Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kernel/workqueue.c - generic async execution with shared worker pool
   4 *
   5 * Copyright (C) 2002		Ingo Molnar
   6 *
   7 *   Derived from the taskqueue/keventd code by:
   8 *     David Woodhouse <dwmw2@infradead.org>
   9 *     Andrew Morton
  10 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
  11 *     Theodore Ts'o <tytso@mit.edu>
  12 *
  13 * Made to use alloc_percpu by Christoph Lameter.
  14 *
  15 * Copyright (C) 2010		SUSE Linux Products GmbH
  16 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  17 *
  18 * This is the generic async execution mechanism.  Work items as are
  19 * executed in process context.  The worker pool is shared and
  20 * automatically managed.  There are two worker pools for each CPU (one for
  21 * normal work items and the other for high priority ones) and some extra
  22 * pools for workqueues which are not bound to any specific CPU - the
  23 * number of these backing pools is dynamic.
  24 *
  25 * Please read Documentation/core-api/workqueue.rst for details.
  26 */
  27
  28#include <linux/export.h>
  29#include <linux/kernel.h>
  30#include <linux/sched.h>
  31#include <linux/init.h>
  32#include <linux/signal.h>
  33#include <linux/completion.h>
  34#include <linux/workqueue.h>
  35#include <linux/slab.h>
  36#include <linux/cpu.h>
  37#include <linux/notifier.h>
  38#include <linux/kthread.h>
  39#include <linux/hardirq.h>
  40#include <linux/mempolicy.h>
  41#include <linux/freezer.h>
  42#include <linux/debug_locks.h>
  43#include <linux/lockdep.h>
  44#include <linux/idr.h>
  45#include <linux/jhash.h>
  46#include <linux/hashtable.h>
  47#include <linux/rculist.h>
  48#include <linux/nodemask.h>
  49#include <linux/moduleparam.h>
  50#include <linux/uaccess.h>
  51#include <linux/sched/isolation.h>
  52#include <linux/nmi.h>
  53#include <linux/kvm_para.h>
  54
  55#include "workqueue_internal.h"
  56
  57enum {
  58	/*
  59	 * worker_pool flags
  60	 *
  61	 * A bound pool is either associated or disassociated with its CPU.
  62	 * While associated (!DISASSOCIATED), all workers are bound to the
  63	 * CPU and none has %WORKER_UNBOUND set and concurrency management
  64	 * is in effect.
  65	 *
  66	 * While DISASSOCIATED, the cpu may be offline and all workers have
  67	 * %WORKER_UNBOUND set and concurrency management disabled, and may
  68	 * be executing on any CPU.  The pool behaves as an unbound one.
  69	 *
  70	 * Note that DISASSOCIATED should be flipped only while holding
  71	 * wq_pool_attach_mutex to avoid changing binding state while
  72	 * worker_attach_to_pool() is in progress.
  73	 */
  74	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
  75	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
  76
  77	/* worker flags */
  78	WORKER_DIE		= 1 << 1,	/* die die die */
  79	WORKER_IDLE		= 1 << 2,	/* is idle */
  80	WORKER_PREP		= 1 << 3,	/* preparing to run works */
  81	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
  82	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
  83	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
  84
  85	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
  86				  WORKER_UNBOUND | WORKER_REBOUND,
  87
  88	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
  89
  90	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
  91	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
  92
  93	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
  94	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
  95
  96	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
  97						/* call for help after 10ms
  98						   (min two ticks) */
  99	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
 100	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
 101
 102	/*
 103	 * Rescue workers are used only on emergencies and shared by
 104	 * all cpus.  Give MIN_NICE.
 105	 */
 106	RESCUER_NICE_LEVEL	= MIN_NICE,
 107	HIGHPRI_NICE_LEVEL	= MIN_NICE,
 108
 109	WQ_NAME_LEN		= 24,
 110};
 111
 112/*
 113 * Structure fields follow one of the following exclusion rules.
 114 *
 115 * I: Modifiable by initialization/destruction paths and read-only for
 116 *    everyone else.
 117 *
 118 * P: Preemption protected.  Disabling preemption is enough and should
 119 *    only be modified and accessed from the local cpu.
 120 *
 121 * L: pool->lock protected.  Access with pool->lock held.
 122 *
 123 * X: During normal operation, modification requires pool->lock and should
 124 *    be done only from local cpu.  Either disabling preemption on local
 125 *    cpu or grabbing pool->lock is enough for read access.  If
 126 *    POOL_DISASSOCIATED is set, it's identical to L.
 127 *
 128 * A: wq_pool_attach_mutex protected.
 129 *
 130 * PL: wq_pool_mutex protected.
 131 *
 132 * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
 133 *
 134 * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
 135 *
 136 * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
 137 *      RCU for reads.
 138 *
 139 * WQ: wq->mutex protected.
 140 *
 141 * WR: wq->mutex protected for writes.  RCU protected for reads.
 142 *
 143 * MD: wq_mayday_lock protected.
 144 */
 145
 146/* struct worker is defined in workqueue_internal.h */
 147
 148struct worker_pool {
 149	raw_spinlock_t		lock;		/* the pool lock */
 150	int			cpu;		/* I: the associated cpu */
 151	int			node;		/* I: the associated node ID */
 152	int			id;		/* I: pool ID */
 153	unsigned int		flags;		/* X: flags */
 154
 155	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
 156
 157	/*
 158	 * The counter is incremented in a process context on the associated CPU
 159	 * w/ preemption disabled, and decremented or reset in the same context
 160	 * but w/ pool->lock held. The readers grab pool->lock and are
 161	 * guaranteed to see if the counter reached zero.
 162	 */
 163	int			nr_running;
 164
 165	struct list_head	worklist;	/* L: list of pending works */
 166
 167	int			nr_workers;	/* L: total number of workers */
 168	int			nr_idle;	/* L: currently idle workers */
 169
 170	struct list_head	idle_list;	/* L: list of idle workers */
 171	struct timer_list	idle_timer;	/* L: worker idle timeout */
 172	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
 173
 174	/* a workers is either on busy_hash or idle_list, or the manager */
 175	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
 176						/* L: hash of busy workers */
 177
 178	struct worker		*manager;	/* L: purely informational */
 179	struct list_head	workers;	/* A: attached workers */
 180	struct completion	*detach_completion; /* all workers detached */
 181
 182	struct ida		worker_ida;	/* worker IDs for task name */
 183
 184	struct workqueue_attrs	*attrs;		/* I: worker attributes */
 185	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
 186	int			refcnt;		/* PL: refcnt for unbound pools */
 187
 188	/*
 
 
 
 
 
 
 
 189	 * Destruction of pool is RCU protected to allow dereferences
 190	 * from get_work_pool().
 191	 */
 192	struct rcu_head		rcu;
 193};
 194
 195/*
 196 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 197 * of work_struct->data are used for flags and the remaining high bits
 198 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 199 * number of flag bits.
 200 */
 201struct pool_workqueue {
 202	struct worker_pool	*pool;		/* I: the associated pool */
 203	struct workqueue_struct *wq;		/* I: the owning workqueue */
 204	int			work_color;	/* L: current color */
 205	int			flush_color;	/* L: flushing color */
 206	int			refcnt;		/* L: reference count */
 207	int			nr_in_flight[WORK_NR_COLORS];
 208						/* L: nr of in_flight works */
 209
 210	/*
 211	 * nr_active management and WORK_STRUCT_INACTIVE:
 212	 *
 213	 * When pwq->nr_active >= max_active, new work item is queued to
 214	 * pwq->inactive_works instead of pool->worklist and marked with
 215	 * WORK_STRUCT_INACTIVE.
 216	 *
 217	 * All work items marked with WORK_STRUCT_INACTIVE do not participate
 218	 * in pwq->nr_active and all work items in pwq->inactive_works are
 219	 * marked with WORK_STRUCT_INACTIVE.  But not all WORK_STRUCT_INACTIVE
 220	 * work items are in pwq->inactive_works.  Some of them are ready to
 221	 * run in pool->worklist or worker->scheduled.  Those work itmes are
 222	 * only struct wq_barrier which is used for flush_work() and should
 223	 * not participate in pwq->nr_active.  For non-barrier work item, it
 224	 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
 225	 */
 226	int			nr_active;	/* L: nr of active works */
 227	int			max_active;	/* L: max active works */
 228	struct list_head	inactive_works;	/* L: inactive works */
 229	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
 230	struct list_head	mayday_node;	/* MD: node on wq->maydays */
 231
 232	/*
 233	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
 234	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
 235	 * itself is also RCU protected so that the first pwq can be
 236	 * determined without grabbing wq->mutex.
 237	 */
 238	struct work_struct	unbound_release_work;
 239	struct rcu_head		rcu;
 240} __aligned(1 << WORK_STRUCT_FLAG_BITS);
 241
 242/*
 243 * Structure used to wait for workqueue flush.
 244 */
 245struct wq_flusher {
 246	struct list_head	list;		/* WQ: list of flushers */
 247	int			flush_color;	/* WQ: flush color waiting for */
 248	struct completion	done;		/* flush completion */
 249};
 250
 251struct wq_device;
 252
 253/*
 254 * The externally visible workqueue.  It relays the issued work items to
 255 * the appropriate worker_pool through its pool_workqueues.
 256 */
 257struct workqueue_struct {
 258	struct list_head	pwqs;		/* WR: all pwqs of this wq */
 259	struct list_head	list;		/* PR: list of all workqueues */
 260
 261	struct mutex		mutex;		/* protects this wq */
 262	int			work_color;	/* WQ: current work color */
 263	int			flush_color;	/* WQ: current flush color */
 264	atomic_t		nr_pwqs_to_flush; /* flush in progress */
 265	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
 266	struct list_head	flusher_queue;	/* WQ: flush waiters */
 267	struct list_head	flusher_overflow; /* WQ: flush overflow list */
 268
 269	struct list_head	maydays;	/* MD: pwqs requesting rescue */
 270	struct worker		*rescuer;	/* MD: rescue worker */
 271
 272	int			nr_drainers;	/* WQ: drain in progress */
 273	int			saved_max_active; /* WQ: saved pwq max_active */
 274
 275	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
 276	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
 277
 278#ifdef CONFIG_SYSFS
 279	struct wq_device	*wq_dev;	/* I: for sysfs interface */
 280#endif
 281#ifdef CONFIG_LOCKDEP
 282	char			*lock_name;
 283	struct lock_class_key	key;
 284	struct lockdep_map	lockdep_map;
 285#endif
 286	char			name[WQ_NAME_LEN]; /* I: workqueue name */
 287
 288	/*
 289	 * Destruction of workqueue_struct is RCU protected to allow walking
 290	 * the workqueues list without grabbing wq_pool_mutex.
 291	 * This is used to dump all workqueues from sysrq.
 292	 */
 293	struct rcu_head		rcu;
 294
 295	/* hot fields used during command issue, aligned to cacheline */
 296	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
 297	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
 298	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
 299};
 300
 301static struct kmem_cache *pwq_cache;
 302
 303static cpumask_var_t *wq_numa_possible_cpumask;
 304					/* possible CPUs of each node */
 305
 306static bool wq_disable_numa;
 307module_param_named(disable_numa, wq_disable_numa, bool, 0444);
 308
 309/* see the comment above the definition of WQ_POWER_EFFICIENT */
 310static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
 311module_param_named(power_efficient, wq_power_efficient, bool, 0444);
 312
 313static bool wq_online;			/* can kworkers be created yet? */
 314
 315static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
 316
 317/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
 318static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
 319
 320static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
 321static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
 322static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
 323/* wait for manager to go away */
 324static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
 325
 326static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
 327static bool workqueue_freezing;		/* PL: have wqs started freezing? */
 328
 329/* PL: allowable cpus for unbound wqs and work items */
 330static cpumask_var_t wq_unbound_cpumask;
 331
 332/* CPU where unbound work was last round robin scheduled from this CPU */
 333static DEFINE_PER_CPU(int, wq_rr_cpu_last);
 334
 335/*
 336 * Local execution of unbound work items is no longer guaranteed.  The
 337 * following always forces round-robin CPU selection on unbound work items
 338 * to uncover usages which depend on it.
 339 */
 340#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
 341static bool wq_debug_force_rr_cpu = true;
 342#else
 343static bool wq_debug_force_rr_cpu = false;
 344#endif
 345module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
 346
 347/* the per-cpu worker pools */
 348static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
 349
 350static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
 351
 352/* PL: hash of all unbound pools keyed by pool->attrs */
 353static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
 354
 355/* I: attributes used when instantiating standard unbound pools on demand */
 356static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
 357
 358/* I: attributes used when instantiating ordered pools on demand */
 359static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
 360
 361struct workqueue_struct *system_wq __read_mostly;
 362EXPORT_SYMBOL(system_wq);
 363struct workqueue_struct *system_highpri_wq __read_mostly;
 364EXPORT_SYMBOL_GPL(system_highpri_wq);
 365struct workqueue_struct *system_long_wq __read_mostly;
 366EXPORT_SYMBOL_GPL(system_long_wq);
 367struct workqueue_struct *system_unbound_wq __read_mostly;
 368EXPORT_SYMBOL_GPL(system_unbound_wq);
 369struct workqueue_struct *system_freezable_wq __read_mostly;
 370EXPORT_SYMBOL_GPL(system_freezable_wq);
 371struct workqueue_struct *system_power_efficient_wq __read_mostly;
 372EXPORT_SYMBOL_GPL(system_power_efficient_wq);
 373struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
 374EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
 375
 376static int worker_thread(void *__worker);
 377static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
 378static void show_pwq(struct pool_workqueue *pwq);
 379static void show_one_worker_pool(struct worker_pool *pool);
 380
 381#define CREATE_TRACE_POINTS
 382#include <trace/events/workqueue.h>
 383
 384#define assert_rcu_or_pool_mutex()					\
 385	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
 386			 !lockdep_is_held(&wq_pool_mutex),		\
 387			 "RCU or wq_pool_mutex should be held")
 388
 389#define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
 390	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
 391			 !lockdep_is_held(&wq->mutex) &&		\
 392			 !lockdep_is_held(&wq_pool_mutex),		\
 393			 "RCU, wq->mutex or wq_pool_mutex should be held")
 394
 395#define for_each_cpu_worker_pool(pool, cpu)				\
 396	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
 397	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
 398	     (pool)++)
 399
 400/**
 401 * for_each_pool - iterate through all worker_pools in the system
 402 * @pool: iteration cursor
 403 * @pi: integer used for iteration
 404 *
 405 * This must be called either with wq_pool_mutex held or RCU read
 406 * locked.  If the pool needs to be used beyond the locking in effect, the
 407 * caller is responsible for guaranteeing that the pool stays online.
 408 *
 409 * The if/else clause exists only for the lockdep assertion and can be
 410 * ignored.
 411 */
 412#define for_each_pool(pool, pi)						\
 413	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
 414		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
 415		else
 416
 417/**
 418 * for_each_pool_worker - iterate through all workers of a worker_pool
 419 * @worker: iteration cursor
 420 * @pool: worker_pool to iterate workers of
 421 *
 422 * This must be called with wq_pool_attach_mutex.
 423 *
 424 * The if/else clause exists only for the lockdep assertion and can be
 425 * ignored.
 426 */
 427#define for_each_pool_worker(worker, pool)				\
 428	list_for_each_entry((worker), &(pool)->workers, node)		\
 429		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
 430		else
 431
 432/**
 433 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 434 * @pwq: iteration cursor
 435 * @wq: the target workqueue
 436 *
 437 * This must be called either with wq->mutex held or RCU read locked.
 438 * If the pwq needs to be used beyond the locking in effect, the caller is
 439 * responsible for guaranteeing that the pwq stays online.
 440 *
 441 * The if/else clause exists only for the lockdep assertion and can be
 442 * ignored.
 443 */
 444#define for_each_pwq(pwq, wq)						\
 445	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
 446				 lockdep_is_held(&(wq->mutex)))
 447
 448#ifdef CONFIG_DEBUG_OBJECTS_WORK
 449
 450static const struct debug_obj_descr work_debug_descr;
 451
 452static void *work_debug_hint(void *addr)
 453{
 454	return ((struct work_struct *) addr)->func;
 455}
 456
 457static bool work_is_static_object(void *addr)
 458{
 459	struct work_struct *work = addr;
 460
 461	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
 462}
 463
 464/*
 465 * fixup_init is called when:
 466 * - an active object is initialized
 467 */
 468static bool work_fixup_init(void *addr, enum debug_obj_state state)
 469{
 470	struct work_struct *work = addr;
 471
 472	switch (state) {
 473	case ODEBUG_STATE_ACTIVE:
 474		cancel_work_sync(work);
 475		debug_object_init(work, &work_debug_descr);
 476		return true;
 477	default:
 478		return false;
 479	}
 480}
 481
 482/*
 483 * fixup_free is called when:
 484 * - an active object is freed
 485 */
 486static bool work_fixup_free(void *addr, enum debug_obj_state state)
 487{
 488	struct work_struct *work = addr;
 489
 490	switch (state) {
 491	case ODEBUG_STATE_ACTIVE:
 492		cancel_work_sync(work);
 493		debug_object_free(work, &work_debug_descr);
 494		return true;
 495	default:
 496		return false;
 497	}
 498}
 499
 500static const struct debug_obj_descr work_debug_descr = {
 501	.name		= "work_struct",
 502	.debug_hint	= work_debug_hint,
 503	.is_static_object = work_is_static_object,
 504	.fixup_init	= work_fixup_init,
 505	.fixup_free	= work_fixup_free,
 506};
 507
 508static inline void debug_work_activate(struct work_struct *work)
 509{
 510	debug_object_activate(work, &work_debug_descr);
 511}
 512
 513static inline void debug_work_deactivate(struct work_struct *work)
 514{
 515	debug_object_deactivate(work, &work_debug_descr);
 516}
 517
 518void __init_work(struct work_struct *work, int onstack)
 519{
 520	if (onstack)
 521		debug_object_init_on_stack(work, &work_debug_descr);
 522	else
 523		debug_object_init(work, &work_debug_descr);
 524}
 525EXPORT_SYMBOL_GPL(__init_work);
 526
 527void destroy_work_on_stack(struct work_struct *work)
 528{
 529	debug_object_free(work, &work_debug_descr);
 530}
 531EXPORT_SYMBOL_GPL(destroy_work_on_stack);
 532
 533void destroy_delayed_work_on_stack(struct delayed_work *work)
 534{
 535	destroy_timer_on_stack(&work->timer);
 536	debug_object_free(&work->work, &work_debug_descr);
 537}
 538EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
 539
 540#else
 541static inline void debug_work_activate(struct work_struct *work) { }
 542static inline void debug_work_deactivate(struct work_struct *work) { }
 543#endif
 544
 545/**
 546 * worker_pool_assign_id - allocate ID and assign it to @pool
 547 * @pool: the pool pointer of interest
 548 *
 549 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 550 * successfully, -errno on failure.
 551 */
 552static int worker_pool_assign_id(struct worker_pool *pool)
 553{
 554	int ret;
 555
 556	lockdep_assert_held(&wq_pool_mutex);
 557
 558	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
 559			GFP_KERNEL);
 560	if (ret >= 0) {
 561		pool->id = ret;
 562		return 0;
 563	}
 564	return ret;
 565}
 566
 567/**
 568 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 569 * @wq: the target workqueue
 570 * @node: the node ID
 571 *
 572 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
 573 * read locked.
 574 * If the pwq needs to be used beyond the locking in effect, the caller is
 575 * responsible for guaranteeing that the pwq stays online.
 576 *
 577 * Return: The unbound pool_workqueue for @node.
 578 */
 579static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
 580						  int node)
 581{
 582	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
 583
 584	/*
 585	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
 586	 * delayed item is pending.  The plan is to keep CPU -> NODE
 587	 * mapping valid and stable across CPU on/offlines.  Once that
 588	 * happens, this workaround can be removed.
 589	 */
 590	if (unlikely(node == NUMA_NO_NODE))
 591		return wq->dfl_pwq;
 592
 593	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
 594}
 595
 596static unsigned int work_color_to_flags(int color)
 597{
 598	return color << WORK_STRUCT_COLOR_SHIFT;
 599}
 600
 601static int get_work_color(unsigned long work_data)
 602{
 603	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
 604		((1 << WORK_STRUCT_COLOR_BITS) - 1);
 605}
 606
 607static int work_next_color(int color)
 608{
 609	return (color + 1) % WORK_NR_COLORS;
 610}
 611
 612/*
 613 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 614 * contain the pointer to the queued pwq.  Once execution starts, the flag
 615 * is cleared and the high bits contain OFFQ flags and pool ID.
 616 *
 617 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 618 * and clear_work_data() can be used to set the pwq, pool or clear
 619 * work->data.  These functions should only be called while the work is
 620 * owned - ie. while the PENDING bit is set.
 621 *
 622 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
 623 * corresponding to a work.  Pool is available once the work has been
 624 * queued anywhere after initialization until it is sync canceled.  pwq is
 625 * available only while the work item is queued.
 626 *
 627 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 628 * canceled.  While being canceled, a work item may have its PENDING set
 629 * but stay off timer and worklist for arbitrarily long and nobody should
 630 * try to steal the PENDING bit.
 631 */
 632static inline void set_work_data(struct work_struct *work, unsigned long data,
 633				 unsigned long flags)
 634{
 635	WARN_ON_ONCE(!work_pending(work));
 636	atomic_long_set(&work->data, data | flags | work_static(work));
 637}
 638
 639static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
 640			 unsigned long extra_flags)
 641{
 642	set_work_data(work, (unsigned long)pwq,
 643		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
 644}
 645
 646static void set_work_pool_and_keep_pending(struct work_struct *work,
 647					   int pool_id)
 648{
 649	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
 650		      WORK_STRUCT_PENDING);
 651}
 652
 653static void set_work_pool_and_clear_pending(struct work_struct *work,
 654					    int pool_id)
 655{
 656	/*
 657	 * The following wmb is paired with the implied mb in
 658	 * test_and_set_bit(PENDING) and ensures all updates to @work made
 659	 * here are visible to and precede any updates by the next PENDING
 660	 * owner.
 661	 */
 662	smp_wmb();
 663	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
 664	/*
 665	 * The following mb guarantees that previous clear of a PENDING bit
 666	 * will not be reordered with any speculative LOADS or STORES from
 667	 * work->current_func, which is executed afterwards.  This possible
 668	 * reordering can lead to a missed execution on attempt to queue
 669	 * the same @work.  E.g. consider this case:
 670	 *
 671	 *   CPU#0                         CPU#1
 672	 *   ----------------------------  --------------------------------
 673	 *
 674	 * 1  STORE event_indicated
 675	 * 2  queue_work_on() {
 676	 * 3    test_and_set_bit(PENDING)
 677	 * 4 }                             set_..._and_clear_pending() {
 678	 * 5                                 set_work_data() # clear bit
 679	 * 6                                 smp_mb()
 680	 * 7                               work->current_func() {
 681	 * 8				      LOAD event_indicated
 682	 *				   }
 683	 *
 684	 * Without an explicit full barrier speculative LOAD on line 8 can
 685	 * be executed before CPU#0 does STORE on line 1.  If that happens,
 686	 * CPU#0 observes the PENDING bit is still set and new execution of
 687	 * a @work is not queued in a hope, that CPU#1 will eventually
 688	 * finish the queued @work.  Meanwhile CPU#1 does not see
 689	 * event_indicated is set, because speculative LOAD was executed
 690	 * before actual STORE.
 691	 */
 692	smp_mb();
 693}
 694
 695static void clear_work_data(struct work_struct *work)
 696{
 697	smp_wmb();	/* see set_work_pool_and_clear_pending() */
 698	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
 699}
 700
 701static struct pool_workqueue *get_work_pwq(struct work_struct *work)
 702{
 703	unsigned long data = atomic_long_read(&work->data);
 704
 705	if (data & WORK_STRUCT_PWQ)
 706		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
 707	else
 708		return NULL;
 709}
 710
 711/**
 712 * get_work_pool - return the worker_pool a given work was associated with
 713 * @work: the work item of interest
 714 *
 715 * Pools are created and destroyed under wq_pool_mutex, and allows read
 716 * access under RCU read lock.  As such, this function should be
 717 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
 718 *
 719 * All fields of the returned pool are accessible as long as the above
 720 * mentioned locking is in effect.  If the returned pool needs to be used
 721 * beyond the critical section, the caller is responsible for ensuring the
 722 * returned pool is and stays online.
 723 *
 724 * Return: The worker_pool @work was last associated with.  %NULL if none.
 725 */
 726static struct worker_pool *get_work_pool(struct work_struct *work)
 727{
 728	unsigned long data = atomic_long_read(&work->data);
 729	int pool_id;
 730
 731	assert_rcu_or_pool_mutex();
 732
 733	if (data & WORK_STRUCT_PWQ)
 734		return ((struct pool_workqueue *)
 735			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
 736
 737	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
 738	if (pool_id == WORK_OFFQ_POOL_NONE)
 739		return NULL;
 740
 741	return idr_find(&worker_pool_idr, pool_id);
 742}
 743
 744/**
 745 * get_work_pool_id - return the worker pool ID a given work is associated with
 746 * @work: the work item of interest
 747 *
 748 * Return: The worker_pool ID @work was last associated with.
 749 * %WORK_OFFQ_POOL_NONE if none.
 750 */
 751static int get_work_pool_id(struct work_struct *work)
 752{
 753	unsigned long data = atomic_long_read(&work->data);
 754
 755	if (data & WORK_STRUCT_PWQ)
 756		return ((struct pool_workqueue *)
 757			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
 758
 759	return data >> WORK_OFFQ_POOL_SHIFT;
 760}
 761
 762static void mark_work_canceling(struct work_struct *work)
 763{
 764	unsigned long pool_id = get_work_pool_id(work);
 765
 766	pool_id <<= WORK_OFFQ_POOL_SHIFT;
 767	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
 768}
 769
 770static bool work_is_canceling(struct work_struct *work)
 771{
 772	unsigned long data = atomic_long_read(&work->data);
 773
 774	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
 775}
 776
 777/*
 778 * Policy functions.  These define the policies on how the global worker
 779 * pools are managed.  Unless noted otherwise, these functions assume that
 780 * they're being called with pool->lock held.
 781 */
 782
 783static bool __need_more_worker(struct worker_pool *pool)
 784{
 785	return !pool->nr_running;
 786}
 787
 788/*
 789 * Need to wake up a worker?  Called from anything but currently
 790 * running workers.
 791 *
 792 * Note that, because unbound workers never contribute to nr_running, this
 793 * function will always return %true for unbound pools as long as the
 794 * worklist isn't empty.
 795 */
 796static bool need_more_worker(struct worker_pool *pool)
 797{
 798	return !list_empty(&pool->worklist) && __need_more_worker(pool);
 799}
 800
 801/* Can I start working?  Called from busy but !running workers. */
 802static bool may_start_working(struct worker_pool *pool)
 803{
 804	return pool->nr_idle;
 805}
 806
 807/* Do I need to keep working?  Called from currently running workers. */
 808static bool keep_working(struct worker_pool *pool)
 809{
 810	return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
 
