Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * i2c-exynos5.c - Samsung Exynos5 I2C Controller Driver
  4 *
  5 * Copyright (C) 2013 Samsung Electronics Co., Ltd.
  6*/
  7
  8#include <linux/kernel.h>
  9#include <linux/module.h>
 10
 11#include <linux/i2c.h>
 12#include <linux/time.h>
 13#include <linux/interrupt.h>
 14#include <linux/delay.h>
 15#include <linux/errno.h>
 16#include <linux/err.h>
 17#include <linux/platform_device.h>
 18#include <linux/clk.h>
 19#include <linux/slab.h>
 20#include <linux/io.h>
 21#include <linux/of_address.h>
 22#include <linux/of_device.h>
 23#include <linux/of_irq.h>
 24#include <linux/spinlock.h>
 25
 26/*
 27 * HSI2C controller from Samsung supports 2 modes of operation
 28 * 1. Auto mode: Where in master automatically controls the whole transaction
 29 * 2. Manual mode: Software controls the transaction by issuing commands
 30 *    START, READ, WRITE, STOP, RESTART in I2C_MANUAL_CMD register.
 31 *
 32 * Operation mode can be selected by setting AUTO_MODE bit in I2C_CONF register
 33 *
 34 * Special bits are available for both modes of operation to set commands
 35 * and for checking transfer status
 36 */
 37
 38/* Register Map */
 39#define HSI2C_CTL		0x00
 40#define HSI2C_FIFO_CTL		0x04
 41#define HSI2C_TRAILIG_CTL	0x08
 42#define HSI2C_CLK_CTL		0x0C
 43#define HSI2C_CLK_SLOT		0x10
 44#define HSI2C_INT_ENABLE	0x20
 45#define HSI2C_INT_STATUS	0x24
 46#define HSI2C_ERR_STATUS	0x2C
 47#define HSI2C_FIFO_STATUS	0x30
 48#define HSI2C_TX_DATA		0x34
 49#define HSI2C_RX_DATA		0x38
 50#define HSI2C_CONF		0x40
 51#define HSI2C_AUTO_CONF		0x44
 52#define HSI2C_TIMEOUT		0x48
 53#define HSI2C_MANUAL_CMD	0x4C
 54#define HSI2C_TRANS_STATUS	0x50
 55#define HSI2C_TIMING_HS1	0x54
 56#define HSI2C_TIMING_HS2	0x58
 57#define HSI2C_TIMING_HS3	0x5C
 58#define HSI2C_TIMING_FS1	0x60
 59#define HSI2C_TIMING_FS2	0x64
 60#define HSI2C_TIMING_FS3	0x68
 61#define HSI2C_TIMING_SLA	0x6C
 62#define HSI2C_ADDR		0x70
 63
 64/* I2C_CTL Register bits */
 65#define HSI2C_FUNC_MODE_I2C			(1u << 0)
 66#define HSI2C_MASTER				(1u << 3)
 67#define HSI2C_RXCHON				(1u << 6)
 68#define HSI2C_TXCHON				(1u << 7)
 69#define HSI2C_SW_RST				(1u << 31)
 70
 71/* I2C_FIFO_CTL Register bits */
 72#define HSI2C_RXFIFO_EN				(1u << 0)
 73#define HSI2C_TXFIFO_EN				(1u << 1)
 74#define HSI2C_RXFIFO_TRIGGER_LEVEL(x)		((x) << 4)
 75#define HSI2C_TXFIFO_TRIGGER_LEVEL(x)		((x) << 16)
 76
 77/* I2C_TRAILING_CTL Register bits */
 78#define HSI2C_TRAILING_COUNT			(0xf)
 79
 80/* I2C_INT_EN Register bits */
 81#define HSI2C_INT_TX_ALMOSTEMPTY_EN		(1u << 0)
 82#define HSI2C_INT_RX_ALMOSTFULL_EN		(1u << 1)
 83#define HSI2C_INT_TRAILING_EN			(1u << 6)
 84
 85/* I2C_INT_STAT Register bits */
 86#define HSI2C_INT_TX_ALMOSTEMPTY		(1u << 0)
 87#define HSI2C_INT_RX_ALMOSTFULL			(1u << 1)
 88#define HSI2C_INT_TX_UNDERRUN			(1u << 2)
 89#define HSI2C_INT_TX_OVERRUN			(1u << 3)
 90#define HSI2C_INT_RX_UNDERRUN			(1u << 4)
 91#define HSI2C_INT_RX_OVERRUN			(1u << 5)
 92#define HSI2C_INT_TRAILING			(1u << 6)
 93#define HSI2C_INT_I2C				(1u << 9)
 94
 95#define HSI2C_INT_TRANS_DONE			(1u << 7)
 96#define HSI2C_INT_TRANS_ABORT			(1u << 8)
 97#define HSI2C_INT_NO_DEV_ACK			(1u << 9)
 98#define HSI2C_INT_NO_DEV			(1u << 10)
 99#define HSI2C_INT_TIMEOUT			(1u << 11)
100#define HSI2C_INT_I2C_TRANS			(HSI2C_INT_TRANS_DONE |	\
101						HSI2C_INT_TRANS_ABORT |	\
102						HSI2C_INT_NO_DEV_ACK |	\
103						HSI2C_INT_NO_DEV |	\
104						HSI2C_INT_TIMEOUT)
105
106/* I2C_FIFO_STAT Register bits */
107#define HSI2C_RX_FIFO_EMPTY			(1u << 24)
108#define HSI2C_RX_FIFO_FULL			(1u << 23)
109#define HSI2C_RX_FIFO_LVL(x)			((x >> 16) & 0x7f)
110#define HSI2C_TX_FIFO_EMPTY			(1u << 8)
111#define HSI2C_TX_FIFO_FULL			(1u << 7)
112#define HSI2C_TX_FIFO_LVL(x)			((x >> 0) & 0x7f)
113
114/* I2C_CONF Register bits */
115#define HSI2C_AUTO_MODE				(1u << 31)
116#define HSI2C_10BIT_ADDR_MODE			(1u << 30)
117#define HSI2C_HS_MODE				(1u << 29)
118
119/* I2C_AUTO_CONF Register bits */
120#define HSI2C_READ_WRITE			(1u << 16)
121#define HSI2C_STOP_AFTER_TRANS			(1u << 17)
122#define HSI2C_MASTER_RUN			(1u << 31)
123
124/* I2C_TIMEOUT Register bits */
125#define HSI2C_TIMEOUT_EN			(1u << 31)
126#define HSI2C_TIMEOUT_MASK			0xff
127
128/* I2C_MANUAL_CMD register bits */
129#define HSI2C_CMD_READ_DATA			(1u << 4)
130#define HSI2C_CMD_SEND_STOP			(1u << 2)
131
132/* I2C_TRANS_STATUS register bits */
133#define HSI2C_MASTER_BUSY			(1u << 17)
134#define HSI2C_SLAVE_BUSY			(1u << 16)
135
136/* I2C_TRANS_STATUS register bits for Exynos5 variant */
137#define HSI2C_TIMEOUT_AUTO			(1u << 4)
138#define HSI2C_NO_DEV				(1u << 3)
139#define HSI2C_NO_DEV_ACK			(1u << 2)
140#define HSI2C_TRANS_ABORT			(1u << 1)
141#define HSI2C_TRANS_DONE			(1u << 0)
142
143/* I2C_TRANS_STATUS register bits for Exynos7 variant */
144#define HSI2C_MASTER_ST_MASK			0xf
145#define HSI2C_MASTER_ST_IDLE			0x0
146#define HSI2C_MASTER_ST_START			0x1
147#define HSI2C_MASTER_ST_RESTART			0x2
148#define HSI2C_MASTER_ST_STOP			0x3
149#define HSI2C_MASTER_ST_MASTER_ID		0x4
150#define HSI2C_MASTER_ST_ADDR0			0x5
151#define HSI2C_MASTER_ST_ADDR1			0x6
152#define HSI2C_MASTER_ST_ADDR2			0x7
153#define HSI2C_MASTER_ST_ADDR_SR			0x8
154#define HSI2C_MASTER_ST_READ			0x9
155#define HSI2C_MASTER_ST_WRITE			0xa
156#define HSI2C_MASTER_ST_NO_ACK			0xb
157#define HSI2C_MASTER_ST_LOSE			0xc
158#define HSI2C_MASTER_ST_WAIT			0xd
159#define HSI2C_MASTER_ST_WAIT_CMD		0xe
160
161/* I2C_ADDR register bits */
162#define HSI2C_SLV_ADDR_SLV(x)			((x & 0x3ff) << 0)
163#define HSI2C_SLV_ADDR_MAS(x)			((x & 0x3ff) << 10)
164#define HSI2C_MASTER_ID(x)			((x & 0xff) << 24)
165#define MASTER_ID(x)				((x & 0x7) + 0x08)
166
167#define EXYNOS5_I2C_TIMEOUT (msecs_to_jiffies(100))
168
169enum i2c_type_exynos {
170	I2C_TYPE_EXYNOS5,
171	I2C_TYPE_EXYNOS7,
172	I2C_TYPE_EXYNOSAUTOV9,
173};
174
175struct exynos5_i2c {
176	struct i2c_adapter	adap;
177
178	struct i2c_msg		*msg;
179	struct completion	msg_complete;
180	unsigned int		msg_ptr;
181
182	unsigned int		irq;
183
184	void __iomem		*regs;
185	struct clk		*clk;		/* operating clock */
186	struct clk		*pclk;		/* bus clock */
187	struct device		*dev;
188	int			state;
189
190	spinlock_t		lock;		/* IRQ synchronization */
191
192	/*
193	 * Since the TRANS_DONE bit is cleared on read, and we may read it
194	 * either during an IRQ or after a transaction, keep track of its
195	 * state here.
196	 */
197	int			trans_done;
198
199	/* Controller operating frequency */
200	unsigned int		op_clock;
201
202	/* Version of HS-I2C Hardware */
203	const struct exynos_hsi2c_variant *variant;
204};
205
206/**
207 * struct exynos_hsi2c_variant - platform specific HSI2C driver data
208 * @fifo_depth: the fifo depth supported by the HSI2C module
209 * @hw: the hardware variant of Exynos I2C controller
210 *
211 * Specifies platform specific configuration of HSI2C module.
212 * Note: A structure for driver specific platform data is used for future
213 * expansion of its usage.
214 */
215struct exynos_hsi2c_variant {
216	unsigned int		fifo_depth;
217	enum i2c_type_exynos	hw;
218};
219
220static const struct exynos_hsi2c_variant exynos5250_hsi2c_data = {
221	.fifo_depth	= 64,
222	.hw		= I2C_TYPE_EXYNOS5,
223};
224
225static const struct exynos_hsi2c_variant exynos5260_hsi2c_data = {
226	.fifo_depth	= 16,
227	.hw		= I2C_TYPE_EXYNOS5,
228};
229
230static const struct exynos_hsi2c_variant exynos7_hsi2c_data = {
231	.fifo_depth	= 16,
232	.hw		= I2C_TYPE_EXYNOS7,
233};
234
235static const struct exynos_hsi2c_variant exynosautov9_hsi2c_data = {
236	.fifo_depth	= 64,
237	.hw		= I2C_TYPE_EXYNOSAUTOV9,
238};
239
240static const struct of_device_id exynos5_i2c_match[] = {
241	{
242		.compatible = "samsung,exynos5-hsi2c",
243		.data = &exynos5250_hsi2c_data
244	}, {
245		.compatible = "samsung,exynos5250-hsi2c",
246		.data = &exynos5250_hsi2c_data
247	}, {
248		.compatible = "samsung,exynos5260-hsi2c",
249		.data = &exynos5260_hsi2c_data
250	}, {
251		.compatible = "samsung,exynos7-hsi2c",
252		.data = &exynos7_hsi2c_data
253	}, {
254		.compatible = "samsung,exynosautov9-hsi2c",
255		.data = &exynosautov9_hsi2c_data
256	}, {},
257};
258MODULE_DEVICE_TABLE(of, exynos5_i2c_match);
259
260static void exynos5_i2c_clr_pend_irq(struct exynos5_i2c *i2c)
261{
262	writel(readl(i2c->regs + HSI2C_INT_STATUS),
263				i2c->regs + HSI2C_INT_STATUS);
264}
265
266/*
267 * exynos5_i2c_set_timing: updates the registers with appropriate
268 * timing values calculated
269 *
270 * Timing values for operation are calculated against either 100kHz
271 * or 1MHz controller operating frequency.
272 *
273 * Returns 0 on success, -EINVAL if the cycle length cannot
274 * be calculated.
275 */
276static int exynos5_i2c_set_timing(struct exynos5_i2c *i2c, bool hs_timings)
277{
278	u32 i2c_timing_s1;
279	u32 i2c_timing_s2;
280	u32 i2c_timing_s3;
281	u32 i2c_timing_sla;
282	unsigned int t_start_su, t_start_hd;
283	unsigned int t_stop_su;
284	unsigned int t_data_su, t_data_hd;
285	unsigned int t_scl_l, t_scl_h;
286	unsigned int t_sr_release;
287	unsigned int t_ftl_cycle;
288	unsigned int clkin = clk_get_rate(i2c->clk);
289	unsigned int op_clk = hs_timings ? i2c->op_clock :
290		(i2c->op_clock >= I2C_MAX_FAST_MODE_PLUS_FREQ) ? I2C_MAX_STANDARD_MODE_FREQ :
291		i2c->op_clock;
292	int div, clk_cycle, temp;
293
294	/*
295	 * In case of HSI2C controllers in ExynosAutoV9:
296	 *
297	 * FSCL = IPCLK / ((CLK_DIV + 1) * 16)
298	 * T_SCL_LOW = IPCLK * (CLK_DIV + 1) * (N + M)
299	 *   [N : number of 0's in the TSCL_H_HS]
300	 *   [M : number of 0's in the TSCL_L_HS]
301	 * T_SCL_HIGH = IPCLK * (CLK_DIV + 1) * (N + M)
302	 *   [N : number of 1's in the TSCL_H_HS]
303	 *   [M : number of 1's in the TSCL_L_HS]
304	 *
305	 * Result of (N + M) is always 8.
306	 * In general case, we don't need to control timing_s1 and timing_s2.
307	 */
308	if (i2c->variant->hw == I2C_TYPE_EXYNOSAUTOV9) {
309		div = ((clkin / (16 * i2c->op_clock)) - 1);
310		i2c_timing_s3 = div << 16;
311		if (hs_timings)
312			writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_HS3);
313		else
314			writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_FS3);
315
316		return 0;
317	}
318
319	/*
320	 * In case of HSI2C controller in Exynos5 series
321	 * FPCLK / FI2C =
322	 * (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2) + 8 + 2 * FLT_CYCLE
323	 *
324	 * In case of HSI2C controllers in Exynos7 series
325	 * FPCLK / FI2C =
