Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SuperH Timer Support - CMT
   4 *
   5 *  Copyright (C) 2008 Magnus Damm
   6 */
   7
   8#include <linux/clk.h>
   9#include <linux/clockchips.h>
  10#include <linux/clocksource.h>
  11#include <linux/delay.h>
  12#include <linux/err.h>
  13#include <linux/init.h>
  14#include <linux/interrupt.h>
  15#include <linux/io.h>
  16#include <linux/iopoll.h>
  17#include <linux/ioport.h>
  18#include <linux/irq.h>
  19#include <linux/module.h>
  20#include <linux/of.h>
  21#include <linux/of_device.h>
  22#include <linux/platform_device.h>
  23#include <linux/pm_domain.h>
  24#include <linux/pm_runtime.h>
  25#include <linux/sh_timer.h>
  26#include <linux/slab.h>
  27#include <linux/spinlock.h>
  28
  29#ifdef CONFIG_SUPERH
  30#include <asm/platform_early.h>
  31#endif
  32
  33struct sh_cmt_device;
  34
  35/*
  36 * The CMT comes in 5 different identified flavours, depending not only on the
  37 * SoC but also on the particular instance. The following table lists the main
  38 * characteristics of those flavours.
  39 *
  40 *			16B	32B	32B-F	48B	R-Car Gen2
  41 * -----------------------------------------------------------------------------
  42 * Channels		2	1/4	1	6	2/8
  43 * Control Width	16	16	16	16	32
  44 * Counter Width	16	32	32	32/48	32/48
  45 * Shared Start/Stop	Y	Y	Y	Y	N
  46 *
  47 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
  48 * located in the channel registers block. All other versions have a shared
  49 * start/stop register located in the global space.
  50 *
  51 * Channels are indexed from 0 to N-1 in the documentation. The channel index
  52 * infers the start/stop bit position in the control register and the channel
  53 * registers block address. Some CMT instances have a subset of channels
  54 * available, in which case the index in the documentation doesn't match the
  55 * "real" index as implemented in hardware. This is for instance the case with
  56 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
  57 * in the documentation but using start/stop bit 5 and having its registers
  58 * block at 0x60.
  59 *
  60 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
  61 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
  62 */
  63
  64enum sh_cmt_model {
  65	SH_CMT_16BIT,
  66	SH_CMT_32BIT,
  67	SH_CMT_48BIT,
  68	SH_CMT0_RCAR_GEN2,
  69	SH_CMT1_RCAR_GEN2,
  70};
  71
  72struct sh_cmt_info {
  73	enum sh_cmt_model model;
  74
  75	unsigned int channels_mask;
  76
  77	unsigned long width; /* 16 or 32 bit version of hardware block */
  78	u32 overflow_bit;
  79	u32 clear_bits;
  80
  81	/* callbacks for CMSTR and CMCSR access */
  82	u32 (*read_control)(void __iomem *base, unsigned long offs);
  83	void (*write_control)(void __iomem *base, unsigned long offs,
  84			      u32 value);
  85
  86	/* callbacks for CMCNT and CMCOR access */
  87	u32 (*read_count)(void __iomem *base, unsigned long offs);
  88	void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
  89};
  90
  91struct sh_cmt_channel {
  92	struct sh_cmt_device *cmt;
  93
  94	unsigned int index;	/* Index in the documentation */
  95	unsigned int hwidx;	/* Real hardware index */
  96
  97	void __iomem *iostart;
  98	void __iomem *ioctrl;
  99
 100	unsigned int timer_bit;
 101	unsigned long flags;
 102	u32 match_value;
 103	u32 next_match_value;
 104	u32 max_match_value;
 105	raw_spinlock_t lock;
 106	struct clock_event_device ced;
 107	struct clocksource cs;
 108	u64 total_cycles;
 109	bool cs_enabled;
 110};
 111
 112struct sh_cmt_device {
 113	struct platform_device *pdev;
 114
 115	const struct sh_cmt_info *info;
 116
 117	void __iomem *mapbase;
 118	struct clk *clk;
 119	unsigned long rate;
 120	unsigned int reg_delay;
 121
 122	raw_spinlock_t lock; /* Protect the shared start/stop register */
 123
 124	struct sh_cmt_channel *channels;
 125	unsigned int num_channels;
 126	unsigned int hw_channels;
 127
 128	bool has_clockevent;
 129	bool has_clocksource;
 130};
 131
 132#define SH_CMT16_CMCSR_CMF		(1 << 7)
 133#define SH_CMT16_CMCSR_CMIE		(1 << 6)
 134#define SH_CMT16_CMCSR_CKS8		(0 << 0)
 135#define SH_CMT16_CMCSR_CKS32		(1 << 0)
 136#define SH_CMT16_CMCSR_CKS128		(2 << 0)
 137#define SH_CMT16_CMCSR_CKS512		(3 << 0)
 138#define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
 139
 140#define SH_CMT32_CMCSR_CMF		(1 << 15)
 141#define SH_CMT32_CMCSR_OVF		(1 << 14)
 142#define SH_CMT32_CMCSR_WRFLG		(1 << 13)
 143#define SH_CMT32_CMCSR_STTF		(1 << 12)
 144#define SH_CMT32_CMCSR_STPF		(1 << 11)
 145#define SH_CMT32_CMCSR_SSIE		(1 << 10)
 146#define SH_CMT32_CMCSR_CMS		(1 << 9)
 147#define SH_CMT32_CMCSR_CMM		(1 << 8)
 148#define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
 149#define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
 150#define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
 151#define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
 152#define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
 153#define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
 154#define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
 155#define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
 156#define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
 157#define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
 158#define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
 159
 160static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
 161{
 162	return ioread16(base + (offs << 1));
 163}
 164
 165static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
 166{
 167	return ioread32(base + (offs << 2));
 168}
 169
 170static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
 171{
 172	iowrite16(value, base + (offs << 1));
 173}
 174
 175static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
 176{
 177	iowrite32(value, base + (offs << 2));
 178}
 179
 180static const struct sh_cmt_info sh_cmt_info[] = {
 181	[SH_CMT_16BIT] = {
 182		.model = SH_CMT_16BIT,
 183		.width = 16,
 184		.overflow_bit = SH_CMT16_CMCSR_CMF,
 185		.clear_bits = ~SH_CMT16_CMCSR_CMF,
 186		.read_control = sh_cmt_read16,
 187		.write_control = sh_cmt_write16,
 188		.read_count = sh_cmt_read16,
 189		.write_count = sh_cmt_write16,
 190	},
 191	[SH_CMT_32BIT] = {
 192		.model = SH_CMT_32BIT,
 193		.width = 32,
 194		.overflow_bit = SH_CMT32_CMCSR_CMF,
 195		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 196		.read_control = sh_cmt_read16,
 197		.write_control = sh_cmt_write16,
 198		.read_count = sh_cmt_read32,
 199		.write_count = sh_cmt_write32,
 200	},
 201	[SH_CMT_48BIT] = {
 202		.model = SH_CMT_48BIT,
 203		.channels_mask = 0x3f,
 204		.width = 32,
 205		.overflow_bit = SH_CMT32_CMCSR_CMF,
 206		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 207		.read_control = sh_cmt_read32,
 208		.write_control = sh_cmt_write32,
 209		.read_count = sh_cmt_read32,
 210		.write_count = sh_cmt_write32,
 211	},
 212	[SH_CMT0_RCAR_GEN2] = {
 213		.model = SH_CMT0_RCAR_GEN2,
 214		.channels_mask = 0x60,
 215		.width = 32,
 216		.overflow_bit = SH_CMT32_CMCSR_CMF,
 217		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 218		.read_control = sh_cmt_read32,
 219		.write_control = sh_cmt_write32,
 220		.read_count = sh_cmt_read32,
 221		.write_count = sh_cmt_write32,
 222	},
 223	[SH_CMT1_RCAR_GEN2] = {
 224		.model = SH_CMT1_RCAR_GEN2,
 225		.channels_mask = 0xff,
 226		.width = 32,
 227		.overflow_bit = SH_CMT32_CMCSR_CMF,
 228		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 229		.read_control = sh_cmt_read32,
 230		.write_control = sh_cmt_write32,
 231		.read_count = sh_cmt_read32,
 232		.write_count = sh_cmt_write32,
 233	},
 234};
 235
 236#define CMCSR 0 /* channel register */
 237#define CMCNT 1 /* channel register */
 238#define CMCOR 2 /* channel register */
 239
 240#define CMCLKE	0x1000	/* CLK Enable Register (R-Car Gen2) */
 241
 242static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
 243{
 244	if (ch->iostart)
 245		return ch->cmt->info->read_control(ch->iostart, 0);
 246	else
 247		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
 248}
 249
 250static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
 251{
 252	u32 old_value = sh_cmt_read_cmstr(ch);
 253
 254	if (value != old_value) {
 255		if (ch->iostart) {
 256			ch->cmt->info->write_control(ch->iostart, 0, value);
 257			udelay(ch->cmt->reg_delay);
 258		} else {
 259			ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
 260			udelay(ch->cmt->reg_delay);
 261		}
 262	}
 263}
 264
 265static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
 266{
 267	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
 268}
 269
 270static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
 271{
 272	u32 old_value = sh_cmt_read_cmcsr(ch);
 273
 274	if (value != old_value) {
 275		ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
 276		udelay(ch->cmt->reg_delay);
 277	}
 278}
 279
 280static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
 281{
 282	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
 283}
 284
 285static inline int sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
 286{
 287	/* Tests showed that we need to wait 3 clocks here */
 288	unsigned int cmcnt_delay = DIV_ROUND_UP(3 * ch->cmt->reg_delay, 2);
 289	u32 reg;
 290
 291	if (ch->cmt->info->model > SH_CMT_16BIT) {
 292		int ret = read_poll_timeout_atomic(sh_cmt_read_cmcsr, reg,
 293						   !(reg & SH_CMT32_CMCSR_WRFLG),
 294						   1, cmcnt_delay, false, ch);
 295		if (ret < 0)
 296			return ret;
 297	}
 298
 299	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
 300	udelay(cmcnt_delay);
 301	return 0;
 302}
 303
 304static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
 305{
 306	u32 old_value = ch->cmt->info->read_count(ch->ioctrl, CMCOR);
 307
 308	if (value != old_value) {
 309		ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
 310		udelay(ch->cmt->reg_delay);
 311	}
 312}
 313
 314static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
 315{
 316	u32 v1, v2, v3;
 317	u32 o1, o2;
 318
 319	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 320
 321	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
 322	do {
 323		o2 = o1;
 324		v1 = sh_cmt_read_cmcnt(ch);
 325		v2 = sh_cmt_read_cmcnt(ch);
 326		v3 = sh_cmt_read_cmcnt(ch);
 327		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 328	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
 329			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
 330
 331	*has_wrapped = o1;
 332	return v2;
 333}
 334
 335static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
 336{
 337	unsigned long flags;
 338	u32 value;
 339
 340	/* start stop register shared by multiple timer channels */
 341	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
 342	value = sh_cmt_read_cmstr(ch);
 343
 344	if (start)
 345		value |= 1 << ch->timer_bit;
 346	else
 347		value &= ~(1 << ch->timer_bit);
 348
 349	sh_cmt_write_cmstr(ch, value);
 350	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
 351}
 352
 353static int sh_cmt_enable(struct sh_cmt_channel *ch)
 354{
 355	int ret;
 356
 357	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
 358
 359	/* enable clock */
 360	ret = clk_enable(ch->cmt->clk);
 361	if (ret) {
 362		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
 363			ch->index);
 364		goto err0;
 365	}
 366
 367	/* make sure channel is disabled */
 368	sh_cmt_start_stop_ch(ch, 0);
 369
 370	/* configure channel, periodic mode and maximum timeout */
 371	if (ch->cmt->info->width == 16) {
