Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SuperH Timer Support - CMT
   4 *
   5 *  Copyright (C) 2008 Magnus Damm
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/clk.h>
   9#include <linux/clockchips.h>
  10#include <linux/clocksource.h>
  11#include <linux/delay.h>
  12#include <linux/err.h>
  13#include <linux/init.h>
  14#include <linux/interrupt.h>
  15#include <linux/io.h>
  16#include <linux/iopoll.h>
  17#include <linux/ioport.h>
  18#include <linux/irq.h>
  19#include <linux/module.h>
  20#include <linux/of.h>
  21#include <linux/of_device.h>
  22#include <linux/platform_device.h>
  23#include <linux/pm_domain.h>
  24#include <linux/pm_runtime.h>
  25#include <linux/sh_timer.h>
  26#include <linux/slab.h>
  27#include <linux/spinlock.h>
  28
  29#ifdef CONFIG_SUPERH
  30#include <asm/platform_early.h>
  31#endif
  32
  33struct sh_cmt_device;
  34
  35/*
  36 * The CMT comes in 5 different identified flavours, depending not only on the
  37 * SoC but also on the particular instance. The following table lists the main
  38 * characteristics of those flavours.
  39 *
  40 *			16B	32B	32B-F	48B	R-Car Gen2
  41 * -----------------------------------------------------------------------------
  42 * Channels		2	1/4	1	6	2/8
  43 * Control Width	16	16	16	16	32
  44 * Counter Width	16	32	32	32/48	32/48
  45 * Shared Start/Stop	Y	Y	Y	Y	N
  46 *
  47 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
  48 * located in the channel registers block. All other versions have a shared
  49 * start/stop register located in the global space.
  50 *
  51 * Channels are indexed from 0 to N-1 in the documentation. The channel index
  52 * infers the start/stop bit position in the control register and the channel
  53 * registers block address. Some CMT instances have a subset of channels
  54 * available, in which case the index in the documentation doesn't match the
  55 * "real" index as implemented in hardware. This is for instance the case with
  56 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
  57 * in the documentation but using start/stop bit 5 and having its registers
  58 * block at 0x60.
  59 *
  60 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
  61 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
  62 */
  63
  64enum sh_cmt_model {
  65	SH_CMT_16BIT,
  66	SH_CMT_32BIT,
 
  67	SH_CMT_48BIT,
  68	SH_CMT0_RCAR_GEN2,
  69	SH_CMT1_RCAR_GEN2,
  70};
  71
  72struct sh_cmt_info {
  73	enum sh_cmt_model model;
  74
  75	unsigned int channels_mask;
  76
  77	unsigned long width; /* 16 or 32 bit version of hardware block */
  78	u32 overflow_bit;
  79	u32 clear_bits;
  80
  81	/* callbacks for CMSTR and CMCSR access */
  82	u32 (*read_control)(void __iomem *base, unsigned long offs);
  83	void (*write_control)(void __iomem *base, unsigned long offs,
  84			      u32 value);
  85
  86	/* callbacks for CMCNT and CMCOR access */
  87	u32 (*read_count)(void __iomem *base, unsigned long offs);
  88	void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
 
  89};
  90
  91struct sh_cmt_channel {
  92	struct sh_cmt_device *cmt;
  93
  94	unsigned int index;	/* Index in the documentation */
  95	unsigned int hwidx;	/* Real hardware index */
  96
  97	void __iomem *iostart;
  98	void __iomem *ioctrl;
  99
 100	unsigned int timer_bit;
 101	unsigned long flags;
 102	u32 match_value;
 103	u32 next_match_value;
 104	u32 max_match_value;
 
 105	raw_spinlock_t lock;
 106	struct clock_event_device ced;
 107	struct clocksource cs;
 108	u64 total_cycles;
 109	bool cs_enabled;
 110};
 111
 112struct sh_cmt_device {
 113	struct platform_device *pdev;
 114
 115	const struct sh_cmt_info *info;
 116
 117	void __iomem *mapbase;
 118	struct clk *clk;
 119	unsigned long rate;
 120	unsigned int reg_delay;
 121
 122	raw_spinlock_t lock; /* Protect the shared start/stop register */
 123
 124	struct sh_cmt_channel *channels;
 125	unsigned int num_channels;
 126	unsigned int hw_channels;
 127
 128	bool has_clockevent;
 129	bool has_clocksource;
 130};
 131
 132#define SH_CMT16_CMCSR_CMF		(1 << 7)
 133#define SH_CMT16_CMCSR_CMIE		(1 << 6)
 134#define SH_CMT16_CMCSR_CKS8		(0 << 0)
 135#define SH_CMT16_CMCSR_CKS32		(1 << 0)
 136#define SH_CMT16_CMCSR_CKS128		(2 << 0)
 137#define SH_CMT16_CMCSR_CKS512		(3 << 0)
 138#define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
 139
 140#define SH_CMT32_CMCSR_CMF		(1 << 15)
 141#define SH_CMT32_CMCSR_OVF		(1 << 14)
 142#define SH_CMT32_CMCSR_WRFLG		(1 << 13)
 143#define SH_CMT32_CMCSR_STTF		(1 << 12)
 144#define SH_CMT32_CMCSR_STPF		(1 << 11)
 145#define SH_CMT32_CMCSR_SSIE		(1 << 10)
 146#define SH_CMT32_CMCSR_CMS		(1 << 9)
 147#define SH_CMT32_CMCSR_CMM		(1 << 8)
 148#define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
 149#define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
 150#define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
 151#define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
 152#define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
 153#define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
 154#define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
 155#define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
 156#define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
 157#define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
 158#define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
 159
 160static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
 161{
 162	return ioread16(base + (offs << 1));
 163}
 164
 165static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
 166{
 167	return ioread32(base + (offs << 2));
 168}
 169
 170static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
 
 171{
 172	iowrite16(value, base + (offs << 1));
 173}
 174
 175static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
 
 176{
 177	iowrite32(value, base + (offs << 2));
 178}
 179
 180static const struct sh_cmt_info sh_cmt_info[] = {
 181	[SH_CMT_16BIT] = {
 182		.model = SH_CMT_16BIT,
 183		.width = 16,
 184		.overflow_bit = SH_CMT16_CMCSR_CMF,
 185		.clear_bits = ~SH_CMT16_CMCSR_CMF,
 186		.read_control = sh_cmt_read16,
 187		.write_control = sh_cmt_write16,
 188		.read_count = sh_cmt_read16,
 189		.write_count = sh_cmt_write16,
 190	},
 191	[SH_CMT_32BIT] = {
 192		.model = SH_CMT_32BIT,
 193		.width = 32,
 194		.overflow_bit = SH_CMT32_CMCSR_CMF,
 195		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 196		.read_control = sh_cmt_read16,
 197		.write_control = sh_cmt_write16,
 198		.read_count = sh_cmt_read32,
 199		.write_count = sh_cmt_write32,
 200	},
 201	[SH_CMT_48BIT] = {
 202		.model = SH_CMT_48BIT,
 203		.channels_mask = 0x3f,
 204		.width = 32,
 205		.overflow_bit = SH_CMT32_CMCSR_CMF,
 206		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 207		.read_control = sh_cmt_read32,
 208		.write_control = sh_cmt_write32,
 209		.read_count = sh_cmt_read32,
 210		.write_count = sh_cmt_write32,
 211	},
 212	[SH_CMT0_RCAR_GEN2] = {
 213		.model = SH_CMT0_RCAR_GEN2,
 214		.channels_mask = 0x60,
 215		.width = 32,
 216		.overflow_bit = SH_CMT32_CMCSR_CMF,
 217		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 218		.read_control = sh_cmt_read32,
 219		.write_control = sh_cmt_write32,
 220		.read_count = sh_cmt_read32,
 221		.write_count = sh_cmt_write32,
 222	},
 223	[SH_CMT1_RCAR_GEN2] = {
 224		.model = SH_CMT1_RCAR_GEN2,
 225		.channels_mask = 0xff,
 226		.width = 32,
 227		.overflow_bit = SH_CMT32_CMCSR_CMF,
 228		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 229		.read_control = sh_cmt_read32,
 230		.write_control = sh_cmt_write32,
 231		.read_count = sh_cmt_read32,
 232		.write_count = sh_cmt_write32,
 233	},
 234};
 235
 236#define CMCSR 0 /* channel register */
 237#define CMCNT 1 /* channel register */
 238#define CMCOR 2 /* channel register */
 239
 240#define CMCLKE	0x1000	/* CLK Enable Register (R-Car Gen2) */
 241
 242static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
 243{
 244	if (ch->iostart)
 245		return ch->cmt->info->read_control(ch->iostart, 0);
 246	else
 247		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
 248}
 249
 250static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
 