326	 * (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2) + 8 + FLT_CYCLE
327	 *
328	 * clk_cycle := TSCLK_L + TSCLK_H
329	 * temp := (CLK_DIV + 1) * (clk_cycle + 2)
330	 *
331	 * Constraints: 4 <= temp, 0 <= CLK_DIV < 256, 2 <= clk_cycle <= 510
332	 *
333	 */
334	t_ftl_cycle = (readl(i2c->regs + HSI2C_CONF) >> 16) & 0x7;
335	temp = clkin / op_clk - 8 - t_ftl_cycle;
336	if (i2c->variant->hw != I2C_TYPE_EXYNOS7)
337		temp -= t_ftl_cycle;
338	div = temp / 512;
339	clk_cycle = temp / (div + 1) - 2;
340	if (temp < 4 || div >= 256 || clk_cycle < 2) {
341		dev_err(i2c->dev, "%s clock set-up failed\n",
342			hs_timings ? "HS" : "FS");
343		return -EINVAL;
344	}
345
346	t_scl_l = clk_cycle / 2;
347	t_scl_h = clk_cycle / 2;
348	t_start_su = t_scl_l;
349	t_start_hd = t_scl_l;
350	t_stop_su = t_scl_l;
351	t_data_su = t_scl_l / 2;
352	t_data_hd = t_scl_l / 2;
353	t_sr_release = clk_cycle;
354
355	i2c_timing_s1 = t_start_su << 24 | t_start_hd << 16 | t_stop_su << 8;
356	i2c_timing_s2 = t_data_su << 24 | t_scl_l << 8 | t_scl_h << 0;
357	i2c_timing_s3 = div << 16 | t_sr_release << 0;
358	i2c_timing_sla = t_data_hd << 0;
359
360	dev_dbg(i2c->dev, "tSTART_SU: %X, tSTART_HD: %X, tSTOP_SU: %X\n",
361		t_start_su, t_start_hd, t_stop_su);
362	dev_dbg(i2c->dev, "tDATA_SU: %X, tSCL_L: %X, tSCL_H: %X\n",
363		t_data_su, t_scl_l, t_scl_h);
364	dev_dbg(i2c->dev, "nClkDiv: %X, tSR_RELEASE: %X\n",
365		div, t_sr_release);
366	dev_dbg(i2c->dev, "tDATA_HD: %X\n", t_data_hd);
367
368	if (hs_timings) {
369		writel(i2c_timing_s1, i2c->regs + HSI2C_TIMING_HS1);
370		writel(i2c_timing_s2, i2c->regs + HSI2C_TIMING_HS2);
371		writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_HS3);
372	} else {
373		writel(i2c_timing_s1, i2c->regs + HSI2C_TIMING_FS1);
374		writel(i2c_timing_s2, i2c->regs + HSI2C_TIMING_FS2);
375		writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_FS3);
376	}
377	writel(i2c_timing_sla, i2c->regs + HSI2C_TIMING_SLA);
378
379	return 0;
380}
381
382static int exynos5_hsi2c_clock_setup(struct exynos5_i2c *i2c)
383{
384	/* always set Fast Speed timings */
385	int ret = exynos5_i2c_set_timing(i2c, false);
386
387	if (ret < 0 || i2c->op_clock < I2C_MAX_FAST_MODE_PLUS_FREQ)
388		return ret;
389
390	return exynos5_i2c_set_timing(i2c, true);
391}
392
393/*
394 * exynos5_i2c_init: configures the controller for I2C functionality
395 * Programs I2C controller for Master mode operation
396 */
397static void exynos5_i2c_init(struct exynos5_i2c *i2c)
398{
399	u32 i2c_conf = readl(i2c->regs + HSI2C_CONF);
400	u32 i2c_timeout = readl(i2c->regs + HSI2C_TIMEOUT);
401
402	/* Clear to disable Timeout */
403	i2c_timeout &= ~HSI2C_TIMEOUT_EN;
404	writel(i2c_timeout, i2c->regs + HSI2C_TIMEOUT);
405
406	writel((HSI2C_FUNC_MODE_I2C | HSI2C_MASTER),
407					i2c->regs + HSI2C_CTL);
408	writel(HSI2C_TRAILING_COUNT, i2c->regs + HSI2C_TRAILIG_CTL);
409
410	if (i2c->op_clock >= I2C_MAX_FAST_MODE_PLUS_FREQ) {
411		writel(HSI2C_MASTER_ID(MASTER_ID(i2c->adap.nr)),
412					i2c->regs + HSI2C_ADDR);
413		i2c_conf |= HSI2C_HS_MODE;
414	}
415
416	writel(i2c_conf | HSI2C_AUTO_MODE, i2c->regs + HSI2C_CONF);
417}
418
419static void exynos5_i2c_reset(struct exynos5_i2c *i2c)
420{
421	u32 i2c_ctl;
422
423	/* Set and clear the bit for reset */
424	i2c_ctl = readl(i2c->regs + HSI2C_CTL);
425	i2c_ctl |= HSI2C_SW_RST;
426	writel(i2c_ctl, i2c->regs + HSI2C_CTL);
427
428	i2c_ctl = readl(i2c->regs + HSI2C_CTL);
429	i2c_ctl &= ~HSI2C_SW_RST;
430	writel(i2c_ctl, i2c->regs + HSI2C_CTL);
431
432	/* We don't expect calculations to fail during the run */
433	exynos5_hsi2c_clock_setup(i2c);
434	/* Initialize the configure registers */
435	exynos5_i2c_init(i2c);
436}
437
438/*
439 * exynos5_i2c_irq: top level IRQ servicing routine
440 *
441 * INT_STATUS registers gives the interrupt details. Further,
442 * FIFO_STATUS or TRANS_STATUS registers are to be check for detailed
443 * state of the bus.
444 */
445static irqreturn_t exynos5_i2c_irq(int irqno, void *dev_id)
446{
447	struct exynos5_i2c *i2c = dev_id;
448	u32 fifo_level, int_status, fifo_status, trans_status;
449	unsigned char byte;
450	int len = 0;
451
452	i2c->state = -EINVAL;
453
454	spin_lock(&i2c->lock);
455
456	int_status = readl(i2c->regs + HSI2C_INT_STATUS);
457	writel(int_status, i2c->regs + HSI2C_INT_STATUS);
458
459	/* handle interrupt related to the transfer status */
460	switch (i2c->variant->hw) {
461	case I2C_TYPE_EXYNOSAUTOV9:
462		fallthrough;
463	case I2C_TYPE_EXYNOS7:
464		if (int_status & HSI2C_INT_TRANS_DONE) {
465			i2c->trans_done = 1;
466			i2c->state = 0;
467		} else if (int_status & HSI2C_INT_TRANS_ABORT) {
468			dev_dbg(i2c->dev, "Deal with arbitration lose\n");
469			i2c->state = -EAGAIN;
470			goto stop;
471		} else if (int_status & HSI2C_INT_NO_DEV_ACK) {
472			dev_dbg(i2c->dev, "No ACK from device\n");
473			i2c->state = -ENXIO;
474			goto stop;
475		} else if (int_status & HSI2C_INT_NO_DEV) {
476			dev_dbg(i2c->dev, "No device\n");
477			i2c->state = -ENXIO;
478			goto stop;
479		} else if (int_status & HSI2C_INT_TIMEOUT) {
480			dev_dbg(i2c->dev, "Accessing device timed out\n");
481			i2c->state = -ETIMEDOUT;
482			goto stop;
483		}
484
485		break;
486	case I2C_TYPE_EXYNOS5:
487		if (!(int_status & HSI2C_INT_I2C))
488			break;
489
490		trans_status = readl(i2c->regs + HSI2C_TRANS_STATUS);
491		if (trans_status & HSI2C_NO_DEV_ACK) {
492			dev_dbg(i2c->dev, "No ACK from device\n");
493			i2c->state = -ENXIO;
494			goto stop;
495		} else if (trans_status & HSI2C_NO_DEV) {
496			dev_dbg(i2c->dev, "No device\n");
497			i2c->state = -ENXIO;
498			goto stop;
499		} else if (trans_status & HSI2C_TRANS_ABORT) {
500			dev_dbg(i2c->dev, "Deal with arbitration lose\n");
501			i2c->state = -EAGAIN;
502			goto stop;
503		} else if (trans_status & HSI2C_TIMEOUT_AUTO) {
504			dev_dbg(i2c->dev, "Accessing device timed out\n");
505			i2c->state = -ETIMEDOUT;
506			goto stop;
507		} else if (trans_status & HSI2C_TRANS_DONE) {
508			i2c->trans_done = 1;
509			i2c->state = 0;
510		}
511
512		break;
513	}
514
515	if ((i2c->msg->flags & I2C_M_RD) && (int_status &
516			(HSI2C_INT_TRAILING | HSI2C_INT_RX_ALMOSTFULL))) {
517		fifo_status = readl(i2c->regs + HSI2C_FIFO_STATUS);
518		fifo_level = HSI2C_RX_FIFO_LVL(fifo_status);
519		len = min(fifo_level, i2c->msg->len - i2c->msg_ptr);
520
521		while (len > 0) {
522			byte = (unsigned char)
523				readl(i2c->regs + HSI2C_RX_DATA);
524			i2c->msg->buf[i2c->msg_ptr++] = byte;
525			len--;
526		}
527		i2c->state = 0;
528	} else if (int_status & HSI2C_INT_TX_ALMOSTEMPTY) {
529		fifo_status = readl(i2c->regs + HSI2C_FIFO_STATUS);
530		fifo_level = HSI2C_TX_FIFO_LVL(fifo_status);
531
532		len = i2c->variant->fifo_depth - fifo_level;
533		if (len > (i2c->msg->len - i2c->msg_ptr)) {
534			u32 int_en = readl(i2c->regs + HSI2C_INT_ENABLE);
535
536			int_en &= ~HSI2C_INT_TX_ALMOSTEMPTY_EN;
537			writel(int_en, i2c->regs + HSI2C_INT_ENABLE);
538			len = i2c->msg->len - i2c->msg_ptr;
539		}
540
541		while (len > 0) {
542			byte = i2c->msg->buf[i2c->msg_ptr++];
543			writel(byte, i2c->regs + HSI2C_TX_DATA);
544			len--;
545		}
546		i2c->state = 0;
547	}
548
549 stop:
550	if ((i2c->trans_done && (i2c->msg->len == i2c->msg_ptr)) ||
551	    (i2c->state < 0)) {
552		writel(0, i2c->regs + HSI2C_INT_ENABLE);
553		exynos5_i2c_clr_pend_irq(i2c);
554		complete(&i2c->msg_complete);
555	}
556
557	spin_unlock(&i2c->lock);
558
559	return IRQ_HANDLED;
560}
561
562/*
563 * exynos5_i2c_wait_bus_idle
564 *
565 * Wait for the bus to go idle, indicated by the MASTER_BUSY bit being
566 * cleared.
567 *
568 * Returns -EBUSY if the bus cannot be bought to idle
569 */
570static int exynos5_i2c_wait_bus_idle(struct exynos5_i2c *i2c)
571{
572	unsigned long stop_time;
573	u32 trans_status;
574
575	/* wait for 100 milli seconds for the bus to be idle */
576	stop_time = jiffies + msecs_to_jiffies(100) + 1;
577	do {
578		trans_status = readl(i2c->regs + HSI2C_TRANS_STATUS);
579		if (!(trans_status & HSI2C_MASTER_BUSY))
580			return 0;
581
582		usleep_range(50, 200);
583	} while (time_before(jiffies, stop_time));
584
585	return -EBUSY;
586}
587
588static void exynos5_i2c_bus_recover(struct exynos5_i2c *i2c)
589{
590	u32 val;
591
592	val = readl(i2c->regs + HSI2C_CTL) | HSI2C_RXCHON;
593	writel(val, i2c->regs + HSI2C_CTL);
594	val = readl(i2c->regs + HSI2C_CONF) & ~HSI2C_AUTO_MODE;
595	writel(val, i2c->regs + HSI2C_CONF);
596
597	/*
598	 * Specification says master should send nine clock pulses. It can be
599	 * emulated by sending manual read command (nine pulses for read eight
600	 * bits + one pulse for NACK).
601	 */
602	writel(HSI2C_CMD_READ_DATA, i2c->regs + HSI2C_MANUAL_CMD);
603	exynos5_i2c_wait_bus_idle(i2c);
604	writel(HSI2C_CMD_SEND_STOP, i2c->regs + HSI2C_MANUAL_CMD);
605	exynos5_i2c_wait_bus_idle(i2c);
606
607	val = readl(i2c->regs + HSI2C_CTL) & ~HSI2C_RXCHON;
608	writel(val, i2c->regs + HSI2C_CTL);
609	val = readl(i2c->regs + HSI2C_CONF) | HSI2C_AUTO_MODE;
610	writel(val, i2c->regs + HSI2C_CONF);
611}
612
613static void exynos5_i2c_bus_check(struct exynos5_i2c *i2c)
614{
615	unsigned long timeout;
616
617	if (i2c->variant->hw == I2C_TYPE_EXYNOS5)
618		return;
619
620	/*
621	 * HSI2C_MASTER_ST_LOSE state (in Exynos7 and ExynosAutoV9 variants)
622	 * before transaction indicates that bus is stuck (SDA is low).
623	 * In such case bus recovery can be performed.
624	 */
625	timeout = jiffies + msecs_to_jiffies(100);
626	for (;;) {
627		u32 st = readl(i2c->regs + HSI2C_TRANS_STATUS);
628
629		if ((st & HSI2C_MASTER_ST_MASK) != HSI2C_MASTER_ST_LOSE)
630			return;
631
632		if (time_is_before_jiffies(timeout))
633			return;
634
635		exynos5_i2c_bus_recover(i2c);
636	}
637}
638
639/*
640 * exynos5_i2c_message_start: Configures the bus and starts the xfer
641 * i2c: struct exynos5_i2c pointer for the current bus
642 * stop: Enables stop after transfer if set. Set for last transfer of
643 *       in the list of messages.
644 *
645 * Configures the bus for read/write function
646 * Sets chip address to talk to, message length to be sent.
647 * Enables appropriate interrupts and sends start xfer command.
648 */
649static void exynos5_i2c_message_start(struct exynos5_i2c *i2c, int stop)
650{
651	u32 i2c_ctl;
652	u32 int_en = 0;
653	u32 i2c_auto_conf = 0;
654	u32 i2c_addr = 0;
655	u32 fifo_ctl;
656	unsigned long flags;
657	unsigned short trig_lvl;
658
659	if (i2c->variant->hw == I2C_TYPE_EXYNOS5)
660		int_en |= HSI2C_INT_I2C;
661	else
662		int_en |= HSI2C_INT_I2C_TRANS;
 