 811}
 812
 813/* Do we need a new worker?  Called from manager. */
 814static bool need_to_create_worker(struct worker_pool *pool)
 815{
 816	return need_more_worker(pool) && !may_start_working(pool);
 817}
 818
 819/* Do we have too many workers and should some go away? */
 820static bool too_many_workers(struct worker_pool *pool)
 821{
 822	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
 823	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
 824	int nr_busy = pool->nr_workers - nr_idle;
 825
 826	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
 827}
 828
 829/*
 830 * Wake up functions.
 831 */
 832
 833/* Return the first idle worker.  Called with pool->lock held. */
 834static struct worker *first_idle_worker(struct worker_pool *pool)
 835{
 836	if (unlikely(list_empty(&pool->idle_list)))
 837		return NULL;
 838
 839	return list_first_entry(&pool->idle_list, struct worker, entry);
 840}
 841
 842/**
 843 * wake_up_worker - wake up an idle worker
 844 * @pool: worker pool to wake worker from
 845 *
 846 * Wake up the first idle worker of @pool.
 847 *
 848 * CONTEXT:
 849 * raw_spin_lock_irq(pool->lock).
 850 */
 851static void wake_up_worker(struct worker_pool *pool)
 852{
 853	struct worker *worker = first_idle_worker(pool);
 854
 855	if (likely(worker))
 856		wake_up_process(worker->task);
 857}
 858
 859/**
 860 * wq_worker_running - a worker is running again
 861 * @task: task waking up
 862 *
 863 * This function is called when a worker returns from schedule()
 864 */
 865void wq_worker_running(struct task_struct *task)
 866{
 867	struct worker *worker = kthread_data(task);
 868
 869	if (!worker->sleeping)
 870		return;
 871
 872	/*
 873	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
 874	 * and the nr_running increment below, we may ruin the nr_running reset
 875	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
 876	 * pool. Protect against such race.
 877	 */
 878	preempt_disable();
 879	if (!(worker->flags & WORKER_NOT_RUNNING))
 880		worker->pool->nr_running++;
 881	preempt_enable();
 882	worker->sleeping = 0;
 883}
 884
 885/**
 886 * wq_worker_sleeping - a worker is going to sleep
 887 * @task: task going to sleep
 888 *
 889 * This function is called from schedule() when a busy worker is
 890 * going to sleep.
 
 891 */
 892void wq_worker_sleeping(struct task_struct *task)
 893{
 894	struct worker *worker = kthread_data(task);
 895	struct worker_pool *pool;
 896
 897	/*
 898	 * Rescuers, which may not have all the fields set up like normal
 899	 * workers, also reach here, let's not access anything before
 900	 * checking NOT_RUNNING.
 901	 */
 902	if (worker->flags & WORKER_NOT_RUNNING)
 903		return;
 904
 905	pool = worker->pool;
 906
 907	/* Return if preempted before wq_worker_running() was reached */
 908	if (worker->sleeping)
 909		return;
 910
 911	worker->sleeping = 1;
 912	raw_spin_lock_irq(&pool->lock);
 913
 914	/*
 915	 * Recheck in case unbind_workers() preempted us. We don't
 916	 * want to decrement nr_running after the worker is unbound
 917	 * and nr_running has been reset.
 918	 */
 919	if (worker->flags & WORKER_NOT_RUNNING) {
 920		raw_spin_unlock_irq(&pool->lock);
 921		return;
 
 
 
 
 
 
 
 
 922	}
 923
 924	pool->nr_running--;
 925	if (need_more_worker(pool))
 926		wake_up_worker(pool);
 927	raw_spin_unlock_irq(&pool->lock);
 928}
 929
 930/**
 931 * wq_worker_last_func - retrieve worker's last work function
 932 * @task: Task to retrieve last work function of.
 933 *
 934 * Determine the last function a worker executed. This is called from
 935 * the scheduler to get a worker's last known identity.
 936 *
 937 * CONTEXT:
 938 * raw_spin_lock_irq(rq->lock)
 939 *
 940 * This function is called during schedule() when a kworker is going
 941 * to sleep. It's used by psi to identify aggregation workers during
 942 * dequeuing, to allow periodic aggregation to shut-off when that
 943 * worker is the last task in the system or cgroup to go to sleep.
 944 *
 945 * As this function doesn't involve any workqueue-related locking, it
 946 * only returns stable values when called from inside the scheduler's
 947 * queuing and dequeuing paths, when @task, which must be a kworker,
 948 * is guaranteed to not be processing any works.
 949 *
 950 * Return:
 951 * The last work function %current executed as a worker, NULL if it
 952 * hasn't executed any work yet.
 953 */
 954work_func_t wq_worker_last_func(struct task_struct *task)
 955{
 956	struct worker *worker = kthread_data(task);
 957
 958	return worker->last_func;
 959}
 960
 961/**
 962 * worker_set_flags - set worker flags and adjust nr_running accordingly
 963 * @worker: self
 964 * @flags: flags to set
 965 *
 966 * Set @flags in @worker->flags and adjust nr_running accordingly.
 967 *
 968 * CONTEXT:
 969 * raw_spin_lock_irq(pool->lock)
 970 */
 971static inline void worker_set_flags(struct worker *worker, unsigned int flags)
 972{
 973	struct worker_pool *pool = worker->pool;
 974
 975	WARN_ON_ONCE(worker->task != current);
 976
 977	/* If transitioning into NOT_RUNNING, adjust nr_running. */
 978	if ((flags & WORKER_NOT_RUNNING) &&
 979	    !(worker->flags & WORKER_NOT_RUNNING)) {
 980		pool->nr_running--;
 981	}
 982
 983	worker->flags |= flags;
 984}
 985
 986/**
 987 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
 988 * @worker: self
 989 * @flags: flags to clear
 990 *
 991 * Clear @flags in @worker->flags and adjust nr_running accordingly.
 992 *
 993 * CONTEXT:
 994 * raw_spin_lock_irq(pool->lock)
 995 */
 996static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
 997{
 998	struct worker_pool *pool = worker->pool;
 999	unsigned int oflags = worker->flags;
1000
1001	WARN_ON_ONCE(worker->task != current);
1002
1003	worker->flags &= ~flags;
1004
1005	/*
1006	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
1007	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
1008	 * of multiple flags, not a single flag.
1009	 */
1010	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1011		if (!(worker->flags & WORKER_NOT_RUNNING))
1012			pool->nr_running++;
1013}
1014
1015/**
1016 * find_worker_executing_work - find worker which is executing a work
1017 * @pool: pool of interest
1018 * @work: work to find worker for
1019 *
1020 * Find a worker which is executing @work on @pool by searching
1021 * @pool->busy_hash which is keyed by the address of @work.  For a worker
1022 * to match, its current execution should match the address of @work and
1023 * its work function.  This is to avoid unwanted dependency between
1024 * unrelated work executions through a work item being recycled while still
1025 * being executed.
1026 *
1027 * This is a bit tricky.  A work item may be freed once its execution
1028 * starts and nothing prevents the freed area from being recycled for
1029 * another work item.  If the same work item address ends up being reused
1030 * before the original execution finishes, workqueue will identify the
1031 * recycled work item as currently executing and make it wait until the
1032 * current execution finishes, introducing an unwanted dependency.
1033 *
1034 * This function checks the work item address and work function to avoid
1035 * false positives.  Note that this isn't complete as one may construct a
1036 * work function which can introduce dependency onto itself through a
1037 * recycled work item.  Well, if somebody wants to shoot oneself in the
1038 * foot that badly, there's only so much we can do, and if such deadlock
1039 * actually occurs, it should be easy to locate the culprit work function.
1040 *
1041 * CONTEXT:
1042 * raw_spin_lock_irq(pool->lock).
1043 *
1044 * Return:
1045 * Pointer to worker which is executing @work if found, %NULL
1046 * otherwise.
1047 */
1048static struct worker *find_worker_executing_work(struct worker_pool *pool,
1049						 struct work_struct *work)
1050{
1051	struct worker *worker;
1052
1053	hash_for_each_possible(pool->busy_hash, worker, hentry,
1054			       (unsigned long)work)
1055		if (worker->current_work == work &&
1056		    worker->current_func == work->func)
1057			return worker;
1058
1059	return NULL;
1060}
1061
1062/**
1063 * move_linked_works - move linked works to a list
1064 * @work: start of series of works to be scheduled
1065 * @head: target list to append @work to
1066 * @nextp: out parameter for nested worklist walking
1067 *
1068 * Schedule linked works starting from @work to @head.  Work series to
1069 * be scheduled starts at @work and includes any consecutive work with
1070 * WORK_STRUCT_LINKED set in its predecessor.
1071 *
1072 * If @nextp is not NULL, it's updated to point to the next work of
1073 * the last scheduled work.  This allows move_linked_works() to be
1074 * nested inside outer list_for_each_entry_safe().
1075 *
1076 * CONTEXT:
1077 * raw_spin_lock_irq(pool->lock).
1078 */
1079static void move_linked_works(struct work_struct *work, struct list_head *head,
1080			      struct work_struct **nextp)
1081{
1082	struct work_struct *n;
1083
1084	/*
1085	 * Linked worklist will always end before the end of the list,
1086	 * use NULL for list head.
1087	 */
1088	list_for_each_entry_safe_from(work, n, NULL, entry) {
1089		list_move_tail(&work->entry, head);
1090		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1091			break;
1092	}
1093
1094	/*
1095	 * If we're already inside safe list traversal and have moved
1096	 * multiple works to the scheduled queue, the next position
1097	 * needs to be updated.
1098	 */
1099	if (nextp)
1100		*nextp = n;
1101}
1102
1103/**
1104 * get_pwq - get an extra reference on the specified pool_workqueue
1105 * @pwq: pool_workqueue to get
1106 *
1107 * Obtain an extra reference on @pwq.  The caller should guarantee that
1108 * @pwq has positive refcnt and be holding the matching pool->lock.
1109 */
1110static void get_pwq(struct pool_workqueue *pwq)
1111{
1112	lockdep_assert_held(&pwq->pool->lock);
1113	WARN_ON_ONCE(pwq->refcnt <= 0);
1114	pwq->refcnt++;
1115}
1116
1117/**
1118 * put_pwq - put a pool_workqueue reference
1119 * @pwq: pool_workqueue to put
1120 *
1121 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1122 * destruction.  The caller should be holding the matching pool->lock.
1123 */
1124static void put_pwq(struct pool_workqueue *pwq)
1125{
1126	lockdep_assert_held(&pwq->pool->lock);
1127	if (likely(--pwq->refcnt))
1128		return;
1129	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1130		return;
1131	/*
1132	 * @pwq can't be released under pool->lock, bounce to
1133	 * pwq_unbound_release_workfn().  This never recurses on the same
1134	 * pool->lock as this path is taken only for unbound workqueues and
1135	 * the release work item is scheduled on a per-cpu workqueue.  To
1136	 * avoid lockdep warning, unbound pool->locks are given lockdep
1137	 * subclass of 1 in get_unbound_pool().
1138	 */
1139	schedule_work(&pwq->unbound_release_work);
1140}
1141
1142/**
1143 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1144 * @pwq: pool_workqueue to put (can be %NULL)
1145 *
1146 * put_pwq() with locking.  This function also allows %NULL @pwq.
1147 */
1148static void put_pwq_unlocked(struct pool_workqueue *pwq)
1149{
1150	if (pwq) {
1151		/*
1152		 * As both pwqs and pools are RCU protected, the
1153		 * following lock operations are safe.
1154		 */
1155		raw_spin_lock_irq(&pwq->pool->lock);
1156		put_pwq(pwq);
1157		raw_spin_unlock_irq(&pwq->pool->lock);
1158	}
1159}
1160
1161static void pwq_activate_inactive_work(struct work_struct *work)
1162{
1163	struct pool_workqueue *pwq = get_work_pwq(work);
1164
1165	trace_workqueue_activate_work(work);
1166	if (list_empty(&pwq->pool->worklist))
1167		pwq->pool->watchdog_ts = jiffies;
1168	move_linked_works(work, &pwq->pool->worklist, NULL);
1169	__clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
1170	pwq->nr_active++;
1171}
1172
1173static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
1174{
1175	struct work_struct *work = list_first_entry(&pwq->inactive_works,
1176						    struct work_struct, entry);
1177
1178	pwq_activate_inactive_work(work);
1179}
1180
1181/**
1182 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1183 * @pwq: pwq of interest
1184 * @work_data: work_data of work which left the queue
1185 *
1186 * A work either has completed or is removed from pending queue,
1187 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1188 *
1189 * CONTEXT:
1190 * raw_spin_lock_irq(pool->lock).
1191 */
1192static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1193{
1194	int color = get_work_color(work_data);
1195
1196	if (!(work_data & WORK_STRUCT_INACTIVE)) {
1197		pwq->nr_active--;
1198		if (!list_empty(&pwq->inactive_works)) {
1199			/* one down, submit an inactive one */
1200			if (pwq->nr_active < pwq->max_active)
1201				pwq_activate_first_inactive(pwq);
1202		}
1203	}
1204
1205	pwq->nr_in_flight[color]--;
1206
 
 
 
 
 
 
 
1207	/* is flush in progress and are we at the flushing tip? */
1208	if (likely(pwq->flush_color != color))
1209		goto out_put;
1210
1211	/* are there still in-flight works? */
1212	if (pwq->nr_in_flight[color])
1213		goto out_put;
1214
1215	/* this pwq is done, clear flush_color */
1216	pwq->flush_color = -1;
1217
1218	/*
1219	 * If this was the last pwq, wake up the first flusher.  It
1220	 * will handle the rest.
1221	 */
1222	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1223		complete(&pwq->wq->first_flusher->done);
1224out_put:
1225	put_pwq(pwq);
1226}
1227
1228/**
1229 * try_to_grab_pending - steal work item from worklist and disable irq
1230 * @work: work item to steal
1231 * @is_dwork: @work is a delayed_work
1232 * @flags: place to store irq state
1233 *
1234 * Try to grab PENDING bit of @work.  This function can handle @work in any
1235 * stable state - idle, on timer or on worklist.
1236 *
1237 * Return:
1238 *
1239 *  ========	================================================================
1240 *  1		if @work was pending and we successfully stole PENDING
1241 *  0		if @work was idle and we claimed PENDING
1242 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1243 *  -ENOENT	if someone else is canceling @work, this state may persist
1244 *		for arbitrarily long
1245 *  ========	================================================================
1246 *
1247 * Note:
1248 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1249 * interrupted while holding PENDING and @work off queue, irq must be
1250 * disabled on entry.  This, combined with delayed_work->timer being
1251 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1252 *
1253 * On successful return, >= 0, irq is disabled and the caller is
1254 * responsible for releasing it using local_irq_restore(*@flags).
1255 *
1256 * This function is safe to call from any context including IRQ handler.
1257 */
1258static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1259			       unsigned long *flags)
1260{
1261	struct worker_pool *pool;
1262	struct pool_workqueue *pwq;
1263
1264	local_irq_save(*flags);
1265
1266	/* try to steal the timer if it exists */
1267	if (is_dwork) {
1268		struct delayed_work *dwork = to_delayed_work(work);
1269
1270		/*
1271		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1272		 * guaranteed that the timer is not queued anywhere and not
1273		 * running on the local CPU.
1274		 */
1275		if (likely(del_timer(&dwork->timer)))
1276			return 1;
1277	}
1278
1279	/* try to claim PENDING the normal way */
1280	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1281		return 0;
1282
1283	rcu_read_lock();
1284	/*
1285	 * The queueing is in progress, or it is already queued. Try to
1286	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1287	 */
1288	pool = get_work_pool(work);
1289	if (!pool)
1290		goto fail;
1291
1292	raw_spin_lock(&pool->lock);
1293	/*
1294	 * work->data is guaranteed to point to pwq only while the work
1295	 * item is queued on pwq->wq, and both updating work->data to point
1296	 * to pwq on queueing and to pool on dequeueing are done under
1297	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1298	 * points to pwq which is associated with a locked pool, the work
1299	 * item is currently queued on that pool.
1300	 */
1301	pwq = get_work_pwq(work);
1302	if (pwq && pwq->pool == pool) {
1303		debug_work_deactivate(work);
1304
1305		/*
1306		 * A cancelable inactive work item must be in the
1307		 * pwq->inactive_works since a queued barrier can't be
1308		 * canceled (see the comments in insert_wq_barrier()).
1309		 *
1310		 * An inactive work item cannot be grabbed directly because
1311		 * it might have linked barrier work items which, if left
1312		 * on the inactive_works list, will confuse pwq->nr_active
1313		 * management later on and cause stall.  Make sure the work
1314		 * item is activated before grabbing.
1315		 */
1316		if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
1317			pwq_activate_inactive_work(work);
1318
1319		list_del_init(&work->entry);
1320		pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
1321
1322		/* work->data points to pwq iff queued, point to pool */
1323		set_work_pool_and_keep_pending(work, pool->id);
1324
1325		raw_spin_unlock(&pool->lock);
1326		rcu_read_unlock();
1327		return 1;
1328	}
1329	raw_spin_unlock(&pool->lock);
1330fail:
1331	rcu_read_unlock();
1332	local_irq_restore(*flags);
1333	if (work_is_canceling(work))
1334		return -ENOENT;
1335	cpu_relax();
1336	return -EAGAIN;
1337}
1338
1339/**
1340 * insert_work - insert a work into a pool
1341 * @pwq: pwq @work belongs to
1342 * @work: work to insert
1343 * @head: insertion point
1344 * @extra_flags: extra WORK_STRUCT_* flags to set
1345 *
1346 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1347 * work_struct flags.
1348 *
1349 * CONTEXT:
1350 * raw_spin_lock_irq(pool->lock).
1351 */
1352static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1353			struct list_head *head, unsigned int extra_flags)
1354{
1355	struct worker_pool *pool = pwq->pool;
1356
1357	/* record the work call stack in order to print it in KASAN reports */
1358	kasan_record_aux_stack_noalloc(work);
1359
1360	/* we own @work, set data and link */
1361	set_work_pwq(work, pwq, extra_flags);
1362	list_add_tail(&work->entry, head);
1363	get_pwq(pwq);
1364
 
 
 
 
 
 
 