 372		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
 373				   SH_CMT16_CMCSR_CKS512);
 374	} else {
 375		u32 cmtout = ch->cmt->info->model <= SH_CMT_48BIT ?
 376			      SH_CMT32_CMCSR_CMTOUT_IE : 0;
 377		sh_cmt_write_cmcsr(ch, cmtout | SH_CMT32_CMCSR_CMM |
 378				   SH_CMT32_CMCSR_CMR_IRQ |
 379				   SH_CMT32_CMCSR_CKS_RCLK8);
 380	}
 381
 382	sh_cmt_write_cmcor(ch, 0xffffffff);
 383	ret = sh_cmt_write_cmcnt(ch, 0);
 384
 385	if (ret || sh_cmt_read_cmcnt(ch)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 386		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
 387			ch->index);
 388		ret = -ETIMEDOUT;
 389		goto err1;
 390	}
 391
 392	/* enable channel */
 393	sh_cmt_start_stop_ch(ch, 1);
 394	return 0;
 395 err1:
 396	/* stop clock */
 397	clk_disable(ch->cmt->clk);
 398
 399 err0:
 400	return ret;
 401}
 402
 403static void sh_cmt_disable(struct sh_cmt_channel *ch)
 404{
 405	/* disable channel */
 406	sh_cmt_start_stop_ch(ch, 0);
 407
 408	/* disable interrupts in CMT block */
 409	sh_cmt_write_cmcsr(ch, 0);
 410
 411	/* stop clock */
 412	clk_disable(ch->cmt->clk);
 413
 414	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
 415}
 416
 417/* private flags */
 418#define FLAG_CLOCKEVENT (1 << 0)
 419#define FLAG_CLOCKSOURCE (1 << 1)
 420#define FLAG_REPROGRAM (1 << 2)
 421#define FLAG_SKIPEVENT (1 << 3)
 422#define FLAG_IRQCONTEXT (1 << 4)
 423
 424static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
 425					      int absolute)
 426{
 427	u32 value = ch->next_match_value;
 428	u32 new_match;
 429	u32 delay = 0;
 430	u32 now = 0;
 431	u32 has_wrapped;
 432
 433	now = sh_cmt_get_counter(ch, &has_wrapped);
 434	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
 435
 436	if (has_wrapped) {
 437		/* we're competing with the interrupt handler.
 438		 *  -> let the interrupt handler reprogram the timer.
 439		 *  -> interrupt number two handles the event.
 440		 */
 441		ch->flags |= FLAG_SKIPEVENT;
 442		return;
 443	}
 444
 445	if (absolute)
 446		now = 0;
 447
 448	do {
 449		/* reprogram the timer hardware,
 450		 * but don't save the new match value yet.
 451		 */
 452		new_match = now + value + delay;
 453		if (new_match > ch->max_match_value)
 454			new_match = ch->max_match_value;
 455
 456		sh_cmt_write_cmcor(ch, new_match);
 457
 458		now = sh_cmt_get_counter(ch, &has_wrapped);
 459		if (has_wrapped && (new_match > ch->match_value)) {
 460			/* we are changing to a greater match value,
 461			 * so this wrap must be caused by the counter
 462			 * matching the old value.
 463			 * -> first interrupt reprograms the timer.
 464			 * -> interrupt number two handles the event.
 465			 */
 466			ch->flags |= FLAG_SKIPEVENT;
 467			break;
 468		}
 469
 470		if (has_wrapped) {
 471			/* we are changing to a smaller match value,
 472			 * so the wrap must be caused by the counter
 473			 * matching the new value.
 474			 * -> save programmed match value.
 475			 * -> let isr handle the event.
 476			 */
 477			ch->match_value = new_match;
 478			break;
 479		}
 480
 481		/* be safe: verify hardware settings */
 482		if (now < new_match) {
 483			/* timer value is below match value, all good.
 484			 * this makes sure we won't miss any match events.
 485			 * -> save programmed match value.
 486			 * -> let isr handle the event.
 487			 */
 488			ch->match_value = new_match;
 489			break;
 490		}
 491
 492		/* the counter has reached a value greater
 493		 * than our new match value. and since the
 494		 * has_wrapped flag isn't set we must have
 495		 * programmed a too close event.
 496		 * -> increase delay and retry.
 497		 */
 498		if (delay)
 499			delay <<= 1;
 500		else
 501			delay = 1;
 502
 503		if (!delay)
 504			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
 505				 ch->index);
 506
 507	} while (delay);
 508}
 509
 510static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 511{
 512	if (delta > ch->max_match_value)
 513		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
 514			 ch->index);
 515
 516	ch->next_match_value = delta;
 517	sh_cmt_clock_event_program_verify(ch, 0);
 518}
 519
 520static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 521{
 522	unsigned long flags;
 523
 524	raw_spin_lock_irqsave(&ch->lock, flags);
 525	__sh_cmt_set_next(ch, delta);
 526	raw_spin_unlock_irqrestore(&ch->lock, flags);
 527}
 528
 529static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
 530{
 531	struct sh_cmt_channel *ch = dev_id;
 532
 533	/* clear flags */
 534	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
 535			   ch->cmt->info->clear_bits);
 536
 537	/* update clock source counter to begin with if enabled
 538	 * the wrap flag should be cleared by the timer specific
 539	 * isr before we end up here.
 540	 */
 541	if (ch->flags & FLAG_CLOCKSOURCE)
 542		ch->total_cycles += ch->match_value + 1;
 543
 544	if (!(ch->flags & FLAG_REPROGRAM))
 545		ch->next_match_value = ch->max_match_value;
 546
 547	ch->flags |= FLAG_IRQCONTEXT;
 548
 549	if (ch->flags & FLAG_CLOCKEVENT) {
 550		if (!(ch->flags & FLAG_SKIPEVENT)) {
 551			if (clockevent_state_oneshot(&ch->ced)) {
 552				ch->next_match_value = ch->max_match_value;
 553				ch->flags |= FLAG_REPROGRAM;
 554			}
 555
 556			ch->ced.event_handler(&ch->ced);
 557		}
 558	}
 559
 560	ch->flags &= ~FLAG_SKIPEVENT;
 561
 562	if (ch->flags & FLAG_REPROGRAM) {
 563		ch->flags &= ~FLAG_REPROGRAM;
 564		sh_cmt_clock_event_program_verify(ch, 1);
 565
 566		if (ch->flags & FLAG_CLOCKEVENT)
 567			if ((clockevent_state_shutdown(&ch->ced))
 568			    || (ch->match_value == ch->next_match_value))
 569				ch->flags &= ~FLAG_REPROGRAM;
 570	}
 571
 572	ch->flags &= ~FLAG_IRQCONTEXT;
 573
 574	return IRQ_HANDLED;
 575}
 576
 577static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
 578{
 579	int ret = 0;
 580	unsigned long flags;
 581
 582	if (flag & FLAG_CLOCKSOURCE)
 583		pm_runtime_get_sync(&ch->cmt->pdev->dev);
 584
 585	raw_spin_lock_irqsave(&ch->lock, flags);
 586
 587	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
 588		if (flag & FLAG_CLOCKEVENT)
 589			pm_runtime_get_sync(&ch->cmt->pdev->dev);
 590		ret = sh_cmt_enable(ch);
 591	}
 592
 593	if (ret)
 594		goto out;
 595	ch->flags |= flag;
 596
 597	/* setup timeout if no clockevent */
 598	if (ch->cmt->num_channels == 1 &&
 599	    flag == FLAG_CLOCKSOURCE && (!(ch->flags & FLAG_CLOCKEVENT)))
 600		__sh_cmt_set_next(ch, ch->max_match_value);
 601 out:
 602	raw_spin_unlock_irqrestore(&ch->lock, flags);
 603
 604	return ret;
 605}
 606
 607static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
 608{
 609	unsigned long flags;
 610	unsigned long f;
 611
 612	raw_spin_lock_irqsave(&ch->lock, flags);
 613
 614	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
 615	ch->flags &= ~flag;
 616
 617	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
 618		sh_cmt_disable(ch);
 619		if (flag & FLAG_CLOCKEVENT)
 620			pm_runtime_put(&ch->cmt->pdev->dev);
 621	}
 622
 623	/* adjust the timeout to maximum if only clocksource left */
 624	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
 625		__sh_cmt_set_next(ch, ch->max_match_value);
 626
 627	raw_spin_unlock_irqrestore(&ch->lock, flags);
 628
 629	if (flag & FLAG_CLOCKSOURCE)
 630		pm_runtime_put(&ch->cmt->pdev->dev);
 631}
 632
 633static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
 634{
 635	return container_of(cs, struct sh_cmt_channel, cs);
 636}
 637
 638static u64 sh_cmt_clocksource_read(struct clocksource *cs)
 639{
 640	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 641	u32 has_wrapped;
 642
 643	if (ch->cmt->num_channels == 1) {
 644		unsigned long flags;
 645		u64 value;
 646		u32 raw;
 647
 648		raw_spin_lock_irqsave(&ch->lock, flags);
 649		value = ch->total_cycles;
 650		raw = sh_cmt_get_counter(ch, &has_wrapped);
 651
 652		if (unlikely(has_wrapped))
 653			raw += ch->match_value + 1;
 654		raw_spin_unlock_irqrestore(&ch->lock, flags);
 655
 656		return value + raw;
 657	}
 658
 659	return sh_cmt_get_counter(ch, &has_wrapped);
 660}
 661
 662static int sh_cmt_clocksource_enable(struct clocksource *cs)
 663{
 664	int ret;
 665	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 666
 667	WARN_ON(ch->cs_enabled);
 668
 669	ch->total_cycles = 0;
 670
 671	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 672	if (!ret)
 673		ch->cs_enabled = true;
 674
 675	return ret;
 676}
 677
 678static void sh_cmt_clocksource_disable(struct clocksource *cs)
 679{
 680	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 681
 682	WARN_ON(!ch->cs_enabled);
 683
 684	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 685	ch->cs_enabled = false;
 686}
 687
 688static void sh_cmt_clocksource_suspend(struct clocksource *cs)
 689{
 690	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 691
 692	if (!ch->cs_enabled)
 693		return;
 694
 695	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 696	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
 697}
 698
 699static void sh_cmt_clocksource_resume(struct clocksource *cs)
 700{
 701	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 702
 703	if (!ch->cs_enabled)
 704		return;
 705
 706	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
 707	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 708}
 709
 710static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
 711				       const char *name)
 712{
 713	struct clocksource *cs = &ch->cs;
 714
 715	cs->name = name;
 716	cs->rating = 125;
 717	cs->read = sh_cmt_clocksource_read;
 718	cs->enable = sh_cmt_clocksource_enable;
 719	cs->disable = sh_cmt_clocksource_disable;
 720	cs->suspend = sh_cmt_clocksource_suspend;
 721	cs->resume = sh_cmt_clocksource_resume;
 722	cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
 723	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
 724
 725	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
 726		 ch->index);
 727
 728	clocksource_register_hz(cs, ch->cmt->rate);
 729	return 0;
 730}
 731
 732static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
 733{
 734	return container_of(ced, struct sh_cmt_channel, ced);
 735}
 736
 737static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
 738{
 739	sh_cmt_start(ch, FLAG_CLOCKEVENT);
 740
 741	if (periodic)
 742		sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
 743	else
 744		sh_cmt_set_next(ch, ch->max_match_value);
 745}
 746
 747static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
 748{
 749	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 750
 751	sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 752	return 0;
 753}
 754
 755static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
 756					int periodic)
 757{
 758	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 759
 760	/* deal with old setting first */
 761	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
 762		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 763
 764	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
 765		 ch->index, periodic ? "periodic" : "oneshot");
 766	sh_cmt_clock_event_start(ch, periodic);
 767	return 0;
 768}
 769
 770static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
 771{
 772	return sh_cmt_clock_event_set_state(ced, 0);
 773}
 774
 775static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
 776{
 777	return sh_cmt_clock_event_set_state(ced, 1);
 778}
 779
 780static int sh_cmt_clock_event_next(unsigned long delta,
 781				   struct clock_event_device *ced)
 782{
 783	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 784