 
663
664	i2c_ctl = readl(i2c->regs + HSI2C_CTL);
665	i2c_ctl &= ~(HSI2C_TXCHON | HSI2C_RXCHON);
666	fifo_ctl = HSI2C_RXFIFO_EN | HSI2C_TXFIFO_EN;
667
668	if (i2c->msg->flags & I2C_M_RD) {
669		i2c_ctl |= HSI2C_RXCHON;
670
671		i2c_auto_conf |= HSI2C_READ_WRITE;
672
673		trig_lvl = (i2c->msg->len > i2c->variant->fifo_depth) ?
674			(i2c->variant->fifo_depth * 3 / 4) : i2c->msg->len;
675		fifo_ctl |= HSI2C_RXFIFO_TRIGGER_LEVEL(trig_lvl);
676
677		int_en |= (HSI2C_INT_RX_ALMOSTFULL_EN |
678			HSI2C_INT_TRAILING_EN);
679	} else {
680		i2c_ctl |= HSI2C_TXCHON;
681
682		trig_lvl = (i2c->msg->len > i2c->variant->fifo_depth) ?
683			(i2c->variant->fifo_depth * 1 / 4) : i2c->msg->len;
684		fifo_ctl |= HSI2C_TXFIFO_TRIGGER_LEVEL(trig_lvl);
685
686		int_en |= HSI2C_INT_TX_ALMOSTEMPTY_EN;
687	}
688
689	i2c_addr = HSI2C_SLV_ADDR_MAS(i2c->msg->addr);
690
691	if (i2c->op_clock >= I2C_MAX_FAST_MODE_PLUS_FREQ)
692		i2c_addr |= HSI2C_MASTER_ID(MASTER_ID(i2c->adap.nr));
693
694	writel(i2c_addr, i2c->regs + HSI2C_ADDR);
695
696	writel(fifo_ctl, i2c->regs + HSI2C_FIFO_CTL);
697	writel(i2c_ctl, i2c->regs + HSI2C_CTL);
698
699	exynos5_i2c_bus_check(i2c);
700
701	/*
702	 * Enable interrupts before starting the transfer so that we don't
703	 * miss any INT_I2C interrupts.
704	 */
705	spin_lock_irqsave(&i2c->lock, flags);
706	writel(int_en, i2c->regs + HSI2C_INT_ENABLE);
707
708	if (stop == 1)
709		i2c_auto_conf |= HSI2C_STOP_AFTER_TRANS;
710	i2c_auto_conf |= i2c->msg->len;
711	i2c_auto_conf |= HSI2C_MASTER_RUN;
712	writel(i2c_auto_conf, i2c->regs + HSI2C_AUTO_CONF);
713	spin_unlock_irqrestore(&i2c->lock, flags);
714}
715
716static int exynos5_i2c_xfer_msg(struct exynos5_i2c *i2c,
717			      struct i2c_msg *msgs, int stop)
718{
719	unsigned long timeout;
720	int ret;
721
722	i2c->msg = msgs;
723	i2c->msg_ptr = 0;
724	i2c->trans_done = 0;
725
726	reinit_completion(&i2c->msg_complete);
727
728	exynos5_i2c_message_start(i2c, stop);
729
730	timeout = wait_for_completion_timeout(&i2c->msg_complete,
731					      EXYNOS5_I2C_TIMEOUT);
732	if (timeout == 0)
733		ret = -ETIMEDOUT;
734	else
735		ret = i2c->state;
736
737	/*
738	 * If this is the last message to be transfered (stop == 1)
739	 * Then check if the bus can be brought back to idle.
740	 */
741	if (ret == 0 && stop)
742		ret = exynos5_i2c_wait_bus_idle(i2c);
743
744	if (ret < 0) {
745		exynos5_i2c_reset(i2c);
746		if (ret == -ETIMEDOUT)
747			dev_warn(i2c->dev, "%s timeout\n",
748				 (msgs->flags & I2C_M_RD) ? "rx" : "tx");
749	}
750
751	/* Return the state as in interrupt routine */
752	return ret;
753}
754
755static int exynos5_i2c_xfer(struct i2c_adapter *adap,
756			struct i2c_msg *msgs, int num)
757{
758	struct exynos5_i2c *i2c = adap->algo_data;
759	int i, ret;
760
761	ret = clk_enable(i2c->pclk);
762	if (ret)
763		return ret;
764
765	ret = clk_enable(i2c->clk);
766	if (ret)
767		goto err_pclk;
768
769	for (i = 0; i < num; ++i) {
770		ret = exynos5_i2c_xfer_msg(i2c, msgs + i, i + 1 == num);
771		if (ret)
772			break;
773	}
774
775	clk_disable(i2c->clk);
776err_pclk:
777	clk_disable(i2c->pclk);
778
779	return ret ?: num;
780}
781
782static u32 exynos5_i2c_func(struct i2c_adapter *adap)
783{
784	return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK);
785}
786
787static const struct i2c_algorithm exynos5_i2c_algorithm = {
788	.master_xfer		= exynos5_i2c_xfer,
789	.functionality		= exynos5_i2c_func,
790};
791
792static int exynos5_i2c_probe(struct platform_device *pdev)
793{
794	struct device_node *np = pdev->dev.of_node;
795	struct exynos5_i2c *i2c;
796	int ret;
797
798	i2c = devm_kzalloc(&pdev->dev, sizeof(struct exynos5_i2c), GFP_KERNEL);
799	if (!i2c)
800		return -ENOMEM;
801
802	if (of_property_read_u32(np, "clock-frequency", &i2c->op_clock))
803		i2c->op_clock = I2C_MAX_STANDARD_MODE_FREQ;
804
805	strscpy(i2c->adap.name, "exynos5-i2c", sizeof(i2c->adap.name));
806	i2c->adap.owner   = THIS_MODULE;
807	i2c->adap.algo    = &exynos5_i2c_algorithm;
808	i2c->adap.retries = 3;
809
810	i2c->dev = &pdev->dev;
811	i2c->clk = devm_clk_get(&pdev->dev, "hsi2c");
812	if (IS_ERR(i2c->clk)) {
813		dev_err(&pdev->dev, "cannot get clock\n");
814		return -ENOENT;
815	}
816
817	i2c->pclk = devm_clk_get_optional(&pdev->dev, "hsi2c_pclk");
818	if (IS_ERR(i2c->pclk)) {
819		return dev_err_probe(&pdev->dev, PTR_ERR(i2c->pclk),
820				     "cannot get pclk");
821	}
822
823	ret = clk_prepare_enable(i2c->pclk);
824	if (ret)
825		return ret;
826
827	ret = clk_prepare_enable(i2c->clk);
828	if (ret)
829		goto err_pclk;
830
831	i2c->regs = devm_platform_ioremap_resource(pdev, 0);
832	if (IS_ERR(i2c->regs)) {
833		ret = PTR_ERR(i2c->regs);
834		goto err_clk;
835	}
836
837	i2c->adap.dev.of_node = np;
838	i2c->adap.algo_data = i2c;
839	i2c->adap.dev.parent = &pdev->dev;
840
841	/* Clear pending interrupts from u-boot or misc causes */
842	exynos5_i2c_clr_pend_irq(i2c);
843
844	spin_lock_init(&i2c->lock);
845	init_completion(&i2c->msg_complete);
846
847	i2c->irq = ret = platform_get_irq(pdev, 0);
848	if (ret < 0)
849		goto err_clk;
850
851	ret = devm_request_irq(&pdev->dev, i2c->irq, exynos5_i2c_irq,
852			       IRQF_NO_SUSPEND, dev_name(&pdev->dev), i2c);
853	if (ret != 0) {
854		dev_err(&pdev->dev, "cannot request HS-I2C IRQ %d\n", i2c->irq);
855		goto err_clk;
856	}
857
858	i2c->variant = of_device_get_match_data(&pdev->dev);
859
860	ret = exynos5_hsi2c_clock_setup(i2c);
861	if (ret)
862		goto err_clk;
863
864	exynos5_i2c_reset(i2c);
865
866	ret = i2c_add_adapter(&i2c->adap);
867	if (ret < 0)
868		goto err_clk;
869
870	platform_set_drvdata(pdev, i2c);
871
872	clk_disable(i2c->clk);
873	clk_disable(i2c->pclk);
874
875	return 0;
876
877 err_clk:
878	clk_disable_unprepare(i2c->clk);
879
880 err_pclk:
881	clk_disable_unprepare(i2c->pclk);
882	return ret;
883}
884
885static int exynos5_i2c_remove(struct platform_device *pdev)
886{
887	struct exynos5_i2c *i2c = platform_get_drvdata(pdev);
888
889	i2c_del_adapter(&i2c->adap);
890
891	clk_unprepare(i2c->clk);
892	clk_unprepare(i2c->pclk);
893
894	return 0;
895}
896
897#ifdef CONFIG_PM_SLEEP
898static int exynos5_i2c_suspend_noirq(struct device *dev)
899{
900	struct exynos5_i2c *i2c = dev_get_drvdata(dev);
901
902	i2c_mark_adapter_suspended(&i2c->adap);
903	clk_unprepare(i2c->clk);
904	clk_unprepare(i2c->pclk);
905
906	return 0;
907}
908
909static int exynos5_i2c_resume_noirq(struct device *dev)
910{
911	struct exynos5_i2c *i2c = dev_get_drvdata(dev);
912	int ret = 0;
913
914	ret = clk_prepare_enable(i2c->pclk);
915	if (ret)
916		return ret;
917
918	ret = clk_prepare_enable(i2c->clk);
919	if (ret)
920		goto err_pclk;
921
922	ret = exynos5_hsi2c_clock_setup(i2c);
923	if (ret)
924		goto err_clk;
 