 251{
 252	u32 old_value = sh_cmt_read_cmstr(ch);
 253
 254	if (value != old_value) {
 255		if (ch->iostart) {
 256			ch->cmt->info->write_control(ch->iostart, 0, value);
 257			udelay(ch->cmt->reg_delay);
 258		} else {
 259			ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
 260			udelay(ch->cmt->reg_delay);
 261		}
 262	}
 263}
 264
 265static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
 266{
 267	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
 268}
 269
 270static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
 
 271{
 272	u32 old_value = sh_cmt_read_cmcsr(ch);
 273
 274	if (value != old_value) {
 275		ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
 276		udelay(ch->cmt->reg_delay);
 277	}
 278}
 279
 280static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
 281{
 282	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
 283}
 284
 285static inline int sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
 
 286{
 287	/* Tests showed that we need to wait 3 clocks here */
 288	unsigned int cmcnt_delay = DIV_ROUND_UP(3 * ch->cmt->reg_delay, 2);
 289	u32 reg;
 290
 291	if (ch->cmt->info->model > SH_CMT_16BIT) {
 292		int ret = read_poll_timeout_atomic(sh_cmt_read_cmcsr, reg,
 293						   !(reg & SH_CMT32_CMCSR_WRFLG),
 294						   1, cmcnt_delay, false, ch);
 295		if (ret < 0)
 296			return ret;
 297	}
 298
 299	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
 300	udelay(cmcnt_delay);
 301	return 0;
 302}
 303
 304static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
 
 305{
 306	u32 old_value = ch->cmt->info->read_count(ch->ioctrl, CMCOR);
 307
 308	if (value != old_value) {
 309		ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
 310		udelay(ch->cmt->reg_delay);
 311	}
 312}
 313
 314static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
 
 315{
 316	u32 v1, v2, v3;
 317	u32 o1, o2;
 318
 319	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 320
 321	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
 322	do {
 323		o2 = o1;
 324		v1 = sh_cmt_read_cmcnt(ch);
 325		v2 = sh_cmt_read_cmcnt(ch);
 326		v3 = sh_cmt_read_cmcnt(ch);
 327		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 328	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
 329			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
 330
 331	*has_wrapped = o1;
 332	return v2;
 333}
 334
 335static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
 336{
 337	unsigned long flags;
 338	u32 value;
 339
 340	/* start stop register shared by multiple timer channels */
 341	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
 342	value = sh_cmt_read_cmstr(ch);
 343
 344	if (start)
 345		value |= 1 << ch->timer_bit;
 346	else
 347		value &= ~(1 << ch->timer_bit);
 348
 349	sh_cmt_write_cmstr(ch, value);
 350	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
 351}
 352
 353static int sh_cmt_enable(struct sh_cmt_channel *ch)
 354{
 355	int ret;
 356
 
 357	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
 358
 359	/* enable clock */
 360	ret = clk_enable(ch->cmt->clk);
 361	if (ret) {
 362		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
 363			ch->index);
 364		goto err0;
 365	}
 366
 367	/* make sure channel is disabled */
 368	sh_cmt_start_stop_ch(ch, 0);
 369
 370	/* configure channel, periodic mode and maximum timeout */
 371	if (ch->cmt->info->width == 16) {
 
 372		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
 373				   SH_CMT16_CMCSR_CKS512);
 374	} else {
 375		u32 cmtout = ch->cmt->info->model <= SH_CMT_48BIT ?
 376			      SH_CMT32_CMCSR_CMTOUT_IE : 0;
 377		sh_cmt_write_cmcsr(ch, cmtout | SH_CMT32_CMCSR_CMM |
 378				   SH_CMT32_CMCSR_CMR_IRQ |
 379				   SH_CMT32_CMCSR_CKS_RCLK8);
 380	}
 381
 382	sh_cmt_write_cmcor(ch, 0xffffffff);
 383	ret = sh_cmt_write_cmcnt(ch, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 384
 385	if (ret || sh_cmt_read_cmcnt(ch)) {
 386		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
 387			ch->index);
 388		ret = -ETIMEDOUT;
 389		goto err1;
 390	}
 391
 392	/* enable channel */
 393	sh_cmt_start_stop_ch(ch, 1);
 394	return 0;
 395 err1:
 396	/* stop clock */
 397	clk_disable(ch->cmt->clk);
 398
 399 err0:
 400	return ret;
 401}
 402
 403static void sh_cmt_disable(struct sh_cmt_channel *ch)
 404{
 405	/* disable channel */
 406	sh_cmt_start_stop_ch(ch, 0);
 407
 408	/* disable interrupts in CMT block */
 409	sh_cmt_write_cmcsr(ch, 0);
 410
 411	/* stop clock */
 412	clk_disable(ch->cmt->clk);
 413
 414	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
 
 415}
 416
 417/* private flags */
 418#define FLAG_CLOCKEVENT (1 << 0)
 419#define FLAG_CLOCKSOURCE (1 << 1)
 420#define FLAG_REPROGRAM (1 << 2)
 421#define FLAG_SKIPEVENT (1 << 3)
 422#define FLAG_IRQCONTEXT (1 << 4)
 423
 424static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
 425					      int absolute)
 426{
 427	u32 value = ch->next_match_value;
 428	u32 new_match;
 429	u32 delay = 0;
 430	u32 now = 0;
 431	u32 has_wrapped;
 432
 433	now = sh_cmt_get_counter(ch, &has_wrapped);
 434	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
 435
 436	if (has_wrapped) {
 437		/* we're competing with the interrupt handler.
 438		 *  -> let the interrupt handler reprogram the timer.
 439		 *  -> interrupt number two handles the event.
 440		 */
 441		ch->flags |= FLAG_SKIPEVENT;
 442		return;
 443	}
 444
 445	if (absolute)
 446		now = 0;
 447
 448	do {
 449		/* reprogram the timer hardware,
 450		 * but don't save the new match value yet.
 451		 */
 452		new_match = now + value + delay;
 453		if (new_match > ch->max_match_value)
 454			new_match = ch->max_match_value;
 455
 456		sh_cmt_write_cmcor(ch, new_match);
 457
 458		now = sh_cmt_get_counter(ch, &has_wrapped);
 459		if (has_wrapped && (new_match > ch->match_value)) {
 460			/* we are changing to a greater match value,
 461			 * so this wrap must be caused by the counter
 462			 * matching the old value.
 463			 * -> first interrupt reprograms the timer.
 464			 * -> interrupt number two handles the event.
 465			 */
 466			ch->flags |= FLAG_SKIPEVENT;
 467			break;
 468		}
 469
 470		if (has_wrapped) {
 471			/* we are changing to a smaller match value,
 472			 * so the wrap must be caused by the counter
 473			 * matching the new value.
 474			 * -> save programmed match value.
 475			 * -> let isr handle the event.
 476			 */
 477			ch->match_value = new_match;
 478			break;
 479		}
 480
 481		/* be safe: verify hardware settings */
 482		if (now < new_match) {
 483			/* timer value is below match value, all good.
 484			 * this makes sure we won't miss any match events.
 485			 * -> save programmed match value.
 486			 * -> let isr handle the event.
 487			 */
 488			ch->match_value = new_match;
 489			break;
 490		}
 491
 492		/* the counter has reached a value greater
 493		 * than our new match value. and since the
 494		 * has_wrapped flag isn't set we must have
 495		 * programmed a too close event.
 496		 * -> increase delay and retry.
 497		 */
 498		if (delay)
 499			delay <<= 1;
 500		else
 501			delay = 1;
 502
 503		if (!delay)
 504			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
 505				 ch->index);
 506
 507	} while (delay);
 508}
 509
 510static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 511{
 512	if (delta > ch->max_match_value)
 513		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
 514			 ch->index);
 515
 516	ch->next_match_value = delta;
 517	sh_cmt_clock_event_program_verify(ch, 0);
 518}
 519
 520static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 521{
 522	unsigned long flags;
 523
 524	raw_spin_lock_irqsave(&ch->lock, flags);
 525	__sh_cmt_set_next(ch, delta);
 526	raw_spin_unlock_irqrestore(&ch->lock, flags);
 527}
 528
 529static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
 530{
 531	struct sh_cmt_channel *ch = dev_id;
 532
 533	/* clear flags */
 534	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
 535			   ch->cmt->info->clear_bits);
 536
 537	/* update clock source counter to begin with if enabled
 538	 * the wrap flag should be cleared by the timer specific
 539	 * isr before we end up here.
 540	 */
 541	if (ch->flags & FLAG_CLOCKSOURCE)
 542		ch->total_cycles += ch->match_value + 1;
 543
 544	if (!(ch->flags & FLAG_REPROGRAM))
 545		ch->next_match_value = ch->max_match_value;
 546
 547	ch->flags |= FLAG_IRQCONTEXT;
 548
 549	if (ch->flags & FLAG_CLOCKEVENT) {
 550		if (!(ch->flags & FLAG_SKIPEVENT)) {
 551			if (clockevent_state_oneshot(&ch->ced)) {
 552				ch->next_match_value = ch->max_match_value;
 553				ch->flags |= FLAG_REPROGRAM;
 554			}
 555
 556			ch->ced.event_handler(&ch->ced);
 557		}
 558	}
 559
 560	ch->flags &= ~FLAG_SKIPEVENT;
 561
 562	if (ch->flags & FLAG_REPROGRAM) {
 563		ch->flags &= ~FLAG_REPROGRAM;
 564		sh_cmt_clock_event_program_verify(ch, 1);
 565
 566		if (ch->flags & FLAG_CLOCKEVENT)
 567			if ((clockevent_state_shutdown(&ch->ced))
 568			    || (ch->match_value == ch->next_match_value))
 569				ch->flags &= ~FLAG_REPROGRAM;
 570	}
 571
 572	ch->flags &= ~FLAG_IRQCONTEXT;
 573
 574	return IRQ_HANDLED;
 575}
 576
 577static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
 578{
 579	int ret = 0;
 580	unsigned long flags;
 581
 582	if (flag & FLAG_CLOCKSOURCE)
 583		pm_runtime_get_sync(&ch->cmt->pdev->dev);
 584
 585	raw_spin_lock_irqsave(&ch->lock, flags);
 586
 587	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
 588		if (flag & FLAG_CLOCKEVENT)
 589			pm_runtime_get_sync(&ch->cmt->pdev->dev);
 590		ret = sh_cmt_enable(ch);
 591	}
 592
 593	if (ret)
 594		goto out;
 595	ch->flags |= flag;
 596
 597	/* setup timeout if no clockevent */
 598	if (ch->cmt->num_channels == 1 &&
 599	    flag == FLAG_CLOCKSOURCE && (!(ch->flags & FLAG_CLOCKEVENT)))
 600		__sh_cmt_set_next(ch, ch->max_match_value);
 601 out:
 602	raw_spin_unlock_irqrestore(&ch->lock, flags);
 603
 604	return ret;
 605}
 606
 607static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
 608{
 609	unsigned long flags;
 610	unsigned long f;
 611
 612	raw_spin_lock_irqsave(&ch->lock, flags);
 613
 614	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
 615	ch->flags &= ~flag;
 616
 617	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
 618		sh_cmt_disable(ch);
 619		if (flag & FLAG_CLOCKEVENT)
 620			pm_runtime_put(&ch->cmt->pdev->dev);
 621	}
 622
 623	/* adjust the timeout to maximum if only clocksource left */
 624	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
 625		__sh_cmt_set_next(ch, ch->max_match_value);
 626
 627	raw_spin_unlock_irqrestore(&ch->lock, flags);
 628
 629	if (flag & FLAG_CLOCKSOURCE)
 630		pm_runtime_put(&ch->cmt->pdev->dev);
 631}
 632
 633static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
 634{
 635	return container_of(cs, struct sh_cmt_channel, cs);
 636}
 637
 638static u64 sh_cmt_clocksource_read(struct clocksource *cs)
 639{
 640	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 641	u32 has_wrapped;
 642
 643	if (ch->cmt->num_channels == 1) {
 644		unsigned long flags;
 645		u64 value;
 646		u32 raw;
 647
 648		raw_spin_lock_irqsave(&ch->lock, flags);
 649		value = ch->total_cycles;
 650		raw = sh_cmt_get_counter(ch, &has_wrapped);
 651
 652		if (unlikely(has_wrapped))
 653			raw += ch->match_value + 1;
 654		raw_spin_unlock_irqrestore(&ch->lock, flags);
 655
 656		return value + raw;
 657	}
 
