->rep[REP_DELAY] = 500;
1867
1868	/*
1869	 * As a repeat event on protocols like RC-5 and NEC take as long as
1870	 * 110/114ms, using 33ms as a repeat period is not the right thing
1871	 * to do.
1872	 */
1873	dev->input_dev->rep[REP_PERIOD] = 125;
1874
1875	return 0;
1876}
1877
1878static void rc_free_rx_device(struct rc_dev *dev)
1879{
1880	if (!dev)
1881		return;
1882
1883	if (dev->input_dev) {
1884		input_unregister_device(dev->input_dev);
1885		dev->input_dev = NULL;
1886	}
1887
1888	ir_free_table(&dev->rc_map);
1889}
1890
1891int rc_register_device(struct rc_dev *dev)
1892{
1893	const char *path;
1894	int attr = 0;
1895	int minor;
1896	int rc;
1897
1898	if (!dev)
1899		return -EINVAL;
1900
1901	minor = ida_alloc_max(&rc_ida, RC_DEV_MAX - 1, GFP_KERNEL);
1902	if (minor < 0)
1903		return minor;
1904
1905	dev->minor = minor;
1906	dev_set_name(&dev->dev, "rc%u", dev->minor);
1907	dev_set_drvdata(&dev->dev, dev);
1908
1909	dev->dev.groups = dev->sysfs_groups;
1910	if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1911		dev->sysfs_groups[attr++] = &rc_dev_ro_protocol_attr_grp;
1912	else if (dev->driver_type != RC_DRIVER_IR_RAW_TX)
1913		dev->sysfs_groups[attr++] = &rc_dev_rw_protocol_attr_grp;
1914	if (dev->s_filter)
1915		dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1916	if (dev->s_wakeup_filter)
1917		dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1918	dev->sysfs_groups[attr++] = NULL;
1919
1920	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1921		rc = ir_raw_event_prepare(dev);
1922		if (rc < 0)
1923			goto out_minor;
1924	}
1925
1926	if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1927		rc = rc_prepare_rx_device(dev);
1928		if (rc)
1929			goto out_raw;
1930	}
1931
1932	dev->registered = true;
1933
1934	rc = device_add(&dev->dev);
1935	if (rc)
1936		goto out_rx_free;
1937
1938	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1939	dev_info(&dev->dev, "%s as %s\n",
1940		 dev->device_name ?: "Unspecified device", path ?: "N/A");
1941	kfree(path);
1942
1943	/*
1944	 * once the input device is registered in rc_setup_rx_device,
1945	 * userspace can open the input device and rc_open() will be called
1946	 * as a result. This results in driver code being allowed to submit
1947	 * keycodes with rc_keydown, so lirc must be registered first.
1948	 */
1949	if (dev->allowed_protocols != RC_PROTO_BIT_CEC) {
1950		rc = lirc_register(dev);
1951		if (rc < 0)
1952			goto out_dev;
1953	}
1954
1955	if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1956		rc = rc_setup_rx_device(dev);
1957		if (rc)
1958			goto out_lirc;
 
 
 
 
 
 
 
1959	}
1960
1961	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1962		rc = ir_raw_event_register(dev);
1963		if (rc < 0)
1964			goto out_rx;
1965	}
1966
1967	dev_dbg(&dev->dev, "Registered rc%u (driver: %s)\n", dev->minor,
1968		dev->driver_name ? dev->driver_name : "unknown");
1969
1970	return 0;
1971
1972out_rx:
1973	rc_free_rx_device(dev);
1974out_lirc:
1975	if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
1976		lirc_unregister(dev);
 
 
1977out_dev:
1978	device_del(&dev->dev);
1979out_rx_free:
1980	ir_free_table(&dev->rc_map);
1981out_raw:
1982	ir_raw_event_free(dev);
1983out_minor:
1984	ida_free(&rc_ida, minor);
1985	return rc;
1986}
1987EXPORT_SYMBOL_GPL(rc_register_device);
1988
1989static void devm_rc_release(struct device *dev, void *res)
1990{
1991	rc_unregister_device(*(struct rc_dev **)res);
1992}
1993
1994int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
1995{
1996	struct rc_dev **dr;
1997	int ret;
1998
1999	dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
2000	if (!dr)
2001		return -ENOMEM;
2002
2003	ret = rc_register_device(dev);
2004	if (ret) {
2005		devres_free(dr);
2006		return ret;
2007	}
2008
2009	*dr = dev;
2010	devres_add(parent, dr);
2011
2012	return 0;
2013}
2014EXPORT_SYMBOL_GPL(devm_rc_register_device);
2015
2016void rc_unregister_device(struct rc_dev *dev)
2017{
2018	if (!dev)
2019		return;
2020
2021	if (dev->driver_type == RC_DRIVER_IR_RAW)
2022		ir_raw_event_unregister(dev);
2023
2024	del_timer_sync(&dev->timer_keyup);
2025	del_timer_sync(&dev->timer_repeat);
2026
 
