Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/arch/arm/mm/mmu.c
   4 *
   5 *  Copyright (C) 1995-2005 Russell King
   6 */
   7#include <linux/module.h>
   8#include <linux/kernel.h>
   9#include <linux/errno.h>
  10#include <linux/init.h>
  11#include <linux/mman.h>
  12#include <linux/nodemask.h>
  13#include <linux/memblock.h>
  14#include <linux/fs.h>
  15#include <linux/vmalloc.h>
  16#include <linux/sizes.h>
  17
  18#include <asm/cp15.h>
  19#include <asm/cputype.h>
  20#include <asm/cachetype.h>
  21#include <asm/sections.h>
  22#include <asm/setup.h>
  23#include <asm/smp_plat.h>
  24#include <asm/tlb.h>
  25#include <asm/highmem.h>
  26#include <asm/system_info.h>
  27#include <asm/traps.h>
  28#include <asm/procinfo.h>
  29#include <asm/memory.h>
  30#include <asm/pgalloc.h>
  31#include <asm/kasan_def.h>
  32
  33#include <asm/mach/arch.h>
  34#include <asm/mach/map.h>
  35#include <asm/mach/pci.h>
  36#include <asm/fixmap.h>
  37
  38#include "fault.h"
  39#include "mm.h"
  40#include "tcm.h"
  41
  42extern unsigned long __atags_pointer;
  43
  44/*
  45 * empty_zero_page is a special page that is used for
  46 * zero-initialized data and COW.
  47 */
  48struct page *empty_zero_page;
  49EXPORT_SYMBOL(empty_zero_page);
  50
  51/*
  52 * The pmd table for the upper-most set of pages.
  53 */
  54pmd_t *top_pmd;
  55
  56pmdval_t user_pmd_table = _PAGE_USER_TABLE;
  57
  58#define CPOLICY_UNCACHED	0
  59#define CPOLICY_BUFFERED	1
  60#define CPOLICY_WRITETHROUGH	2
  61#define CPOLICY_WRITEBACK	3
  62#define CPOLICY_WRITEALLOC	4
  63
  64static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  65static unsigned int ecc_mask __initdata = 0;
  66pgprot_t pgprot_user;
  67pgprot_t pgprot_kernel;
  68
  69EXPORT_SYMBOL(pgprot_user);
  70EXPORT_SYMBOL(pgprot_kernel);
  71
  72struct cachepolicy {
  73	const char	policy[16];
  74	unsigned int	cr_mask;
  75	pmdval_t	pmd;
  76	pteval_t	pte;
  77};
  78
  79static struct cachepolicy cache_policies[] __initdata = {
  80	{
  81		.policy		= "uncached",
  82		.cr_mask	= CR_W|CR_C,
  83		.pmd		= PMD_SECT_UNCACHED,
  84		.pte		= L_PTE_MT_UNCACHED,
  85	}, {
  86		.policy		= "buffered",
  87		.cr_mask	= CR_C,
  88		.pmd		= PMD_SECT_BUFFERED,
  89		.pte		= L_PTE_MT_BUFFERABLE,
  90	}, {
  91		.policy		= "writethrough",
  92		.cr_mask	= 0,
  93		.pmd		= PMD_SECT_WT,
  94		.pte		= L_PTE_MT_WRITETHROUGH,
  95	}, {
  96		.policy		= "writeback",
  97		.cr_mask	= 0,
  98		.pmd		= PMD_SECT_WB,
  99		.pte		= L_PTE_MT_WRITEBACK,
 100	}, {
 101		.policy		= "writealloc",
 102		.cr_mask	= 0,
 103		.pmd		= PMD_SECT_WBWA,
 104		.pte		= L_PTE_MT_WRITEALLOC,
 105	}
 106};
 107
 108#ifdef CONFIG_CPU_CP15
 109static unsigned long initial_pmd_value __initdata = 0;
 110
 111/*
 112 * Initialise the cache_policy variable with the initial state specified
 113 * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
 114 * the C code sets the page tables up with the same policy as the head
 115 * assembly code, which avoids an illegal state where the TLBs can get
 116 * confused.  See comments in early_cachepolicy() for more information.
 117 */
 118void __init init_default_cache_policy(unsigned long pmd)
 119{
 120	int i;
 121
 122	initial_pmd_value = pmd;
 123
 124	pmd &= PMD_SECT_CACHE_MASK;
 125
 126	for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
 127		if (cache_policies[i].pmd == pmd) {
 128			cachepolicy = i;
 129			break;
 130		}
 131
 132	if (i == ARRAY_SIZE(cache_policies))
 133		pr_err("ERROR: could not find cache policy\n");
 134}
 135
 136/*
 137 * These are useful for identifying cache coherency problems by allowing
 138 * the cache or the cache and writebuffer to be turned off.  (Note: the
 139 * write buffer should not be on and the cache off).
 140 */
 141static int __init early_cachepolicy(char *p)
 142{
 143	int i, selected = -1;
 144
 145	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
 146		int len = strlen(cache_policies[i].policy);
 147
 148		if (memcmp(p, cache_policies[i].policy, len) == 0) {
 149			selected = i;
 150			break;
 151		}
 152	}
 153
 154	if (selected == -1)
 155		pr_err("ERROR: unknown or unsupported cache policy\n");
 156
 157	/*
 158	 * This restriction is partly to do with the way we boot; it is
 159	 * unpredictable to have memory mapped using two different sets of
 160	 * memory attributes (shared, type, and cache attribs).  We can not
 161	 * change these attributes once the initial assembly has setup the
 162	 * page tables.
 163	 */
 164	if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
 165		pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
 166			cache_policies[cachepolicy].policy);
 167		return 0;
 168	}
 169
 170	if (selected != cachepolicy) {
 171		unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
 172		cachepolicy = selected;
 173		flush_cache_all();
 174		set_cr(cr);
 175	}
 176	return 0;
 177}
 178early_param("cachepolicy", early_cachepolicy);
 179
 180static int __init early_nocache(char *__unused)
 181{
 182	char *p = "buffered";
 183	pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
 184	early_cachepolicy(p);
 185	return 0;
 186}
 187early_param("nocache", early_nocache);
 188
 189static int __init early_nowrite(char *__unused)
 190{
 191	char *p = "uncached";
 192	pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
 193	early_cachepolicy(p);
 194	return 0;
 195}
 196early_param("nowb", early_nowrite);
 197
 198#ifndef CONFIG_ARM_LPAE
 199static int __init early_ecc(char *p)
 200{
 201	if (memcmp(p, "on", 2) == 0)
 202		ecc_mask = PMD_PROTECTION;
 203	else if (memcmp(p, "off", 3) == 0)
 204		ecc_mask = 0;
 205	return 0;
 206}
 207early_param("ecc", early_ecc);
 208#endif
 209
 210#else /* ifdef CONFIG_CPU_CP15 */
 211
 212static int __init early_cachepolicy(char *p)
 213{
 214	pr_warn("cachepolicy kernel parameter not supported without cp15\n");
 215	return 0;
 216}
 217early_param("cachepolicy", early_cachepolicy);
 218
 219static int __init noalign_setup(char *__unused)
 220{
 221	pr_warn("noalign kernel parameter not supported without cp15\n");
 222	return 1;
 223}
 224__setup("noalign", noalign_setup);
 225
 226#endif /* ifdef CONFIG_CPU_CP15 / else */
 227
 228#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
 229#define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
 230#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
 231
 232static struct mem_type mem_types[] __ro_after_init = {
 233	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
 234		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
 235				  L_PTE_SHARED,
 236		.prot_l1	= PMD_TYPE_TABLE,
 237		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
 238		.domain		= DOMAIN_IO,
 239	},
 240	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
 241		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
 242		.prot_l1	= PMD_TYPE_TABLE,
 243		.prot_sect	= PROT_SECT_DEVICE,
 244		.domain		= DOMAIN_IO,
 245	},
 246	[MT_DEVICE_CACHED] = {	  /* ioremap_cache */
 247		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
 248		.prot_l1	= PMD_TYPE_TABLE,
 249		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
 250		.domain		= DOMAIN_IO,
 251	},
 252	[MT_DEVICE_WC] = {	/* ioremap_wc */
 253		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
 254		.prot_l1	= PMD_TYPE_TABLE,
 255		.prot_sect	= PROT_SECT_DEVICE,
 256		.domain		= DOMAIN_IO,
 257	},
 258	[MT_UNCACHED] = {
 259		.prot_pte	= PROT_PTE_DEVICE,
 260		.prot_l1	= PMD_TYPE_TABLE,
 261		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
 262		.domain		= DOMAIN_IO,
 263	},
 264	[MT_CACHECLEAN] = {
 265		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 266		.domain    = DOMAIN_KERNEL,
 267	},
 268#ifndef CONFIG_ARM_LPAE
 269	[MT_MINICLEAN] = {
 270		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
 271		.domain    = DOMAIN_KERNEL,
 272	},
 273#endif
 274	[MT_LOW_VECTORS] = {
 275		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 276				L_PTE_RDONLY,
 277		.prot_l1   = PMD_TYPE_TABLE,
 278		.domain    = DOMAIN_VECTORS,
 279	},
 280	[MT_HIGH_VECTORS] = {
 281		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 282				L_PTE_USER | L_PTE_RDONLY,
 283		.prot_l1   = PMD_TYPE_TABLE,
 284		.domain    = DOMAIN_VECTORS,
 285	},
 286	[MT_MEMORY_RWX] = {
 287		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 288		.prot_l1   = PMD_TYPE_TABLE,
 289		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 290		.domain    = DOMAIN_KERNEL,
 291	},
 292	[MT_MEMORY_RW] = {
 293		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 294			     L_PTE_XN,
 295		.prot_l1   = PMD_TYPE_TABLE,
 296		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 297		.domain    = DOMAIN_KERNEL,
 298	},
 299	[MT_MEMORY_RO] = {
 300		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 301			     L_PTE_XN | L_PTE_RDONLY,
 302		.prot_l1   = PMD_TYPE_TABLE,
 303#ifdef CONFIG_ARM_LPAE
 304		.prot_sect = PMD_TYPE_SECT | L_PMD_SECT_RDONLY | PMD_SECT_AP2,
 305#else
 306		.prot_sect = PMD_TYPE_SECT,
 307#endif
 308		.domain    = DOMAIN_KERNEL,
 309	},
 310	[MT_ROM] = {
 311		.prot_sect = PMD_TYPE_SECT,
 312		.domain    = DOMAIN_KERNEL,
 313	},
 314	[MT_MEMORY_RWX_NONCACHED] = {
 315		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 316				L_PTE_MT_BUFFERABLE,
 317		.prot_l1   = PMD_TYPE_TABLE,
 318		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 319		.domain    = DOMAIN_KERNEL,
 320	},
 321	[MT_MEMORY_RW_DTCM] = {
 322		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 323				L_PTE_XN,
 324		.prot_l1   = PMD_TYPE_TABLE,
 325		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 326		.domain    = DOMAIN_KERNEL,
 327	},
 328	[MT_MEMORY_RWX_ITCM] = {
 329		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 330		.prot_l1   = PMD_TYPE_TABLE,
 331		.domain    = DOMAIN_KERNEL,
 332	},
 333	[MT_MEMORY_RW_SO] = {
 334		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 335				L_PTE_MT_UNCACHED | L_PTE_XN,
 336		.prot_l1   = PMD_TYPE_TABLE,
 337		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
 338				PMD_SECT_UNCACHED | PMD_SECT_XN,
 339		.domain    = DOMAIN_KERNEL,
 340	},
 341	[MT_MEMORY_DMA_READY] = {
 342		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 343				L_PTE_XN,
 344		.prot_l1   = PMD_TYPE_TABLE,
 345		.domain    = DOMAIN_KERNEL,
 346	},
 347};
 348
 349const struct mem_type *get_mem_type(unsigned int type)
 350{
 351	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
 352}
 353EXPORT_SYMBOL(get_mem_type);
 354
 355static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
 356
 357static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
 358	__aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
 359
 360static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
 361{
 362	return &bm_pte[pte_index(addr)];
 363}
 364
 365static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
 366{
 367	return pte_offset_kernel(dir, addr);
 368}
 369
 370static inline pmd_t * __init fixmap_pmd(unsigned long addr)
 371{
 372	return pmd_off_k(addr);
 373}
 374
 375void __init early_fixmap_init(void)
 376{
 377	pmd_t *pmd;
 378
 379	/*
 380	 * The early fixmap range spans multiple pmds, for which
 381	 * we are not prepared:
 382	 */
 383	BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
 384		     != FIXADDR_TOP >> PMD_SHIFT);
 385
 386	pmd = fixmap_pmd(FIXADDR_TOP);
 387	pmd_populate_kernel(&init_mm, pmd, bm_pte);
 388
 389	pte_offset_fixmap = pte_offset_early_fixmap;
 390}
 391
 392/*
 393 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
 394 * As a result, this can only be called with preemption disabled, as under
 395 * stop_machine().
 396 */
 397void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
 398{
 399	unsigned long vaddr = __fix_to_virt(idx);
 400	pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
 401
 402	/* Make sure fixmap region does not exceed available allocation. */
 403	BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses) < FIXADDR_START);
 404	BUG_ON(idx >= __end_of_fixed_addresses);
 405
 406	/* We support only device mappings before pgprot_kernel is set. */
 407	if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
 408		    pgprot_val(prot) && pgprot_val(pgprot_kernel) == 0))
 409		return;
 410
 411	if (pgprot_val(prot))
 412		set_pte_at(NULL, vaddr, pte,
 413			pfn_pte(phys >> PAGE_SHIFT, prot));
 414	else
 415		pte_clear(NULL, vaddr, pte);
 416	local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
 417}
 418
 419static pgprot_t protection_map[16] __ro_after_init = {
 420	[VM_NONE]					= __PAGE_NONE,
 421	[VM_READ]					= __PAGE_READONLY,
 422	[VM_WRITE]					= __PAGE_COPY,
 423	[VM_WRITE | VM_READ]				= __PAGE_COPY,
 424	[VM_EXEC]					= __PAGE_READONLY_EXEC,
 425	[VM_EXEC | VM_READ]				= __PAGE_READONLY_EXEC,
 426	[VM_EXEC | VM_WRITE]				= __PAGE_COPY_EXEC,
 427	[VM_EXEC | VM_WRITE | VM_READ]			= __PAGE_COPY_EXEC,
 428	[VM_SHARED]					= __PAGE_NONE,
 429	[VM_SHARED | VM_READ]				= __PAGE_READONLY,
 430	[VM_SHARED | VM_WRITE]				= __PAGE_SHARED,
 431	[VM_SHARED | VM_WRITE | VM_READ]		= __PAGE_SHARED,
 432	[VM_SHARED | VM_EXEC]				= __PAGE_READONLY_EXEC,
 433	[VM_SHARED | VM_EXEC | VM_READ]			= __PAGE_READONLY_EXEC,
 434	[VM_SHARED | VM_EXEC | VM_WRITE]		= __PAGE_SHARED_EXEC,
 435	[VM_SHARED | VM_EXEC | VM_WRITE | VM_READ]	= __PAGE_SHARED_EXEC
 436};
 437DECLARE_VM_GET_PAGE_PROT
 438
 439/*
 440 * Adjust the PMD section entries according to the CPU in use.