 658
 659	return sh_cmt_get_counter(ch, &has_wrapped);
 660}
 661
 662static int sh_cmt_clocksource_enable(struct clocksource *cs)
 663{
 664	int ret;
 665	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 666
 667	WARN_ON(ch->cs_enabled);
 668
 669	ch->total_cycles = 0;
 670
 671	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 672	if (!ret)
 
 673		ch->cs_enabled = true;
 674
 675	return ret;
 676}
 677
 678static void sh_cmt_clocksource_disable(struct clocksource *cs)
 679{
 680	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 681
 682	WARN_ON(!ch->cs_enabled);
 683
 684	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 685	ch->cs_enabled = false;
 686}
 687
 688static void sh_cmt_clocksource_suspend(struct clocksource *cs)
 689{
 690	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 691
 692	if (!ch->cs_enabled)
 693		return;
 694
 695	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 696	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
 697}
 698
 699static void sh_cmt_clocksource_resume(struct clocksource *cs)
 700{
 701	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 702
 703	if (!ch->cs_enabled)
 704		return;
 705
 706	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
 707	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 708}
 709
 710static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
 711				       const char *name)
 712{
 713	struct clocksource *cs = &ch->cs;
 714
 715	cs->name = name;
 716	cs->rating = 125;
 717	cs->read = sh_cmt_clocksource_read;
 718	cs->enable = sh_cmt_clocksource_enable;
 719	cs->disable = sh_cmt_clocksource_disable;
 720	cs->suspend = sh_cmt_clocksource_suspend;
 721	cs->resume = sh_cmt_clocksource_resume;
 722	cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
 723	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
 724
 725	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
 726		 ch->index);
 727
 728	clocksource_register_hz(cs, ch->cmt->rate);
 
 729	return 0;
 730}
 731
 732static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
 733{
 734	return container_of(ced, struct sh_cmt_channel, ced);
 735}
 736
 737static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
 738{
 
 
 739	sh_cmt_start(ch, FLAG_CLOCKEVENT);
 740
 
 
 
 
 
 
 
 741	if (periodic)
 742		sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
 743	else
 744		sh_cmt_set_next(ch, ch->max_match_value);
 745}
 746
 747static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
 748{
 749	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 750
 751	sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 752	return 0;
 753}
 754
 755static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
 756					int periodic)
 757{
 758	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 759
 760	/* deal with old setting first */
 761	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
 762		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 763
 764	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
 765		 ch->index, periodic ? "periodic" : "oneshot");
 766	sh_cmt_clock_event_start(ch, periodic);
 767	return 0;
 768}
 769
 770static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
 771{
 772	return sh_cmt_clock_event_set_state(ced, 0);
 773}
 774
 775static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
 776{
 777	return sh_cmt_clock_event_set_state(ced, 1);
 778}
 779
 780static int sh_cmt_clock_event_next(unsigned long delta,
 781				   struct clock_event_device *ced)
 782{
 783	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 784
 785	BUG_ON(!clockevent_state_oneshot(ced));
 786	if (likely(ch->flags & FLAG_IRQCONTEXT))
 787		ch->next_match_value = delta - 1;
 788	else
 789		sh_cmt_set_next(ch, delta - 1);
 790
 791	return 0;
 792}
 793
 794static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
 795{
 796	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 797
 798	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
 799	clk_unprepare(ch->cmt->clk);
 800}
 801
 802static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
 803{
 804	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 805
 806	clk_prepare(ch->cmt->clk);
 807	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
 808}
 809
 810static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
 811				      const char *name)
 812{
 813	struct clock_event_device *ced = &ch->ced;
 814	int irq;
 815	int ret;
 816
 817	irq = platform_get_irq(ch->cmt->pdev, ch->index);
 818	if (irq < 0)
 
 
 819		return irq;
 
 820
 821	ret = request_irq(irq, sh_cmt_interrupt,
 822			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
 823			  dev_name(&ch->cmt->pdev->dev), ch);
 824	if (ret) {
 825		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
 826			ch->index, irq);
 827		return ret;
 828	}
 829
 830	ced->name = name;
 831	ced->features = CLOCK_EVT_FEAT_PERIODIC;
 832	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
 833	ced->rating = 125;
 834	ced->cpumask = cpu_possible_mask;
 835	ced->set_next_event = sh_cmt_clock_event_next;
 836	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
 837	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
 838	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
 839	ced->suspend = sh_cmt_clock_event_suspend;
 840	ced->resume = sh_cmt_clock_event_resume;
 841
 842	/* TODO: calculate good shift from rate and counter bit width */
 843	ced->shift = 32;
 844	ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
 845	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
 846	ced->max_delta_ticks = ch->max_match_value;
 847	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
 848	ced->min_delta_ticks = 0x1f;
 849
 850	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
 851		 ch->index);
 852	clockevents_register_device(ced);
 853
 854	return 0;
 855}
 856
 857static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
 858			   bool clockevent, bool clocksource)
 859{
 860	int ret;
 861
 862	if (clockevent) {
 863		ch->cmt->has_clockevent = true;
 864		ret = sh_cmt_register_clockevent(ch, name);
 865		if (ret < 0)
 866			return ret;
 867	}
 868
 869	if (clocksource) {
 870		ch->cmt->has_clocksource = true;
 871		sh_cmt_register_clocksource(ch, name);
 872	}
 873
 874	return 0;
 875}
 876
 877static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
 878				unsigned int hwidx, bool clockevent,
 879				bool clocksource, struct sh_cmt_device *cmt)
 880{
 881	u32 value;
 882	int ret;
 883
 884	/* Skip unused channels. */
 885	if (!clockevent && !clocksource)
 886		return 0;
 887
 888	ch->cmt = cmt;
 889	ch->index = index;
 890	ch->hwidx = hwidx;
 891	ch->timer_bit = hwidx;
 892
 893	/*
 894	 * Compute the address of the channel control register block. For the
 895	 * timers with a per-channel start/stop register, compute its address
 896	 * as well.
 897	 */
 898	switch (cmt->info->model) {
 899	case SH_CMT_16BIT:
 900		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
 901		break;
 902	case SH_CMT_32BIT:
 903	case SH_CMT_48BIT:
 904		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
 905		break;
 906	case SH_CMT0_RCAR_GEN2:
 907	case SH_CMT1_RCAR_GEN2:
 
