Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2// rc-main.c - Remote Controller core module
   3//
   4// Copyright (C) 2009-2010 by Mauro Carvalho Chehab
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 
 
 
 
 
 
 
   7
   8#include <media/rc-core.h>
   9#include <linux/bsearch.h>
  10#include <linux/spinlock.h>
  11#include <linux/delay.h>
  12#include <linux/input.h>
  13#include <linux/leds.h>
  14#include <linux/slab.h>
  15#include <linux/idr.h>
  16#include <linux/device.h>
  17#include <linux/module.h>
  18#include "rc-core-priv.h"
  19
 
 
 
 
  20/* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
  21#define IR_TAB_MIN_SIZE	256
  22#define IR_TAB_MAX_SIZE	8192
  23
  24static const struct {
  25	const char *name;
  26	unsigned int repeat_period;
  27	unsigned int scancode_bits;
  28} protocols[] = {
  29	[RC_PROTO_UNKNOWN] = { .name = "unknown", .repeat_period = 125 },
  30	[RC_PROTO_OTHER] = { .name = "other", .repeat_period = 125 },
  31	[RC_PROTO_RC5] = { .name = "rc-5",
  32		.scancode_bits = 0x1f7f, .repeat_period = 114 },
  33	[RC_PROTO_RC5X_20] = { .name = "rc-5x-20",
  34		.scancode_bits = 0x1f7f3f, .repeat_period = 114 },
  35	[RC_PROTO_RC5_SZ] = { .name = "rc-5-sz",
  36		.scancode_bits = 0x2fff, .repeat_period = 114 },
  37	[RC_PROTO_JVC] = { .name = "jvc",
  38		.scancode_bits = 0xffff, .repeat_period = 125 },
  39	[RC_PROTO_SONY12] = { .name = "sony-12",
  40		.scancode_bits = 0x1f007f, .repeat_period = 100 },
  41	[RC_PROTO_SONY15] = { .name = "sony-15",
  42		.scancode_bits = 0xff007f, .repeat_period = 100 },
  43	[RC_PROTO_SONY20] = { .name = "sony-20",
  44		.scancode_bits = 0x1fff7f, .repeat_period = 100 },
  45	[RC_PROTO_NEC] = { .name = "nec",
  46		.scancode_bits = 0xffff, .repeat_period = 110 },
  47	[RC_PROTO_NECX] = { .name = "nec-x",
  48		.scancode_bits = 0xffffff, .repeat_period = 110 },
  49	[RC_PROTO_NEC32] = { .name = "nec-32",
  50		.scancode_bits = 0xffffffff, .repeat_period = 110 },
  51	[RC_PROTO_SANYO] = { .name = "sanyo",
  52		.scancode_bits = 0x1fffff, .repeat_period = 125 },
  53	[RC_PROTO_MCIR2_KBD] = { .name = "mcir2-kbd",
  54		.scancode_bits = 0xffffff, .repeat_period = 100 },
  55	[RC_PROTO_MCIR2_MSE] = { .name = "mcir2-mse",
  56		.scancode_bits = 0x1fffff, .repeat_period = 100 },
  57	[RC_PROTO_RC6_0] = { .name = "rc-6-0",
  58		.scancode_bits = 0xffff, .repeat_period = 114 },
  59	[RC_PROTO_RC6_6A_20] = { .name = "rc-6-6a-20",
  60		.scancode_bits = 0xfffff, .repeat_period = 114 },
  61	[RC_PROTO_RC6_6A_24] = { .name = "rc-6-6a-24",
  62		.scancode_bits = 0xffffff, .repeat_period = 114 },
  63	[RC_PROTO_RC6_6A_32] = { .name = "rc-6-6a-32",
  64		.scancode_bits = 0xffffffff, .repeat_period = 114 },
  65	[RC_PROTO_RC6_MCE] = { .name = "rc-6-mce",
  66		.scancode_bits = 0xffff7fff, .repeat_period = 114 },
  67	[RC_PROTO_SHARP] = { .name = "sharp",
  68		.scancode_bits = 0x1fff, .repeat_period = 125 },
  69	[RC_PROTO_XMP] = { .name = "xmp", .repeat_period = 125 },
  70	[RC_PROTO_CEC] = { .name = "cec", .repeat_period = 0 },
  71	[RC_PROTO_IMON] = { .name = "imon",
  72		.scancode_bits = 0x7fffffff, .repeat_period = 114 },
  73	[RC_PROTO_RCMM12] = { .name = "rc-mm-12",
  74		.scancode_bits = 0x00000fff, .repeat_period = 114 },
  75	[RC_PROTO_RCMM24] = { .name = "rc-mm-24",
  76		.scancode_bits = 0x00ffffff, .repeat_period = 114 },
  77	[RC_PROTO_RCMM32] = { .name = "rc-mm-32",
  78		.scancode_bits = 0xffffffff, .repeat_period = 114 },
  79	[RC_PROTO_XBOX_DVD] = { .name = "xbox-dvd", .repeat_period = 64 },
  80};
  81
  82/* Used to keep track of known keymaps */
  83static LIST_HEAD(rc_map_list);
  84static DEFINE_SPINLOCK(rc_map_lock);
  85static struct led_trigger *led_feedback;
  86
  87/* Used to keep track of rc devices */
  88static DEFINE_IDA(rc_ida);
  89
  90static struct rc_map_list *seek_rc_map(const char *name)
  91{
  92	struct rc_map_list *map = NULL;
  93
  94	spin_lock(&rc_map_lock);
  95	list_for_each_entry(map, &rc_map_list, list) {
  96		if (!strcmp(name, map->map.name)) {
  97			spin_unlock(&rc_map_lock);
  98			return map;
  99		}
 100	}
 101	spin_unlock(&rc_map_lock);
 102
 103	return NULL;
 104}
 105
 106struct rc_map *rc_map_get(const char *name)
 107{
 108
 109	struct rc_map_list *map;
 110
 111	map = seek_rc_map(name);
 112#ifdef CONFIG_MODULES
 113	if (!map) {
 114		int rc = request_module("%s", name);
 115		if (rc < 0) {
 116			pr_err("Couldn't load IR keymap %s\n", name);
 117			return NULL;
 118		}
 119		msleep(20);	/* Give some time for IR to register */
 120
 121		map = seek_rc_map(name);
 122	}
 123#endif
 124	if (!map) {
 125		pr_err("IR keymap %s not found\n", name);
 126		return NULL;
 127	}
 128
 129	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
 130
 131	return &map->map;
 132}
 133EXPORT_SYMBOL_GPL(rc_map_get);
 134
 135int rc_map_register(struct rc_map_list *map)
 136{
 137	spin_lock(&rc_map_lock);
 138	list_add_tail(&map->list, &rc_map_list);
 139	spin_unlock(&rc_map_lock);
 140	return 0;
 141}
 142EXPORT_SYMBOL_GPL(rc_map_register);
 143
 144void rc_map_unregister(struct rc_map_list *map)
 145{
 146	spin_lock(&rc_map_lock);
 147	list_del(&map->list);
 148	spin_unlock(&rc_map_lock);
 149}
 150EXPORT_SYMBOL_GPL(rc_map_unregister);
 151
 152
 153static struct rc_map_table empty[] = {
 154	{ 0x2a, KEY_COFFEE },
 155};
 156
 157static struct rc_map_list empty_map = {
 158	.map = {
 159		.scan     = empty,
 160		.size     = ARRAY_SIZE(empty),
 161		.rc_proto = RC_PROTO_UNKNOWN,	/* Legacy IR type */
 162		.name     = RC_MAP_EMPTY,
 163	}
 164};
 165
 166/**
 167 * scancode_to_u64() - converts scancode in &struct input_keymap_entry
 168 * @ke: keymap entry containing scancode to be converted.
 169 * @scancode: pointer to the location where converted scancode should
 170 *	be stored.
 171 *
 172 * This function is a version of input_scancode_to_scalar specialized for
 173 * rc-core.
 174 */
 175static int scancode_to_u64(const struct input_keymap_entry *ke, u64 *scancode)
 176{
 177	switch (ke->len) {
 178	case 1:
 179		*scancode = *((u8 *)ke->scancode);
 180		break;
 181
 182	case 2:
 183		*scancode = *((u16 *)ke->scancode);
 184		break;
 185
 186	case 4:
 187		*scancode = *((u32 *)ke->scancode);
 188		break;
 189
 190	case 8:
 191		*scancode = *((u64 *)ke->scancode);
 192		break;
 193
 194	default:
 195		return -EINVAL;
 196	}
 197
 198	return 0;
 199}
 200
 201/**
 202 * ir_create_table() - initializes a scancode table
 203 * @dev:	the rc_dev device
 204 * @rc_map:	the rc_map to initialize
 205 * @name:	name to assign to the table
 206 * @rc_proto:	ir type to assign to the new table
 207 * @size:	initial size of the table
 
 208 *
 209 * This routine will initialize the rc_map and will allocate
 210 * memory to hold at least the specified number of elements.
 211 *
 212 * return:	zero on success or a negative error code
 213 */
 214static int ir_create_table(struct rc_dev *dev, struct rc_map *rc_map,
 215			   const char *name, u64 rc_proto, size_t size)
 216{
 217	rc_map->name = kstrdup(name, GFP_KERNEL);
 218	if (!rc_map->name)
 219		return -ENOMEM;
 220	rc_map->rc_proto = rc_proto;
 221	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
 222	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
 223	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
 224	if (!rc_map->scan) {
 225		kfree(rc_map->name);
 226		rc_map->name = NULL;
 227		return -ENOMEM;
 228	}
 229
 230	dev_dbg(&dev->dev, "Allocated space for %u keycode entries (%u bytes)\n",
 231		rc_map->size, rc_map->alloc);
 232	return 0;
 233}
 234
 235/**
 236 * ir_free_table() - frees memory allocated by a scancode table
 237 * @rc_map:	the table whose mappings need to be freed
 238 *
 239 * This routine will free memory alloctaed for key mappings used by given
 240 * scancode table.
 241 */
 242static void ir_free_table(struct rc_map *rc_map)
 243{
 244	rc_map->size = 0;
 245	kfree(rc_map->name);
 246	rc_map->name = NULL;
 247	kfree(rc_map->scan);
 248	rc_map->scan = NULL;
 249}
 250
 251/**
 252 * ir_resize_table() - resizes a scancode table if necessary
 253 * @dev:	the rc_dev device
 254 * @rc_map:	the rc_map to resize
 255 * @gfp_flags:	gfp flags to use when allocating memory
 
 256 *
 257 * This routine will shrink the rc_map if it has lots of
 258 * unused entries and grow it if it is full.
 259 *
 260 * return:	zero on success or a negative error code
 261 */
 262static int ir_resize_table(struct rc_dev *dev, struct rc_map *rc_map,
 263			   gfp_t gfp_flags)
 264{
 265	unsigned int oldalloc = rc_map->alloc;
 266	unsigned int newalloc = oldalloc;
 267	struct rc_map_table *oldscan = rc_map->scan;
 268	struct rc_map_table *newscan;
 269
 270	if (rc_map->size == rc_map->len) {
 271		/* All entries in use -> grow keytable */
 272		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
 273			return -ENOMEM;
 274
 275		newalloc *= 2;
 276		dev_dbg(&dev->dev, "Growing table to %u bytes\n", newalloc);
 277	}
 278
 279	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
 280		/* Less than 1/3 of entries in use -> shrink keytable */
 281		newalloc /= 2;
 282		dev_dbg(&dev->dev, "Shrinking table to %u bytes\n", newalloc);
 283	}
 284
 285	if (newalloc == oldalloc)
 286		return 0;
 287
 288	newscan = kmalloc(newalloc, gfp_flags);
 289	if (!newscan)
 
 290		return -ENOMEM;
 
 291
 292	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
 293	rc_map->scan = newscan;
 294	rc_map->alloc = newalloc;
 295	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
 296	kfree(oldscan);
 297	return 0;
 298}
 299
 300/**
 301 * ir_update_mapping() - set a keycode in the scancode->keycode table
 302 * @dev:	the struct rc_dev device descriptor
 303 * @rc_map:	scancode table to be adjusted
 304 * @index:	index of the mapping that needs to be updated
 305 * @new_keycode: the desired keycode
 
 306 *
 307 * This routine is used to update scancode->keycode mapping at given
 308 * position.
 309 *
 310 * return:	previous keycode assigned to the mapping
 311 *
 312 */
 313static unsigned int ir_update_mapping(struct rc_dev *dev,
 314				      struct rc_map *rc_map,
 315				      unsigned int index,
 316				      unsigned int new_keycode)
 317{
 318	int old_keycode = rc_map->scan[index].keycode;
 319	int i;
 320
 321	/* Did the user wish to remove the mapping? */
 322	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
 323		dev_dbg(&dev->dev, "#%d: Deleting scan 0x%04llx\n",
 324			index, rc_map->scan[index].scancode);
 325		rc_map->len--;
 326		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
 327			(rc_map->len - index) * sizeof(struct rc_map_table));
 328	} else {
 329		dev_dbg(&dev->dev, "#%d: %s scan 0x%04llx with key 0x%04x\n",
 330			index,
 331			old_keycode == KEY_RESERVED ? "New" : "Replacing",
 332			rc_map->scan[index].scancode, new_keycode);
 333		rc_map->scan[index].keycode = new_keycode;
 334		__set_bit(new_keycode, dev->input_dev->keybit);
 335	}
 336
 337	if (old_keycode != KEY_RESERVED) {
 338		/* A previous mapping was updated... */
 339		__clear_bit(old_keycode, dev->input_dev->keybit);
 340		/* ... but another scancode might use the same keycode */
 341		for (i = 0; i < rc_map->len; i++) {
 342			if (rc_map->scan[i].keycode == old_keycode) {
 343				__set_bit(old_keycode, dev->input_dev->keybit);
 344				break;
 345			}
 346		}
 347
 348		/* Possibly shrink the keytable, failure is not a problem */
 349		ir_resize_table(dev, rc_map, GFP_ATOMIC);
 350	}
 351
 352	return old_keycode;
 353}
 354
 355/**
 356 * ir_establish_scancode() - set a keycode in the scancode->keycode table
 357 * @dev:	the struct rc_dev device descriptor
 358 * @rc_map:	scancode table to be searched
 359 * @scancode:	the desired scancode
 360 * @resize:	controls whether we allowed to resize the table to
 361 *		accommodate not yet present scancodes
 
 
 362 *
 363 * This routine is used to locate given scancode in rc_map.
 364 * If scancode is not yet present the routine will allocate a new slot
 365 * for it.
 366 *
 367 * return:	index of the mapping containing scancode in question
 368 *		or -1U in case of failure.
 369 */
 370static unsigned int ir_establish_scancode(struct rc_dev *dev,
 371					  struct rc_map *rc_map,
 372					  u64 scancode, bool resize)
 
 373{
 374	unsigned int i;
 375
 376	/*
 377	 * Unfortunately, some hardware-based IR decoders don't provide
 378	 * all bits for the complete IR code. In general, they provide only
 379	 * the command part of the IR code. Yet, as it is possible to replace
 380	 * the provided IR with another one, it is needed to allow loading
 381	 * IR tables from other remotes. So, we support specifying a mask to
 382	 * indicate the valid bits of the scancodes.
 383	 */
 384	if (dev->scancode_mask)
 385		scancode &= dev->scancode_mask;
 386
 387	/* First check if we already have a mapping for this ir command */
 388	for (i = 0; i < rc_map->len; i++) {
 389		if (rc_map->scan[i].scancode == scancode)
 390			return i;
 391
 392		/* Keytable is sorted from lowest to highest scancode */
 393		if (rc_map->scan[i].scancode >= scancode)
 394			break;
 395	}
 396
 397	/* No previous mapping found, we might need to grow the table */
 398	if (rc_map->size == rc_map->len) {
 399		if (!resize || ir_resize_table(dev, rc_map, GFP_ATOMIC))
 400			return -1U;
 401	}
 402
 403	/* i is the proper index to insert our new keycode */
 404	if (i < rc_map->len)
 405		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
 406			(rc_map->len - i) * sizeof(struct rc_map_table));
 407	rc_map->scan[i].scancode = scancode;
 408	rc_map->scan[i].keycode = KEY_RESERVED;
 409	rc_map->len++;
 410
 411	return i;
 412}
 413
 414/**
 415 * ir_setkeycode() - set a keycode in the scancode->keycode table
 416 * @idev:	the struct input_dev device descriptor
 417 * @ke:		Input keymap entry
 418 * @old_keycode: result
 