 441 */
 442static void __init build_mem_type_table(void)
 443{
 444	struct cachepolicy *cp;
 445	unsigned int cr = get_cr();
 446	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
 447	int cpu_arch = cpu_architecture();
 448	int i;
 449
 450	if (cpu_arch < CPU_ARCH_ARMv6) {
 451#if defined(CONFIG_CPU_DCACHE_DISABLE)
 452		if (cachepolicy > CPOLICY_BUFFERED)
 453			cachepolicy = CPOLICY_BUFFERED;
 454#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
 455		if (cachepolicy > CPOLICY_WRITETHROUGH)
 456			cachepolicy = CPOLICY_WRITETHROUGH;
 457#endif
 458	}
 459	if (cpu_arch < CPU_ARCH_ARMv5) {
 460		if (cachepolicy >= CPOLICY_WRITEALLOC)
 461			cachepolicy = CPOLICY_WRITEBACK;
 462		ecc_mask = 0;
 463	}
 464
 465	if (is_smp()) {
 466		if (cachepolicy != CPOLICY_WRITEALLOC) {
 467			pr_warn("Forcing write-allocate cache policy for SMP\n");
 468			cachepolicy = CPOLICY_WRITEALLOC;
 469		}
 470		if (!(initial_pmd_value & PMD_SECT_S)) {
 471			pr_warn("Forcing shared mappings for SMP\n");
 472			initial_pmd_value |= PMD_SECT_S;
 473		}
 474	}
 475
 476	/*
 477	 * Strip out features not present on earlier architectures.
 478	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
 479	 * without extended page tables don't have the 'Shared' bit.
 480	 */
 481	if (cpu_arch < CPU_ARCH_ARMv5)
 482		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 483			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
 484	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
 485		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 486			mem_types[i].prot_sect &= ~PMD_SECT_S;
 487
 488	/*
 489	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
 490	 * "update-able on write" bit on ARM610).  However, Xscale and
 491	 * Xscale3 require this bit to be cleared.
 492	 */
 493	if (cpu_is_xscale_family()) {
 494		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 495			mem_types[i].prot_sect &= ~PMD_BIT4;
 496			mem_types[i].prot_l1 &= ~PMD_BIT4;
 497		}
 498	} else if (cpu_arch < CPU_ARCH_ARMv6) {
 499		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 500			if (mem_types[i].prot_l1)
 501				mem_types[i].prot_l1 |= PMD_BIT4;
 502			if (mem_types[i].prot_sect)
 503				mem_types[i].prot_sect |= PMD_BIT4;
 504		}
 505	}
 506
 507	/*
 508	 * Mark the device areas according to the CPU/architecture.
 509	 */
 510	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
 511		if (!cpu_is_xsc3()) {
 512			/*
 513			 * Mark device regions on ARMv6+ as execute-never
 514			 * to prevent speculative instruction fetches.
 515			 */
 516			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
 517			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
 518			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
 519			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
 520
 521			/* Also setup NX memory mapping */
 522			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
 523			mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_XN;
 524		}
 525		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 526			/*
 527			 * For ARMv7 with TEX remapping,
 528			 * - shared device is SXCB=1100
 529			 * - nonshared device is SXCB=0100
 530			 * - write combine device mem is SXCB=0001
 531			 * (Uncached Normal memory)
 532			 */
 533			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
 534			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
 535			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 536		} else if (cpu_is_xsc3()) {
 537			/*
 538			 * For Xscale3,
 539			 * - shared device is TEXCB=00101
 540			 * - nonshared device is TEXCB=01000
 541			 * - write combine device mem is TEXCB=00100
 542			 * (Inner/Outer Uncacheable in xsc3 parlance)
 543			 */
 544			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
 545			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 546			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 547		} else {
 548			/*
 549			 * For ARMv6 and ARMv7 without TEX remapping,
 550			 * - shared device is TEXCB=00001
 551			 * - nonshared device is TEXCB=01000
 552			 * - write combine device mem is TEXCB=00100
 553			 * (Uncached Normal in ARMv6 parlance).
 554			 */
 555			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
 556			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 557			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 558		}
 559	} else {
 560		/*
 561		 * On others, write combining is "Uncached/Buffered"
 562		 */
 563		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 564	}
 565
 566	/*
 567	 * Now deal with the memory-type mappings
 568	 */
 569	cp = &cache_policies[cachepolicy];
 570	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
 571
 572#ifndef CONFIG_ARM_LPAE
 573	/*
 574	 * We don't use domains on ARMv6 (since this causes problems with
 575	 * v6/v7 kernels), so we must use a separate memory type for user
 576	 * r/o, kernel r/w to map the vectors page.
 577	 */
 578	if (cpu_arch == CPU_ARCH_ARMv6)
 579		vecs_pgprot |= L_PTE_MT_VECTORS;
 580
 581	/*
 582	 * Check is it with support for the PXN bit
 583	 * in the Short-descriptor translation table format descriptors.
 584	 */
 585	if (cpu_arch == CPU_ARCH_ARMv7 &&
 586		(read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
 587		user_pmd_table |= PMD_PXNTABLE;
 588	}
 589#endif
 590
 591	/*
 592	 * ARMv6 and above have extended page tables.
 593	 */
 594	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
 595#ifndef CONFIG_ARM_LPAE
 596		/*
 597		 * Mark cache clean areas and XIP ROM read only
 598		 * from SVC mode and no access from userspace.
 599		 */
 600		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 601		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 602		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 603		mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 604#endif
 605
 606		/*
 607		 * If the initial page tables were created with the S bit
 608		 * set, then we need to do the same here for the same
 609		 * reasons given in early_cachepolicy().
 610		 */
 611		if (initial_pmd_value & PMD_SECT_S) {
 612			user_pgprot |= L_PTE_SHARED;
 613			kern_pgprot |= L_PTE_SHARED;
 614			vecs_pgprot |= L_PTE_SHARED;
 615			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
 616			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
 617			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
 618			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
 619			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
 620			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
 621			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
 622			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
 623			mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_S;
 624			mem_types[MT_MEMORY_RO].prot_pte |= L_PTE_SHARED;
 625			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
 626			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
 627			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
 628		}
 629	}
 630
 631	/*
 632	 * Non-cacheable Normal - intended for memory areas that must
 633	 * not cause dirty cache line writebacks when used
 634	 */
 635	if (cpu_arch >= CPU_ARCH_ARMv6) {
 636		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 637			/* Non-cacheable Normal is XCB = 001 */
 638			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
 639				PMD_SECT_BUFFERED;
 640		} else {
 641			/* For both ARMv6 and non-TEX-remapping ARMv7 */
 642			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
 643				PMD_SECT_TEX(1);
 644		}
 645	} else {
 646		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
 647	}
 648
 649#ifdef CONFIG_ARM_LPAE
 650	/*
 651	 * Do not generate access flag faults for the kernel mappings.
 652	 */
 653	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 654		mem_types[i].prot_pte |= PTE_EXT_AF;
 655		if (mem_types[i].prot_sect)
 656			mem_types[i].prot_sect |= PMD_SECT_AF;
 657	}
 658	kern_pgprot |= PTE_EXT_AF;
 659	vecs_pgprot |= PTE_EXT_AF;
 660
 661	/*
 662	 * Set PXN for user mappings
 663	 */
 664	user_pgprot |= PTE_EXT_PXN;
 665#endif
 666
 667	for (i = 0; i < 16; i++) {
 668		pteval_t v = pgprot_val(protection_map[i]);
 669		protection_map[i] = __pgprot(v | user_pgprot);
 670	}
 671
 672	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
 673	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
 674
 675	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
 676	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
 677				 L_PTE_DIRTY | kern_pgprot);
 678
 679	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
 680	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
 681	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
 682	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
 683	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
 684	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
 685	mem_types[MT_MEMORY_RO].prot_sect |= ecc_mask | cp->pmd;
 686	mem_types[MT_MEMORY_RO].prot_pte |= kern_pgprot;
 687	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
 688	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
 689	mem_types[MT_ROM].prot_sect |= cp->pmd;
 690
 691	switch (cp->pmd) {
 692	case PMD_SECT_WT:
 693		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
 694		break;
 695	case PMD_SECT_WB:
 696	case PMD_SECT_WBWA:
 697		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
 698		break;
 699	}
 700	pr_info("Memory policy: %sData cache %s\n",
 701		ecc_mask ? "ECC enabled, " : "", cp->policy);
 702
 703	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 704		struct mem_type *t = &mem_types[i];
 705		if (t->prot_l1)
 706			t->prot_l1 |= PMD_DOMAIN(t->domain);
 707		if (t->prot_sect)
 708			t->prot_sect |= PMD_DOMAIN(t->domain);
 709	}
 710}
 711
 712#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
 713pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
 714			      unsigned long size, pgprot_t vma_prot)
 715{
 716	if (!pfn_valid(pfn))
 717		return pgprot_noncached(vma_prot);
 718	else if (file->f_flags & O_SYNC)
 719		return pgprot_writecombine(vma_prot);
 720	return vma_prot;
 721}
 722EXPORT_SYMBOL(phys_mem_access_prot);
 723#endif
 724
 725#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
 726
 727static void __init *early_alloc(unsigned long sz)
 728{
 729	void *ptr = memblock_alloc(sz, sz);
 730
 731	if (!ptr)
 732		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
 733		      __func__, sz, sz);
 734
 735	return ptr;
 736}
 737
 738static void *__init late_alloc(unsigned long sz)
 739{
 740	void *ptr = (void *)__get_free_pages(GFP_PGTABLE_KERNEL, get_order(sz));
 741
 742	if (!ptr || !pgtable_pte_page_ctor(virt_to_page(ptr)))
 743		BUG();
 744	return ptr;
 745}
 746
 747static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
 748				unsigned long prot,
 749				void *(*alloc)(unsigned long sz))
 750{
 751	if (pmd_none(*pmd)) {
 752		pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
 753		__pmd_populate(pmd, __pa(pte), prot);
 754	}
 755	BUG_ON(pmd_bad(*pmd));
 756	return pte_offset_kernel(pmd, addr);
 757}
 758
 759static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
 760				      unsigned long prot)
 761{
 762	return arm_pte_alloc(pmd, addr, prot, early_alloc);
 763}
 764
 765static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
 766				  unsigned long end, unsigned long pfn,
 767				  const struct mem_type *type,
 768				  void *(*alloc)(unsigned long sz),
 769				  bool ng)
 770{
 771	pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
 772	do {
 773		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
 774			    ng ? PTE_EXT_NG : 0);
 775		pfn++;
 776	} while (pte++, addr += PAGE_SIZE, addr != end);
 777}
 778
 779static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
 780			unsigned long end, phys_addr_t phys,
 781			const struct mem_type *type, bool ng)
 782{
 783	pmd_t *p = pmd;
 784
 785#ifndef CONFIG_ARM_LPAE
 786	/*
 787	 * In classic MMU format, puds and pmds are folded in to
 788	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
 789	 * group of L1 entries making up one logical pointer to
 790	 * an L2 table (2MB), where as PMDs refer to the individual
 791	 * L1 entries (1MB). Hence increment to get the correct
 792	 * offset for odd 1MB sections.
 793	 * (See arch/arm/include/asm/pgtable-2level.h)
 794	 */
 795	if (addr & SECTION_SIZE)
 796		pmd++;
 797#endif
 798	do {
 799		*pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
 800		phys += SECTION_SIZE;
 801	} while (pmd++, addr += SECTION_SIZE, addr != end);
 802
 803	flush_pmd_entry(p);
 804}
 805
 806static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
 807				      unsigned long end, phys_addr_t phys,
 808				      const struct mem_type *type,
 809				      void *(*alloc)(unsigned long sz), bool ng)
 810{
 811	pmd_t *pmd = pmd_offset(pud, addr);
 812	unsigned long next;
 813
 814	do {
 815		/*
 816		 * With LPAE, we must loop over to map
 817		 * all the pmds for the given range.
 818		 */
 819		next = pmd_addr_end(addr, end);
 820
 821		/*
 822		 * Try a section mapping - addr, next and phys must all be
 823		 * aligned to a section boundary.
 824		 */
 825		if (type->prot_sect &&
 826				((addr | next | phys) & ~SECTION_MASK) == 0) {
 827			__map_init_section(pmd, addr, next, phys, type, ng);
 828		} else {
 829			alloc_init_pte(pmd, addr, next,
 830				       __phys_to_pfn(phys), type, alloc, ng);
 831		}
 832
 833		phys += next - addr;
 834
 835	} while (pmd++, addr = next, addr != end);
 836}
 837
 838static void __init alloc_init_pud(p4d_t *p4d, unsigned long addr,
 839				  unsigned long end, phys_addr_t phys,
 840				  const struct mem_type *type,
 841				  void *(*alloc)(unsigned long sz), bool ng)
 842{
 843	pud_t *pud = pud_offset(p4d, addr);
 844	unsigned long next;
 845
 846	do {
 847		next = pud_addr_end(addr, end);
 848		alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
 849		phys += next - addr;
 850	} while (pud++, addr = next, addr != end);
 851}
 852
 853static void __init alloc_init_p4d(pgd_t *pgd, unsigned long addr,
 854				  unsigned long end, phys_addr_t phys,
 855				  const struct mem_type *type,
 856				  void *(*alloc)(unsigned long sz), bool ng)
 857{
 858	p4d_t *p4d = p4d_offset(pgd, addr);
 859	unsigned long next;
 860
 861	do {
 862		next = p4d_addr_end(addr, end);
 863		alloc_init_pud(p4d, addr, next, phys, type, alloc, ng);
 864		phys += next - addr;
 865	} while (p4d++, addr = next, addr != end);
 866}
 867
 868#ifndef CONFIG_ARM_LPAE
 869static void __init create_36bit_mapping(struct mm_struct *mm,
 870					struct map_desc *md,
 871					const struct mem_type *type,
 872					bool ng)
 873{
 874	unsigned long addr, length, end;
 875	phys_addr_t phys;
 876	pgd_t *pgd;
 877
 878	addr = md->virtual;
 879	phys = __pfn_to_phys(md->pfn);
 880	length = PAGE_ALIGN(md->length);
 881
 882	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
 883		pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
 884		       (long long)__pfn_to_phys((u64)md->pfn), addr);
 885		return;
 886	}
 887
 888	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
 889	 *	Since domain assignments can in fact be arbitrary, the
 890	 *	'domain == 0' check below is required to insure that ARMv6
 891	 *	supersections are only allocated for domain 0 regardless
 892	 *	of the actual domain assignments in use.
 893	 */
 894	if (type->domain) {
 895		pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
 896		       (long long)__pfn_to_phys((u64)md->pfn), addr);
 897		return;
 898	}
 899
 900	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
 901		pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
 902		       (long long)__pfn_to_phys((u64)md->pfn), addr);
 903		return;
 904	}
 905
 906	/*
 907	 * Shift bits [35:32] of address into bits [23:20] of PMD
 908	 * (See ARMv6 spec).