 
 
 
 
 
 908		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
 909		ch->ioctrl = ch->iostart + 0x10;
 910		ch->timer_bit = 0;
 911
 912		/* Enable the clock supply to the channel */
 913		value = ioread32(cmt->mapbase + CMCLKE);
 914		value |= BIT(hwidx);
 915		iowrite32(value, cmt->mapbase + CMCLKE);
 916		break;
 917	}
 918
 919	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
 920		ch->max_match_value = ~0;
 921	else
 922		ch->max_match_value = (1 << cmt->info->width) - 1;
 923
 924	ch->match_value = ch->max_match_value;
 925	raw_spin_lock_init(&ch->lock);
 926
 
 
 927	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
 928			      clockevent, clocksource);
 929	if (ret) {
 930		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
 931			ch->index);
 932		return ret;
 933	}
 934	ch->cs_enabled = false;
 935
 936	return 0;
 937}
 938
 939static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
 940{
 941	struct resource *mem;
 942
 943	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
 944	if (!mem) {
 945		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
 946		return -ENXIO;
 947	}
 948
 949	cmt->mapbase = ioremap(mem->start, resource_size(mem));
 950	if (cmt->mapbase == NULL) {
 951		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
 952		return -ENXIO;
 953	}
 954
 955	return 0;
 956}
 957
 958static const struct platform_device_id sh_cmt_id_table[] = {
 959	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
 960	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
 961	{ }
 962};
 963MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
 964
 965static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
 966	{
 967		/* deprecated, preserved for backward compatibility */
 968		.compatible = "renesas,cmt-48",
 969		.data = &sh_cmt_info[SH_CMT_48BIT]
 970	},
 971	{
 972		/* deprecated, preserved for backward compatibility */
 973		.compatible = "renesas,cmt-48-gen2",
 974		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 975	},
 976	{
 977		.compatible = "renesas,r8a7740-cmt1",
 978		.data = &sh_cmt_info[SH_CMT_48BIT]
 979	},
 980	{
 981		.compatible = "renesas,sh73a0-cmt1",
 982		.data = &sh_cmt_info[SH_CMT_48BIT]
 983	},
 984	{
 985		.compatible = "renesas,rcar-gen2-cmt0",
 986		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 987	},
 988	{
 989		.compatible = "renesas,rcar-gen2-cmt1",
 990		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
 991	},
 992	{
 993		.compatible = "renesas,rcar-gen3-cmt0",
 994		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 995	},
 996	{
 997		.compatible = "renesas,rcar-gen3-cmt1",
 998		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
 999	},
1000	{
1001		.compatible = "renesas,rcar-gen4-cmt0",
1002		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
1003	},
1004	{
1005		.compatible = "renesas,rcar-gen4-cmt1",
1006		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
1007	},
1008	{ }
1009};
1010MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
1011
 
 
 
 
 
 
 
 
1012static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
1013{
1014	unsigned int mask, i;
1015	unsigned long rate;
1016	int ret;
1017
1018	cmt->pdev = pdev;
1019	raw_spin_lock_init(&cmt->lock);
1020
1021	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
1022		cmt->info = of_device_get_match_data(&pdev->dev);
1023		cmt->hw_channels = cmt->info->channels_mask;
 
 
 
 
 
 
1024	} else if (pdev->dev.platform_data) {
1025		struct sh_timer_config *cfg = pdev->dev.platform_data;
1026		const struct platform_device_id *id = pdev->id_entry;
1027
1028		cmt->info = (const struct sh_cmt_info *)id->driver_data;
1029		cmt->hw_channels = cfg->channels_mask;
1030	} else {
1031		dev_err(&cmt->pdev->dev, "missing platform data\n");
1032		return -ENXIO;
1033	}
1034
1035	/* Get hold of clock. */
1036	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
1037	if (IS_ERR(cmt->clk)) {
1038		dev_err(&cmt->pdev->dev, "cannot get clock\n");
1039		return PTR_ERR(cmt->clk);
1040	}
1041
1042	ret = clk_prepare(cmt->clk);
1043	if (ret < 0)
1044		goto err_clk_put;
1045
1046	/* Determine clock rate. */
1047	ret = clk_enable(cmt->clk);
1048	if (ret < 0)
1049		goto err_clk_unprepare;
1050
1051	rate = clk_get_rate(cmt->clk);
1052	if (!rate) {
1053		ret = -EINVAL;
1054		goto err_clk_disable;
1055	}
1056
1057	/* We shall wait 2 input clks after register writes */
1058	if (cmt->info->model >= SH_CMT_48BIT)
1059		cmt->reg_delay = DIV_ROUND_UP(2UL * USEC_PER_SEC, rate);
1060	cmt->rate = rate / (cmt->info->width == 16 ? 512 : 8);
1061
1062	/* Map the memory resource(s). */
1063	ret = sh_cmt_map_memory(cmt);
1064	if (ret < 0)
1065		goto err_clk_disable;
1066
1067	/* Allocate and setup the channels. */
1068	cmt->num_channels = hweight8(cmt->hw_channels);
1069	cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1070				GFP_KERNEL);
1071	if (cmt->channels == NULL) {
1072		ret = -ENOMEM;
1073		goto err_unmap;
1074	}
1075
1076	/*
1077	 * Use the first channel as a clock event device and the second channel
1078	 * as a clock source. If only one channel is available use it for both.
1079	 */
1080	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1081		unsigned int hwidx = ffs(mask) - 1;
1082		bool clocksource = i == 1 || cmt->num_channels == 1;
1083		bool clockevent = i == 0;
1084
1085		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1086					   clockevent, clocksource, cmt);
1087		if (ret < 0)
1088			goto err_unmap;
1089
1090		mask &= ~(1 << hwidx);
1091	}
1092
1093	clk_disable(cmt->clk);
1094
1095	platform_set_drvdata(pdev, cmt);
1096
1097	return 0;
1098
1099err_unmap:
1100	kfree(cmt->channels);
1101	iounmap(cmt->mapbase);
1102err_clk_disable:
1103	clk_disable(cmt->clk);
1104err_clk_unprepare:
1105	clk_unprepare(cmt->clk);
1106err_clk_put:
1107	clk_put(cmt->clk);
1108	return ret;
1109}
1110
1111static int sh_cmt_probe(struct platform_device *pdev)
1112{
1113	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1114	int ret;
1115
1116	if (!is_sh_early_platform_device(pdev)) {
1117		pm_runtime_set_active(&pdev->dev);
1118		pm_runtime_enable(&pdev->dev);
1119	}
1120
1121	if (cmt) {
1122		dev_info(&pdev->dev, "kept as earlytimer\n");
1123		goto out;
1124	}
1125
1126	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1127	if (cmt == NULL)
1128		return -ENOMEM;
1129
1130	ret = sh_cmt_setup(cmt, pdev);
1131	if (ret) {
1132		kfree(cmt);
1133		pm_runtime_idle(&pdev->dev);
1134		return ret;
1135	}
1136	if (is_sh_early_platform_device(pdev))
1137		return 0;
1138
1139 out:
1140	if (cmt->has_clockevent || cmt->has_clocksource)
1141		pm_runtime_irq_safe(&pdev->dev);
1142	else
1143		pm_runtime_idle(&pdev->dev);
1144
1145	return 0;
1146}
1147
1148static int sh_cmt_remove(struct platform_device *pdev)
1149{
1150	return -EBUSY; /* cannot unregister clockevent and clocksource */
1151}
1152
1153static struct platform_driver sh_cmt_device_driver = {
1154	.probe		= sh_cmt_probe,
1155	.remove		= sh_cmt_remove,
1156	.driver		= {
1157		.name	= "sh_cmt",
1158		.of_match_table = of_match_ptr(sh_cmt_of_table),
1159	},
1160	.id_table	= sh_cmt_id_table,
1161};
1162
1163static int __init sh_cmt_init(void)
1164{
1165	return platform_driver_register(&sh_cmt_device_driver);
1166}
1167
1168static void __exit sh_cmt_exit(void)
1169{
1170	platform_driver_unregister(&sh_cmt_device_driver);
1171}
1172
1173#ifdef CONFIG_SUPERH
1174sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1175#endif
1176
1177subsys_initcall(sh_cmt_init);
1178module_exit(sh_cmt_exit);
1179
1180MODULE_AUTHOR("Magnus Damm");
1181MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1182MODULE_LICENSE("GPL v2");
v4.6
 