 419 *
 420 * This routine is used to handle evdev EVIOCSKEY ioctl.
 421 *
 422 * return:	-EINVAL if the keycode could not be inserted, otherwise zero.
 423 */
 424static int ir_setkeycode(struct input_dev *idev,
 425			 const struct input_keymap_entry *ke,
 426			 unsigned int *old_keycode)
 427{
 428	struct rc_dev *rdev = input_get_drvdata(idev);
 429	struct rc_map *rc_map = &rdev->rc_map;
 430	unsigned int index;
 431	u64 scancode;
 432	int retval = 0;
 433	unsigned long flags;
 434
 435	spin_lock_irqsave(&rc_map->lock, flags);
 436
 437	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
 438		index = ke->index;
 439		if (index >= rc_map->len) {
 440			retval = -EINVAL;
 441			goto out;
 442		}
 443	} else {
 444		retval = scancode_to_u64(ke, &scancode);
 445		if (retval)
 446			goto out;
 447
 448		index = ir_establish_scancode(rdev, rc_map, scancode, true);
 449		if (index >= rc_map->len) {
 450			retval = -ENOMEM;
 451			goto out;
 452		}
 453	}
 454
 455	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
 456
 457out:
 458	spin_unlock_irqrestore(&rc_map->lock, flags);
 459	return retval;
 460}
 461
 462/**
 463 * ir_setkeytable() - sets several entries in the scancode->keycode table
 464 * @dev:	the struct rc_dev device descriptor
 
 465 * @from:	the struct rc_map to copy entries from
 
 466 *
 467 * This routine is used to handle table initialization.
 468 *
 469 * return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
 470 */
 471static int ir_setkeytable(struct rc_dev *dev, const struct rc_map *from)
 
 472{
 473	struct rc_map *rc_map = &dev->rc_map;
 474	unsigned int i, index;
 475	int rc;
 476
 477	rc = ir_create_table(dev, rc_map, from->name, from->rc_proto,
 478			     from->size);
 479	if (rc)
 480		return rc;
 481
 
 
 
 482	for (i = 0; i < from->size; i++) {
 483		index = ir_establish_scancode(dev, rc_map,
 484					      from->scan[i].scancode, false);
 485		if (index >= rc_map->len) {
 486			rc = -ENOMEM;
 487			break;
 488		}
 489
 490		ir_update_mapping(dev, rc_map, index,
 491				  from->scan[i].keycode);
 492	}
 493
 494	if (rc)
 495		ir_free_table(rc_map);
 496
 497	return rc;
 498}
 499
 500static int rc_map_cmp(const void *key, const void *elt)
 501{
 502	const u64 *scancode = key;
 503	const struct rc_map_table *e = elt;
 504
 505	if (*scancode < e->scancode)
 506		return -1;
 507	else if (*scancode > e->scancode)
 508		return 1;
 509	return 0;
 510}
 511
 512/**
 513 * ir_lookup_by_scancode() - locate mapping by scancode
 514 * @rc_map:	the struct rc_map to search
 515 * @scancode:	scancode to look for in the table
 
 516 *
 517 * This routine performs binary search in RC keykeymap table for
 518 * given scancode.
 519 *
 520 * return:	index in the table, -1U if not found
 521 */
 522static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
 523					  u64 scancode)
 524{
 525	struct rc_map_table *res;
 
 
 
 
 
 
 
 
 
 
 
 
 526
 527	res = bsearch(&scancode, rc_map->scan, rc_map->len,
 528		      sizeof(struct rc_map_table), rc_map_cmp);
 529	if (!res)
 530		return -1U;
 531	else
 532		return res - rc_map->scan;
 533}
 534
 535/**
 536 * ir_getkeycode() - get a keycode from the scancode->keycode table
 537 * @idev:	the struct input_dev device descriptor
 538 * @ke:		Input keymap entry
 
 
 539 *
 540 * This routine is used to handle evdev EVIOCGKEY ioctl.
 541 *
 542 * return:	always returns zero.
 543 */
 544static int ir_getkeycode(struct input_dev *idev,
 545			 struct input_keymap_entry *ke)
 546{
 547	struct rc_dev *rdev = input_get_drvdata(idev);
 548	struct rc_map *rc_map = &rdev->rc_map;
 549	struct rc_map_table *entry;
 550	unsigned long flags;
 551	unsigned int index;
 552	u64 scancode;
 553	int retval;
 554
 555	spin_lock_irqsave(&rc_map->lock, flags);
 556
 557	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
 558		index = ke->index;
 559	} else {
 560		retval = scancode_to_u64(ke, &scancode);
 561		if (retval)
 562			goto out;
 563
 564		index = ir_lookup_by_scancode(rc_map, scancode);
 565	}
 566
 567	if (index < rc_map->len) {
 568		entry = &rc_map->scan[index];
 569
 570		ke->index = index;
 571		ke->keycode = entry->keycode;
 572		ke->len = sizeof(entry->scancode);
 573		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
 
 574	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
 575		/*
 576		 * We do not really know the valid range of scancodes
 577		 * so let's respond with KEY_RESERVED to anything we
 578		 * do not have mapping for [yet].
 579		 */
 580		ke->index = index;
 581		ke->keycode = KEY_RESERVED;
 582	} else {
 583		retval = -EINVAL;
 584		goto out;
 585	}
 586
 587	retval = 0;
 588
 589out:
 590	spin_unlock_irqrestore(&rc_map->lock, flags);
 591	return retval;
 592}
 593
 594/**
 595 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
 596 * @dev:	the struct rc_dev descriptor of the device
 597 * @scancode:	the scancode to look for
 
 598 *
 599 * This routine is used by drivers which need to convert a scancode to a
 600 * keycode. Normally it should not be used since drivers should have no
 601 * interest in keycodes.
 602 *
 603 * return:	the corresponding keycode, or KEY_RESERVED
 604 */
 605u32 rc_g_keycode_from_table(struct rc_dev *dev, u64 scancode)
 606{
 607	struct rc_map *rc_map = &dev->rc_map;
 608	unsigned int keycode;
 609	unsigned int index;
 610	unsigned long flags;
 611
 612	spin_lock_irqsave(&rc_map->lock, flags);
 613
 614	index = ir_lookup_by_scancode(rc_map, scancode);
 615	keycode = index < rc_map->len ?
 616			rc_map->scan[index].keycode : KEY_RESERVED;
 617
 618	spin_unlock_irqrestore(&rc_map->lock, flags);
 619
 620	if (keycode != KEY_RESERVED)
 621		dev_dbg(&dev->dev, "%s: scancode 0x%04llx keycode 0x%02x\n",
 622			dev->device_name, scancode, keycode);
 623
 624	return keycode;
 625}
 626EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
 627
 628/**
 629 * ir_do_keyup() - internal function to signal the release of a keypress
 630 * @dev:	the struct rc_dev descriptor of the device
 631 * @sync:	whether or not to call input_sync
 632 *
 633 * This function is used internally to release a keypress, it must be
 634 * called with keylock held.
 635 */
 636static void ir_do_keyup(struct rc_dev *dev, bool sync)
 637{
 638	if (!dev->keypressed)
 639		return;
 640
 641	dev_dbg(&dev->dev, "keyup key 0x%04x\n", dev->last_keycode);
 642	del_timer(&dev->timer_repeat);
 643	input_report_key(dev->input_dev, dev->last_keycode, 0);
 644	led_trigger_event(led_feedback, LED_OFF);
 645	if (sync)
 646		input_sync(dev->input_dev);
 647	dev->keypressed = false;
 648}
 649
 650/**
 651 * rc_keyup() - signals the release of a keypress
 652 * @dev:	the struct rc_dev descriptor of the device
 653 *
 654 * This routine is used to signal that a key has been released on the
 655 * remote control.
 656 */
 657void rc_keyup(struct rc_dev *dev)
 658{
 659	unsigned long flags;
 660
 661	spin_lock_irqsave(&dev->keylock, flags);
 662	ir_do_keyup(dev, true);
 663	spin_unlock_irqrestore(&dev->keylock, flags);
 664}
 665EXPORT_SYMBOL_GPL(rc_keyup);
 666
 667/**
 668 * ir_timer_keyup() - generates a keyup event after a timeout
 669 *
 670 * @t:		a pointer to the struct timer_list
 671 *
 672 * This routine will generate a keyup event some time after a keydown event
 673 * is generated when no further activity has been detected.
 674 */
 675static void ir_timer_keyup(struct timer_list *t)
 676{
 677	struct rc_dev *dev = from_timer(dev, t, timer_keyup);
 678	unsigned long flags;
 679
 680	/*
 681	 * ir->keyup_jiffies is used to prevent a race condition if a
 682	 * hardware interrupt occurs at this point and the keyup timer
 683	 * event is moved further into the future as a result.
 684	 *
 685	 * The timer will then be reactivated and this function called
 686	 * again in the future. We need to exit gracefully in that case
 687	 * to allow the input subsystem to do its auto-repeat magic or
 688	 * a keyup event might follow immediately after the keydown.
 689	 */
 690	spin_lock_irqsave(&dev->keylock, flags);
 691	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
 692		ir_do_keyup(dev, true);
 693	spin_unlock_irqrestore(&dev->keylock, flags);
 694}
 695
 696/**
 697 * ir_timer_repeat() - generates a repeat event after a timeout
 698 *
 699 * @t:		a pointer to the struct timer_list
 700 *
 701 * This routine will generate a soft repeat event every REP_PERIOD
 702 * milliseconds.
 703 */
 704static void ir_timer_repeat(struct timer_list *t)
 705{
 706	struct rc_dev *dev = from_timer(dev, t, timer_repeat);
 707	struct input_dev *input = dev->input_dev;
 708	unsigned long flags;
 709
 710	spin_lock_irqsave(&dev->keylock, flags);
 711	if (dev->keypressed) {
 712		input_event(input, EV_KEY, dev->last_keycode, 2);
 713		input_sync(input);
 714		if (input->rep[REP_PERIOD])
 715			mod_timer(&dev->timer_repeat, jiffies +
 716				  msecs_to_jiffies(input->rep[REP_PERIOD]));
 717	}
 718	spin_unlock_irqrestore(&dev->keylock, flags);
 719}
 720
 721static unsigned int repeat_period(int protocol)
 722{
 723	if (protocol >= ARRAY_SIZE(protocols))
 724		return 100;
 725
 726	return protocols[protocol].repeat_period;
 727}
 728
 729/**
 730 * rc_repeat() - signals that a key is still pressed
 731 * @dev:	the struct rc_dev descriptor of the device
 732 *
 733 * This routine is used by IR decoders when a repeat message which does
 734 * not include the necessary bits to reproduce the scancode has been
 735 * received.
 736 */
 737void rc_repeat(struct rc_dev *dev)
 738{
 739	unsigned long flags;
 740	unsigned int timeout = usecs_to_jiffies(dev->timeout) +
 741		msecs_to_jiffies(repeat_period(dev->last_protocol));
 742	struct lirc_scancode sc = {
 743		.scancode = dev->last_scancode, .rc_proto = dev->last_protocol,
 744		.keycode = dev->keypressed ? dev->last_keycode : KEY_RESERVED,
 745		.flags = LIRC_SCANCODE_FLAG_REPEAT |
 746			 (dev->last_toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0)
 747	};
 748
 749	if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
 750		lirc_scancode_event(dev, &sc);
 751
 752	spin_lock_irqsave(&dev->keylock, flags);
 753
 754	if (dev->last_scancode <= U32_MAX) {
 755		input_event(dev->input_dev, EV_MSC, MSC_SCAN,
 756			    dev->last_scancode);
 757		input_sync(dev->input_dev);
 758	}
 759
 760	if (dev->keypressed) {
 761		dev->keyup_jiffies = jiffies + timeout;
 762		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
 763	}
 
 764
 
 765	spin_unlock_irqrestore(&dev->keylock, flags);
 766}
 767EXPORT_SYMBOL_GPL(rc_repeat);
 768
 769/**
 770 * ir_do_keydown() - internal function to process a keypress
 771 * @dev:	the struct rc_dev descriptor of the device
 772 * @protocol:	the protocol of the keypress
 773 * @scancode:   the scancode of the keypress
 774 * @keycode:    the keycode of the keypress
 775 * @toggle:     the toggle value of the keypress
 776 *
 777 * This function is used internally to register a keypress, it must be
 778 * called with keylock held.
 779 */
 780static void ir_do_keydown(struct rc_dev *dev, enum rc_proto protocol,
 781			  u64 scancode, u32 keycode, u8 toggle)
 782{
 783	bool new_event = (!dev->keypressed		 ||
 784			  dev->last_protocol != protocol ||
 785			  dev->last_scancode != scancode ||
 786			  dev->last_toggle   != toggle);
 787	struct lirc_scancode sc = {
 788		.scancode = scancode, .rc_proto = protocol,
 789		.flags = (toggle ? LIRC_SCANCODE_FLAG_TOGGLE : 0) |
 790			 (!new_event ? LIRC_SCANCODE_FLAG_REPEAT : 0),
 791		.keycode = keycode
 792	};
 793
 794	if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
 795		lirc_scancode_event(dev, &sc);
 796
 797	if (new_event && dev->keypressed)
 798		ir_do_keyup(dev, false);
 799
 800	if (scancode <= U32_MAX)
 801		input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
 802
 803	dev->last_protocol = protocol;
 804	dev->last_scancode = scancode;
 805	dev->last_toggle = toggle;
 806	dev->last_keycode = keycode;
 807
 808	if (new_event && keycode != KEY_RESERVED) {
 809		/* Register a keypress */
 810		dev->keypressed = true;
 811
 812		dev_dbg(&dev->dev, "%s: key down event, key 0x%04x, protocol 0x%04x, scancode 0x%08llx\n",
 813			dev->device_name, keycode, protocol, scancode);
 
 
 