1365	if (__need_more_worker(pool))
1366		wake_up_worker(pool);
1367}
1368
1369/*
1370 * Test whether @work is being queued from another work executing on the
1371 * same workqueue.
1372 */
1373static bool is_chained_work(struct workqueue_struct *wq)
1374{
1375	struct worker *worker;
1376
1377	worker = current_wq_worker();
1378	/*
1379	 * Return %true iff I'm a worker executing a work item on @wq.  If
1380	 * I'm @worker, it's safe to dereference it without locking.
1381	 */
1382	return worker && worker->current_pwq->wq == wq;
1383}
1384
1385/*
1386 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1387 * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1388 * avoid perturbing sensitive tasks.
1389 */
1390static int wq_select_unbound_cpu(int cpu)
1391{
1392	static bool printed_dbg_warning;
1393	int new_cpu;
1394
1395	if (likely(!wq_debug_force_rr_cpu)) {
1396		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1397			return cpu;
1398	} else if (!printed_dbg_warning) {
1399		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1400		printed_dbg_warning = true;
1401	}
1402
1403	if (cpumask_empty(wq_unbound_cpumask))
1404		return cpu;
1405
1406	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1407	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1408	if (unlikely(new_cpu >= nr_cpu_ids)) {
1409		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1410		if (unlikely(new_cpu >= nr_cpu_ids))
1411			return cpu;
1412	}
1413	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1414
1415	return new_cpu;
1416}
1417
1418static void __queue_work(int cpu, struct workqueue_struct *wq,
1419			 struct work_struct *work)
1420{
1421	struct pool_workqueue *pwq;
1422	struct worker_pool *last_pool;
1423	struct list_head *worklist;
1424	unsigned int work_flags;
1425	unsigned int req_cpu = cpu;
1426
1427	/*
1428	 * While a work item is PENDING && off queue, a task trying to
1429	 * steal the PENDING will busy-loop waiting for it to either get
1430	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1431	 * happen with IRQ disabled.
1432	 */
1433	lockdep_assert_irqs_disabled();
1434
1435
1436	/* if draining, only works from the same workqueue are allowed */
1437	if (unlikely(wq->flags & __WQ_DRAINING) &&
1438	    WARN_ON_ONCE(!is_chained_work(wq)))
1439		return;
1440	rcu_read_lock();
1441retry:
1442	/* pwq which will be used unless @work is executing elsewhere */
1443	if (wq->flags & WQ_UNBOUND) {
1444		if (req_cpu == WORK_CPU_UNBOUND)
1445			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1446		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1447	} else {
1448		if (req_cpu == WORK_CPU_UNBOUND)
1449			cpu = raw_smp_processor_id();
1450		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1451	}
1452
1453	/*
1454	 * If @work was previously on a different pool, it might still be
1455	 * running there, in which case the work needs to be queued on that
1456	 * pool to guarantee non-reentrancy.
1457	 */
1458	last_pool = get_work_pool(work);
1459	if (last_pool && last_pool != pwq->pool) {
1460		struct worker *worker;
1461
1462		raw_spin_lock(&last_pool->lock);
1463
1464		worker = find_worker_executing_work(last_pool, work);
1465
1466		if (worker && worker->current_pwq->wq == wq) {
1467			pwq = worker->current_pwq;
1468		} else {
1469			/* meh... not running there, queue here */
1470			raw_spin_unlock(&last_pool->lock);
1471			raw_spin_lock(&pwq->pool->lock);
1472		}
1473	} else {
1474		raw_spin_lock(&pwq->pool->lock);
1475	}
1476
1477	/*
1478	 * pwq is determined and locked.  For unbound pools, we could have
1479	 * raced with pwq release and it could already be dead.  If its
1480	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1481	 * without another pwq replacing it in the numa_pwq_tbl or while
1482	 * work items are executing on it, so the retrying is guaranteed to
1483	 * make forward-progress.
1484	 */
1485	if (unlikely(!pwq->refcnt)) {
1486		if (wq->flags & WQ_UNBOUND) {
1487			raw_spin_unlock(&pwq->pool->lock);
1488			cpu_relax();
1489			goto retry;
1490		}
1491		/* oops */
1492		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1493			  wq->name, cpu);
1494	}
1495
1496	/* pwq determined, queue */
1497	trace_workqueue_queue_work(req_cpu, pwq, work);
1498
1499	if (WARN_ON(!list_empty(&work->entry)))
1500		goto out;
1501
1502	pwq->nr_in_flight[pwq->work_color]++;
1503	work_flags = work_color_to_flags(pwq->work_color);
1504
1505	if (likely(pwq->nr_active < pwq->max_active)) {
1506		trace_workqueue_activate_work(work);
1507		pwq->nr_active++;
1508		worklist = &pwq->pool->worklist;
1509		if (list_empty(worklist))
1510			pwq->pool->watchdog_ts = jiffies;
1511	} else {
1512		work_flags |= WORK_STRUCT_INACTIVE;
1513		worklist = &pwq->inactive_works;
1514	}
1515
1516	debug_work_activate(work);
1517	insert_work(pwq, work, worklist, work_flags);
1518
1519out:
1520	raw_spin_unlock(&pwq->pool->lock);
1521	rcu_read_unlock();
1522}
1523
1524/**
1525 * queue_work_on - queue work on specific cpu
1526 * @cpu: CPU number to execute work on
1527 * @wq: workqueue to use
1528 * @work: work to queue
1529 *
1530 * We queue the work to a specific CPU, the caller must ensure it
1531 * can't go away.  Callers that fail to ensure that the specified
1532 * CPU cannot go away will execute on a randomly chosen CPU.
1533 *
1534 * Return: %false if @work was already on a queue, %true otherwise.
1535 */
1536bool queue_work_on(int cpu, struct workqueue_struct *wq,
1537		   struct work_struct *work)
1538{
1539	bool ret = false;
1540	unsigned long flags;
1541
1542	local_irq_save(flags);
1543
1544	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1545		__queue_work(cpu, wq, work);
1546		ret = true;
1547	}
1548
1549	local_irq_restore(flags);
1550	return ret;
1551}
1552EXPORT_SYMBOL(queue_work_on);
1553
1554/**
1555 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1556 * @node: NUMA node ID that we want to select a CPU from
1557 *
1558 * This function will attempt to find a "random" cpu available on a given
1559 * node. If there are no CPUs available on the given node it will return
1560 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1561 * available CPU if we need to schedule this work.
1562 */
1563static int workqueue_select_cpu_near(int node)
1564{
1565	int cpu;
1566
1567	/* No point in doing this if NUMA isn't enabled for workqueues */
1568	if (!wq_numa_enabled)
1569		return WORK_CPU_UNBOUND;
1570
1571	/* Delay binding to CPU if node is not valid or online */
1572	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1573		return WORK_CPU_UNBOUND;
1574
1575	/* Use local node/cpu if we are already there */
1576	cpu = raw_smp_processor_id();
1577	if (node == cpu_to_node(cpu))
1578		return cpu;
1579
1580	/* Use "random" otherwise know as "first" online CPU of node */
1581	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1582
1583	/* If CPU is valid return that, otherwise just defer */
1584	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1585}
1586
1587/**
1588 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1589 * @node: NUMA node that we are targeting the work for
1590 * @wq: workqueue to use
1591 * @work: work to queue
1592 *
1593 * We queue the work to a "random" CPU within a given NUMA node. The basic
1594 * idea here is to provide a way to somehow associate work with a given
1595 * NUMA node.
1596 *
1597 * This function will only make a best effort attempt at getting this onto
1598 * the right NUMA node. If no node is requested or the requested node is
1599 * offline then we just fall back to standard queue_work behavior.
1600 *
1601 * Currently the "random" CPU ends up being the first available CPU in the
1602 * intersection of cpu_online_mask and the cpumask of the node, unless we
1603 * are running on the node. In that case we just use the current CPU.
1604 *
1605 * Return: %false if @work was already on a queue, %true otherwise.
1606 */
1607bool queue_work_node(int node, struct workqueue_struct *wq,
1608		     struct work_struct *work)
1609{
1610	unsigned long flags;
1611	bool ret = false;
1612
1613	/*
1614	 * This current implementation is specific to unbound workqueues.
1615	 * Specifically we only return the first available CPU for a given
1616	 * node instead of cycling through individual CPUs within the node.
1617	 *
1618	 * If this is used with a per-cpu workqueue then the logic in
1619	 * workqueue_select_cpu_near would need to be updated to allow for
1620	 * some round robin type logic.
1621	 */
1622	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1623
1624	local_irq_save(flags);
1625
1626	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1627		int cpu = workqueue_select_cpu_near(node);
1628
1629		__queue_work(cpu, wq, work);
1630		ret = true;
1631	}
1632
1633	local_irq_restore(flags);
1634	return ret;
1635}
1636EXPORT_SYMBOL_GPL(queue_work_node);
1637
1638void delayed_work_timer_fn(struct timer_list *t)
1639{
1640	struct delayed_work *dwork = from_timer(dwork, t, timer);
1641
1642	/* should have been called from irqsafe timer with irq already off */
1643	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1644}
1645EXPORT_SYMBOL(delayed_work_timer_fn);
1646
1647static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1648				struct delayed_work *dwork, unsigned long delay)
1649{
1650	struct timer_list *timer = &dwork->timer;
1651	struct work_struct *work = &dwork->work;
1652
1653	WARN_ON_ONCE(!wq);
1654	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1655	WARN_ON_ONCE(timer_pending(timer));
1656	WARN_ON_ONCE(!list_empty(&work->entry));
1657
1658	/*
1659	 * If @delay is 0, queue @dwork->work immediately.  This is for
1660	 * both optimization and correctness.  The earliest @timer can
1661	 * expire is on the closest next tick and delayed_work users depend
1662	 * on that there's no such delay when @delay is 0.
1663	 */
1664	if (!delay) {
1665		__queue_work(cpu, wq, &dwork->work);
1666		return;
1667	}
1668
1669	dwork->wq = wq;
1670	dwork->cpu = cpu;
1671	timer->expires = jiffies + delay;
1672
1673	if (unlikely(cpu != WORK_CPU_UNBOUND))
1674		add_timer_on(timer, cpu);
1675	else
1676		add_timer(timer);
1677}
1678
1679/**
1680 * queue_delayed_work_on - queue work on specific CPU after delay
1681 * @cpu: CPU number to execute work on
1682 * @wq: workqueue to use
1683 * @dwork: work to queue
1684 * @delay: number of jiffies to wait before queueing
1685 *
1686 * Return: %false if @work was already on a queue, %true otherwise.  If
1687 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1688 * execution.
1689 */
1690bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1691			   struct delayed_work *dwork, unsigned long delay)
1692{
1693	struct work_struct *work = &dwork->work;
1694	bool ret = false;
1695	unsigned long flags;
1696
1697	/* read the comment in __queue_work() */
1698	local_irq_save(flags);
1699
1700	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1701		__queue_delayed_work(cpu, wq, dwork, delay);
1702		ret = true;
1703	}
1704
1705	local_irq_restore(flags);
1706	return ret;
1707}
1708EXPORT_SYMBOL(queue_delayed_work_on);
1709
1710/**
1711 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1712 * @cpu: CPU number to execute work on
1713 * @wq: workqueue to use
1714 * @dwork: work to queue
1715 * @delay: number of jiffies to wait before queueing
1716 *
1717 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1718 * modify @dwork's timer so that it expires after @delay.  If @delay is
1719 * zero, @work is guaranteed to be scheduled immediately regardless of its
1720 * current state.
1721 *
1722 * Return: %false if @dwork was idle and queued, %true if @dwork was
1723 * pending and its timer was modified.
1724 *
1725 * This function is safe to call from any context including IRQ handler.
1726 * See try_to_grab_pending() for details.
1727 */
1728bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1729			 struct delayed_work *dwork, unsigned long delay)
1730{
1731	unsigned long flags;
1732	int ret;
1733
1734	do {
1735		ret = try_to_grab_pending(&dwork->work, true, &flags);
1736	} while (unlikely(ret == -EAGAIN));
1737
1738	if (likely(ret >= 0)) {
1739		__queue_delayed_work(cpu, wq, dwork, delay);
1740		local_irq_restore(flags);
1741	}
1742
1743	/* -ENOENT from try_to_grab_pending() becomes %true */
1744	return ret;
1745}
1746EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1747
1748static void rcu_work_rcufn(struct rcu_head *rcu)
1749{
1750	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1751
1752	/* read the comment in __queue_work() */
1753	local_irq_disable();
1754	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1755	local_irq_enable();
1756}
1757
1758/**
1759 * queue_rcu_work - queue work after a RCU grace period
1760 * @wq: workqueue to use
1761 * @rwork: work to queue
1762 *
1763 * Return: %false if @rwork was already pending, %true otherwise.  Note
1764 * that a full RCU grace period is guaranteed only after a %true return.
1765 * While @rwork is guaranteed to be executed after a %false return, the
1766 * execution may happen before a full RCU grace period has passed.
1767 */
1768bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1769{
1770	struct work_struct *work = &rwork->work;
1771
1772	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1773		rwork->wq = wq;
1774		call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
1775		return true;
1776	}
1777
1778	return false;
1779}
1780EXPORT_SYMBOL(queue_rcu_work);
1781
1782/**
1783 * worker_enter_idle - enter idle state
1784 * @worker: worker which is entering idle state
1785 *
1786 * @worker is entering idle state.  Update stats and idle timer if
1787 * necessary.
1788 *
1789 * LOCKING:
1790 * raw_spin_lock_irq(pool->lock).
1791 */
1792static void worker_enter_idle(struct worker *worker)
1793{
1794	struct worker_pool *pool = worker->pool;
1795
1796	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1797	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1798			 (worker->hentry.next || worker->hentry.pprev)))
1799		return;
1800
1801	/* can't use worker_set_flags(), also called from create_worker() */
1802	worker->flags |= WORKER_IDLE;
1803	pool->nr_idle++;
1804	worker->last_active = jiffies;
1805
1806	/* idle_list is LIFO */
1807	list_add(&worker->entry, &pool->idle_list);
1808
1809	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1810		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1811
1812	/* Sanity check nr_running. */
1813	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
 
 
 
 
 
 
 
1814}
1815
1816/**
1817 * worker_leave_idle - leave idle state
1818 * @worker: worker which is leaving idle state
1819 *
1820 * @worker is leaving idle state.  Update stats.
1821 *
1822 * LOCKING:
1823 * raw_spin_lock_irq(pool->lock).
1824 */
1825static void worker_leave_idle(struct worker *worker)
1826{
1827	struct worker_pool *pool = worker->pool;
1828
1829	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1830		return;
1831	worker_clr_flags(worker, WORKER_IDLE);
1832	pool->nr_idle--;
1833	list_del_init(&worker->entry);
1834}
1835
1836static struct worker *alloc_worker(int node)
1837{
1838	struct worker *worker;
1839
1840	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1841	if (worker) {
1842		INIT_LIST_HEAD(&worker->entry);
1843		INIT_LIST_HEAD(&worker->scheduled);
1844		INIT_LIST_HEAD(&worker->node);
1845		/* on creation a worker is in !idle && prep state */
1846		worker->flags = WORKER_PREP;
1847	}
1848	return worker;
1849}
1850
1851/**
1852 * worker_attach_to_pool() - attach a worker to a pool
1853 * @worker: worker to be attached
1854 * @pool: the target pool
1855 *
1856 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1857 * cpu-binding of @worker are kept coordinated with the pool across
1858 * cpu-[un]hotplugs.
1859 */
1860static void worker_attach_to_pool(struct worker *worker,
1861				   struct worker_pool *pool)
1862{
1863	mutex_lock(&wq_pool_attach_mutex);
1864
1865	/*
1866	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1867	 * stable across this function.  See the comments above the flag
1868	 * definition for details.
1869	 */
1870	if (pool->flags & POOL_DISASSOCIATED)
1871		worker->flags |= WORKER_UNBOUND;
1872	else
1873		kthread_set_per_cpu(worker->task, pool->cpu);
1874
1875	if (worker->rescue_wq)
1876		set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1877
1878	list_add_tail(&worker->node, &pool->workers);
1879	worker->pool = pool;
1880
1881	mutex_unlock(&wq_pool_attach_mutex);
1882}
1883
1884/**
1885 * worker_detach_from_pool() - detach a worker from its pool
1886 * @worker: worker which is attached to its pool
1887 *
1888 * Undo the attaching which had been done in worker_attach_to_pool().  The
1889 * caller worker shouldn't access to the pool after detached except it has
1890 * other reference to the pool.
1891 */
1892static void worker_detach_from_pool(struct worker *worker)
1893{
1894	struct worker_pool *pool = worker->pool;
1895	struct completion *detach_completion = NULL;
1896
1897	mutex_lock(&wq_pool_attach_mutex);
1898
1899	kthread_set_per_cpu(worker->task, -1);
1900	list_del(&worker->node);
1901	worker->pool = NULL;
1902
1903	if (list_empty(&pool->workers))
1904		detach_completion = pool->detach_completion;
1905	mutex_unlock(&wq_pool_attach_mutex);
1906
1907	/* clear leftover flags without pool->lock after it is detached */
1908	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1909
1910	if (detach_completion)
1911		complete(detach_completion);
1912}
1913
1914/**
1915 * create_worker - create a new workqueue worker
1916 * @pool: pool the new worker will belong to
1917 *
1918 * Create and start a new worker which is attached to @pool.
1919 *
1920 * CONTEXT:
1921 * Might sleep.  Does GFP_KERNEL allocations.
1922 *
1923 * Return:
1924 * Pointer to the newly created worker.
1925 */
1926static struct worker *create_worker(struct worker_pool *pool)
1927{
1928	struct worker *worker;
1929	int id;
1930	char id_buf[16];
1931
1932	/* ID is needed to determine kthread name */
1933	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
1934	if (id < 0)
1935		return NULL;
1936
1937	worker = alloc_worker(pool->node);
1938	if (!worker)
1939		goto fail;
1940
1941	worker->id = id;
1942
1943	if (pool->cpu >= 0)
1944		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1945			 pool->attrs->nice < 0  ? "H" : "");
1946	else
1947		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1948
1949	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1950					      "kworker/%s", id_buf);
1951	if (IS_ERR(worker->task))
1952		goto fail;
1953
1954	set_user_nice(worker->task, pool->attrs->nice);
1955	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1956
1957	/* successful, attach the worker to the pool */
1958	worker_attach_to_pool(worker, pool);
1959
1960	/* start the newly created worker */
1961	raw_spin_lock_irq(&pool->lock);
1962	worker->pool->nr_workers++;
1963	worker_enter_idle(worker);
1964	wake_up_process(worker->task);
1965	raw_spin_unlock_irq(&pool->lock);
1966
1967	return worker;
1968
1969fail:
1970	ida_free(&pool->worker_ida, id);
 