   1/*
   2 * SuperH Timer Support - CMT
   3 *
   4 *  Copyright (C) 2008 Magnus Damm
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 */
  15
  16#include <linux/clk.h>
  17#include <linux/clockchips.h>
  18#include <linux/clocksource.h>
  19#include <linux/delay.h>
  20#include <linux/err.h>
  21#include <linux/init.h>
  22#include <linux/interrupt.h>
  23#include <linux/io.h>
 
  24#include <linux/ioport.h>
  25#include <linux/irq.h>
  26#include <linux/module.h>
  27#include <linux/of.h>
 
  28#include <linux/platform_device.h>
  29#include <linux/pm_domain.h>
  30#include <linux/pm_runtime.h>
  31#include <linux/sh_timer.h>
  32#include <linux/slab.h>
  33#include <linux/spinlock.h>
  34
 
 
 
 
  35struct sh_cmt_device;
  36
  37/*
  38 * The CMT comes in 5 different identified flavours, depending not only on the
  39 * SoC but also on the particular instance. The following table lists the main
  40 * characteristics of those flavours.
  41 *
  42 *			16B	32B	32B-F	48B	48B-2
  43 * -----------------------------------------------------------------------------
  44 * Channels		2	1/4	1	6	2/8
  45 * Control Width	16	16	16	16	32
  46 * Counter Width	16	32	32	32/48	32/48
  47 * Shared Start/Stop	Y	Y	Y	Y	N
  48 *
  49 * The 48-bit gen2 version has a per-channel start/stop register located in the
  50 * channel registers block. All other versions have a shared start/stop register
  51 * located in the global space.
  52 *
  53 * Channels are indexed from 0 to N-1 in the documentation. The channel index
  54 * infers the start/stop bit position in the control register and the channel
  55 * registers block address. Some CMT instances have a subset of channels
  56 * available, in which case the index in the documentation doesn't match the
  57 * "real" index as implemented in hardware. This is for instance the case with
  58 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
  59 * in the documentation but using start/stop bit 5 and having its registers
  60 * block at 0x60.
  61 *
  62 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
  63 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
  64 */
  65
  66enum sh_cmt_model {
  67	SH_CMT_16BIT,
  68	SH_CMT_32BIT,
  69	SH_CMT_32BIT_FAST,
  70	SH_CMT_48BIT,
  71	SH_CMT_48BIT_GEN2,
 
  72};
  73
  74struct sh_cmt_info {
  75	enum sh_cmt_model model;
  76
 
 
  77	unsigned long width; /* 16 or 32 bit version of hardware block */
  78	unsigned long overflow_bit;
  79	unsigned long clear_bits;
  80
  81	/* callbacks for CMSTR and CMCSR access */
  82	unsigned long (*read_control)(void __iomem *base, unsigned long offs);
  83	void (*write_control)(void __iomem *base, unsigned long offs,
  84			      unsigned long value);
  85
  86	/* callbacks for CMCNT and CMCOR access */
  87	unsigned long (*read_count)(void __iomem *base, unsigned long offs);
  88	void (*write_count)(void __iomem *base, unsigned long offs,
  89			    unsigned long value);
  90};
  91
  92struct sh_cmt_channel {
  93	struct sh_cmt_device *cmt;
  94
  95	unsigned int index;	/* Index in the documentation */
  96	unsigned int hwidx;	/* Real hardware index */
  97
  98	void __iomem *iostart;
  99	void __iomem *ioctrl;
 100
 101	unsigned int timer_bit;
 102	unsigned long flags;
 103	unsigned long match_value;
 104	unsigned long next_match_value;
 105	unsigned long max_match_value;
 106	unsigned long rate;
 107	raw_spinlock_t lock;
 108	struct clock_event_device ced;
 109	struct clocksource cs;
 110	unsigned long total_cycles;
 111	bool cs_enabled;
 112};
 113
 114struct sh_cmt_device {
 115	struct platform_device *pdev;
 116
 117	const struct sh_cmt_info *info;
 118
 119	void __iomem *mapbase;
 120	struct clk *clk;
 
 
 121
 122	raw_spinlock_t lock; /* Protect the shared start/stop register */
 123
 124	struct sh_cmt_channel *channels;
 125	unsigned int num_channels;
 126	unsigned int hw_channels;
 127
 128	bool has_clockevent;
 129	bool has_clocksource;
 130};
 131
 132#define SH_CMT16_CMCSR_CMF		(1 << 7)
 133#define SH_CMT16_CMCSR_CMIE		(1 << 6)
 134#define SH_CMT16_CMCSR_CKS8		(0 << 0)
 135#define SH_CMT16_CMCSR_CKS32		(1 << 0)
 136#define SH_CMT16_CMCSR_CKS128		(2 << 0)
 137#define SH_CMT16_CMCSR_CKS512		(3 << 0)
 138#define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
 139
 140#define SH_CMT32_CMCSR_CMF		(1 << 15)
 141#define SH_CMT32_CMCSR_OVF		(1 << 14)
 142#define SH_CMT32_CMCSR_WRFLG		(1 << 13)
 143#define SH_CMT32_CMCSR_STTF		(1 << 12)
 144#define SH_CMT32_CMCSR_STPF		(1 << 11)
 145#define SH_CMT32_CMCSR_SSIE		(1 << 10)
 146#define SH_CMT32_CMCSR_CMS		(1 << 9)
 147#define SH_CMT32_CMCSR_CMM		(1 << 8)
 148#define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
 149#define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
 150#define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
 151#define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
 152#define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
 153#define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
 154#define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
 155#define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
 156#define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
 157#define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
 158#define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
 159
 160static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
 161{
 162	return ioread16(base + (offs << 1));
 163}
 164
 165static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
 166{
 167	return ioread32(base + (offs << 2));
 168}
 169
 170static void sh_cmt_write16(void __iomem *base, unsigned long offs,
 171			   unsigned long value)
 172{
 173	iowrite16(value, base + (offs << 1));
 174}
 175
 176static void sh_cmt_write32(void __iomem *base, unsigned long offs,
 177			   unsigned long value)
 178{
 179	iowrite32(value, base + (offs << 2));
 180}
 181
 182static const struct sh_cmt_info sh_cmt_info[] = {
 183	[SH_CMT_16BIT] = {
 184		.model = SH_CMT_16BIT,
 185		.width = 16,
 186		.overflow_bit = SH_CMT16_CMCSR_CMF,
 187		.clear_bits = ~SH_CMT16_CMCSR_CMF,
 188		.read_control = sh_cmt_read16,
 189		.write_control = sh_cmt_write16,
 190		.read_count = sh_cmt_read16,
 191		.write_count = sh_cmt_write16,
 192	},
 193	[SH_CMT_32BIT] = {
 194		.model = SH_CMT_32BIT,
 195		.width = 32,
 196		.overflow_bit = SH_CMT32_CMCSR_CMF,
 197		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 198		.read_control = sh_cmt_read16,
 199		.write_control = sh_cmt_write16,
 200		.read_count = sh_cmt_read32,
 201		.write_count = sh_cmt_write32,
 202	},
 203	[SH_CMT_32BIT_FAST] = {
 204		.model = SH_CMT_32BIT_FAST,
 
 205		.width = 32,
 206		.overflow_bit = SH_CMT32_CMCSR_CMF,
 207		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 208		.read_control = sh_cmt_read16,
 209		.write_control = sh_cmt_write16,
 210		.read_count = sh_cmt_read32,
 211		.write_count = sh_cmt_write32,
 212	},
 213	[SH_CMT_48BIT] = {
 214		.model = SH_CMT_48BIT,
 
 215		.width = 32,
 216		.overflow_bit = SH_CMT32_CMCSR_CMF,
 217		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 218		.read_control = sh_cmt_read32,
 219		.write_control = sh_cmt_write32,
 220		.read_count = sh_cmt_read32,
 221		.write_count = sh_cmt_write32,
 222	},
 223	[SH_CMT_48BIT_GEN2] = {
 224		.model = SH_CMT_48BIT_GEN2,
 