 
 814		input_report_key(dev->input_dev, keycode, 1);
 815
 816		led_trigger_event(led_feedback, LED_FULL);
 817	}
 818
 819	/*
 820	 * For CEC, start sending repeat messages as soon as the first
 821	 * repeated message is sent, as long as REP_DELAY = 0 and REP_PERIOD
 822	 * is non-zero. Otherwise, the input layer will generate repeat
 823	 * messages.
 824	 */
 825	if (!new_event && keycode != KEY_RESERVED &&
 826	    dev->allowed_protocols == RC_PROTO_BIT_CEC &&
 827	    !timer_pending(&dev->timer_repeat) &&
 828	    dev->input_dev->rep[REP_PERIOD] &&
 829	    !dev->input_dev->rep[REP_DELAY]) {
 830		input_event(dev->input_dev, EV_KEY, keycode, 2);
 831		mod_timer(&dev->timer_repeat, jiffies +
 832			  msecs_to_jiffies(dev->input_dev->rep[REP_PERIOD]));
 833	}
 834
 835	input_sync(dev->input_dev);
 836}
 837
 838/**
 839 * rc_keydown() - generates input event for a key press
 840 * @dev:	the struct rc_dev descriptor of the device
 841 * @protocol:	the protocol for the keypress
 842 * @scancode:	the scancode for the keypress
 843 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 844 *              support toggle values, this should be set to zero)
 845 *
 846 * This routine is used to signal that a key has been pressed on the
 847 * remote control.
 848 */
 849void rc_keydown(struct rc_dev *dev, enum rc_proto protocol, u64 scancode,
 850		u8 toggle)
 851{
 852	unsigned long flags;
 853	u32 keycode = rc_g_keycode_from_table(dev, scancode);
 854
 855	spin_lock_irqsave(&dev->keylock, flags);
 856	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
 857
 858	if (dev->keypressed) {
 859		dev->keyup_jiffies = jiffies + usecs_to_jiffies(dev->timeout) +
 860			msecs_to_jiffies(repeat_period(protocol));
 861		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
 862	}
 863	spin_unlock_irqrestore(&dev->keylock, flags);
 864}
 865EXPORT_SYMBOL_GPL(rc_keydown);
 866
 867/**
 868 * rc_keydown_notimeout() - generates input event for a key press without
 869 *                          an automatic keyup event at a later time
 870 * @dev:	the struct rc_dev descriptor of the device
 871 * @protocol:	the protocol for the keypress
 872 * @scancode:	the scancode for the keypress
 873 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 874 *              support toggle values, this should be set to zero)
 875 *
 876 * This routine is used to signal that a key has been pressed on the
 877 * remote control. The driver must manually call rc_keyup() at a later stage.
 878 */
 879void rc_keydown_notimeout(struct rc_dev *dev, enum rc_proto protocol,
 880			  u64 scancode, u8 toggle)
 881{
 882	unsigned long flags;
 883	u32 keycode = rc_g_keycode_from_table(dev, scancode);
 884
 885	spin_lock_irqsave(&dev->keylock, flags);
 886	ir_do_keydown(dev, protocol, scancode, keycode, toggle);
 887	spin_unlock_irqrestore(&dev->keylock, flags);
 888}
 889EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
 890
 891/**
 892 * rc_validate_scancode() - checks that a scancode is valid for a protocol.
 893 *	For nec, it should do the opposite of ir_nec_bytes_to_scancode()
 894 * @proto:	protocol
 895 * @scancode:	scancode
 896 */
 897bool rc_validate_scancode(enum rc_proto proto, u32 scancode)
 898{
 899	switch (proto) {
 900	/*
 901	 * NECX has a 16-bit address; if the lower 8 bits match the upper
 902	 * 8 bits inverted, then the address would match regular nec.
 903	 */
 904	case RC_PROTO_NECX:
 905		if ((((scancode >> 16) ^ ~(scancode >> 8)) & 0xff) == 0)
 906			return false;
 907		break;
 908	/*
 909	 * NEC32 has a 16 bit address and 16 bit command. If the lower 8 bits
 910	 * of the command match the upper 8 bits inverted, then it would
 911	 * be either NEC or NECX.
 912	 */
 913	case RC_PROTO_NEC32:
 914		if ((((scancode >> 8) ^ ~scancode) & 0xff) == 0)
 915			return false;
 916		break;
 917	/*
 918	 * If the customer code (top 32-bit) is 0x800f, it is MCE else it
 919	 * is regular mode-6a 32 bit
 920	 */
 921	case RC_PROTO_RC6_MCE:
 922		if ((scancode & 0xffff0000) != 0x800f0000)
 923			return false;
 924		break;
 925	case RC_PROTO_RC6_6A_32:
 926		if ((scancode & 0xffff0000) == 0x800f0000)
 927			return false;
 928		break;
 929	default:
 930		break;
 931	}
 932
 933	return true;
 934}
 935
 936/**
 937 * rc_validate_filter() - checks that the scancode and mask are valid and
 938 *			  provides sensible defaults
 939 * @dev:	the struct rc_dev descriptor of the device
 940 * @filter:	the scancode and mask
 941 *
 942 * return:	0 or -EINVAL if the filter is not valid
 943 */
 944static int rc_validate_filter(struct rc_dev *dev,
 945			      struct rc_scancode_filter *filter)
 946{
 947	u32 mask, s = filter->data;
 948	enum rc_proto protocol = dev->wakeup_protocol;
 949
 950	if (protocol >= ARRAY_SIZE(protocols))
 951		return -EINVAL;
 952
 953	mask = protocols[protocol].scancode_bits;
 954
 955	if (!rc_validate_scancode(protocol, s))
 956		return -EINVAL;
 957
 958	filter->data &= mask;
 959	filter->mask &= mask;
 960
 961	/*
 962	 * If we have to raw encode the IR for wakeup, we cannot have a mask
 963	 */
 964	if (dev->encode_wakeup && filter->mask != 0 && filter->mask != mask)
 965		return -EINVAL;
 966
 967	return 0;
 968}
 969
 970int rc_open(struct rc_dev *rdev)
 971{
 972	int rval = 0;
 973
 974	if (!rdev)
 975		return -EINVAL;
 976
 977	mutex_lock(&rdev->lock);
 
 
 978
 979	if (!rdev->registered) {
 980		rval = -ENODEV;
 981	} else {
 982		if (!rdev->users++ && rdev->open)
 983			rval = rdev->open(rdev);
 984
 985		if (rval)
 986			rdev->users--;
 987	}
 988
 989	mutex_unlock(&rdev->lock);
 990
 991	return rval;
 992}
 
 993
 994static int ir_open(struct input_dev *idev)
 995{
 996	struct rc_dev *rdev = input_get_drvdata(idev);
 997
 998	return rc_open(rdev);
 999}
1000
1001void rc_close(struct rc_dev *rdev)
1002{
1003	if (rdev) {
1004		mutex_lock(&rdev->lock);
1005
1006		if (!--rdev->users && rdev->close && rdev->registered)
1007			rdev->close(rdev);
1008
1009		mutex_unlock(&rdev->lock);
1010	}
1011}
 
1012
1013static void ir_close(struct input_dev *idev)
1014{
1015	struct rc_dev *rdev = input_get_drvdata(idev);
1016	rc_close(rdev);
1017}
1018
1019/* class for /sys/class/rc */
1020static char *rc_devnode(const struct device *dev, umode_t *mode)
1021{
1022	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
1023}
1024
1025static struct class rc_class = {
1026	.name		= "rc",
1027	.devnode	= rc_devnode,
1028};
1029
1030/*
1031 * These are the protocol textual descriptions that are
1032 * used by the sysfs protocols file. Note that the order
1033 * of the entries is relevant.
1034 */
1035static const struct {
1036	u64	type;
1037	const char	*name;
1038	const char	*module_name;
1039} proto_names[] = {
1040	{ RC_PROTO_BIT_NONE,	"none",		NULL			},
1041	{ RC_PROTO_BIT_OTHER,	"other",	NULL			},
1042	{ RC_PROTO_BIT_UNKNOWN,	"unknown",	NULL			},
1043	{ RC_PROTO_BIT_RC5 |
1044	  RC_PROTO_BIT_RC5X_20,	"rc-5",		"ir-rc5-decoder"	},
1045	{ RC_PROTO_BIT_NEC |
1046	  RC_PROTO_BIT_NECX |
1047	  RC_PROTO_BIT_NEC32,	"nec",		"ir-nec-decoder"	},
1048	{ RC_PROTO_BIT_RC6_0 |
1049	  RC_PROTO_BIT_RC6_6A_20 |
1050	  RC_PROTO_BIT_RC6_6A_24 |
1051	  RC_PROTO_BIT_RC6_6A_32 |
1052	  RC_PROTO_BIT_RC6_MCE,	"rc-6",		"ir-rc6-decoder"	},
1053	{ RC_PROTO_BIT_JVC,	"jvc",		"ir-jvc-decoder"	},
1054	{ RC_PROTO_BIT_SONY12 |
1055	  RC_PROTO_BIT_SONY15 |
1056	  RC_PROTO_BIT_SONY20,	"sony",		"ir-sony-decoder"	},
1057	{ RC_PROTO_BIT_RC5_SZ,	"rc-5-sz",	"ir-rc5-decoder"	},
1058	{ RC_PROTO_BIT_SANYO,	"sanyo",	"ir-sanyo-decoder"	},
1059	{ RC_PROTO_BIT_SHARP,	"sharp",	"ir-sharp-decoder"	},
1060	{ RC_PROTO_BIT_MCIR2_KBD |
1061	  RC_PROTO_BIT_MCIR2_MSE, "mce_kbd",	"ir-mce_kbd-decoder"	},
1062	{ RC_PROTO_BIT_XMP,	"xmp",		"ir-xmp-decoder"	},
1063	{ RC_PROTO_BIT_CEC,	"cec",		NULL			},
1064	{ RC_PROTO_BIT_IMON,	"imon",		"ir-imon-decoder"	},
1065	{ RC_PROTO_BIT_RCMM12 |
1066	  RC_PROTO_BIT_RCMM24 |
1067	  RC_PROTO_BIT_RCMM32,	"rc-mm",	"ir-rcmm-decoder"	},
1068	{ RC_PROTO_BIT_XBOX_DVD, "xbox-dvd",	NULL			},
1069};
1070
1071/**
1072 * struct rc_filter_attribute - Device attribute relating to a filter type.
1073 * @attr:	Device attribute.
1074 * @type:	Filter type.
1075 * @mask:	false for filter value, true for filter mask.
1076 */
1077struct rc_filter_attribute {
1078	struct device_attribute		attr;
1079	enum rc_filter_type		type;
1080	bool				mask;
1081};
1082#define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
1083
 
 
 
 
 
1084#define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)	\
1085	struct rc_filter_attribute dev_attr_##_name = {			\
1086		.attr = __ATTR(_name, _mode, _show, _store),		\
1087		.type = (_type),					\
1088		.mask = (_mask),					\
1089	}
1090
1091/**
1092 * show_protocols() - shows the current IR protocol(s)
1093 * @device:	the device descriptor
1094 * @mattr:	the device attribute struct
1095 * @buf:	a pointer to the output buffer
1096 *
1097 * This routine is a callback routine for input read the IR protocol type(s).
1098 * it is triggered by reading /sys/class/rc/rc?/protocols.
1099 * It returns the protocol names of supported protocols.
1100 * Enabled protocols are printed in brackets.
1101 *
1102 * dev->lock is taken to guard against races between
1103 * store_protocols and show_protocols.
1104 */
1105static ssize_t show_protocols(struct device *device,
1106			      struct device_attribute *mattr, char *buf)
1107{
1108	struct rc_dev *dev = to_rc_dev(device);
 
1109	u64 allowed, enabled;
1110	char *tmp = buf;
1111	int i;
1112
 
 
 
 
1113	mutex_lock(&dev->lock);
1114
1115	enabled = dev->enabled_protocols;
1116	allowed = dev->allowed_protocols;
1117	if (dev->raw && !allowed)
 
 
1118		allowed = ir_raw_get_allowed_protocols();
 
 
 
 
1119
1120	mutex_unlock(&dev->lock);
1121
1122	dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
1123		__func__, (long long)allowed, (long long)enabled);
1124
1125	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1126		if (allowed & enabled & proto_names[i].type)
1127			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
1128		else if (allowed & proto_names[i].type)
1129			tmp += sprintf(tmp, "%s ", proto_names[i].name);
1130
1131		if (allowed & proto_names[i].type)
1132			allowed &= ~proto_names[i].type;
1133	}
1134
1135#ifdef CONFIG_LIRC
1136	if (dev->driver_type == RC_DRIVER_IR_RAW)
1137		tmp += sprintf(tmp, "[lirc] ");
1138#endif
1139
1140	if (tmp != buf)
1141		tmp--;
1142	*tmp = '\n';
1143
 
 
1144	return tmp + 1 - buf;
1145}
1146
1147/**
1148 * parse_protocol_change() - parses a protocol change request
1149 * @dev:	rc_dev device
1150 * @protocols:	pointer to the bitmask of current protocols
1151 * @buf:	pointer to the buffer with a list of changes
 
1152 *
1153 * Writing "+proto" will add a protocol to the protocol mask.
1154 * Writing "-proto" will remove a protocol from protocol mask.
 
 
1155 * Writing "proto" will enable only "proto".
1156 * Writing "none" will disable all protocols.
1157 * Returns the number of changes performed or a negative error code.
 
 
 
 
1158 */
1159static int parse_protocol_change(struct rc_dev *dev, u64 *protocols,
1160				 const char *buf)
 
 
1161{
1162	const char *tmp;
1163	unsigned count = 0;
1164	bool enable, disable;
 
 
1165	u64 mask;
1166	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1167
1168	while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
1169		if (!*tmp)
1170			break;
1171
1172		if (*tmp == '+') {
1173			enable = true;
1174			disable = false;
1175			tmp++;
1176		} else if (*tmp == '-') {
1177			enable = false;
1178			disable = true;
1179			tmp++;
1180		} else {
1181			enable = false;
1182			disable = false;
1183		}
1184
1185		for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1186			if (!strcasecmp(tmp, proto_names[i].name)) {
1187				mask = proto_names[i].type;
1188				break;
1189			}
1190		}
1191
1192		if (i == ARRAY_SIZE(proto_names)) {
1193			if (!strcasecmp(tmp, "lirc"))
1194				mask = 0;
1195			else {
1196				dev_dbg(&dev->dev, "Unknown protocol: '%s'\n",
1197					tmp);
1198				return -EINVAL;
1199			}
1200		}
1201
1202		count++;
1203
1204		if (enable)
1205			*protocols |= mask;
1206		else if (disable)
1207			*protocols &= ~mask;
1208		else
1209			*protocols = mask;
1210	}
1211
1212	if (!count) {
1213		dev_dbg(&dev->dev, "Protocol not specified\n");
1214		return -EINVAL;
 