 909	 */
 910	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
 911
 912	pgd = pgd_offset(mm, addr);
 913	end = addr + length;
 914	do {
 915		p4d_t *p4d = p4d_offset(pgd, addr);
 916		pud_t *pud = pud_offset(p4d, addr);
 917		pmd_t *pmd = pmd_offset(pud, addr);
 918		int i;
 919
 920		for (i = 0; i < 16; i++)
 921			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
 922				       (ng ? PMD_SECT_nG : 0));
 923
 924		addr += SUPERSECTION_SIZE;
 925		phys += SUPERSECTION_SIZE;
 926		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
 927	} while (addr != end);
 928}
 929#endif	/* !CONFIG_ARM_LPAE */
 930
 931static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
 932				    void *(*alloc)(unsigned long sz),
 933				    bool ng)
 934{
 935	unsigned long addr, length, end;
 936	phys_addr_t phys;
 937	const struct mem_type *type;
 938	pgd_t *pgd;
 939
 940	type = &mem_types[md->type];
 941
 942#ifndef CONFIG_ARM_LPAE
 943	/*
 944	 * Catch 36-bit addresses
 945	 */
 946	if (md->pfn >= 0x100000) {
 947		create_36bit_mapping(mm, md, type, ng);
 948		return;
 949	}
 950#endif
 951
 952	addr = md->virtual & PAGE_MASK;
 953	phys = __pfn_to_phys(md->pfn);
 954	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
 955
 956	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
 957		pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
 958			(long long)__pfn_to_phys(md->pfn), addr);
 959		return;
 960	}
 961
 962	pgd = pgd_offset(mm, addr);
 963	end = addr + length;
 964	do {
 965		unsigned long next = pgd_addr_end(addr, end);
 966
 967		alloc_init_p4d(pgd, addr, next, phys, type, alloc, ng);
 968
 969		phys += next - addr;
 970		addr = next;
 971	} while (pgd++, addr != end);
 972}
 973
 974/*
 975 * Create the page directory entries and any necessary
 976 * page tables for the mapping specified by `md'.  We
 977 * are able to cope here with varying sizes and address
 978 * offsets, and we take full advantage of sections and
 979 * supersections.
 980 */
 981static void __init create_mapping(struct map_desc *md)
 982{
 983	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
 984		pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
 985			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 986		return;
 987	}
 988
 989	if (md->type == MT_DEVICE &&
 990	    md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
 991	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
 992		pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
 993			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 994	}
 995
 996	__create_mapping(&init_mm, md, early_alloc, false);
 997}
 998
 999void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
1000				bool ng)
1001{
1002#ifdef CONFIG_ARM_LPAE
1003	p4d_t *p4d;
1004	pud_t *pud;
1005
1006	p4d = p4d_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
1007	if (WARN_ON(!p4d))
1008		return;
1009	pud = pud_alloc(mm, p4d, md->virtual);
1010	if (WARN_ON(!pud))
1011		return;
1012	pmd_alloc(mm, pud, 0);
1013#endif
1014	__create_mapping(mm, md, late_alloc, ng);
1015}
1016
1017/*
1018 * Create the architecture specific mappings
1019 */
1020void __init iotable_init(struct map_desc *io_desc, int nr)
1021{
1022	struct map_desc *md;
1023	struct vm_struct *vm;
1024	struct static_vm *svm;
1025
1026	if (!nr)
1027		return;
1028
1029	svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm));
1030	if (!svm)
1031		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1032		      __func__, sizeof(*svm) * nr, __alignof__(*svm));
1033
1034	for (md = io_desc; nr; md++, nr--) {
1035		create_mapping(md);
1036
1037		vm = &svm->vm;
1038		vm->addr = (void *)(md->virtual & PAGE_MASK);
1039		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
1040		vm->phys_addr = __pfn_to_phys(md->pfn);
1041		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1042		vm->flags |= VM_ARM_MTYPE(md->type);
1043		vm->caller = iotable_init;
1044		add_static_vm_early(svm++);
1045	}
1046}
1047
1048void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1049				  void *caller)
1050{
1051	struct vm_struct *vm;
1052	struct static_vm *svm;
1053
1054	svm = memblock_alloc(sizeof(*svm), __alignof__(*svm));
1055	if (!svm)
1056		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1057		      __func__, sizeof(*svm), __alignof__(*svm));
1058
1059	vm = &svm->vm;
1060	vm->addr = (void *)addr;
1061	vm->size = size;
1062	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
1063	vm->caller = caller;
1064	add_static_vm_early(svm);
1065}
1066
1067#ifndef CONFIG_ARM_LPAE
1068
1069/*
1070 * The Linux PMD is made of two consecutive section entries covering 2MB
1071 * (see definition in include/asm/pgtable-2level.h).  However a call to
1072 * create_mapping() may optimize static mappings by using individual
1073 * 1MB section mappings.  This leaves the actual PMD potentially half
1074 * initialized if the top or bottom section entry isn't used, leaving it
1075 * open to problems if a subsequent ioremap() or vmalloc() tries to use
1076 * the virtual space left free by that unused section entry.
1077 *
1078 * Let's avoid the issue by inserting dummy vm entries covering the unused
1079 * PMD halves once the static mappings are in place.
1080 */
1081
1082static void __init pmd_empty_section_gap(unsigned long addr)
1083{
1084	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1085}
1086
1087static void __init fill_pmd_gaps(void)
1088{
1089	struct static_vm *svm;
1090	struct vm_struct *vm;
1091	unsigned long addr, next = 0;
1092	pmd_t *pmd;
1093
1094	list_for_each_entry(svm, &static_vmlist, list) {
1095		vm = &svm->vm;
1096		addr = (unsigned long)vm->addr;
1097		if (addr < next)
1098			continue;
1099
1100		/*
1101		 * Check if this vm starts on an odd section boundary.
1102		 * If so and the first section entry for this PMD is free
1103		 * then we block the corresponding virtual address.
1104		 */
1105		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1106			pmd = pmd_off_k(addr);
1107			if (pmd_none(*pmd))
1108				pmd_empty_section_gap(addr & PMD_MASK);
1109		}
1110
1111		/*
1112		 * Then check if this vm ends on an odd section boundary.
1113		 * If so and the second section entry for this PMD is empty
1114		 * then we block the corresponding virtual address.
1115		 */
1116		addr += vm->size;
1117		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1118			pmd = pmd_off_k(addr) + 1;
1119			if (pmd_none(*pmd))
1120				pmd_empty_section_gap(addr);
1121		}
1122
1123		/* no need to look at any vm entry until we hit the next PMD */
1124		next = (addr + PMD_SIZE - 1) & PMD_MASK;
1125	}
1126}
1127
1128#else
1129#define fill_pmd_gaps() do { } while (0)
1130#endif
1131
1132#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1133static void __init pci_reserve_io(void)
1134{
1135	struct static_vm *svm;
1136
1137	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1138	if (svm)
1139		return;
1140
1141	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1142}
1143#else
1144#define pci_reserve_io() do { } while (0)
1145#endif
1146
1147#ifdef CONFIG_DEBUG_LL
1148void __init debug_ll_io_init(void)
1149{
1150	struct map_desc map;
1151
1152	debug_ll_addr(&map.pfn, &map.virtual);
1153	if (!map.pfn || !map.virtual)
1154		return;
1155	map.pfn = __phys_to_pfn(map.pfn);
1156	map.virtual &= PAGE_MASK;
1157	map.length = PAGE_SIZE;
1158	map.type = MT_DEVICE;
1159	iotable_init(&map, 1);
1160}
1161#endif
1162
1163static unsigned long __initdata vmalloc_size = 240 * SZ_1M;
1164
1165/*
1166 * vmalloc=size forces the vmalloc area to be exactly 'size'
1167 * bytes. This can be used to increase (or decrease) the vmalloc
1168 * area - the default is 240MiB.
1169 */
1170static int __init early_vmalloc(char *arg)
1171{
1172	unsigned long vmalloc_reserve = memparse(arg, NULL);
1173	unsigned long vmalloc_max;
1174
1175	if (vmalloc_reserve < SZ_16M) {
1176		vmalloc_reserve = SZ_16M;
1177		pr_warn("vmalloc area is too small, limiting to %luMiB\n",
1178			vmalloc_reserve >> 20);
1179	}
1180
1181	vmalloc_max = VMALLOC_END - (PAGE_OFFSET + SZ_32M + VMALLOC_OFFSET);
1182	if (vmalloc_reserve > vmalloc_max) {
1183		vmalloc_reserve = vmalloc_max;
1184		pr_warn("vmalloc area is too big, limiting to %luMiB\n",
1185			vmalloc_reserve >> 20);
1186	}
1187
1188	vmalloc_size = vmalloc_reserve;
1189	return 0;
1190}
1191early_param("vmalloc", early_vmalloc);
1192
1193phys_addr_t arm_lowmem_limit __initdata = 0;
1194
1195void __init adjust_lowmem_bounds(void)
1196{
1197	phys_addr_t block_start, block_end, memblock_limit = 0;
1198	u64 vmalloc_limit, i;
1199	phys_addr_t lowmem_limit = 0;
1200
1201	/*
1202	 * Let's use our own (unoptimized) equivalent of __pa() that is
1203	 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1204	 * The result is used as the upper bound on physical memory address
1205	 * and may itself be outside the valid range for which phys_addr_t
1206	 * and therefore __pa() is defined.
1207	 */
1208	vmalloc_limit = (u64)VMALLOC_END - vmalloc_size - VMALLOC_OFFSET -
1209			PAGE_OFFSET + PHYS_OFFSET;
1210
1211	/*
1212	 * The first usable region must be PMD aligned. Mark its start
1213	 * as MEMBLOCK_NOMAP if it isn't
1214	 */
1215	for_each_mem_range(i, &block_start, &block_end) {
1216		if (!IS_ALIGNED(block_start, PMD_SIZE)) {
1217			phys_addr_t len;
1218
1219			len = round_up(block_start, PMD_SIZE) - block_start;
1220			memblock_mark_nomap(block_start, len);
1221		}
1222		break;
1223	}
1224
1225	for_each_mem_range(i, &block_start, &block_end) {
1226		if (block_start < vmalloc_limit) {
1227			if (block_end > lowmem_limit)
1228				/*
1229				 * Compare as u64 to ensure vmalloc_limit does
1230				 * not get truncated. block_end should always
1231				 * fit in phys_addr_t so there should be no
1232				 * issue with assignment.
1233				 */
1234				lowmem_limit = min_t(u64,
1235							 vmalloc_limit,
1236							 block_end);
1237
1238			/*
1239			 * Find the first non-pmd-aligned page, and point
1240			 * memblock_limit at it. This relies on rounding the
1241			 * limit down to be pmd-aligned, which happens at the
1242			 * end of this function.
1243			 *
1244			 * With this algorithm, the start or end of almost any
1245			 * bank can be non-pmd-aligned. The only exception is
1246			 * that the start of the bank 0 must be section-
1247			 * aligned, since otherwise memory would need to be
1248			 * allocated when mapping the start of bank 0, which
1249			 * occurs before any free memory is mapped.
1250			 */
1251			if (!memblock_limit) {
1252				if (!IS_ALIGNED(block_start, PMD_SIZE))
1253					memblock_limit = block_start;
1254				else if (!IS_ALIGNED(block_end, PMD_SIZE))
1255					memblock_limit = lowmem_limit;
1256			}
1257
1258		}
1259	}
1260
1261	arm_lowmem_limit = lowmem_limit;
1262
1263	high_memory = __va(arm_lowmem_limit - 1) + 1;
1264
1265	if (!memblock_limit)
1266		memblock_limit = arm_lowmem_limit;
1267
1268	/*
1269	 * Round the memblock limit down to a pmd size.  This
1270	 * helps to ensure that we will allocate memory from the
1271	 * last full pmd, which should be mapped.
1272	 */
1273	memblock_limit = round_down(memblock_limit, PMD_SIZE);
1274
1275	if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1276		if (memblock_end_of_DRAM() > arm_lowmem_limit) {
1277			phys_addr_t end = memblock_end_of_DRAM();
1278
1279			pr_notice("Ignoring RAM at %pa-%pa\n",
1280				  &memblock_limit, &end);
1281			pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1282
1283			memblock_remove(memblock_limit, end - memblock_limit);
1284		}
1285	}
1286
1287	memblock_set_current_limit(memblock_limit);
1288}
1289
1290static __init void prepare_page_table(void)
1291{
1292	unsigned long addr;
1293	phys_addr_t end;
1294
1295	/*
1296	 * Clear out all the mappings below the kernel image.
1297	 */
1298#ifdef CONFIG_KASAN
1299	/*
1300	 * KASan's shadow memory inserts itself between the TASK_SIZE
1301	 * and MODULES_VADDR. Do not clear the KASan shadow memory mappings.
1302	 */
1303	for (addr = 0; addr < KASAN_SHADOW_START; addr += PMD_SIZE)
1304		pmd_clear(pmd_off_k(addr));
1305	/*
1306	 * Skip over the KASan shadow area. KASAN_SHADOW_END is sometimes
1307	 * equal to MODULES_VADDR and then we exit the pmd clearing. If we
1308	 * are using a thumb-compiled kernel, there there will be 8MB more
1309	 * to clear as KASan always offset to 16 MB below MODULES_VADDR.
1310	 */
1311	for (addr = KASAN_SHADOW_END; addr < MODULES_VADDR; addr += PMD_SIZE)
1312		pmd_clear(pmd_off_k(addr));
1313#else
1314	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1315		pmd_clear(pmd_off_k(addr));
1316#endif
1317
1318#ifdef CONFIG_XIP_KERNEL
1319	/* The XIP kernel is mapped in the module area -- skip over it */
1320	addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1321#endif
1322	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1323		pmd_clear(pmd_off_k(addr));
1324
1325	/*
1326	 * Find the end of the first block of lowmem.
1327	 */
1328	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1329	if (end >= arm_lowmem_limit)
1330		end = arm_lowmem_limit;
1331
1332	/*
1333	 * Clear out all the kernel space mappings, except for the first
1334	 * memory bank, up to the vmalloc region.
1335	 */
1336	for (addr = __phys_to_virt(end);
1337	     addr < VMALLOC_START; addr += PMD_SIZE)
1338		pmd_clear(pmd_off_k(addr));
1339}
1340
1341#ifdef CONFIG_ARM_LPAE
1342/* the first page is reserved for pgd */
1343#define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
1344				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1345#else
1346#define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1347#endif
1348
1349/*
1350 * Reserve the special regions of memory
1351 */
1352void __init arm_mm_memblock_reserve(void)
1353{
1354	/*
1355	 * Reserve the page tables.  These are already in use,
1356	 * and can only be in node 0.
1357	 */
1358	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1359
1360#ifdef CONFIG_SA1111
1361	/*
1362	 * Because of the SA1111 DMA bug, we want to preserve our
1363	 * precious DMA-able memory...