 785	BUG_ON(!clockevent_state_oneshot(ced));
 786	if (likely(ch->flags & FLAG_IRQCONTEXT))
 787		ch->next_match_value = delta - 1;
 788	else
 789		sh_cmt_set_next(ch, delta - 1);
 790
 791	return 0;
 792}
 793
 794static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
 795{
 796	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 797
 798	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
 799	clk_unprepare(ch->cmt->clk);
 800}
 801
 802static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
 803{
 804	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 805
 806	clk_prepare(ch->cmt->clk);
 807	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
 808}
 809
 810static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
 811				      const char *name)
 812{
 813	struct clock_event_device *ced = &ch->ced;
 814	int irq;
 815	int ret;
 816
 817	irq = platform_get_irq(ch->cmt->pdev, ch->index);
 818	if (irq < 0)
 819		return irq;
 820
 821	ret = request_irq(irq, sh_cmt_interrupt,
 822			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
 823			  dev_name(&ch->cmt->pdev->dev), ch);
 824	if (ret) {
 825		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
 826			ch->index, irq);
 827		return ret;
 828	}
 829
 830	ced->name = name;
 831	ced->features = CLOCK_EVT_FEAT_PERIODIC;
 832	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
 833	ced->rating = 125;
 834	ced->cpumask = cpu_possible_mask;
 835	ced->set_next_event = sh_cmt_clock_event_next;
 836	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
 837	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
 838	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
 839	ced->suspend = sh_cmt_clock_event_suspend;
 840	ced->resume = sh_cmt_clock_event_resume;
 841
 842	/* TODO: calculate good shift from rate and counter bit width */
 843	ced->shift = 32;
 844	ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
 845	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
 846	ced->max_delta_ticks = ch->max_match_value;
 847	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
 848	ced->min_delta_ticks = 0x1f;
 849
 850	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
 851		 ch->index);
 852	clockevents_register_device(ced);
 853
 854	return 0;
 855}
 856
 857static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
 858			   bool clockevent, bool clocksource)
 859{
 860	int ret;
 861
 862	if (clockevent) {
 863		ch->cmt->has_clockevent = true;
 864		ret = sh_cmt_register_clockevent(ch, name);
 865		if (ret < 0)
 866			return ret;
 867	}
 868
 869	if (clocksource) {
 870		ch->cmt->has_clocksource = true;
 871		sh_cmt_register_clocksource(ch, name);
 872	}
 873
 874	return 0;
 875}
 876
 877static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
 878				unsigned int hwidx, bool clockevent,
 879				bool clocksource, struct sh_cmt_device *cmt)
 880{
 881	u32 value;
 882	int ret;
 883
 884	/* Skip unused channels. */
 885	if (!clockevent && !clocksource)
 886		return 0;
 887
 888	ch->cmt = cmt;
 889	ch->index = index;
 890	ch->hwidx = hwidx;
 891	ch->timer_bit = hwidx;
 892
 893	/*
 894	 * Compute the address of the channel control register block. For the
 895	 * timers with a per-channel start/stop register, compute its address
 896	 * as well.
 897	 */
 898	switch (cmt->info->model) {
 899	case SH_CMT_16BIT:
 900		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
 901		break;
 902	case SH_CMT_32BIT:
 903	case SH_CMT_48BIT:
 904		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
 905		break;
 906	case SH_CMT0_RCAR_GEN2:
 907	case SH_CMT1_RCAR_GEN2:
 908		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
 909		ch->ioctrl = ch->iostart + 0x10;
 910		ch->timer_bit = 0;
 911
 912		/* Enable the clock supply to the channel */
 913		value = ioread32(cmt->mapbase + CMCLKE);
 914		value |= BIT(hwidx);
 915		iowrite32(value, cmt->mapbase + CMCLKE);
 916		break;
 917	}
 918
 919	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
 920		ch->max_match_value = ~0;
 921	else
 922		ch->max_match_value = (1 << cmt->info->width) - 1;
 923
 924	ch->match_value = ch->max_match_value;
 925	raw_spin_lock_init(&ch->lock);
 926
 927	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
 928			      clockevent, clocksource);
 929	if (ret) {
 930		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
 931			ch->index);
 932		return ret;
 933	}
 934	ch->cs_enabled = false;
 935
 936	return 0;
 937}
 938
 939static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
 940{
 941	struct resource *mem;
 942
 943	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
 944	if (!mem) {
 945		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
 946		return -ENXIO;
 947	}
 948
 949	cmt->mapbase = ioremap(mem->start, resource_size(mem));
 950	if (cmt->mapbase == NULL) {
 951		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
 952		return -ENXIO;
 953	}
 954
 955	return 0;
 956}
 957
 958static const struct platform_device_id sh_cmt_id_table[] = {
 959	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
 960	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
 961	{ }
 962};
 963MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
 964
 965static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
 966	{
 967		/* deprecated, preserved for backward compatibility */
 968		.compatible = "renesas,cmt-48",
 969		.data = &sh_cmt_info[SH_CMT_48BIT]
 970	},
 971	{
 972		/* deprecated, preserved for backward compatibility */
 973		.compatible = "renesas,cmt-48-gen2",
 974		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 975	},
 976	{
 977		.compatible = "renesas,r8a7740-cmt1",
 978		.data = &sh_cmt_info[SH_CMT_48BIT]
 979	},
 980	{
 981		.compatible = "renesas,sh73a0-cmt1",
 982		.data = &sh_cmt_info[SH_CMT_48BIT]
 983	},
 984	{
 985		.compatible = "renesas,rcar-gen2-cmt0",
 986		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 987	},
 988	{
 989		.compatible = "renesas,rcar-gen2-cmt1",
 990		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
 991	},
 992	{
 993		.compatible = "renesas,rcar-gen3-cmt0",
 994		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 995	},
 996	{
 997		.compatible = "renesas,rcar-gen3-cmt1",
 998		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
 999	},
1000	{
1001		.compatible = "renesas,rcar-gen4-cmt0",
1002		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
1003	},
1004	{
1005		.compatible = "renesas,rcar-gen4-cmt1",
1006		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1007	},
1008	{ }
1009};
1010MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
1011
1012static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
1013{
1014	unsigned int mask, i;
1015	unsigned long rate;
1016	int ret;
1017
1018	cmt->pdev = pdev;
1019	raw_spin_lock_init(&cmt->lock);
1020
1021	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
1022		cmt->info = of_device_get_match_data(&pdev->dev);
1023		cmt->hw_channels = cmt->info->channels_mask;
1024	} else if (pdev->dev.platform_data) {
1025		struct sh_timer_config *cfg = pdev->dev.platform_data;
1026		const struct platform_device_id *id = pdev->id_entry;
1027
1028		cmt->info = (const struct sh_cmt_info *)id->driver_data;
1029		cmt->hw_channels = cfg->channels_mask;
1030	} else {
1031		dev_err(&cmt->pdev->dev, "missing platform data\n");
1032		return -ENXIO;
1033	}
1034
1035	/* Get hold of clock. */
1036	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
1037	if (IS_ERR(cmt->clk)) {
1038		dev_err(&cmt->pdev->dev, "cannot get clock\n");
1039		return PTR_ERR(cmt->clk);
1040	}
1041
1042	ret = clk_prepare(cmt->clk);
1043	if (ret < 0)
1044		goto err_clk_put;
1045
1046	/* Determine clock rate. */
1047	ret = clk_enable(cmt->clk);
1048	if (ret < 0)
1049		goto err_clk_unprepare;
1050
1051	rate = clk_get_rate(cmt->clk);
1052	if (!rate) {
1053		ret = -EINVAL;
1054		goto err_clk_disable;
1055	}
1056
1057	/* We shall wait 2 input clks after register writes */
1058	if (cmt->info->model >= SH_CMT_48BIT)
1059		cmt->reg_delay = DIV_ROUND_UP(2UL * USEC_PER_SEC, rate);
1060	cmt->rate = rate / (cmt->info->width == 16 ? 512 : 8);
1061
1062	/* Map the memory resource(s). */
1063	ret = sh_cmt_map_memory(cmt);
1064	if (ret < 0)
1065		goto err_clk_disable;
1066
1067	/* Allocate and setup the channels. */
1068	cmt->num_channels = hweight8(cmt->hw_channels);
1069	cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1070				GFP_KERNEL);
1071	if (cmt->channels == NULL) {
1072		ret = -ENOMEM;
1073		goto err_unmap;
1074	}
1075
1076	/*
1077	 * Use the first channel as a clock event device and the second channel
1078	 * as a clock source. If only one channel is available use it for both.
1079	 */
1080	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1081		unsigned int hwidx = ffs(mask) - 1;
1082		bool clocksource = i == 1 || cmt->num_channels == 1;
1083		bool clockevent = i == 0;
1084
1085		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1086					   clockevent, clocksource, cmt);
1087		if (ret < 0)
1088			goto err_unmap;
1089
1090		mask &= ~(1 << hwidx);
1091	}
1092
1093	clk_disable(cmt->clk);
1094
1095	platform_set_drvdata(pdev, cmt);
1096
1097	return 0;
1098
1099err_unmap:
1100	kfree(cmt->channels);
1101	iounmap(cmt->mapbase);
1102err_clk_disable:
1103	clk_disable(cmt->clk);
1104err_clk_unprepare:
1105	clk_unprepare(cmt->clk);
1106err_clk_put:
1107	clk_put(cmt->clk);
1108	return ret;
1109}
1110
1111static int sh_cmt_probe(struct platform_device *pdev)
1112{
1113	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1114	int ret;
1115
1116	if (!is_sh_early_platform_device(pdev)) {
1117		pm_runtime_set_active(&pdev->dev);
1118		pm_runtime_enable(&pdev->dev);
1119	}
1120
1121	if (cmt) {
1122		dev_info(&pdev->dev, "kept as earlytimer\n");
1123		goto out;
1124	}
1125
1126	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1127	if (cmt == NULL)
1128		return -ENOMEM;
1129
1130	ret = sh_cmt_setup(cmt, pdev);
1131	if (ret) {
1132		kfree(cmt);
1133		pm_runtime_idle(&pdev->dev);
1134		return ret;
1135	}
1136	if (is_sh_early_platform_device(pdev))
1137		return 0;
1138
1139 out:
1140	if (cmt->has_clockevent || cmt->has_clocksource)
1141		pm_runtime_irq_safe(&pdev->dev);
1142	else
1143		pm_runtime_idle(&pdev->dev);
1144
1145	return 0;
1146}
1147
1148static int sh_cmt_remove(struct platform_device *pdev)
1149{
1150	return -EBUSY; /* cannot unregister clockevent and clocksource */
1151}
1152
1153static struct platform_driver sh_cmt_device_driver = {
1154	.probe		= sh_cmt_probe,
1155	.remove		= sh_cmt_remove,
1156	.driver		= {
1157		.name	= "sh_cmt",
1158		.of_match_table = of_match_ptr(sh_cmt_of_table),
1159	},
1160	.id_table	= sh_cmt_id_table,
1161};
1162
1163static int __init sh_cmt_init(void)
1164{
1165	return platform_driver_register(&sh_cmt_device_driver);
1166}
1167
1168static void __exit sh_cmt_exit(void)
1169{
1170	platform_driver_unregister(&sh_cmt_device_driver);
1171}
1172
1173#ifdef CONFIG_SUPERH
1174sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1175#endif
1176
1177subsys_initcall(sh_cmt_init);
1178module_exit(sh_cmt_exit);
1179
1180MODULE_AUTHOR("Magnus Damm");
1181MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1182MODULE_LICENSE("GPL v2");
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SuperH Timer Support - CMT
   4 *
   5 *  Copyright (C) 2008 Magnus Damm
   6 */
   7
   8#include <linux/clk.h>
   9#include <linux/clockchips.h>
  10#include <linux/clocksource.h>
  11#include <linux/delay.h>
  12#include <linux/err.h>
  13#include <linux/init.h>
  14#include <linux/interrupt.h>
  15#include <linux/io.h>
 