 
925
926	exynos5_i2c_init(i2c);
927	clk_disable(i2c->clk);
928	clk_disable(i2c->pclk);
929	i2c_mark_adapter_resumed(&i2c->adap);
930
931	return 0;
932
933err_clk:
934	clk_disable_unprepare(i2c->clk);
935err_pclk:
936	clk_disable_unprepare(i2c->pclk);
937	return ret;
938}
939#endif
940
941static const struct dev_pm_ops exynos5_i2c_dev_pm_ops = {
942	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(exynos5_i2c_suspend_noirq,
943				      exynos5_i2c_resume_noirq)
944};
945
946static struct platform_driver exynos5_i2c_driver = {
947	.probe		= exynos5_i2c_probe,
948	.remove		= exynos5_i2c_remove,
949	.driver		= {
950		.name	= "exynos5-hsi2c",
951		.pm	= &exynos5_i2c_dev_pm_ops,
952		.of_match_table = exynos5_i2c_match,
953	},
954};
955
956module_platform_driver(exynos5_i2c_driver);
957
958MODULE_DESCRIPTION("Exynos5 HS-I2C Bus driver");
959MODULE_AUTHOR("Naveen Krishna Chatradhi <ch.naveen@samsung.com>");
960MODULE_AUTHOR("Taekgyun Ko <taeggyun.ko@samsung.com>");
961MODULE_LICENSE("GPL v2");
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * i2c-exynos5.c - Samsung Exynos5 I2C Controller Driver
  4 *
  5 * Copyright (C) 2013 Samsung Electronics Co., Ltd.
  6*/
  7
  8#include <linux/kernel.h>
  9#include <linux/module.h>
 10
 11#include <linux/i2c.h>
 12#include <linux/time.h>
 13#include <linux/interrupt.h>
 14#include <linux/delay.h>
 15#include <linux/errno.h>
 16#include <linux/err.h>
 17#include <linux/platform_device.h>
 18#include <linux/clk.h>
 19#include <linux/slab.h>
 20#include <linux/io.h>
 21#include <linux/of_address.h>
 22#include <linux/of_device.h>
 23#include <linux/of_irq.h>
 24#include <linux/spinlock.h>
 25
 26/*
 27 * HSI2C controller from Samsung supports 2 modes of operation
 28 * 1. Auto mode: Where in master automatically controls the whole transaction
 29 * 2. Manual mode: Software controls the transaction by issuing commands
 30 *    START, READ, WRITE, STOP, RESTART in I2C_MANUAL_CMD register.
 31 *
 32 * Operation mode can be selected by setting AUTO_MODE bit in I2C_CONF register
 33 *
 34 * Special bits are available for both modes of operation to set commands
 35 * and for checking transfer status
 36 */
 37
 38/* Register Map */
 39#define HSI2C_CTL		0x00
 40#define HSI2C_FIFO_CTL		0x04
 41#define HSI2C_TRAILIG_CTL	0x08
 42#define HSI2C_CLK_CTL		0x0C
 43#define HSI2C_CLK_SLOT		0x10
 44#define HSI2C_INT_ENABLE	0x20
 45#define HSI2C_INT_STATUS	0x24
 46#define HSI2C_ERR_STATUS	0x2C
 47#define HSI2C_FIFO_STATUS	0x30
 48#define HSI2C_TX_DATA		0x34
 49#define HSI2C_RX_DATA		0x38
 50#define HSI2C_CONF		0x40
 51#define HSI2C_AUTO_CONF		0x44
 52#define HSI2C_TIMEOUT		0x48
 53#define HSI2C_MANUAL_CMD	0x4C
 54#define HSI2C_TRANS_STATUS	0x50
 55#define HSI2C_TIMING_HS1	0x54
 56#define HSI2C_TIMING_HS2	0x58
 57#define HSI2C_TIMING_HS3	0x5C
 58#define HSI2C_TIMING_FS1	0x60
 59#define HSI2C_TIMING_FS2	0x64
 60#define HSI2C_TIMING_FS3	0x68
 61#define HSI2C_TIMING_SLA	0x6C
 62#define HSI2C_ADDR		0x70
 63
 64/* I2C_CTL Register bits */
 65#define HSI2C_FUNC_MODE_I2C			(1u << 0)
 66#define HSI2C_MASTER				(1u << 3)
 67#define HSI2C_RXCHON				(1u << 6)
 68#define HSI2C_TXCHON				(1u << 7)
 69#define HSI2C_SW_RST				(1u << 31)
 70
 71/* I2C_FIFO_CTL Register bits */
 72#define HSI2C_RXFIFO_EN				(1u << 0)
 73#define HSI2C_TXFIFO_EN				(1u << 1)
 74#define HSI2C_RXFIFO_TRIGGER_LEVEL(x)		((x) << 4)
 75#define HSI2C_TXFIFO_TRIGGER_LEVEL(x)		((x) << 16)
 76
 77/* I2C_TRAILING_CTL Register bits */
 78#define HSI2C_TRAILING_COUNT			(0xf)
 79
 80/* I2C_INT_EN Register bits */
 81#define HSI2C_INT_TX_ALMOSTEMPTY_EN		(1u << 0)
 82#define HSI2C_INT_RX_ALMOSTFULL_EN		(1u << 1)
 83#define HSI2C_INT_TRAILING_EN			(1u << 6)
 84
 85/* I2C_INT_STAT Register bits */
 86#define HSI2C_INT_TX_ALMOSTEMPTY		(1u << 0)
 87#define HSI2C_INT_RX_ALMOSTFULL			(1u << 1)
 88#define HSI2C_INT_TX_UNDERRUN			(1u << 2)
 89#define HSI2C_INT_TX_OVERRUN			(1u << 3)
 90#define HSI2C_INT_RX_UNDERRUN			(1u << 4)
 91#define HSI2C_INT_RX_OVERRUN			(1u << 5)
 92#define HSI2C_INT_TRAILING			(1u << 6)
 93#define HSI2C_INT_I2C				(1u << 9)
 94
 95#define HSI2C_INT_TRANS_DONE			(1u << 7)
 96#define HSI2C_INT_TRANS_ABORT			(1u << 8)
 97#define HSI2C_INT_NO_DEV_ACK			(1u << 9)
 98#define HSI2C_INT_NO_DEV			(1u << 10)
 99#define HSI2C_INT_TIMEOUT			(1u << 11)
100#define HSI2C_INT_I2C_TRANS			(HSI2C_INT_TRANS_DONE |	\
101						HSI2C_INT_TRANS_ABORT |	\
102						HSI2C_INT_NO_DEV_ACK |	\
103						HSI2C_INT_NO_DEV |	\
104						HSI2C_INT_TIMEOUT)
105
106/* I2C_FIFO_STAT Register bits */
107#define HSI2C_RX_FIFO_EMPTY			(1u << 24)
108#define HSI2C_RX_FIFO_FULL			(1u << 23)
109#define HSI2C_RX_FIFO_LVL(x)			((x >> 16) & 0x7f)
110#define HSI2C_TX_FIFO_EMPTY			(1u << 8)
111#define HSI2C_TX_FIFO_FULL			(1u << 7)
112#define HSI2C_TX_FIFO_LVL(x)			((x >> 0) & 0x7f)
113
114/* I2C_CONF Register bits */
115#define HSI2C_AUTO_MODE				(1u << 31)
116#define HSI2C_10BIT_ADDR_MODE			(1u << 30)
117#define HSI2C_HS_MODE				(1u << 29)
118
119/* I2C_AUTO_CONF Register bits */
120#define HSI2C_READ_WRITE			(1u << 16)
121#define HSI2C_STOP_AFTER_TRANS			(1u << 17)
122#define HSI2C_MASTER_RUN			(1u << 31)
123
124/* I2C_TIMEOUT Register bits */
125#define HSI2C_TIMEOUT_EN			(1u << 31)
126#define HSI2C_TIMEOUT_MASK			0xff
127
128/* I2C_MANUAL_CMD register bits */
129#define HSI2C_CMD_READ_DATA			(1u << 4)
130#define HSI2C_CMD_SEND_STOP			(1u << 2)
131
132/* I2C_TRANS_STATUS register bits */
133#define HSI2C_MASTER_BUSY			(1u << 17)
134#define HSI2C_SLAVE_BUSY			(1u << 16)
135
136/* I2C_TRANS_STATUS register bits for Exynos5 variant */
137#define HSI2C_TIMEOUT_AUTO			(1u << 4)
138#define HSI2C_NO_DEV				(1u << 3)
139#define HSI2C_NO_DEV_ACK			(1u << 2)
140#define HSI2C_TRANS_ABORT			(1u << 1)
141#define HSI2C_TRANS_DONE			(1u << 0)
142
143/* I2C_TRANS_STATUS register bits for Exynos7 variant */
144#define HSI2C_MASTER_ST_MASK			0xf
145#define HSI2C_MASTER_ST_IDLE			0x0
146#define HSI2C_MASTER_ST_START			0x1
147#define HSI2C_MASTER_ST_RESTART			0x2
148#define HSI2C_MASTER_ST_STOP			0x3
149#define HSI2C_MASTER_ST_MASTER_ID		0x4
150#define HSI2C_MASTER_ST_ADDR0			0x5
151#define HSI2C_MASTER_ST_ADDR1			0x6
152#define HSI2C_MASTER_ST_ADDR2			0x7
153#define HSI2C_MASTER_ST_ADDR_SR			0x8
154#define HSI2C_MASTER_ST_READ			0x9
155#define HSI2C_MASTER_ST_WRITE			0xa
156#define HSI2C_MASTER_ST_NO_ACK			0xb
157#define HSI2C_MASTER_ST_LOSE			0xc
158#define HSI2C_MASTER_ST_WAIT			0xd
159#define HSI2C_MASTER_ST_WAIT_CMD		0xe
160
161/* I2C_ADDR register bits */
162#define HSI2C_SLV_ADDR_SLV(x)			((x & 0x3ff) << 0)
163#define HSI2C_SLV_ADDR_MAS(x)			((x & 0x3ff) << 10)
164#define HSI2C_MASTER_ID(x)			((x & 0xff) << 24)
165#define MASTER_ID(x)				((x & 0x7) + 0x08)
166
167#define EXYNOS5_I2C_TIMEOUT (msecs_to_jiffies(100))
168
169enum i2c_type_exynos {
170	I2C_TYPE_EXYNOS5,
171	I2C_TYPE_EXYNOS7,
 