1364	 */
1365	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1366#endif
1367}
1368
1369/*
1370 * Set up the device mappings.  Since we clear out the page tables for all
1371 * mappings above VMALLOC_START, except early fixmap, we might remove debug
1372 * device mappings.  This means earlycon can be used to debug this function
1373 * Any other function or debugging method which may touch any device _will_
1374 * crash the kernel.
1375 */
1376static void __init devicemaps_init(const struct machine_desc *mdesc)
1377{
1378	struct map_desc map;
1379	unsigned long addr;
1380	void *vectors;
1381
1382	/*
1383	 * Allocate the vector page early.
1384	 */
1385	vectors = early_alloc(PAGE_SIZE * 2);
1386
1387	early_trap_init(vectors);
1388
1389	/*
1390	 * Clear page table except top pmd used by early fixmaps
1391	 */
1392	for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1393		pmd_clear(pmd_off_k(addr));
1394
1395	if (__atags_pointer) {
1396		/* create a read-only mapping of the device tree */
1397		map.pfn = __phys_to_pfn(__atags_pointer & SECTION_MASK);
1398		map.virtual = FDT_FIXED_BASE;
1399		map.length = FDT_FIXED_SIZE;
1400		map.type = MT_MEMORY_RO;
1401		create_mapping(&map);
1402	}
1403
1404	/*
1405	 * Map the kernel if it is XIP.
1406	 * It is always first in the modulearea.
1407	 */
1408#ifdef CONFIG_XIP_KERNEL
1409	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1410	map.virtual = MODULES_VADDR;
1411	map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1412	map.type = MT_ROM;
1413	create_mapping(&map);
1414#endif
1415
1416	/*
1417	 * Map the cache flushing regions.
1418	 */
1419#ifdef FLUSH_BASE
1420	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1421	map.virtual = FLUSH_BASE;
1422	map.length = SZ_1M;
1423	map.type = MT_CACHECLEAN;
1424	create_mapping(&map);
1425#endif
1426#ifdef FLUSH_BASE_MINICACHE
1427	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1428	map.virtual = FLUSH_BASE_MINICACHE;
1429	map.length = SZ_1M;
1430	map.type = MT_MINICLEAN;
1431	create_mapping(&map);
1432#endif
1433
1434	/*
1435	 * Create a mapping for the machine vectors at the high-vectors
1436	 * location (0xffff0000).  If we aren't using high-vectors, also
1437	 * create a mapping at the low-vectors virtual address.
1438	 */
1439	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1440	map.virtual = 0xffff0000;
1441	map.length = PAGE_SIZE;
1442#ifdef CONFIG_KUSER_HELPERS
1443	map.type = MT_HIGH_VECTORS;
1444#else
1445	map.type = MT_LOW_VECTORS;
1446#endif
1447	create_mapping(&map);
1448
1449	if (!vectors_high()) {
1450		map.virtual = 0;
1451		map.length = PAGE_SIZE * 2;
1452		map.type = MT_LOW_VECTORS;
1453		create_mapping(&map);
1454	}
1455
1456	/* Now create a kernel read-only mapping */
1457	map.pfn += 1;
1458	map.virtual = 0xffff0000 + PAGE_SIZE;
1459	map.length = PAGE_SIZE;
1460	map.type = MT_LOW_VECTORS;
1461	create_mapping(&map);
1462
1463	/*
1464	 * Ask the machine support to map in the statically mapped devices.
1465	 */
1466	if (mdesc->map_io)
1467		mdesc->map_io();
1468	else
1469		debug_ll_io_init();
1470	fill_pmd_gaps();
1471
1472	/* Reserve fixed i/o space in VMALLOC region */
1473	pci_reserve_io();
1474
1475	/*
1476	 * Finally flush the caches and tlb to ensure that we're in a
1477	 * consistent state wrt the writebuffer.  This also ensures that
1478	 * any write-allocated cache lines in the vector page are written
1479	 * back.  After this point, we can start to touch devices again.
1480	 */
1481	local_flush_tlb_all();
1482	flush_cache_all();
1483
1484	/* Enable asynchronous aborts */
1485	early_abt_enable();
1486}
1487
1488static void __init kmap_init(void)
1489{
1490#ifdef CONFIG_HIGHMEM
1491	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1492		PKMAP_BASE, _PAGE_KERNEL_TABLE);
1493#endif
1494
1495	early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1496			_PAGE_KERNEL_TABLE);
1497}
1498
1499static void __init map_lowmem(void)
1500{
1501	phys_addr_t start, end;
1502	u64 i;
1503
1504	/* Map all the lowmem memory banks. */
1505	for_each_mem_range(i, &start, &end) {
1506		struct map_desc map;
1507
1508		pr_debug("map lowmem start: 0x%08llx, end: 0x%08llx\n",
1509			 (long long)start, (long long)end);
1510		if (end > arm_lowmem_limit)
1511			end = arm_lowmem_limit;
1512		if (start >= end)
1513			break;
1514
1515		/*
1516		 * If our kernel image is in the VMALLOC area we need to remove
1517		 * the kernel physical memory from lowmem since the kernel will
1518		 * be mapped separately.
1519		 *
1520		 * The kernel will typically be at the very start of lowmem,
1521		 * but any placement relative to memory ranges is possible.
1522		 *
1523		 * If the memblock contains the kernel, we have to chisel out
1524		 * the kernel memory from it and map each part separately. We
1525		 * get 6 different theoretical cases:
1526		 *
1527		 *                            +--------+ +--------+
1528		 *  +-- start --+  +--------+ | Kernel | | Kernel |
1529		 *  |           |  | Kernel | | case 2 | | case 5 |
1530		 *  |           |  | case 1 | +--------+ |        | +--------+
1531		 *  |  Memory   |  +--------+            |        | | Kernel |
1532		 *  |  range    |  +--------+            |        | | case 6 |
1533		 *  |           |  | Kernel | +--------+ |        | +--------+
1534		 *  |           |  | case 3 | | Kernel | |        |
1535		 *  +-- end ----+  +--------+ | case 4 | |        |
1536		 *                            +--------+ +--------+
1537		 */
1538
1539		/* Case 5: kernel covers range, don't map anything, should be rare */
1540		if ((start > kernel_sec_start) && (end < kernel_sec_end))
1541			break;
1542
1543		/* Cases where the kernel is starting inside the range */
1544		if ((kernel_sec_start >= start) && (kernel_sec_start <= end)) {
1545			/* Case 6: kernel is embedded in the range, we need two mappings */
1546			if ((start < kernel_sec_start) && (end > kernel_sec_end)) {
1547				/* Map memory below the kernel */
1548				map.pfn = __phys_to_pfn(start);
1549				map.virtual = __phys_to_virt(start);
1550				map.length = kernel_sec_start - start;
1551				map.type = MT_MEMORY_RW;
1552				create_mapping(&map);
1553				/* Map memory above the kernel */
1554				map.pfn = __phys_to_pfn(kernel_sec_end);
1555				map.virtual = __phys_to_virt(kernel_sec_end);
1556				map.length = end - kernel_sec_end;
1557				map.type = MT_MEMORY_RW;
1558				create_mapping(&map);
1559				break;
1560			}
1561			/* Case 1: kernel and range start at the same address, should be common */
1562			if (kernel_sec_start == start)
1563				start = kernel_sec_end;
1564			/* Case 3: kernel and range end at the same address, should be rare */
1565			if (kernel_sec_end == end)
1566				end = kernel_sec_start;
1567		} else if ((kernel_sec_start < start) && (kernel_sec_end > start) && (kernel_sec_end < end)) {
1568			/* Case 2: kernel ends inside range, starts below it */
1569			start = kernel_sec_end;
1570		} else if ((kernel_sec_start > start) && (kernel_sec_start < end) && (kernel_sec_end > end)) {
1571			/* Case 4: kernel starts inside range, ends above it */
1572			end = kernel_sec_start;
1573		}
1574		map.pfn = __phys_to_pfn(start);
1575		map.virtual = __phys_to_virt(start);
1576		map.length = end - start;
1577		map.type = MT_MEMORY_RW;
1578		create_mapping(&map);
1579	}
1580}
1581
1582static void __init map_kernel(void)
1583{
1584	/*
1585	 * We use the well known kernel section start and end and split the area in the
1586	 * middle like this:
1587	 *  .                .
1588	 *  | RW memory      |
1589	 *  +----------------+ kernel_x_start
1590	 *  | Executable     |
1591	 *  | kernel memory  |
1592	 *  +----------------+ kernel_x_end / kernel_nx_start
1593	 *  | Non-executable |
1594	 *  | kernel memory  |
1595	 *  +----------------+ kernel_nx_end
1596	 *  | RW memory      |
1597	 *  .                .
1598	 *
1599	 * Notice that we are dealing with section sized mappings here so all of this
1600	 * will be bumped to the closest section boundary. This means that some of the
1601	 * non-executable part of the kernel memory is actually mapped as executable.
1602	 * This will only persist until we turn on proper memory management later on
1603	 * and we remap the whole kernel with page granularity.
1604	 */
1605	phys_addr_t kernel_x_start = kernel_sec_start;
1606	phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1607	phys_addr_t kernel_nx_start = kernel_x_end;
1608	phys_addr_t kernel_nx_end = kernel_sec_end;
1609	struct map_desc map;
1610
1611	map.pfn = __phys_to_pfn(kernel_x_start);
1612	map.virtual = __phys_to_virt(kernel_x_start);
1613	map.length = kernel_x_end - kernel_x_start;
1614	map.type = MT_MEMORY_RWX;
1615	create_mapping(&map);
1616
1617	/* If the nx part is small it may end up covered by the tail of the RWX section */
1618	if (kernel_x_end == kernel_nx_end)
1619		return;
1620
1621	map.pfn = __phys_to_pfn(kernel_nx_start);
1622	map.virtual = __phys_to_virt(kernel_nx_start);
1623	map.length = kernel_nx_end - kernel_nx_start;
1624	map.type = MT_MEMORY_RW;
1625	create_mapping(&map);
1626}
1627
1628#ifdef CONFIG_ARM_PV_FIXUP
1629typedef void pgtables_remap(long long offset, unsigned long pgd);
1630pgtables_remap lpae_pgtables_remap_asm;
1631
1632/*
1633 * early_paging_init() recreates boot time page table setup, allowing machines
1634 * to switch over to a high (>4G) address space on LPAE systems
1635 */
1636static void __init early_paging_init(const struct machine_desc *mdesc)
1637{
1638	pgtables_remap *lpae_pgtables_remap;
1639	unsigned long pa_pgd;
1640	unsigned int cr, ttbcr;
1641	long long offset;
1642
1643	if (!mdesc->pv_fixup)
1644		return;
1645
1646	offset = mdesc->pv_fixup();
1647	if (offset == 0)
1648		return;
1649
1650	/*
1651	 * Offset the kernel section physical offsets so that the kernel
1652	 * mapping will work out later on.
1653	 */
1654	kernel_sec_start += offset;
1655	kernel_sec_end += offset;
1656
1657	/*
1658	 * Get the address of the remap function in the 1:1 identity
1659	 * mapping setup by the early page table assembly code.  We
1660	 * must get this prior to the pv update.  The following barrier
1661	 * ensures that this is complete before we fixup any P:V offsets.
1662	 */
1663	lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1664	pa_pgd = __pa(swapper_pg_dir);
1665	barrier();
1666
1667	pr_info("Switching physical address space to 0x%08llx\n",
1668		(u64)PHYS_OFFSET + offset);
1669
1670	/* Re-set the phys pfn offset, and the pv offset */
1671	__pv_offset += offset;
1672	__pv_phys_pfn_offset += PFN_DOWN(offset);
1673
1674	/* Run the patch stub to update the constants */
1675	fixup_pv_table(&__pv_table_begin,
1676		(&__pv_table_end - &__pv_table_begin) << 2);
1677
1678	/*
1679	 * We changing not only the virtual to physical mapping, but also
1680	 * the physical addresses used to access memory.  We need to flush
1681	 * all levels of cache in the system with caching disabled to
1682	 * ensure that all data is written back, and nothing is prefetched
1683	 * into the caches.  We also need to prevent the TLB walkers
1684	 * allocating into the caches too.  Note that this is ARMv7 LPAE
1685	 * specific.
1686	 */
1687	cr = get_cr();
1688	set_cr(cr & ~(CR_I | CR_C));
1689	asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1690	asm volatile("mcr p15, 0, %0, c2, c0, 2"
1691		: : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1692	flush_cache_all();
1693
1694	/*
1695	 * Fixup the page tables - this must be in the idmap region as
1696	 * we need to disable the MMU to do this safely, and hence it
1697	 * needs to be assembly.  It's fairly simple, as we're using the
1698	 * temporary tables setup by the initial assembly code.
1699	 */
1700	lpae_pgtables_remap(offset, pa_pgd);
1701
1702	/* Re-enable the caches and cacheable TLB walks */
1703	asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1704	set_cr(cr);
1705}
1706
1707#else
1708
1709static void __init early_paging_init(const struct machine_desc *mdesc)
1710{
1711	long long offset;
1712
1713	if (!mdesc->pv_fixup)
1714		return;
1715
1716	offset = mdesc->pv_fixup();
1717	if (offset == 0)
1718		return;
1719
1720	pr_crit("Physical address space modification is only to support Keystone2.\n");
1721	pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1722	pr_crit("feature. Your kernel may crash now, have a good day.\n");
1723	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1724}
1725
1726#endif
1727
1728static void __init early_fixmap_shutdown(void)
1729{
1730	int i;
1731	unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1732
1733	pte_offset_fixmap = pte_offset_late_fixmap;
1734	pmd_clear(fixmap_pmd(va));
1735	local_flush_tlb_kernel_page(va);
1736
1737	for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1738		pte_t *pte;
1739		struct map_desc map;
1740
1741		map.virtual = fix_to_virt(i);
1742		pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1743
1744		/* Only i/o device mappings are supported ATM */
1745		if (pte_none(*pte) ||
1746		    (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1747			continue;
1748
1749		map.pfn = pte_pfn(*pte);
1750		map.type = MT_DEVICE;
1751		map.length = PAGE_SIZE;
1752
1753		create_mapping(&map);
1754	}
1755}
1756
1757/*
1758 * paging_init() sets up the page tables, initialises the zone memory
1759 * maps, and sets up the zero page, bad page and bad page tables.