  16#include <linux/ioport.h>
  17#include <linux/irq.h>
  18#include <linux/module.h>
  19#include <linux/of.h>
  20#include <linux/of_device.h>
  21#include <linux/platform_device.h>
  22#include <linux/pm_domain.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/sh_timer.h>
  25#include <linux/slab.h>
  26#include <linux/spinlock.h>
  27
  28#ifdef CONFIG_SUPERH
  29#include <asm/platform_early.h>
  30#endif
  31
  32struct sh_cmt_device;
  33
  34/*
  35 * The CMT comes in 5 different identified flavours, depending not only on the
  36 * SoC but also on the particular instance. The following table lists the main
  37 * characteristics of those flavours.
  38 *
  39 *			16B	32B	32B-F	48B	R-Car Gen2
  40 * -----------------------------------------------------------------------------
  41 * Channels		2	1/4	1	6	2/8
  42 * Control Width	16	16	16	16	32
  43 * Counter Width	16	32	32	32/48	32/48
  44 * Shared Start/Stop	Y	Y	Y	Y	N
  45 *
  46 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
  47 * located in the channel registers block. All other versions have a shared
  48 * start/stop register located in the global space.
  49 *
  50 * Channels are indexed from 0 to N-1 in the documentation. The channel index
  51 * infers the start/stop bit position in the control register and the channel
  52 * registers block address. Some CMT instances have a subset of channels
  53 * available, in which case the index in the documentation doesn't match the
  54 * "real" index as implemented in hardware. This is for instance the case with
  55 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
  56 * in the documentation but using start/stop bit 5 and having its registers
  57 * block at 0x60.
  58 *
  59 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
  60 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
  61 */
  62
  63enum sh_cmt_model {
  64	SH_CMT_16BIT,
  65	SH_CMT_32BIT,
  66	SH_CMT_48BIT,
  67	SH_CMT0_RCAR_GEN2,
  68	SH_CMT1_RCAR_GEN2,
  69};
  70
  71struct sh_cmt_info {
  72	enum sh_cmt_model model;
  73
  74	unsigned int channels_mask;
  75
  76	unsigned long width; /* 16 or 32 bit version of hardware block */
  77	u32 overflow_bit;
  78	u32 clear_bits;
  79
  80	/* callbacks for CMSTR and CMCSR access */
  81	u32 (*read_control)(void __iomem *base, unsigned long offs);
  82	void (*write_control)(void __iomem *base, unsigned long offs,
  83			      u32 value);
  84
  85	/* callbacks for CMCNT and CMCOR access */
  86	u32 (*read_count)(void __iomem *base, unsigned long offs);
  87	void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
  88};
  89
  90struct sh_cmt_channel {
  91	struct sh_cmt_device *cmt;
  92
  93	unsigned int index;	/* Index in the documentation */
  94	unsigned int hwidx;	/* Real hardware index */
  95
  96	void __iomem *iostart;
  97	void __iomem *ioctrl;
  98
  99	unsigned int timer_bit;
 100	unsigned long flags;
 101	u32 match_value;
 102	u32 next_match_value;
 103	u32 max_match_value;
 104	raw_spinlock_t lock;
 105	struct clock_event_device ced;
 106	struct clocksource cs;
 107	u64 total_cycles;
 108	bool cs_enabled;
 109};
 110
 111struct sh_cmt_device {
 112	struct platform_device *pdev;
 113
 114	const struct sh_cmt_info *info;
 115
 116	void __iomem *mapbase;
 117	struct clk *clk;
 118	unsigned long rate;
 