172};
173
174struct exynos5_i2c {
175	struct i2c_adapter	adap;
176
177	struct i2c_msg		*msg;
178	struct completion	msg_complete;
179	unsigned int		msg_ptr;
180
181	unsigned int		irq;
182
183	void __iomem		*regs;
184	struct clk		*clk;
 
185	struct device		*dev;
186	int			state;
187
188	spinlock_t		lock;		/* IRQ synchronization */
189
190	/*
191	 * Since the TRANS_DONE bit is cleared on read, and we may read it
192	 * either during an IRQ or after a transaction, keep track of its
193	 * state here.
194	 */
195	int			trans_done;
196
197	/* Controller operating frequency */
198	unsigned int		op_clock;
199
200	/* Version of HS-I2C Hardware */
201	const struct exynos_hsi2c_variant *variant;
202};
203
204/**
205 * struct exynos_hsi2c_variant - platform specific HSI2C driver data
206 * @fifo_depth: the fifo depth supported by the HSI2C module
207 * @hw: the hardware variant of Exynos I2C controller
208 *
209 * Specifies platform specific configuration of HSI2C module.
210 * Note: A structure for driver specific platform data is used for future
211 * expansion of its usage.
212 */
213struct exynos_hsi2c_variant {
214	unsigned int		fifo_depth;
215	enum i2c_type_exynos	hw;
216};
217
218static const struct exynos_hsi2c_variant exynos5250_hsi2c_data = {
219	.fifo_depth	= 64,
220	.hw		= I2C_TYPE_EXYNOS5,
221};
222
223static const struct exynos_hsi2c_variant exynos5260_hsi2c_data = {
224	.fifo_depth	= 16,
225	.hw		= I2C_TYPE_EXYNOS5,
226};
227
228static const struct exynos_hsi2c_variant exynos7_hsi2c_data = {
229	.fifo_depth	= 16,
230	.hw		= I2C_TYPE_EXYNOS7,
231};
232
 