1215	}
1216
1217	return count;
1218}
1219
1220void ir_raw_load_modules(u64 *protocols)
1221{
1222	u64 available;
1223	int i, ret;
1224
1225	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
1226		if (proto_names[i].type == RC_PROTO_BIT_NONE ||
1227		    proto_names[i].type & (RC_PROTO_BIT_OTHER |
1228					   RC_PROTO_BIT_UNKNOWN))
1229			continue;
1230
1231		available = ir_raw_get_allowed_protocols();
1232		if (!(*protocols & proto_names[i].type & ~available))
1233			continue;
1234
1235		if (!proto_names[i].module_name) {
1236			pr_err("Can't enable IR protocol %s\n",
1237			       proto_names[i].name);
1238			*protocols &= ~proto_names[i].type;
1239			continue;
1240		}
1241
1242		ret = request_module("%s", proto_names[i].module_name);
1243		if (ret < 0) {
1244			pr_err("Couldn't load IR protocol module %s\n",
1245			       proto_names[i].module_name);
1246			*protocols &= ~proto_names[i].type;
1247			continue;
1248		}
1249		msleep(20);
1250		available = ir_raw_get_allowed_protocols();
1251		if (!(*protocols & proto_names[i].type & ~available))
1252			continue;
1253
1254		pr_err("Loaded IR protocol module %s, but protocol %s still not available\n",
1255		       proto_names[i].module_name,
1256		       proto_names[i].name);
1257		*protocols &= ~proto_names[i].type;
1258	}
1259}
1260
1261/**
1262 * store_protocols() - changes the current/wakeup IR protocol(s)
1263 * @device:	the device descriptor
1264 * @mattr:	the device attribute struct
1265 * @buf:	a pointer to the input buffer
1266 * @len:	length of the input buffer
1267 *
1268 * This routine is for changing the IR protocol type.
1269 * It is triggered by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1270 * See parse_protocol_change() for the valid commands.
1271 * Returns @len on success or a negative error code.
1272 *
1273 * dev->lock is taken to guard against races between
1274 * store_protocols and show_protocols.
1275 */
1276static ssize_t store_protocols(struct device *device,
1277			       struct device_attribute *mattr,
1278			       const char *buf, size_t len)
1279{
1280	struct rc_dev *dev = to_rc_dev(device);
1281	u64 *current_protocols;
1282	struct rc_scancode_filter *filter;
1283	u64 old_protocols, new_protocols;
1284	ssize_t rc;
1285
1286	dev_dbg(&dev->dev, "Normal protocol change requested\n");
1287	current_protocols = &dev->enabled_protocols;
1288	filter = &dev->scancode_filter;
1289
1290	if (!dev->change_protocol) {
1291		dev_dbg(&dev->dev, "Protocol switching not supported\n");
1292		return -EINVAL;
1293	}
1294
1295	mutex_lock(&dev->lock);
1296	if (!dev->registered) {
1297		mutex_unlock(&dev->lock);
1298		return -ENODEV;
1299	}
1300
1301	old_protocols = *current_protocols;
1302	new_protocols = old_protocols;
1303	rc = parse_protocol_change(dev, &new_protocols, buf);
1304	if (rc < 0)
1305		goto out;
1306
1307	if (dev->driver_type == RC_DRIVER_IR_RAW)
1308		ir_raw_load_modules(&new_protocols);
1309
1310	rc = dev->change_protocol(dev, &new_protocols);
1311	if (rc < 0) {
1312		dev_dbg(&dev->dev, "Error setting protocols to 0x%llx\n",
1313			(long long)new_protocols);
1314		goto out;
1315	}
1316
1317	if (new_protocols != old_protocols) {
1318		*current_protocols = new_protocols;
1319		dev_dbg(&dev->dev, "Protocols changed to 0x%llx\n",
1320			(long long)new_protocols);
1321	}
1322
1323	/*
1324	 * If a protocol change was attempted the filter may need updating, even
1325	 * if the actual protocol mask hasn't changed (since the driver may have
1326	 * cleared the filter).
1327	 * Try setting the same filter with the new protocol (if any).
1328	 * Fall back to clearing the filter.
1329	 */
1330	if (dev->s_filter && filter->mask) {
1331		if (new_protocols)
1332			rc = dev->s_filter(dev, filter);
1333		else
1334			rc = -1;
1335
1336		if (rc < 0) {
1337			filter->data = 0;
1338			filter->mask = 0;
1339			dev->s_filter(dev, filter);
 
 
 
 
 
 
 
 
1340		}
 
 
 
1341	}
1342
1343	rc = len;
1344
1345out:
1346	mutex_unlock(&dev->lock);
1347	return rc;
1348}
1349
1350/**
1351 * show_filter() - shows the current scancode filter value or mask
1352 * @device:	the device descriptor
1353 * @attr:	the device attribute struct
1354 * @buf:	a pointer to the output buffer
1355 *
1356 * This routine is a callback routine to read a scancode filter value or mask.
1357 * It is triggered by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1358 * It prints the current scancode filter value or mask of the appropriate filter
1359 * type in hexadecimal into @buf and returns the size of the buffer.
1360 *
1361 * Bits of the filter value corresponding to set bits in the filter mask are
1362 * compared against input scancodes and non-matching scancodes are discarded.
1363 *
1364 * dev->lock is taken to guard against races between
1365 * store_filter and show_filter.
1366 */
1367static ssize_t show_filter(struct device *device,
1368			   struct device_attribute *attr,
1369			   char *buf)
1370{
1371	struct rc_dev *dev = to_rc_dev(device);
1372	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1373	struct rc_scancode_filter *filter;
1374	u32 val;
1375
1376	mutex_lock(&dev->lock);
1377
1378	if (fattr->type == RC_FILTER_NORMAL)
1379		filter = &dev->scancode_filter;
1380	else
1381		filter = &dev->scancode_wakeup_filter;
1382
1383	if (fattr->mask)
1384		val = filter->mask;
 
 
 
 
1385	else
1386		val = filter->data;
1387	mutex_unlock(&dev->lock);
1388
1389	return sprintf(buf, "%#x\n", val);
1390}
1391
1392/**
1393 * store_filter() - changes the scancode filter value
1394 * @device:	the device descriptor
1395 * @attr:	the device attribute struct
1396 * @buf:	a pointer to the input buffer
1397 * @len:	length of the input buffer
1398 *
1399 * This routine is for changing a scancode filter value or mask.
1400 * It is triggered by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1401 * Returns -EINVAL if an invalid filter value for the current protocol was
1402 * specified or if scancode filtering is not supported by the driver, otherwise
1403 * returns @len.
1404 *
1405 * Bits of the filter value corresponding to set bits in the filter mask are
1406 * compared against input scancodes and non-matching scancodes are discarded.
1407 *
1408 * dev->lock is taken to guard against races between
1409 * store_filter and show_filter.
1410 */
1411static ssize_t store_filter(struct device *device,
1412			    struct device_attribute *attr,
1413			    const char *buf, size_t len)
 
1414{
1415	struct rc_dev *dev = to_rc_dev(device);
1416	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1417	struct rc_scancode_filter new_filter, *filter;
1418	int ret;
1419	unsigned long val;
1420	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1421
 
 
 
 
1422	ret = kstrtoul(buf, 0, &val);
1423	if (ret < 0)
1424		return ret;
1425
1426	if (fattr->type == RC_FILTER_NORMAL) {
1427		set_filter = dev->s_filter;
1428		filter = &dev->scancode_filter;
1429	} else {
1430		set_filter = dev->s_wakeup_filter;
1431		filter = &dev->scancode_wakeup_filter;
1432	}
1433
1434	if (!set_filter)
1435		return -EINVAL;
1436
1437	mutex_lock(&dev->lock);
1438	if (!dev->registered) {
1439		mutex_unlock(&dev->lock);
1440		return -ENODEV;
1441	}
1442
1443	new_filter = *filter;
 
 
1444	if (fattr->mask)
1445		new_filter.mask = val;
1446	else
1447		new_filter.data = val;
1448
1449	if (fattr->type == RC_FILTER_WAKEUP) {
1450		/*
1451		 * Refuse to set a filter unless a protocol is enabled
1452		 * and the filter is valid for that protocol
1453		 */
1454		if (dev->wakeup_protocol != RC_PROTO_UNKNOWN)
1455			ret = rc_validate_filter(dev, &new_filter);
1456		else
1457			ret = -EINVAL;
1458
1459		if (ret != 0)
1460			goto unlock;
1461	}
1462
1463	if (fattr->type == RC_FILTER_NORMAL && !dev->enabled_protocols &&
1464	    val) {
1465		/* refuse to set a filter unless a protocol is enabled */
1466		ret = -EINVAL;
1467		goto unlock;
1468	}
1469
1470	ret = set_filter(dev, &new_filter);
1471	if (ret < 0)
1472		goto unlock;
1473
1474	*filter = new_filter;
 
1475
1476unlock:
1477	mutex_unlock(&dev->lock);
1478	return (ret < 0) ? ret : len;
1479}
1480
1481/**
1482 * show_wakeup_protocols() - shows the wakeup IR protocol
1483 * @device:	the device descriptor
1484 * @mattr:	the device attribute struct
1485 * @buf:	a pointer to the output buffer
1486 *
1487 * This routine is a callback routine for input read the IR protocol type(s).
1488 * it is triggered by reading /sys/class/rc/rc?/wakeup_protocols.
1489 * It returns the protocol names of supported protocols.
1490 * The enabled protocols are printed in brackets.
1491 *
1492 * dev->lock is taken to guard against races between
1493 * store_wakeup_protocols and show_wakeup_protocols.
1494 */
1495static ssize_t show_wakeup_protocols(struct device *device,
1496				     struct device_attribute *mattr,
1497				     char *buf)
1498{
1499	struct rc_dev *dev = to_rc_dev(device);
1500	u64 allowed;
1501	enum rc_proto enabled;
1502	char *tmp = buf;
1503	int i;
1504
1505	mutex_lock(&dev->lock);
1506
1507	allowed = dev->allowed_wakeup_protocols;
1508	enabled = dev->wakeup_protocol;
1509
1510	mutex_unlock(&dev->lock);
1511
1512	dev_dbg(&dev->dev, "%s: allowed - 0x%llx, enabled - %d\n",
1513		__func__, (long long)allowed, enabled);
1514
1515	for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1516		if (allowed & (1ULL << i)) {
1517			if (i == enabled)
1518				tmp += sprintf(tmp, "[%s] ", protocols[i].name);
1519			else
1520				tmp += sprintf(tmp, "%s ", protocols[i].name);
1521		}
1522	}
1523
1524	if (tmp != buf)
1525		tmp--;
1526	*tmp = '\n';
1527
1528	return tmp + 1 - buf;
1529}
1530
1531/**
1532 * store_wakeup_protocols() - changes the wakeup IR protocol(s)
1533 * @device:	the device descriptor
1534 * @mattr:	the device attribute struct
1535 * @buf:	a pointer to the input buffer
1536 * @len:	length of the input buffer
1537 *
1538 * This routine is for changing the IR protocol type.
1539 * It is triggered by writing to /sys/class/rc/rc?/wakeup_protocols.
1540 * Returns @len on success or a negative error code.
1541 *
1542 * dev->lock is taken to guard against races between
1543 * store_wakeup_protocols and show_wakeup_protocols.
1544 */
1545static ssize_t store_wakeup_protocols(struct device *device,
1546				      struct device_attribute *mattr,
1547				      const char *buf, size_t len)
1548{
1549	struct rc_dev *dev = to_rc_dev(device);
1550	enum rc_proto protocol = RC_PROTO_UNKNOWN;
1551	ssize_t rc;
1552	u64 allowed;
1553	int i;
1554
1555	mutex_lock(&dev->lock);
1556	if (!dev->registered) {
1557		mutex_unlock(&dev->lock);
1558		return -ENODEV;
1559	}
1560
1561	allowed = dev->allowed_wakeup_protocols;
1562
1563	if (!sysfs_streq(buf, "none")) {
1564		for (i = 0; i < ARRAY_SIZE(protocols); i++) {
1565			if ((allowed & (1ULL << i)) &&
1566			    sysfs_streq(buf, protocols[i].name)) {
1567				protocol = i;
1568				break;
1569			}
1570		}
1571
1572		if (i == ARRAY_SIZE(protocols)) {
1573			rc = -EINVAL;
1574			goto out;
1575		}
1576
1577		if (dev->encode_wakeup) {
1578			u64 mask = 1ULL << protocol;
1579
1580			ir_raw_load_modules(&mask);
1581			if (!mask) {
1582				rc = -EINVAL;
1583				goto out;
1584			}
1585		}
1586	}
1587
1588	if (dev->wakeup_protocol != protocol) {
1589		dev->wakeup_protocol = protocol;
1590		dev_dbg(&dev->dev, "Wakeup protocol changed to %d\n", protocol);
1591
1592		if (protocol == RC_PROTO_RC6_MCE)
1593			dev->scancode_wakeup_filter.data = 0x800f0000;
1594		else
1595			dev->scancode_wakeup_filter.data = 0;
1596		dev->scancode_wakeup_filter.mask = 0;
1597
1598		rc = dev->s_wakeup_filter(dev, &dev->scancode_wakeup_filter);
1599		if (rc == 0)
1600			rc = len;
1601	} else {
1602		rc = len;
1603	}
1604
1605out:
1606	mutex_unlock(&dev->lock);
1607	return rc;
1608}
1609
1610static void rc_dev_release(struct device *device)
1611{
1612	struct rc_dev *dev = to_rc_dev(device);
1613
1614	kfree(dev);
1615}
1616
 
 
 
 
 
 
 
1617static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1618{
1619	struct rc_dev *dev = to_rc_dev(device);
1620	int ret = 0;
1621
1622	mutex_lock(&dev->lock);
1623
1624	if (!dev->registered)
1625		ret = -ENODEV;
1626	if (ret == 0 && dev->rc_map.name)
1627		ret = add_uevent_var(env, "NAME=%s", dev->rc_map.name);
1628	if (ret == 0 && dev->driver_name)
1629		ret = add_uevent_var(env, "DRV_NAME=%s", dev->driver_name);
1630	if (ret == 0 && dev->device_name)
1631		ret = add_uevent_var(env, "DEV_NAME=%s", dev->device_name);
1632
1633	mutex_unlock(&dev->lock);
 
 
 
1634
1635	return ret;
1636}
1637
1638/*
1639 * Static device attribute struct with the sysfs attributes for IR's
1640 */
1641static struct device_attribute dev_attr_ro_protocols =
1642__ATTR(protocols, 0444, show_protocols, NULL);
1643static struct device_attribute dev_attr_rw_protocols =
1644__ATTR(protocols, 0644, show_protocols, store_protocols);
1645static DEVICE_ATTR(wakeup_protocols, 0644, show_wakeup_protocols,
1646		   store_wakeup_protocols);
1647static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1648		      show_filter, store_filter, RC_FILTER_NORMAL, false);
1649static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1650		      show_filter, store_filter, RC_FILTER_NORMAL, true);
1651static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1652		      show_filter, store_filter, RC_FILTER_WAKEUP, false);
1653static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1654		      show_filter, store_filter, RC_FILTER_WAKEUP, true);
1655
1656static struct attribute *rc_dev_rw_protocol_attrs[] = {
1657	&dev_attr_rw_protocols.attr,
1658	NULL,
1659};
1660
1661static const struct attribute_group rc_dev_rw_protocol_attr_grp = {
1662	.attrs	= rc_dev_rw_protocol_attrs,
1663};
1664
1665static struct attribute *rc_dev_ro_protocol_attrs[] = {
1666	&dev_attr_ro_protocols.attr,
1667	NULL,
1668};
1669
1670static const struct attribute_group rc_dev_ro_protocol_attr_grp = {
1671	.attrs	= rc_dev_ro_protocol_attrs,
1672};
1673
1674static struct attribute *rc_dev_filter_attrs[] = {
1675	&dev_attr_filter.attr.attr,
1676	&dev_attr_filter_mask.attr.attr,
1677	NULL,
1678};
1679
1680static const struct attribute_group rc_dev_filter_attr_grp = {
1681	.attrs	= rc_dev_filter_attrs,
1682};
1683
1684static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1685	&dev_attr_wakeup_filter.attr.attr,
1686	&dev_attr_wakeup_filter_mask.attr.attr,
1687	&dev_attr_wakeup_protocols.attr,
1688	NULL,
1689};
1690
1691static const struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1692	.attrs	= rc_dev_wakeup_filter_attrs,
1693};
1694
1695static const struct device_type rc_dev_type = {
1696	.release	= rc_dev_release,
1697	.uevent		= rc_dev_uevent,
1698};
1699
1700struct rc_dev *rc_allocate_device(enum rc_driver_type type)
1701{
1702	struct rc_dev *dev;
1703
1704	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1705	if (!dev)
1706		return NULL;
1707
1708	if (type != RC_DRIVER_IR_RAW_TX) {
1709		dev->input_dev = input_allocate_device();
1710		if (!dev->input_dev) {
1711			kfree(dev);
1712			return NULL;
1713		}
1714
1715		dev->input_dev->getkeycode = ir_getkeycode;
1716		dev->input_dev->setkeycode = ir_setkeycode;
1717		input_set_drvdata(dev->input_dev, dev);
1718
1719		dev->timeout = IR_DEFAULT_TIMEOUT;
1720		timer_setup(&dev->timer_keyup, ir_timer_keyup, 0);
1721		timer_setup(&dev->timer_repeat, ir_timer_repeat, 0);
1722
1723		spin_lock_init(&dev->rc_map.lock);
1724		spin_lock_init(&dev->keylock);
1725	}
1726	mutex_init(&dev->lock);
 