 119
 120	raw_spinlock_t lock; /* Protect the shared start/stop register */
 121
 122	struct sh_cmt_channel *channels;
 123	unsigned int num_channels;
 124	unsigned int hw_channels;
 125
 126	bool has_clockevent;
 127	bool has_clocksource;
 128};
 129
 130#define SH_CMT16_CMCSR_CMF		(1 << 7)
 131#define SH_CMT16_CMCSR_CMIE		(1 << 6)
 132#define SH_CMT16_CMCSR_CKS8		(0 << 0)
 133#define SH_CMT16_CMCSR_CKS32		(1 << 0)
 134#define SH_CMT16_CMCSR_CKS128		(2 << 0)
 135#define SH_CMT16_CMCSR_CKS512		(3 << 0)
 136#define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
 137
 138#define SH_CMT32_CMCSR_CMF		(1 << 15)
 139#define SH_CMT32_CMCSR_OVF		(1 << 14)
 140#define SH_CMT32_CMCSR_WRFLG		(1 << 13)
 141#define SH_CMT32_CMCSR_STTF		(1 << 12)
 142#define SH_CMT32_CMCSR_STPF		(1 << 11)
 143#define SH_CMT32_CMCSR_SSIE		(1 << 10)
 144#define SH_CMT32_CMCSR_CMS		(1 << 9)
 145#define SH_CMT32_CMCSR_CMM		(1 << 8)
 146#define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
 147#define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
 148#define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
 149#define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
 150#define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
 151#define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
 152#define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
 153#define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
 154#define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
 155#define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
 156#define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
 157
 158static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
 159{
 160	return ioread16(base + (offs << 1));
 161}
 162
 163static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
 164{
 165	return ioread32(base + (offs << 2));
 166}
 167
 168static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
 169{
 170	iowrite16(value, base + (offs << 1));
 171}
 172
 173static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
 174{
 175	iowrite32(value, base + (offs << 2));
 176}
 177
 178static const struct sh_cmt_info sh_cmt_info[] = {
 179	[SH_CMT_16BIT] = {
 180		.model = SH_CMT_16BIT,
 181		.width = 16,
 182		.overflow_bit = SH_CMT16_CMCSR_CMF,
 183		.clear_bits = ~SH_CMT16_CMCSR_CMF,
 184		.read_control = sh_cmt_read16,
 185		.write_control = sh_cmt_write16,
 186		.read_count = sh_cmt_read16,
 187		.write_count = sh_cmt_write16,
 188	},
 189	[SH_CMT_32BIT] = {
 190		.model = SH_CMT_32BIT,
 191		.width = 32,
 192		.overflow_bit = SH_CMT32_CMCSR_CMF,
 193		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 194		.read_control = sh_cmt_read16,
 195		.write_control = sh_cmt_write16,
 196		.read_count = sh_cmt_read32,
 197		.write_count = sh_cmt_write32,
 198	},
 199	[SH_CMT_48BIT] = {
 200		.model = SH_CMT_48BIT,
 201		.channels_mask = 0x3f,
 202		.width = 32,
 203		.overflow_bit = SH_CMT32_CMCSR_CMF,
 204		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 205		.read_control = sh_cmt_read32,
 206		.write_control = sh_cmt_write32,
 207		.read_count = sh_cmt_read32,
 208		.write_count = sh_cmt_write32,
 209	},
 210	[SH_CMT0_RCAR_GEN2] = {
 211		.model = SH_CMT0_RCAR_GEN2,
 212		.channels_mask = 0x60,
 213		.width = 32,
 214		.overflow_bit = SH_CMT32_CMCSR_CMF,
 215		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 216		.read_control = sh_cmt_read32,
 217		.write_control = sh_cmt_write32,
 218		.read_count = sh_cmt_read32,
 219		.write_count = sh_cmt_write32,
 220	},
 221	[SH_CMT1_RCAR_GEN2] = {
 222		.model = SH_CMT1_RCAR_GEN2,
 223		.channels_mask = 0xff,
 224		.width = 32,
 225		.overflow_bit = SH_CMT32_CMCSR_CMF,
 226		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 227		.read_control = sh_cmt_read32,
 228		.write_control = sh_cmt_write32,
 229		.read_count = sh_cmt_read32,
 230		.write_count = sh_cmt_write32,
 231	},
 232};
 233
 234#define CMCSR 0 /* channel register */
 235#define CMCNT 1 /* channel register */
 236#define CMCOR 2 /* channel register */
 237
 238#define CMCLKE	0x1000	/* CLK Enable Register (R-Car Gen2) */
 239
 240static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
 241{
 242	if (ch->iostart)
 243		return ch->cmt->info->read_control(ch->iostart, 0);
 244	else
 245		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
 246}
 247
 248static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
 249{
 250	if (ch->iostart)
 251		ch->cmt->info->write_control(ch->iostart, 0, value);
 252	else
 253		ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
 