1971	kfree(worker);
1972	return NULL;
1973}
1974
1975/**
1976 * destroy_worker - destroy a workqueue worker
1977 * @worker: worker to be destroyed
1978 *
1979 * Destroy @worker and adjust @pool stats accordingly.  The worker should
1980 * be idle.
1981 *
1982 * CONTEXT:
1983 * raw_spin_lock_irq(pool->lock).
1984 */
1985static void destroy_worker(struct worker *worker)
1986{
1987	struct worker_pool *pool = worker->pool;
1988
1989	lockdep_assert_held(&pool->lock);
1990
1991	/* sanity check frenzy */
1992	if (WARN_ON(worker->current_work) ||
1993	    WARN_ON(!list_empty(&worker->scheduled)) ||
1994	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1995		return;
1996
1997	pool->nr_workers--;
1998	pool->nr_idle--;
1999
2000	list_del_init(&worker->entry);
2001	worker->flags |= WORKER_DIE;
2002	wake_up_process(worker->task);
2003}
2004
2005static void idle_worker_timeout(struct timer_list *t)
2006{
2007	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2008
2009	raw_spin_lock_irq(&pool->lock);
2010
2011	while (too_many_workers(pool)) {
2012		struct worker *worker;
2013		unsigned long expires;
2014
2015		/* idle_list is kept in LIFO order, check the last one */
2016		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2017		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2018
2019		if (time_before(jiffies, expires)) {
2020			mod_timer(&pool->idle_timer, expires);
2021			break;
2022		}
2023
2024		destroy_worker(worker);
2025	}
2026
2027	raw_spin_unlock_irq(&pool->lock);
2028}
2029
2030static void send_mayday(struct work_struct *work)
2031{
2032	struct pool_workqueue *pwq = get_work_pwq(work);
2033	struct workqueue_struct *wq = pwq->wq;
2034
2035	lockdep_assert_held(&wq_mayday_lock);
2036
2037	if (!wq->rescuer)
2038		return;
2039
2040	/* mayday mayday mayday */
2041	if (list_empty(&pwq->mayday_node)) {
2042		/*
2043		 * If @pwq is for an unbound wq, its base ref may be put at
2044		 * any time due to an attribute change.  Pin @pwq until the
2045		 * rescuer is done with it.
2046		 */
2047		get_pwq(pwq);
2048		list_add_tail(&pwq->mayday_node, &wq->maydays);
2049		wake_up_process(wq->rescuer->task);
2050	}
2051}
2052
2053static void pool_mayday_timeout(struct timer_list *t)
2054{
2055	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2056	struct work_struct *work;
2057
2058	raw_spin_lock_irq(&pool->lock);
2059	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2060
2061	if (need_to_create_worker(pool)) {
2062		/*
2063		 * We've been trying to create a new worker but
2064		 * haven't been successful.  We might be hitting an
2065		 * allocation deadlock.  Send distress signals to
2066		 * rescuers.
2067		 */
2068		list_for_each_entry(work, &pool->worklist, entry)
2069			send_mayday(work);
2070	}
2071
2072	raw_spin_unlock(&wq_mayday_lock);
2073	raw_spin_unlock_irq(&pool->lock);
2074
2075	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2076}
2077
2078/**
2079 * maybe_create_worker - create a new worker if necessary
2080 * @pool: pool to create a new worker for
2081 *
2082 * Create a new worker for @pool if necessary.  @pool is guaranteed to
2083 * have at least one idle worker on return from this function.  If
2084 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2085 * sent to all rescuers with works scheduled on @pool to resolve
2086 * possible allocation deadlock.
2087 *
2088 * On return, need_to_create_worker() is guaranteed to be %false and
2089 * may_start_working() %true.
2090 *
2091 * LOCKING:
2092 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2093 * multiple times.  Does GFP_KERNEL allocations.  Called only from
2094 * manager.
2095 */
2096static void maybe_create_worker(struct worker_pool *pool)
2097__releases(&pool->lock)
2098__acquires(&pool->lock)
2099{
2100restart:
2101	raw_spin_unlock_irq(&pool->lock);
2102
2103	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2104	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2105
2106	while (true) {
2107		if (create_worker(pool) || !need_to_create_worker(pool))
2108			break;
2109
2110		schedule_timeout_interruptible(CREATE_COOLDOWN);
2111
2112		if (!need_to_create_worker(pool))
2113			break;
2114	}
2115
2116	del_timer_sync(&pool->mayday_timer);
2117	raw_spin_lock_irq(&pool->lock);
2118	/*
2119	 * This is necessary even after a new worker was just successfully
2120	 * created as @pool->lock was dropped and the new worker might have
2121	 * already become busy.
2122	 */
2123	if (need_to_create_worker(pool))
2124		goto restart;
2125}
2126
2127/**
2128 * manage_workers - manage worker pool
2129 * @worker: self
2130 *
2131 * Assume the manager role and manage the worker pool @worker belongs
2132 * to.  At any given time, there can be only zero or one manager per
2133 * pool.  The exclusion is handled automatically by this function.
2134 *
2135 * The caller can safely start processing works on false return.  On
2136 * true return, it's guaranteed that need_to_create_worker() is false
2137 * and may_start_working() is true.
2138 *
2139 * CONTEXT:
2140 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2141 * multiple times.  Does GFP_KERNEL allocations.
2142 *
2143 * Return:
2144 * %false if the pool doesn't need management and the caller can safely
2145 * start processing works, %true if management function was performed and
2146 * the conditions that the caller verified before calling the function may
2147 * no longer be true.
2148 */
2149static bool manage_workers(struct worker *worker)
2150{
2151	struct worker_pool *pool = worker->pool;
2152
2153	if (pool->flags & POOL_MANAGER_ACTIVE)
2154		return false;
2155
2156	pool->flags |= POOL_MANAGER_ACTIVE;
2157	pool->manager = worker;
2158
2159	maybe_create_worker(pool);
2160
2161	pool->manager = NULL;
2162	pool->flags &= ~POOL_MANAGER_ACTIVE;
2163	rcuwait_wake_up(&manager_wait);
2164	return true;
2165}
2166
2167/**
2168 * process_one_work - process single work
2169 * @worker: self
2170 * @work: work to process
2171 *
2172 * Process @work.  This function contains all the logics necessary to
2173 * process a single work including synchronization against and
2174 * interaction with other workers on the same cpu, queueing and
2175 * flushing.  As long as context requirement is met, any worker can
2176 * call this function to process a work.
2177 *
2178 * CONTEXT:
2179 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2180 */
2181static void process_one_work(struct worker *worker, struct work_struct *work)
2182__releases(&pool->lock)
2183__acquires(&pool->lock)
2184{
2185	struct pool_workqueue *pwq = get_work_pwq(work);
2186	struct worker_pool *pool = worker->pool;
2187	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2188	unsigned long work_data;
2189	struct worker *collision;
2190#ifdef CONFIG_LOCKDEP
2191	/*
2192	 * It is permissible to free the struct work_struct from
2193	 * inside the function that is called from it, this we need to
2194	 * take into account for lockdep too.  To avoid bogus "held
2195	 * lock freed" warnings as well as problems when looking into
2196	 * work->lockdep_map, make a copy and use that here.
2197	 */
2198	struct lockdep_map lockdep_map;
2199
2200	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2201#endif
2202	/* ensure we're on the correct CPU */
2203	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2204		     raw_smp_processor_id() != pool->cpu);
2205
2206	/*
2207	 * A single work shouldn't be executed concurrently by
2208	 * multiple workers on a single cpu.  Check whether anyone is
2209	 * already processing the work.  If so, defer the work to the
2210	 * currently executing one.
2211	 */
2212	collision = find_worker_executing_work(pool, work);
2213	if (unlikely(collision)) {
2214		move_linked_works(work, &collision->scheduled, NULL);
2215		return;
2216	}
2217
2218	/* claim and dequeue */
2219	debug_work_deactivate(work);
2220	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2221	worker->current_work = work;
2222	worker->current_func = work->func;
2223	worker->current_pwq = pwq;
2224	work_data = *work_data_bits(work);
2225	worker->current_color = get_work_color(work_data);
2226
2227	/*
2228	 * Record wq name for cmdline and debug reporting, may get
2229	 * overridden through set_worker_desc().
2230	 */
2231	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2232
2233	list_del_init(&work->entry);
2234
2235	/*
2236	 * CPU intensive works don't participate in concurrency management.
2237	 * They're the scheduler's responsibility.  This takes @worker out
2238	 * of concurrency management and the next code block will chain
2239	 * execution of the pending work items.
2240	 */
2241	if (unlikely(cpu_intensive))
2242		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2243
2244	/*
2245	 * Wake up another worker if necessary.  The condition is always
2246	 * false for normal per-cpu workers since nr_running would always
2247	 * be >= 1 at this point.  This is used to chain execution of the
2248	 * pending work items for WORKER_NOT_RUNNING workers such as the
2249	 * UNBOUND and CPU_INTENSIVE ones.
2250	 */
2251	if (need_more_worker(pool))
2252		wake_up_worker(pool);
2253
2254	/*
2255	 * Record the last pool and clear PENDING which should be the last
2256	 * update to @work.  Also, do this inside @pool->lock so that
2257	 * PENDING and queued state changes happen together while IRQ is
2258	 * disabled.
2259	 */
2260	set_work_pool_and_clear_pending(work, pool->id);
2261
2262	raw_spin_unlock_irq(&pool->lock);
2263
2264	lock_map_acquire(&pwq->wq->lockdep_map);
2265	lock_map_acquire(&lockdep_map);
2266	/*
2267	 * Strictly speaking we should mark the invariant state without holding
2268	 * any locks, that is, before these two lock_map_acquire()'s.
2269	 *
2270	 * However, that would result in:
2271	 *
2272	 *   A(W1)
2273	 *   WFC(C)
2274	 *		A(W1)
2275	 *		C(C)
2276	 *
2277	 * Which would create W1->C->W1 dependencies, even though there is no
2278	 * actual deadlock possible. There are two solutions, using a
2279	 * read-recursive acquire on the work(queue) 'locks', but this will then
2280	 * hit the lockdep limitation on recursive locks, or simply discard
2281	 * these locks.
2282	 *
2283	 * AFAICT there is no possible deadlock scenario between the
2284	 * flush_work() and complete() primitives (except for single-threaded
2285	 * workqueues), so hiding them isn't a problem.
2286	 */
2287	lockdep_invariant_state(true);
2288	trace_workqueue_execute_start(work);
2289	worker->current_func(work);
2290	/*
2291	 * While we must be careful to not use "work" after this, the trace
2292	 * point will only record its address.
2293	 */
2294	trace_workqueue_execute_end(work, worker->current_func);
2295	lock_map_release(&lockdep_map);
2296	lock_map_release(&pwq->wq->lockdep_map);
2297
2298	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2299		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2300		       "     last function: %ps\n",
2301		       current->comm, preempt_count(), task_pid_nr(current),
2302		       worker->current_func);
2303		debug_show_held_locks(current);
2304		dump_stack();
2305	}
2306
2307	/*
2308	 * The following prevents a kworker from hogging CPU on !PREEMPTION
2309	 * kernels, where a requeueing work item waiting for something to
2310	 * happen could deadlock with stop_machine as such work item could
2311	 * indefinitely requeue itself while all other CPUs are trapped in
2312	 * stop_machine. At the same time, report a quiescent RCU state so
2313	 * the same condition doesn't freeze RCU.
2314	 */
2315	cond_resched();
2316
2317	raw_spin_lock_irq(&pool->lock);
2318
2319	/* clear cpu intensive status */
2320	if (unlikely(cpu_intensive))
2321		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2322
2323	/* tag the worker for identification in schedule() */
2324	worker->last_func = worker->current_func;
2325
2326	/* we're done with it, release */
2327	hash_del(&worker->hentry);
2328	worker->current_work = NULL;
2329	worker->current_func = NULL;
2330	worker->current_pwq = NULL;
2331	worker->current_color = INT_MAX;
2332	pwq_dec_nr_in_flight(pwq, work_data);
2333}
2334
2335/**
2336 * process_scheduled_works - process scheduled works
2337 * @worker: self
2338 *
2339 * Process all scheduled works.  Please note that the scheduled list
2340 * may change while processing a work, so this function repeatedly
2341 * fetches a work from the top and executes it.
2342 *
2343 * CONTEXT:
2344 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2345 * multiple times.
2346 */
2347static void process_scheduled_works(struct worker *worker)
2348{
2349	while (!list_empty(&worker->scheduled)) {
2350		struct work_struct *work = list_first_entry(&worker->scheduled,
2351						struct work_struct, entry);
2352		process_one_work(worker, work);
2353	}
2354}
2355
2356static void set_pf_worker(bool val)
2357{
2358	mutex_lock(&wq_pool_attach_mutex);
2359	if (val)
2360		current->flags |= PF_WQ_WORKER;
2361	else
2362		current->flags &= ~PF_WQ_WORKER;
2363	mutex_unlock(&wq_pool_attach_mutex);
2364}
2365
2366/**
2367 * worker_thread - the worker thread function
2368 * @__worker: self
2369 *
2370 * The worker thread function.  All workers belong to a worker_pool -
2371 * either a per-cpu one or dynamic unbound one.  These workers process all
2372 * work items regardless of their specific target workqueue.  The only
2373 * exception is work items which belong to workqueues with a rescuer which
2374 * will be explained in rescuer_thread().
2375 *
2376 * Return: 0
2377 */
2378static int worker_thread(void *__worker)
2379{
2380	struct worker *worker = __worker;
2381	struct worker_pool *pool = worker->pool;
2382
2383	/* tell the scheduler that this is a workqueue worker */
2384	set_pf_worker(true);
2385woke_up:
2386	raw_spin_lock_irq(&pool->lock);
2387
2388	/* am I supposed to die? */
2389	if (unlikely(worker->flags & WORKER_DIE)) {
2390		raw_spin_unlock_irq(&pool->lock);
2391		WARN_ON_ONCE(!list_empty(&worker->entry));
2392		set_pf_worker(false);
2393
2394		set_task_comm(worker->task, "kworker/dying");
2395		ida_free(&pool->worker_ida, worker->id);
2396		worker_detach_from_pool(worker);
2397		kfree(worker);
2398		return 0;
2399	}
2400
2401	worker_leave_idle(worker);
2402recheck:
2403	/* no more worker necessary? */
2404	if (!need_more_worker(pool))
2405		goto sleep;
2406
2407	/* do we need to manage? */
2408	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2409		goto recheck;
2410
2411	/*
2412	 * ->scheduled list can only be filled while a worker is
2413	 * preparing to process a work or actually processing it.
2414	 * Make sure nobody diddled with it while I was sleeping.
2415	 */
2416	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2417
2418	/*
2419	 * Finish PREP stage.  We're guaranteed to have at least one idle
2420	 * worker or that someone else has already assumed the manager
2421	 * role.  This is where @worker starts participating in concurrency
2422	 * management if applicable and concurrency management is restored
2423	 * after being rebound.  See rebind_workers() for details.
2424	 */
2425	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2426
2427	do {
2428		struct work_struct *work =
2429			list_first_entry(&pool->worklist,
2430					 struct work_struct, entry);
2431
2432		pool->watchdog_ts = jiffies;
2433
2434		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2435			/* optimization path, not strictly necessary */
2436			process_one_work(worker, work);
2437			if (unlikely(!list_empty(&worker->scheduled)))
2438				process_scheduled_works(worker);
2439		} else {
2440			move_linked_works(work, &worker->scheduled, NULL);
2441			process_scheduled_works(worker);
2442		}
2443	} while (keep_working(pool));
2444
2445	worker_set_flags(worker, WORKER_PREP);
2446sleep:
2447	/*
2448	 * pool->lock is held and there's no work to process and no need to
2449	 * manage, sleep.  Workers are woken up only while holding
2450	 * pool->lock or from local cpu, so setting the current state
2451	 * before releasing pool->lock is enough to prevent losing any
2452	 * event.
2453	 */
2454	worker_enter_idle(worker);
2455	__set_current_state(TASK_IDLE);
2456	raw_spin_unlock_irq(&pool->lock);
2457	schedule();
2458	goto woke_up;
2459}
2460
2461/**
2462 * rescuer_thread - the rescuer thread function
2463 * @__rescuer: self
2464 *
2465 * Workqueue rescuer thread function.  There's one rescuer for each
2466 * workqueue which has WQ_MEM_RECLAIM set.
2467 *
2468 * Regular work processing on a pool may block trying to create a new
2469 * worker which uses GFP_KERNEL allocation which has slight chance of
2470 * developing into deadlock if some works currently on the same queue
2471 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2472 * the problem rescuer solves.
2473 *
2474 * When such condition is possible, the pool summons rescuers of all
2475 * workqueues which have works queued on the pool and let them process
2476 * those works so that forward progress can be guaranteed.
2477 *
2478 * This should happen rarely.
2479 *
2480 * Return: 0
2481 */
2482static int rescuer_thread(void *__rescuer)
2483{
2484	struct worker *rescuer = __rescuer;
2485	struct workqueue_struct *wq = rescuer->rescue_wq;
2486	struct list_head *scheduled = &rescuer->scheduled;
2487	bool should_stop;
2488
2489	set_user_nice(current, RESCUER_NICE_LEVEL);
2490
2491	/*
2492	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2493	 * doesn't participate in concurrency management.
2494	 */
2495	set_pf_worker(true);
2496repeat:
2497	set_current_state(TASK_IDLE);
2498
2499	/*
2500	 * By the time the rescuer is requested to stop, the workqueue
2501	 * shouldn't have any work pending, but @wq->maydays may still have
2502	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2503	 * all the work items before the rescuer got to them.  Go through
2504	 * @wq->maydays processing before acting on should_stop so that the
2505	 * list is always empty on exit.
2506	 */
2507	should_stop = kthread_should_stop();
2508
2509	/* see whether any pwq is asking for help */
2510	raw_spin_lock_irq(&wq_mayday_lock);
2511
2512	while (!list_empty(&wq->maydays)) {
2513		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2514					struct pool_workqueue, mayday_node);
2515		struct worker_pool *pool = pwq->pool;
2516		struct work_struct *work, *n;
2517		bool first = true;
2518
2519		__set_current_state(TASK_RUNNING);
2520		list_del_init(&pwq->mayday_node);
2521
2522		raw_spin_unlock_irq(&wq_mayday_lock);
2523
2524		worker_attach_to_pool(rescuer, pool);
2525
2526		raw_spin_lock_irq(&pool->lock);
2527
2528		/*
2529		 * Slurp in all works issued via this workqueue and
2530		 * process'em.
2531		 */
2532		WARN_ON_ONCE(!list_empty(scheduled));
2533		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2534			if (get_work_pwq(work) == pwq) {
2535				if (first)
2536					pool->watchdog_ts = jiffies;
2537				move_linked_works(work, scheduled, &n);
2538			}
2539			first = false;
2540		}
2541
2542		if (!list_empty(scheduled)) {
2543			process_scheduled_works(rescuer);
2544
2545			/*
2546			 * The above execution of rescued work items could
2547			 * have created more to rescue through
2548			 * pwq_activate_first_inactive() or chained
2549			 * queueing.  Let's put @pwq back on mayday list so
2550			 * that such back-to-back work items, which may be
2551			 * being used to relieve memory pressure, don't
2552			 * incur MAYDAY_INTERVAL delay inbetween.
2553			 */
2554			if (pwq->nr_active && need_to_create_worker(pool)) {
2555				raw_spin_lock(&wq_mayday_lock);
2556				/*
2557				 * Queue iff we aren't racing destruction
2558				 * and somebody else hasn't queued it already.
2559				 */
2560				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2561					get_pwq(pwq);
2562					list_add_tail(&pwq->mayday_node, &wq->maydays);
2563				}
2564				raw_spin_unlock(&wq_mayday_lock);
2565			}
2566		}
2567
2568		/*
2569		 * Put the reference grabbed by send_mayday().  @pool won't
2570		 * go away while we're still attached to it.
2571		 */
2572		put_pwq(pwq);
2573
2574		/*
2575		 * Leave this pool.  If need_more_worker() is %true, notify a
2576		 * regular worker; otherwise, we end up with 0 concurrency
2577		 * and stalling the execution.
2578		 */
2579		if (need_more_worker(pool))
2580			wake_up_worker(pool);
2581
2582		raw_spin_unlock_irq(&pool->lock);
2583
2584		worker_detach_from_pool(rescuer);
2585
2586		raw_spin_lock_irq(&wq_mayday_lock);
2587	}
2588
2589	raw_spin_unlock_irq(&wq_mayday_lock);
2590
2591	if (should_stop) {
2592		__set_current_state(TASK_RUNNING);
2593		set_pf_worker(false);
2594		return 0;
2595	}
2596
2597	/* rescuers should never participate in concurrency management */
2598	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2599	schedule();
2600	goto repeat;
2601}
2602
2603/**
2604 * check_flush_dependency - check for flush dependency sanity
2605 * @target_wq: workqueue being flushed
2606 * @target_work: work item being flushed (NULL for workqueue flushes)
2607 *
2608 * %current is trying to flush the whole @target_wq or @target_work on it.
2609 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2610 * reclaiming memory or running on a workqueue which doesn't have
2611 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2612 * a deadlock.
2613 */
2614static void check_flush_dependency(struct workqueue_struct *target_wq,
2615				   struct work_struct *target_work)
2616{
2617	work_func_t target_func = target_work ? target_work->func : NULL;
2618	struct worker *worker;
2619
2620	if (target_wq->flags & WQ_MEM_RECLAIM)
2621		return;
2622
2623	worker = current_wq_worker();
2624
2625	WARN_ONCE(current->flags & PF_MEMALLOC,
2626		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2627		  current->pid, current->comm, target_wq->name, target_func);
2628	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2629			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2630		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2631		  worker->current_pwq->wq->name, worker->current_func,
2632		  target_wq->name, target_func);
2633}
2634
2635struct wq_barrier {
2636	struct work_struct	work;
2637	struct completion	done;
2638	struct task_struct	*task;	/* purely informational */
2639};
2640
2641static void wq_barrier_func(struct work_struct *work)
2642{
2643	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2644	complete(&barr->done);
2645}
2646
2647/**
2648 * insert_wq_barrier - insert a barrier work
2649 * @pwq: pwq to insert barrier into
2650 * @barr: wq_barrier to insert
2651 * @target: target work to attach @barr to
2652 * @worker: worker currently executing @target, NULL if @target is not executing
2653 *
2654 * @barr is linked to @target such that @barr is completed only after
2655 * @target finishes execution.  Please note that the ordering
2656 * guarantee is observed only with respect to @target and on the local
2657 * cpu.
2658 *
2659 * Currently, a queued barrier can't be canceled.  This is because
2660 * try_to_grab_pending() can't determine whether the work to be
2661 * grabbed is at the head of the queue and thus can't clear LINKED
2662 * flag of the previous work while there must be a valid next work
2663 * after a work with LINKED flag set.
2664 *
2665 * Note that when @worker is non-NULL, @target may be modified
2666 * underneath us, so we can't reliably determine pwq from @target.
2667 *
2668 * CONTEXT:
2669 * raw_spin_lock_irq(pool->lock).
2670 */
2671static void insert_wq_barrier(struct pool_workqueue *pwq,
2672			      struct wq_barrier *barr,
2673			      struct work_struct *target, struct worker *worker)
2674{
2675	unsigned int work_flags = 0;
2676	unsigned int work_color;
2677	struct list_head *head;
 
2678
2679	/*
2680	 * debugobject calls are safe here even with pool->lock locked
2681	 * as we know for sure that this will not trigger any of the
2682	 * checks and call back into the fixup functions where we
2683	 * might deadlock.
2684	 */
2685	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2686	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2687
2688	init_completion_map(&barr->done, &target->lockdep_map);
2689
2690	barr->task = current;
2691
2692	/* The barrier work item does not participate in pwq->nr_active. */
2693	work_flags |= WORK_STRUCT_INACTIVE;
2694
2695	/*
2696	 * If @target is currently being executed, schedule the
2697	 * barrier to the worker; otherwise, put it after @target.
2698	 */
2699	if (worker) {
2700		head = worker->scheduled.next;
2701		work_color = worker->current_color;
2702	} else {
2703		unsigned long *bits = work_data_bits(target);
2704
2705		head = target->entry.next;
2706		/* there can already be other linked works, inherit and set */
2707		work_flags |= *bits & WORK_STRUCT_LINKED;
2708		work_color = get_work_color(*bits);
2709		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2710	}
2711
2712	pwq->nr_in_flight[work_color]++;
2713	work_flags |= work_color_to_flags(work_color);
2714
2715	debug_work_activate(&barr->work);
2716	insert_work(pwq, &barr->work, head, work_flags);
 
2717}
2718
2719/**
2720 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2721 * @wq: workqueue being flushed
2722 * @flush_color: new flush color, < 0 for no-op
2723 * @work_color: new work color, < 0 for no-op
2724 *
2725 * Prepare pwqs for workqueue flushing.
2726 *
2727 * If @flush_color is non-negative, flush_color on all pwqs should be
2728 * -1.  If no pwq has in-flight commands at the specified color, all
2729 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2730 * has in flight commands, its pwq->flush_color is set to
2731 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2732 * wakeup logic is armed and %true is returned.
2733 *
2734 * The caller should have initialized @wq->first_flusher prior to
2735 * calling this function with non-negative @flush_color.  If
2736 * @flush_color is negative, no flush color update is done and %false
2737 * is returned.
2738 *
2739 * If @work_color is non-negative, all pwqs should have the same
2740 * work_color which is previous to @work_color and all will be
2741 * advanced to @work_color.
2742 *
2743 * CONTEXT:
2744 * mutex_lock(wq->mutex).
2745 *
2746 * Return:
2747 * %true if @flush_color >= 0 and there's something to flush.  %false
2748 * otherwise.
2749 */
2750static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2751				      int flush_color, int work_color)
2752{
2753	bool wait = false;
2754	struct pool_workqueue *pwq;
2755
2756	if (flush_color >= 0) {
2757		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2758		atomic_set(&wq->nr_pwqs_to_flush, 1);
2759	}
2760
2761	for_each_pwq(pwq, wq) {
2762		struct worker_pool *pool = pwq->pool;
2763
2764		raw_spin_lock_irq(&pool->lock);
2765
2766		if (flush_color >= 0) {
2767			WARN_ON_ONCE(pwq->flush_color != -1);
2768
2769			if (pwq->nr_in_flight[flush_color]) {
2770				pwq->flush_color = flush_color;
2771				atomic_inc(&wq->nr_pwqs_to_flush);
2772				wait = true;
2773			}
2774		}
2775
2776		if (work_color >= 0) {
2777			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2778			pwq->work_color = work_color;
2779		}
2780
2781		raw_spin_unlock_irq(&pool->lock);
2782	}
2783
2784	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2785		complete(&wq->first_flusher->done);
2786
2787	return wait;
2788}
2789
2790/**
2791 * __flush_workqueue - ensure that any scheduled work has run to completion.
2792 * @wq: workqueue to flush
2793 *
2794 * This function sleeps until all work items which were queued on entry
2795 * have finished execution, but it is not livelocked by new incoming ones.
2796 */
2797void __flush_workqueue(struct workqueue_struct *wq)
2798{
2799	struct wq_flusher this_flusher = {
2800		.list = LIST_HEAD_INIT(this_flusher.list),
2801		.flush_color = -1,
2802		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2803	};
2804	int next_color;
2805
2806	if (WARN_ON(!wq_online))
2807		return;
2808
2809	lock_map_acquire(&wq->lockdep_map);
2810	lock_map_release(&wq->lockdep_map);
2811
2812	mutex_lock(&wq->mutex);
2813
2814	/*
2815	 * Start-to-wait phase
2816	 */
2817	next_color = work_next_color(wq->work_color);
2818
2819	if (next_color != wq->flush_color) {
2820		/*
2821		 * Color space is not full.  The current work_color
2822		 * becomes our flush_color and work_color is advanced
2823		 * by one.
2824		 */
2825		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2826		this_flusher.flush_color = wq->work_color;
2827		wq->work_color = next_color;
2828
2829		if (!wq->first_flusher) {
2830			/* no flush in progress, become the first flusher */
2831			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2832
2833			wq->first_flusher = &this_flusher;
2834
2835			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2836						       wq->work_color)) {
2837				/* nothing to flush, done */
2838				wq->flush_color = next_color;
2839				wq->first_flusher = NULL;
2840				goto out_unlock;
2841			}
2842		} else {
2843			/* wait in queue */
2844			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2845			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2846			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2847		}
2848	} else {
2849		/*
2850		 * Oops, color space is full, wait on overflow queue.
2851		 * The next flush completion will assign us
2852		 * flush_color and transfer to flusher_queue.
2853		 */
2854		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2855	}
2856
2857	check_flush_dependency(wq, NULL);
2858
2859	mutex_unlock(&wq->mutex);
2860
2861	wait_for_completion(&this_flusher.done);
2862
2863	/*
2864	 * Wake-up-and-cascade phase
2865	 *
2866	 * First flushers are responsible for cascading flushes and
2867	 * handling overflow.  Non-first flushers can simply return.
2868	 */
2869	if (READ_ONCE(wq->first_flusher) != &this_flusher)
2870		return;
2871
2872	mutex_lock(&wq->mutex);
2873
2874	/* we might have raced, check again with mutex held */
2875	if (wq->first_flusher != &this_flusher)
2876		goto out_unlock;
2877
2878	WRITE_ONCE(wq->first_flusher, NULL);
2879
2880	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2881	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2882
2883	while (true) {
2884		struct wq_flusher *next, *tmp;
2885
2886		/* complete all the flushers sharing the current flush color */
2887		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2888			if (next->flush_color != wq->flush_color)
2889				break;
2890			list_del_init(&next->list);
2891			complete(&next->done);
2892		}
2893
2894		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2895			     wq->flush_color != work_next_color(wq->work_color));
2896
2897		/* this flush_color is finished, advance by one */
2898		wq->flush_color = work_next_color(wq->flush_color);
2899
2900		/* one color has been freed, handle overflow queue */
2901		if (!list_empty(&wq->flusher_overflow)) {
2902			/*
2903			 * Assign the same color to all overflowed
2904			 * flushers, advance work_color and append to
2905			 * flusher_queue.  This is the start-to-wait
2906			 * phase for these overflowed flushers.
2907			 */
2908			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2909				tmp->flush_color = wq->work_color;
2910
2911			wq->work_color = work_next_color(wq->work_color);
2912
2913			list_splice_tail_init(&wq->flusher_overflow,
2914					      &wq->flusher_queue);
2915			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2916		}
2917
2918		if (list_empty(&wq->flusher_queue)) {
2919			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2920			break;
2921		}
2922
2923		/*
2924		 * Need to flush more colors.  Make the next flusher
2925		 * the new first flusher and arm pwqs.
2926		 */
2927		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2928		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2929
2930		list_del_init(&next->list);
2931		wq->first_flusher = next;
2932
2933		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2934			break;
2935
2936		/*
2937		 * Meh... this color is already done, clear first
2938		 * flusher and repeat cascading.
2939		 */
2940		wq->first_flusher = NULL;
2941	}
2942
2943out_unlock:
2944	mutex_unlock(&wq->mutex);
2945}
2946EXPORT_SYMBOL(__flush_workqueue);
2947
2948/**
2949 * drain_workqueue - drain a workqueue
2950 * @wq: workqueue to drain
2951 *
2952 * Wait until the workqueue becomes empty.  While draining is in progress,
2953 * only chain queueing is allowed.  IOW, only currently pending or running
2954 * work items on @wq can queue further work items on it.  @wq is flushed
2955 * repeatedly until it becomes empty.  The number of flushing is determined
2956 * by the depth of chaining and should be relatively short.  Whine if it
2957 * takes too long.
2958 */
2959void drain_workqueue(struct workqueue_struct *wq)
2960{
2961	unsigned int flush_cnt = 0;
2962	struct pool_workqueue *pwq;
2963
2964	/*
2965	 * __queue_work() needs to test whether there are drainers, is much
2966	 * hotter than drain_workqueue() and already looks at @wq->flags.
2967	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2968	 */
2969	mutex_lock(&wq->mutex);
2970	if (!wq->nr_drainers++)
2971		wq->flags |= __WQ_DRAINING;
2972	mutex_unlock(&wq->mutex);
2973reflush:
2974	__flush_workqueue(wq);
2975
2976	mutex_lock(&wq->mutex);
2977
2978	for_each_pwq(pwq, wq) {
2979		bool drained;
2980
2981		raw_spin_lock_irq(&pwq->pool->lock);
2982		drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
2983		raw_spin_unlock_irq(&pwq->pool->lock);
2984
2985		if (drained)
2986			continue;
2987
2988		if (++flush_cnt == 10 ||
2989		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2990			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
2991				wq->name, __func__, flush_cnt);
2992
2993		mutex_unlock(&wq->mutex);
2994		goto reflush;
2995	}
2996
2997	if (!--wq->nr_drainers)
2998		wq->flags &= ~__WQ_DRAINING;
2999	mutex_unlock(&wq->mutex);
3000}
3001EXPORT_SYMBOL_GPL(drain_workqueue);
3002
3003static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3004			     bool from_cancel)
3005{
3006	struct worker *worker = NULL;
3007	struct worker_pool *pool;
3008	struct pool_workqueue *pwq;
3009
3010	might_sleep();
3011
3012	rcu_read_lock();
3013	pool = get_work_pool(work);
3014	if (!pool) {
3015		rcu_read_unlock();
3016		return false;
3017	}
3018
3019	raw_spin_lock_irq(&pool->lock);
3020	/* see the comment in try_to_grab_pending() with the same code */
3021	pwq = get_work_pwq(work);
3022	if (pwq) {
3023		if (unlikely(pwq->pool != pool))
3024			goto already_gone;
3025	} else {
3026		worker = find_worker_executing_work(pool, work);
3027		if (!worker)
3028			goto already_gone;
3029		pwq = worker->current_pwq;
3030	}
3031
3032	check_flush_dependency(pwq->wq, work);
3033
3034	insert_wq_barrier(pwq, barr, work, worker);
3035	raw_spin_unlock_irq(&pool->lock);
3036
3037	/*
3038	 * Force a lock recursion deadlock when using flush_work() inside a
3039	 * single-threaded or rescuer equipped workqueue.
3040	 *
3041	 * For single threaded workqueues the deadlock happens when the work
3042	 * is after the work issuing the flush_work(). For rescuer equipped
3043	 * workqueues the deadlock happens when the rescuer stalls, blocking
3044	 * forward progress.
3045	 */
3046	if (!from_cancel &&
3047	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3048		lock_map_acquire(&pwq->wq->lockdep_map);
3049		lock_map_release(&pwq->wq->lockdep_map);
3050	}
3051	rcu_read_unlock();
3052	return true;
3053already_gone:
3054	raw_spin_unlock_irq(&pool->lock);
3055	rcu_read_unlock();
3056	return false;
3057}
3058
3059static bool __flush_work(struct work_struct *work, bool from_cancel)
3060{
3061	struct wq_barrier barr;
3062
3063	if (WARN_ON(!wq_online))
3064		return false;
3065
3066	if (WARN_ON(!work->func))
3067		return false;
3068
3069	lock_map_acquire(&work->lockdep_map);
3070	lock_map_release(&work->lockdep_map);
 