 225		.width = 32,
 226		.overflow_bit = SH_CMT32_CMCSR_CMF,
 227		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 228		.read_control = sh_cmt_read32,
 229		.write_control = sh_cmt_write32,
 230		.read_count = sh_cmt_read32,
 231		.write_count = sh_cmt_write32,
 232	},
 233};
 234
 235#define CMCSR 0 /* channel register */
 236#define CMCNT 1 /* channel register */
 237#define CMCOR 2 /* channel register */
 238
 239static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
 
 
 240{
 241	if (ch->iostart)
 242		return ch->cmt->info->read_control(ch->iostart, 0);
 243	else
 244		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
 245}
 246
 247static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch,
 248				      unsigned long value)
 249{
 250	if (ch->iostart)
 251		ch->cmt->info->write_control(ch->iostart, 0, value);
 252	else
 253		ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
 
 
 
 
 
 
 
 254}
 255
 256static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
 257{
 258	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
 259}
 260
 261static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch,
 262				      unsigned long value)
 263{
 264	ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
 
 
 
 
 
 265}
 266
 267static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
 268{
 269	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
 270}
 271
 272static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch,
 273				      unsigned long value)
 274{
 
 
 
 
 
 
 
 
 
 
 
 
 275	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
 
 
 276}
 277
 278static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch,
 279				      unsigned long value)
 280{
 281	ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
 
 
 
 
 
 282}
 283
 284static unsigned long sh_cmt_get_counter(struct sh_cmt_channel *ch,
 285					int *has_wrapped)
 286{
 287	unsigned long v1, v2, v3;
 288	int o1, o2;
 289
 290	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 291
 292	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
 293	do {
 294		o2 = o1;
 295		v1 = sh_cmt_read_cmcnt(ch);
 296		v2 = sh_cmt_read_cmcnt(ch);
 297		v3 = sh_cmt_read_cmcnt(ch);
 298		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 299	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
 300			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
 301
 302	*has_wrapped = o1;
 303	return v2;
 304}
 305
 306static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
 307{
 308	unsigned long flags, value;
 
 309
 310	/* start stop register shared by multiple timer channels */
 311	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
 312	value = sh_cmt_read_cmstr(ch);
 313
 314	if (start)
 315		value |= 1 << ch->timer_bit;
 316	else
 317		value &= ~(1 << ch->timer_bit);
 318
 319	sh_cmt_write_cmstr(ch, value);
 320	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
 321}
 322
 323static int sh_cmt_enable(struct sh_cmt_channel *ch, unsigned long *rate)
 324{
 325	int k, ret;
 326
 327	pm_runtime_get_sync(&ch->cmt->pdev->dev);
 328	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
 329
 330	/* enable clock */
 331	ret = clk_enable(ch->cmt->clk);
 332	if (ret) {
 333		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
 334			ch->index);
 335		goto err0;
 336	}
 337
 338	/* make sure channel is disabled */
 339	sh_cmt_start_stop_ch(ch, 0);
 340
 341	/* configure channel, periodic mode and maximum timeout */
 342	if (ch->cmt->info->width == 16) {
 343		*rate = clk_get_rate(ch->cmt->clk) / 512;
 344		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
 345				   SH_CMT16_CMCSR_CKS512);
 346	} else {
 347		*rate = clk_get_rate(ch->cmt->clk) / 8;
 348		sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
 349				   SH_CMT32_CMCSR_CMTOUT_IE |
 350				   SH_CMT32_CMCSR_CMR_IRQ |
 351				   SH_CMT32_CMCSR_CKS_RCLK8);
 352	}
 353
 354	sh_cmt_write_cmcor(ch, 0xffffffff);
 355	sh_cmt_write_cmcnt(ch, 0);
 356
 357	/*
 358	 * According to the sh73a0 user's manual, as CMCNT can be operated
 359	 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
 360	 * modifying CMCNT register; two RCLK cycles are necessary before
 361	 * this register is either read or any modification of the value
 362	 * it holds is reflected in the LSI's actual operation.
 363	 *
 364	 * While at it, we're supposed to clear out the CMCNT as of this
 365	 * moment, so make sure it's processed properly here.  This will
 366	 * take RCLKx2 at maximum.
 367	 */
 368	for (k = 0; k < 100; k++) {
 369		if (!sh_cmt_read_cmcnt(ch))
 370			break;
 371		udelay(1);
 372	}
 373
 374	if (sh_cmt_read_cmcnt(ch)) {
 375		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
 376			ch->index);
 377		ret = -ETIMEDOUT;
 378		goto err1;
 379	}
 380
 381	/* enable channel */
 382	sh_cmt_start_stop_ch(ch, 1);
 383	return 0;
 384 err1:
 385	/* stop clock */
 386	clk_disable(ch->cmt->clk);
 387
 388 err0:
 389	return ret;
 390}
 391
 392static void sh_cmt_disable(struct sh_cmt_channel *ch)
 393{
 394	/* disable channel */
 395	sh_cmt_start_stop_ch(ch, 0);
 396
 397	/* disable interrupts in CMT block */
 398	sh_cmt_write_cmcsr(ch, 0);
 399
 400	/* stop clock */
 401	clk_disable(ch->cmt->clk);
 402
 403	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
 404	pm_runtime_put(&ch->cmt->pdev->dev);
 405}
 406
 407/* private flags */
 408#define FLAG_CLOCKEVENT (1 << 0)
 409#define FLAG_CLOCKSOURCE (1 << 1)
 410#define FLAG_REPROGRAM (1 << 2)
 411#define FLAG_SKIPEVENT (1 << 3)
 412#define FLAG_IRQCONTEXT (1 << 4)
 413
 414static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
 415					      int absolute)
 416{
 417	unsigned long new_match;
 418	unsigned long value = ch->next_match_value;
 419	unsigned long delay = 0;
 420	unsigned long now = 0;
 421	int has_wrapped;
 422
 423	now = sh_cmt_get_counter(ch, &has_wrapped);
 424	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
 425
 426	if (has_wrapped) {
 427		/* we're competing with the interrupt handler.
 428		 *  -> let the interrupt handler reprogram the timer.
 429		 *  -> interrupt number two handles the event.
 430		 */
 431		ch->flags |= FLAG_SKIPEVENT;
 432		return;
 433	}
 434
 435	if (absolute)
 436		now = 0;
 437
 438	do {
 439		/* reprogram the timer hardware,
 440		 * but don't save the new match value yet.
 441		 */
 442		new_match = now + value + delay;
 443		if (new_match > ch->max_match_value)
 444			new_match = ch->max_match_value;
 445
 446		sh_cmt_write_cmcor(ch, new_match);
 447
 448		now = sh_cmt_get_counter(ch, &has_wrapped);
 449		if (has_wrapped && (new_match > ch->match_value)) {
 450			/* we are changing to a greater match value,
 451			 * so this wrap must be caused by the counter
 452			 * matching the old value.
 453			 * -> first interrupt reprograms the timer.
 454			 * -> interrupt number two handles the event.
 455			 */
 456			ch->flags |= FLAG_SKIPEVENT;
 457			break;
 458		}
 459
 460		if (has_wrapped) {
 461			/* we are changing to a smaller match value,
 462			 * so the wrap must be caused by the counter
 463			 * matching the new value.
 464			 * -> save programmed match value.
 465			 * -> let isr handle the event.
 466			 */
 467			ch->match_value = new_match;
 468			break;
 469		}
 470
 471		/* be safe: verify hardware settings */
 472		if (now < new_match) {
 473			/* timer value is below match value, all good.
 474			 * this makes sure we won't miss any match events.
 475			 * -> save programmed match value.
 476			 * -> let isr handle the event.
 477			 */
 478			ch->match_value = new_match;
 479			break;
 480		}
 481
 482		/* the counter has reached a value greater
 483		 * than our new match value. and since the
 484		 * has_wrapped flag isn't set we must have
 485		 * programmed a too close event.
 486		 * -> increase delay and retry.
 487		 */
 488		if (delay)
 489			delay <<= 1;
 490		else
 491			delay = 1;
 492
 493		if (!delay)
 494			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
 495				 ch->index);
 496
 497	} while (delay);
 498}
 499
 500static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 501{
 502	if (delta > ch->max_match_value)
 503		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
 504			 ch->index);
 505
 506	ch->next_match_value = delta;
 507	sh_cmt_clock_event_program_verify(ch, 0);
 508}
 509
 510static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 511{
 512	unsigned long flags;
 513
 514	raw_spin_lock_irqsave(&ch->lock, flags);
 515	__sh_cmt_set_next(ch, delta);
 516	raw_spin_unlock_irqrestore(&ch->lock, flags);
 517}
 518
 519static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
 520{
 521	struct sh_cmt_channel *ch = dev_id;
 522
 523	/* clear flags */
 524	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
 525			   ch->cmt->info->clear_bits);
 526
 527	/* update clock source counter to begin with if enabled
 528	 * the wrap flag should be cleared by the timer specific
 529	 * isr before we end up here.
 530	 */
 531	if (ch->flags & FLAG_CLOCKSOURCE)
 532		ch->total_cycles += ch->match_value + 1;
 533
 534	if (!(ch->flags & FLAG_REPROGRAM))
 535		ch->next_match_value = ch->max_match_value;
 536
 537	ch->flags |= FLAG_IRQCONTEXT;
 538
 539	if (ch->flags & FLAG_CLOCKEVENT) {
 540		if (!(ch->flags & FLAG_SKIPEVENT)) {
 541			if (clockevent_state_oneshot(&ch->ced)) {
 542				ch->next_match_value = ch->max_match_value;
 543				ch->flags |= FLAG_REPROGRAM;
 544			}
 545
 546			ch->ced.event_handler(&ch->ced);
 547		}
 548	}
 549
 550	ch->flags &= ~FLAG_SKIPEVENT;
 551
 552	if (ch->flags & FLAG_REPROGRAM) {
 553		ch->flags &= ~FLAG_REPROGRAM;
 554		sh_cmt_clock_event_program_verify(ch, 1);
 555
 556		if (ch->flags & FLAG_CLOCKEVENT)
 557			if ((clockevent_state_shutdown(&ch->ced))
 558			    || (ch->match_value == ch->next_match_value))
 559				ch->flags &= ~FLAG_REPROGRAM;
 560	}
 561
 562	ch->flags &= ~FLAG_IRQCONTEXT;
 563
 564	return IRQ_HANDLED;
 565}
 566
 567static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
 568{
 569	int ret = 0;
 570	unsigned long flags;
 571
 