 
2027	mutex_lock(&dev->lock);
2028	if (dev->users && dev->close)
2029		dev->close(dev);
2030	dev->registered = false;
2031	mutex_unlock(&dev->lock);
2032
2033	rc_free_rx_device(dev);
2034
2035	/*
2036	 * lirc device should be freed with dev->registered = false, so
2037	 * that userspace polling will get notified.
2038	 */
2039	if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
2040		lirc_unregister(dev);
2041
2042	device_del(&dev->dev);
2043
2044	ida_free(&rc_ida, dev->minor);
2045
2046	if (!dev->managed_alloc)
2047		rc_free_device(dev);
2048}
2049
2050EXPORT_SYMBOL_GPL(rc_unregister_device);
2051
2052/*
2053 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
2054 */
2055
2056static int __init rc_core_init(void)
2057{
2058	int rc = class_register(&rc_class);
2059	if (rc) {
2060		pr_err("rc_core: unable to register rc class\n");
2061		return rc;
2062	}
2063
2064	rc = lirc_dev_init();
2065	if (rc) {
2066		pr_err("rc_core: unable to init lirc\n");
2067		class_unregister(&rc_class);
2068		return rc;
2069	}
2070
2071	led_trigger_register_simple("rc-feedback", &led_feedback);
2072	rc_map_register(&empty_map);
2073#ifdef CONFIG_MEDIA_CEC_RC
2074	rc_map_register(&cec_map);
2075#endif
2076
2077	return 0;
2078}
2079
2080static void __exit rc_core_exit(void)
2081{
2082	lirc_dev_exit();
2083	class_unregister(&rc_class);
2084	led_trigger_unregister_simple(led_feedback);
2085#ifdef CONFIG_MEDIA_CEC_RC
2086	rc_map_unregister(&cec_map);
2087#endif
2088	rc_map_unregister(&empty_map);
2089}
2090
2091subsys_initcall(rc_core_init);
2092module_exit(rc_core_exit);
2093
2094MODULE_AUTHOR("Mauro Carvalho Chehab");
2095MODULE_LICENSE("GPL v2");
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2// rc-main.c - Remote Controller core module
   3//
   4// Copyright (C) 2009-2010 by Mauro Carvalho Chehab
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include <media/rc-core.h>
   9#include <linux/bsearch.h>
  10#include <linux/spinlock.h>
  11#include <linux/delay.h>
  12#include <linux/input.h>
  13#include <linux/leds.h>
  14#include <linux/slab.h>
  15#include <linux/idr.h>
  16#include <linux/device.h>
  17#include <linux/module.h>
  18#include "rc-core-priv.h"
  19
  20/* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
  21#define IR_TAB_MIN_SIZE	256
  22#define IR_TAB_MAX_SIZE	8192
  23
  24static const struct {
  25	const char *name;
  26	unsigned int repeat_period;
  27	unsigned int scancode_bits;
  28} protocols[] = {
  29	[RC_PROTO_UNKNOWN] = { .name = "unknown", .repeat_period = 125 },
  30	[RC_PROTO_OTHER] = { .name = "other", .repeat_period = 125 },
  31	[RC_PROTO_RC5] = { .name = "rc-5",
  32		.scancode_bits = 0x1f7f, .repeat_period = 114 },
  33	[RC_PROTO_RC5X_20] = { .name = "rc-5x-20",
  34		.scancode_bits = 0x1f7f3f, .repeat_period = 114 },
  35	[RC_PROTO_RC5_SZ] = { .name = "rc-5-sz",
  36		.scancode_bits = 0x2fff, .repeat_period = 114 },
  37	[RC_PROTO_JVC] = { .name = "jvc",
  38		.scancode_bits = 0xffff, .repeat_period = 125 },
  39	[RC_PROTO_SONY12] = { .name = "sony-12",
  40		.scancode_bits = 0x1f007f, .repeat_period = 100 },
  41	[RC_PROTO_SONY15] = { .name = "sony-15",
  42		.scancode_bits = 0xff007f, .repeat_period = 100 },
  43	[RC_PROTO_SONY20] = { .name = "sony-20",
  44		.scancode_bits = 0x1fff7f, .repeat_period = 100 },
  45	[RC_PROTO_NEC] = { .name = "nec",
  46		.scancode_bits = 0xffff, .repeat_period = 110 },
  47	[RC_PROTO_NECX] = { .name = "nec-x",
  48		.scancode_bits = 0xffffff, .repeat_period = 110 },
  49	[RC_PROTO_NEC32] = { .name = "nec-32",
  50		.scancode_bits = 0xffffffff, .repeat_period = 110 },
  51	[RC_PROTO_SANYO] = { .name = "sanyo",
  52		.scancode_bits = 0x1fffff, .repeat_period = 125 },
  53	[RC_PROTO_MCIR2_KBD] = { .name = "mcir2-kbd",
  54		.scancode_bits = 0xffffff, .repeat_period = 100 },
  55	[RC_PROTO_MCIR2_MSE] = { .name = "mcir2-mse",
  56		.scancode_bits = 0x1fffff, .repeat_period = 100 },
  57	[RC_PROTO_RC6_0] = { .name = "rc-6-0",
  58		.scancode_bits = 0xffff, .repeat_period = 114 },
  59	[RC_PROTO_RC6_6A_20] = { .name = "rc-6-6a-20",
  60		.scancode_bits = 0xfffff, .repeat_period = 114 },
  61	[RC_PROTO_RC6_6A_24] = { .name = "rc-6-6a-24",
  62		.scancode_bits = 0xffffff, .repeat_period = 114 },
  63	[RC_PROTO_RC6_6A_32] = { .name = "rc-6-6a-32",
  64		.scancode_bits = 0xffffffff, .repeat_period = 114 },
  65	[RC_PROTO_RC6_MCE] = { .name = "rc-6-mce",
  66		.scancode_bits = 0xffff7fff, .repeat_period = 114 },
  67	[RC_PROTO_SHARP] = { .name = "sharp",
  68		.scancode_bits = 0x1fff, .repeat_period = 125 },
  69	[RC_PROTO_XMP] = { .name = "xmp", .repeat_period = 125 },
  70	[RC_PROTO_CEC] = { .name = "cec", .repeat_period = 0 },
  71	[RC_PROTO_IMON] = { .name = "imon",
  72		.scancode_bits = 0x7fffffff, .repeat_period = 114 },
  73	[RC_PROTO_RCMM12] = { .name = "rc-mm-12",
  74		.scancode_bits = 0x00000fff, .repeat_period = 114 },
  75	[RC_PROTO_RCMM24] = { .name = "rc-mm-24",
  76		.scancode_bits = 0x00ffffff, .repeat_period = 114 },
  77	[RC_PROTO_RCMM32] = { .name = "rc-mm-32",
  78		.scancode_bits = 0xffffffff, .repeat_period = 114 },
  79	[RC_PROTO_XBOX_DVD] = { .name = "xbox-dvd", .repeat_period = 64 },
  80};
  81
  82/* Used to keep track of known keymaps */
  83static LIST_HEAD(rc_map_list);
  84static DEFINE_SPINLOCK(rc_map_lock);
  85static struct led_trigger *led_feedback;
  86
  87/* Used to keep track of rc devices */
  88static DEFINE_IDA(rc_ida);
  89
  90static struct rc_map_list *seek_rc_map(const char *name)
  91{
  92	struct rc_map_list *map = NULL;
  93
  94	spin_lock(&rc_map_lock);
  95	list_for_each_entry(map, &rc_map_list, list) {
  96		if (!strcmp(name, map->map.name)) {
  97			spin_unlock(&rc_map_lock);
  98			return map;
  99		}
 100	}
 101	spin_unlock(&rc_map_lock);
 102
 103	return NULL;
 104}
 105
 106struct rc_map *rc_map_get(const char *name)
 107{
 108
 109	struct rc_map_list *map;
 110
 111	map = seek_rc_map(name);
 112#ifdef CONFIG_MODULES
 113	if (!map) {
 114		int rc = request_module("%s", name);
 115		if (rc < 0) {
 116			pr_err("Couldn't load IR keymap %s\n", name);
 117			return NULL;
 118		}
 119		msleep(20);	/* Give some time for IR to register */
 120
 121		map = seek_rc_map(name);
 122	}
 123#endif
 124	if (!map) {
 125		pr_err("IR keymap %s not found\n", name);
 126		return NULL;
 127	}
 128
 129	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
 130
 131	return &map->map;
 132}
 133EXPORT_SYMBOL_GPL(rc_map_get);
 134
 135int rc_map_register(struct rc_map_list *map)
 136{
 137	spin_lock(&rc_map_lock);
 138	list_add_tail(&map->list, &rc_map_list);
 139	spin_unlock(&rc_map_lock);
 140	return 0;
 141}
 142EXPORT_SYMBOL_GPL(rc_map_register);
 143
 144void rc_map_unregister(struct rc_map_list *map)
 145{
 146	spin_lock(&rc_map_lock);
 147	list_del(&map->list);
 148	spin_unlock(&rc_map_lock);
 149}
 150EXPORT_SYMBOL_GPL(rc_map_unregister);
 151
 152
 153static struct rc_map_table empty[] = {
 154	{ 0x2a, KEY_COFFEE },
 155};
 156
 157static struct rc_map_list empty_map = {
 158	.map = {
 159		.scan     = empty,
 160		.size     = ARRAY_SIZE(empty),
 161		.rc_proto = RC_PROTO_UNKNOWN,	/* Legacy IR type */
 162		.name     = RC_MAP_EMPTY,
 163	}
 164};
 165
 166/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 167 * ir_create_table() - initializes a scancode table
 168 * @dev:	the rc_dev device
 169 * @rc_map:	the rc_map to initialize
 170 * @name:	name to assign to the table
 171 * @rc_proto:	ir type to assign to the new table
 172 * @size:	initial size of the table
 173 *
 174 * This routine will initialize the rc_map and will allocate
 175 * memory to hold at least the specified number of elements.
 176 *
 177 * return:	zero on success or a negative error code
 178 */
 179static int ir_create_table(struct rc_dev *dev, struct rc_map *rc_map,
 180			   const char *name, u64 rc_proto, size_t size)
 181{
 182	rc_map->name = kstrdup(name, GFP_KERNEL);
 183	if (!rc_map->name)
 184		return -ENOMEM;
 185	rc_map->rc_proto = rc_proto;
 186	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
 187	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
 188	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
 189	if (!rc_map->scan) {
 190		kfree(rc_map->name);
 191		rc_map->name = NULL;
 192		return -ENOMEM;
 193	}
 194
 195	dev_dbg(&dev->dev, "Allocated space for %u keycode entries (%u bytes)\n",
 196		rc_map->size, rc_map->alloc);
 197	return 0;
 198}
 199
 200/**
 201 * ir_free_table() - frees memory allocated by a scancode table
 202 * @rc_map:	the table whose mappings need to be freed
 203 *
 204 * This routine will free memory alloctaed for key mappings used by given
 205 * scancode table.
 206 */
 207static void ir_free_table(struct rc_map *rc_map)
 208{
 209	rc_map->size = 0;
 210	kfree(rc_map->name);
 211	rc_map->name = NULL;
 212	kfree(rc_map->scan);
 213	rc_map->scan = NULL;
 214}
 215
 216/**
 217 * ir_resize_table() - resizes a scancode table if necessary
 218 * @dev:	the rc_dev device
 219 * @rc_map:	the rc_map to resize
 220 * @gfp_flags:	gfp flags to use when allocating memory
 221 *
 222 * This routine will shrink the rc_map if it has lots of
 223 * unused entries and grow it if it is full.
 224 *
 225 * return:	zero on success or a negative error code
 226 */
 227static int ir_resize_table(struct rc_dev *dev, struct rc_map *rc_map,
 228			   gfp_t gfp_flags)
 229{
 230	unsigned int oldalloc = rc_map->alloc;
 231	unsigned int newalloc = oldalloc;
 232	struct rc_map_table *oldscan = rc_map->scan;
 233	struct rc_map_table *newscan;
 234
 235	if (rc_map->size == rc_map->len) {
 236		/* All entries in use -> grow keytable */
 237		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
 238			return -ENOMEM;
 239
 240		newalloc *= 2;
 241		dev_dbg(&dev->dev, "Growing table to %u bytes\n", newalloc);
 242	}
 243
 244	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
 245		/* Less than 1/3 of entries in use -> shrink keytable */
 246		newalloc /= 2;
 247		dev_dbg(&dev->dev, "Shrinking table to %u bytes\n", newalloc);
 248	}
 249
 250	if (newalloc == oldalloc)
 251		return 0;
 252
 253	newscan = kmalloc(newalloc, gfp_flags);
 254	if (!newscan)
 255		return -ENOMEM;
 256
 257	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
 258	rc_map->scan = newscan;
 259	rc_map->alloc = newalloc;
 260	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
 261	kfree(oldscan);
 262	return 0;
 263}
 264
 265/**
 266 * ir_update_mapping() - set a keycode in the scancode->keycode table
 267 * @dev:	the struct rc_dev device descriptor
 268 * @rc_map:	scancode table to be adjusted
 269 * @index:	index of the mapping that needs to be updated
 270 * @new_keycode: the desired keycode
 271 *
 272 * This routine is used to update scancode->keycode mapping at given
 273 * position.
 274 *
 275 * return:	previous keycode assigned to the mapping
 276 *
 277 */
 278static unsigned int ir_update_mapping(struct rc_dev *dev,
 279				      struct rc_map *rc_map,
 280				      unsigned int index,
 281				      unsigned int new_keycode)
 282{
 283	int old_keycode = rc_map->scan[index].keycode;
 284	int i;
 285
 286	/* Did the user wish to remove the mapping? */
 287	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
 288		dev_dbg(&dev->dev, "#%d: Deleting scan 0x%04x\n",
 289			index, rc_map->scan[index].scancode);
 290		rc_map->len--;
 291		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
 292			(rc_map->len - index) * sizeof(struct rc_map_table));
 293	} else {
 294		dev_dbg(&dev->dev, "#%d: %s scan 0x%04x with key 0x%04x\n",
 295			index,
 296			old_keycode == KEY_RESERVED ? "New" : "Replacing",
 297			rc_map->scan[index].scancode, new_keycode);
 298		rc_map->scan[index].keycode = new_keycode;
 299		__set_bit(new_keycode, dev->input_dev->keybit);
 300	}
 301
 302	if (old_keycode != KEY_RESERVED) {
 303		/* A previous mapping was updated... */
 304		__clear_bit(old_keycode, dev->input_dev->keybit);
 305		/* ... but another scancode might use the same keycode */
 306		for (i = 0; i < rc_map->len; i++) {
 307			if (rc_map->scan[i].keycode == old_keycode) {
 308				__set_bit(old_keycode, dev->input_dev->keybit);
 309				break;
 310			}
 311		}
 312
 313		/* Possibly shrink the keytable, failure is not a problem */
 314		ir_resize_table(dev, rc_map, GFP_ATOMIC);
 315	}
 316
 317	return old_keycode;
 318}
 319
 320/**
 321 * ir_establish_scancode() - set a keycode in the scancode->keycode table
 322 * @dev:	the struct rc_dev device descriptor