 
3071
3072	if (start_flush_work(work, &barr, from_cancel)) {
3073		wait_for_completion(&barr.done);
3074		destroy_work_on_stack(&barr.work);
3075		return true;
3076	} else {
3077		return false;
3078	}
3079}
3080
3081/**
3082 * flush_work - wait for a work to finish executing the last queueing instance
3083 * @work: the work to flush
3084 *
3085 * Wait until @work has finished execution.  @work is guaranteed to be idle
3086 * on return if it hasn't been requeued since flush started.
3087 *
3088 * Return:
3089 * %true if flush_work() waited for the work to finish execution,
3090 * %false if it was already idle.
3091 */
3092bool flush_work(struct work_struct *work)
3093{
3094	return __flush_work(work, false);
3095}
3096EXPORT_SYMBOL_GPL(flush_work);
3097
3098struct cwt_wait {
3099	wait_queue_entry_t		wait;
3100	struct work_struct	*work;
3101};
3102
3103static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3104{
3105	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3106
3107	if (cwait->work != key)
3108		return 0;
3109	return autoremove_wake_function(wait, mode, sync, key);
3110}
3111
3112static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3113{
3114	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3115	unsigned long flags;
3116	int ret;
3117
3118	do {
3119		ret = try_to_grab_pending(work, is_dwork, &flags);
3120		/*
3121		 * If someone else is already canceling, wait for it to
3122		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3123		 * because we may get scheduled between @work's completion
3124		 * and the other canceling task resuming and clearing
3125		 * CANCELING - flush_work() will return false immediately
3126		 * as @work is no longer busy, try_to_grab_pending() will
3127		 * return -ENOENT as @work is still being canceled and the
3128		 * other canceling task won't be able to clear CANCELING as
3129		 * we're hogging the CPU.
3130		 *
3131		 * Let's wait for completion using a waitqueue.  As this
3132		 * may lead to the thundering herd problem, use a custom
3133		 * wake function which matches @work along with exclusive
3134		 * wait and wakeup.
3135		 */
3136		if (unlikely(ret == -ENOENT)) {
3137			struct cwt_wait cwait;
3138
3139			init_wait(&cwait.wait);
3140			cwait.wait.func = cwt_wakefn;
3141			cwait.work = work;
3142
3143			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3144						  TASK_UNINTERRUPTIBLE);
3145			if (work_is_canceling(work))
3146				schedule();
3147			finish_wait(&cancel_waitq, &cwait.wait);
3148		}
3149	} while (unlikely(ret < 0));
3150
3151	/* tell other tasks trying to grab @work to back off */
3152	mark_work_canceling(work);
3153	local_irq_restore(flags);
3154
3155	/*
3156	 * This allows canceling during early boot.  We know that @work
3157	 * isn't executing.
3158	 */
3159	if (wq_online)
3160		__flush_work(work, true);
3161
3162	clear_work_data(work);
3163
3164	/*
3165	 * Paired with prepare_to_wait() above so that either
3166	 * waitqueue_active() is visible here or !work_is_canceling() is
3167	 * visible there.
3168	 */
3169	smp_mb();
3170	if (waitqueue_active(&cancel_waitq))
3171		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3172
3173	return ret;
3174}
3175
3176/**
3177 * cancel_work_sync - cancel a work and wait for it to finish
3178 * @work: the work to cancel
3179 *
3180 * Cancel @work and wait for its execution to finish.  This function
3181 * can be used even if the work re-queues itself or migrates to
3182 * another workqueue.  On return from this function, @work is
3183 * guaranteed to be not pending or executing on any CPU.
3184 *
3185 * cancel_work_sync(&delayed_work->work) must not be used for
3186 * delayed_work's.  Use cancel_delayed_work_sync() instead.
3187 *
3188 * The caller must ensure that the workqueue on which @work was last
3189 * queued can't be destroyed before this function returns.
3190 *
3191 * Return:
3192 * %true if @work was pending, %false otherwise.
3193 */
3194bool cancel_work_sync(struct work_struct *work)
3195{
3196	return __cancel_work_timer(work, false);
3197}
3198EXPORT_SYMBOL_GPL(cancel_work_sync);
3199
3200/**
3201 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3202 * @dwork: the delayed work to flush
3203 *
3204 * Delayed timer is cancelled and the pending work is queued for
3205 * immediate execution.  Like flush_work(), this function only
3206 * considers the last queueing instance of @dwork.
3207 *
3208 * Return:
3209 * %true if flush_work() waited for the work to finish execution,
3210 * %false if it was already idle.
3211 */
3212bool flush_delayed_work(struct delayed_work *dwork)
3213{
3214	local_irq_disable();
3215	if (del_timer_sync(&dwork->timer))
3216		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3217	local_irq_enable();
3218	return flush_work(&dwork->work);
3219}
3220EXPORT_SYMBOL(flush_delayed_work);
3221
3222/**
3223 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3224 * @rwork: the rcu work to flush
3225 *
3226 * Return:
3227 * %true if flush_rcu_work() waited for the work to finish execution,
3228 * %false if it was already idle.
3229 */
3230bool flush_rcu_work(struct rcu_work *rwork)
3231{
3232	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3233		rcu_barrier();
3234		flush_work(&rwork->work);
3235		return true;
3236	} else {
3237		return flush_work(&rwork->work);
3238	}
3239}
3240EXPORT_SYMBOL(flush_rcu_work);
3241
3242static bool __cancel_work(struct work_struct *work, bool is_dwork)
3243{
3244	unsigned long flags;
3245	int ret;
3246
3247	do {
3248		ret = try_to_grab_pending(work, is_dwork, &flags);
3249	} while (unlikely(ret == -EAGAIN));
3250
3251	if (unlikely(ret < 0))
3252		return false;
3253
3254	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3255	local_irq_restore(flags);
3256	return ret;
3257}
3258
3259/*
3260 * See cancel_delayed_work()
3261 */
3262bool cancel_work(struct work_struct *work)
3263{
3264	return __cancel_work(work, false);
3265}
3266EXPORT_SYMBOL(cancel_work);
3267
3268/**
3269 * cancel_delayed_work - cancel a delayed work
3270 * @dwork: delayed_work to cancel
3271 *
3272 * Kill off a pending delayed_work.
3273 *
3274 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3275 * pending.
3276 *
3277 * Note:
3278 * The work callback function may still be running on return, unless
3279 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3280 * use cancel_delayed_work_sync() to wait on it.
3281 *
3282 * This function is safe to call from any context including IRQ handler.
3283 */
3284bool cancel_delayed_work(struct delayed_work *dwork)
3285{
3286	return __cancel_work(&dwork->work, true);
3287}
3288EXPORT_SYMBOL(cancel_delayed_work);
3289
3290/**
3291 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3292 * @dwork: the delayed work cancel
3293 *
3294 * This is cancel_work_sync() for delayed works.
3295 *
3296 * Return:
3297 * %true if @dwork was pending, %false otherwise.
3298 */
3299bool cancel_delayed_work_sync(struct delayed_work *dwork)
3300{
3301	return __cancel_work_timer(&dwork->work, true);
3302}
3303EXPORT_SYMBOL(cancel_delayed_work_sync);
3304
3305/**
3306 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3307 * @func: the function to call
3308 *
3309 * schedule_on_each_cpu() executes @func on each online CPU using the
3310 * system workqueue and blocks until all CPUs have completed.
3311 * schedule_on_each_cpu() is very slow.
3312 *
3313 * Return:
3314 * 0 on success, -errno on failure.
3315 */
3316int schedule_on_each_cpu(work_func_t func)
3317{
3318	int cpu;
3319	struct work_struct __percpu *works;
3320
3321	works = alloc_percpu(struct work_struct);
3322	if (!works)
3323		return -ENOMEM;
3324
3325	cpus_read_lock();
3326
3327	for_each_online_cpu(cpu) {
3328		struct work_struct *work = per_cpu_ptr(works, cpu);
3329
3330		INIT_WORK(work, func);
3331		schedule_work_on(cpu, work);
3332	}
3333
3334	for_each_online_cpu(cpu)
3335		flush_work(per_cpu_ptr(works, cpu));
3336
3337	cpus_read_unlock();
3338	free_percpu(works);
3339	return 0;
3340}
3341
3342/**
3343 * execute_in_process_context - reliably execute the routine with user context
3344 * @fn:		the function to execute
3345 * @ew:		guaranteed storage for the execute work structure (must
3346 *		be available when the work executes)
3347 *
3348 * Executes the function immediately if process context is available,
3349 * otherwise schedules the function for delayed execution.
3350 *
3351 * Return:	0 - function was executed
3352 *		1 - function was scheduled for execution
3353 */
3354int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3355{
3356	if (!in_interrupt()) {
3357		fn(&ew->work);
3358		return 0;
3359	}
3360
3361	INIT_WORK(&ew->work, fn);
3362	schedule_work(&ew->work);
3363
3364	return 1;
3365}
3366EXPORT_SYMBOL_GPL(execute_in_process_context);
3367
3368/**
3369 * free_workqueue_attrs - free a workqueue_attrs
3370 * @attrs: workqueue_attrs to free
3371 *
3372 * Undo alloc_workqueue_attrs().
3373 */
3374void free_workqueue_attrs(struct workqueue_attrs *attrs)
3375{
3376	if (attrs) {
3377		free_cpumask_var(attrs->cpumask);
3378		kfree(attrs);
3379	}
3380}
3381
3382/**
3383 * alloc_workqueue_attrs - allocate a workqueue_attrs
3384 *
3385 * Allocate a new workqueue_attrs, initialize with default settings and
3386 * return it.
3387 *
3388 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3389 */
3390struct workqueue_attrs *alloc_workqueue_attrs(void)
3391{
3392	struct workqueue_attrs *attrs;
3393
3394	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3395	if (!attrs)
3396		goto fail;
3397	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3398		goto fail;
3399
3400	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3401	return attrs;
3402fail:
3403	free_workqueue_attrs(attrs);
3404	return NULL;
3405}
3406
3407static void copy_workqueue_attrs(struct workqueue_attrs *to,
3408				 const struct workqueue_attrs *from)
3409{
3410	to->nice = from->nice;
3411	cpumask_copy(to->cpumask, from->cpumask);
3412	/*
3413	 * Unlike hash and equality test, this function doesn't ignore
3414	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3415	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3416	 */
3417	to->no_numa = from->no_numa;
3418}
3419
3420/* hash value of the content of @attr */
3421static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3422{
3423	u32 hash = 0;
3424
3425	hash = jhash_1word(attrs->nice, hash);
3426	hash = jhash(cpumask_bits(attrs->cpumask),
3427		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3428	return hash;
3429}
3430
3431/* content equality test */
3432static bool wqattrs_equal(const struct workqueue_attrs *a,
3433			  const struct workqueue_attrs *b)
3434{
3435	if (a->nice != b->nice)
3436		return false;
3437	if (!cpumask_equal(a->cpumask, b->cpumask))
3438		return false;
3439	return true;
3440}
3441
3442/**
3443 * init_worker_pool - initialize a newly zalloc'd worker_pool
3444 * @pool: worker_pool to initialize
3445 *
3446 * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3447 *
3448 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3449 * inside @pool proper are initialized and put_unbound_pool() can be called
3450 * on @pool safely to release it.
3451 */
3452static int init_worker_pool(struct worker_pool *pool)
3453{
3454	raw_spin_lock_init(&pool->lock);
3455	pool->id = -1;
3456	pool->cpu = -1;
3457	pool->node = NUMA_NO_NODE;
3458	pool->flags |= POOL_DISASSOCIATED;
3459	pool->watchdog_ts = jiffies;
3460	INIT_LIST_HEAD(&pool->worklist);
3461	INIT_LIST_HEAD(&pool->idle_list);
3462	hash_init(pool->busy_hash);
3463
3464	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3465
3466	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3467
3468	INIT_LIST_HEAD(&pool->workers);
3469
3470	ida_init(&pool->worker_ida);
3471	INIT_HLIST_NODE(&pool->hash_node);
3472	pool->refcnt = 1;
3473
3474	/* shouldn't fail above this point */
3475	pool->attrs = alloc_workqueue_attrs();
3476	if (!pool->attrs)
3477		return -ENOMEM;
3478	return 0;
3479}
3480
3481#ifdef CONFIG_LOCKDEP
3482static void wq_init_lockdep(struct workqueue_struct *wq)
3483{
3484	char *lock_name;
3485
3486	lockdep_register_key(&wq->key);
3487	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3488	if (!lock_name)
3489		lock_name = wq->name;
3490
3491	wq->lock_name = lock_name;
3492	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3493}
3494
3495static void wq_unregister_lockdep(struct workqueue_struct *wq)
3496{
3497	lockdep_unregister_key(&wq->key);
3498}
3499
3500static void wq_free_lockdep(struct workqueue_struct *wq)
3501{
3502	if (wq->lock_name != wq->name)
3503		kfree(wq->lock_name);
3504}
3505#else
3506static void wq_init_lockdep(struct workqueue_struct *wq)
3507{
3508}
3509
3510static void wq_unregister_lockdep(struct workqueue_struct *wq)
3511{
3512}
3513
3514static void wq_free_lockdep(struct workqueue_struct *wq)
3515{
3516}
3517#endif
3518
3519static void rcu_free_wq(struct rcu_head *rcu)
3520{
3521	struct workqueue_struct *wq =
3522		container_of(rcu, struct workqueue_struct, rcu);
3523
3524	wq_free_lockdep(wq);
3525
3526	if (!(wq->flags & WQ_UNBOUND))
3527		free_percpu(wq->cpu_pwqs);
3528	else
3529		free_workqueue_attrs(wq->unbound_attrs);
3530
3531	kfree(wq);
3532}
3533
3534static void rcu_free_pool(struct rcu_head *rcu)
3535{
3536	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3537
3538	ida_destroy(&pool->worker_ida);
3539	free_workqueue_attrs(pool->attrs);
3540	kfree(pool);
3541}
3542
3543/* This returns with the lock held on success (pool manager is inactive). */
3544static bool wq_manager_inactive(struct worker_pool *pool)
3545{
3546	raw_spin_lock_irq(&pool->lock);
3547
3548	if (pool->flags & POOL_MANAGER_ACTIVE) {
3549		raw_spin_unlock_irq(&pool->lock);
3550		return false;
3551	}
3552	return true;
3553}
3554
3555/**
3556 * put_unbound_pool - put a worker_pool
3557 * @pool: worker_pool to put
3558 *
3559 * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
3560 * safe manner.  get_unbound_pool() calls this function on its failure path
3561 * and this function should be able to release pools which went through,
3562 * successfully or not, init_worker_pool().
3563 *
3564 * Should be called with wq_pool_mutex held.
3565 */
3566static void put_unbound_pool(struct worker_pool *pool)
3567{
3568	DECLARE_COMPLETION_ONSTACK(detach_completion);
3569	struct worker *worker;
3570
3571	lockdep_assert_held(&wq_pool_mutex);
3572
3573	if (--pool->refcnt)
3574		return;
3575
3576	/* sanity checks */
3577	if (WARN_ON(!(pool->cpu < 0)) ||
3578	    WARN_ON(!list_empty(&pool->worklist)))
3579		return;
3580
3581	/* release id and unhash */
3582	if (pool->id >= 0)
3583		idr_remove(&worker_pool_idr, pool->id);
3584	hash_del(&pool->hash_node);
3585
3586	/*
3587	 * Become the manager and destroy all workers.  This prevents
3588	 * @pool's workers from blocking on attach_mutex.  We're the last
3589	 * manager and @pool gets freed with the flag set.
3590	 * Because of how wq_manager_inactive() works, we will hold the
3591	 * spinlock after a successful wait.
3592	 */
3593	rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3594			   TASK_UNINTERRUPTIBLE);
3595	pool->flags |= POOL_MANAGER_ACTIVE;
3596
3597	while ((worker = first_idle_worker(pool)))
3598		destroy_worker(worker);
3599	WARN_ON(pool->nr_workers || pool->nr_idle);
3600	raw_spin_unlock_irq(&pool->lock);
3601
3602	mutex_lock(&wq_pool_attach_mutex);
3603	if (!list_empty(&pool->workers))
3604		pool->detach_completion = &detach_completion;
3605	mutex_unlock(&wq_pool_attach_mutex);
3606
3607	if (pool->detach_completion)
3608		wait_for_completion(pool->detach_completion);
3609
3610	/* shut down the timers */
3611	del_timer_sync(&pool->idle_timer);
3612	del_timer_sync(&pool->mayday_timer);
3613
3614	/* RCU protected to allow dereferences from get_work_pool() */
3615	call_rcu(&pool->rcu, rcu_free_pool);
3616}
3617
3618/**
3619 * get_unbound_pool - get a worker_pool with the specified attributes
3620 * @attrs: the attributes of the worker_pool to get
3621 *
3622 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3623 * reference count and return it.  If there already is a matching
3624 * worker_pool, it will be used; otherwise, this function attempts to
3625 * create a new one.
3626 *
3627 * Should be called with wq_pool_mutex held.
3628 *
3629 * Return: On success, a worker_pool with the same attributes as @attrs.
3630 * On failure, %NULL.
3631 */
3632static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3633{
3634	u32 hash = wqattrs_hash(attrs);
3635	struct worker_pool *pool;
3636	int node;
3637	int target_node = NUMA_NO_NODE;
3638
3639	lockdep_assert_held(&wq_pool_mutex);
3640
3641	/* do we already have a matching pool? */
3642	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3643		if (wqattrs_equal(pool->attrs, attrs)) {
3644			pool->refcnt++;
3645			return pool;
3646		}
3647	}
3648
3649	/* if cpumask is contained inside a NUMA node, we belong to that node */
3650	if (wq_numa_enabled) {
3651		for_each_node(node) {
3652			if (cpumask_subset(attrs->cpumask,
3653					   wq_numa_possible_cpumask[node])) {
3654				target_node = node;
3655				break;
3656			}
3657		}
3658	}
3659
3660	/* nope, create a new one */
3661	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3662	if (!pool || init_worker_pool(pool) < 0)
3663		goto fail;
3664
3665	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3666	copy_workqueue_attrs(pool->attrs, attrs);
3667	pool->node = target_node;
3668
3669	/*
3670	 * no_numa isn't a worker_pool attribute, always clear it.  See
3671	 * 'struct workqueue_attrs' comments for detail.
3672	 */
3673	pool->attrs->no_numa = false;
3674
3675	if (worker_pool_assign_id(pool) < 0)
3676		goto fail;
3677
3678	/* create and start the initial worker */
3679	if (wq_online && !create_worker(pool))
3680		goto fail;
3681
3682	/* install */
3683	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3684
3685	return pool;
3686fail:
3687	if (pool)
3688		put_unbound_pool(pool);
3689	return NULL;
3690}
3691
3692static void rcu_free_pwq(struct rcu_head *rcu)
3693{
3694	kmem_cache_free(pwq_cache,
3695			container_of(rcu, struct pool_workqueue, rcu));
3696}
3697
3698/*
3699 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3700 * and needs to be destroyed.
3701 */
3702static void pwq_unbound_release_workfn(struct work_struct *work)
3703{
3704	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3705						  unbound_release_work);
3706	struct workqueue_struct *wq = pwq->wq;
3707	struct worker_pool *pool = pwq->pool;
3708	bool is_last = false;
3709
3710	/*
3711	 * when @pwq is not linked, it doesn't hold any reference to the
3712	 * @wq, and @wq is invalid to access.
3713	 */
3714	if (!list_empty(&pwq->pwqs_node)) {
3715		if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3716			return;
3717
3718		mutex_lock(&wq->mutex);
3719		list_del_rcu(&pwq->pwqs_node);
3720		is_last = list_empty(&wq->pwqs);
3721		mutex_unlock(&wq->mutex);
3722	}
3723
3724	mutex_lock(&wq_pool_mutex);
3725	put_unbound_pool(pool);
3726	mutex_unlock(&wq_pool_mutex);
3727
3728	call_rcu(&pwq->rcu, rcu_free_pwq);
3729
3730	/*
3731	 * If we're the last pwq going away, @wq is already dead and no one
3732	 * is gonna access it anymore.  Schedule RCU free.
3733	 */
3734	if (is_last) {
3735		wq_unregister_lockdep(wq);
3736		call_rcu(&wq->rcu, rcu_free_wq);
3737	}
3738}
3739
3740/**
3741 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3742 * @pwq: target pool_workqueue
3743 *
3744 * If @pwq isn't freezing, set @pwq->max_active to the associated
3745 * workqueue's saved_max_active and activate inactive work items
3746 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3747 */
3748static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3749{
3750	struct workqueue_struct *wq = pwq->wq;
3751	bool freezable = wq->flags & WQ_FREEZABLE;
3752	unsigned long flags;
3753
3754	/* for @wq->saved_max_active */
3755	lockdep_assert_held(&wq->mutex);
3756
3757	/* fast exit for non-freezable wqs */
3758	if (!freezable && pwq->max_active == wq->saved_max_active)
3759		return;
3760
3761	/* this function can be called during early boot w/ irq disabled */
3762	raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3763
3764	/*
3765	 * During [un]freezing, the caller is responsible for ensuring that
3766	 * this function is called at least once after @workqueue_freezing
3767	 * is updated and visible.
3768	 */
3769	if (!freezable || !workqueue_freezing) {
3770		bool kick = false;
3771
3772		pwq->max_active = wq->saved_max_active;
3773
3774		while (!list_empty(&pwq->inactive_works) &&
3775		       pwq->nr_active < pwq->max_active) {
3776			pwq_activate_first_inactive(pwq);
3777			kick = true;
3778		}
3779
3780		/*
3781		 * Need to kick a worker after thawed or an unbound wq's
3782		 * max_active is bumped. In realtime scenarios, always kicking a
3783		 * worker will cause interference on the isolated cpu cores, so
3784		 * let's kick iff work items were activated.
3785		 */
3786		if (kick)
3787			wake_up_worker(pwq->pool);
3788	} else {
3789		pwq->max_active = 0;
3790	}
3791
3792	raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
3793}
3794
3795/* initialize newly allocated @pwq which is associated with @wq and @pool */
3796static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3797		     struct worker_pool *pool)
3798{
3799	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3800
3801	memset(pwq, 0, sizeof(*pwq));
3802
3803	pwq->pool = pool;
3804	pwq->wq = wq;
3805	pwq->flush_color = -1;
3806	pwq->refcnt = 1;
3807	INIT_LIST_HEAD(&pwq->inactive_works);
3808	INIT_LIST_HEAD(&pwq->pwqs_node);
3809	INIT_LIST_HEAD(&pwq->mayday_node);
3810	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3811}
3812
3813/* sync @pwq with the current state of its associated wq and link it */
3814static void link_pwq(struct pool_workqueue *pwq)
3815{
3816	struct workqueue_struct *wq = pwq->wq;
3817
3818	lockdep_assert_held(&wq->mutex);
3819
3820	/* may be called multiple times, ignore if already linked */
3821	if (!list_empty(&pwq->pwqs_node))
3822		return;
3823
3824	/* set the matching work_color */
3825	pwq->work_color = wq->work_color;
3826
3827	/* sync max_active to the current setting */
3828	pwq_adjust_max_active(pwq);
3829
3830	/* link in @pwq */
3831	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3832}
3833
3834/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3835static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3836					const struct workqueue_attrs *attrs)
3837{
3838	struct worker_pool *pool;
3839	struct pool_workqueue *pwq;
3840
3841	lockdep_assert_held(&wq_pool_mutex);
3842
3843	pool = get_unbound_pool(attrs);
3844	if (!pool)
3845		return NULL;
3846
3847	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3848	if (!pwq) {
3849		put_unbound_pool(pool);
3850		return NULL;
3851	}
3852
3853	init_pwq(pwq, wq, pool);
3854	return pwq;
3855}
3856
3857/**
3858 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3859 * @attrs: the wq_attrs of the default pwq of the target workqueue
3860 * @node: the target NUMA node
3861 * @cpu_going_down: if >= 0, the CPU to consider as offline
3862 * @cpumask: outarg, the resulting cpumask
3863 *
3864 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3865 * @cpu_going_down is >= 0, that cpu is considered offline during
3866 * calculation.  The result is stored in @cpumask.
3867 *
3868 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3869 * enabled and @node has online CPUs requested by @attrs, the returned
3870 * cpumask is the intersection of the possible CPUs of @node and
3871 * @attrs->cpumask.
3872 *
3873 * The caller is responsible for ensuring that the cpumask of @node stays
3874 * stable.
3875 *
3876 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3877 * %false if equal.
3878 */
3879static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3880				 int cpu_going_down, cpumask_t *cpumask)
3881{
3882	if (!wq_numa_enabled || attrs->no_numa)
3883		goto use_dfl;
3884
3885	/* does @node have any online CPUs @attrs wants? */
3886	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3887	if (cpu_going_down >= 0)
3888		cpumask_clear_cpu(cpu_going_down, cpumask);
3889
3890	if (cpumask_empty(cpumask))
3891		goto use_dfl;
3892
3893	/* yeap, return possible CPUs in @node that @attrs wants */
3894	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3895
3896	if (cpumask_empty(cpumask)) {
3897		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3898				"possible intersect\n");
3899		return false;
3900	}
3901
3902	return !cpumask_equal(cpumask, attrs->cpumask);
3903
3904use_dfl:
3905	cpumask_copy(cpumask, attrs->cpumask);
3906	return false;
3907}
3908
3909/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3910static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3911						   int node,
3912						   struct pool_workqueue *pwq)
3913{
3914	struct pool_workqueue *old_pwq;
3915
3916	lockdep_assert_held(&wq_pool_mutex);
3917	lockdep_assert_held(&wq->mutex);
3918
3919	/* link_pwq() can handle duplicate calls */
3920	link_pwq(pwq);
3921
3922	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3923	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3924	return old_pwq;
3925}
3926
3927/* context to store the prepared attrs & pwqs before applying */
3928struct apply_wqattrs_ctx {
3929	struct workqueue_struct	*wq;		/* target workqueue */
3930	struct workqueue_attrs	*attrs;		/* attrs to apply */
3931	struct list_head	list;		/* queued for batching commit */
3932	struct pool_workqueue	*dfl_pwq;
3933	struct pool_workqueue	*pwq_tbl[];
3934};
3935
3936/* free the resources after success or abort */
3937static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3938{
3939	if (ctx) {
3940		int node;
3941
3942		for_each_node(node)
3943			put_pwq_unlocked(ctx->pwq_tbl[node]);
3944		put_pwq_unlocked(ctx->dfl_pwq);