 
 
 572	raw_spin_lock_irqsave(&ch->lock, flags);
 573
 574	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
 575		ret = sh_cmt_enable(ch, &ch->rate);
 
 
 
 576
 577	if (ret)
 578		goto out;
 579	ch->flags |= flag;
 580
 581	/* setup timeout if no clockevent */
 582	if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
 
 583		__sh_cmt_set_next(ch, ch->max_match_value);
 584 out:
 585	raw_spin_unlock_irqrestore(&ch->lock, flags);
 586
 587	return ret;
 588}
 589
 590static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
 591{
 592	unsigned long flags;
 593	unsigned long f;
 594
 595	raw_spin_lock_irqsave(&ch->lock, flags);
 596
 597	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
 598	ch->flags &= ~flag;
 599
 600	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
 601		sh_cmt_disable(ch);
 
 
 
 602
 603	/* adjust the timeout to maximum if only clocksource left */
 604	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
 605		__sh_cmt_set_next(ch, ch->max_match_value);
 606
 607	raw_spin_unlock_irqrestore(&ch->lock, flags);
 
 
 
 608}
 609
 610static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
 611{
 612	return container_of(cs, struct sh_cmt_channel, cs);
 613}
 614
 615static cycle_t sh_cmt_clocksource_read(struct clocksource *cs)
 616{
 617	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 618	unsigned long flags, raw;
 619	unsigned long value;
 620	int has_wrapped;
 
 
 
 
 
 
 
 621
 622	raw_spin_lock_irqsave(&ch->lock, flags);
 623	value = ch->total_cycles;
 624	raw = sh_cmt_get_counter(ch, &has_wrapped);
 625
 626	if (unlikely(has_wrapped))
 627		raw += ch->match_value + 1;
 628	raw_spin_unlock_irqrestore(&ch->lock, flags);
 629
 630	return value + raw;
 631}
 632
 633static int sh_cmt_clocksource_enable(struct clocksource *cs)
 634{
 635	int ret;
 636	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 637
 638	WARN_ON(ch->cs_enabled);
 639
 640	ch->total_cycles = 0;
 641
 642	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 643	if (!ret) {
 644		__clocksource_update_freq_hz(cs, ch->rate);
 645		ch->cs_enabled = true;
 646	}
 647	return ret;
 648}
 649
 650static void sh_cmt_clocksource_disable(struct clocksource *cs)
 651{
 652	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 653
 654	WARN_ON(!ch->cs_enabled);
 655
 656	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 657	ch->cs_enabled = false;
 658}
 659
 660static void sh_cmt_clocksource_suspend(struct clocksource *cs)
 661{
 662	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 663
 664	if (!ch->cs_enabled)
 665		return;
 666
 667	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 668	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
 669}
 670
 671static void sh_cmt_clocksource_resume(struct clocksource *cs)
 672{
 673	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 674
 675	if (!ch->cs_enabled)
 676		return;
 677
 678	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
 679	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 680}
 681
 682static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
 683				       const char *name)
 684{
 685	struct clocksource *cs = &ch->cs;
 686
 687	cs->name = name;
 688	cs->rating = 125;
 689	cs->read = sh_cmt_clocksource_read;
 690	cs->enable = sh_cmt_clocksource_enable;
 691	cs->disable = sh_cmt_clocksource_disable;
 692	cs->suspend = sh_cmt_clocksource_suspend;
 693	cs->resume = sh_cmt_clocksource_resume;
 694	cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
 695	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
 696
 697	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
 698		 ch->index);
 699
 700	/* Register with dummy 1 Hz value, gets updated in ->enable() */
 701	clocksource_register_hz(cs, 1);
 702	return 0;
 703}
 704
 705static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
 706{
 707	return container_of(ced, struct sh_cmt_channel, ced);
 708}
 709
 710static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
 711{
 712	struct clock_event_device *ced = &ch->ced;
 713
 714	sh_cmt_start(ch, FLAG_CLOCKEVENT);
 715
 716	/* TODO: calculate good shift from rate and counter bit width */
 717
 718	ced->shift = 32;
 719	ced->mult = div_sc(ch->rate, NSEC_PER_SEC, ced->shift);
 720	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
 721	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
 722
 723	if (periodic)
 724		sh_cmt_set_next(ch, ((ch->rate + HZ/2) / HZ) - 1);
 725	else
 726		sh_cmt_set_next(ch, ch->max_match_value);
 727}
 728
 729static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
 730{
 731	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 732
 733	sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 734	return 0;
 735}
 736
 737static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
 738					int periodic)
 739{
 740	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 741
 742	/* deal with old setting first */
 743	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
 744		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 745
 746	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
 747		 ch->index, periodic ? "periodic" : "oneshot");
 748	sh_cmt_clock_event_start(ch, periodic);
 749	return 0;
 750}
 751
 752static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
 753{
 754	return sh_cmt_clock_event_set_state(ced, 0);
 755}
 756
 757static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
 758{
 759	return sh_cmt_clock_event_set_state(ced, 1);
 760}
 761
 762static int sh_cmt_clock_event_next(unsigned long delta,
 763				   struct clock_event_device *ced)
 764{
 765	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 766
 767	BUG_ON(!clockevent_state_oneshot(ced));
 768	if (likely(ch->flags & FLAG_IRQCONTEXT))
 769		ch->next_match_value = delta - 1;
 770	else
 771		sh_cmt_set_next(ch, delta - 1);
 772
 773	return 0;
 774}
 775
 776static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
 777{
 778	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 779
 780	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
 781	clk_unprepare(ch->cmt->clk);
 782}
 783
 784static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
 785{
 786	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 787
 788	clk_prepare(ch->cmt->clk);
 789	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
 790}
 791
 792static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
 793				      const char *name)
 794{
 795	struct clock_event_device *ced = &ch->ced;
 796	int irq;
 797	int ret;
 798
 799	irq = platform_get_irq(ch->cmt->pdev, ch->index);
 800	if (irq < 0) {
 801		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n",
 802			ch->index);
 803		return irq;
 804	}
 805
 806	ret = request_irq(irq, sh_cmt_interrupt,
 807			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
 808			  dev_name(&ch->cmt->pdev->dev), ch);
 809	if (ret) {
 810		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
 811			ch->index, irq);
 812		return ret;
 813	}
 814
 815	ced->name = name;
 816	ced->features = CLOCK_EVT_FEAT_PERIODIC;
 817	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
 818	ced->rating = 125;
 819	ced->cpumask = cpu_possible_mask;
 820	ced->set_next_event = sh_cmt_clock_event_next;
 821	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
 822	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
 823	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
 824	ced->suspend = sh_cmt_clock_event_suspend;
 825	ced->resume = sh_cmt_clock_event_resume;
 826
 
 
 
 
 
 
 