 323 * @rc_map:	scancode table to be searched
 324 * @scancode:	the desired scancode
 325 * @resize:	controls whether we allowed to resize the table to
 326 *		accommodate not yet present scancodes
 327 *
 328 * This routine is used to locate given scancode in rc_map.
 329 * If scancode is not yet present the routine will allocate a new slot
 330 * for it.
 331 *
 332 * return:	index of the mapping containing scancode in question
 333 *		or -1U in case of failure.
 334 */
 335static unsigned int ir_establish_scancode(struct rc_dev *dev,
 336					  struct rc_map *rc_map,
 337					  unsigned int scancode,
 338					  bool resize)
 339{
 340	unsigned int i;
 341
 342	/*
 343	 * Unfortunately, some hardware-based IR decoders don't provide
 344	 * all bits for the complete IR code. In general, they provide only
 345	 * the command part of the IR code. Yet, as it is possible to replace
 346	 * the provided IR with another one, it is needed to allow loading
 347	 * IR tables from other remotes. So, we support specifying a mask to
 348	 * indicate the valid bits of the scancodes.
 349	 */
 350	if (dev->scancode_mask)
 351		scancode &= dev->scancode_mask;
 352
 353	/* First check if we already have a mapping for this ir command */
 354	for (i = 0; i < rc_map->len; i++) {
 355		if (rc_map->scan[i].scancode == scancode)
 356			return i;
 357
 358		/* Keytable is sorted from lowest to highest scancode */
 359		if (rc_map->scan[i].scancode >= scancode)
 360			break;
 361	}
 362
 363	/* No previous mapping found, we might need to grow the table */
 364	if (rc_map->size == rc_map->len) {
 365		if (!resize || ir_resize_table(dev, rc_map, GFP_ATOMIC))
 366			return -1U;
 367	}
 368
 369	/* i is the proper index to insert our new keycode */
 370	if (i < rc_map->len)
 371		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
 372			(rc_map->len - i) * sizeof(struct rc_map_table));
 373	rc_map->scan[i].scancode = scancode;
 374	rc_map->scan[i].keycode = KEY_RESERVED;
 375	rc_map->len++;
 376
 377	return i;
 378}
 379
 380/**
 381 * ir_setkeycode() - set a keycode in the scancode->keycode table
 382 * @idev:	the struct input_dev device descriptor
 383 * @ke:		Input keymap entry
 384 * @old_keycode: result
 385 *
 386 * This routine is used to handle evdev EVIOCSKEY ioctl.
 387 *
 388 * return:	-EINVAL if the keycode could not be inserted, otherwise zero.
 389 */
 390static int ir_setkeycode(struct input_dev *idev,
 391			 const struct input_keymap_entry *ke,
 392			 unsigned int *old_keycode)
 393{
 394	struct rc_dev *rdev = input_get_drvdata(idev);
 395	struct rc_map *rc_map = &rdev->rc_map;
 396	unsigned int index;
 397	unsigned int scancode;
 398	int retval = 0;
 399	unsigned long flags;
 400
 401	spin_lock_irqsave(&rc_map->lock, flags);
 402
 403	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
 404		index = ke->index;
 405		if (index >= rc_map->len) {
 406			retval = -EINVAL;
 407			goto out;
 408		}
 409	} else {
 410		retval = input_scancode_to_scalar(ke, &scancode);
 411		if (retval)
 412			goto out;
 413
 414		index = ir_establish_scancode(rdev, rc_map, scancode, true);
 415		if (index >= rc_map->len) {
 416			retval = -ENOMEM;
 417			goto out;
 418		}
 419	}
 420
 421	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
 422
 423out:
 424	spin_unlock_irqrestore(&rc_map->lock, flags);
 425	return retval;
 426}
 427
 428/**
 429 * ir_setkeytable() - sets several entries in the scancode->keycode table
 430 * @dev:	the struct rc_dev device descriptor
 431 * @from:	the struct rc_map to copy entries from
 432 *
 433 * This routine is used to handle table initialization.
 434 *
 435 * return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
 436 */
 437static int ir_setkeytable(struct rc_dev *dev,
 438			  const struct rc_map *from)
 439{
 440	struct rc_map *rc_map = &dev->rc_map;
 441	unsigned int i, index;
 442	int rc;
 443
 444	rc = ir_create_table(dev, rc_map, from->name, from->rc_proto,
 445			     from->size);
 446	if (rc)
 447		return rc;
 448
 449	for (i = 0; i < from->size; i++) {
 450		index = ir_establish_scancode(dev, rc_map,
 451					      from->scan[i].scancode, false);
 452		if (index >= rc_map->len) {
 453			rc = -ENOMEM;
 454			break;
 455		}
 456
 457		ir_update_mapping(dev, rc_map, index,
 458				  from->scan[i].keycode);
 459	}
 460
 461	if (rc)
 462		ir_free_table(rc_map);
 463
 464	return rc;
 465}
 466
 467static int rc_map_cmp(const void *key, const void *elt)
 468{
 469	const unsigned int *scancode = key;
 470	const struct rc_map_table *e = elt;
 471
 472	if (*scancode < e->scancode)
 473		return -1;
 474	else if (*scancode > e->scancode)
 475		return 1;
 476	return 0;
 477}
 478
 479/**
 480 * ir_lookup_by_scancode() - locate mapping by scancode
 481 * @rc_map:	the struct rc_map to search
 482 * @scancode:	scancode to look for in the table
 483 *
 484 * This routine performs binary search in RC keykeymap table for
 485 * given scancode.
 486 *
 487 * return:	index in the table, -1U if not found
 488 */
 489static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
 490					  unsigned int scancode)
 491{
 492	struct rc_map_table *res;
 493
 494	res = bsearch(&scancode, rc_map->scan, rc_map->len,
 495		      sizeof(struct rc_map_table), rc_map_cmp);
 496	if (!res)
 497		return -1U;
 498	else
 499		return res - rc_map->scan;
 500}
 501
 502/**
 503 * ir_getkeycode() - get a keycode from the scancode->keycode table
 504 * @idev:	the struct input_dev device descriptor
 505 * @ke:		Input keymap entry
 506 *
 507 * This routine is used to handle evdev EVIOCGKEY ioctl.
 508 *
 509 * return:	always returns zero.
 510 */
 511static int ir_getkeycode(struct input_dev *idev,
 512			 struct input_keymap_entry *ke)
 513{
 514	struct rc_dev *rdev = input_get_drvdata(idev);
 515	struct rc_map *rc_map = &rdev->rc_map;
 516	struct rc_map_table *entry;
 517	unsigned long flags;
 518	unsigned int index;
 519	unsigned int scancode;
 520	int retval;
 521
 522	spin_lock_irqsave(&rc_map->lock, flags);
 523
 524	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
 525		index = ke->index;
 526	} else {
 527		retval = input_scancode_to_scalar(ke, &scancode);
 528		if (retval)
 529			goto out;
 530
 531		index = ir_lookup_by_scancode(rc_map, scancode);
 532	}
 533
 534	if (index < rc_map->len) {
 535		entry = &rc_map->scan[index];
 536
 537		ke->index = index;
 538		ke->keycode = entry->keycode;
 539		ke->len = sizeof(entry->scancode);
 540		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
 541
 542	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
 543		/*
 544		 * We do not really know the valid range of scancodes
 545		 * so let's respond with KEY_RESERVED to anything we
 546		 * do not have mapping for [yet].
 547		 */
 548		ke->index = index;
 549		ke->keycode = KEY_RESERVED;
 550	} else {
 551		retval = -EINVAL;
 552		goto out;
 553	}
 554
 555	retval = 0;
 556
 557out:
 558	spin_unlock_irqrestore(&rc_map->lock, flags);
 559	return retval;
 560}
 561
 562/**
 563 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
 564 * @dev:	the struct rc_dev descriptor of the device
 565 * @scancode:	the scancode to look for
 566 *
 567 * This routine is used by drivers which need to convert a scancode to a
 568 * keycode. Normally it should not be used since drivers should have no
 569 * interest in keycodes.
 570 *
 571 * return:	the corresponding keycode, or KEY_RESERVED
 572 */
 573u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
 574{
 575	struct rc_map *rc_map = &dev->rc_map;
 576	unsigned int keycode;
 577	unsigned int index;
 578	unsigned long flags;
 579
 580	spin_lock_irqsave(&rc_map->lock, flags);
 581
 582	index = ir_lookup_by_scancode(rc_map, scancode);
 583	keycode = index < rc_map->len ?
 584			rc_map->scan[index].keycode : KEY_RESERVED;
 585
 586	spin_unlock_irqrestore(&rc_map->lock, flags);
 587
 588	if (keycode != KEY_RESERVED)
 589		dev_dbg(&dev->dev, "%s: scancode 0x%04x keycode 0x%02x\n",
 590			dev->device_name, scancode, keycode);
 591
 592	return keycode;
 593}
 594EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
 595
 596/**
 597 * ir_do_keyup() - internal function to signal the release of a keypress
 598 * @dev:	the struct rc_dev descriptor of the device
 599 * @sync:	whether or not to call input_sync
 600 *
 601 * This function is used internally to release a keypress, it must be
 602 * called with keylock held.
 603 */
 604static void ir_do_keyup(struct rc_dev *dev, bool sync)
 605{
 606	if (!dev->keypressed)
 607		return;
 608
 609	dev_dbg(&dev->dev, "keyup key 0x%04x\n", dev->last_keycode);
 610	del_timer(&dev->timer_repeat);
 611	input_report_key(dev->input_dev, dev->last_keycode, 0);
 612	led_trigger_event(led_feedback, LED_OFF);
 613	if (sync)
 614		input_sync(dev->input_dev);
 615	dev->keypressed = false;
 616}
 617
 618/**
 619 * rc_keyup() - signals the release of a keypress
 620 * @dev:	the struct rc_dev descriptor of the device
 621 *
 622 * This routine is used to signal that a key has been released on the
 623 * remote control.
 624 */
 625void rc_keyup(struct rc_dev *dev)
 626{
 627	unsigned long flags;
 628
 629	spin_lock_irqsave(&dev->keylock, flags);
 630	ir_do_keyup(dev, true);
 631	spin_unlock_irqrestore(&dev->keylock, flags);
 632}
 633EXPORT_SYMBOL_GPL(rc_keyup);
 634
 635/**
 636 * ir_timer_keyup() - generates a keyup event after a timeout
 637 *
 638 * @t:		a pointer to the struct timer_list
 639 *
 640 * This routine will generate a keyup event some time after a keydown event
 641 * is generated when no further activity has been detected.
 642 */
 643static void ir_timer_keyup(struct timer_list *t)
 644{
 645	struct rc_dev *dev = from_timer(dev, t, timer_keyup);
 646	unsigned long flags;
 647
 648	/*
 649	 * ir->keyup_jiffies is used to prevent a race condition if a
 650	 * hardware interrupt occurs at this point and the keyup timer
 651	 * event is moved further into the future as a result.
 652	 *
 653	 * The timer will then be reactivated and this function called
 654	 * again in the future. We need to exit gracefully in that case
 655	 * to allow the input subsystem to do its auto-repeat magic or
 656	 * a keyup event might follow immediately after the keydown.
 657	 */
 658	spin_lock_irqsave(&dev->keylock, flags);
 659	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
 660		ir_do_keyup(dev, true);
 661	spin_unlock_irqrestore(&dev->keylock, flags);
 662}
 663
 664/**
 665 * ir_timer_repeat() - generates a repeat event after a timeout
 666 *
 667 * @t:		a pointer to the struct timer_list
 668 *
 669 * This routine will generate a soft repeat event every REP_PERIOD
 670 * milliseconds.
 671 */
 672static void ir_timer_repeat(struct timer_list *t)
 673{
 674	struct rc_dev *dev = from_timer(dev, t, timer_repeat);
 675	struct input_dev *input = dev->input_dev;
 676	unsigned long flags;
 677
 678	spin_lock_irqsave(&dev->keylock, flags);
 679	if (dev->keypressed) {
 680		input_event(input, EV_KEY, dev->last_keycode, 2);
 681		input_sync(input);
 682		if (input->rep[REP_PERIOD])
 683			mod_timer(&dev->timer_repeat, jiffies +
 684				  msecs_to_jiffies(input->rep[REP_PERIOD]));
 685	}
 686	spin_unlock_irqrestore(&dev->keylock, flags);
 687}
 688
 689static unsigned int repeat_period(int protocol)
 690{
 691	if (protocol >= ARRAY_SIZE(protocols))
 692		return 100;
 693
 694	return protocols[protocol].repeat_period;
 695}
 696
 697/**
 698 * rc_repeat() - signals that a key is still pressed
 699 * @dev:	the struct rc_dev descriptor of the device
 700 *
 701 * This routine is used by IR decoders when a repeat message which does
 702 * not include the necessary bits to reproduce the scancode has been
 703 * received.
 704 */
 705void rc_repeat(struct rc_dev *dev)
 706{
 707	unsigned long flags;
 708	unsigned int timeout = nsecs_to_jiffies(dev->timeout) +
 709		msecs_to_jiffies(repeat_period(dev->last_protocol));
 710	struct lirc_scancode sc = {
 711		.scancode = dev->last_scancode, .rc_proto = dev->last_protocol,
 712		.keycode = dev->keypressed ? dev->last_keycode : KEY_RESERVED,
 713		.flags = LIRC_SCANCODE_FLAG_REPEAT |
 714			 (dev->last_toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0)
 715	};
 716
 717	if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
 718		ir_lirc_scancode_event(dev, &sc);
 719
 720	spin_lock_irqsave(&dev->keylock, flags);
 721
 722	input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
 723	input_sync(dev->input_dev);
 