1760 */
1761void __init paging_init(const struct machine_desc *mdesc)
1762{
1763	void *zero_page;
1764
1765	pr_debug("physical kernel sections: 0x%08llx-0x%08llx\n",
1766		 kernel_sec_start, kernel_sec_end);
1767
1768	prepare_page_table();
1769	map_lowmem();
1770	memblock_set_current_limit(arm_lowmem_limit);
1771	pr_debug("lowmem limit is %08llx\n", (long long)arm_lowmem_limit);
1772	/*
1773	 * After this point early_alloc(), i.e. the memblock allocator, can
1774	 * be used
1775	 */
1776	map_kernel();
1777	dma_contiguous_remap();
1778	early_fixmap_shutdown();
1779	devicemaps_init(mdesc);
1780	kmap_init();
1781	tcm_init();
1782
1783	top_pmd = pmd_off_k(0xffff0000);
1784
1785	/* allocate the zero page. */
1786	zero_page = early_alloc(PAGE_SIZE);
1787
1788	bootmem_init();
1789
1790	empty_zero_page = virt_to_page(zero_page);
1791	__flush_dcache_page(NULL, empty_zero_page);
1792}
1793
1794void __init early_mm_init(const struct machine_desc *mdesc)
1795{
1796	build_mem_type_table();
1797	early_paging_init(mdesc);
1798}
1799
1800void set_pte_at(struct mm_struct *mm, unsigned long addr,
1801			      pte_t *ptep, pte_t pteval)
1802{
1803	unsigned long ext = 0;
1804
1805	if (addr < TASK_SIZE && pte_valid_user(pteval)) {
1806		if (!pte_special(pteval))
1807			__sync_icache_dcache(pteval);
1808		ext |= PTE_EXT_NG;
1809	}
1810
1811	set_pte_ext(ptep, pteval, ext);
1812}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/arch/arm/mm/mmu.c
   4 *
   5 *  Copyright (C) 1995-2005 Russell King
   6 */
   7#include <linux/module.h>
   8#include <linux/kernel.h>
   9#include <linux/errno.h>
  10#include <linux/init.h>
  11#include <linux/mman.h>
  12#include <linux/nodemask.h>
  13#include <linux/memblock.h>
  14#include <linux/fs.h>
  15#include <linux/vmalloc.h>
  16#include <linux/sizes.h>
  17
  18#include <asm/cp15.h>
  19#include <asm/cputype.h>
  20#include <asm/cachetype.h>
  21#include <asm/sections.h>
  22#include <asm/setup.h>
  23#include <asm/smp_plat.h>
  24#include <asm/tlb.h>
  25#include <asm/highmem.h>
  26#include <asm/system_info.h>
  27#include <asm/traps.h>
  28#include <asm/procinfo.h>
  29#include <asm/memory.h>
  30#include <asm/pgalloc.h>
  31#include <asm/kasan_def.h>
  32
  33#include <asm/mach/arch.h>
  34#include <asm/mach/map.h>
  35#include <asm/mach/pci.h>
  36#include <asm/fixmap.h>
  37
  38#include "fault.h"
  39#include "mm.h"
  40#include "tcm.h"
  41
  42extern unsigned long __atags_pointer;
  43
  44/*
  45 * empty_zero_page is a special page that is used for
  46 * zero-initialized data and COW.
  47 */
  48struct page *empty_zero_page;
  49EXPORT_SYMBOL(empty_zero_page);
  50
  51/*
  52 * The pmd table for the upper-most set of pages.
  53 */
  54pmd_t *top_pmd;
  55
  56pmdval_t user_pmd_table = _PAGE_USER_TABLE;
  57
  58#define CPOLICY_UNCACHED	0
  59#define CPOLICY_BUFFERED	1
  60#define CPOLICY_WRITETHROUGH	2
  61#define CPOLICY_WRITEBACK	3
  62#define CPOLICY_WRITEALLOC	4
  63
  64static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  65static unsigned int ecc_mask __initdata = 0;
  66pgprot_t pgprot_user;
  67pgprot_t pgprot_kernel;
  68
  69EXPORT_SYMBOL(pgprot_user);
  70EXPORT_SYMBOL(pgprot_kernel);
  71
  72struct cachepolicy {
  73	const char	policy[16];
  74	unsigned int	cr_mask;
  75	pmdval_t	pmd;
  76	pteval_t	pte;
  77};
  78
  79static struct cachepolicy cache_policies[] __initdata = {
  80	{
  81		.policy		= "uncached",
  82		.cr_mask	= CR_W|CR_C,
  83		.pmd		= PMD_SECT_UNCACHED,
  84		.pte		= L_PTE_MT_UNCACHED,
  85	}, {
  86		.policy		= "buffered",
  87		.cr_mask	= CR_C,
  88		.pmd		= PMD_SECT_BUFFERED,
  89		.pte		= L_PTE_MT_BUFFERABLE,
  90	}, {
  91		.policy		= "writethrough",
  92		.cr_mask	= 0,
  93		.pmd		= PMD_SECT_WT,
  94		.pte		= L_PTE_MT_WRITETHROUGH,
  95	}, {
  96		.policy		= "writeback",
  97		.cr_mask	= 0,
  98		.pmd		= PMD_SECT_WB,
  99		.pte		= L_PTE_MT_WRITEBACK,
 100	}, {
 101		.policy		= "writealloc",
 102		.cr_mask	= 0,
 103		.pmd		= PMD_SECT_WBWA,
 104		.pte		= L_PTE_MT_WRITEALLOC,
 105	}
 106};
 107
 108#ifdef CONFIG_CPU_CP15
 109static unsigned long initial_pmd_value __initdata = 0;
 110
 111/*
 112 * Initialise the cache_policy variable with the initial state specified
 113 * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
 114 * the C code sets the page tables up with the same policy as the head
 115 * assembly code, which avoids an illegal state where the TLBs can get
 116 * confused.  See comments in early_cachepolicy() for more information.
 117 */
 118void __init init_default_cache_policy(unsigned long pmd)
 119{
 120	int i;
 121
 122	initial_pmd_value = pmd;
 123
 124	pmd &= PMD_SECT_CACHE_MASK;
 125
 126	for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
 127		if (cache_policies[i].pmd == pmd) {
 128			cachepolicy = i;
 129			break;
 130		}
 131
 132	if (i == ARRAY_SIZE(cache_policies))
 133		pr_err("ERROR: could not find cache policy\n");
 134}
 135
 136/*
 137 * These are useful for identifying cache coherency problems by allowing
 138 * the cache or the cache and writebuffer to be turned off.  (Note: the
 139 * write buffer should not be on and the cache off).
 140 */
 141static int __init early_cachepolicy(char *p)
 142{
 143	int i, selected = -1;
 144
 145	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
 146		int len = strlen(cache_policies[i].policy);
 147
 148		if (memcmp(p, cache_policies[i].policy, len) == 0) {
 149			selected = i;
 150			break;
 151		}
 152	}
 153
 154	if (selected == -1)
 155		pr_err("ERROR: unknown or unsupported cache policy\n");
 156
 157	/*
 158	 * This restriction is partly to do with the way we boot; it is
 159	 * unpredictable to have memory mapped using two different sets of
 160	 * memory attributes (shared, type, and cache attribs).  We can not
 161	 * change these attributes once the initial assembly has setup the
 162	 * page tables.
 163	 */
 164	if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
 165		pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
 166			cache_policies[cachepolicy].policy);
 167		return 0;
 168	}
 169
 170	if (selected != cachepolicy) {
 171		unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
 172		cachepolicy = selected;
 173		flush_cache_all();
 174		set_cr(cr);
 175	}
 176	return 0;
 177}
 178early_param("cachepolicy", early_cachepolicy);
 179
 180static int __init early_nocache(char *__unused)
 181{
 182	char *p = "buffered";
 183	pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
 184	early_cachepolicy(p);
 185	return 0;
 186}
 187early_param("nocache", early_nocache);
 188
 189static int __init early_nowrite(char *__unused)
 190{
 191	char *p = "uncached";
 192	pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
 193	early_cachepolicy(p);
 194	return 0;
 195}
 196early_param("nowb", early_nowrite);
 197
 198#ifndef CONFIG_ARM_LPAE
 199static int __init early_ecc(char *p)
 200{
 201	if (memcmp(p, "on", 2) == 0)
 202		ecc_mask = PMD_PROTECTION;
 203	else if (memcmp(p, "off", 3) == 0)
 204		ecc_mask = 0;
 205	return 0;
 206}
 207early_param("ecc", early_ecc);
 208#endif
 209
 210#else /* ifdef CONFIG_CPU_CP15 */
 211
 212static int __init early_cachepolicy(char *p)
 213{
 214	pr_warn("cachepolicy kernel parameter not supported without cp15\n");
 
 215}
 216early_param("cachepolicy", early_cachepolicy);
 217
 218static int __init noalign_setup(char *__unused)
 219{
 220	pr_warn("noalign kernel parameter not supported without cp15\n");
 
 221}
 222__setup("noalign", noalign_setup);
 223
 224#endif /* ifdef CONFIG_CPU_CP15 / else */
 225
 226#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
 227#define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
 228#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
 229
 230static struct mem_type mem_types[] __ro_after_init = {
 231	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
 232		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
 233				  L_PTE_SHARED,
 234		.prot_l1	= PMD_TYPE_TABLE,
 235		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
 236		.domain		= DOMAIN_IO,
 237	},
 238	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
 239		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
 240		.prot_l1	= PMD_TYPE_TABLE,
 241		.prot_sect	= PROT_SECT_DEVICE,
 242		.domain		= DOMAIN_IO,
 243	},
 244	[MT_DEVICE_CACHED] = {	  /* ioremap_cache */
 245		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
 246		.prot_l1	= PMD_TYPE_TABLE,
 247		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
 248		.domain		= DOMAIN_IO,
 249	},
 250	[MT_DEVICE_WC] = {	/* ioremap_wc */
 251		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
 252		.prot_l1	= PMD_TYPE_TABLE,
 253		.prot_sect	= PROT_SECT_DEVICE,
 254		.domain		= DOMAIN_IO,
 255	},
 256	[MT_UNCACHED] = {
 257		.prot_pte	= PROT_PTE_DEVICE,
 258		.prot_l1	= PMD_TYPE_TABLE,
 259		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
 260		.domain		= DOMAIN_IO,
 261	},
 262	[MT_CACHECLEAN] = {
 263		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 264		.domain    = DOMAIN_KERNEL,
 265	},
 266#ifndef CONFIG_ARM_LPAE
 267	[MT_MINICLEAN] = {
 268		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
 269		.domain    = DOMAIN_KERNEL,
 270	},
 271#endif
 272	[MT_LOW_VECTORS] = {
 273		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 274				L_PTE_RDONLY,
 275		.prot_l1   = PMD_TYPE_TABLE,
 276		.domain    = DOMAIN_VECTORS,
 277	},
 278	[MT_HIGH_VECTORS] = {
 279		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 280				L_PTE_USER | L_PTE_RDONLY,
 281		.prot_l1   = PMD_TYPE_TABLE,
 282		.domain    = DOMAIN_VECTORS,
 283	},
 284	[MT_MEMORY_RWX] = {
 285		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 286		.prot_l1   = PMD_TYPE_TABLE,
 287		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 288		.domain    = DOMAIN_KERNEL,
 289	},
 290	[MT_MEMORY_RW] = {
 291		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 292			     L_PTE_XN,
 293		.prot_l1   = PMD_TYPE_TABLE,
 294		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 295		.domain    = DOMAIN_KERNEL,
 296	},
 
 
 
 
 
 
 
 
 
 
 
 297	[MT_ROM] = {
 298		.prot_sect = PMD_TYPE_SECT,
 299		.domain    = DOMAIN_KERNEL,
 300	},
 301	[MT_MEMORY_RWX_NONCACHED] = {
 302		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 303				L_PTE_MT_BUFFERABLE,
 304		.prot_l1   = PMD_TYPE_TABLE,
 305		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 306		.domain    = DOMAIN_KERNEL,
 307	},
 308	[MT_MEMORY_RW_DTCM] = {
 309		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 310				L_PTE_XN,
 311		.prot_l1   = PMD_TYPE_TABLE,
 312		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 313		.domain    = DOMAIN_KERNEL,
 314	},
 315	[MT_MEMORY_RWX_ITCM] = {
 316		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 317		.prot_l1   = PMD_TYPE_TABLE,
 318		.domain    = DOMAIN_KERNEL,
 319	},
 320	[MT_MEMORY_RW_SO] = {
 321		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 322				L_PTE_MT_UNCACHED | L_PTE_XN,
 323		.prot_l1   = PMD_TYPE_TABLE,
 324		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
 325				PMD_SECT_UNCACHED | PMD_SECT_XN,
 326		.domain    = DOMAIN_KERNEL,
 327	},
 328	[MT_MEMORY_DMA_READY] = {
 329		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 330				L_PTE_XN,
 331		.prot_l1   = PMD_TYPE_TABLE,
 332		.domain    = DOMAIN_KERNEL,
 333	},
 334};
 335
 336const struct mem_type *get_mem_type(unsigned int type)
 337{
 338	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
 339}
 340EXPORT_SYMBOL(get_mem_type);
 341
 342static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
 343
 344static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
 345	__aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
 346
 347static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
 348{
 349	return &bm_pte[pte_index(addr)];
 350}
 351
 352static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
 353{
 354	return pte_offset_kernel(dir, addr);
 355}
 356
 357static inline pmd_t * __init fixmap_pmd(unsigned long addr)
 358{
 359	return pmd_off_k(addr);
 360}
 361
 362void __init early_fixmap_init(void)
 363{
 364	pmd_t *pmd;
 365
 366	/*
 367	 * The early fixmap range spans multiple pmds, for which
 368	 * we are not prepared:
 369	 */
 370	BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
 371		     != FIXADDR_TOP >> PMD_SHIFT);
 372
 373	pmd = fixmap_pmd(FIXADDR_TOP);
 374	pmd_populate_kernel(&init_mm, pmd, bm_pte);
 375
 376	pte_offset_fixmap = pte_offset_early_fixmap;
 377}
 378
 379/*
 380 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
 381 * As a result, this can only be called with preemption disabled, as under
 382 * stop_machine().
 383 */
 384void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
 385{
 386	unsigned long vaddr = __fix_to_virt(idx);
 387	pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
 388
 389	/* Make sure fixmap region does not exceed available allocation. */
 390	BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses) < FIXADDR_START);
 391	BUG_ON(idx >= __end_of_fixed_addresses);
 392
 393	/* we only support device mappings until pgprot_kernel has been set */
 394	if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
 395		    pgprot_val(pgprot_kernel) == 0))
 396		return;
 397
 398	if (pgprot_val(prot))
 399		set_pte_at(NULL, vaddr, pte,
 400			pfn_pte(phys >> PAGE_SHIFT, prot));
 401	else
 402		pte_clear(NULL, vaddr, pte);
 403	local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
 404}
 405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 406/*
 407 * Adjust the PMD section entries according to the CPU in use.