1727
1728	dev->dev.type = &rc_dev_type;
1729	dev->dev.class = &rc_class;
1730	device_initialize(&dev->dev);
1731
1732	dev->driver_type = type;
1733
1734	__module_get(THIS_MODULE);
1735	return dev;
1736}
1737EXPORT_SYMBOL_GPL(rc_allocate_device);
1738
1739void rc_free_device(struct rc_dev *dev)
1740{
1741	if (!dev)
1742		return;
1743
1744	input_free_device(dev->input_dev);
 
1745
1746	put_device(&dev->dev);
1747
1748	/* kfree(dev) will be called by the callback function
1749	   rc_dev_release() */
1750
1751	module_put(THIS_MODULE);
1752}
1753EXPORT_SYMBOL_GPL(rc_free_device);
1754
1755static void devm_rc_alloc_release(struct device *dev, void *res)
1756{
1757	rc_free_device(*(struct rc_dev **)res);
1758}
1759
1760struct rc_dev *devm_rc_allocate_device(struct device *dev,
1761				       enum rc_driver_type type)
1762{
1763	struct rc_dev **dr, *rc;
1764
1765	dr = devres_alloc(devm_rc_alloc_release, sizeof(*dr), GFP_KERNEL);
1766	if (!dr)
1767		return NULL;
1768
1769	rc = rc_allocate_device(type);
1770	if (!rc) {
1771		devres_free(dr);
1772		return NULL;
1773	}
1774
1775	rc->dev.parent = dev;
1776	rc->managed_alloc = true;
1777	*dr = rc;
1778	devres_add(dev, dr);
1779
1780	return rc;
1781}
1782EXPORT_SYMBOL_GPL(devm_rc_allocate_device);
1783
1784static int rc_prepare_rx_device(struct rc_dev *dev)
1785{
1786	int rc;
1787	struct rc_map *rc_map;
1788	u64 rc_proto;
 
1789
1790	if (!dev->map_name)
1791		return -EINVAL;
1792
1793	rc_map = rc_map_get(dev->map_name);
1794	if (!rc_map)
1795		rc_map = rc_map_get(RC_MAP_EMPTY);
1796	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1797		return -EINVAL;
1798
1799	rc = ir_setkeytable(dev, rc_map);
1800	if (rc)
1801		return rc;
1802
1803	rc_proto = BIT_ULL(rc_map->rc_proto);
1804
1805	if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1806		dev->enabled_protocols = dev->allowed_protocols;
1807
1808	if (dev->driver_type == RC_DRIVER_IR_RAW)
1809		ir_raw_load_modules(&rc_proto);
1810
1811	if (dev->change_protocol) {
1812		rc = dev->change_protocol(dev, &rc_proto);
1813		if (rc < 0)
1814			goto out_table;
1815		dev->enabled_protocols = rc_proto;
1816	}
1817
1818	/* Keyboard events */
1819	set_bit(EV_KEY, dev->input_dev->evbit);
1820	set_bit(EV_REP, dev->input_dev->evbit);
1821	set_bit(EV_MSC, dev->input_dev->evbit);
1822	set_bit(MSC_SCAN, dev->input_dev->mscbit);
1823
1824	/* Pointer/mouse events */
1825	set_bit(INPUT_PROP_POINTING_STICK, dev->input_dev->propbit);
1826	set_bit(EV_REL, dev->input_dev->evbit);
1827	set_bit(REL_X, dev->input_dev->relbit);
1828	set_bit(REL_Y, dev->input_dev->relbit);
1829
1830	if (dev->open)
1831		dev->input_dev->open = ir_open;
1832	if (dev->close)
1833		dev->input_dev->close = ir_close;
1834
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1835	dev->input_dev->dev.parent = &dev->dev;
1836	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1837	dev->input_dev->phys = dev->input_phys;
1838	dev->input_dev->name = dev->device_name;
1839
1840	return 0;
1841
1842out_table:
1843	ir_free_table(&dev->rc_map);
1844
1845	return rc;
1846}
1847
1848static int rc_setup_rx_device(struct rc_dev *dev)
1849{
1850	int rc;
1851
1852	/* rc_open will be called here */
1853	rc = input_register_device(dev->input_dev);
1854	if (rc)
1855		return rc;
1856
1857	/*
1858	 * Default delay of 250ms is too short for some protocols, especially
1859	 * since the timeout is currently set to 250ms. Increase it to 500ms,
1860	 * to avoid wrong repetition of the keycodes. Note that this must be
1861	 * set after the call to input_register_device().
1862	 */
1863	if (dev->allowed_protocols == RC_PROTO_BIT_CEC)
1864		dev->input_dev->rep[REP_DELAY] = 0;
1865	else
1866		dev->input_dev->rep[REP_DELAY] = 500;
1867
1868	/*
1869	 * As a repeat event on protocols like RC-5 and NEC take as long as
1870	 * 110/114ms, using 33ms as a repeat period is not the right thing
1871	 * to do.
1872	 */
1873	dev->input_dev->rep[REP_PERIOD] = 125;
1874
1875	return 0;
1876}
1877
1878static void rc_free_rx_device(struct rc_dev *dev)
1879{
1880	if (!dev)
1881		return;
1882
1883	if (dev->input_dev) {
1884		input_unregister_device(dev->input_dev);
1885		dev->input_dev = NULL;
1886	}
1887
1888	ir_free_table(&dev->rc_map);
1889}
1890
1891int rc_register_device(struct rc_dev *dev)
1892{
1893	const char *path;
1894	int attr = 0;
1895	int minor;
1896	int rc;
1897
1898	if (!dev)
1899		return -EINVAL;
1900
1901	minor = ida_alloc_max(&rc_ida, RC_DEV_MAX - 1, GFP_KERNEL);
1902	if (minor < 0)
1903		return minor;
1904
1905	dev->minor = minor;
1906	dev_set_name(&dev->dev, "rc%u", dev->minor);
1907	dev_set_drvdata(&dev->dev, dev);
1908
1909	dev->dev.groups = dev->sysfs_groups;
1910	if (dev->driver_type == RC_DRIVER_SCANCODE && !dev->change_protocol)
1911		dev->sysfs_groups[attr++] = &rc_dev_ro_protocol_attr_grp;
1912	else if (dev->driver_type != RC_DRIVER_IR_RAW_TX)
1913		dev->sysfs_groups[attr++] = &rc_dev_rw_protocol_attr_grp;
1914	if (dev->s_filter)
1915		dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1916	if (dev->s_wakeup_filter)
1917		dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1918	dev->sysfs_groups[attr++] = NULL;
1919
1920	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1921		rc = ir_raw_event_prepare(dev);
1922		if (rc < 0)
1923			goto out_minor;
1924	}
1925
1926	if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1927		rc = rc_prepare_rx_device(dev);
1928		if (rc)
1929			goto out_raw;
1930	}
1931
1932	dev->registered = true;
1933
1934	rc = device_add(&dev->dev);
1935	if (rc)
1936		goto out_rx_free;
1937
1938	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1939	dev_info(&dev->dev, "%s as %s\n",
1940		 dev->device_name ?: "Unspecified device", path ?: "N/A");
 
 
1941	kfree(path);
1942
1943	/*
1944	 * once the input device is registered in rc_setup_rx_device,
1945	 * userspace can open the input device and rc_open() will be called
1946	 * as a result. This results in driver code being allowed to submit
1947	 * keycodes with rc_keydown, so lirc must be registered first.
1948	 */
1949	if (dev->allowed_protocols != RC_PROTO_BIT_CEC) {
1950		rc = lirc_register(dev);
1951		if (rc < 0)
1952			goto out_dev;
1953	}
1954
1955	if (dev->driver_type != RC_DRIVER_IR_RAW_TX) {
1956		rc = rc_setup_rx_device(dev);
1957		if (rc)
1958			goto out_lirc;
1959	}
1960
1961	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1962		rc = ir_raw_event_register(dev);
 
1963		if (rc < 0)
1964			goto out_rx;
 
1965	}
1966
1967	dev_dbg(&dev->dev, "Registered rc%u (driver: %s)\n", dev->minor,
1968		dev->driver_name ? dev->driver_name : "unknown");
 
 
 
 
 
1969
1970	return 0;
1971
1972out_rx:
1973	rc_free_rx_device(dev);
1974out_lirc:
1975	if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
1976		lirc_unregister(dev);
 
 
 
1977out_dev:
1978	device_del(&dev->dev);
1979out_rx_free:
1980	ir_free_table(&dev->rc_map);
1981out_raw:
1982	ir_raw_event_free(dev);
1983out_minor:
1984	ida_free(&rc_ida, minor);
1985	return rc;
1986}
1987EXPORT_SYMBOL_GPL(rc_register_device);
1988
1989static void devm_rc_release(struct device *dev, void *res)
1990{
1991	rc_unregister_device(*(struct rc_dev **)res);
1992}
1993
1994int devm_rc_register_device(struct device *parent, struct rc_dev *dev)
1995{
1996	struct rc_dev **dr;
1997	int ret;
1998
1999	dr = devres_alloc(devm_rc_release, sizeof(*dr), GFP_KERNEL);
2000	if (!dr)
2001		return -ENOMEM;
2002
2003	ret = rc_register_device(dev);
2004	if (ret) {
2005		devres_free(dr);
2006		return ret;
2007	}
2008
2009	*dr = dev;
2010	devres_add(parent, dr);
2011
2012	return 0;
2013}
2014EXPORT_SYMBOL_GPL(devm_rc_register_device);
2015
2016void rc_unregister_device(struct rc_dev *dev)
2017{
2018	if (!dev)
2019		return;
2020
2021	if (dev->driver_type == RC_DRIVER_IR_RAW)
2022		ir_raw_event_unregister(dev);
2023
2024	del_timer_sync(&dev->timer_keyup);
2025	del_timer_sync(&dev->timer_repeat);
2026
2027	mutex_lock(&dev->lock);
2028	if (dev->users && dev->close)
2029		dev->close(dev);
2030	dev->registered = false;
2031	mutex_unlock(&dev->lock);
2032
2033	rc_free_rx_device(dev);
 
2034
2035	/*
2036	 * lirc device should be freed with dev->registered = false, so
2037	 * that userspace polling will get notified.
2038	 */
2039	if (dev->allowed_protocols != RC_PROTO_BIT_CEC)
2040		lirc_unregister(dev);
2041
2042	device_del(&dev->dev);
 
2043
2044	ida_free(&rc_ida, dev->minor);
2045
2046	if (!dev->managed_alloc)
2047		rc_free_device(dev);
2048}
2049
2050EXPORT_SYMBOL_GPL(rc_unregister_device);
2051
2052/*
2053 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
2054 */
2055
2056static int __init rc_core_init(void)
2057{
2058	int rc = class_register(&rc_class);
2059	if (rc) {
2060		pr_err("rc_core: unable to register rc class\n");
2061		return rc;
2062	}
2063
2064	rc = lirc_dev_init();
2065	if (rc) {
2066		pr_err("rc_core: unable to init lirc\n");
2067		class_unregister(&rc_class);
2068		return rc;
2069	}
2070
2071	led_trigger_register_simple("rc-feedback", &led_feedback);
2072	rc_map_register(&empty_map);
2073#ifdef CONFIG_MEDIA_CEC_RC
2074	rc_map_register(&cec_map);
2075#endif
2076
2077	return 0;
2078}
2079
2080static void __exit rc_core_exit(void)
2081{
2082	lirc_dev_exit();
2083	class_unregister(&rc_class);
2084	led_trigger_unregister_simple(led_feedback);
2085#ifdef CONFIG_MEDIA_CEC_RC
2086	rc_map_unregister(&cec_map);
2087#endif
2088	rc_map_unregister(&empty_map);
2089}
2090
2091subsys_initcall(rc_core_init);
2092module_exit(rc_core_exit);
2093
 
 
 
 
2094MODULE_AUTHOR("Mauro Carvalho Chehab");
2095MODULE_LICENSE("GPL v2");
v3.15
   1/* rc-main.c - Remote Controller core module
   2 *
   3 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 *  it under the terms of the GNU General Public License as published by
   7 *  the Free Software Foundation version 2 of the License.
   8 *
   9 *  This program is distributed in the hope that it will be useful,
  10 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 *  GNU General Public License for more details.
  13 */
  14
  15#include <media/rc-core.h>
 
  16#include <linux/spinlock.h>
  17#include <linux/delay.h>
  18#include <linux/input.h>
  19#include <linux/leds.h>
  20#include <linux/slab.h>
 
  21#include <linux/device.h>
  22#include <linux/module.h>
  23#include "rc-core-priv.h"
  24
  25/* Bitmap to store allocated device numbers from 0 to IRRCV_NUM_DEVICES - 1 */
  26#define IRRCV_NUM_DEVICES      256
  27static DECLARE_BITMAP(ir_core_dev_number, IRRCV_NUM_DEVICES);
  28
  29/* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
  30#define IR_TAB_MIN_SIZE	256
  31#define IR_TAB_MAX_SIZE	8192
  32
  33/* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
  34#define IR_KEYPRESS_TIMEOUT 250
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  35
  36/* Used to keep track of known keymaps */
  37static LIST_HEAD(rc_map_list);
  38static DEFINE_SPINLOCK(rc_map_lock);
  39static struct led_trigger *led_feedback;
  40
 
 
 
  41static struct rc_map_list *seek_rc_map(const char *name)
  42{
  43	struct rc_map_list *map = NULL;
  44
  45	spin_lock(&rc_map_lock);
  46	list_for_each_entry(map, &rc_map_list, list) {
  47		if (!strcmp(name, map->map.name)) {
  48			spin_unlock(&rc_map_lock);
  49			return map;
  50		}
  51	}
  52	spin_unlock(&rc_map_lock);
  53
  54	return NULL;
  55}
  56
  57struct rc_map *rc_map_get(const char *name)
  58{
  59
  60	struct rc_map_list *map;
  61
  62	map = seek_rc_map(name);
  63#ifdef MODULE
  64	if (!map) {
  65		int rc = request_module("%s", name);
  66		if (rc < 0) {
  67			printk(KERN_ERR "Couldn't load IR keymap %s\n", name);
  68			return NULL;
  69		}
  70		msleep(20);	/* Give some time for IR to register */
  71
  72		map = seek_rc_map(name);
  73	}
  74#endif
  75	if (!map) {
  76		printk(KERN_ERR "IR keymap %s not found\n", name);
  77		return NULL;
  78	}
  79
  80	printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
  81
  82	return &map->map;
  83}
  84EXPORT_SYMBOL_GPL(rc_map_get);
  85
  86int rc_map_register(struct rc_map_list *map)
  87{
  88	spin_lock(&rc_map_lock);
  89	list_add_tail(&map->list, &rc_map_list);
  90	spin_unlock(&rc_map_lock);
  91	return 0;
  92}
  93EXPORT_SYMBOL_GPL(rc_map_register);
  94
  95void rc_map_unregister(struct rc_map_list *map)
  96{
  97	spin_lock(&rc_map_lock);
  98	list_del(&map->list);
  99	spin_unlock(&rc_map_lock);
 100}
 101EXPORT_SYMBOL_GPL(rc_map_unregister);
 102
 103
 104static struct rc_map_table empty[] = {
 105	{ 0x2a, KEY_COFFEE },
 106};
 107
 108static struct rc_map_list empty_map = {
 109	.map = {
 110		.scan    = empty,
 111		.size    = ARRAY_SIZE(empty),
 112		.rc_type = RC_TYPE_UNKNOWN,	/* Legacy IR type */
 113		.name    = RC_MAP_EMPTY,
 114	}
 115};
 116
 117/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 118 * ir_create_table() - initializes a scancode table
 
 119 * @rc_map:	the rc_map to initialize
 120 * @name:	name to assign to the table
 121 * @rc_type:	ir type to assign to the new table
 122 * @size:	initial size of the table
 123 * @return:	zero on success or a negative error code
 124 *
 125 * This routine will initialize the rc_map and will allocate
 126 * memory to hold at least the specified number of elements.
 