3945
3946		free_workqueue_attrs(ctx->attrs);
3947
3948		kfree(ctx);
3949	}
3950}
3951
3952/* allocate the attrs and pwqs for later installation */
3953static struct apply_wqattrs_ctx *
3954apply_wqattrs_prepare(struct workqueue_struct *wq,
3955		      const struct workqueue_attrs *attrs)
3956{
3957	struct apply_wqattrs_ctx *ctx;
3958	struct workqueue_attrs *new_attrs, *tmp_attrs;
3959	int node;
3960
3961	lockdep_assert_held(&wq_pool_mutex);
3962
3963	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3964
3965	new_attrs = alloc_workqueue_attrs();
3966	tmp_attrs = alloc_workqueue_attrs();
3967	if (!ctx || !new_attrs || !tmp_attrs)
3968		goto out_free;
3969
3970	/*
3971	 * Calculate the attrs of the default pwq.
3972	 * If the user configured cpumask doesn't overlap with the
3973	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3974	 */
3975	copy_workqueue_attrs(new_attrs, attrs);
3976	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3977	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3978		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3979
3980	/*
3981	 * We may create multiple pwqs with differing cpumasks.  Make a
3982	 * copy of @new_attrs which will be modified and used to obtain
3983	 * pools.
3984	 */
3985	copy_workqueue_attrs(tmp_attrs, new_attrs);
3986
3987	/*
3988	 * If something goes wrong during CPU up/down, we'll fall back to
3989	 * the default pwq covering whole @attrs->cpumask.  Always create
3990	 * it even if we don't use it immediately.
3991	 */
3992	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3993	if (!ctx->dfl_pwq)
3994		goto out_free;
3995
3996	for_each_node(node) {
3997		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3998			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3999			if (!ctx->pwq_tbl[node])
4000				goto out_free;
4001		} else {
4002			ctx->dfl_pwq->refcnt++;
4003			ctx->pwq_tbl[node] = ctx->dfl_pwq;
4004		}
4005	}
4006
4007	/* save the user configured attrs and sanitize it. */
4008	copy_workqueue_attrs(new_attrs, attrs);
4009	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
4010	ctx->attrs = new_attrs;
4011
4012	ctx->wq = wq;
4013	free_workqueue_attrs(tmp_attrs);
4014	return ctx;
4015
4016out_free:
4017	free_workqueue_attrs(tmp_attrs);
4018	free_workqueue_attrs(new_attrs);
4019	apply_wqattrs_cleanup(ctx);
4020	return NULL;
4021}
4022
4023/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
4024static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4025{
4026	int node;
4027
4028	/* all pwqs have been created successfully, let's install'em */
4029	mutex_lock(&ctx->wq->mutex);
4030
4031	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4032
4033	/* save the previous pwq and install the new one */
4034	for_each_node(node)
4035		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4036							  ctx->pwq_tbl[node]);
4037
4038	/* @dfl_pwq might not have been used, ensure it's linked */
4039	link_pwq(ctx->dfl_pwq);
4040	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4041
4042	mutex_unlock(&ctx->wq->mutex);
4043}
4044
4045static void apply_wqattrs_lock(void)
4046{
4047	/* CPUs should stay stable across pwq creations and installations */
4048	cpus_read_lock();
4049	mutex_lock(&wq_pool_mutex);
4050}
4051
4052static void apply_wqattrs_unlock(void)
4053{
4054	mutex_unlock(&wq_pool_mutex);
4055	cpus_read_unlock();
4056}
4057
4058static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4059					const struct workqueue_attrs *attrs)
4060{
4061	struct apply_wqattrs_ctx *ctx;
4062
4063	/* only unbound workqueues can change attributes */
4064	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4065		return -EINVAL;
4066
4067	/* creating multiple pwqs breaks ordering guarantee */
4068	if (!list_empty(&wq->pwqs)) {
4069		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4070			return -EINVAL;
4071
4072		wq->flags &= ~__WQ_ORDERED;
4073	}
4074
4075	ctx = apply_wqattrs_prepare(wq, attrs);
4076	if (!ctx)
4077		return -ENOMEM;
4078
4079	/* the ctx has been prepared successfully, let's commit it */
4080	apply_wqattrs_commit(ctx);
4081	apply_wqattrs_cleanup(ctx);
4082
4083	return 0;
4084}
4085
4086/**
4087 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4088 * @wq: the target workqueue
4089 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4090 *
4091 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
4092 * machines, this function maps a separate pwq to each NUMA node with
4093 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4094 * NUMA node it was issued on.  Older pwqs are released as in-flight work
4095 * items finish.  Note that a work item which repeatedly requeues itself
4096 * back-to-back will stay on its current pwq.
4097 *
4098 * Performs GFP_KERNEL allocations.
4099 *
4100 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
4101 *
4102 * Return: 0 on success and -errno on failure.
4103 */
4104int apply_workqueue_attrs(struct workqueue_struct *wq,
4105			  const struct workqueue_attrs *attrs)
4106{
4107	int ret;
4108
4109	lockdep_assert_cpus_held();
4110
4111	mutex_lock(&wq_pool_mutex);
4112	ret = apply_workqueue_attrs_locked(wq, attrs);
4113	mutex_unlock(&wq_pool_mutex);
4114
4115	return ret;
4116}
4117
4118/**
4119 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4120 * @wq: the target workqueue
4121 * @cpu: the CPU coming up or going down
4122 * @online: whether @cpu is coming up or going down
4123 *
4124 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4125 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4126 * @wq accordingly.
4127 *
4128 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4129 * falls back to @wq->dfl_pwq which may not be optimal but is always
4130 * correct.
4131 *
4132 * Note that when the last allowed CPU of a NUMA node goes offline for a
4133 * workqueue with a cpumask spanning multiple nodes, the workers which were
4134 * already executing the work items for the workqueue will lose their CPU
4135 * affinity and may execute on any CPU.  This is similar to how per-cpu
4136 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4137 * affinity, it's the user's responsibility to flush the work item from
4138 * CPU_DOWN_PREPARE.
4139 */
4140static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4141				   bool online)
4142{
4143	int node = cpu_to_node(cpu);
4144	int cpu_off = online ? -1 : cpu;
4145	struct pool_workqueue *old_pwq = NULL, *pwq;
4146	struct workqueue_attrs *target_attrs;
4147	cpumask_t *cpumask;
4148
4149	lockdep_assert_held(&wq_pool_mutex);
4150
4151	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4152	    wq->unbound_attrs->no_numa)
4153		return;
4154
4155	/*
4156	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4157	 * Let's use a preallocated one.  The following buf is protected by
4158	 * CPU hotplug exclusion.
4159	 */
4160	target_attrs = wq_update_unbound_numa_attrs_buf;
4161	cpumask = target_attrs->cpumask;
4162
4163	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4164	pwq = unbound_pwq_by_node(wq, node);
4165
4166	/*
4167	 * Let's determine what needs to be done.  If the target cpumask is
4168	 * different from the default pwq's, we need to compare it to @pwq's
4169	 * and create a new one if they don't match.  If the target cpumask
4170	 * equals the default pwq's, the default pwq should be used.
4171	 */
4172	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4173		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4174			return;
4175	} else {
4176		goto use_dfl_pwq;
4177	}
4178
4179	/* create a new pwq */
4180	pwq = alloc_unbound_pwq(wq, target_attrs);
4181	if (!pwq) {
4182		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4183			wq->name);
4184		goto use_dfl_pwq;
4185	}
4186
4187	/* Install the new pwq. */
4188	mutex_lock(&wq->mutex);
4189	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4190	goto out_unlock;
4191
4192use_dfl_pwq:
4193	mutex_lock(&wq->mutex);
4194	raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4195	get_pwq(wq->dfl_pwq);
4196	raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4197	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4198out_unlock:
4199	mutex_unlock(&wq->mutex);
4200	put_pwq_unlocked(old_pwq);
4201}
4202
4203static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4204{
4205	bool highpri = wq->flags & WQ_HIGHPRI;
4206	int cpu, ret;
4207
4208	if (!(wq->flags & WQ_UNBOUND)) {
4209		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4210		if (!wq->cpu_pwqs)
4211			return -ENOMEM;
4212
4213		for_each_possible_cpu(cpu) {
4214			struct pool_workqueue *pwq =
4215				per_cpu_ptr(wq->cpu_pwqs, cpu);
4216			struct worker_pool *cpu_pools =
4217				per_cpu(cpu_worker_pools, cpu);
4218
4219			init_pwq(pwq, wq, &cpu_pools[highpri]);
4220
4221			mutex_lock(&wq->mutex);
4222			link_pwq(pwq);
4223			mutex_unlock(&wq->mutex);
4224		}
4225		return 0;
4226	}
4227
4228	cpus_read_lock();
4229	if (wq->flags & __WQ_ORDERED) {
4230		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4231		/* there should only be single pwq for ordering guarantee */
4232		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4233			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4234		     "ordering guarantee broken for workqueue %s\n", wq->name);
4235	} else {
4236		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4237	}
4238	cpus_read_unlock();
4239
4240	return ret;
4241}
4242
4243static int wq_clamp_max_active(int max_active, unsigned int flags,
4244			       const char *name)
4245{
4246	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4247
4248	if (max_active < 1 || max_active > lim)
4249		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4250			max_active, name, 1, lim);
4251
4252	return clamp_val(max_active, 1, lim);
4253}
4254
4255/*
4256 * Workqueues which may be used during memory reclaim should have a rescuer
4257 * to guarantee forward progress.
4258 */
4259static int init_rescuer(struct workqueue_struct *wq)
4260{
4261	struct worker *rescuer;
4262	int ret;
4263
4264	if (!(wq->flags & WQ_MEM_RECLAIM))
4265		return 0;
4266
4267	rescuer = alloc_worker(NUMA_NO_NODE);
4268	if (!rescuer)
4269		return -ENOMEM;
4270
4271	rescuer->rescue_wq = wq;
4272	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4273	if (IS_ERR(rescuer->task)) {
4274		ret = PTR_ERR(rescuer->task);
4275		kfree(rescuer);
4276		return ret;
4277	}
4278
4279	wq->rescuer = rescuer;
4280	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4281	wake_up_process(rescuer->task);
4282
4283	return 0;
4284}
4285
4286__printf(1, 4)
4287struct workqueue_struct *alloc_workqueue(const char *fmt,
4288					 unsigned int flags,
4289					 int max_active, ...)
4290{
4291	size_t tbl_size = 0;
4292	va_list args;
4293	struct workqueue_struct *wq;
4294	struct pool_workqueue *pwq;
4295
4296	/*
4297	 * Unbound && max_active == 1 used to imply ordered, which is no
4298	 * longer the case on NUMA machines due to per-node pools.  While
4299	 * alloc_ordered_workqueue() is the right way to create an ordered
4300	 * workqueue, keep the previous behavior to avoid subtle breakages
4301	 * on NUMA.
4302	 */
4303	if ((flags & WQ_UNBOUND) && max_active == 1)
4304		flags |= __WQ_ORDERED;
4305
4306	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4307	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4308		flags |= WQ_UNBOUND;
4309
4310	/* allocate wq and format name */
4311	if (flags & WQ_UNBOUND)
4312		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4313
4314	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4315	if (!wq)
4316		return NULL;
4317
4318	if (flags & WQ_UNBOUND) {
4319		wq->unbound_attrs = alloc_workqueue_attrs();
4320		if (!wq->unbound_attrs)
4321			goto err_free_wq;
4322	}
4323
4324	va_start(args, max_active);
4325	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4326	va_end(args);
4327
4328	max_active = max_active ?: WQ_DFL_ACTIVE;
4329	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4330
4331	/* init wq */
4332	wq->flags = flags;
4333	wq->saved_max_active = max_active;
4334	mutex_init(&wq->mutex);
4335	atomic_set(&wq->nr_pwqs_to_flush, 0);
4336	INIT_LIST_HEAD(&wq->pwqs);
4337	INIT_LIST_HEAD(&wq->flusher_queue);
4338	INIT_LIST_HEAD(&wq->flusher_overflow);
4339	INIT_LIST_HEAD(&wq->maydays);
4340
4341	wq_init_lockdep(wq);
4342	INIT_LIST_HEAD(&wq->list);
4343
4344	if (alloc_and_link_pwqs(wq) < 0)
4345		goto err_unreg_lockdep;
4346
4347	if (wq_online && init_rescuer(wq) < 0)
4348		goto err_destroy;
4349
4350	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4351		goto err_destroy;
4352
4353	/*
4354	 * wq_pool_mutex protects global freeze state and workqueues list.
4355	 * Grab it, adjust max_active and add the new @wq to workqueues
4356	 * list.
4357	 */
4358	mutex_lock(&wq_pool_mutex);
4359
4360	mutex_lock(&wq->mutex);
4361	for_each_pwq(pwq, wq)
4362		pwq_adjust_max_active(pwq);
4363	mutex_unlock(&wq->mutex);
4364
4365	list_add_tail_rcu(&wq->list, &workqueues);
4366
4367	mutex_unlock(&wq_pool_mutex);
4368
4369	return wq;
4370
4371err_unreg_lockdep:
4372	wq_unregister_lockdep(wq);
4373	wq_free_lockdep(wq);
4374err_free_wq:
4375	free_workqueue_attrs(wq->unbound_attrs);
4376	kfree(wq);
4377	return NULL;
4378err_destroy:
4379	destroy_workqueue(wq);
4380	return NULL;
4381}
4382EXPORT_SYMBOL_GPL(alloc_workqueue);
4383
4384static bool pwq_busy(struct pool_workqueue *pwq)
4385{
4386	int i;
4387
4388	for (i = 0; i < WORK_NR_COLORS; i++)
4389		if (pwq->nr_in_flight[i])
4390			return true;
4391
4392	if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4393		return true;
4394	if (pwq->nr_active || !list_empty(&pwq->inactive_works))
4395		return true;
4396
4397	return false;
4398}
4399
4400/**
4401 * destroy_workqueue - safely terminate a workqueue
4402 * @wq: target workqueue
4403 *
4404 * Safely destroy a workqueue. All work currently pending will be done first.
4405 */
4406void destroy_workqueue(struct workqueue_struct *wq)
4407{
4408	struct pool_workqueue *pwq;
4409	int node;
4410
4411	/*
4412	 * Remove it from sysfs first so that sanity check failure doesn't
4413	 * lead to sysfs name conflicts.
4414	 */
4415	workqueue_sysfs_unregister(wq);
4416
4417	/* drain it before proceeding with destruction */
4418	drain_workqueue(wq);
4419
4420	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4421	if (wq->rescuer) {
4422		struct worker *rescuer = wq->rescuer;
4423
4424		/* this prevents new queueing */
4425		raw_spin_lock_irq(&wq_mayday_lock);
4426		wq->rescuer = NULL;
4427		raw_spin_unlock_irq(&wq_mayday_lock);
4428
4429		/* rescuer will empty maydays list before exiting */
4430		kthread_stop(rescuer->task);
4431		kfree(rescuer);
4432	}
4433
4434	/*
4435	 * Sanity checks - grab all the locks so that we wait for all
4436	 * in-flight operations which may do put_pwq().
4437	 */
4438	mutex_lock(&wq_pool_mutex);
4439	mutex_lock(&wq->mutex);
4440	for_each_pwq(pwq, wq) {
4441		raw_spin_lock_irq(&pwq->pool->lock);
4442		if (WARN_ON(pwq_busy(pwq))) {
4443			pr_warn("%s: %s has the following busy pwq\n",
4444				__func__, wq->name);
4445			show_pwq(pwq);
4446			raw_spin_unlock_irq(&pwq->pool->lock);
4447			mutex_unlock(&wq->mutex);
4448			mutex_unlock(&wq_pool_mutex);
4449			show_one_workqueue(wq);
4450			return;
4451		}
4452		raw_spin_unlock_irq(&pwq->pool->lock);
4453	}
4454	mutex_unlock(&wq->mutex);
4455
4456	/*
4457	 * wq list is used to freeze wq, remove from list after
4458	 * flushing is complete in case freeze races us.
4459	 */
4460	list_del_rcu(&wq->list);
4461	mutex_unlock(&wq_pool_mutex);
4462
4463	if (!(wq->flags & WQ_UNBOUND)) {
4464		wq_unregister_lockdep(wq);
4465		/*
4466		 * The base ref is never dropped on per-cpu pwqs.  Directly
4467		 * schedule RCU free.
4468		 */
4469		call_rcu(&wq->rcu, rcu_free_wq);
4470	} else {
4471		/*
4472		 * We're the sole accessor of @wq at this point.  Directly
4473		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4474		 * @wq will be freed when the last pwq is released.
4475		 */
4476		for_each_node(node) {
4477			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4478			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4479			put_pwq_unlocked(pwq);
4480		}
4481
4482		/*
4483		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4484		 * put.  Don't access it afterwards.
4485		 */
4486		pwq = wq->dfl_pwq;
4487		wq->dfl_pwq = NULL;
4488		put_pwq_unlocked(pwq);
4489	}
4490}
4491EXPORT_SYMBOL_GPL(destroy_workqueue);
4492
4493/**
4494 * workqueue_set_max_active - adjust max_active of a workqueue
4495 * @wq: target workqueue
4496 * @max_active: new max_active value.
4497 *
4498 * Set max_active of @wq to @max_active.
4499 *
4500 * CONTEXT:
4501 * Don't call from IRQ context.
4502 */
4503void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4504{
4505	struct pool_workqueue *pwq;
4506
4507	/* disallow meddling with max_active for ordered workqueues */
4508	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4509		return;
4510
4511	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4512
4513	mutex_lock(&wq->mutex);
4514
4515	wq->flags &= ~__WQ_ORDERED;
4516	wq->saved_max_active = max_active;
4517
4518	for_each_pwq(pwq, wq)
4519		pwq_adjust_max_active(pwq);
4520
4521	mutex_unlock(&wq->mutex);
4522}
4523EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4524
4525/**
4526 * current_work - retrieve %current task's work struct
4527 *
4528 * Determine if %current task is a workqueue worker and what it's working on.
4529 * Useful to find out the context that the %current task is running in.
4530 *
4531 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4532 */
4533struct work_struct *current_work(void)
4534{
4535	struct worker *worker = current_wq_worker();
4536
4537	return worker ? worker->current_work : NULL;
4538}
4539EXPORT_SYMBOL(current_work);
4540
4541/**
4542 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4543 *
4544 * Determine whether %current is a workqueue rescuer.  Can be used from
4545 * work functions to determine whether it's being run off the rescuer task.
4546 *
4547 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4548 */
4549bool current_is_workqueue_rescuer(void)
4550{
4551	struct worker *worker = current_wq_worker();
4552
4553	return worker && worker->rescue_wq;
4554}
4555
4556/**
4557 * workqueue_congested - test whether a workqueue is congested
4558 * @cpu: CPU in question
4559 * @wq: target workqueue
4560 *
4561 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4562 * no synchronization around this function and the test result is
4563 * unreliable and only useful as advisory hints or for debugging.
4564 *
4565 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4566 * Note that both per-cpu and unbound workqueues may be associated with
4567 * multiple pool_workqueues which have separate congested states.  A
4568 * workqueue being congested on one CPU doesn't mean the workqueue is also
4569 * contested on other CPUs / NUMA nodes.
4570 *
4571 * Return:
4572 * %true if congested, %false otherwise.
4573 */
4574bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4575{
4576	struct pool_workqueue *pwq;
4577	bool ret;
4578
4579	rcu_read_lock();
4580	preempt_disable();
4581
4582	if (cpu == WORK_CPU_UNBOUND)
4583		cpu = smp_processor_id();
4584
4585	if (!(wq->flags & WQ_UNBOUND))
4586		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4587	else
4588		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4589
4590	ret = !list_empty(&pwq->inactive_works);
4591	preempt_enable();
4592	rcu_read_unlock();
4593
4594	return ret;
4595}
4596EXPORT_SYMBOL_GPL(workqueue_congested);
4597
4598/**
4599 * work_busy - test whether a work is currently pending or running
4600 * @work: the work to be tested
4601 *
4602 * Test whether @work is currently pending or running.  There is no
4603 * synchronization around this function and the test result is
4604 * unreliable and only useful as advisory hints or for debugging.
4605 *
4606 * Return:
4607 * OR'd bitmask of WORK_BUSY_* bits.
4608 */
4609unsigned int work_busy(struct work_struct *work)
4610{
4611	struct worker_pool *pool;
4612	unsigned long flags;
4613	unsigned int ret = 0;
4614
4615	if (work_pending(work))
4616		ret |= WORK_BUSY_PENDING;
4617
4618	rcu_read_lock();
4619	pool = get_work_pool(work);
4620	if (pool) {
4621		raw_spin_lock_irqsave(&pool->lock, flags);
4622		if (find_worker_executing_work(pool, work))
4623			ret |= WORK_BUSY_RUNNING;
4624		raw_spin_unlock_irqrestore(&pool->lock, flags);
4625	}
4626	rcu_read_unlock();
4627
4628	return ret;
4629}
4630EXPORT_SYMBOL_GPL(work_busy);
4631
4632/**
4633 * set_worker_desc - set description for the current work item
4634 * @fmt: printf-style format string
4635 * @...: arguments for the format string
4636 *
4637 * This function can be called by a running work function to describe what
4638 * the work item is about.  If the worker task gets dumped, this
4639 * information will be printed out together to help debugging.  The
4640 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4641 */
4642void set_worker_desc(const char *fmt, ...)
4643{
4644	struct worker *worker = current_wq_worker();
4645	va_list args;
4646
4647	if (worker) {
4648		va_start(args, fmt);
4649		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4650		va_end(args);
4651	}
4652}
4653EXPORT_SYMBOL_GPL(set_worker_desc);
4654
4655/**
4656 * print_worker_info - print out worker information and description
4657 * @log_lvl: the log level to use when printing
4658 * @task: target task
4659 *
4660 * If @task is a worker and currently executing a work item, print out the
4661 * name of the workqueue being serviced and worker description set with
4662 * set_worker_desc() by the currently executing work item.
4663 *
4664 * This function can be safely called on any task as long as the
4665 * task_struct itself is accessible.  While safe, this function isn't
4666 * synchronized and may print out mixups or garbages of limited length.
4667 */
4668void print_worker_info(const char *log_lvl, struct task_struct *task)
4669{
4670	work_func_t *fn = NULL;
4671	char name[WQ_NAME_LEN] = { };
4672	char desc[WORKER_DESC_LEN] = { };
4673	struct pool_workqueue *pwq = NULL;
4674	struct workqueue_struct *wq = NULL;
4675	struct worker *worker;
4676
4677	if (!(task->flags & PF_WQ_WORKER))
4678		return;
4679
4680	/*
4681	 * This function is called without any synchronization and @task
4682	 * could be in any state.  Be careful with dereferences.
4683	 */
4684	worker = kthread_probe_data(task);
4685
4686	/*
4687	 * Carefully copy the associated workqueue's workfn, name and desc.
4688	 * Keep the original last '\0' in case the original is garbage.
4689	 */
4690	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4691	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4692	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4693	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4694	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4695
4696	if (fn || name[0] || desc[0]) {
4697		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4698		if (strcmp(name, desc))
4699			pr_cont(" (%s)", desc);
4700		pr_cont("\n");
4701	}
4702}
4703
4704static void pr_cont_pool_info(struct worker_pool *pool)
4705{
4706	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4707	if (pool->node != NUMA_NO_NODE)
4708		pr_cont(" node=%d", pool->node);
4709	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4710}
4711
4712static void pr_cont_work(bool comma, struct work_struct *work)
4713{
4714	if (work->func == wq_barrier_func) {
4715		struct wq_barrier *barr;
4716
4717		barr = container_of(work, struct wq_barrier, work);
4718
4719		pr_cont("%s BAR(%d)", comma ? "," : "",
4720			task_pid_nr(barr->task));
4721	} else {
4722		pr_cont("%s %ps", comma ? "," : "", work->func);
4723	}
4724}
4725
4726static void show_pwq(struct pool_workqueue *pwq)
4727{
4728	struct worker_pool *pool = pwq->pool;
4729	struct work_struct *work;
4730	struct worker *worker;
4731	bool has_in_flight = false, has_pending = false;
4732	int bkt;
4733
4734	pr_info("  pwq %d:", pool->id);
4735	pr_cont_pool_info(pool);
4736
4737	pr_cont(" active=%d/%d refcnt=%d%s\n",
4738		pwq->nr_active, pwq->max_active, pwq->refcnt,
4739		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4740
4741	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4742		if (worker->current_pwq == pwq) {
4743			has_in_flight = true;
4744			break;
4745		}
4746	}
4747	if (has_in_flight) {
4748		bool comma = false;
4749
4750		pr_info("    in-flight:");
4751		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4752			if (worker->current_pwq != pwq)
4753				continue;
4754
4755			pr_cont("%s %d%s:%ps", comma ? "," : "",
4756				task_pid_nr(worker->task),
4757				worker->rescue_wq ? "(RESCUER)" : "",
4758				worker->current_func);
4759			list_for_each_entry(work, &worker->scheduled, entry)
4760				pr_cont_work(false, work);
4761			comma = true;
4762		}
4763		pr_cont("\n");
4764	}
4765
4766	list_for_each_entry(work, &pool->worklist, entry) {
4767		if (get_work_pwq(work) == pwq) {
4768			has_pending = true;
4769			break;
4770		}
4771	}
4772	if (has_pending) {
4773		bool comma = false;
4774
4775		pr_info("    pending:");
4776		list_for_each_entry(work, &pool->worklist, entry) {
4777			if (get_work_pwq(work) != pwq)
4778				continue;
4779
4780			pr_cont_work(comma, work);
4781			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4782		}
4783		pr_cont("\n");
4784	}
4785
4786	if (!list_empty(&pwq->inactive_works)) {
4787		bool comma = false;
4788
4789		pr_info("    inactive:");
4790		list_for_each_entry(work, &pwq->inactive_works, entry) {
4791			pr_cont_work(comma, work);
4792			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4793		}
4794		pr_cont("\n");
4795	}
4796}
4797
4798/**
4799 * show_one_workqueue - dump state of specified workqueue
4800 * @wq: workqueue whose state will be printed
 