 
 
 724
 725	if (dev->keypressed) {
 726		dev->keyup_jiffies = jiffies + timeout;
 727		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
 728	}
 729
 730	spin_unlock_irqrestore(&dev->keylock, flags);
 731}
 732EXPORT_SYMBOL_GPL(rc_repeat);
 733
 734/**
 735 * ir_do_keydown() - internal function to process a keypress
 736 * @dev:	the struct rc_dev descriptor of the device
 737 * @protocol:	the protocol of the keypress
 738 * @scancode:   the scancode of the keypress
 739 * @keycode:    the keycode of the keypress
 740 * @toggle:     the toggle value of the keypress
 741 *
 742 * This function is used internally to register a keypress, it must be
 743 * called with keylock held.
 744 */
 745static void ir_do_keydown(struct rc_dev *dev, enum rc_proto protocol,
 746			  u32 scancode, u32 keycode, u8 toggle)
 747{
 748	bool new_event = (!dev->keypressed		 ||
 749			  dev->last_protocol != protocol ||
 750			  dev->last_scancode != scancode ||
 751			  dev->last_toggle   != toggle);
 752	struct lirc_scancode sc = {
 753		.scancode = scancode, .rc_proto = protocol,
 754		.flags = toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0,
 
 755		.keycode = keycode
 756	};
 757
 758	if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
 759		ir_lirc_scancode_event(dev, &sc);
 760
 761	if (new_event && dev->keypressed)
 762		ir_do_keyup(dev, false);
 763
 764	input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
 