 
 827	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
 828		 ch->index);
 829	clockevents_register_device(ced);
 830
 831	return 0;
 832}
 833
 834static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
 835			   bool clockevent, bool clocksource)
 836{
 837	int ret;
 838
 839	if (clockevent) {
 840		ch->cmt->has_clockevent = true;
 841		ret = sh_cmt_register_clockevent(ch, name);
 842		if (ret < 0)
 843			return ret;
 844	}
 845
 846	if (clocksource) {
 847		ch->cmt->has_clocksource = true;
 848		sh_cmt_register_clocksource(ch, name);
 849	}
 850
 851	return 0;
 852}
 853
 854static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
 855				unsigned int hwidx, bool clockevent,
 856				bool clocksource, struct sh_cmt_device *cmt)
 857{
 
 858	int ret;
 859
 860	/* Skip unused channels. */
 861	if (!clockevent && !clocksource)
 862		return 0;
 863
 864	ch->cmt = cmt;
 865	ch->index = index;
 866	ch->hwidx = hwidx;
 
 867
 868	/*
 869	 * Compute the address of the channel control register block. For the
 870	 * timers with a per-channel start/stop register, compute its address
 871	 * as well.
 872	 */
 873	switch (cmt->info->model) {
 874	case SH_CMT_16BIT:
 875		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
 876		break;
 877	case SH_CMT_32BIT:
 878	case SH_CMT_48BIT:
 879		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
 880		break;
 881	case SH_CMT_32BIT_FAST:
 882		/*
 883		 * The 32-bit "fast" timer has a single channel at hwidx 5 but
 884		 * is located at offset 0x40 instead of 0x60 for some reason.
 885		 */
 886		ch->ioctrl = cmt->mapbase + 0x40;
 887		break;
 888	case SH_CMT_48BIT_GEN2:
 889		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
 890		ch->ioctrl = ch->iostart + 0x10;
 
 
 
 
 
 
 891		break;
 892	}
 893
 894	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
 895		ch->max_match_value = ~0;
 896	else
 897		ch->max_match_value = (1 << cmt->info->width) - 1;
 898
 899	ch->match_value = ch->max_match_value;
 900	raw_spin_lock_init(&ch->lock);
 901
 902	ch->timer_bit = cmt->info->model == SH_CMT_48BIT_GEN2 ? 0 : ch->hwidx;
 903
 904	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
 905			      clockevent, clocksource);
 906	if (ret) {
 907		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
 908			ch->index);
 909		return ret;
 910	}
 911	ch->cs_enabled = false;
 912
 913	return 0;
 914}
 915
 916static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
 917{
 918	struct resource *mem;
 919
 920	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
 921	if (!mem) {
 922		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
 923		return -ENXIO;
 924	}
 925
 926	cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
 927	if (cmt->mapbase == NULL) {
 928		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
 929		return -ENXIO;
 930	}
 931
 932	return 0;
 933}
 934
 935static const struct platform_device_id sh_cmt_id_table[] = {
 936	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
 937	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
 938	{ }
 939};
 940MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
 941
 942static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
 943	{ .compatible = "renesas,cmt-32", .data = &sh_cmt_info[SH_CMT_32BIT] },
 944	{ .compatible = "renesas,cmt-32-fast", .data = &sh_cmt_info[SH_CMT_32BIT_FAST] },
 945	{ .compatible = "renesas,cmt-48", .data = &sh_cmt_info[SH_CMT_48BIT] },
 946	{ .compatible = "renesas,cmt-48-gen2", .data = &sh_cmt_info[SH_CMT_48BIT_GEN2] },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 947	{ }
 948};
 949MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
 950
 951static int sh_cmt_parse_dt(struct sh_cmt_device *cmt)
 952{
 953	struct device_node *np = cmt->pdev->dev.of_node;
 954
 955	return of_property_read_u32(np, "renesas,channels-mask",
 956				    &cmt->hw_channels);
 957}
 958
 959static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
 960{
 961	unsigned int mask;
 962	unsigned int i;
 963	int ret;
 964
 965	cmt->pdev = pdev;
 966	raw_spin_lock_init(&cmt->lock);
 967
 968	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
 969		const struct of_device_id *id;
 970
 971		id = of_match_node(sh_cmt_of_table, pdev->dev.of_node);
 972		cmt->info = id->data;
 973
 974		ret = sh_cmt_parse_dt(cmt);
 975		if (ret < 0)
 976			return ret;
 977	} else if (pdev->dev.platform_data) {
 978		struct sh_timer_config *cfg = pdev->dev.platform_data;
 979		const struct platform_device_id *id = pdev->id_entry;
 980
 981		cmt->info = (const struct sh_cmt_info *)id->driver_data;
 982		cmt->hw_channels = cfg->channels_mask;
 983	} else {
 984		dev_err(&cmt->pdev->dev, "missing platform data\n");
 985		return -ENXIO;
 986	}
 987
 988	/* Get hold of clock. */
 989	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
 990	if (IS_ERR(cmt->clk)) {
 991		dev_err(&cmt->pdev->dev, "cannot get clock\n");
 992		return PTR_ERR(cmt->clk);
 993	}
 994
 995	ret = clk_prepare(cmt->clk);
 996	if (ret < 0)
 997		goto err_clk_put;
 998
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 999	/* Map the memory resource(s). */
1000	ret = sh_cmt_map_memory(cmt);
1001	if (ret < 0)
1002		goto err_clk_unprepare;
1003
1004	/* Allocate and setup the channels. */
1005	cmt->num_channels = hweight8(cmt->hw_channels);
1006	cmt->channels = kzalloc(cmt->num_channels * sizeof(*cmt->channels),
1007				GFP_KERNEL);
1008	if (cmt->channels == NULL) {
1009		ret = -ENOMEM;
1010		goto err_unmap;
1011	}
1012
1013	/*
1014	 * Use the first channel as a clock event device and the second channel
1015	 * as a clock source. If only one channel is available use it for both.
1016	 */
1017	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1018		unsigned int hwidx = ffs(mask) - 1;
1019		bool clocksource = i == 1 || cmt->num_channels == 1;
1020		bool clockevent = i == 0;
1021
1022		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1023					   clockevent, clocksource, cmt);
1024		if (ret < 0)
1025			goto err_unmap;
1026
1027		mask &= ~(1 << hwidx);
1028	}
1029
 
 
1030	platform_set_drvdata(pdev, cmt);
1031
1032	return 0;
1033
1034err_unmap:
1035	kfree(cmt->channels);
1036	iounmap(cmt->mapbase);
 
 
1037err_clk_unprepare:
1038	clk_unprepare(cmt->clk);
1039err_clk_put:
1040	clk_put(cmt->clk);
1041	return ret;
1042}
1043
1044static int sh_cmt_probe(struct platform_device *pdev)
1045{
1046	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1047	int ret;
1048
1049	if (!is_early_platform_device(pdev)) {
1050		pm_runtime_set_active(&pdev->dev);
1051		pm_runtime_enable(&pdev->dev);
1052	}
1053
1054	if (cmt) {
1055		dev_info(&pdev->dev, "kept as earlytimer\n");
1056		goto out;
1057	}
1058
1059	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1060	if (cmt == NULL)
1061		return -ENOMEM;
1062
1063	ret = sh_cmt_setup(cmt, pdev);
1064	if (ret) {
1065		kfree(cmt);
1066		pm_runtime_idle(&pdev->dev);
1067		return ret;
1068	}
1069	if (is_early_platform_device(pdev))
1070		return 0;
1071
1072 out:
1073	if (cmt->has_clockevent || cmt->has_clocksource)
1074		pm_runtime_irq_safe(&pdev->dev);
1075	else
1076		pm_runtime_idle(&pdev->dev);
1077
1078	return 0;
1079}
1080
1081static int sh_cmt_remove(struct platform_device *pdev)
1082{
1083	return -EBUSY; /* cannot unregister clockevent and clocksource */
1084}
1085
1086static struct platform_driver sh_cmt_device_driver = {
1087	.probe		= sh_cmt_probe,
1088	.remove		= sh_cmt_remove,
1089	.driver		= {
1090		.name	= "sh_cmt",
1091		.of_match_table = of_match_ptr(sh_cmt_of_table),
1092	},
1093	.id_table	= sh_cmt_id_table,
1094};
1095
1096static int __init sh_cmt_init(void)
1097{
1098	return platform_driver_register(&sh_cmt_device_driver);
1099}
1100
1101static void __exit sh_cmt_exit(void)
1102{
1103	platform_driver_unregister(&sh_cmt_device_driver);
1104}
1105
1106early_platform_init("earlytimer", &sh_cmt_device_driver);
 
 
 
1107subsys_initcall(sh_cmt_init);
1108module_exit(sh_cmt_exit);
1109
1110MODULE_AUTHOR("Magnus Damm");
1111MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1112MODULE_LICENSE("GPL v2");