 
4801 */
4802void show_one_workqueue(struct workqueue_struct *wq)
4803{
4804	struct pool_workqueue *pwq;
4805	bool idle = true;
4806	unsigned long flags;
 
4807
4808	for_each_pwq(pwq, wq) {
4809		if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4810			idle = false;
4811			break;
 
 
 
 
 
 
 
 
 
4812		}
4813	}
4814	if (idle) /* Nothing to print for idle workqueue */
4815		return;
4816
4817	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4818
4819	for_each_pwq(pwq, wq) {
4820		raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4821		if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
 
 
4822			/*
4823			 * Defer printing to avoid deadlocks in console
4824			 * drivers that queue work while holding locks
4825			 * also taken in their write paths.
4826			 */
4827			printk_deferred_enter();
4828			show_pwq(pwq);
4829			printk_deferred_exit();
4830		}
4831		raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4832		/*
4833		 * We could be printing a lot from atomic context, e.g.
4834		 * sysrq-t -> show_all_workqueues(). Avoid triggering
4835		 * hard lockup.
4836		 */
4837		touch_nmi_watchdog();
4838	}
4839
4840}
4841
4842/**
4843 * show_one_worker_pool - dump state of specified worker pool
4844 * @pool: worker pool whose state will be printed
4845 */
4846static void show_one_worker_pool(struct worker_pool *pool)
4847{
4848	struct worker *worker;
4849	bool first = true;
4850	unsigned long flags;
4851
4852	raw_spin_lock_irqsave(&pool->lock, flags);
4853	if (pool->nr_workers == pool->nr_idle)
4854		goto next_pool;
4855	/*
4856	 * Defer printing to avoid deadlocks in console drivers that
4857	 * queue work while holding locks also taken in their write
4858	 * paths.
4859	 */
4860	printk_deferred_enter();
4861	pr_info("pool %d:", pool->id);
4862	pr_cont_pool_info(pool);
4863	pr_cont(" hung=%us workers=%d",
4864		jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4865		pool->nr_workers);
4866	if (pool->manager)
4867		pr_cont(" manager: %d",
4868			task_pid_nr(pool->manager->task));
4869	list_for_each_entry(worker, &pool->idle_list, entry) {
4870		pr_cont(" %s%d", first ? "idle: " : "",
4871			task_pid_nr(worker->task));
4872		first = false;
4873	}
4874	pr_cont("\n");
4875	printk_deferred_exit();
4876next_pool:
4877	raw_spin_unlock_irqrestore(&pool->lock, flags);
4878	/*
4879	 * We could be printing a lot from atomic context, e.g.
4880	 * sysrq-t -> show_all_workqueues(). Avoid triggering
4881	 * hard lockup.
4882	 */
4883	touch_nmi_watchdog();
4884
4885}
4886
4887/**
4888 * show_all_workqueues - dump workqueue state
4889 *
4890 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4891 * all busy workqueues and pools.
4892 */
4893void show_all_workqueues(void)
4894{
4895	struct workqueue_struct *wq;
4896	struct worker_pool *pool;
4897	int pi;
4898
4899	rcu_read_lock();
4900
4901	pr_info("Showing busy workqueues and worker pools:\n");
4902
4903	list_for_each_entry_rcu(wq, &workqueues, list)
4904		show_one_workqueue(wq);
4905
4906	for_each_pool(pool, pi)
4907		show_one_worker_pool(pool);
4908
4909	rcu_read_unlock();
4910}
4911
4912/* used to show worker information through /proc/PID/{comm,stat,status} */
4913void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4914{
4915	int off;
4916
4917	/* always show the actual comm */
4918	off = strscpy(buf, task->comm, size);
4919	if (off < 0)
4920		return;
4921
4922	/* stabilize PF_WQ_WORKER and worker pool association */
4923	mutex_lock(&wq_pool_attach_mutex);
4924
4925	if (task->flags & PF_WQ_WORKER) {
4926		struct worker *worker = kthread_data(task);
4927		struct worker_pool *pool = worker->pool;
4928
4929		if (pool) {
4930			raw_spin_lock_irq(&pool->lock);
4931			/*
4932			 * ->desc tracks information (wq name or
4933			 * set_worker_desc()) for the latest execution.  If
4934			 * current, prepend '+', otherwise '-'.
4935			 */
4936			if (worker->desc[0] != '\0') {
4937				if (worker->current_work)
4938					scnprintf(buf + off, size - off, "+%s",
4939						  worker->desc);
4940				else
4941					scnprintf(buf + off, size - off, "-%s",
4942						  worker->desc);
4943			}
4944			raw_spin_unlock_irq(&pool->lock);
4945		}
4946	}
4947
4948	mutex_unlock(&wq_pool_attach_mutex);
4949}
4950
4951#ifdef CONFIG_SMP
4952
4953/*
4954 * CPU hotplug.
4955 *
4956 * There are two challenges in supporting CPU hotplug.  Firstly, there
4957 * are a lot of assumptions on strong associations among work, pwq and
4958 * pool which make migrating pending and scheduled works very
4959 * difficult to implement without impacting hot paths.  Secondly,
4960 * worker pools serve mix of short, long and very long running works making
4961 * blocked draining impractical.
4962 *
4963 * This is solved by allowing the pools to be disassociated from the CPU
4964 * running as an unbound one and allowing it to be reattached later if the
4965 * cpu comes back online.
4966 */
4967
4968static void unbind_workers(int cpu)
4969{
4970	struct worker_pool *pool;
4971	struct worker *worker;
4972
4973	for_each_cpu_worker_pool(pool, cpu) {
4974		mutex_lock(&wq_pool_attach_mutex);
4975		raw_spin_lock_irq(&pool->lock);
4976
4977		/*
4978		 * We've blocked all attach/detach operations. Make all workers
4979		 * unbound and set DISASSOCIATED.  Before this, all workers
4980		 * must be on the cpu.  After this, they may become diasporas.
4981		 * And the preemption disabled section in their sched callbacks
4982		 * are guaranteed to see WORKER_UNBOUND since the code here
4983		 * is on the same cpu.
4984		 */
4985		for_each_pool_worker(worker, pool)
4986			worker->flags |= WORKER_UNBOUND;
4987
4988		pool->flags |= POOL_DISASSOCIATED;
4989
 
 
 
 
 
 
 
 
 
4990		/*
4991		 * The handling of nr_running in sched callbacks are disabled
4992		 * now.  Zap nr_running.  After this, nr_running stays zero and
4993		 * need_more_worker() and keep_working() are always true as
4994		 * long as the worklist is not empty.  This pool now behaves as
4995		 * an unbound (in terms of concurrency management) pool which
 
 
 
 
 
 
 
 
4996		 * are served by workers tied to the pool.
4997		 */
4998		pool->nr_running = 0;
4999
5000		/*
5001		 * With concurrency management just turned off, a busy
5002		 * worker blocking could lead to lengthy stalls.  Kick off
5003		 * unbound chain execution of currently pending work items.
5004		 */
 
5005		wake_up_worker(pool);
5006
5007		raw_spin_unlock_irq(&pool->lock);
5008
5009		for_each_pool_worker(worker, pool) {
5010			kthread_set_per_cpu(worker->task, -1);
5011			if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
5012				WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
5013			else
5014				WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
5015		}
5016
5017		mutex_unlock(&wq_pool_attach_mutex);
5018	}
5019}
5020
5021/**
5022 * rebind_workers - rebind all workers of a pool to the associated CPU
5023 * @pool: pool of interest
5024 *
5025 * @pool->cpu is coming online.  Rebind all workers to the CPU.
5026 */
5027static void rebind_workers(struct worker_pool *pool)
5028{
5029	struct worker *worker;
5030
5031	lockdep_assert_held(&wq_pool_attach_mutex);
5032
5033	/*
5034	 * Restore CPU affinity of all workers.  As all idle workers should
5035	 * be on the run-queue of the associated CPU before any local
5036	 * wake-ups for concurrency management happen, restore CPU affinity
5037	 * of all workers first and then clear UNBOUND.  As we're called
5038	 * from CPU_ONLINE, the following shouldn't fail.
5039	 */
5040	for_each_pool_worker(worker, pool) {
5041		kthread_set_per_cpu(worker->task, pool->cpu);
5042		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5043						  pool->attrs->cpumask) < 0);
5044	}
5045
5046	raw_spin_lock_irq(&pool->lock);
5047
5048	pool->flags &= ~POOL_DISASSOCIATED;
5049
5050	for_each_pool_worker(worker, pool) {
5051		unsigned int worker_flags = worker->flags;
5052
5053		/*
 
 
 
 
 
 
 
 
 
 
 
5054		 * We want to clear UNBOUND but can't directly call
5055		 * worker_clr_flags() or adjust nr_running.  Atomically
5056		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5057		 * @worker will clear REBOUND using worker_clr_flags() when
5058		 * it initiates the next execution cycle thus restoring
5059		 * concurrency management.  Note that when or whether
5060		 * @worker clears REBOUND doesn't affect correctness.
5061		 *
5062		 * WRITE_ONCE() is necessary because @worker->flags may be
5063		 * tested without holding any lock in
5064		 * wq_worker_running().  Without it, NOT_RUNNING test may
5065		 * fail incorrectly leading to premature concurrency
5066		 * management operations.
5067		 */
5068		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5069		worker_flags |= WORKER_REBOUND;
5070		worker_flags &= ~WORKER_UNBOUND;
5071		WRITE_ONCE(worker->flags, worker_flags);
5072	}
5073
5074	raw_spin_unlock_irq(&pool->lock);
5075}
5076
5077/**
5078 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5079 * @pool: unbound pool of interest
5080 * @cpu: the CPU which is coming up
5081 *
5082 * An unbound pool may end up with a cpumask which doesn't have any online
5083 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
5084 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
5085 * online CPU before, cpus_allowed of all its workers should be restored.
5086 */
5087static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5088{
5089	static cpumask_t cpumask;
5090	struct worker *worker;
5091
5092	lockdep_assert_held(&wq_pool_attach_mutex);
5093
5094	/* is @cpu allowed for @pool? */
5095	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5096		return;
5097
5098	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5099
5100	/* as we're called from CPU_ONLINE, the following shouldn't fail */
5101	for_each_pool_worker(worker, pool)
5102		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5103}
5104
5105int workqueue_prepare_cpu(unsigned int cpu)
5106{
5107	struct worker_pool *pool;
5108
5109	for_each_cpu_worker_pool(pool, cpu) {
5110		if (pool->nr_workers)
5111			continue;
5112		if (!create_worker(pool))
5113			return -ENOMEM;
5114	}
5115	return 0;
5116}
5117
5118int workqueue_online_cpu(unsigned int cpu)
5119{
5120	struct worker_pool *pool;
5121	struct workqueue_struct *wq;
5122	int pi;
5123
5124	mutex_lock(&wq_pool_mutex);
5125
5126	for_each_pool(pool, pi) {
5127		mutex_lock(&wq_pool_attach_mutex);
5128
5129		if (pool->cpu == cpu)
5130			rebind_workers(pool);
5131		else if (pool->cpu < 0)
5132			restore_unbound_workers_cpumask(pool, cpu);
5133
5134		mutex_unlock(&wq_pool_attach_mutex);
5135	}
5136
5137	/* update NUMA affinity of unbound workqueues */
5138	list_for_each_entry(wq, &workqueues, list)
5139		wq_update_unbound_numa(wq, cpu, true);
5140
5141	mutex_unlock(&wq_pool_mutex);
5142	return 0;
5143}
5144
5145int workqueue_offline_cpu(unsigned int cpu)
5146{
5147	struct workqueue_struct *wq;
5148
5149	/* unbinding per-cpu workers should happen on the local CPU */
5150	if (WARN_ON(cpu != smp_processor_id()))
5151		return -1;
5152
5153	unbind_workers(cpu);
5154
5155	/* update NUMA affinity of unbound workqueues */
5156	mutex_lock(&wq_pool_mutex);
5157	list_for_each_entry(wq, &workqueues, list)
5158		wq_update_unbound_numa(wq, cpu, false);
5159	mutex_unlock(&wq_pool_mutex);
5160
5161	return 0;
5162}
5163
5164struct work_for_cpu {
5165	struct work_struct work;
5166	long (*fn)(void *);
5167	void *arg;
5168	long ret;
5169};
5170
5171static void work_for_cpu_fn(struct work_struct *work)
5172{
5173	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5174
5175	wfc->ret = wfc->fn(wfc->arg);
5176}
5177
5178/**
5179 * work_on_cpu - run a function in thread context on a particular cpu
5180 * @cpu: the cpu to run on
5181 * @fn: the function to run
5182 * @arg: the function arg
5183 *
5184 * It is up to the caller to ensure that the cpu doesn't go offline.
5185 * The caller must not hold any locks which would prevent @fn from completing.
5186 *
5187 * Return: The value @fn returns.
5188 */
5189long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5190{
5191	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5192
5193	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5194	schedule_work_on(cpu, &wfc.work);
5195	flush_work(&wfc.work);
5196	destroy_work_on_stack(&wfc.work);
5197	return wfc.ret;
5198}
5199EXPORT_SYMBOL_GPL(work_on_cpu);
5200
5201/**
5202 * work_on_cpu_safe - run a function in thread context on a particular cpu
5203 * @cpu: the cpu to run on
5204 * @fn:  the function to run
5205 * @arg: the function argument
5206 *
5207 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5208 * any locks which would prevent @fn from completing.
5209 *
5210 * Return: The value @fn returns.
5211 */
5212long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5213{
5214	long ret = -ENODEV;
5215
5216	cpus_read_lock();
5217	if (cpu_online(cpu))
5218		ret = work_on_cpu(cpu, fn, arg);
5219	cpus_read_unlock();
5220	return ret;
5221}
5222EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5223#endif /* CONFIG_SMP */
5224
5225#ifdef CONFIG_FREEZER
5226
5227/**
5228 * freeze_workqueues_begin - begin freezing workqueues
5229 *
5230 * Start freezing workqueues.  After this function returns, all freezable
5231 * workqueues will queue new works to their inactive_works list instead of
5232 * pool->worklist.
5233 *
5234 * CONTEXT:
5235 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5236 */
5237void freeze_workqueues_begin(void)
5238{
5239	struct workqueue_struct *wq;
5240	struct pool_workqueue *pwq;
5241
5242	mutex_lock(&wq_pool_mutex);
5243
5244	WARN_ON_ONCE(workqueue_freezing);
5245	workqueue_freezing = true;
5246
5247	list_for_each_entry(wq, &workqueues, list) {
5248		mutex_lock(&wq->mutex);
5249		for_each_pwq(pwq, wq)
5250			pwq_adjust_max_active(pwq);
5251		mutex_unlock(&wq->mutex);
5252	}
5253
5254	mutex_unlock(&wq_pool_mutex);
5255}
5256
5257/**
5258 * freeze_workqueues_busy - are freezable workqueues still busy?
5259 *
5260 * Check whether freezing is complete.  This function must be called
5261 * between freeze_workqueues_begin() and thaw_workqueues().
5262 *
5263 * CONTEXT:
5264 * Grabs and releases wq_pool_mutex.
5265 *
5266 * Return:
5267 * %true if some freezable workqueues are still busy.  %false if freezing
5268 * is complete.
5269 */
5270bool freeze_workqueues_busy(void)
5271{
5272	bool busy = false;
5273	struct workqueue_struct *wq;
5274	struct pool_workqueue *pwq;
5275
5276	mutex_lock(&wq_pool_mutex);
5277
5278	WARN_ON_ONCE(!workqueue_freezing);
5279
5280	list_for_each_entry(wq, &workqueues, list) {
5281		if (!(wq->flags & WQ_FREEZABLE))
5282			continue;
5283		/*
5284		 * nr_active is monotonically decreasing.  It's safe
5285		 * to peek without lock.
5286		 */
5287		rcu_read_lock();
5288		for_each_pwq(pwq, wq) {
5289			WARN_ON_ONCE(pwq->nr_active < 0);
5290			if (pwq->nr_active) {
5291				busy = true;
5292				rcu_read_unlock();
5293				goto out_unlock;
5294			}
5295		}
5296		rcu_read_unlock();
5297	}
5298out_unlock:
5299	mutex_unlock(&wq_pool_mutex);
5300	return busy;
5301}
5302
5303/**
5304 * thaw_workqueues - thaw workqueues
5305 *
5306 * Thaw workqueues.  Normal queueing is restored and all collected
5307 * frozen works are transferred to their respective pool worklists.
5308 *
5309 * CONTEXT:
5310 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5311 */
5312void thaw_workqueues(void)
5313{
5314	struct workqueue_struct *wq;
5315	struct pool_workqueue *pwq;
5316
5317	mutex_lock(&wq_pool_mutex);
5318
5319	if (!workqueue_freezing)
5320		goto out_unlock;
5321
5322	workqueue_freezing = false;
5323
5324	/* restore max_active and repopulate worklist */
5325	list_for_each_entry(wq, &workqueues, list) {
5326		mutex_lock(&wq->mutex);
5327		for_each_pwq(pwq, wq)
5328			pwq_adjust_max_active(pwq);
5329		mutex_unlock(&wq->mutex);
5330	}
5331
5332out_unlock:
5333	mutex_unlock(&wq_pool_mutex);
5334}
5335#endif /* CONFIG_FREEZER */
5336
5337static int workqueue_apply_unbound_cpumask(void)
5338{
5339	LIST_HEAD(ctxs);
5340	int ret = 0;
5341	struct workqueue_struct *wq;
5342	struct apply_wqattrs_ctx *ctx, *n;
5343
5344	lockdep_assert_held(&wq_pool_mutex);
5345
5346	list_for_each_entry(wq, &workqueues, list) {
5347		if (!(wq->flags & WQ_UNBOUND))
5348			continue;
5349		/* creating multiple pwqs breaks ordering guarantee */
5350		if (wq->flags & __WQ_ORDERED)
5351			continue;
5352
5353		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5354		if (!ctx) {
5355			ret = -ENOMEM;
5356			break;
5357		}
5358
5359		list_add_tail(&ctx->list, &ctxs);
5360	}
5361
5362	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5363		if (!ret)
5364			apply_wqattrs_commit(ctx);
5365		apply_wqattrs_cleanup(ctx);
5366	}
5367
5368	return ret;
5369}
5370
5371/**
5372 *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5373 *  @cpumask: the cpumask to set
5374 *
5375 *  The low-level workqueues cpumask is a global cpumask that limits
5376 *  the affinity of all unbound workqueues.  This function check the @cpumask
5377 *  and apply it to all unbound workqueues and updates all pwqs of them.
5378 *
5379 *  Return:	0	- Success
5380 *  		-EINVAL	- Invalid @cpumask
5381 *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5382 */
5383int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5384{
5385	int ret = -EINVAL;
5386	cpumask_var_t saved_cpumask;
5387
 