 
 127 */
 128static int ir_create_table(struct rc_map *rc_map,
 129			   const char *name, u64 rc_type, size_t size)
 130{
 131	rc_map->name = name;
 132	rc_map->rc_type = rc_type;
 
 
 133	rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
 134	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
 135	rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
 136	if (!rc_map->scan)
 
 
 137		return -ENOMEM;
 
 138
 139	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
 140		   rc_map->size, rc_map->alloc);
 141	return 0;
 142}
 143
 144/**
 145 * ir_free_table() - frees memory allocated by a scancode table
 146 * @rc_map:	the table whose mappings need to be freed
 147 *
 148 * This routine will free memory alloctaed for key mappings used by given
 149 * scancode table.
 150 */
 151static void ir_free_table(struct rc_map *rc_map)
 152{
 153	rc_map->size = 0;
 
 
 154	kfree(rc_map->scan);
 155	rc_map->scan = NULL;
 156}
 157
 158/**
 159 * ir_resize_table() - resizes a scancode table if necessary
 
 160 * @rc_map:	the rc_map to resize
 161 * @gfp_flags:	gfp flags to use when allocating memory
 162 * @return:	zero on success or a negative error code
 163 *
 164 * This routine will shrink the rc_map if it has lots of
 165 * unused entries and grow it if it is full.
 
 
 166 */
 167static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
 
 168{
 169	unsigned int oldalloc = rc_map->alloc;
 170	unsigned int newalloc = oldalloc;
 171	struct rc_map_table *oldscan = rc_map->scan;
 172	struct rc_map_table *newscan;
 173
 174	if (rc_map->size == rc_map->len) {
 175		/* All entries in use -> grow keytable */
 176		if (rc_map->alloc >= IR_TAB_MAX_SIZE)
 177			return -ENOMEM;
 178
 179		newalloc *= 2;
 180		IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
 181	}
 182
 183	if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
 184		/* Less than 1/3 of entries in use -> shrink keytable */
 185		newalloc /= 2;
 186		IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
 187	}
 188
 189	if (newalloc == oldalloc)
 190		return 0;
 191
 192	newscan = kmalloc(newalloc, gfp_flags);
 193	if (!newscan) {
 194		IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
 195		return -ENOMEM;
 196	}
 197
 198	memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
 199	rc_map->scan = newscan;
 200	rc_map->alloc = newalloc;
 201	rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
 202	kfree(oldscan);
 203	return 0;
 204}
 205
 206/**
 207 * ir_update_mapping() - set a keycode in the scancode->keycode table
 208 * @dev:	the struct rc_dev device descriptor
 209 * @rc_map:	scancode table to be adjusted
 210 * @index:	index of the mapping that needs to be updated
 211 * @keycode:	the desired keycode
 212 * @return:	previous keycode assigned to the mapping
 213 *
 214 * This routine is used to update scancode->keycode mapping at given
 215 * position.
 
 
 
 216 */
 217static unsigned int ir_update_mapping(struct rc_dev *dev,
 218				      struct rc_map *rc_map,
 219				      unsigned int index,
 220				      unsigned int new_keycode)
 221{
 222	int old_keycode = rc_map->scan[index].keycode;
 223	int i;
 224
 225	/* Did the user wish to remove the mapping? */
 226	if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
 227		IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
 228			   index, rc_map->scan[index].scancode);
 229		rc_map->len--;
 230		memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
 231			(rc_map->len - index) * sizeof(struct rc_map_table));
 232	} else {
 233		IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
 234			   index,
 235			   old_keycode == KEY_RESERVED ? "New" : "Replacing",
 236			   rc_map->scan[index].scancode, new_keycode);
 237		rc_map->scan[index].keycode = new_keycode;
 238		__set_bit(new_keycode, dev->input_dev->keybit);
 239	}
 240
 241	if (old_keycode != KEY_RESERVED) {
 242		/* A previous mapping was updated... */
 243		__clear_bit(old_keycode, dev->input_dev->keybit);
 244		/* ... but another scancode might use the same keycode */
 245		for (i = 0; i < rc_map->len; i++) {
 246			if (rc_map->scan[i].keycode == old_keycode) {
 247				__set_bit(old_keycode, dev->input_dev->keybit);
 248				break;
 249			}
 250		}
 251
 252		/* Possibly shrink the keytable, failure is not a problem */
 253		ir_resize_table(rc_map, GFP_ATOMIC);
 254	}
 255
 256	return old_keycode;
 257}
 258
 259/**
 260 * ir_establish_scancode() - set a keycode in the scancode->keycode table
 261 * @dev:	the struct rc_dev device descriptor
 262 * @rc_map:	scancode table to be searched
 263 * @scancode:	the desired scancode
 264 * @resize:	controls whether we allowed to resize the table to
 265 *		accommodate not yet present scancodes
 266 * @return:	index of the mapping containing scancode in question
 267 *		or -1U in case of failure.
 268 *
 269 * This routine is used to locate given scancode in rc_map.
 270 * If scancode is not yet present the routine will allocate a new slot
 271 * for it.
 
 
 
 272 */
 273static unsigned int ir_establish_scancode(struct rc_dev *dev,
 274					  struct rc_map *rc_map,
 275					  unsigned int scancode,
 276					  bool resize)
 277{
 278	unsigned int i;
 279
 280	/*
 281	 * Unfortunately, some hardware-based IR decoders don't provide
 282	 * all bits for the complete IR code. In general, they provide only
 283	 * the command part of the IR code. Yet, as it is possible to replace
 284	 * the provided IR with another one, it is needed to allow loading
 285	 * IR tables from other remotes. So, we support specifying a mask to
 286	 * indicate the valid bits of the scancodes.
 287	 */
 288	if (dev->scanmask)
 289		scancode &= dev->scanmask;
 290
 291	/* First check if we already have a mapping for this ir command */
 292	for (i = 0; i < rc_map->len; i++) {
 293		if (rc_map->scan[i].scancode == scancode)
 294			return i;
 295
 296		/* Keytable is sorted from lowest to highest scancode */
 297		if (rc_map->scan[i].scancode >= scancode)
 298			break;
 299	}
 300
 301	/* No previous mapping found, we might need to grow the table */
 302	if (rc_map->size == rc_map->len) {
 303		if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
 304			return -1U;
 305	}
 306
 307	/* i is the proper index to insert our new keycode */
 308	if (i < rc_map->len)
 309		memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
 310			(rc_map->len - i) * sizeof(struct rc_map_table));
 311	rc_map->scan[i].scancode = scancode;
 312	rc_map->scan[i].keycode = KEY_RESERVED;
 313	rc_map->len++;
 314
 315	return i;
 316}
 317
 318/**
 319 * ir_setkeycode() - set a keycode in the scancode->keycode table
 320 * @idev:	the struct input_dev device descriptor
 321 * @scancode:	the desired scancode
 322 * @keycode:	result
 323 * @return:	-EINVAL if the keycode could not be inserted, otherwise zero.
 324 *
 325 * This routine is used to handle evdev EVIOCSKEY ioctl.
 
 
 326 */
 327static int ir_setkeycode(struct input_dev *idev,
 328			 const struct input_keymap_entry *ke,
 329			 unsigned int *old_keycode)
 330{
 331	struct rc_dev *rdev = input_get_drvdata(idev);
 332	struct rc_map *rc_map = &rdev->rc_map;
 333	unsigned int index;
 334	unsigned int scancode;
 335	int retval = 0;
 336	unsigned long flags;
 337
 338	spin_lock_irqsave(&rc_map->lock, flags);
 339
 340	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
 341		index = ke->index;
 342		if (index >= rc_map->len) {
 343			retval = -EINVAL;
 344			goto out;
 345		}
 346	} else {
 347		retval = input_scancode_to_scalar(ke, &scancode);
 348		if (retval)
 349			goto out;
 350
 351		index = ir_establish_scancode(rdev, rc_map, scancode, true);
 352		if (index >= rc_map->len) {
 353			retval = -ENOMEM;
 354			goto out;
 355		}
 356	}
 357
 358	*old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
 359
 360out:
 361	spin_unlock_irqrestore(&rc_map->lock, flags);
 362	return retval;
 363}
 364
 365/**
 366 * ir_setkeytable() - sets several entries in the scancode->keycode table
 367 * @dev:	the struct rc_dev device descriptor
 368 * @to:		the struct rc_map to copy entries to
 369 * @from:	the struct rc_map to copy entries from
 370 * @return:	-ENOMEM if all keycodes could not be inserted, otherwise zero.
 371 *
 372 * This routine is used to handle table initialization.
 
 
 373 */
 374static int ir_setkeytable(struct rc_dev *dev,
 375			  const struct rc_map *from)
 376{
 377	struct rc_map *rc_map = &dev->rc_map;
 378	unsigned int i, index;
 379	int rc;
 380
 381	rc = ir_create_table(rc_map, from->name,
 382			     from->rc_type, from->size);
 383	if (rc)
 384		return rc;
 385
 386	IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
 387		   rc_map->size, rc_map->alloc);
 388
 389	for (i = 0; i < from->size; i++) {
 390		index = ir_establish_scancode(dev, rc_map,
 391					      from->scan[i].scancode, false);
 392		if (index >= rc_map->len) {
 393			rc = -ENOMEM;
 394			break;
 395		}
 396
 397		ir_update_mapping(dev, rc_map, index,
 398				  from->scan[i].keycode);
 399	}
 400
 401	if (rc)
 402		ir_free_table(rc_map);
 403
 404	return rc;
 405}
 406
 
 
 
 
 
 
 
 
 
 
 
 
 407/**
 408 * ir_lookup_by_scancode() - locate mapping by scancode
 409 * @rc_map:	the struct rc_map to search
 410 * @scancode:	scancode to look for in the table
 411 * @return:	index in the table, -1U if not found
 412 *
 413 * This routine performs binary search in RC keykeymap table for
 414 * given scancode.
 
 
 415 */
 416static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
 417					  unsigned int scancode)
 418{
 419	int start = 0;
 420	int end = rc_map->len - 1;
 421	int mid;
 422
 423	while (start <= end) {
 424		mid = (start + end) / 2;
 425		if (rc_map->scan[mid].scancode < scancode)
 426			start = mid + 1;
 427		else if (rc_map->scan[mid].scancode > scancode)
 428			end = mid - 1;
 429		else
 430			return mid;
 431	}
 432
 433	return -1U;
 
 
 
 
 
 434}
 435
 436/**
 437 * ir_getkeycode() - get a keycode from the scancode->keycode table
 438 * @idev:	the struct input_dev device descriptor
 439 * @scancode:	the desired scancode
 440 * @keycode:	used to return the keycode, if found, or KEY_RESERVED
 441 * @return:	always returns zero.
 442 *
 443 * This routine is used to handle evdev EVIOCGKEY ioctl.
 
 
 444 */
 445static int ir_getkeycode(struct input_dev *idev,
 446			 struct input_keymap_entry *ke)
 447{
 448	struct rc_dev *rdev = input_get_drvdata(idev);
 449	struct rc_map *rc_map = &rdev->rc_map;
 450	struct rc_map_table *entry;
 451	unsigned long flags;
 452	unsigned int index;
 453	unsigned int scancode;
 454	int retval;
 455
 456	spin_lock_irqsave(&rc_map->lock, flags);
 457
 458	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
 459		index = ke->index;
 460	} else {
 461		retval = input_scancode_to_scalar(ke, &scancode);
 462		if (retval)
 463			goto out;
 464
 465		index = ir_lookup_by_scancode(rc_map, scancode);
 466	}
 467
 468	if (index < rc_map->len) {
 469		entry = &rc_map->scan[index];
 470
 471		ke->index = index;
 472		ke->keycode = entry->keycode;
 473		ke->len = sizeof(entry->scancode);
 474		memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
 475
 476	} else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
 477		/*
 478		 * We do not really know the valid range of scancodes
 479		 * so let's respond with KEY_RESERVED to anything we
 480		 * do not have mapping for [yet].
 481		 */
 482		ke->index = index;
 483		ke->keycode = KEY_RESERVED;
 484	} else {
 485		retval = -EINVAL;
 486		goto out;
 487	}
 488
 489	retval = 0;
 490
 491out:
 492	spin_unlock_irqrestore(&rc_map->lock, flags);
 493	return retval;
 494}
 495
 496/**
 497 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
 498 * @dev:	the struct rc_dev descriptor of the device
 499 * @scancode:	the scancode to look for
 500 * @return:	the corresponding keycode, or KEY_RESERVED
 501 *
 502 * This routine is used by drivers which need to convert a scancode to a
 503 * keycode. Normally it should not be used since drivers should have no
 504 * interest in keycodes.
 
 
 505 */
 506u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
 507{
 508	struct rc_map *rc_map = &dev->rc_map;
 509	unsigned int keycode;
 510	unsigned int index;
 511	unsigned long flags;
 512
 513	spin_lock_irqsave(&rc_map->lock, flags);
 514
 515	index = ir_lookup_by_scancode(rc_map, scancode);
 516	keycode = index < rc_map->len ?
 517			rc_map->scan[index].keycode : KEY_RESERVED;
 518
 519	spin_unlock_irqrestore(&rc_map->lock, flags);
 520
 521	if (keycode != KEY_RESERVED)
 522		IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
 523			   dev->input_name, scancode, keycode);
 524
 525	return keycode;
 526}
 527EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
 528
 529/**
 530 * ir_do_keyup() - internal function to signal the release of a keypress
 531 * @dev:	the struct rc_dev descriptor of the device
 532 * @sync:	whether or not to call input_sync
 533 *
 534 * This function is used internally to release a keypress, it must be
 535 * called with keylock held.
 536 */
 537static void ir_do_keyup(struct rc_dev *dev, bool sync)
 538{
 539	if (!dev->keypressed)
 540		return;
 541
 542	IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
 
 543	input_report_key(dev->input_dev, dev->last_keycode, 0);
 544	led_trigger_event(led_feedback, LED_OFF);
 545	if (sync)
 546		input_sync(dev->input_dev);
 547	dev->keypressed = false;
 548}
 549
 550/**
 551 * rc_keyup() - signals the release of a keypress
 552 * @dev:	the struct rc_dev descriptor of the device
 553 *
 554 * This routine is used to signal that a key has been released on the
 555 * remote control.
 556 */
 557void rc_keyup(struct rc_dev *dev)
 558{
 559	unsigned long flags;
 560
 561	spin_lock_irqsave(&dev->keylock, flags);
 562	ir_do_keyup(dev, true);
 563	spin_unlock_irqrestore(&dev->keylock, flags);
 564}
 565EXPORT_SYMBOL_GPL(rc_keyup);
 566
 567/**
 568 * ir_timer_keyup() - generates a keyup event after a timeout
 569 * @cookie:	a pointer to the struct rc_dev for the device
 