 765
 766	dev->last_protocol = protocol;
 767	dev->last_scancode = scancode;
 768	dev->last_toggle = toggle;
 769	dev->last_keycode = keycode;
 770
 771	if (new_event && keycode != KEY_RESERVED) {
 772		/* Register a keypress */
 773		dev->keypressed = true;
 774
 775		dev_dbg(&dev->dev, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
 776			dev->device_name, keycode, protocol, scancode);
 777		input_report_key(dev->input_dev, keycode, 1);
 778
 779		led_trigger_event(led_feedback, LED_FULL);
 780	}
 781
 782	/*
 783	 * For CEC, start sending repeat messages as soon as the first
 784	 * repeated message is sent, as long as REP_DELAY = 0 and REP_PERIOD
 785	 * is non-zero. Otherwise, the input layer will generate repeat
 786	 * messages.
 787	 */
 788	if (!new_event && keycode != KEY_RESERVED &&
 789	    dev->allowed_protocols == RC_PROTO_BIT_CEC &&
 790	    !timer_pending(&dev->timer_repeat) &&
 791	    dev->input_dev->rep[REP_PERIOD] &&
 792	    !dev->input_dev->rep[REP_DELAY]) {
 793		input_event(dev->input_dev, EV_KEY, keycode, 2);
 794		mod_timer(&dev->timer_repeat, jiffies +
 795			  msecs_to_jiffies(dev->input_dev->rep[REP_PERIOD]));
 796	}
 797
 798	input_sync(dev->input_dev);
 799}
 800
 801/**
 802 * rc_keydown() - generates input event for a key press
 803 * @dev:	the struct rc_dev descriptor of the device
 804 * @protocol:	the protocol for the keypress
 805 * @scancode:	the scancode for the keypress
 806 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 807 *              support toggle values, this should be set to zero)
 808 *
 809 * This routine is used to signal that a key has been pressed on the
 810 * remote control.
 811 */
 812void rc_keydown(struct rc_dev *dev, enum rc_proto protocol, u32 scancode,
 813		u8 toggle)
 814{
 815	unsigned long flags;
 816	u32 keycode = rc_g_keycode_from_table(dev, scancode);
 817
 818	spin_lock_irqsave(&dev->keylock, flags);
 819	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
 820
 821	if (dev->keypressed) {
 822		dev->keyup_jiffies = jiffies + nsecs_to_jiffies(dev->timeout) +
 823			msecs_to_jiffies(repeat_period(protocol));
 824		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
 825	}
 826	spin_unlock_irqrestore(&dev->keylock, flags);
 827}
 828EXPORT_SYMBOL_GPL(rc_keydown);
 829
 830/**
 831 * rc_keydown_notimeout() - generates input event for a key press without
 832 *                          an automatic keyup event at a later time
 833 * @dev:	the struct rc_dev descriptor of the device
 834 * @protocol:	the protocol for the keypress
 835 * @scancode:	the scancode for the keypress
 836 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 837 *              support toggle values, this should be set to zero)
 838 *
 839 * This routine is used to signal that a key has been pressed on the
 840 * remote control. The driver must manually call rc_keyup() at a later stage.
 841 */
 842void rc_keydown_notimeout(struct rc_dev *dev, enum rc_proto protocol,
 843			  u32 scancode, u8 toggle)
 844{
 845	unsigned long flags;
 846	u32 keycode = rc_g_keycode_from_table(dev, scancode);
 847
 848	spin_lock_irqsave(&dev->keylock, flags);
 849	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
 850	spin_unlock_irqrestore(&dev->keylock, flags);
 851}
 852EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
 853
 854/**
 855 * rc_validate_scancode() - checks that a scancode is valid for a protocol.
 856 *	For nec, it should do the opposite of ir_nec_bytes_to_scancode()
 857 * @proto:	protocol
 858 * @scancode:	scancode
 859 */
 860bool rc_validate_scancode(enum rc_proto proto, u32 scancode)
 861{
 862	switch (proto) {
 863	/*
 864	 * NECX has a 16-bit address; if the lower 8 bits match the upper
 865	 * 8 bits inverted, then the address would match regular nec.
 866	 */
 867	case RC_PROTO_NECX:
 868		if ((((scancode >> 16) ^ ~(scancode >> 8)) & 0xff) == 0)
 869			return false;
 870		break;
 871	/*
 872	 * NEC32 has a 16 bit address and 16 bit command. If the lower 8 bits
 873	 * of the command match the upper 8 bits inverted, then it would
 874	 * be either NEC or NECX.
 875	 */
 876	case RC_PROTO_NEC32:
 877		if ((((scancode >> 8) ^ ~scancode) & 0xff) == 0)
 878			return false;
 879		break;
 880	/*
 881	 * If the customer code (top 32-bit) is 0x800f, it is MCE else it
 882	 * is regular mode-6a 32 bit
 883	 */
 884	case RC_PROTO_RC6_MCE:
 885		if ((scancode & 0xffff0000) != 0x800f0000)
 886			return false;
 887		break;
 888	case RC_PROTO_RC6_6A_32:
 889		if ((scancode & 0xffff0000) == 0x800f0000)
 890			return false;
 891		break;
 892	default:
 893		break;
 894	}
 895
 896	return true;
 897}
 898
 899/**
 900 * rc_validate_filter() - checks that the scancode and mask are valid and
 901 *			  provides sensible defaults
 902 * @dev:	the struct rc_dev descriptor of the device
 903 * @filter:	the scancode and mask
 904 *
 905 * return:	0 or -EINVAL if the filter is not valid
 906 */
 907static int rc_validate_filter(struct rc_dev *dev,
 908			      struct rc_scancode_filter *filter)
 909{
 910	u32 mask, s = filter->data;
 911	enum rc_proto protocol = dev->wakeup_protocol;
 912
 913	if (protocol >= ARRAY_SIZE(protocols))
 914		return -EINVAL;
 915
 916	mask = protocols[protocol].scancode_bits;
 917
 918	if (!rc_validate_scancode(protocol, s))
 919		return -EINVAL;
 920
 921	filter->data &= mask;
 922	filter->mask &= mask;
 923
 924	/*
 925	 * If we have to raw encode the IR for wakeup, we cannot have a mask
 926	 */
 927	if (dev->encode_wakeup && filter->mask != 0 && filter->mask != mask)
 928		return -EINVAL;
 929
 930	return 0;
 931}
 932
 933int rc_open(struct rc_dev *rdev)
 934{
 935	int rval = 0;
 936
 937	if (!rdev)
 938		return -EINVAL;
 939
 940	mutex_lock(&rdev->lock);
 941
 942	if (!rdev->registered) {
 943		rval = -ENODEV;
 944	} else {
 945		if (!rdev->users++ && rdev->open)
 946			rval = rdev->open(rdev);
 947
 948		if (rval)
 949			rdev->users--;
 950	}
 951
 952	mutex_unlock(&rdev->lock);
 953
 954	return rval;
 955}
 956
 957static int ir_open(struct input_dev *idev)
 958{
 959	struct rc_dev *rdev = input_get_drvdata(idev);
 960
 961	return rc_open(rdev);
 962}
 963
 964void rc_close(struct rc_dev *rdev)
 965{
 966	if (rdev) {
 967		mutex_lock(&rdev->lock);
 968
 969		if (!--rdev->users && rdev->close && rdev->registered)
 970			rdev->close(rdev);
 971
 972		mutex_unlock(&rdev->lock);
 973	}
 974}
 975
 976static void ir_close(struct input_dev *idev)
 977{
 978	struct rc_dev *rdev = input_get_drvdata(idev);
 979	rc_close(rdev);
 980}
 981
 982/* class for /sys/class/rc */
 983static char *rc_devnode(struct device *dev, umode_t *mode)
 984{
 985	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
 986}
 987
 988static struct class rc_class = {
 989	.name		= "rc",
 990	.devnode	= rc_devnode,
 991};
 992
 993/*
 994 * These are the protocol textual descriptions that are
 995 * used by the sysfs protocols file. Note that the order
 996 * of the entries is relevant.
 997 */
 998static const struct {
 999	u64	type;
1000	const char	*name;
1001	const char	*module_name;
1002} proto_names[] = {
1003	{ RC_PROTO_BIT_NONE,	"none",		NULL			},
1004	{ RC_PROTO_BIT_OTHER,	"other",	NULL			},
1005	{ RC_PROTO_BIT_UNKNOWN,	"unknown",	NULL			},
1006	{ RC_PROTO_BIT_RC5 |
1007	  RC_PROTO_BIT_RC5X_20,	"rc-5",		"ir-rc5-decoder"	},
1008	{ RC_PROTO_BIT_NEC |
1009	  RC_PROTO_BIT_NECX |
1010	  RC_PROTO_BIT_NEC32,	"nec",		"ir-nec-decoder"	},
1011	{ RC_PROTO_BIT_RC6_0 |
1012	  RC_PROTO_BIT_RC6_6A_20 |
1013	  RC_PROTO_BIT_RC6_6A_24 |
1014	  RC_PROTO_BIT_RC6_6A_32 |
1015	  RC_PROTO_BIT_RC6_MCE,	"rc-6",		"ir-rc6-decoder"	},
1016	{ RC_PROTO_BIT_JVC,	"jvc",		"ir-jvc-decoder"	},
1017	{ RC_PROTO_BIT_SONY12 |
1018	  RC_PROTO_BIT_SONY15 |
1019	  RC_PROTO_BIT_SONY20,	"sony",		"ir-sony-decoder"	},
1020	{ RC_PROTO_BIT_RC5_SZ,	"rc-5-sz",	"ir-rc5-decoder"	},
1021	{ RC_PROTO_BIT_SANYO,	"sanyo",	"ir-sanyo-decoder"	},
1022	{ RC_PROTO_BIT_SHARP,	"sharp",	"ir-sharp-decoder"	},
1023	{ RC_PROTO_BIT_MCIR2_KBD |
1024	  RC_PROTO_BIT_MCIR2_MSE, "mce_kbd",	"ir-mce_kbd-decoder"	},
1025	{ RC_PROTO_BIT_XMP,	"xmp",		"ir-xmp-decoder"	},
1026	{ RC_PROTO_BIT_CEC,	"cec",		NULL			},
1027	{ RC_PROTO_BIT_IMON,	"imon",		"ir-imon-decoder"	},
1028	{ RC_PROTO_BIT_RCMM12 |
1029	  RC_PROTO_BIT_RCMM24 |
1030	  RC_PROTO_BIT_RCMM32,	"rc-mm",	"ir-rcmm-decoder"	},
1031	{ RC_PROTO_BIT_XBOX_DVD, "xbox-dvd",	NULL			},
1032};
1033
1034/**
1035 * struct rc_filter_attribute - Device attribute relating to a filter type.
1036 * @attr:	Device attribute.
1037 * @type:	Filter type.
1038 * @mask:	false for filter value, true for filter mask.
1039 */
1040struct rc_filter_attribute {
1041	struct device_attribute		attr;
1042	enum rc_filter_type		type;
1043	bool				mask;
1044};
1045#define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
1046
1047#define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)	\
1048	struct rc_filter_attribute dev_attr_##_name = {			\
1049		.attr = __ATTR(_name, _mode, _show, _store),		\
1050		.type = (_type),					\
1051		.mask = (_mask),					\
1052	}
1053
1054/**
1055 * show_protocols() - shows the current IR protocol(s)
1056 * @device:	the device descriptor
1057 * @mattr:	the device attribute struct
1058 * @buf:	a pointer to the output buffer
1059 *
1060 * This routine is a callback routine for input read the IR protocol type(s).
1061 * it is triggered by reading /sys/class/rc/rc?/protocols.
1062 * It returns the protocol names of supported protocols.
1063 * Enabled protocols are printed in brackets.
1064 *
1065 * dev->lock is taken to guard against races between
1066 * store_protocols and show_protocols.
1067 */
1068static ssize_t show_protocols(struct device *device,
1069			      struct device_attribute *mattr, char *buf)
1070{
1071	struct rc_dev *dev = to_rc_dev(device);
1072	u64 allowed, enabled;
1073	char *tmp = buf;
1074	int i;
1075
1076	mutex_lock(&dev->lock);
1077
1078	enabled = dev->enabled_protocols;
1079	allowed = dev->allowed_protocols;
1080	if (dev->raw && !allowed)
1081		allowed = ir_raw_get_allowed_protocols();
1082
1083	mutex_unlock(&dev->lock);
1084
1085	dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
1086		__func__, (long long)allowed, (long long)enabled);
1087
1088	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1089		if (allowed & enabled & proto_names[i].type)
1090			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
1091		else if (allowed & proto_names[i].type)
1092			tmp += sprintf(tmp, "%s ", proto_names[i].name);
1093
1094		if (allowed & proto_names[i].type)
1095			allowed &= ~proto_names[i].type;
1096	}
1097
1098#ifdef CONFIG_LIRC
1099	if (dev->driver_type == RC_DRIVER_IR_RAW)
1100		tmp += sprintf(tmp, "[lirc] ");
1101#endif
1102
1103	if (tmp != buf)
1104		tmp--;
1105	*tmp = '\n';
1106
1107	return tmp + 1 - buf;
1108}
1109
1110/**
1111 * parse_protocol_change() - parses a protocol change request
1112 * @dev:	rc_dev device
1113 * @protocols:	pointer to the bitmask of current protocols
1114 * @buf:	pointer to the buffer with a list of changes
1115 *
1116 * Writing "+proto" will add a protocol to the protocol mask.
1117 * Writing "-proto" will remove a protocol from protocol mask.
1118 * Writing "proto" will enable only "proto".
1119 * Writing "none" will disable all protocols.
1120 * Returns the number of changes performed or a negative error code.
1121 */
1122static int parse_protocol_change(struct rc_dev *dev, u64 *protocols,
1123				 const char *buf)
1124{
1125	const char *tmp;
1126	unsigned count = 0;
1127	bool enable, disable;
1128	u64 mask;
1129	int i;
1130
1131	while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
1132		if (!*tmp)
1133			break;
1134
1135		if (*tmp == '+') {
1136			enable = true;
1137			disable = false;
1138			tmp++;
1139		} else if (*tmp == '-') {
1140			enable = false;
1141			disable = true;
1142			tmp++;
1143		} else {
1144			enable = false;
1145			disable = false;
1146		}
1147
1148		for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1149			if (!strcasecmp(tmp, proto_names[i].name)) {
1150				mask = proto_names[i].type;
1151				break;
1152			}
1153		}
1154
1155		if (i == ARRAY_SIZE(proto_names)) {
1156			if (!strcasecmp(tmp, "lirc"))
1157				mask = 0;
1158			else {
1159				dev_dbg(&dev->dev, "Unknown protocol: '%s'\n",
1160					tmp);
1161				return -EINVAL;
1162			}
1163		}
1164
1165		count++;
1166
1167		if (enable)
1168			*protocols |= mask;
1169		else if (disable)
1170			*protocols &= ~mask;
1171		else
1172			*protocols = mask;
1173	}
1174
1175	if (!count) {
1176		dev_dbg(&dev->dev, "Protocol not specified\n");
1177		return -EINVAL;
1178	}
1179
1180	return count;
1181}
1182
1183void ir_raw_load_modules(u64 *protocols)
1184{
1185	u64 available;
1186	int i, ret;
1187
1188	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1189		if (proto_names[i].type == RC_PROTO_BIT_NONE ||
1190		    proto_names[i].type & (RC_PROTO_BIT_OTHER |
1191					   RC_PROTO_BIT_UNKNOWN))
1192			continue;
1193
1194		available = ir_raw_get_allowed_protocols();
1195		if (!(*protocols & proto_names[i].type & ~available))
1196			continue;
1197
1198		if (!proto_names[i].module_name) {
1199			pr_err("Can't enable IR protocol %s\n",
1200			       proto_names[i].name);
1201			*protocols &= ~proto_names[i].type;
1202			continue;
1203		}
1204
1205		ret = request_module("%s", proto_names[i].module_name);
1206		if (ret < 0) {
1207			pr_err("Couldn't load IR protocol module %s\n",
1208			       proto_names[i].module_name);
1209			*protocols &= ~proto_names[i].type;
1210			continue;
1211		}
1212		msleep(20);
1213		available = ir_raw_get_allowed_protocols();
1214		if (!(*protocols & proto_names[i].type & ~available))
1215			continue;
1216
1217		pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
1218		       proto_names[i].module_name,
1219		       proto_names[i].name);
1220		*protocols &= ~proto_names[i].type;
1221	}
1222}
1223
1224/**
1225 * store_protocols() - changes the current/wakeup IR protocol(s)
1226 * @device:	the device descriptor
1227 * @mattr:	the device attribute struct
1228 * @buf:	a pointer to the input buffer
1229 * @len:	length of the input buffer
1230 *
1231 * This routine is for changing the IR protocol type.
1232 * It is triggered by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1233 * See parse_protocol_change() for the valid commands.
1234 * Returns @len on success or a negative error code.
1235 *
1236 * dev->lock is taken to guard against races between
1237 * store_protocols and show_protocols.
1238 */
1239static ssize_t store_protocols(struct device *device,
1240			       struct device_attribute *mattr,
1241			       const char *buf, size_t len)
1242{
1243	struct rc_dev *dev = to_rc_dev(device);
1244	u64 *current_protocols;
1245	struct rc_scancode_filter *filter;
1246	u64 old_protocols, new_protocols;
1247	ssize_t rc;
1248
1249	dev_dbg(&dev->dev, "Normal protocol change requested\n");
1250	current_protocols = &dev->enabled_protocols;
1251	filter = &dev->scancode_filter;
1252
1253	if (!dev->change_protocol) {
1254		dev_dbg(&dev->dev, "Protocol switching not supported\n");
1255		return -EINVAL;
1256	}
1257
1258	mutex_lock(&dev->lock);
 