 
 
 
 
233static const struct of_device_id exynos5_i2c_match[] = {
234	{
235		.compatible = "samsung,exynos5-hsi2c",
236		.data = &exynos5250_hsi2c_data
237	}, {
238		.compatible = "samsung,exynos5250-hsi2c",
239		.data = &exynos5250_hsi2c_data
240	}, {
241		.compatible = "samsung,exynos5260-hsi2c",
242		.data = &exynos5260_hsi2c_data
243	}, {
244		.compatible = "samsung,exynos7-hsi2c",
245		.data = &exynos7_hsi2c_data
 
 
 
246	}, {},
247};
248MODULE_DEVICE_TABLE(of, exynos5_i2c_match);
249
250static void exynos5_i2c_clr_pend_irq(struct exynos5_i2c *i2c)
251{
252	writel(readl(i2c->regs + HSI2C_INT_STATUS),
253				i2c->regs + HSI2C_INT_STATUS);
254}
255
256/*
257 * exynos5_i2c_set_timing: updates the registers with appropriate
258 * timing values calculated
259 *
260 * Timing values for operation are calculated against either 100kHz
261 * or 1MHz controller operating frequency.
262 *
263 * Returns 0 on success, -EINVAL if the cycle length cannot
264 * be calculated.
265 */
266static int exynos5_i2c_set_timing(struct exynos5_i2c *i2c, bool hs_timings)
267{
268	u32 i2c_timing_s1;
269	u32 i2c_timing_s2;
270	u32 i2c_timing_s3;
271	u32 i2c_timing_sla;
272	unsigned int t_start_su, t_start_hd;
273	unsigned int t_stop_su;
274	unsigned int t_data_su, t_data_hd;
275	unsigned int t_scl_l, t_scl_h;
276	unsigned int t_sr_release;
277	unsigned int t_ftl_cycle;
278	unsigned int clkin = clk_get_rate(i2c->clk);
279	unsigned int op_clk = hs_timings ? i2c->op_clock :
280		(i2c->op_clock >= I2C_MAX_FAST_MODE_PLUS_FREQ) ? I2C_MAX_STANDARD_MODE_FREQ :
281		i2c->op_clock;
282	int div, clk_cycle, temp;
283
284	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
285	 * In case of HSI2C controller in Exynos5 series
286	 * FPCLK / FI2C =
287	 * (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2) + 8 + 2 * FLT_CYCLE
288	 *
289	 * In case of HSI2C controllers in Exynos7 series
290	 * FPCLK / FI2C =
291	 * (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2) + 8 + FLT_CYCLE
292	 *
293	 * clk_cycle := TSCLK_L + TSCLK_H
294	 * temp := (CLK_DIV + 1) * (clk_cycle + 2)
295	 *
296	 * Constraints: 4 <= temp, 0 <= CLK_DIV < 256, 2 <= clk_cycle <= 510
297	 *
298	 */
299	t_ftl_cycle = (readl(i2c->regs + HSI2C_CONF) >> 16) & 0x7;
300	temp = clkin / op_clk - 8 - t_ftl_cycle;
301	if (i2c->variant->hw != I2C_TYPE_EXYNOS7)
302		temp -= t_ftl_cycle;
303	div = temp / 512;
304	clk_cycle = temp / (div + 1) - 2;
305	if (temp < 4 || div >= 256 || clk_cycle < 2) {
306		dev_err(i2c->dev, "%s clock set-up failed\n",
307			hs_timings ? "HS" : "FS");
308		return -EINVAL;
309	}
310
311	t_scl_l = clk_cycle / 2;
312	t_scl_h = clk_cycle / 2;
313	t_start_su = t_scl_l;
314	t_start_hd = t_scl_l;
315	t_stop_su = t_scl_l;
316	t_data_su = t_scl_l / 2;
317	t_data_hd = t_scl_l / 2;
318	t_sr_release = clk_cycle;
319
320	i2c_timing_s1 = t_start_su << 24 | t_start_hd << 16 | t_stop_su << 8;
321	i2c_timing_s2 = t_data_su << 24 | t_scl_l << 8 | t_scl_h << 0;
322	i2c_timing_s3 = div << 16 | t_sr_release << 0;
323	i2c_timing_sla = t_data_hd << 0;
324
325	dev_dbg(i2c->dev, "tSTART_SU: %X, tSTART_HD: %X, tSTOP_SU: %X\n",
326		t_start_su, t_start_hd, t_stop_su);
327	dev_dbg(i2c->dev, "tDATA_SU: %X, tSCL_L: %X, tSCL_H: %X\n",
328		t_data_su, t_scl_l, t_scl_h);
329	dev_dbg(i2c->dev, "nClkDiv: %X, tSR_RELEASE: %X\n",
330		div, t_sr_release);
331	dev_dbg(i2c->dev, "tDATA_HD: %X\n", t_data_hd);
332
333	if (hs_timings) {
334		writel(i2c_timing_s1, i2c->regs + HSI2C_TIMING_HS1);
335		writel(i2c_timing_s2, i2c->regs + HSI2C_TIMING_HS2);
336		writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_HS3);
337	} else {
338		writel(i2c_timing_s1, i2c->regs + HSI2C_TIMING_FS1);
339		writel(i2c_timing_s2, i2c->regs + HSI2C_TIMING_FS2);
340		writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_FS3);
341	}
342	writel(i2c_timing_sla, i2c->regs + HSI2C_TIMING_SLA);
343
344	return 0;
345}
346
347static int exynos5_hsi2c_clock_setup(struct exynos5_i2c *i2c)
348{
349	/* always set Fast Speed timings */
350	int ret = exynos5_i2c_set_timing(i2c, false);
351
352	if (ret < 0 || i2c->op_clock < I2C_MAX_FAST_MODE_PLUS_FREQ)
353		return ret;
354
355	return exynos5_i2c_set_timing(i2c, true);
356}
357
358/*
359 * exynos5_i2c_init: configures the controller for I2C functionality
360 * Programs I2C controller for Master mode operation
361 */
362static void exynos5_i2c_init(struct exynos5_i2c *i2c)
363{
364	u32 i2c_conf = readl(i2c->regs + HSI2C_CONF);
365	u32 i2c_timeout = readl(i2c->regs + HSI2C_TIMEOUT);
366
367	/* Clear to disable Timeout */
368	i2c_timeout &= ~HSI2C_TIMEOUT_EN;
369	writel(i2c_timeout, i2c->regs + HSI2C_TIMEOUT);
370
371	writel((HSI2C_FUNC_MODE_I2C | HSI2C_MASTER),
372					i2c->regs + HSI2C_CTL);
373	writel(HSI2C_TRAILING_COUNT, i2c->regs + HSI2C_TRAILIG_CTL);
374
375	if (i2c->op_clock >= I2C_MAX_FAST_MODE_PLUS_FREQ) {
376		writel(HSI2C_MASTER_ID(MASTER_ID(i2c->adap.nr)),
377					i2c->regs + HSI2C_ADDR);
378		i2c_conf |= HSI2C_HS_MODE;
379	}
380
381	writel(i2c_conf | HSI2C_AUTO_MODE, i2c->regs + HSI2C_CONF);
382}
383
384static void exynos5_i2c_reset(struct exynos5_i2c *i2c)
385{
386	u32 i2c_ctl;
387
388	/* Set and clear the bit for reset */
389	i2c_ctl = readl(i2c->regs + HSI2C_CTL);
390	i2c_ctl |= HSI2C_SW_RST;
391	writel(i2c_ctl, i2c->regs + HSI2C_CTL);
392
393	i2c_ctl = readl(i2c->regs + HSI2C_CTL);
394	i2c_ctl &= ~HSI2C_SW_RST;
395	writel(i2c_ctl, i2c->regs + HSI2C_CTL);
396
397	/* We don't expect calculations to fail during the run */
398	exynos5_hsi2c_clock_setup(i2c);
399	/* Initialize the configure registers */
400	exynos5_i2c_init(i2c);
401}
402
403/*
404 * exynos5_i2c_irq: top level IRQ servicing routine
405 *
406 * INT_STATUS registers gives the interrupt details. Further,
407 * FIFO_STATUS or TRANS_STATUS registers are to be check for detailed
408 * state of the bus.
409 */
410static irqreturn_t exynos5_i2c_irq(int irqno, void *dev_id)
411{
412	struct exynos5_i2c *i2c = dev_id;
413	u32 fifo_level, int_status, fifo_status, trans_status;
414	unsigned char byte;
415	int len = 0;
416
417	i2c->state = -EINVAL;
418
419	spin_lock(&i2c->lock);
420
421	int_status = readl(i2c->regs + HSI2C_INT_STATUS);
422	writel(int_status, i2c->regs + HSI2C_INT_STATUS);
423
424	/* handle interrupt related to the transfer status */
425	if (i2c->variant->hw == I2C_TYPE_EXYNOS7) {
 