 
 
 
 
 
 
 254}
 255
 256static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
 257{
 258	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
 259}
 260
 261static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
 262{
 263	ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
 
 
 
 
 
 264}
 265
 266static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
 267{
 268	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
 269}
 270
 271static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
 272{
 
 
 
 
 
 
 
 
 
 
 
 
 273	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
 
 
 274}
 275
 276static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
 277{
 278	ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
 
 
 
 
 
 279}
 280
 281static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
 282{
 283	u32 v1, v2, v3;
 284	u32 o1, o2;
 285
 286	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 287
 288	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
 289	do {
 290		o2 = o1;
 291		v1 = sh_cmt_read_cmcnt(ch);
 292		v2 = sh_cmt_read_cmcnt(ch);
 293		v3 = sh_cmt_read_cmcnt(ch);
 294		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 295	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
 296			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
 297
 298	*has_wrapped = o1;
 299	return v2;
 300}
 301
 302static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
 303{
 304	unsigned long flags;
 305	u32 value;
 306
 307	/* start stop register shared by multiple timer channels */
 308	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
 309	value = sh_cmt_read_cmstr(ch);
 310
 311	if (start)
 312		value |= 1 << ch->timer_bit;
 313	else
 314		value &= ~(1 << ch->timer_bit);
 315
 316	sh_cmt_write_cmstr(ch, value);
 317	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
 318}
 319
 320static int sh_cmt_enable(struct sh_cmt_channel *ch)
 321{
 322	int k, ret;
 323
 324	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
 325
 326	/* enable clock */
 327	ret = clk_enable(ch->cmt->clk);
 328	if (ret) {
 329		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
 330			ch->index);
 331		goto err0;
 332	}
 333
 334	/* make sure channel is disabled */
 335	sh_cmt_start_stop_ch(ch, 0);
 336
 337	/* configure channel, periodic mode and maximum timeout */
 338	if (ch->cmt->info->width == 16) {
 339		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
 340				   SH_CMT16_CMCSR_CKS512);
 341	} else {
 342		u32 cmtout = ch->cmt->info->model <= SH_CMT_48BIT ?
 343			      SH_CMT32_CMCSR_CMTOUT_IE : 0;
 344		sh_cmt_write_cmcsr(ch, cmtout | SH_CMT32_CMCSR_CMM |
 345				   SH_CMT32_CMCSR_CMR_IRQ |
 346				   SH_CMT32_CMCSR_CKS_RCLK8);
 347	}
 348
 349	sh_cmt_write_cmcor(ch, 0xffffffff);
 350	sh_cmt_write_cmcnt(ch, 0);
 351
 352	/*
 353	 * According to the sh73a0 user's manual, as CMCNT can be operated
 354	 * only by the RCLK (Pseudo 32 kHz), there's one restriction on
 355	 * modifying CMCNT register; two RCLK cycles are necessary before
 356	 * this register is either read or any modification of the value
 357	 * it holds is reflected in the LSI's actual operation.
 358	 *
 359	 * While at it, we're supposed to clear out the CMCNT as of this
 360	 * moment, so make sure it's processed properly here.  This will
 361	 * take RCLKx2 at maximum.
 362	 */
 363	for (k = 0; k < 100; k++) {
 364		if (!sh_cmt_read_cmcnt(ch))
 365			break;
 366		udelay(1);
 367	}
 368
 369	if (sh_cmt_read_cmcnt(ch)) {
 370		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
 371			ch->index);
 372		ret = -ETIMEDOUT;
 373		goto err1;
 374	}
 375
 376	/* enable channel */
 377	sh_cmt_start_stop_ch(ch, 1);
 378	return 0;
 379 err1:
 380	/* stop clock */
 381	clk_disable(ch->cmt->clk);
 382
 383 err0:
 384	return ret;
 385}
 386
 387static void sh_cmt_disable(struct sh_cmt_channel *ch)
 388{
 389	/* disable channel */
 390	sh_cmt_start_stop_ch(ch, 0);
 391
 392	/* disable interrupts in CMT block */
 393	sh_cmt_write_cmcsr(ch, 0);
 394
 395	/* stop clock */
 396	clk_disable(ch->cmt->clk);
 397
 398	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
 399}
 400
 401/* private flags */
 402#define FLAG_CLOCKEVENT (1 << 0)
 403#define FLAG_CLOCKSOURCE (1 << 1)
 404#define FLAG_REPROGRAM (1 << 2)
 405#define FLAG_SKIPEVENT (1 << 3)
 406#define FLAG_IRQCONTEXT (1 << 4)
 407
 408static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
 409					      int absolute)
 410{
 411	u32 value = ch->next_match_value;
 412	u32 new_match;
 413	u32 delay = 0;
 414	u32 now = 0;
 415	u32 has_wrapped;
 416
 417	now = sh_cmt_get_counter(ch, &has_wrapped);
 418	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
 419
 420	if (has_wrapped) {
 421		/* we're competing with the interrupt handler.
 422		 *  -> let the interrupt handler reprogram the timer.
 423		 *  -> interrupt number two handles the event.
 424		 */
 425		ch->flags |= FLAG_SKIPEVENT;
 426		return;
 427	}
 428
 429	if (absolute)
 430		now = 0;
 431
 432	do {
 433		/* reprogram the timer hardware,
 434		 * but don't save the new match value yet.
 435		 */
 436		new_match = now + value + delay;
 437		if (new_match > ch->max_match_value)
 438			new_match = ch->max_match_value;
 439
 440		sh_cmt_write_cmcor(ch, new_match);
 441
 442		now = sh_cmt_get_counter(ch, &has_wrapped);
 443		if (has_wrapped && (new_match > ch->match_value)) {
 444			/* we are changing to a greater match value,
 445			 * so this wrap must be caused by the counter
 446			 * matching the old value.
 447			 * -> first interrupt reprograms the timer.
 448			 * -> interrupt number two handles the event.
 449			 */
 450			ch->flags |= FLAG_SKIPEVENT;
 451			break;
 452		}
 453
 454		if (has_wrapped) {
 455			/* we are changing to a smaller match value,
 456			 * so the wrap must be caused by the counter
 457			 * matching the new value.
 458			 * -> save programmed match value.
 459			 * -> let isr handle the event.
 460			 */
 461			ch->match_value = new_match;
 462			break;
 463		}
 464
 465		/* be safe: verify hardware settings */
 466		if (now < new_match) {
 467			/* timer value is below match value, all good.
 468			 * this makes sure we won't miss any match events.
 469			 * -> save programmed match value.
 470			 * -> let isr handle the event.
 471			 */
 472			ch->match_value = new_match;
 473			break;
 474		}
 475
 476		/* the counter has reached a value greater
 477		 * than our new match value. and since the
 478		 * has_wrapped flag isn't set we must have
 479		 * programmed a too close event.
 480		 * -> increase delay and retry.
 481		 */
 482		if (delay)
 483			delay <<= 1;
 484		else
 485			delay = 1;
 486
 487		if (!delay)
 488			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
 489				 ch->index);
 490
 491	} while (delay);
 492}
 493
 494static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 495{
 496	if (delta > ch->max_match_value)
 497		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
 498			 ch->index);
 499
 500	ch->next_match_value = delta;
 501	sh_cmt_clock_event_program_verify(ch, 0);
 502}
 503
 504static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 505{
 506	unsigned long flags;
 507
 508	raw_spin_lock_irqsave(&ch->lock, flags);
 509	__sh_cmt_set_next(ch, delta);
 510	raw_spin_unlock_irqrestore(&ch->lock, flags);
 511}
 512
 513static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
 514{
 515	struct sh_cmt_channel *ch = dev_id;
 516
 517	/* clear flags */
 518	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
 519			   ch->cmt->info->clear_bits);
 520
 521	/* update clock source counter to begin with if enabled
 522	 * the wrap flag should be cleared by the timer specific
 523	 * isr before we end up here.
 524	 */
 525	if (ch->flags & FLAG_CLOCKSOURCE)
 526		ch->total_cycles += ch->match_value + 1;
 527
 528	if (!(ch->flags & FLAG_REPROGRAM))
 529		ch->next_match_value = ch->max_match_value;
 530
 531	ch->flags |= FLAG_IRQCONTEXT;
 532
 533	if (ch->flags & FLAG_CLOCKEVENT) {
 534		if (!(ch->flags & FLAG_SKIPEVENT)) {
 535			if (clockevent_state_oneshot(&ch->ced)) {
 536				ch->next_match_value = ch->max_match_value;
 537				ch->flags |= FLAG_REPROGRAM;
 538			}
 539
 540			ch->ced.event_handler(&ch->ced);
 541		}
 542	}
 543
 544	ch->flags &= ~FLAG_SKIPEVENT;
 545
 546	if (ch->flags & FLAG_REPROGRAM) {
 547		ch->flags &= ~FLAG_REPROGRAM;
 548		sh_cmt_clock_event_program_verify(ch, 1);
 549
 550		if (ch->flags & FLAG_CLOCKEVENT)
 551			if ((clockevent_state_shutdown(&ch->ced))
 552			    || (ch->match_value == ch->next_match_value))
 553				ch->flags &= ~FLAG_REPROGRAM;
 554	}
 555
 556	ch->flags &= ~FLAG_IRQCONTEXT;
 557
 558	return IRQ_HANDLED;
 559}
 560
 561static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
 562{
 563	int ret = 0;
 564	unsigned long flags;
 565
 566	if (flag & FLAG_CLOCKSOURCE)
 567		pm_runtime_get_sync(&ch->cmt->pdev->dev);
 568
 569	raw_spin_lock_irqsave(&ch->lock, flags);
 570
 571	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
 572		if (flag & FLAG_CLOCKEVENT)
 573			pm_runtime_get_sync(&ch->cmt->pdev->dev);
 574		ret = sh_cmt_enable(ch);
 575	}
 576
 577	if (ret)
 578		goto out;
 579	ch->flags |= flag;
 580
 581	/* setup timeout if no clockevent */
 582	if (ch->cmt->num_channels == 1 &&
 583	    flag == FLAG_CLOCKSOURCE && (!(ch->flags & FLAG_CLOCKEVENT)))
 584		__sh_cmt_set_next(ch, ch->max_match_value);
 585 out:
 586	raw_spin_unlock_irqrestore(&ch->lock, flags);
 587
 588	return ret;
 589}
 590
 591static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
 592{
 593	unsigned long flags;
 594	unsigned long f;
 595
 596	raw_spin_lock_irqsave(&ch->lock, flags);
 597
 598	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
 599	ch->flags &= ~flag;
 600
 601	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
 602		sh_cmt_disable(ch);
 603		if (flag & FLAG_CLOCKEVENT)
 604			pm_runtime_put(&ch->cmt->pdev->dev);
 605	}
 606
 607	/* adjust the timeout to maximum if only clocksource left */
 608	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
 609		__sh_cmt_set_next(ch, ch->max_match_value);
 610
 611	raw_spin_unlock_irqrestore(&ch->lock, flags);
 612
 613	if (flag & FLAG_CLOCKSOURCE)
 614		pm_runtime_put(&ch->cmt->pdev->dev);
 615}
 616
 617static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
 618{
 619	return container_of(cs, struct sh_cmt_channel, cs);
 620}