 570 *
 571 * This routine will generate a keyup event some time after a keydown event
 572 * is generated when no further activity has been detected.
 573 */
 574static void ir_timer_keyup(unsigned long cookie)
 575{
 576	struct rc_dev *dev = (struct rc_dev *)cookie;
 577	unsigned long flags;
 578
 579	/*
 580	 * ir->keyup_jiffies is used to prevent a race condition if a
 581	 * hardware interrupt occurs at this point and the keyup timer
 582	 * event is moved further into the future as a result.
 583	 *
 584	 * The timer will then be reactivated and this function called
 585	 * again in the future. We need to exit gracefully in that case
 586	 * to allow the input subsystem to do its auto-repeat magic or
 587	 * a keyup event might follow immediately after the keydown.
 588	 */
 589	spin_lock_irqsave(&dev->keylock, flags);
 590	if (time_is_before_eq_jiffies(dev->keyup_jiffies))
 591		ir_do_keyup(dev, true);
 592	spin_unlock_irqrestore(&dev->keylock, flags);
 593}
 594
 595/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 596 * rc_repeat() - signals that a key is still pressed
 597 * @dev:	the struct rc_dev descriptor of the device
 598 *
 599 * This routine is used by IR decoders when a repeat message which does
 600 * not include the necessary bits to reproduce the scancode has been
 601 * received.
 602 */
 603void rc_repeat(struct rc_dev *dev)
 604{
 605	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 606
 607	spin_lock_irqsave(&dev->keylock, flags);
 608
 609	input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
 610	input_sync(dev->input_dev);
 
 
 
 611
 612	if (!dev->keypressed)
 613		goto out;
 614
 615	dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
 616	mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
 617
 618out:
 619	spin_unlock_irqrestore(&dev->keylock, flags);
 620}
 621EXPORT_SYMBOL_GPL(rc_repeat);
 622
 623/**
 624 * ir_do_keydown() - internal function to process a keypress
 625 * @dev:	the struct rc_dev descriptor of the device
 
 626 * @scancode:   the scancode of the keypress
 627 * @keycode:    the keycode of the keypress
 628 * @toggle:     the toggle value of the keypress
 629 *
 630 * This function is used internally to register a keypress, it must be
 631 * called with keylock held.
 632 */
 633static void ir_do_keydown(struct rc_dev *dev, int scancode,
 634			  u32 keycode, u8 toggle)
 635{
 636	bool new_event = (!dev->keypressed		 ||
 
 637			  dev->last_scancode != scancode ||
 638			  dev->last_toggle != toggle);
 
 
 
 
 
 
 
 
 
 639
 640	if (new_event && dev->keypressed)
 641		ir_do_keyup(dev, false);
 642
 643	input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
 
 
 
 
 
 
 644
 645	if (new_event && keycode != KEY_RESERVED) {
 646		/* Register a keypress */
 647		dev->keypressed = true;
 648		dev->last_scancode = scancode;
 649		dev->last_toggle = toggle;
 650		dev->last_keycode = keycode;
 651
 652		IR_dprintk(1, "%s: key down event, "
 653			   "key 0x%04x, scancode 0x%04x\n",
 654			   dev->input_name, keycode, scancode);
 655		input_report_key(dev->input_dev, keycode, 1);
 656
 657		led_trigger_event(led_feedback, LED_FULL);
 658	}
 659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 660	input_sync(dev->input_dev);
 661}
 662
 663/**
 664 * rc_keydown() - generates input event for a key press
 665 * @dev:	the struct rc_dev descriptor of the device
 666 * @scancode:   the scancode that we're seeking
 
 667 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 668 *              support toggle values, this should be set to zero)
 669 *
 670 * This routine is used to signal that a key has been pressed on the
 671 * remote control.
 672 */
 673void rc_keydown(struct rc_dev *dev, int scancode, u8 toggle)
 
 674{
 675	unsigned long flags;
 676	u32 keycode = rc_g_keycode_from_table(dev, scancode);
 677
 678	spin_lock_irqsave(&dev->keylock, flags);
 679	ir_do_keydown(dev, scancode, keycode, toggle);
 680
 681	if (dev->keypressed) {
 682		dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
 
 683		mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
 684	}
 685	spin_unlock_irqrestore(&dev->keylock, flags);
 686}
 687EXPORT_SYMBOL_GPL(rc_keydown);
 688
 689/**
 690 * rc_keydown_notimeout() - generates input event for a key press without
 691 *                          an automatic keyup event at a later time
 692 * @dev:	the struct rc_dev descriptor of the device
 693 * @scancode:   the scancode that we're seeking
 
 694 * @toggle:     the toggle value (protocol dependent, if the protocol doesn't
 695 *              support toggle values, this should be set to zero)
 696 *
 697 * This routine is used to signal that a key has been pressed on the
 698 * remote control. The driver must manually call rc_keyup() at a later stage.
 699 */
 700void rc_keydown_notimeout(struct rc_dev *dev, int scancode, u8 toggle)
 
 701{
 702	unsigned long flags;
 703	u32 keycode = rc_g_keycode_from_table(dev, scancode);
 704
 705	spin_lock_irqsave(&dev->keylock, flags);
 706	ir_do_keydown(dev, scancode, keycode, toggle);
 707	spin_unlock_irqrestore(&dev->keylock, flags);
 708}
 709EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
 710
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 711int rc_open(struct rc_dev *rdev)
 712{
 713	int rval = 0;
 714
 715	if (!rdev)
 716		return -EINVAL;
 717
 718	mutex_lock(&rdev->lock);
 719	if (!rdev->users++ && rdev->open != NULL)
 720		rval = rdev->open(rdev);
 721
 722	if (rval)
 723		rdev->users--;
 
 
 
 
 
 
 
 724
 725	mutex_unlock(&rdev->lock);
 726
 727	return rval;
 728}
 729EXPORT_SYMBOL_GPL(rc_open);
 730
 731static int ir_open(struct input_dev *idev)
 732{
 733	struct rc_dev *rdev = input_get_drvdata(idev);
 734
 735	return rc_open(rdev);
 736}
 737
 738void rc_close(struct rc_dev *rdev)
 739{
 740	if (rdev) {
 741		mutex_lock(&rdev->lock);
 742
 743		 if (!--rdev->users && rdev->close != NULL)
 744			rdev->close(rdev);
 745
 746		mutex_unlock(&rdev->lock);
 747	}
 748}
 749EXPORT_SYMBOL_GPL(rc_close);
 750
 751static void ir_close(struct input_dev *idev)
 752{
 753	struct rc_dev *rdev = input_get_drvdata(idev);
 754	rc_close(rdev);
 755}
 756
 757/* class for /sys/class/rc */
 758static char *rc_devnode(struct device *dev, umode_t *mode)
 759{
 760	return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
 761}
 762
 763static struct class rc_class = {
 764	.name		= "rc",
 765	.devnode	= rc_devnode,
 766};
 767
 768/*
 769 * These are the protocol textual descriptions that are
 770 * used by the sysfs protocols file. Note that the order
 771 * of the entries is relevant.
 772 */
 773static struct {
 774	u64	type;
 775	char	*name;
 
 776} proto_names[] = {
 777	{ RC_BIT_NONE,		"none"		},
 778	{ RC_BIT_OTHER,		"other"		},
 779	{ RC_BIT_UNKNOWN,	"unknown"	},
 780	{ RC_BIT_RC5 |
 781	  RC_BIT_RC5X,		"rc-5"		},
 782	{ RC_BIT_NEC,		"nec"		},
 783	{ RC_BIT_RC6_0 |
 784	  RC_BIT_RC6_6A_20 |
 785	  RC_BIT_RC6_6A_24 |
 786	  RC_BIT_RC6_6A_32 |
 787	  RC_BIT_RC6_MCE,	"rc-6"		},
 788	{ RC_BIT_JVC,		"jvc"		},
 789	{ RC_BIT_SONY12 |
 790	  RC_BIT_SONY15 |
 791	  RC_BIT_SONY20,	"sony"		},
 792	{ RC_BIT_RC5_SZ,	"rc-5-sz"	},
 793	{ RC_BIT_SANYO,		"sanyo"		},
 794	{ RC_BIT_SHARP,		"sharp"		},
 795	{ RC_BIT_MCE_KBD,	"mce_kbd"	},
 796	{ RC_BIT_LIRC,		"lirc"		},
 
 
 
 
 
 
 
 
 
 797};
 798
 799/**
 800 * struct rc_filter_attribute - Device attribute relating to a filter type.
 801 * @attr:	Device attribute.
 802 * @type:	Filter type.
 803 * @mask:	false for filter value, true for filter mask.
 804 */
 805struct rc_filter_attribute {
 806	struct device_attribute		attr;
 807	enum rc_filter_type		type;
 808	bool				mask;
 809};
 810#define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
 811
 812#define RC_PROTO_ATTR(_name, _mode, _show, _store, _type)		\
 813	struct rc_filter_attribute dev_attr_##_name = {			\
 814		.attr = __ATTR(_name, _mode, _show, _store),		\
 815		.type = (_type),					\
 816	}
 817#define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask)	\
 818	struct rc_filter_attribute dev_attr_##_name = {			\
 819		.attr = __ATTR(_name, _mode, _show, _store),		\
 820		.type = (_type),					\
 821		.mask = (_mask),					\
 822	}
 823
 824/**
 825 * show_protocols() - shows the current/wakeup IR protocol(s)
 826 * @device:	the device descriptor
 827 * @mattr:	the device attribute struct (unused)
 828 * @buf:	a pointer to the output buffer
 829 *
 830 * This routine is a callback routine for input read the IR protocol type(s).
 831 * it is trigged by reading /sys/class/rc/rc?/[wakeup_]protocols.
 832 * It returns the protocol names of supported protocols.
 833 * Enabled protocols are printed in brackets.
 834 *
 835 * dev->lock is taken to guard against races between device
 836 * registration, store_protocols and show_protocols.
 837 */
 838static ssize_t show_protocols(struct device *device,
 839			      struct device_attribute *mattr, char *buf)
 840{
 841	struct rc_dev *dev = to_rc_dev(device);
 842	struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
 843	u64 allowed, enabled;
 844	char *tmp = buf;
 845	int i;
 846
 847	/* Device is being removed */
 848	if (!dev)
 849		return -EINVAL;
 850
 851	mutex_lock(&dev->lock);
 852
 853	enabled = dev->enabled_protocols[fattr->type];
 854	if (dev->driver_type == RC_DRIVER_SCANCODE ||
 855	    fattr->type == RC_FILTER_WAKEUP)
 856		allowed = dev->allowed_protocols[fattr->type];
 857	else if (dev->raw)
 858		allowed = ir_raw_get_allowed_protocols();
 859	else {
 860		mutex_unlock(&dev->lock);
 861		return -ENODEV;
 862	}
 863
 864	IR_dprintk(1, "allowed - 0x%llx, enabled - 0x%llx\n",
 865		   (long long)allowed,
 866		   (long long)enabled);
 
 867
 868	for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
 869		if (allowed & enabled & proto_names[i].type)
 870			tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
 871		else if (allowed & proto_names[i].type)
 872			tmp += sprintf(tmp, "%s ", proto_names[i].name);
 873
 874		if (allowed & proto_names[i].type)
 875			allowed &= ~proto_names[i].type;
 876	}
 877
 
 
 
 
 
 878	if (tmp != buf)
 879		tmp--;
 880	*tmp = '\n';
 881
 882	mutex_unlock(&dev->lock);
 883
 884	return tmp + 1 - buf;
 885}
 886
 887/**
 888 * store_protocols() - changes the current/wakeup IR protocol(s)
 889 * @device:	the device descriptor
 890 * @mattr:	the device attribute struct (unused)
 891 * @buf:	a pointer to the input buffer
 892 * @len:	length of the input buffer
 893 *
 894 * This routine is for changing the IR protocol type.
 895 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
 896 * Writing "+proto" will add a protocol to the list of enabled protocols.
 897 * Writing "-proto" will remove a protocol from the list of enabled protocols.
 898 * Writing "proto" will enable only "proto".
 899 * Writing "none" will disable all protocols.
 900 * Returns -EINVAL if an invalid protocol combination or unknown protocol name
 901 * is used, otherwise @len.
 902 *
 903 * dev->lock is taken to guard against races between device
 904 * registration, store_protocols and show_protocols.
 905 */
 906static ssize_t store_protocols(struct device *device,
 907			       struct device_attribute *mattr,
 908			       const char *data,
 909			       size_t len)
 910{
 911	struct rc_dev *dev = to_rc_dev(device);
 912	struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
 913	bool enable, disable;
 914	const char *tmp;
 915	u64 old_type, type;
 916	u64 mask;
 917	int rc, i, count = 0;
 918	ssize_t ret;
 919	int (*change_protocol)(struct rc_dev *dev, u64 *rc_type);
 920	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
 921	struct rc_scancode_filter local_filter, *filter;
 922
 923	/* Device is being removed */
 924	if (!dev)
 925		return -EINVAL;
 926
 927	mutex_lock(&dev->lock);
 928
 929	if (dev->driver_type != RC_DRIVER_SCANCODE && !dev->raw) {
 930		IR_dprintk(1, "Protocol switching not supported\n");
 931		ret = -EINVAL;
 932		goto out;
 933	}
 934	old_type = dev->enabled_protocols[fattr->type];
 935	type = old_type;
 936
 937	while ((tmp = strsep((char **) &data, " \n")) != NULL) {
 938		if (!*tmp)
 939			break;
 940
 941		if (*tmp == '+') {
 942			enable = true;
 943			disable = false;
 944			tmp++;
 945		} else if (*tmp == '-') {
 946			enable = false;
 947			disable = true;
 948			tmp++;
 949		} else {
 950			enable = false;
 951			disable = false;
 952		}
 953
 954		for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
 955			if (!strcasecmp(tmp, proto_names[i].name)) {
 956				mask = proto_names[i].type;
 957				break;
 958			}
 959		}
 960
 961		if (i == ARRAY_SIZE(proto_names)) {
 962			IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
 963			ret = -EINVAL;
 964			goto out;
 
 
 
 
 965		}
 966
 967		count++;
 968
 969		if (enable)
 970			type |= mask;
 971		else if (disable)
 972			type &= ~mask;
 973		else
 974			type = mask;
 975	}
 976
 977	if (!count) {
 978		IR_dprintk(1, "Protocol not specified\n");
 979		ret = -EINVAL;
 980		goto out;
 981	}
 982
 983	change_protocol = (fattr->type == RC_FILTER_NORMAL)
 984		? dev->change_protocol : dev->change_wakeup_protocol;
 985	if (change_protocol) {
 986		rc = change_protocol(dev, &type);
 987		if (rc < 0) {
 988			IR_dprintk(1, "Error setting protocols to 0x%llx\n",
 989				   (long long)type);
 990			ret = -EINVAL;
 991			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 992		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 993	}
 994
 995	dev->enabled_protocols[fattr->type] = type;
 996	IR_dprintk(1, "Current protocol(s): 0x%llx\n",
 997		   (long long)type);
 
 
 998
 999	/*
1000	 * If the protocol is changed the filter needs updating.
 