 
 
426		if (int_status & HSI2C_INT_TRANS_DONE) {
427			i2c->trans_done = 1;
428			i2c->state = 0;
429		} else if (int_status & HSI2C_INT_TRANS_ABORT) {
430			dev_dbg(i2c->dev, "Deal with arbitration lose\n");
431			i2c->state = -EAGAIN;
432			goto stop;
433		} else if (int_status & HSI2C_INT_NO_DEV_ACK) {
434			dev_dbg(i2c->dev, "No ACK from device\n");
435			i2c->state = -ENXIO;
436			goto stop;
437		} else if (int_status & HSI2C_INT_NO_DEV) {
438			dev_dbg(i2c->dev, "No device\n");
439			i2c->state = -ENXIO;
440			goto stop;
441		} else if (int_status & HSI2C_INT_TIMEOUT) {
442			dev_dbg(i2c->dev, "Accessing device timed out\n");
443			i2c->state = -ETIMEDOUT;
444			goto stop;
445		}
446	} else if (int_status & HSI2C_INT_I2C) {
 
 
 
 
 
447		trans_status = readl(i2c->regs + HSI2C_TRANS_STATUS);
448		if (trans_status & HSI2C_NO_DEV_ACK) {
449			dev_dbg(i2c->dev, "No ACK from device\n");
450			i2c->state = -ENXIO;
451			goto stop;
452		} else if (trans_status & HSI2C_NO_DEV) {
453			dev_dbg(i2c->dev, "No device\n");
454			i2c->state = -ENXIO;
455			goto stop;
456		} else if (trans_status & HSI2C_TRANS_ABORT) {
457			dev_dbg(i2c->dev, "Deal with arbitration lose\n");
458			i2c->state = -EAGAIN;
459			goto stop;
460		} else if (trans_status & HSI2C_TIMEOUT_AUTO) {
461			dev_dbg(i2c->dev, "Accessing device timed out\n");
462			i2c->state = -ETIMEDOUT;
463			goto stop;
464		} else if (trans_status & HSI2C_TRANS_DONE) {
465			i2c->trans_done = 1;
466			i2c->state = 0;
467		}
 
 
468	}
469
470	if ((i2c->msg->flags & I2C_M_RD) && (int_status &
471			(HSI2C_INT_TRAILING | HSI2C_INT_RX_ALMOSTFULL))) {
472		fifo_status = readl(i2c->regs + HSI2C_FIFO_STATUS);
473		fifo_level = HSI2C_RX_FIFO_LVL(fifo_status);
474		len = min(fifo_level, i2c->msg->len - i2c->msg_ptr);
475
476		while (len > 0) {
477			byte = (unsigned char)
478				readl(i2c->regs + HSI2C_RX_DATA);
479			i2c->msg->buf[i2c->msg_ptr++] = byte;
480			len--;
481		}
482		i2c->state = 0;
483	} else if (int_status & HSI2C_INT_TX_ALMOSTEMPTY) {
484		fifo_status = readl(i2c->regs + HSI2C_FIFO_STATUS);
485		fifo_level = HSI2C_TX_FIFO_LVL(fifo_status);
486
487		len = i2c->variant->fifo_depth - fifo_level;
488		if (len > (i2c->msg->len - i2c->msg_ptr)) {
489			u32 int_en = readl(i2c->regs + HSI2C_INT_ENABLE);
490
491			int_en &= ~HSI2C_INT_TX_ALMOSTEMPTY_EN;
492			writel(int_en, i2c->regs + HSI2C_INT_ENABLE);
493			len = i2c->msg->len - i2c->msg_ptr;
494		}
495
496		while (len > 0) {
497			byte = i2c->msg->buf[i2c->msg_ptr++];
498			writel(byte, i2c->regs + HSI2C_TX_DATA);
499			len--;
500		}
501		i2c->state = 0;
502	}
503
504 stop:
505	if ((i2c->trans_done && (i2c->msg->len == i2c->msg_ptr)) ||
506	    (i2c->state < 0)) {
507		writel(0, i2c->regs + HSI2C_INT_ENABLE);
508		exynos5_i2c_clr_pend_irq(i2c);
509		complete(&i2c->msg_complete);
510	}
511
512	spin_unlock(&i2c->lock);
513
514	return IRQ_HANDLED;
515}
516
517/*
518 * exynos5_i2c_wait_bus_idle
519 *
520 * Wait for the bus to go idle, indicated by the MASTER_BUSY bit being
521 * cleared.
522 *
523 * Returns -EBUSY if the bus cannot be bought to idle
524 */
525static int exynos5_i2c_wait_bus_idle(struct exynos5_i2c *i2c)
526{
527	unsigned long stop_time;
528	u32 trans_status;
529
530	/* wait for 100 milli seconds for the bus to be idle */
531	stop_time = jiffies + msecs_to_jiffies(100) + 1;
532	do {
533		trans_status = readl(i2c->regs + HSI2C_TRANS_STATUS);
534		if (!(trans_status & HSI2C_MASTER_BUSY))
535			return 0;
536
537		usleep_range(50, 200);
538	} while (time_before(jiffies, stop_time));
539
540	return -EBUSY;
541}
542
543static void exynos5_i2c_bus_recover(struct exynos5_i2c *i2c)
544{
545	u32 val;
546
547	val = readl(i2c->regs + HSI2C_CTL) | HSI2C_RXCHON;
548	writel(val, i2c->regs + HSI2C_CTL);
549	val = readl(i2c->regs + HSI2C_CONF) & ~HSI2C_AUTO_MODE;
550	writel(val, i2c->regs + HSI2C_CONF);
551
552	/*
553	 * Specification says master should send nine clock pulses. It can be
554	 * emulated by sending manual read command (nine pulses for read eight
555	 * bits + one pulse for NACK).
556	 */
557	writel(HSI2C_CMD_READ_DATA, i2c->regs + HSI2C_MANUAL_CMD);
558	exynos5_i2c_wait_bus_idle(i2c);
559	writel(HSI2C_CMD_SEND_STOP, i2c->regs + HSI2C_MANUAL_CMD);
560	exynos5_i2c_wait_bus_idle(i2c);
561
562	val = readl(i2c->regs + HSI2C_CTL) & ~HSI2C_RXCHON;
563	writel(val, i2c->regs + HSI2C_CTL);
564	val = readl(i2c->regs + HSI2C_CONF) | HSI2C_AUTO_MODE;
565	writel(val, i2c->regs + HSI2C_CONF);
566}
567
568static void exynos5_i2c_bus_check(struct exynos5_i2c *i2c)
569{
570	unsigned long timeout;
571
572	if (i2c->variant->hw != I2C_TYPE_EXYNOS7)
573		return;
574
575	/*
576	 * HSI2C_MASTER_ST_LOSE state in EXYNOS7 variant before transaction
577	 * indicates that bus is stuck (SDA is low). In such case bus recovery
578	 * can be performed.
579	 */
580	timeout = jiffies + msecs_to_jiffies(100);
581	for (;;) {
582		u32 st = readl(i2c->regs + HSI2C_TRANS_STATUS);
583
584		if ((st & HSI2C_MASTER_ST_MASK) != HSI2C_MASTER_ST_LOSE)
585			return;
586
587		if (time_is_before_jiffies(timeout))
588			return;
589
590		exynos5_i2c_bus_recover(i2c);
591	}
592}
593
594/*
595 * exynos5_i2c_message_start: Configures the bus and starts the xfer
596 * i2c: struct exynos5_i2c pointer for the current bus
597 * stop: Enables stop after transfer if set. Set for last transfer of
598 *       in the list of messages.
599 *
600 * Configures the bus for read/write function
601 * Sets chip address to talk to, message length to be sent.
602 * Enables appropriate interrupts and sends start xfer command.
603 */
604static void exynos5_i2c_message_start(struct exynos5_i2c *i2c, int stop)
605{
606	u32 i2c_ctl;
607	u32 int_en = 0;
608	u32 i2c_auto_conf = 0;
609	u32 i2c_addr = 0;
610	u32 fifo_ctl;
611	unsigned long flags;
612	unsigned short trig_lvl;
613
614	if (i2c->variant->hw == I2C_TYPE_EXYNOS7)
 