 621
 622static u64 sh_cmt_clocksource_read(struct clocksource *cs)
 623{
 624	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 625	u32 has_wrapped;
 626
 627	if (ch->cmt->num_channels == 1) {
 628		unsigned long flags;
 629		u64 value;
 630		u32 raw;
 631
 632		raw_spin_lock_irqsave(&ch->lock, flags);
 633		value = ch->total_cycles;
 634		raw = sh_cmt_get_counter(ch, &has_wrapped);
 635
 636		if (unlikely(has_wrapped))
 637			raw += ch->match_value + 1;
 638		raw_spin_unlock_irqrestore(&ch->lock, flags);
 639
 640		return value + raw;
 641	}
 642
 643	return sh_cmt_get_counter(ch, &has_wrapped);
 644}
 645
 646static int sh_cmt_clocksource_enable(struct clocksource *cs)
 647{
 648	int ret;
 649	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 650
 651	WARN_ON(ch->cs_enabled);
 652
 653	ch->total_cycles = 0;
 654
 655	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 656	if (!ret)
 657		ch->cs_enabled = true;
 658
 659	return ret;
 660}
 661
 662static void sh_cmt_clocksource_disable(struct clocksource *cs)
 663{
 664	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 665
 666	WARN_ON(!ch->cs_enabled);
 667
 668	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 669	ch->cs_enabled = false;
 670}
 671
 672static void sh_cmt_clocksource_suspend(struct clocksource *cs)
 673{
 674	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 675
 676	if (!ch->cs_enabled)
 677		return;
 678
 679	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 680	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
 681}
 682
 683static void sh_cmt_clocksource_resume(struct clocksource *cs)
 684{
 685	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 686
 687	if (!ch->cs_enabled)
 688		return;
 689
 690	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
 691	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 692}
 693
 694static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
 695				       const char *name)
 696{
 697	struct clocksource *cs = &ch->cs;
 698
 699	cs->name = name;
 700	cs->rating = 125;
 701	cs->read = sh_cmt_clocksource_read;
 702	cs->enable = sh_cmt_clocksource_enable;
 703	cs->disable = sh_cmt_clocksource_disable;
 704	cs->suspend = sh_cmt_clocksource_suspend;
 705	cs->resume = sh_cmt_clocksource_resume;
 706	cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
 707	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
 708
 709	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
 710		 ch->index);
 711
 712	clocksource_register_hz(cs, ch->cmt->rate);
 713	return 0;
 714}
 715
 716static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
 717{
 718	return container_of(ced, struct sh_cmt_channel, ced);
 719}
 720
 721static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
 722{
 723	sh_cmt_start(ch, FLAG_CLOCKEVENT);
 724
 725	if (periodic)
 726		sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
 727	else
 728		sh_cmt_set_next(ch, ch->max_match_value);
 729}
 730
 731static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
 732{
 733	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 734
 735	sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 736	return 0;
 737}
 738
 739static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
 740					int periodic)
 741{
 742	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 743
 744	/* deal with old setting first */
 745	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
 746		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 747
 748	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
 749		 ch->index, periodic ? "periodic" : "oneshot");
 750	sh_cmt_clock_event_start(ch, periodic);
 751	return 0;
 752}
 753
 754static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
 755{
 756	return sh_cmt_clock_event_set_state(ced, 0);
 757}
 758
 759static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
 760{
 761	return sh_cmt_clock_event_set_state(ced, 1);
 762}
 763
 764static int sh_cmt_clock_event_next(unsigned long delta,
 765				   struct clock_event_device *ced)
 766{
 767	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 768
 769	BUG_ON(!clockevent_state_oneshot(ced));
 770	if (likely(ch->flags & FLAG_IRQCONTEXT))
 771		ch->next_match_value = delta - 1;
 772	else
 773		sh_cmt_set_next(ch, delta - 1);
 774
 775	return 0;
 776}
 777
 778static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
 779{
 780	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 781
 782	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
 783	clk_unprepare(ch->cmt->clk);
 784}
 785
 786static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
 787{
 788	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 789
 790	clk_prepare(ch->cmt->clk);
 791	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
 792}
 793
 794static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
 795				      const char *name)
 796{
 797	struct clock_event_device *ced = &ch->ced;
 798	int irq;
 799	int ret;
 800
 801	irq = platform_get_irq(ch->cmt->pdev, ch->index);
 802	if (irq < 0)
 803		return irq;
 804
 805	ret = request_irq(irq, sh_cmt_interrupt,
 806			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
 807			  dev_name(&ch->cmt->pdev->dev), ch);
 808	if (ret) {
 809		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
 810			ch->index, irq);
 811		return ret;
 812	}
 813
 814	ced->name = name;
 815	ced->features = CLOCK_EVT_FEAT_PERIODIC;
 816	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
 817	ced->rating = 125;
 818	ced->cpumask = cpu_possible_mask;
 819	ced->set_next_event = sh_cmt_clock_event_next;
 820	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
 821	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
 822	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
 823	ced->suspend = sh_cmt_clock_event_suspend;
 824	ced->resume = sh_cmt_clock_event_resume;
 825
 826	/* TODO: calculate good shift from rate and counter bit width */
 827	ced->shift = 32;
 828	ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
 829	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
 830	ced->max_delta_ticks = ch->max_match_value;
 831	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
 832	ced->min_delta_ticks = 0x1f;
 833
 834	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
 835		 ch->index);
 836	clockevents_register_device(ced);
 837
 838	return 0;
 839}
 840
 841static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
 842			   bool clockevent, bool clocksource)
 843{
 844	int ret;
 845
 846	if (clockevent) {
 847		ch->cmt->has_clockevent = true;
 848		ret = sh_cmt_register_clockevent(ch, name);
 849		if (ret < 0)
 850			return ret;
 851	}
 852
 853	if (clocksource) {
 854		ch->cmt->has_clocksource = true;
 855		sh_cmt_register_clocksource(ch, name);
 856	}
 857
 858	return 0;
 859}
 860
 861static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
 862				unsigned int hwidx, bool clockevent,
 863				bool clocksource, struct sh_cmt_device *cmt)
 864{
 865	u32 value;
 866	int ret;
 867
 868	/* Skip unused channels. */
 869	if (!clockevent && !clocksource)
 870		return 0;
 871
 872	ch->cmt = cmt;
 873	ch->index = index;
 874	ch->hwidx = hwidx;
 875	ch->timer_bit = hwidx;
 876
 877	/*
 878	 * Compute the address of the channel control register block. For the
 879	 * timers with a per-channel start/stop register, compute its address
 880	 * as well.
 881	 */
 882	switch (cmt->info->model) {
 883	case SH_CMT_16BIT:
 884		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
 885		break;
 886	case SH_CMT_32BIT:
 887	case SH_CMT_48BIT:
 888		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
 889		break;
 890	case SH_CMT0_RCAR_GEN2:
 891	case SH_CMT1_RCAR_GEN2:
 892		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
 893		ch->ioctrl = ch->iostart + 0x10;
 894		ch->timer_bit = 0;
 895
 896		/* Enable the clock supply to the channel */
 897		value = ioread32(cmt->mapbase + CMCLKE);
 898		value |= BIT(hwidx);
 899		iowrite32(value, cmt->mapbase + CMCLKE);
 900		break;
 901	}
 902
 903	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
 904		ch->max_match_value = ~0;
 905	else
 906		ch->max_match_value = (1 << cmt->info->width) - 1;
 907
 908	ch->match_value = ch->max_match_value;
 909	raw_spin_lock_init(&ch->lock);
 910
 911	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
 912			      clockevent, clocksource);
 913	if (ret) {
 914		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
 915			ch->index);
 916		return ret;
 917	}
 918	ch->cs_enabled = false;
 919
 920	return 0;
 921}
 922
 923static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
 924{
 925	struct resource *mem;
 926
 927	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
 928	if (!mem) {
 929		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
 930		return -ENXIO;
 931	}
 932
 933	cmt->mapbase = ioremap(mem->start, resource_size(mem));
 934	if (cmt->mapbase == NULL) {
 935		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
 936		return -ENXIO;
 937	}
 938
 939	return 0;
 940}
 941
 942static const struct platform_device_id sh_cmt_id_table[] = {
 943	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
 944	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
 945	{ }
 946};
 947MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
 948
 949static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
 950	{
 951		/* deprecated, preserved for backward compatibility */
 952		.compatible = "renesas,cmt-48",
 953		.data = &sh_cmt_info[SH_CMT_48BIT]
 954	},
 955	{
 956		/* deprecated, preserved for backward compatibility */
 957		.compatible = "renesas,cmt-48-gen2",
 958		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 959	},
 960	{
 961		.compatible = "renesas,r8a7740-cmt1",
 962		.data = &sh_cmt_info[SH_CMT_48BIT]
 963	},
 964	{
 965		.compatible = "renesas,sh73a0-cmt1",
 966		.data = &sh_cmt_info[SH_CMT_48BIT]
 967	},
 968	{
 969		.compatible = "renesas,rcar-gen2-cmt0",
 970		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 971	},
 972	{
 973		.compatible = "renesas,rcar-gen2-cmt1",
 974		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
 975	},
 976	{
 977		.compatible = "renesas,rcar-gen3-cmt0",
 978		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 979	},
 980	{
 981		.compatible = "renesas,rcar-gen3-cmt1",
 982		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
 983	},
 