 
 
 
1259
1260	old_protocols = *current_protocols;
1261	new_protocols = old_protocols;
1262	rc = parse_protocol_change(dev, &new_protocols, buf);
1263	if (rc < 0)
1264		goto out;
1265
1266	if (dev->driver_type == RC_DRIVER_IR_RAW)
1267		ir_raw_load_modules(&new_protocols);
1268
1269	rc = dev->change_protocol(dev, &new_protocols);
1270	if (rc < 0) {
1271		dev_dbg(&dev->dev, "Error setting protocols to 0x%llx\n",
1272			(long long)new_protocols);
1273		goto out;
1274	}
1275
1276	if (new_protocols != old_protocols) {
1277		*current_protocols = new_protocols;
1278		dev_dbg(&dev->dev, "Protocols changed to 0x%llx\n",
1279			(long long)new_protocols);
1280	}
1281
1282	/*
1283	 * If a protocol change was attempted the filter may need updating, even
1284	 * if the actual protocol mask hasn't changed (since the driver may have
1285	 * cleared the filter).
1286	 * Try setting the same filter with the new protocol (if any).
1287	 * Fall back to clearing the filter.
1288	 */
1289	if (dev->s_filter && filter->mask) {
1290		if (new_protocols)
1291			rc = dev->s_filter(dev, filter);
1292		else
1293			rc = -1;
1294
1295		if (rc < 0) {
1296			filter->data = 0;
1297			filter->mask = 0;
1298			dev->s_filter(dev, filter);
1299		}
1300	}
1301
1302	rc = len;
1303
1304out:
1305	mutex_unlock(&dev->lock);
1306	return rc;
1307}
1308
1309/**
1310 * show_filter() - shows the current scancode filter value or mask
1311 * @device:	the device descriptor
1312 * @attr:	the device attribute struct
1313 * @buf:	a pointer to the output buffer
1314 *
1315 * This routine is a callback routine to read a scancode filter value or mask.
1316 * It is triggered by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1317 * It prints the current scancode filter value or mask of the appropriate filter
1318 * type in hexadecimal into @buf and returns the size of the buffer.
1319 *
1320 * Bits of the filter value corresponding to set bits in the filter mask are
1321 * compared against input scancodes and non-matching scancodes are discarded.
1322 *
1323 * dev->lock is taken to guard against races between
1324 * store_filter and show_filter.
1325 */
1326static ssize_t show_filter(struct device *device,
1327			   struct device_attribute *attr,
1328			   char *buf)
1329{
1330	struct rc_dev *dev = to_rc_dev(device);
1331	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1332	struct rc_scancode_filter *filter;
1333	u32 val;
1334
1335	mutex_lock(&dev->lock);
1336
1337	if (fattr->type == RC_FILTER_NORMAL)
1338		filter = &dev->scancode_filter;
1339	else
1340		filter = &dev->scancode_wakeup_filter;
1341
1342	if (fattr->mask)
1343		val = filter->mask;
1344	else
1345		val = filter->data;
1346	mutex_unlock(&dev->lock);
1347
1348	return sprintf(buf, "%#x\n", val);
1349}
1350
1351/**
1352 * store_filter() - changes the scancode filter value
1353 * @device:	the device descriptor
1354 * @attr:	the device attribute struct
1355 * @buf:	a pointer to the input buffer
1356 * @len:	length of the input buffer
1357 *
1358 * This routine is for changing a scancode filter value or mask.
1359 * It is triggered by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1360 * Returns -EINVAL if an invalid filter value for the current protocol was
1361 * specified or if scancode filtering is not supported by the driver, otherwise
1362 * returns @len.
1363 *
1364 * Bits of the filter value corresponding to set bits in the filter mask are
1365 * compared against input scancodes and non-matching scancodes are discarded.
1366 *
1367 * dev->lock is taken to guard against races between
1368 * store_filter and show_filter.
1369 */
1370static ssize_t store_filter(struct device *device,
1371			    struct device_attribute *attr,
1372			    const char *buf, size_t len)
1373{
1374	struct rc_dev *dev = to_rc_dev(device);
1375	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1376	struct rc_scancode_filter new_filter, *filter;
1377	int ret;
1378	unsigned long val;
1379	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1380
1381	ret = kstrtoul(buf, 0, &val);
1382	if (ret < 0)
1383		return ret;
1384
1385	if (fattr->type == RC_FILTER_NORMAL) {
1386		set_filter = dev->s_filter;
1387		filter = &dev->scancode_filter;
1388	} else {
1389		set_filter = dev->s_wakeup_filter;
1390		filter = &dev->scancode_wakeup_filter;
1391	}
1392
1393	if (!set_filter)
1394		return -EINVAL;
1395
1396	mutex_lock(&dev->lock);
 
 
 