 408 */
 409static void __init build_mem_type_table(void)
 410{
 411	struct cachepolicy *cp;
 412	unsigned int cr = get_cr();
 413	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
 414	int cpu_arch = cpu_architecture();
 415	int i;
 416
 417	if (cpu_arch < CPU_ARCH_ARMv6) {
 418#if defined(CONFIG_CPU_DCACHE_DISABLE)
 419		if (cachepolicy > CPOLICY_BUFFERED)
 420			cachepolicy = CPOLICY_BUFFERED;
 421#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
 422		if (cachepolicy > CPOLICY_WRITETHROUGH)
 423			cachepolicy = CPOLICY_WRITETHROUGH;
 424#endif
 425	}
 426	if (cpu_arch < CPU_ARCH_ARMv5) {
 427		if (cachepolicy >= CPOLICY_WRITEALLOC)
 428			cachepolicy = CPOLICY_WRITEBACK;
 429		ecc_mask = 0;
 430	}
 431
 432	if (is_smp()) {
 433		if (cachepolicy != CPOLICY_WRITEALLOC) {
 434			pr_warn("Forcing write-allocate cache policy for SMP\n");
 435			cachepolicy = CPOLICY_WRITEALLOC;
 436		}
 437		if (!(initial_pmd_value & PMD_SECT_S)) {
 438			pr_warn("Forcing shared mappings for SMP\n");
 439			initial_pmd_value |= PMD_SECT_S;
 440		}
 441	}
 442
 443	/*
 444	 * Strip out features not present on earlier architectures.
 445	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
 446	 * without extended page tables don't have the 'Shared' bit.
 447	 */
 448	if (cpu_arch < CPU_ARCH_ARMv5)
 449		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 450			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
 451	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
 452		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 453			mem_types[i].prot_sect &= ~PMD_SECT_S;
 454
 455	/*
 456	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
 457	 * "update-able on write" bit on ARM610).  However, Xscale and
 458	 * Xscale3 require this bit to be cleared.
 459	 */
 460	if (cpu_is_xscale_family()) {
 461		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 462			mem_types[i].prot_sect &= ~PMD_BIT4;
 463			mem_types[i].prot_l1 &= ~PMD_BIT4;
 464		}
 465	} else if (cpu_arch < CPU_ARCH_ARMv6) {
 466		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 467			if (mem_types[i].prot_l1)
 468				mem_types[i].prot_l1 |= PMD_BIT4;
 469			if (mem_types[i].prot_sect)
 470				mem_types[i].prot_sect |= PMD_BIT4;
 471		}
 472	}
 473
 474	/*
 475	 * Mark the device areas according to the CPU/architecture.
 476	 */
 477	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
 478		if (!cpu_is_xsc3()) {
 479			/*
 480			 * Mark device regions on ARMv6+ as execute-never
 481			 * to prevent speculative instruction fetches.
 482			 */
 483			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
 484			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
 485			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
 486			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
 487
 488			/* Also setup NX memory mapping */
 489			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
 
 490		}
 491		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 492			/*
 493			 * For ARMv7 with TEX remapping,
 494			 * - shared device is SXCB=1100
 495			 * - nonshared device is SXCB=0100
 496			 * - write combine device mem is SXCB=0001
 497			 * (Uncached Normal memory)
 498			 */
 499			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
 500			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
 501			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 502		} else if (cpu_is_xsc3()) {
 503			/*
 504			 * For Xscale3,
 505			 * - shared device is TEXCB=00101
 506			 * - nonshared device is TEXCB=01000
 507			 * - write combine device mem is TEXCB=00100
 508			 * (Inner/Outer Uncacheable in xsc3 parlance)
 509			 */
 510			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
 511			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 512			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 513		} else {
 514			/*
 515			 * For ARMv6 and ARMv7 without TEX remapping,
 516			 * - shared device is TEXCB=00001
 517			 * - nonshared device is TEXCB=01000
 518			 * - write combine device mem is TEXCB=00100
 519			 * (Uncached Normal in ARMv6 parlance).
 520			 */
 521			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
 522			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 523			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 524		}
 525	} else {
 526		/*
 527		 * On others, write combining is "Uncached/Buffered"
 528		 */
 529		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 530	}
 531
 532	/*
 533	 * Now deal with the memory-type mappings
 534	 */
 535	cp = &cache_policies[cachepolicy];
 536	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
 537
 538#ifndef CONFIG_ARM_LPAE
 539	/*
 540	 * We don't use domains on ARMv6 (since this causes problems with
 541	 * v6/v7 kernels), so we must use a separate memory type for user
 542	 * r/o, kernel r/w to map the vectors page.
 543	 */
 544	if (cpu_arch == CPU_ARCH_ARMv6)
 545		vecs_pgprot |= L_PTE_MT_VECTORS;
 546
 547	/*
 548	 * Check is it with support for the PXN bit
 549	 * in the Short-descriptor translation table format descriptors.
 550	 */
 551	if (cpu_arch == CPU_ARCH_ARMv7 &&
 552		(read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
 553		user_pmd_table |= PMD_PXNTABLE;
 554	}
 555#endif
 556
 557	/*
 558	 * ARMv6 and above have extended page tables.
 559	 */
 560	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
 561#ifndef CONFIG_ARM_LPAE
 562		/*
 563		 * Mark cache clean areas and XIP ROM read only
 564		 * from SVC mode and no access from userspace.
 565		 */
 566		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 567		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 568		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 
 569#endif
 570
 571		/*
 572		 * If the initial page tables were created with the S bit
 573		 * set, then we need to do the same here for the same
 574		 * reasons given in early_cachepolicy().
 575		 */
 576		if (initial_pmd_value & PMD_SECT_S) {
 577			user_pgprot |= L_PTE_SHARED;
 578			kern_pgprot |= L_PTE_SHARED;
 579			vecs_pgprot |= L_PTE_SHARED;
 580			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
 581			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
 582			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
 583			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
 584			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
 585			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
 586			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
 587			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
 
 
 588			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
 589			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
 590			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
 591		}
 592	}
 593
 594	/*
 595	 * Non-cacheable Normal - intended for memory areas that must
 596	 * not cause dirty cache line writebacks when used
 597	 */
 598	if (cpu_arch >= CPU_ARCH_ARMv6) {
 599		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 600			/* Non-cacheable Normal is XCB = 001 */
 601			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
 602				PMD_SECT_BUFFERED;
 603		} else {
 604			/* For both ARMv6 and non-TEX-remapping ARMv7 */
 605			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
 606				PMD_SECT_TEX(1);
 607		}
 608	} else {
 609		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
 610	}
 611
 612#ifdef CONFIG_ARM_LPAE
 613	/*
 614	 * Do not generate access flag faults for the kernel mappings.
 615	 */
 616	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 617		mem_types[i].prot_pte |= PTE_EXT_AF;
 618		if (mem_types[i].prot_sect)
 619			mem_types[i].prot_sect |= PMD_SECT_AF;
 620	}
 621	kern_pgprot |= PTE_EXT_AF;
 622	vecs_pgprot |= PTE_EXT_AF;
 623
 624	/*
 625	 * Set PXN for user mappings
 626	 */
 627	user_pgprot |= PTE_EXT_PXN;
 628#endif
 629
 630	for (i = 0; i < 16; i++) {
 631		pteval_t v = pgprot_val(protection_map[i]);
 632		protection_map[i] = __pgprot(v | user_pgprot);
 633	}
 634
 635	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
 636	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
 637
 638	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
 639	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
 640				 L_PTE_DIRTY | kern_pgprot);
 641
 642	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
 643	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
 644	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
 645	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
 646	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
 647	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
 
 
 648	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
 649	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
 650	mem_types[MT_ROM].prot_sect |= cp->pmd;
 651
 652	switch (cp->pmd) {
 653	case PMD_SECT_WT:
 654		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
 655		break;
 656	case PMD_SECT_WB:
 657	case PMD_SECT_WBWA:
 658		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
 659		break;
 660	}
 661	pr_info("Memory policy: %sData cache %s\n",
 662		ecc_mask ? "ECC enabled, " : "", cp->policy);
 663
 664	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 665		struct mem_type *t = &mem_types[i];
 666		if (t->prot_l1)
 667			t->prot_l1 |= PMD_DOMAIN(t->domain);
 668		if (t->prot_sect)
 669			t->prot_sect |= PMD_DOMAIN(t->domain);
 670	}
 671}
 672
 673#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
 674pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
 675			      unsigned long size, pgprot_t vma_prot)
 676{
 677	if (!pfn_valid(pfn))
 678		return pgprot_noncached(vma_prot);
 679	else if (file->f_flags & O_SYNC)
 680		return pgprot_writecombine(vma_prot);
 681	return vma_prot;
 682}
 683EXPORT_SYMBOL(phys_mem_access_prot);
 684#endif
 685
 686#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
 687
 688static void __init *early_alloc(unsigned long sz)
 689{
 690	void *ptr = memblock_alloc(sz, sz);
 691
 692	if (!ptr)
 693		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
 694		      __func__, sz, sz);
 695
 696	return ptr;
 697}
 698
 699static void *__init late_alloc(unsigned long sz)
 700{
 701	void *ptr = (void *)__get_free_pages(GFP_PGTABLE_KERNEL, get_order(sz));
 702
 703	if (!ptr || !pgtable_pte_page_ctor(virt_to_page(ptr)))
 704		BUG();
 705	return ptr;
 706}
 707
 708static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
 709				unsigned long prot,
 710				void *(*alloc)(unsigned long sz))
 711{
 712	if (pmd_none(*pmd)) {
 713		pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
 714		__pmd_populate(pmd, __pa(pte), prot);
 715	}
 716	BUG_ON(pmd_bad(*pmd));
 717	return pte_offset_kernel(pmd, addr);
 718}
 719
 720static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
 721				      unsigned long prot)
 722{
 723	return arm_pte_alloc(pmd, addr, prot, early_alloc);
 724}
 725
 726static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
 727				  unsigned long end, unsigned long pfn,
 728				  const struct mem_type *type,
 729				  void *(*alloc)(unsigned long sz),
 730				  bool ng)
 731{
 732	pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
 733	do {
 734		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
 735			    ng ? PTE_EXT_NG : 0);
 736		pfn++;
 737	} while (pte++, addr += PAGE_SIZE, addr != end);
 738}
 739
 740static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
 741			unsigned long end, phys_addr_t phys,
 742			const struct mem_type *type, bool ng)
 743{
 744	pmd_t *p = pmd;
 745
 746#ifndef CONFIG_ARM_LPAE
 747	/*
 748	 * In classic MMU format, puds and pmds are folded in to
 749	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
 750	 * group of L1 entries making up one logical pointer to
 751	 * an L2 table (2MB), where as PMDs refer to the individual
 752	 * L1 entries (1MB). Hence increment to get the correct
 753	 * offset for odd 1MB sections.
 754	 * (See arch/arm/include/asm/pgtable-2level.h)
 755	 */
 756	if (addr & SECTION_SIZE)
 757		pmd++;
 758#endif
 759	do {
 760		*pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
 761		phys += SECTION_SIZE;
 762	} while (pmd++, addr += SECTION_SIZE, addr != end);
 763
 764	flush_pmd_entry(p);
 765}
 766
 767static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
 768				      unsigned long end, phys_addr_t phys,
 769				      const struct mem_type *type,
 770				      void *(*alloc)(unsigned long sz), bool ng)
 771{
 772	pmd_t *pmd = pmd_offset(pud, addr);
 773	unsigned long next;
 774
 775	do {
 776		/*
 777		 * With LPAE, we must loop over to map
 778		 * all the pmds for the given range.
 779		 */
 780		next = pmd_addr_end(addr, end);
 781
 782		/*
 783		 * Try a section mapping - addr, next and phys must all be
 784		 * aligned to a section boundary.
 785		 */
 786		if (type->prot_sect &&
 787				((addr | next | phys) & ~SECTION_MASK) == 0) {
 788			__map_init_section(pmd, addr, next, phys, type, ng);
 789		} else {
 790			alloc_init_pte(pmd, addr, next,
 791				       __phys_to_pfn(phys), type, alloc, ng);
 792		}
 793
 794		phys += next - addr;
 795
 796	} while (pmd++, addr = next, addr != end);
 797}
 798
 799static void __init alloc_init_pud(p4d_t *p4d, unsigned long addr,
 800				  unsigned long end, phys_addr_t phys,
 801				  const struct mem_type *type,
 802				  void *(*alloc)(unsigned long sz), bool ng)
 803{
 804	pud_t *pud = pud_offset(p4d, addr);
 805	unsigned long next;
 806
 807	do {
 808		next = pud_addr_end(addr, end);
 809		alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
 810		phys += next - addr;
 811	} while (pud++, addr = next, addr != end);
 812}
 813
 814static void __init alloc_init_p4d(pgd_t *pgd, unsigned long addr,
 815				  unsigned long end, phys_addr_t phys,
 816				  const struct mem_type *type,
 817				  void *(*alloc)(unsigned long sz), bool ng)
 818{
 819	p4d_t *p4d = p4d_offset(pgd, addr);
 820	unsigned long next;
 821
 822	do {
 823		next = p4d_addr_end(addr, end);
 824		alloc_init_pud(p4d, addr, next, phys, type, alloc, ng);
 825		phys += next - addr;
 826	} while (p4d++, addr = next, addr != end);
 827}
 828
 829#ifndef CONFIG_ARM_LPAE
 830static void __init create_36bit_mapping(struct mm_struct *mm,
 831					struct map_desc *md,
 832					const struct mem_type *type,
 833					bool ng)
 834{
 835	unsigned long addr, length, end;
 836	phys_addr_t phys;
 837	pgd_t *pgd;
 838
 839	addr = md->virtual;
 840	phys = __pfn_to_phys(md->pfn);
 841	length = PAGE_ALIGN(md->length);
 842
 843	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
 844		pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
 845		       (long long)__pfn_to_phys((u64)md->pfn), addr);
 846		return;
 847	}
 848
 849	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
 850	 *	Since domain assignments can in fact be arbitrary, the
 851	 *	'domain == 0' check below is required to insure that ARMv6
 852	 *	supersections are only allocated for domain 0 regardless
 853	 *	of the actual domain assignments in use.
 854	 */
 855	if (type->domain) {
 856		pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
 857		       (long long)__pfn_to_phys((u64)md->pfn), addr);
 858		return;
 859	}
 860
 861	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
 862		pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
 863		       (long long)__pfn_to_phys((u64)md->pfn), addr);
 864		return;
 865	}
 866
 867	/*
 868	 * Shift bits [35:32] of address into bits [23:20] of PMD
 869	 * (See ARMv6 spec).