 
615		int_en |= HSI2C_INT_I2C_TRANS;
616	else
617		int_en |= HSI2C_INT_I2C;
618
619	i2c_ctl = readl(i2c->regs + HSI2C_CTL);
620	i2c_ctl &= ~(HSI2C_TXCHON | HSI2C_RXCHON);
621	fifo_ctl = HSI2C_RXFIFO_EN | HSI2C_TXFIFO_EN;
622
623	if (i2c->msg->flags & I2C_M_RD) {
624		i2c_ctl |= HSI2C_RXCHON;
625
626		i2c_auto_conf |= HSI2C_READ_WRITE;
627
628		trig_lvl = (i2c->msg->len > i2c->variant->fifo_depth) ?
629			(i2c->variant->fifo_depth * 3 / 4) : i2c->msg->len;
630		fifo_ctl |= HSI2C_RXFIFO_TRIGGER_LEVEL(trig_lvl);
631
632		int_en |= (HSI2C_INT_RX_ALMOSTFULL_EN |
633			HSI2C_INT_TRAILING_EN);
634	} else {
635		i2c_ctl |= HSI2C_TXCHON;
636
637		trig_lvl = (i2c->msg->len > i2c->variant->fifo_depth) ?
638			(i2c->variant->fifo_depth * 1 / 4) : i2c->msg->len;
639		fifo_ctl |= HSI2C_TXFIFO_TRIGGER_LEVEL(trig_lvl);
640
641		int_en |= HSI2C_INT_TX_ALMOSTEMPTY_EN;
642	}
643
644	i2c_addr = HSI2C_SLV_ADDR_MAS(i2c->msg->addr);
645
646	if (i2c->op_clock >= I2C_MAX_FAST_MODE_PLUS_FREQ)
647		i2c_addr |= HSI2C_MASTER_ID(MASTER_ID(i2c->adap.nr));
648
649	writel(i2c_addr, i2c->regs + HSI2C_ADDR);
650
651	writel(fifo_ctl, i2c->regs + HSI2C_FIFO_CTL);
652	writel(i2c_ctl, i2c->regs + HSI2C_CTL);
653
654	exynos5_i2c_bus_check(i2c);
655
656	/*
657	 * Enable interrupts before starting the transfer so that we don't
658	 * miss any INT_I2C interrupts.
659	 */
660	spin_lock_irqsave(&i2c->lock, flags);
661	writel(int_en, i2c->regs + HSI2C_INT_ENABLE);
662
663	if (stop == 1)
664		i2c_auto_conf |= HSI2C_STOP_AFTER_TRANS;
665	i2c_auto_conf |= i2c->msg->len;
666	i2c_auto_conf |= HSI2C_MASTER_RUN;
667	writel(i2c_auto_conf, i2c->regs + HSI2C_AUTO_CONF);
668	spin_unlock_irqrestore(&i2c->lock, flags);
669}
670
671static int exynos5_i2c_xfer_msg(struct exynos5_i2c *i2c,
672			      struct i2c_msg *msgs, int stop)
673{
674	unsigned long timeout;
675	int ret;
676
677	i2c->msg = msgs;
678	i2c->msg_ptr = 0;
679	i2c->trans_done = 0;
680
681	reinit_completion(&i2c->msg_complete);
682
683	exynos5_i2c_message_start(i2c, stop);
684
685	timeout = wait_for_completion_timeout(&i2c->msg_complete,
686					      EXYNOS5_I2C_TIMEOUT);
687	if (timeout == 0)
688		ret = -ETIMEDOUT;
689	else
690		ret = i2c->state;
691
692	/*
693	 * If this is the last message to be transfered (stop == 1)
694	 * Then check if the bus can be brought back to idle.
695	 */
696	if (ret == 0 && stop)
697		ret = exynos5_i2c_wait_bus_idle(i2c);
698
699	if (ret < 0) {
700		exynos5_i2c_reset(i2c);
701		if (ret == -ETIMEDOUT)
702			dev_warn(i2c->dev, "%s timeout\n",
703				 (msgs->flags & I2C_M_RD) ? "rx" : "tx");
704	}
705
706	/* Return the state as in interrupt routine */
707	return ret;
708}
709
710static int exynos5_i2c_xfer(struct i2c_adapter *adap,
711			struct i2c_msg *msgs, int num)
712{
713	struct exynos5_i2c *i2c = adap->algo_data;
714	int i, ret;
715
 
 
 
 
716	ret = clk_enable(i2c->clk);
717	if (ret)
718		return ret;
719
720	for (i = 0; i < num; ++i) {
721		ret = exynos5_i2c_xfer_msg(i2c, msgs + i, i + 1 == num);
722		if (ret)
723			break;
724	}
725
726	clk_disable(i2c->clk);
 
 
727
728	return ret ?: num;
729}
730
731static u32 exynos5_i2c_func(struct i2c_adapter *adap)
732{
733	return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK);
734}
735
736static const struct i2c_algorithm exynos5_i2c_algorithm = {
737	.master_xfer		= exynos5_i2c_xfer,
738	.functionality		= exynos5_i2c_func,
739};
740
741static int exynos5_i2c_probe(struct platform_device *pdev)
742{
743	struct device_node *np = pdev->dev.of_node;
744	struct exynos5_i2c *i2c;
745	int ret;
746
747	i2c = devm_kzalloc(&pdev->dev, sizeof(struct exynos5_i2c), GFP_KERNEL);
748	if (!i2c)
749		return -ENOMEM;
750
751	if (of_property_read_u32(np, "clock-frequency", &i2c->op_clock))
752		i2c->op_clock = I2C_MAX_STANDARD_MODE_FREQ;
753
754	strlcpy(i2c->adap.name, "exynos5-i2c", sizeof(i2c->adap.name));
755	i2c->adap.owner   = THIS_MODULE;
756	i2c->adap.algo    = &exynos5_i2c_algorithm;
757	i2c->adap.retries = 3;
758
759	i2c->dev = &pdev->dev;
760	i2c->clk = devm_clk_get(&pdev->dev, "hsi2c");
761	if (IS_ERR(i2c->clk)) {
762		dev_err(&pdev->dev, "cannot get clock\n");
763		return -ENOENT;
764	}
765
 
 
 
 
 
 
 
 
 
 
766	ret = clk_prepare_enable(i2c->clk);
767	if (ret)
768		return ret;
769
770	i2c->regs = devm_platform_ioremap_resource(pdev, 0);
771	if (IS_ERR(i2c->regs)) {
772		ret = PTR_ERR(i2c->regs);
773		goto err_clk;
774	}
775
776	i2c->adap.dev.of_node = np;
777	i2c->adap.algo_data = i2c;
778	i2c->adap.dev.parent = &pdev->dev;
779
780	/* Clear pending interrupts from u-boot or misc causes */
781	exynos5_i2c_clr_pend_irq(i2c);
782
783	spin_lock_init(&i2c->lock);
784	init_completion(&i2c->msg_complete);
785
786	i2c->irq = ret = platform_get_irq(pdev, 0);
787	if (ret < 0)
788		goto err_clk;
789
790	ret = devm_request_irq(&pdev->dev, i2c->irq, exynos5_i2c_irq,
791			       IRQF_NO_SUSPEND, dev_name(&pdev->dev), i2c);
792	if (ret != 0) {
793		dev_err(&pdev->dev, "cannot request HS-I2C IRQ %d\n", i2c->irq);
794		goto err_clk;
795	}
796
797	i2c->variant = of_device_get_match_data(&pdev->dev);
798
799	ret = exynos5_hsi2c_clock_setup(i2c);
800	if (ret)
801		goto err_clk;
802
803	exynos5_i2c_reset(i2c);
804
805	ret = i2c_add_adapter(&i2c->adap);
806	if (ret < 0)
807		goto err_clk;
808
809	platform_set_drvdata(pdev, i2c);
810
811	clk_disable(i2c->clk);
 
812
813	return 0;
814
815 err_clk:
816	clk_disable_unprepare(i2c->clk);
 
 
 
817	return ret;
818}
819
820static int exynos5_i2c_remove(struct platform_device *pdev)
821{
822	struct exynos5_i2c *i2c = platform_get_drvdata(pdev);
823
824	i2c_del_adapter(&i2c->adap);
825
826	clk_unprepare(i2c->clk);
 
827
828	return 0;
829}
830
831#ifdef CONFIG_PM_SLEEP
832static int exynos5_i2c_suspend_noirq(struct device *dev)
833{
834	struct exynos5_i2c *i2c = dev_get_drvdata(dev);
835
836	i2c_mark_adapter_suspended(&i2c->adap);
837	clk_unprepare(i2c->clk);
 
838
839	return 0;
840}
841
842static int exynos5_i2c_resume_noirq(struct device *dev)
843{
844	struct exynos5_i2c *i2c = dev_get_drvdata(dev);
845	int ret = 0;
846
 
 
 
 
847	ret = clk_prepare_enable(i2c->clk);
848	if (ret)
849		return ret;
850
851	ret = exynos5_hsi2c_clock_setup(i2c);
852	if (ret) {
853		clk_disable_unprepare(i2c->clk);
854		return ret;
855	}
856
857	exynos5_i2c_init(i2c);
858	clk_disable(i2c->clk);
 
859	i2c_mark_adapter_resumed(&i2c->adap);
860
861	return 0;
 
 
 
 
 
 
862}
863#endif
864
865static const struct dev_pm_ops exynos5_i2c_dev_pm_ops = {
866	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(exynos5_i2c_suspend_noirq,
867				      exynos5_i2c_resume_noirq)
868};
869
870static struct platform_driver exynos5_i2c_driver = {
871	.probe		= exynos5_i2c_probe,
872	.remove		= exynos5_i2c_remove,
873	.driver		= {
874		.name	= "exynos5-hsi2c",
875		.pm	= &exynos5_i2c_dev_pm_ops,
876		.of_match_table = exynos5_i2c_match,
877	},
878};
879
880module_platform_driver(exynos5_i2c_driver);
881
882MODULE_DESCRIPTION("Exynos5 HS-I2C Bus driver");
883MODULE_AUTHOR("Naveen Krishna Chatradhi <ch.naveen@samsung.com>");
884MODULE_AUTHOR("Taekgyun Ko <taeggyun.ko@samsung.com>");
885MODULE_LICENSE("GPL v2");