 
1001	 * Try setting the same filter with the new protocol (if any).
1002	 * Fall back to clearing the filter.
1003	 */
1004	filter = &dev->scancode_filters[fattr->type];
1005	set_filter = (fattr->type == RC_FILTER_NORMAL)
1006		? dev->s_filter : dev->s_wakeup_filter;
1007
1008	if (set_filter && old_type != type && filter->mask) {
1009		local_filter = *filter;
1010		if (!type) {
1011			/* no protocol => clear filter */
1012			ret = -1;
1013		} else {
1014			/* hardware filtering => try setting, otherwise clear */
1015			ret = set_filter(dev, &local_filter);
1016		}
1017		if (ret < 0) {
1018			/* clear the filter */
1019			local_filter.data = 0;
1020			local_filter.mask = 0;
1021			set_filter(dev, &local_filter);
1022		}
1023
1024		/* commit the new filter */
1025		*filter = local_filter;
1026	}
1027
1028	ret = len;
1029
1030out:
1031	mutex_unlock(&dev->lock);
1032	return ret;
1033}
1034
1035/**
1036 * show_filter() - shows the current scancode filter value or mask
1037 * @device:	the device descriptor
1038 * @attr:	the device attribute struct
1039 * @buf:	a pointer to the output buffer
1040 *
1041 * This routine is a callback routine to read a scancode filter value or mask.
1042 * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1043 * It prints the current scancode filter value or mask of the appropriate filter
1044 * type in hexadecimal into @buf and returns the size of the buffer.
1045 *
1046 * Bits of the filter value corresponding to set bits in the filter mask are
1047 * compared against input scancodes and non-matching scancodes are discarded.
1048 *
1049 * dev->lock is taken to guard against races between device registration,
1050 * store_filter and show_filter.
1051 */
1052static ssize_t show_filter(struct device *device,
1053			   struct device_attribute *attr,
1054			   char *buf)
1055{
1056	struct rc_dev *dev = to_rc_dev(device);
1057	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
 
1058	u32 val;
1059
1060	/* Device is being removed */
1061	if (!dev)
1062		return -EINVAL;
 
 
 
1063
1064	mutex_lock(&dev->lock);
1065	if ((fattr->type == RC_FILTER_NORMAL && !dev->s_filter) ||
1066	    (fattr->type == RC_FILTER_WAKEUP && !dev->s_wakeup_filter))
1067		val = 0;
1068	else if (fattr->mask)
1069		val = dev->scancode_filters[fattr->type].mask;
1070	else
1071		val = dev->scancode_filters[fattr->type].data;
1072	mutex_unlock(&dev->lock);
1073
1074	return sprintf(buf, "%#x\n", val);
1075}
1076
1077/**
1078 * store_filter() - changes the scancode filter value
1079 * @device:	the device descriptor
1080 * @attr:	the device attribute struct
1081 * @buf:	a pointer to the input buffer
1082 * @len:	length of the input buffer
1083 *
1084 * This routine is for changing a scancode filter value or mask.
1085 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1086 * Returns -EINVAL if an invalid filter value for the current protocol was
1087 * specified or if scancode filtering is not supported by the driver, otherwise
1088 * returns @len.
1089 *
1090 * Bits of the filter value corresponding to set bits in the filter mask are
1091 * compared against input scancodes and non-matching scancodes are discarded.
1092 *
1093 * dev->lock is taken to guard against races between device registration,
1094 * store_filter and show_filter.
1095 */
1096static ssize_t store_filter(struct device *device,
1097			    struct device_attribute *attr,
1098			    const char *buf,
1099			    size_t count)
1100{
1101	struct rc_dev *dev = to_rc_dev(device);
1102	struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1103	struct rc_scancode_filter local_filter, *filter;
1104	int ret;
1105	unsigned long val;
1106	int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1107
1108	/* Device is being removed */
1109	if (!dev)
1110		return -EINVAL;
1111
1112	ret = kstrtoul(buf, 0, &val);
1113	if (ret < 0)
1114		return ret;
1115
1116	/* Can the scancode filter be set? */
1117	set_filter = (fattr->type == RC_FILTER_NORMAL) ? dev->s_filter :
1118							 dev->s_wakeup_filter;
 
 
 
 
 
1119	if (!set_filter)
1120		return -EINVAL;
1121
1122	mutex_lock(&dev->lock);
 
 
 
 
1123
1124	/* Tell the driver about the new filter */
1125	filter = &dev->scancode_filters[fattr->type];
1126	local_filter = *filter;
1127	if (fattr->mask)
1128		local_filter.mask = val;
1129	else
1130		local_filter.data = val;
1131
1132	if (!dev->enabled_protocols[fattr->type] && local_filter.mask) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1133		/* refuse to set a filter unless a protocol is enabled */
1134		ret = -EINVAL;
1135		goto unlock;
1136	}
1137
1138	ret = set_filter(dev, &local_filter);
1139	if (ret < 0)
1140		goto unlock;
1141
1142	/* Success, commit the new filter */
1143	*filter = local_filter;
1144
1145unlock:
1146	mutex_unlock(&dev->lock);
1147	return (ret < 0) ? ret : count;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1148}
1149
1150static void rc_dev_release(struct device *device)
1151{
 
 
 
1152}
1153
1154#define ADD_HOTPLUG_VAR(fmt, val...)					\
1155	do {								\
1156		int err = add_uevent_var(env, fmt, val);		\
1157		if (err)						\
1158			return err;					\
1159	} while (0)
1160
1161static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1162{
1163	struct rc_dev *dev = to_rc_dev(device);
 
 
 
1164
1165	if (!dev || !dev->input_dev)
1166		return -ENODEV;
 
 
 
 
 
 
1167
1168	if (dev->rc_map.name)
1169		ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1170	if (dev->driver_name)
1171		ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1172
1173	return 0;
1174}
1175
1176/*
1177 * Static device attribute struct with the sysfs attributes for IR's
1178 */
1179static RC_PROTO_ATTR(protocols, S_IRUGO | S_IWUSR,
1180		     show_protocols, store_protocols, RC_FILTER_NORMAL);
1181static RC_PROTO_ATTR(wakeup_protocols, S_IRUGO | S_IWUSR,
1182		     show_protocols, store_protocols, RC_FILTER_WAKEUP);
 
 
1183static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1184		      show_filter, store_filter, RC_FILTER_NORMAL, false);
1185static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1186		      show_filter, store_filter, RC_FILTER_NORMAL, true);
1187static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1188		      show_filter, store_filter, RC_FILTER_WAKEUP, false);
1189static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1190		      show_filter, store_filter, RC_FILTER_WAKEUP, true);
1191
1192static struct attribute *rc_dev_protocol_attrs[] = {
1193	&dev_attr_protocols.attr.attr,
1194	NULL,
1195};
1196
1197static struct attribute_group rc_dev_protocol_attr_grp = {
1198	.attrs	= rc_dev_protocol_attrs,
1199};
1200
1201static struct attribute *rc_dev_wakeup_protocol_attrs[] = {
1202	&dev_attr_wakeup_protocols.attr.attr,
1203	NULL,
1204};
1205
1206static struct attribute_group rc_dev_wakeup_protocol_attr_grp = {
1207	.attrs	= rc_dev_wakeup_protocol_attrs,
1208};
1209
1210static struct attribute *rc_dev_filter_attrs[] = {
1211	&dev_attr_filter.attr.attr,
1212	&dev_attr_filter_mask.attr.attr,
1213	NULL,
1214};
1215
1216static struct attribute_group rc_dev_filter_attr_grp = {
1217	.attrs	= rc_dev_filter_attrs,
1218};
1219
1220static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1221	&dev_attr_wakeup_filter.attr.attr,
1222	&dev_attr_wakeup_filter_mask.attr.attr,
 
1223	NULL,
1224};
1225
1226static struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1227	.attrs	= rc_dev_wakeup_filter_attrs,
1228};
1229
1230static struct device_type rc_dev_type = {
1231	.release	= rc_dev_release,
1232	.uevent		= rc_dev_uevent,
1233};
1234
1235struct rc_dev *rc_allocate_device(void)
1236{
1237	struct rc_dev *dev;
1238
1239	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1240	if (!dev)
1241		return NULL;
1242
1243	dev->input_dev = input_allocate_device();
1244	if (!dev->input_dev) {
1245		kfree(dev);
1246		return NULL;
1247	}
 
1248
1249	dev->input_dev->getkeycode = ir_getkeycode;
1250	dev->input_dev->setkeycode = ir_setkeycode;
1251	input_set_drvdata(dev->input_dev, dev);
 
 
 
 
1252
1253	spin_lock_init(&dev->rc_map.lock);
1254	spin_lock_init(&dev->keylock);
 
1255	mutex_init(&dev->lock);
1256	setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev);
1257
1258	dev->dev.type = &rc_dev_type;
1259	dev->dev.class = &rc_class;
1260	device_initialize(&dev->dev);
1261
 
 
1262	__module_get(THIS_MODULE);
1263	return dev;
1264}
1265EXPORT_SYMBOL_GPL(rc_allocate_device);
1266
1267void rc_free_device(struct rc_dev *dev)
1268{
1269	if (!dev)
1270		return;
1271
1272	if (dev->input_dev)
1273		input_free_device(dev->input_dev);
1274
1275	put_device(&dev->dev);
1276
1277	kfree(dev);
 
 
1278	module_put(THIS_MODULE);
1279}
1280EXPORT_SYMBOL_GPL(rc_free_device);
1281
1282int rc_register_device(struct rc_dev *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1283{
1284	static bool raw_init = false; /* raw decoders loaded? */
1285	struct rc_map *rc_map;
1286	const char *path;
1287	int rc, devno, attr = 0;
1288
1289	if (!dev || !dev->map_name)
1290		return -EINVAL;
1291
1292	rc_map = rc_map_get(dev->map_name);
1293	if (!rc_map)
1294		rc_map = rc_map_get(RC_MAP_EMPTY);
1295	if (!rc_map || !rc_map->scan || rc_map->size == 0)
1296		return -EINVAL;
1297
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1298	set_bit(EV_KEY, dev->input_dev->evbit);
1299	set_bit(EV_REP, dev->input_dev->evbit);
1300	set_bit(EV_MSC, dev->input_dev->evbit);
1301	set_bit(MSC_SCAN, dev->input_dev->mscbit);
 
 
 
 
 
 
 
1302	if (dev->open)
1303		dev->input_dev->open = ir_open;
1304	if (dev->close)
1305		dev->input_dev->close = ir_close;
1306
1307	do {
1308		devno = find_first_zero_bit(ir_core_dev_number,
1309					    IRRCV_NUM_DEVICES);
1310		/* No free device slots */
1311		if (devno >= IRRCV_NUM_DEVICES)
1312			return -ENOMEM;
1313	} while (test_and_set_bit(devno, ir_core_dev_number));
1314
1315	dev->dev.groups = dev->sysfs_groups;
1316	dev->sysfs_groups[attr++] = &rc_dev_protocol_attr_grp;
1317	if (dev->s_filter)
1318		dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;	
1319	if (dev->s_wakeup_filter)
1320		dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1321	if (dev->change_wakeup_protocol)
1322		dev->sysfs_groups[attr++] = &rc_dev_wakeup_protocol_attr_grp;
1323	dev->sysfs_groups[attr++] = NULL;
1324
1325	/*
1326	 * Take the lock here, as the device sysfs node will appear
1327	 * when device_add() is called, which may trigger an ir-keytable udev
1328	 * rule, which will in turn call show_protocols and access
1329	 * dev->enabled_protocols before it has been initialized.
1330	 */
1331	mutex_lock(&dev->lock);
1332
1333	dev->devno = devno;
1334	dev_set_name(&dev->dev, "rc%ld", dev->devno);
1335	dev_set_drvdata(&dev->dev, dev);
1336	rc = device_add(&dev->dev);
1337	if (rc)
1338		goto out_unlock;
1339
1340	rc = ir_setkeytable(dev, rc_map);
1341	if (rc)
1342		goto out_dev;
1343
1344	dev->input_dev->dev.parent = &dev->dev;
1345	memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1346	dev->input_dev->phys = dev->input_phys;
1347	dev->input_dev->name = dev->input_name;
 
 
1348
1349	/* input_register_device can call ir_open, so unlock mutex here */
1350	mutex_unlock(&dev->lock);
1351
1352	rc = input_register_device(dev->input_dev);
 
1353
1354	mutex_lock(&dev->lock);
 
 
1355
 
 
1356	if (rc)
1357		goto out_table;
1358
1359	/*
1360	 * Default delay of 250ms is too short for some protocols, especially
1361	 * since the timeout is currently set to 250ms. Increase it to 500ms,
1362	 * to avoid wrong repetition of the keycodes. Note that this must be
1363	 * set after the call to input_register_device().
1364	 */
1365	dev->input_dev->rep[REP_DELAY] = 500;
 
 
 
1366
1367	/*
1368	 * As a repeat event on protocols like RC-5 and NEC take as long as
1369	 * 110/114ms, using 33ms as a repeat period is not the right thing
1370	 * to do.
1371	 */
1372	dev->input_dev->rep[REP_PERIOD] = 125;
1373
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1374	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1375	printk(KERN_INFO "%s: %s as %s\n",
1376		dev_name(&dev->dev),
1377		dev->input_name ? dev->input_name : "Unspecified device",
1378		path ? path : "N/A");
1379	kfree(path);
1380
1381	if (dev->driver_type == RC_DRIVER_IR_RAW) {
1382		/* Load raw decoders, if they aren't already */
1383		if (!raw_init) {
1384			IR_dprintk(1, "Loading raw decoders\n");
1385			ir_raw_init();
1386			raw_init = true;
1387		}
1388		rc = ir_raw_event_register(dev);
1389		if (rc < 0)
1390			goto out_input;
 
 
 
 
 
 
1391	}
1392
1393	if (dev->change_protocol) {
1394		u64 rc_type = (1 << rc_map->rc_type);
1395		rc = dev->change_protocol(dev, &rc_type);
1396		if (rc < 0)
1397			goto out_raw;
1398		dev->enabled_protocols[RC_FILTER_NORMAL] = rc_type;
1399	}
1400
1401	mutex_unlock(&dev->lock);
1402
1403	IR_dprintk(1, "Registered rc%ld (driver: %s, remote: %s, mode %s)\n",
1404		   dev->devno,
1405		   dev->driver_name ? dev->driver_name : "unknown",
1406		   rc_map->name ? rc_map->name : "unknown",
1407		   dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked");
1408
1409	return 0;
1410
1411out_raw:
1412	if (dev->driver_type == RC_DRIVER_IR_RAW)
1413		ir_raw_event_unregister(dev);
1414out_input:
1415	input_unregister_device(dev->input_dev);
1416	dev->input_dev = NULL;
1417out_table:
1418	ir_free_table(&dev->rc_map);
1419out_dev:
1420	device_del(&dev->dev);
1421out_unlock:
1422	mutex_unlock(&dev->lock);
1423	clear_bit(dev->devno, ir_core_dev_number);
 
 
 
1424	return rc;
1425}
1426EXPORT_SYMBOL_GPL(rc_register_device);
1427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1428void rc_unregister_device(struct rc_dev *dev)
1429{
1430	if (!dev)
1431		return;
1432
 
 
 
1433	del_timer_sync(&dev->timer_keyup);
 
1434
1435	clear_bit(dev->devno, ir_core_dev_number);
 
 
 
 
1436
1437	if (dev->driver_type == RC_DRIVER_IR_RAW)
1438		ir_raw_event_unregister(dev);
1439
1440	/* Freeing the table should also call the stop callback */
1441	ir_free_table(&dev->rc_map);
1442	IR_dprintk(1, "Freed keycode table\n");
 
 
 
1443
1444	input_unregister_device(dev->input_dev);
1445	dev->input_dev = NULL;
1446
1447	device_del(&dev->dev);
1448
1449	rc_free_device(dev);
 
1450}
1451
1452EXPORT_SYMBOL_GPL(rc_unregister_device);
1453
1454/*
1455 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1456 */
1457
1458static int __init rc_core_init(void)
1459{
1460	int rc = class_register(&rc_class);
1461	if (rc) {
1462		printk(KERN_ERR "rc_core: unable to register rc class\n");
 
 
 
 
 
 
 
1463		return rc;
1464	}
1465
1466	led_trigger_register_simple("rc-feedback", &led_feedback);
1467	rc_map_register(&empty_map);
 
 
 
1468
1469	return 0;
1470}
1471
1472static void __exit rc_core_exit(void)
1473{
 
1474	class_unregister(&rc_class);
1475	led_trigger_unregister_simple(led_feedback);
 
 
 
1476	rc_map_unregister(&empty_map);
1477}
1478
1479subsys_initcall(rc_core_init);
1480module_exit(rc_core_exit);
1481
1482int rc_core_debug;    /* ir_debug level (0,1,2) */
1483EXPORT_SYMBOL_GPL(rc_core_debug);
1484module_param_named(debug, rc_core_debug, int, 0644);
1485
1486MODULE_AUTHOR("Mauro Carvalho Chehab");
1487MODULE_LICENSE("GPL");