 870	 */
 871	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
 872
 873	pgd = pgd_offset(mm, addr);
 874	end = addr + length;
 875	do {
 876		p4d_t *p4d = p4d_offset(pgd, addr);
 877		pud_t *pud = pud_offset(p4d, addr);
 878		pmd_t *pmd = pmd_offset(pud, addr);
 879		int i;
 880
 881		for (i = 0; i < 16; i++)
 882			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
 883				       (ng ? PMD_SECT_nG : 0));
 884
 885		addr += SUPERSECTION_SIZE;
 886		phys += SUPERSECTION_SIZE;
 887		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
 888	} while (addr != end);
 889}
 890#endif	/* !CONFIG_ARM_LPAE */
 891
 892static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
 893				    void *(*alloc)(unsigned long sz),
 894				    bool ng)
 895{
 896	unsigned long addr, length, end;
 897	phys_addr_t phys;
 898	const struct mem_type *type;
 899	pgd_t *pgd;
 900
 901	type = &mem_types[md->type];
 902
 903#ifndef CONFIG_ARM_LPAE
 904	/*
 905	 * Catch 36-bit addresses
 906	 */
 907	if (md->pfn >= 0x100000) {
 908		create_36bit_mapping(mm, md, type, ng);
 909		return;
 910	}
 911#endif
 912
 913	addr = md->virtual & PAGE_MASK;
 914	phys = __pfn_to_phys(md->pfn);
 915	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
 916
 917	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
 918		pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
 919			(long long)__pfn_to_phys(md->pfn), addr);
 920		return;
 921	}
 922
 923	pgd = pgd_offset(mm, addr);
 924	end = addr + length;
 925	do {
 926		unsigned long next = pgd_addr_end(addr, end);
 927
 928		alloc_init_p4d(pgd, addr, next, phys, type, alloc, ng);
 929
 930		phys += next - addr;
 931		addr = next;
 932	} while (pgd++, addr != end);
 933}
 934
 935/*
 936 * Create the page directory entries and any necessary
 937 * page tables for the mapping specified by `md'.  We
 938 * are able to cope here with varying sizes and address
 939 * offsets, and we take full advantage of sections and
 940 * supersections.
 941 */
 942static void __init create_mapping(struct map_desc *md)
 943{
 944	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
 945		pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
 946			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 947		return;
 948	}
 949
 950	if (md->type == MT_DEVICE &&
 951	    md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
 952	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
 953		pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
 954			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 955	}
 956
 957	__create_mapping(&init_mm, md, early_alloc, false);
 958}
 959
 960void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
 961				bool ng)
 962{
 963#ifdef CONFIG_ARM_LPAE
 964	p4d_t *p4d;
 965	pud_t *pud;
 966
 967	p4d = p4d_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
 968	if (WARN_ON(!p4d))
 969		return;
 970	pud = pud_alloc(mm, p4d, md->virtual);
 971	if (WARN_ON(!pud))
 972		return;
 973	pmd_alloc(mm, pud, 0);
 974#endif
 975	__create_mapping(mm, md, late_alloc, ng);
 976}
 977
 978/*
 979 * Create the architecture specific mappings
 980 */
 981void __init iotable_init(struct map_desc *io_desc, int nr)
 982{
 983	struct map_desc *md;
 984	struct vm_struct *vm;
 985	struct static_vm *svm;
 986
 987	if (!nr)
 988		return;
 989
 990	svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm));
 991	if (!svm)
 992		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
 993		      __func__, sizeof(*svm) * nr, __alignof__(*svm));
 994
 995	for (md = io_desc; nr; md++, nr--) {
 996		create_mapping(md);
 997
 998		vm = &svm->vm;
 999		vm->addr = (void *)(md->virtual & PAGE_MASK);
1000		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
1001		vm->phys_addr = __pfn_to_phys(md->pfn);
1002		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1003		vm->flags |= VM_ARM_MTYPE(md->type);
1004		vm->caller = iotable_init;
1005		add_static_vm_early(svm++);
1006	}
1007}
1008
1009void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1010				  void *caller)
1011{
1012	struct vm_struct *vm;
1013	struct static_vm *svm;
1014
1015	svm = memblock_alloc(sizeof(*svm), __alignof__(*svm));
1016	if (!svm)
1017		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1018		      __func__, sizeof(*svm), __alignof__(*svm));
1019
1020	vm = &svm->vm;
1021	vm->addr = (void *)addr;
1022	vm->size = size;
1023	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
1024	vm->caller = caller;
1025	add_static_vm_early(svm);
1026}
1027
1028#ifndef CONFIG_ARM_LPAE
1029
1030/*
1031 * The Linux PMD is made of two consecutive section entries covering 2MB
1032 * (see definition in include/asm/pgtable-2level.h).  However a call to
1033 * create_mapping() may optimize static mappings by using individual
1034 * 1MB section mappings.  This leaves the actual PMD potentially half
1035 * initialized if the top or bottom section entry isn't used, leaving it
1036 * open to problems if a subsequent ioremap() or vmalloc() tries to use
1037 * the virtual space left free by that unused section entry.
1038 *
1039 * Let's avoid the issue by inserting dummy vm entries covering the unused
1040 * PMD halves once the static mappings are in place.
1041 */
1042
1043static void __init pmd_empty_section_gap(unsigned long addr)
1044{
1045	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1046}
1047
1048static void __init fill_pmd_gaps(void)
1049{
1050	struct static_vm *svm;
1051	struct vm_struct *vm;
1052	unsigned long addr, next = 0;
1053	pmd_t *pmd;
1054
1055	list_for_each_entry(svm, &static_vmlist, list) {
1056		vm = &svm->vm;
1057		addr = (unsigned long)vm->addr;
1058		if (addr < next)
1059			continue;
1060
1061		/*
1062		 * Check if this vm starts on an odd section boundary.
1063		 * If so and the first section entry for this PMD is free
1064		 * then we block the corresponding virtual address.
1065		 */
1066		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1067			pmd = pmd_off_k(addr);
1068			if (pmd_none(*pmd))
1069				pmd_empty_section_gap(addr & PMD_MASK);
1070		}
1071
1072		/*
1073		 * Then check if this vm ends on an odd section boundary.
1074		 * If so and the second section entry for this PMD is empty
1075		 * then we block the corresponding virtual address.
1076		 */
1077		addr += vm->size;
1078		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1079			pmd = pmd_off_k(addr) + 1;
1080			if (pmd_none(*pmd))
1081				pmd_empty_section_gap(addr);
1082		}
1083
1084		/* no need to look at any vm entry until we hit the next PMD */
1085		next = (addr + PMD_SIZE - 1) & PMD_MASK;
1086	}
1087}
1088
1089#else
1090#define fill_pmd_gaps() do { } while (0)
1091#endif
1092
1093#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1094static void __init pci_reserve_io(void)
1095{
1096	struct static_vm *svm;
1097
1098	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1099	if (svm)
1100		return;
1101
1102	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1103}
1104#else
1105#define pci_reserve_io() do { } while (0)
1106#endif
1107
1108#ifdef CONFIG_DEBUG_LL
1109void __init debug_ll_io_init(void)
1110{
1111	struct map_desc map;
1112
1113	debug_ll_addr(&map.pfn, &map.virtual);
1114	if (!map.pfn || !map.virtual)
1115		return;
1116	map.pfn = __phys_to_pfn(map.pfn);
1117	map.virtual &= PAGE_MASK;
1118	map.length = PAGE_SIZE;
1119	map.type = MT_DEVICE;
1120	iotable_init(&map, 1);
1121}
1122#endif
1123
1124static unsigned long __initdata vmalloc_size = 240 * SZ_1M;
1125
1126/*
1127 * vmalloc=size forces the vmalloc area to be exactly 'size'
1128 * bytes. This can be used to increase (or decrease) the vmalloc
1129 * area - the default is 240MiB.
1130 */
1131static int __init early_vmalloc(char *arg)
1132{
1133	unsigned long vmalloc_reserve = memparse(arg, NULL);
1134	unsigned long vmalloc_max;
1135
1136	if (vmalloc_reserve < SZ_16M) {
1137		vmalloc_reserve = SZ_16M;
1138		pr_warn("vmalloc area is too small, limiting to %luMiB\n",
1139			vmalloc_reserve >> 20);
1140	}
1141
1142	vmalloc_max = VMALLOC_END - (PAGE_OFFSET + SZ_32M + VMALLOC_OFFSET);
1143	if (vmalloc_reserve > vmalloc_max) {
1144		vmalloc_reserve = vmalloc_max;
1145		pr_warn("vmalloc area is too big, limiting to %luMiB\n",
1146			vmalloc_reserve >> 20);
1147	}
1148
1149	vmalloc_size = vmalloc_reserve;
1150	return 0;
1151}
1152early_param("vmalloc", early_vmalloc);
1153
1154phys_addr_t arm_lowmem_limit __initdata = 0;
1155
1156void __init adjust_lowmem_bounds(void)
1157{
1158	phys_addr_t block_start, block_end, memblock_limit = 0;
1159	u64 vmalloc_limit, i;
1160	phys_addr_t lowmem_limit = 0;
1161
1162	/*
1163	 * Let's use our own (unoptimized) equivalent of __pa() that is
1164	 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1165	 * The result is used as the upper bound on physical memory address
1166	 * and may itself be outside the valid range for which phys_addr_t
1167	 * and therefore __pa() is defined.
1168	 */
1169	vmalloc_limit = (u64)VMALLOC_END - vmalloc_size - VMALLOC_OFFSET -
1170			PAGE_OFFSET + PHYS_OFFSET;
1171
1172	/*
1173	 * The first usable region must be PMD aligned. Mark its start
1174	 * as MEMBLOCK_NOMAP if it isn't
1175	 */
1176	for_each_mem_range(i, &block_start, &block_end) {
1177		if (!IS_ALIGNED(block_start, PMD_SIZE)) {
1178			phys_addr_t len;
1179
1180			len = round_up(block_start, PMD_SIZE) - block_start;
1181			memblock_mark_nomap(block_start, len);
1182		}
1183		break;
1184	}
1185
1186	for_each_mem_range(i, &block_start, &block_end) {
1187		if (block_start < vmalloc_limit) {
1188			if (block_end > lowmem_limit)
1189				/*
1190				 * Compare as u64 to ensure vmalloc_limit does
1191				 * not get truncated. block_end should always
1192				 * fit in phys_addr_t so there should be no
1193				 * issue with assignment.
1194				 */
1195				lowmem_limit = min_t(u64,
1196							 vmalloc_limit,
1197							 block_end);
1198
1199			/*
1200			 * Find the first non-pmd-aligned page, and point
1201			 * memblock_limit at it. This relies on rounding the
1202			 * limit down to be pmd-aligned, which happens at the
1203			 * end of this function.
1204			 *
1205			 * With this algorithm, the start or end of almost any
1206			 * bank can be non-pmd-aligned. The only exception is
1207			 * that the start of the bank 0 must be section-
1208			 * aligned, since otherwise memory would need to be
1209			 * allocated when mapping the start of bank 0, which
1210			 * occurs before any free memory is mapped.
1211			 */
1212			if (!memblock_limit) {
1213				if (!IS_ALIGNED(block_start, PMD_SIZE))
1214					memblock_limit = block_start;
1215				else if (!IS_ALIGNED(block_end, PMD_SIZE))
1216					memblock_limit = lowmem_limit;
1217			}
1218
1219		}
1220	}
1221
1222	arm_lowmem_limit = lowmem_limit;
1223
1224	high_memory = __va(arm_lowmem_limit - 1) + 1;
1225
1226	if (!memblock_limit)
1227		memblock_limit = arm_lowmem_limit;
1228
1229	/*
1230	 * Round the memblock limit down to a pmd size.  This
1231	 * helps to ensure that we will allocate memory from the
1232	 * last full pmd, which should be mapped.
1233	 */
1234	memblock_limit = round_down(memblock_limit, PMD_SIZE);
1235
1236	if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1237		if (memblock_end_of_DRAM() > arm_lowmem_limit) {
1238			phys_addr_t end = memblock_end_of_DRAM();
1239
1240			pr_notice("Ignoring RAM at %pa-%pa\n",
1241				  &memblock_limit, &end);
1242			pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1243
1244			memblock_remove(memblock_limit, end - memblock_limit);
1245		}
1246	}
1247
1248	memblock_set_current_limit(memblock_limit);
1249}
1250
1251static __init void prepare_page_table(void)
1252{
1253	unsigned long addr;
1254	phys_addr_t end;
1255
1256	/*
1257	 * Clear out all the mappings below the kernel image.
1258	 */
1259#ifdef CONFIG_KASAN
1260	/*
1261	 * KASan's shadow memory inserts itself between the TASK_SIZE
1262	 * and MODULES_VADDR. Do not clear the KASan shadow memory mappings.
1263	 */
1264	for (addr = 0; addr < KASAN_SHADOW_START; addr += PMD_SIZE)
1265		pmd_clear(pmd_off_k(addr));
1266	/*
1267	 * Skip over the KASan shadow area. KASAN_SHADOW_END is sometimes
1268	 * equal to MODULES_VADDR and then we exit the pmd clearing. If we
1269	 * are using a thumb-compiled kernel, there there will be 8MB more
1270	 * to clear as KASan always offset to 16 MB below MODULES_VADDR.
1271	 */
1272	for (addr = KASAN_SHADOW_END; addr < MODULES_VADDR; addr += PMD_SIZE)
1273		pmd_clear(pmd_off_k(addr));
1274#else
1275	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1276		pmd_clear(pmd_off_k(addr));
1277#endif
1278
1279#ifdef CONFIG_XIP_KERNEL
1280	/* The XIP kernel is mapped in the module area -- skip over it */
1281	addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1282#endif
1283	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1284		pmd_clear(pmd_off_k(addr));
1285
1286	/*
1287	 * Find the end of the first block of lowmem.
1288	 */
1289	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1290	if (end >= arm_lowmem_limit)
1291		end = arm_lowmem_limit;
1292
1293	/*
1294	 * Clear out all the kernel space mappings, except for the first
1295	 * memory bank, up to the vmalloc region.
1296	 */
1297	for (addr = __phys_to_virt(end);
1298	     addr < VMALLOC_START; addr += PMD_SIZE)
1299		pmd_clear(pmd_off_k(addr));
1300}
1301
1302#ifdef CONFIG_ARM_LPAE
1303/* the first page is reserved for pgd */
1304#define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
1305				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1306#else
1307#define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1308#endif
1309
1310/*
1311 * Reserve the special regions of memory
1312 */
1313void __init arm_mm_memblock_reserve(void)
1314{
1315	/*
1316	 * Reserve the page tables.  These are already in use,
1317	 * and can only be in node 0.
1318	 */
1319	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1320
1321#ifdef CONFIG_SA1111
1322	/*
1323	 * Because of the SA1111 DMA bug, we want to preserve our
1324	 * precious DMA-able memory...
1325	 */
1326	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1327#endif
1328}
1329
1330/*
1331 * Set up the device mappings.  Since we clear out the page tables for all
1332 * mappings above VMALLOC_START, except early fixmap, we might remove debug
1333 * device mappings.  This means earlycon can be used to debug this function
1334 * Any other function or debugging method which may touch any device _will_
1335 * crash the kernel.
1336 */
1337static void __init devicemaps_init(const struct machine_desc *mdesc)
1338{
1339	struct map_desc map;
1340	unsigned long addr;
1341	void *vectors;
1342
1343	/*
1344	 * Allocate the vector page early.
1345	 */
1346	vectors = early_alloc(PAGE_SIZE * 2);
1347
1348	early_trap_init(vectors);
1349
1350	/*
1351	 * Clear page table except top pmd used by early fixmaps
1352	 */
1353	for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1354		pmd_clear(pmd_off_k(addr));
1355
1356	if (__atags_pointer) {
1357		/* create a read-only mapping of the device tree */
1358		map.pfn = __phys_to_pfn(__atags_pointer & SECTION_MASK);
1359		map.virtual = FDT_FIXED_BASE;
1360		map.length = FDT_FIXED_SIZE;
1361		map.type = MT_ROM;
1362		create_mapping(&map);
1363	}
1364
1365	/*
1366	 * Map the kernel if it is XIP.