 
1397
1398	new_filter = *filter;
1399	if (fattr->mask)
1400		new_filter.mask = val;
1401	else
1402		new_filter.data = val;
1403
1404	if (fattr->type == RC_FILTER_WAKEUP) {
1405		/*
1406		 * Refuse to set a filter unless a protocol is enabled
1407		 * and the filter is valid for that protocol
1408		 */
1409		if (dev->wakeup_protocol != RC_PROTO_UNKNOWN)
1410			ret = rc_validate_filter(dev, &new_filter);
1411		else
1412			ret = -EINVAL;
1413
1414		if (ret != 0)
1415			goto unlock;
1416	}
1417
1418	if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols &&
1419	    val) {
1420		/* refuse to set a filter unless a protocol is enabled */
1421		ret = -EINVAL;
1422		goto unlock;
1423	}
1424
1425	ret = set_filter(dev, &new_filter);
1426	if (ret < 0)
1427		goto unlock;
1428
1429	*filter = new_filter;
1430
1431unlock:
1432	mutex_unlock(&dev->lock);
1433	return (ret < 0) ? ret : len;
1434}
1435
1436/**
1437 * show_wakeup_protocols() - shows the wakeup IR protocol
1438 * @device:	the device descriptor
1439 * @mattr:	the device attribute struct
1440 * @buf:	a pointer to the output buffer
1441 *
1442 * This routine is a callback routine for input read the IR protocol type(s).
1443 * it is triggered by reading /sys/class/rc/rc?/wakeup_protocols.
1444 * It returns the protocol names of supported protocols.
1445 * The enabled protocols are printed in brackets.
1446 *
1447 * dev->lock is taken to guard against races between
1448 * store_wakeup_protocols and show_wakeup_protocols.
1449 */
1450static ssize_t show_wakeup_protocols(struct device *device,
1451				     struct device_attribute *mattr,
1452				     char *buf)
1453{
1454	struct rc_dev *dev = to_rc_dev(device);
1455	u64 allowed;
1456	enum rc_proto enabled;
1457	char *tmp = buf;
1458	int i;
1459
1460	mutex_lock(&dev->lock);
1461
1462	allowed = dev->allowed_wakeup_protocols;
1463	enabled = dev->wakeup_protocol;
1464
1465	mutex_unlock(&dev->lock);
1466
1467	dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - %d\n",
1468		__func__, (long long)allowed, enabled);
1469
1470	for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1471		if (allowed & (1ULL << i)) {
1472			if (i == enabled)
1473				tmp += sprintf(tmp, "[%s] ", protocols[i].name);
1474			else
1475				tmp += sprintf(tmp, "%s ", protocols[i].name);
1476		}
1477	}
1478
1479	if (tmp != buf)
1480		tmp--;
1481	*tmp = '\n';
1482
1483	return tmp + 1 - buf;
1484}
1485
1486/**
1487 * store_wakeup_protocols() - changes the wakeup IR protocol(s)
1488 * @device:	the device descriptor
1489 * @mattr:	the device attribute struct
1490 * @buf:	a pointer to the input buffer
1491 * @len:	length of the input buffer
1492 *
1493 * This routine is for changing the IR protocol type.
1494 * It is triggered by writing to /sys/class/rc/rc?/wakeup_protocols.
1495 * Returns @len on success or a negative error code.
1496 *
1497 * dev->lock is taken to guard against races between
1498 * store_wakeup_protocols and show_wakeup_protocols.
1499 */
1500static ssize_t store_wakeup_protocols(struct device *device,
1501				      struct device_attribute *mattr,
1502				      const char *buf, size_t len)
1503{
1504	struct rc_dev *dev = to_rc_dev(device);
1505	enum rc_proto protocol = RC_PROTO_UNKNOWN;
1506	ssize_t rc;
1507	u64 allowed;
1508	int i;
1509
1510	mutex_lock(&dev->lock);
 
 
 
 
1511
1512	allowed = dev->allowed_wakeup_protocols;
1513
1514	if (!sysfs_streq(buf, "none")) {
1515		for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1516			if ((allowed & (1ULL << i)) &&
1517			    sysfs_streq(buf, protocols[i].name)) {
1518				protocol = i;
1519				break;
1520			}
1521		}
1522
1523		if (i == ARRAY_SIZE(protocols)) {
1524			rc = -EINVAL;
1525			goto out;
1526		}
1527
1528		if (dev->encode_wakeup) {
1529			u64 mask = 1ULL << protocol;
1530
1531			ir_raw_load_modules(&mask);
1532			if (!mask) {
1533				rc = -EINVAL;
1534				goto out;
1535			}
1536		}
1537	}
1538
1539	if (dev->wakeup_protocol != protocol) {
1540		dev->wakeup_protocol = protocol;
1541		dev_dbg(&dev->dev, "Wakeup protocol changed to %d\n", protocol);
1542
1543		if (protocol == RC_PROTO_RC6_MCE)
1544			dev->scancode_wakeup_filter.data = 0x800f0000;
1545		else
1546			dev->scancode_wakeup_filter.data = 0;
1547		dev->scancode_wakeup_filter.mask = 0;
1548
1549		rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter);
1550		if (rc == 0)
1551			rc = len;
1552	} else {
1553		rc = len;
1554	}
1555
1556out:
1557	mutex_unlock(&dev->lock);
1558	return rc;
1559}
1560
1561static void rc_dev_release(struct device *device)
1562{
1563	struct rc_dev *dev = to_rc_dev(device);
1564
1565	kfree(dev);
1566}
1567
1568#define ADD_HOTPLUG_VAR(fmt, val...)					\
1569	do {								\
1570		int err = add_uevent_var(env, fmt, val);		\
1571		if (err)						\
1572			return err;					\
1573	} while (0)
1574
1575static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1576{
1577	struct rc_dev *dev = to_rc_dev(device);
 
 
 
1578
1579	if (dev->rc_map.name)
1580		ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1581	if (dev->driver_name)
1582		ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1583	if (dev->device_name)
1584		ADD_HOTPLUG_VAR("DEV_NAME=%s", dev->device_name);
 
 
1585
1586	return 0;
 
 
1587}
1588
1589/*
1590 * Static device attribute struct with the sysfs attributes for IR's
1591 */
1592static struct device_attribute dev_attr_ro_protocols =
1593__ATTR(protocols, 0444, show_protocols, NULL);
1594static struct device_attribute dev_attr_rw_protocols =
1595__ATTR(protocols, 0644, show_protocols, store_protocols);
1596static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols,
1597		   store_wakeup_protocols);
1598static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1599		      show_filter, store_filter, RC_FILTER_NORMAL, false);
1600static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1601		      show_filter, store_filter, RC_FILTER_NORMAL, true);
1602static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1603		      show_filter, store_filter, RC_FILTER_WAKEUP, false);
1604static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1605		      show_filter, store_filter, RC_FILTER_WAKEUP, true);
1606
1607static struct attribute *rc_dev_rw_protocol_attrs[] = {
1608	&dev_attr_rw_protocols.attr,
1609	NULL,
1610};
1611
1612static const struct attribute_group rc_dev_rw_protocol_attr_grp = {
1613	.attrs	= rc_dev_rw_protocol_attrs,
1614};
1615
1616static struct attribute *rc_dev_ro_protocol_attrs[] = {
1617	&dev_attr_ro_protocols.attr,
1618	NULL,
1619};
1620
1621static const struct attribute_group rc_dev_ro_protocol_attr_grp = {
1622	.attrs	= rc_dev_ro_protocol_attrs,
1623};
1624
1625static struct attribute *rc_dev_filter_attrs[] = {
1626	&dev_attr_filter.attr.attr,
1627	&dev_attr_filter_mask.attr.attr,
1628	NULL,
1629};
1630
1631static const struct attribute_group rc_dev_filter_attr_grp = {
1632	.attrs	= rc_dev_filter_attrs,
1633};
1634
1635static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1636	&dev_attr_wakeup_filter.attr.attr,
1637	&dev_attr_wakeup_filter_mask.attr.attr,
1638	&dev_attr_wakeup_protocols.attr,
1639	NULL,
1640};
1641
1642static const struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1643	.attrs	= rc_dev_wakeup_filter_attrs,
1644};
1645
1646static const struct device_type rc_dev_type = {
1647	.release	= rc_dev_release,
1648	.uevent		= rc_dev_uevent,
1649};
1650
1651struct rc_dev *rc_allocate_device(enum rc_driver_type type)
1652{
1653	struct rc_dev *dev;
1654
1655	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1656	if (!dev)
1657		return NULL;
1658
1659	if (type != RC_DRIVER_IR_RAW_TX) {
1660		dev->input_dev = input_allocate_device();
1661		if (!dev->input_dev) {
1662			kfree(dev);
1663			return NULL;
1664		}
1665
1666		dev->input_dev->getkeycode = ir_getkeycode;
1667		dev->input_dev->setkeycode = ir_setkeycode;
1668		input_set_drvdata(dev->input_dev, dev);
1669
1670		dev->timeout = IR_DEFAULT_TIMEOUT;
1671		timer_setup(&dev->timer_keyup, ir_timer_keyup, 0);
1672		timer_setup(&dev->timer_repeat, ir_timer_repeat, 0);
1673
1674		spin_lock_init(&dev->rc_map.lock);
1675		spin_lock_init(&dev->keylock);
1676	}
1677	mutex_init(&dev->lock);
1678
1679	dev->dev.type = &rc_dev_type;
1680	dev->dev.class = &rc_class;
1681	device_initialize(&dev->dev);
1682
1683	dev->driver_type = type;
1684
1685	__module_get(THIS_MODULE);
1686	return dev;
1687}
1688EXPORT_SYMBOL_GPL(rc_allocate_device);
1689
1690void rc_free_device(struct rc_dev *dev)
1691{
1692	if (!dev)
1693		return;
1694
1695	input_free_device(dev->input_dev);
1696
1697	put_device(&dev->dev);
1698
1699	/* kfree(dev) will be called by the callback function
1700	   rc_dev_release() */
1701
1702	module_put(THIS_MODULE);
1703}
1704EXPORT_SYMBOL_GPL(rc_free_device);
1705
1706static void devm_rc_alloc_release(struct device *dev, void *res)
1707{
1708	rc_free_device(*(struct rc_dev **)res);
1709}
1710
1711struct rc_dev *devm_rc_allocate_device(struct device *dev,
1712				       enum rc_driver_type type)
1713{
1714	struct rc_dev **dr, *rc;
1715
1716	dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
1717	if (!dr)
1718		return NULL;
1719
1720	rc = rc_allocate_device(type);
1721	if (!rc) {
1722		devres_free(dr);
1723		return NULL;
1724	}
1725
1726	rc->dev.parent = dev;
1727	rc->managed_alloc = true;
1728	*dr = rc;
1729	devres_add(dev, dr);
1730
1731	return rc;
1732}
1733EXPORT_SYMBOL_GPL(devm_rc_allocate_device);
1734
1735static int rc_prepare_rx_device(struct rc_dev *dev)
1736{
1737	int rc;
1738	struct rc_map *rc_map;
1739	u64 rc_proto;
1740
1741	if (!dev->map_name)
1742		return -EINVAL;
1743
1744	rc_map = rc_map_get(dev->map_name);
1745	if (!rc_map)
1746		rc_map = rc_map_get(RC_MAP_EMPTY);
1747	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1748		return -EINVAL;
1749
1750	rc = ir_setkeytable(dev, rc_map);
1751	if (rc)
1752		return rc;
1753
1754	rc_proto = BIT_ULL(rc_map->rc_proto);
1755
1756	if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1757		dev->enabled_protocols = dev->allowed_protocols;
1758
1759	if (dev->driver_type == RC_DRIVER_IR_RAW)
1760		ir_raw_load_modules(&rc_proto);
1761
1762	if (dev->change_protocol) {
1763		rc = dev->change_protocol(dev, &rc_proto);
1764		if (rc < 0)
1765			goto out_table;
1766		dev->enabled_protocols = rc_proto;
1767	}
1768
1769	/* Keyboard events */
1770	set_bit(EV_KEY, dev->input_dev->evbit);
1771	set_bit(EV_REP, dev->input_dev->evbit);
1772	set_bit(EV_MSC, dev->input_dev->evbit);
1773	set_bit(MSC_SCAN, dev->input_dev->mscbit);
1774
1775	/* Pointer/mouse events */
 