 
 
 
 
 
 
 
 984	{ }
 985};
 986MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
 987
 988static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
 989{
 990	unsigned int mask;
 991	unsigned int i;
 992	int ret;
 993
 994	cmt->pdev = pdev;
 995	raw_spin_lock_init(&cmt->lock);
 996
 997	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
 998		cmt->info = of_device_get_match_data(&pdev->dev);
 999		cmt->hw_channels = cmt->info->channels_mask;
1000	} else if (pdev->dev.platform_data) {
1001		struct sh_timer_config *cfg = pdev->dev.platform_data;
1002		const struct platform_device_id *id = pdev->id_entry;
1003
1004		cmt->info = (const struct sh_cmt_info *)id->driver_data;
1005		cmt->hw_channels = cfg->channels_mask;
1006	} else {
1007		dev_err(&cmt->pdev->dev, "missing platform data\n");
1008		return -ENXIO;
1009	}
1010
1011	/* Get hold of clock. */
1012	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
1013	if (IS_ERR(cmt->clk)) {
1014		dev_err(&cmt->pdev->dev, "cannot get clock\n");
1015		return PTR_ERR(cmt->clk);
1016	}
1017
1018	ret = clk_prepare(cmt->clk);
1019	if (ret < 0)
1020		goto err_clk_put;
1021
1022	/* Determine clock rate. */
1023	ret = clk_enable(cmt->clk);
1024	if (ret < 0)
1025		goto err_clk_unprepare;
1026
1027	if (cmt->info->width == 16)
1028		cmt->rate = clk_get_rate(cmt->clk) / 512;
1029	else
1030		cmt->rate = clk_get_rate(cmt->clk) / 8;
 
 
 
 
 
 
1031
1032	/* Map the memory resource(s). */
1033	ret = sh_cmt_map_memory(cmt);
1034	if (ret < 0)
1035		goto err_clk_disable;
1036
1037	/* Allocate and setup the channels. */
1038	cmt->num_channels = hweight8(cmt->hw_channels);
1039	cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1040				GFP_KERNEL);
1041	if (cmt->channels == NULL) {
1042		ret = -ENOMEM;
1043		goto err_unmap;
1044	}
1045
1046	/*
1047	 * Use the first channel as a clock event device and the second channel
1048	 * as a clock source. If only one channel is available use it for both.
1049	 */
1050	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1051		unsigned int hwidx = ffs(mask) - 1;
1052		bool clocksource = i == 1 || cmt->num_channels == 1;
1053		bool clockevent = i == 0;
1054
1055		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1056					   clockevent, clocksource, cmt);
1057		if (ret < 0)
1058			goto err_unmap;
1059
1060		mask &= ~(1 << hwidx);
1061	}
1062
1063	clk_disable(cmt->clk);
1064
1065	platform_set_drvdata(pdev, cmt);
1066
1067	return 0;
1068
1069err_unmap:
1070	kfree(cmt->channels);
1071	iounmap(cmt->mapbase);
1072err_clk_disable:
1073	clk_disable(cmt->clk);
1074err_clk_unprepare:
1075	clk_unprepare(cmt->clk);
1076err_clk_put:
1077	clk_put(cmt->clk);
1078	return ret;
1079}
1080
1081static int sh_cmt_probe(struct platform_device *pdev)
1082{
1083	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1084	int ret;
1085
1086	if (!is_sh_early_platform_device(pdev)) {
1087		pm_runtime_set_active(&pdev->dev);
1088		pm_runtime_enable(&pdev->dev);
1089	}
1090
1091	if (cmt) {
1092		dev_info(&pdev->dev, "kept as earlytimer\n");
1093		goto out;
1094	}
1095
1096	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1097	if (cmt == NULL)
1098		return -ENOMEM;
1099
1100	ret = sh_cmt_setup(cmt, pdev);
1101	if (ret) {
1102		kfree(cmt);
1103		pm_runtime_idle(&pdev->dev);
1104		return ret;
1105	}
1106	if (is_sh_early_platform_device(pdev))
1107		return 0;
1108
1109 out:
1110	if (cmt->has_clockevent || cmt->has_clocksource)
1111		pm_runtime_irq_safe(&pdev->dev);
1112	else
1113		pm_runtime_idle(&pdev->dev);
1114
1115	return 0;
1116}
1117
1118static int sh_cmt_remove(struct platform_device *pdev)
1119{
1120	return -EBUSY; /* cannot unregister clockevent and clocksource */
1121}
1122
1123static struct platform_driver sh_cmt_device_driver = {
1124	.probe		= sh_cmt_probe,
1125	.remove		= sh_cmt_remove,
1126	.driver		= {
1127		.name	= "sh_cmt",
1128		.of_match_table = of_match_ptr(sh_cmt_of_table),
1129	},
1130	.id_table	= sh_cmt_id_table,
1131};
1132
1133static int __init sh_cmt_init(void)
1134{
1135	return platform_driver_register(&sh_cmt_device_driver);
1136}
1137
1138static void __exit sh_cmt_exit(void)
1139{
1140	platform_driver_unregister(&sh_cmt_device_driver);
1141}
1142
1143#ifdef CONFIG_SUPERH
1144sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1145#endif
1146
1147subsys_initcall(sh_cmt_init);
1148module_exit(sh_cmt_exit);
1149
1150MODULE_AUTHOR("Magnus Damm");
1151MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1152MODULE_LICENSE("GPL v2");