1367	 * It is always first in the modulearea.
1368	 */
1369#ifdef CONFIG_XIP_KERNEL
1370	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1371	map.virtual = MODULES_VADDR;
1372	map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1373	map.type = MT_ROM;
1374	create_mapping(&map);
1375#endif
1376
1377	/*
1378	 * Map the cache flushing regions.
1379	 */
1380#ifdef FLUSH_BASE
1381	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1382	map.virtual = FLUSH_BASE;
1383	map.length = SZ_1M;
1384	map.type = MT_CACHECLEAN;
1385	create_mapping(&map);
1386#endif
1387#ifdef FLUSH_BASE_MINICACHE
1388	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1389	map.virtual = FLUSH_BASE_MINICACHE;
1390	map.length = SZ_1M;
1391	map.type = MT_MINICLEAN;
1392	create_mapping(&map);
1393#endif
1394
1395	/*
1396	 * Create a mapping for the machine vectors at the high-vectors
1397	 * location (0xffff0000).  If we aren't using high-vectors, also
1398	 * create a mapping at the low-vectors virtual address.
1399	 */
1400	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1401	map.virtual = 0xffff0000;
1402	map.length = PAGE_SIZE;
1403#ifdef CONFIG_KUSER_HELPERS
1404	map.type = MT_HIGH_VECTORS;
1405#else
1406	map.type = MT_LOW_VECTORS;
1407#endif
1408	create_mapping(&map);
1409
1410	if (!vectors_high()) {
1411		map.virtual = 0;
1412		map.length = PAGE_SIZE * 2;
1413		map.type = MT_LOW_VECTORS;
1414		create_mapping(&map);
1415	}
1416
1417	/* Now create a kernel read-only mapping */
1418	map.pfn += 1;
1419	map.virtual = 0xffff0000 + PAGE_SIZE;
1420	map.length = PAGE_SIZE;
1421	map.type = MT_LOW_VECTORS;
1422	create_mapping(&map);
1423
1424	/*
1425	 * Ask the machine support to map in the statically mapped devices.
1426	 */
1427	if (mdesc->map_io)
1428		mdesc->map_io();
1429	else
1430		debug_ll_io_init();
1431	fill_pmd_gaps();
1432
1433	/* Reserve fixed i/o space in VMALLOC region */
1434	pci_reserve_io();
1435
1436	/*
1437	 * Finally flush the caches and tlb to ensure that we're in a
1438	 * consistent state wrt the writebuffer.  This also ensures that
1439	 * any write-allocated cache lines in the vector page are written
1440	 * back.  After this point, we can start to touch devices again.
1441	 */
1442	local_flush_tlb_all();
1443	flush_cache_all();
1444
1445	/* Enable asynchronous aborts */
1446	early_abt_enable();
1447}
1448
1449static void __init kmap_init(void)
1450{
1451#ifdef CONFIG_HIGHMEM
1452	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1453		PKMAP_BASE, _PAGE_KERNEL_TABLE);
1454#endif
1455
1456	early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1457			_PAGE_KERNEL_TABLE);
1458}
1459
1460static void __init map_lowmem(void)
1461{
1462	phys_addr_t start, end;
1463	u64 i;
1464
1465	/* Map all the lowmem memory banks. */
1466	for_each_mem_range(i, &start, &end) {
1467		struct map_desc map;
1468
1469		pr_debug("map lowmem start: 0x%08llx, end: 0x%08llx\n",
1470			 (long long)start, (long long)end);
1471		if (end > arm_lowmem_limit)
1472			end = arm_lowmem_limit;
1473		if (start >= end)
1474			break;
1475
1476		/*
1477		 * If our kernel image is in the VMALLOC area we need to remove
1478		 * the kernel physical memory from lowmem since the kernel will
1479		 * be mapped separately.
1480		 *
1481		 * The kernel will typically be at the very start of lowmem,
1482		 * but any placement relative to memory ranges is possible.
1483		 *
1484		 * If the memblock contains the kernel, we have to chisel out
1485		 * the kernel memory from it and map each part separately. We
1486		 * get 6 different theoretical cases:
1487		 *
1488		 *                            +--------+ +--------+
1489		 *  +-- start --+  +--------+ | Kernel | | Kernel |
1490		 *  |           |  | Kernel | | case 2 | | case 5 |
1491		 *  |           |  | case 1 | +--------+ |        | +--------+
1492		 *  |  Memory   |  +--------+            |        | | Kernel |
1493		 *  |  range    |  +--------+            |        | | case 6 |
1494		 *  |           |  | Kernel | +--------+ |        | +--------+
1495		 *  |           |  | case 3 | | Kernel | |        |
1496		 *  +-- end ----+  +--------+ | case 4 | |        |
1497		 *                            +--------+ +--------+
1498		 */
1499
1500		/* Case 5: kernel covers range, don't map anything, should be rare */
1501		if ((start > kernel_sec_start) && (end < kernel_sec_end))
1502			break;
1503
1504		/* Cases where the kernel is starting inside the range */
1505		if ((kernel_sec_start >= start) && (kernel_sec_start <= end)) {
1506			/* Case 6: kernel is embedded in the range, we need two mappings */
1507			if ((start < kernel_sec_start) && (end > kernel_sec_end)) {
1508				/* Map memory below the kernel */
1509				map.pfn = __phys_to_pfn(start);
1510				map.virtual = __phys_to_virt(start);
1511				map.length = kernel_sec_start - start;
1512				map.type = MT_MEMORY_RW;
1513				create_mapping(&map);
1514				/* Map memory above the kernel */
1515				map.pfn = __phys_to_pfn(kernel_sec_end);
1516				map.virtual = __phys_to_virt(kernel_sec_end);
1517				map.length = end - kernel_sec_end;
1518				map.type = MT_MEMORY_RW;
1519				create_mapping(&map);
1520				break;
1521			}
1522			/* Case 1: kernel and range start at the same address, should be common */
1523			if (kernel_sec_start == start)
1524				start = kernel_sec_end;
1525			/* Case 3: kernel and range end at the same address, should be rare */
1526			if (kernel_sec_end == end)
1527				end = kernel_sec_start;
1528		} else if ((kernel_sec_start < start) && (kernel_sec_end > start) && (kernel_sec_end < end)) {
1529			/* Case 2: kernel ends inside range, starts below it */
1530			start = kernel_sec_end;
1531		} else if ((kernel_sec_start > start) && (kernel_sec_start < end) && (kernel_sec_end > end)) {
1532			/* Case 4: kernel starts inside range, ends above it */
1533			end = kernel_sec_start;
1534		}
1535		map.pfn = __phys_to_pfn(start);
1536		map.virtual = __phys_to_virt(start);
1537		map.length = end - start;
1538		map.type = MT_MEMORY_RW;
1539		create_mapping(&map);
1540	}
1541}
1542
1543static void __init map_kernel(void)
1544{
1545	/*
1546	 * We use the well known kernel section start and end and split the area in the
1547	 * middle like this:
1548	 *  .                .
1549	 *  | RW memory      |
1550	 *  +----------------+ kernel_x_start
1551	 *  | Executable     |
1552	 *  | kernel memory  |
1553	 *  +----------------+ kernel_x_end / kernel_nx_start
1554	 *  | Non-executable |
1555	 *  | kernel memory  |
1556	 *  +----------------+ kernel_nx_end
1557	 *  | RW memory      |
1558	 *  .                .
1559	 *
1560	 * Notice that we are dealing with section sized mappings here so all of this
1561	 * will be bumped to the closest section boundary. This means that some of the
1562	 * non-executable part of the kernel memory is actually mapped as executable.
1563	 * This will only persist until we turn on proper memory management later on
1564	 * and we remap the whole kernel with page granularity.
1565	 */
1566	phys_addr_t kernel_x_start = kernel_sec_start;
1567	phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1568	phys_addr_t kernel_nx_start = kernel_x_end;
1569	phys_addr_t kernel_nx_end = kernel_sec_end;
1570	struct map_desc map;
1571
1572	map.pfn = __phys_to_pfn(kernel_x_start);
1573	map.virtual = __phys_to_virt(kernel_x_start);
1574	map.length = kernel_x_end - kernel_x_start;
1575	map.type = MT_MEMORY_RWX;
1576	create_mapping(&map);
1577
1578	/* If the nx part is small it may end up covered by the tail of the RWX section */
1579	if (kernel_x_end == kernel_nx_end)
1580		return;
1581
1582	map.pfn = __phys_to_pfn(kernel_nx_start);
1583	map.virtual = __phys_to_virt(kernel_nx_start);
1584	map.length = kernel_nx_end - kernel_nx_start;
1585	map.type = MT_MEMORY_RW;
1586	create_mapping(&map);
1587}
1588
1589#ifdef CONFIG_ARM_PV_FIXUP
1590typedef void pgtables_remap(long long offset, unsigned long pgd);
1591pgtables_remap lpae_pgtables_remap_asm;
1592
1593/*
1594 * early_paging_init() recreates boot time page table setup, allowing machines
1595 * to switch over to a high (>4G) address space on LPAE systems
1596 */
1597static void __init early_paging_init(const struct machine_desc *mdesc)
1598{
1599	pgtables_remap *lpae_pgtables_remap;
1600	unsigned long pa_pgd;
1601	unsigned int cr, ttbcr;
1602	long long offset;
1603
1604	if (!mdesc->pv_fixup)
1605		return;
1606
1607	offset = mdesc->pv_fixup();
1608	if (offset == 0)
1609		return;
1610
1611	/*
1612	 * Offset the kernel section physical offsets so that the kernel
1613	 * mapping will work out later on.
1614	 */
1615	kernel_sec_start += offset;
1616	kernel_sec_end += offset;
1617
1618	/*
1619	 * Get the address of the remap function in the 1:1 identity
1620	 * mapping setup by the early page table assembly code.  We
1621	 * must get this prior to the pv update.  The following barrier
1622	 * ensures that this is complete before we fixup any P:V offsets.
1623	 */
1624	lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1625	pa_pgd = __pa(swapper_pg_dir);
1626	barrier();
1627
1628	pr_info("Switching physical address space to 0x%08llx\n",
1629		(u64)PHYS_OFFSET + offset);
1630
1631	/* Re-set the phys pfn offset, and the pv offset */
1632	__pv_offset += offset;
1633	__pv_phys_pfn_offset += PFN_DOWN(offset);
1634
1635	/* Run the patch stub to update the constants */
1636	fixup_pv_table(&__pv_table_begin,
1637		(&__pv_table_end - &__pv_table_begin) << 2);
1638
1639	/*
1640	 * We changing not only the virtual to physical mapping, but also
1641	 * the physical addresses used to access memory.  We need to flush
1642	 * all levels of cache in the system with caching disabled to
1643	 * ensure that all data is written back, and nothing is prefetched
1644	 * into the caches.  We also need to prevent the TLB walkers
1645	 * allocating into the caches too.  Note that this is ARMv7 LPAE
1646	 * specific.
1647	 */
1648	cr = get_cr();
1649	set_cr(cr & ~(CR_I | CR_C));
1650	asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1651	asm volatile("mcr p15, 0, %0, c2, c0, 2"
1652		: : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1653	flush_cache_all();
1654
1655	/*
1656	 * Fixup the page tables - this must be in the idmap region as
1657	 * we need to disable the MMU to do this safely, and hence it
1658	 * needs to be assembly.  It's fairly simple, as we're using the
1659	 * temporary tables setup by the initial assembly code.
1660	 */
1661	lpae_pgtables_remap(offset, pa_pgd);
1662
1663	/* Re-enable the caches and cacheable TLB walks */
1664	asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1665	set_cr(cr);
1666}
1667
1668#else
1669
1670static void __init early_paging_init(const struct machine_desc *mdesc)
1671{
1672	long long offset;
1673
1674	if (!mdesc->pv_fixup)
1675		return;
1676
1677	offset = mdesc->pv_fixup();
1678	if (offset == 0)
1679		return;
1680
1681	pr_crit("Physical address space modification is only to support Keystone2.\n");
1682	pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1683	pr_crit("feature. Your kernel may crash now, have a good day.\n");
1684	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1685}
1686
1687#endif
1688
1689static void __init early_fixmap_shutdown(void)
1690{
1691	int i;
1692	unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1693
1694	pte_offset_fixmap = pte_offset_late_fixmap;
1695	pmd_clear(fixmap_pmd(va));
1696	local_flush_tlb_kernel_page(va);
1697
1698	for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1699		pte_t *pte;
1700		struct map_desc map;
1701
1702		map.virtual = fix_to_virt(i);
1703		pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1704
1705		/* Only i/o device mappings are supported ATM */
1706		if (pte_none(*pte) ||
1707		    (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1708			continue;
1709
1710		map.pfn = pte_pfn(*pte);
1711		map.type = MT_DEVICE;
1712		map.length = PAGE_SIZE;
1713
1714		create_mapping(&map);
1715	}
1716}
1717
1718/*
1719 * paging_init() sets up the page tables, initialises the zone memory
1720 * maps, and sets up the zero page, bad page and bad page tables.
1721 */
1722void __init paging_init(const struct machine_desc *mdesc)
1723{
1724	void *zero_page;
1725
1726	pr_debug("physical kernel sections: 0x%08llx-0x%08llx\n",
1727		 kernel_sec_start, kernel_sec_end);
1728
1729	prepare_page_table();
1730	map_lowmem();
1731	memblock_set_current_limit(arm_lowmem_limit);
1732	pr_debug("lowmem limit is %08llx\n", (long long)arm_lowmem_limit);
1733	/*
1734	 * After this point early_alloc(), i.e. the memblock allocator, can
1735	 * be used
1736	 */
1737	map_kernel();
1738	dma_contiguous_remap();
1739	early_fixmap_shutdown();
1740	devicemaps_init(mdesc);
1741	kmap_init();
1742	tcm_init();
1743
1744	top_pmd = pmd_off_k(0xffff0000);
1745
1746	/* allocate the zero page. */
1747	zero_page = early_alloc(PAGE_SIZE);
1748
1749	bootmem_init();
1750
1751	empty_zero_page = virt_to_page(zero_page);
1752	__flush_dcache_page(NULL, empty_zero_page);
1753}
1754
1755void __init early_mm_init(const struct machine_desc *mdesc)
1756{
1757	build_mem_type_table();
1758	early_paging_init(mdesc);
1759}
1760
1761void set_pte_at(struct mm_struct *mm, unsigned long addr,
1762			      pte_t *ptep, pte_t pteval)
1763{
1764	unsigned long ext = 0;
1765
1766	if (addr < TASK_SIZE && pte_valid_user(pteval)) {
1767		if (!pte_special(pteval))
1768			__sync_icache_dcache(pteval);
1769		ext |= PTE_EXT_NG;
1770	}
1771
1772	set_pte_ext(ptep, pteval, ext);
1773}