1776	set_bit(EV_REL, dev->input_dev->evbit);
1777	set_bit(REL_X, dev->input_dev->relbit);
1778	set_bit(REL_Y, dev->input_dev->relbit);
1779
1780	if (dev->open)
1781		dev->input_dev->open = ir_open;
1782	if (dev->close)
1783		dev->input_dev->close = ir_close;
1784
1785	dev->input_dev->dev.parent = &dev->dev;
1786	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1787	dev->input_dev->phys = dev->input_phys;
1788	dev->input_dev->name = dev->device_name;
1789
1790	return 0;
1791
1792out_table:
1793	ir_free_table(&dev->rc_map);
1794
1795	return rc;
1796}
1797
1798static int rc_setup_rx_device(struct rc_dev *dev)
1799{
1800	int rc;
1801
1802	/* rc_open will be called here */
1803	rc = input_register_device(dev->input_dev);
1804	if (rc)
1805		return rc;
1806
1807	/*
1808	 * Default delay of 250ms is too short for some protocols, especially
1809	 * since the timeout is currently set to 250ms. Increase it to 500ms,
1810	 * to avoid wrong repetition of the keycodes. Note that this must be
1811	 * set after the call to input_register_device().
1812	 */
1813	if (dev->allowed_protocols == RC_PROTO_BIT_CEC)
1814		dev->input_dev->rep[REP_DELAY] = 0;
1815	else
1816		dev->input_dev->rep[REP_DELAY] = 500;
1817
1818	/*
1819	 * As a repeat event on protocols like RC-5 and NEC take as long as
1820	 * 110/114ms, using 33ms as a repeat period is not the right thing
1821	 * to do.
1822	 */
1823	dev->input_dev->rep[REP_PERIOD] = 125;
1824
1825	return 0;
1826}
1827
1828static void rc_free_rx_device(struct rc_dev *dev)
1829{
1830	if (!dev)
1831		return;
1832
1833	if (dev->input_dev) {
1834		input_unregister_device(dev->input_dev);
1835		dev->input_dev = NULL;
1836	}
1837
1838	ir_free_table(&dev->rc_map);
1839}
1840
1841int rc_register_device(struct rc_dev *dev)
1842{
1843	const char *path;
1844	int attr = 0;
1845	int minor;
1846	int rc;
1847
1848	if (!dev)
1849		return -EINVAL;
1850
1851	minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
1852	if (minor < 0)
1853		return minor;
1854
1855	dev->minor = minor;
1856	dev_set_name(&dev->dev, "rc%u", dev->minor);
1857	dev_set_drvdata(&dev->dev, dev);
1858
1859	dev->dev.groups = dev->sysfs_groups;
1860	if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1861		dev->sysfs_groups[attr++] = &rc_dev_ro_protocol_attr_grp;
1862	else if (dev->driver_type != RC_DRIVER_IR_RAW_TX)
1863		dev->sysfs_groups[attr++] = &rc_dev_rw_protocol_attr_grp;
1864	if (dev->s_filter)
1865		dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1866	if (dev->s_wakeup_filter)
1867		dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1868	dev->sysfs_groups[attr++] = NULL;
1869
1870	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1871		rc = ir_raw_event_prepare(dev);
1872		if (rc < 0)
1873			goto out_minor;
1874	}
1875
1876	if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1877		rc = rc_prepare_rx_device(dev);
1878		if (rc)
1879			goto out_raw;
1880	}
1881
 
 
1882	rc = device_add(&dev->dev);
1883	if (rc)
1884		goto out_rx_free;
1885
1886	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1887	dev_info(&dev->dev, "%s as %s\n",
1888		 dev->device_name ?: "Unspecified device", path ?: "N/A");
1889	kfree(path);
1890
1891	dev->registered = true;
 
 
 
 
 
 
 
 
 
 
1892
1893	if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1894		rc = rc_setup_rx_device(dev);
1895		if (rc)
1896			goto out_dev;
1897	}
1898
1899	/* Ensure that the lirc kfifo is setup before we start the thread */
1900	if (dev->allowed_protocols != RC_PROTO_BIT_CEC) {
1901		rc = ir_lirc_register(dev);
1902		if (rc < 0)
1903			goto out_rx;
1904	}
1905
1906	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1907		rc = ir_raw_event_register(dev);
1908		if (rc < 0)
1909			goto out_lirc;
1910	}
1911
1912	dev_dbg(&dev->dev, "Registered rc%u (driver: %s)\n", dev->minor,
1913		dev->driver_name ? dev->driver_name : "unknown");
1914
1915	return 0;
1916
 
 
1917out_lirc:
1918	if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
1919		ir_lirc_unregister(dev);
1920out_rx:
1921	rc_free_rx_device(dev);
1922out_dev:
1923	device_del(&dev->dev);
1924out_rx_free:
1925	ir_free_table(&dev->rc_map);
1926out_raw:
1927	ir_raw_event_free(dev);
1928out_minor:
1929	ida_simple_remove(&rc_ida, minor);
1930	return rc;
1931}
1932EXPORT_SYMBOL_GPL(rc_register_device);
1933
1934static void devm_rc_release(struct device *dev, void *res)
1935{
1936	rc_unregister_device(*(struct rc_dev **)res);
1937}
1938
1939int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
1940{
1941	struct rc_dev **dr;
1942	int ret;
1943
1944	dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
1945	if (!dr)
1946		return -ENOMEM;
1947
1948	ret = rc_register_device(dev);
1949	if (ret) {
1950		devres_free(dr);
1951		return ret;
1952	}
1953
1954	*dr = dev;
1955	devres_add(parent, dr);
1956
1957	return 0;
1958}
1959EXPORT_SYMBOL_GPL(devm_rc_register_device);
1960
1961void rc_unregister_device(struct rc_dev *dev)
1962{
1963	if (!dev)
1964		return;
1965
1966	if (dev->driver_type == RC_DRIVER_IR_RAW)
1967		ir_raw_event_unregister(dev);
1968
1969	del_timer_sync(&dev->timer_keyup);
1970	del_timer_sync(&dev->timer_repeat);
1971
1972	rc_free_rx_device(dev);
1973
1974	mutex_lock(&dev->lock);
1975	if (dev->users && dev->close)
1976		dev->close(dev);
1977	dev->registered = false;
1978	mutex_unlock(&dev->lock);
1979
 
 
1980	/*
1981	 * lirc device should be freed with dev->registered = false, so
1982	 * that userspace polling will get notified.
1983	 */
1984	if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
1985		ir_lirc_unregister(dev);
1986
1987	device_del(&dev->dev);
1988
1989	ida_simple_remove(&rc_ida, dev->minor);
1990
1991	if (!dev->managed_alloc)
1992		rc_free_device(dev);
1993}
1994
1995EXPORT_SYMBOL_GPL(rc_unregister_device);
1996
1997/*
1998 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1999 */
2000
2001static int __init rc_core_init(void)
2002{
2003	int rc = class_register(&rc_class);
2004	if (rc) {
2005		pr_err("rc_core: unable to register rc class\n");
2006		return rc;
2007	}
2008
2009	rc = lirc_dev_init();
2010	if (rc) {
2011		pr_err("rc_core: unable to init lirc\n");
2012		class_unregister(&rc_class);
2013		return 0;
2014	}
2015
2016	led_trigger_register_simple("rc-feedback", &led_feedback);
2017	rc_map_register(&empty_map);
 
 
 
2018
2019	return 0;
2020}
2021
2022static void __exit rc_core_exit(void)
2023{
2024	lirc_dev_exit();
2025	class_unregister(&rc_class);
2026	led_trigger_unregister_simple(led_feedback);
 
 
 
2027	rc_map_unregister(&empty_map);
2028}
2029
2030subsys_initcall(rc_core_init);
2031module_exit(rc_core_exit);
2032
2033MODULE_AUTHOR("Mauro Carvalho Chehab");
2034MODULE_LICENSE("GPL v2");