 
 
5388	/*
5389	 * Not excluding isolated cpus on purpose.
5390	 * If the user wishes to include them, we allow that.
5391	 */
5392	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5393	if (!cpumask_empty(cpumask)) {
5394		apply_wqattrs_lock();
5395		if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5396			ret = 0;
5397			goto out_unlock;
5398		}
5399
5400		if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) {
5401			ret = -ENOMEM;
5402			goto out_unlock;
5403		}
5404
5405		/* save the old wq_unbound_cpumask. */
5406		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5407
5408		/* update wq_unbound_cpumask at first and apply it to wqs. */
5409		cpumask_copy(wq_unbound_cpumask, cpumask);
5410		ret = workqueue_apply_unbound_cpumask();
5411
5412		/* restore the wq_unbound_cpumask when failed. */
5413		if (ret < 0)
5414			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5415
5416		free_cpumask_var(saved_cpumask);
5417out_unlock:
5418		apply_wqattrs_unlock();
5419	}
5420
 
5421	return ret;
5422}
5423
5424#ifdef CONFIG_SYSFS
5425/*
5426 * Workqueues with WQ_SYSFS flag set is visible to userland via
5427 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5428 * following attributes.
5429 *
5430 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5431 *  max_active	RW int	: maximum number of in-flight work items
5432 *
5433 * Unbound workqueues have the following extra attributes.
5434 *
5435 *  pool_ids	RO int	: the associated pool IDs for each node
5436 *  nice	RW int	: nice value of the workers
5437 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5438 *  numa	RW bool	: whether enable NUMA affinity
5439 */
5440struct wq_device {
5441	struct workqueue_struct		*wq;
5442	struct device			dev;
5443};
5444
5445static struct workqueue_struct *dev_to_wq(struct device *dev)
5446{
5447	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5448
5449	return wq_dev->wq;
5450}
5451
5452static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5453			    char *buf)
5454{
5455	struct workqueue_struct *wq = dev_to_wq(dev);
5456
5457	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5458}
5459static DEVICE_ATTR_RO(per_cpu);
5460
5461static ssize_t max_active_show(struct device *dev,
5462			       struct device_attribute *attr, char *buf)
5463{
5464	struct workqueue_struct *wq = dev_to_wq(dev);
5465
5466	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5467}
5468
5469static ssize_t max_active_store(struct device *dev,
5470				struct device_attribute *attr, const char *buf,
5471				size_t count)
5472{
5473	struct workqueue_struct *wq = dev_to_wq(dev);
5474	int val;
5475
5476	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5477		return -EINVAL;
5478
5479	workqueue_set_max_active(wq, val);
5480	return count;
5481}
5482static DEVICE_ATTR_RW(max_active);
5483
5484static struct attribute *wq_sysfs_attrs[] = {
5485	&dev_attr_per_cpu.attr,
5486	&dev_attr_max_active.attr,
5487	NULL,
5488};
5489ATTRIBUTE_GROUPS(wq_sysfs);
5490
5491static ssize_t wq_pool_ids_show(struct device *dev,
5492				struct device_attribute *attr, char *buf)
5493{
5494	struct workqueue_struct *wq = dev_to_wq(dev);
5495	const char *delim = "";
5496	int node, written = 0;
5497
5498	cpus_read_lock();
5499	rcu_read_lock();
5500	for_each_node(node) {
5501		written += scnprintf(buf + written, PAGE_SIZE - written,
5502				     "%s%d:%d", delim, node,
5503				     unbound_pwq_by_node(wq, node)->pool->id);
5504		delim = " ";
5505	}
5506	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5507	rcu_read_unlock();
5508	cpus_read_unlock();
5509
5510	return written;
5511}
5512
5513static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5514			    char *buf)
5515{
5516	struct workqueue_struct *wq = dev_to_wq(dev);
5517	int written;
5518
5519	mutex_lock(&wq->mutex);
5520	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5521	mutex_unlock(&wq->mutex);
5522
5523	return written;
5524}
5525
5526/* prepare workqueue_attrs for sysfs store operations */
5527static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5528{
5529	struct workqueue_attrs *attrs;
5530
5531	lockdep_assert_held(&wq_pool_mutex);
5532
5533	attrs = alloc_workqueue_attrs();
5534	if (!attrs)
5535		return NULL;
5536
5537	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5538	return attrs;
5539}
5540
5541static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5542			     const char *buf, size_t count)
5543{
5544	struct workqueue_struct *wq = dev_to_wq(dev);
5545	struct workqueue_attrs *attrs;
5546	int ret = -ENOMEM;
5547
5548	apply_wqattrs_lock();
5549
5550	attrs = wq_sysfs_prep_attrs(wq);
5551	if (!attrs)
5552		goto out_unlock;
5553
5554	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5555	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5556		ret = apply_workqueue_attrs_locked(wq, attrs);
5557	else
5558		ret = -EINVAL;
5559
5560out_unlock:
5561	apply_wqattrs_unlock();
5562	free_workqueue_attrs(attrs);
5563	return ret ?: count;
5564}
5565
5566static ssize_t wq_cpumask_show(struct device *dev,
5567			       struct device_attribute *attr, char *buf)
5568{
5569	struct workqueue_struct *wq = dev_to_wq(dev);
5570	int written;
5571
5572	mutex_lock(&wq->mutex);
5573	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5574			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5575	mutex_unlock(&wq->mutex);
5576	return written;
5577}
5578
5579static ssize_t wq_cpumask_store(struct device *dev,
5580				struct device_attribute *attr,
5581				const char *buf, size_t count)
5582{
5583	struct workqueue_struct *wq = dev_to_wq(dev);
5584	struct workqueue_attrs *attrs;
5585	int ret = -ENOMEM;
5586
5587	apply_wqattrs_lock();
5588
5589	attrs = wq_sysfs_prep_attrs(wq);
5590	if (!attrs)
5591		goto out_unlock;
5592
5593	ret = cpumask_parse(buf, attrs->cpumask);
5594	if (!ret)
5595		ret = apply_workqueue_attrs_locked(wq, attrs);
5596
5597out_unlock:
5598	apply_wqattrs_unlock();
5599	free_workqueue_attrs(attrs);
5600	return ret ?: count;
5601}
5602
5603static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5604			    char *buf)
5605{
5606	struct workqueue_struct *wq = dev_to_wq(dev);
5607	int written;
5608
5609	mutex_lock(&wq->mutex);
5610	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5611			    !wq->unbound_attrs->no_numa);
5612	mutex_unlock(&wq->mutex);
5613
5614	return written;
5615}
5616
5617static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5618			     const char *buf, size_t count)
5619{
5620	struct workqueue_struct *wq = dev_to_wq(dev);
5621	struct workqueue_attrs *attrs;
5622	int v, ret = -ENOMEM;
5623
5624	apply_wqattrs_lock();
5625
5626	attrs = wq_sysfs_prep_attrs(wq);
5627	if (!attrs)
5628		goto out_unlock;
5629
5630	ret = -EINVAL;
5631	if (sscanf(buf, "%d", &v) == 1) {
5632		attrs->no_numa = !v;
5633		ret = apply_workqueue_attrs_locked(wq, attrs);
5634	}
5635
5636out_unlock:
5637	apply_wqattrs_unlock();
5638	free_workqueue_attrs(attrs);
5639	return ret ?: count;
5640}
5641
5642static struct device_attribute wq_sysfs_unbound_attrs[] = {
5643	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5644	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5645	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5646	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5647	__ATTR_NULL,
5648};
5649
5650static struct bus_type wq_subsys = {
5651	.name				= "workqueue",
5652	.dev_groups			= wq_sysfs_groups,
5653};
5654
5655static ssize_t wq_unbound_cpumask_show(struct device *dev,
5656		struct device_attribute *attr, char *buf)
5657{
5658	int written;
5659
5660	mutex_lock(&wq_pool_mutex);
5661	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5662			    cpumask_pr_args(wq_unbound_cpumask));
5663	mutex_unlock(&wq_pool_mutex);
5664
5665	return written;
5666}
5667
5668static ssize_t wq_unbound_cpumask_store(struct device *dev,
5669		struct device_attribute *attr, const char *buf, size_t count)
5670{
5671	cpumask_var_t cpumask;
5672	int ret;
5673
5674	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5675		return -ENOMEM;
5676
5677	ret = cpumask_parse(buf, cpumask);
5678	if (!ret)
5679		ret = workqueue_set_unbound_cpumask(cpumask);
5680
5681	free_cpumask_var(cpumask);
5682	return ret ? ret : count;
5683}
5684
5685static struct device_attribute wq_sysfs_cpumask_attr =
5686	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5687	       wq_unbound_cpumask_store);
5688
5689static int __init wq_sysfs_init(void)
5690{
5691	int err;
5692
5693	err = subsys_virtual_register(&wq_subsys, NULL);
5694	if (err)
5695		return err;
5696
5697	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5698}
5699core_initcall(wq_sysfs_init);
5700
5701static void wq_device_release(struct device *dev)
5702{
5703	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5704
5705	kfree(wq_dev);
5706}
5707
5708/**
5709 * workqueue_sysfs_register - make a workqueue visible in sysfs
5710 * @wq: the workqueue to register
5711 *
5712 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5713 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5714 * which is the preferred method.
5715 *
5716 * Workqueue user should use this function directly iff it wants to apply
5717 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5718 * apply_workqueue_attrs() may race against userland updating the
5719 * attributes.
5720 *
5721 * Return: 0 on success, -errno on failure.
5722 */
5723int workqueue_sysfs_register(struct workqueue_struct *wq)
5724{
5725	struct wq_device *wq_dev;
5726	int ret;
5727
5728	/*
5729	 * Adjusting max_active or creating new pwqs by applying
5730	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5731	 * workqueues.
5732	 */
5733	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5734		return -EINVAL;
5735
5736	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5737	if (!wq_dev)
5738		return -ENOMEM;
5739
5740	wq_dev->wq = wq;
5741	wq_dev->dev.bus = &wq_subsys;
5742	wq_dev->dev.release = wq_device_release;
5743	dev_set_name(&wq_dev->dev, "%s", wq->name);
5744
5745	/*
5746	 * unbound_attrs are created separately.  Suppress uevent until
5747	 * everything is ready.
5748	 */
5749	dev_set_uevent_suppress(&wq_dev->dev, true);
5750
5751	ret = device_register(&wq_dev->dev);
5752	if (ret) {
5753		put_device(&wq_dev->dev);
5754		wq->wq_dev = NULL;
5755		return ret;
5756	}
5757
5758	if (wq->flags & WQ_UNBOUND) {
5759		struct device_attribute *attr;
5760
5761		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5762			ret = device_create_file(&wq_dev->dev, attr);
5763			if (ret) {
5764				device_unregister(&wq_dev->dev);
5765				wq->wq_dev = NULL;
5766				return ret;
5767			}
5768		}
5769	}
5770
5771	dev_set_uevent_suppress(&wq_dev->dev, false);
5772	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5773	return 0;
5774}
5775
5776/**
5777 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5778 * @wq: the workqueue to unregister
5779 *
5780 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5781 */
5782static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5783{
5784	struct wq_device *wq_dev = wq->wq_dev;
5785
5786	if (!wq->wq_dev)
5787		return;
5788
5789	wq->wq_dev = NULL;
5790	device_unregister(&wq_dev->dev);
5791}
5792#else	/* CONFIG_SYSFS */
5793static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5794#endif	/* CONFIG_SYSFS */
5795
5796/*
5797 * Workqueue watchdog.
5798 *
5799 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5800 * flush dependency, a concurrency managed work item which stays RUNNING
5801 * indefinitely.  Workqueue stalls can be very difficult to debug as the
5802 * usual warning mechanisms don't trigger and internal workqueue state is
5803 * largely opaque.
5804 *
5805 * Workqueue watchdog monitors all worker pools periodically and dumps
5806 * state if some pools failed to make forward progress for a while where
5807 * forward progress is defined as the first item on ->worklist changing.
5808 *
5809 * This mechanism is controlled through the kernel parameter
5810 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5811 * corresponding sysfs parameter file.
5812 */
5813#ifdef CONFIG_WQ_WATCHDOG
5814
5815static unsigned long wq_watchdog_thresh = 30;
5816static struct timer_list wq_watchdog_timer;
5817
5818static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5819static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5820
5821static void wq_watchdog_reset_touched(void)
5822{
5823	int cpu;
5824
5825	wq_watchdog_touched = jiffies;
5826	for_each_possible_cpu(cpu)
5827		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5828}
5829
5830static void wq_watchdog_timer_fn(struct timer_list *unused)
5831{
5832	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5833	bool lockup_detected = false;
5834	unsigned long now = jiffies;
5835	struct worker_pool *pool;
5836	int pi;
5837
5838	if (!thresh)
5839		return;
5840
5841	rcu_read_lock();
5842
5843	for_each_pool(pool, pi) {
5844		unsigned long pool_ts, touched, ts;
5845
5846		if (list_empty(&pool->worklist))
5847			continue;
5848
5849		/*
5850		 * If a virtual machine is stopped by the host it can look to
5851		 * the watchdog like a stall.
5852		 */
5853		kvm_check_and_clear_guest_paused();
5854
5855		/* get the latest of pool and touched timestamps */
5856		if (pool->cpu >= 0)
5857			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
5858		else
5859			touched = READ_ONCE(wq_watchdog_touched);
5860		pool_ts = READ_ONCE(pool->watchdog_ts);
5861
5862		if (time_after(pool_ts, touched))
5863			ts = pool_ts;
5864		else
5865			ts = touched;
5866
5867		/* did we stall? */
5868		if (time_after(now, ts + thresh)) {
5869			lockup_detected = true;
5870			pr_emerg("BUG: workqueue lockup - pool");
5871			pr_cont_pool_info(pool);
5872			pr_cont(" stuck for %us!\n",
5873				jiffies_to_msecs(now - pool_ts) / 1000);
5874		}
5875	}
5876
5877	rcu_read_unlock();
5878
5879	if (lockup_detected)
5880		show_all_workqueues();
5881
5882	wq_watchdog_reset_touched();
5883	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5884}
5885
5886notrace void wq_watchdog_touch(int cpu)
5887{
5888	if (cpu >= 0)
5889		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5890
5891	wq_watchdog_touched = jiffies;
5892}
5893
5894static void wq_watchdog_set_thresh(unsigned long thresh)
5895{
5896	wq_watchdog_thresh = 0;
5897	del_timer_sync(&wq_watchdog_timer);
5898
5899	if (thresh) {
5900		wq_watchdog_thresh = thresh;
5901		wq_watchdog_reset_touched();
5902		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5903	}
5904}
5905
5906static int wq_watchdog_param_set_thresh(const char *val,
5907					const struct kernel_param *kp)
5908{
5909	unsigned long thresh;
5910	int ret;
5911
5912	ret = kstrtoul(val, 0, &thresh);
5913	if (ret)
5914		return ret;
5915
5916	if (system_wq)
5917		wq_watchdog_set_thresh(thresh);
5918	else
5919		wq_watchdog_thresh = thresh;
5920
5921	return 0;
5922}
5923
5924static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5925	.set	= wq_watchdog_param_set_thresh,
5926	.get	= param_get_ulong,
5927};
5928
5929module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5930		0644);
5931
5932static void wq_watchdog_init(void)
5933{
5934	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5935	wq_watchdog_set_thresh(wq_watchdog_thresh);
5936}
5937
5938#else	/* CONFIG_WQ_WATCHDOG */
5939
5940static inline void wq_watchdog_init(void) { }
5941
5942#endif	/* CONFIG_WQ_WATCHDOG */
5943
5944static void __init wq_numa_init(void)
5945{
5946	cpumask_var_t *tbl;
5947	int node, cpu;
5948
5949	if (num_possible_nodes() <= 1)
5950		return;
5951
5952	if (wq_disable_numa) {
5953		pr_info("workqueue: NUMA affinity support disabled\n");
5954		return;
5955	}
5956
5957	for_each_possible_cpu(cpu) {
5958		if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
5959			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5960			return;
5961		}
5962	}
5963
5964	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5965	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5966
5967	/*
5968	 * We want masks of possible CPUs of each node which isn't readily
5969	 * available.  Build one from cpu_to_node() which should have been
5970	 * fully initialized by now.
5971	 */
5972	tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5973	BUG_ON(!tbl);
5974
5975	for_each_node(node)
5976		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5977				node_online(node) ? node : NUMA_NO_NODE));
5978
5979	for_each_possible_cpu(cpu) {
5980		node = cpu_to_node(cpu);
5981		cpumask_set_cpu(cpu, tbl[node]);
5982	}
5983
5984	wq_numa_possible_cpumask = tbl;
5985	wq_numa_enabled = true;
5986}
5987
5988/**
5989 * workqueue_init_early - early init for workqueue subsystem
5990 *
5991 * This is the first half of two-staged workqueue subsystem initialization
5992 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5993 * idr are up.  It sets up all the data structures and system workqueues
5994 * and allows early boot code to create workqueues and queue/cancel work
5995 * items.  Actual work item execution starts only after kthreads can be
5996 * created and scheduled right before early initcalls.
5997 */
5998void __init workqueue_init_early(void)
5999{
6000	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
 
6001	int i, cpu;
6002
6003	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
6004
6005	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
6006	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_WQ));
6007	cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_DOMAIN));
6008
6009	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
6010
6011	/* initialize CPU pools */
6012	for_each_possible_cpu(cpu) {
6013		struct worker_pool *pool;
6014
6015		i = 0;
6016		for_each_cpu_worker_pool(pool, cpu) {
6017			BUG_ON(init_worker_pool(pool));
6018			pool->cpu = cpu;
6019			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
6020			pool->attrs->nice = std_nice[i++];
6021			pool->node = cpu_to_node(cpu);
6022
6023			/* alloc pool ID */
6024			mutex_lock(&wq_pool_mutex);
6025			BUG_ON(worker_pool_assign_id(pool));
6026			mutex_unlock(&wq_pool_mutex);
6027		}
6028	}
6029
6030	/* create default unbound and ordered wq attrs */
6031	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6032		struct workqueue_attrs *attrs;
6033
6034		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6035		attrs->nice = std_nice[i];
6036		unbound_std_wq_attrs[i] = attrs;
6037
6038		/*
6039		 * An ordered wq should have only one pwq as ordering is
6040		 * guaranteed by max_active which is enforced by pwqs.
6041		 * Turn off NUMA so that dfl_pwq is used for all nodes.
6042		 */
6043		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6044		attrs->nice = std_nice[i];
6045		attrs->no_numa = true;
6046		ordered_wq_attrs[i] = attrs;
6047	}
6048
6049	system_wq = alloc_workqueue("events", 0, 0);
6050	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
6051	system_long_wq = alloc_workqueue("events_long", 0, 0);
6052	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6053					    WQ_UNBOUND_MAX_ACTIVE);
6054	system_freezable_wq = alloc_workqueue("events_freezable",
6055					      WQ_FREEZABLE, 0);
6056	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6057					      WQ_POWER_EFFICIENT, 0);
6058	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6059					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6060					      0);
6061	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6062	       !system_unbound_wq || !system_freezable_wq ||
6063	       !system_power_efficient_wq ||
6064	       !system_freezable_power_efficient_wq);
6065}
6066
6067/**
6068 * workqueue_init - bring workqueue subsystem fully online
6069 *
6070 * This is the latter half of two-staged workqueue subsystem initialization
6071 * and invoked as soon as kthreads can be created and scheduled.
6072 * Workqueues have been created and work items queued on them, but there
6073 * are no kworkers executing the work items yet.  Populate the worker pools
6074 * with the initial workers and enable future kworker creations.
6075 */
6076void __init workqueue_init(void)
6077{
6078	struct workqueue_struct *wq;
6079	struct worker_pool *pool;
6080	int cpu, bkt;
6081
6082	/*
6083	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6084	 * CPU to node mapping may not be available that early on some
6085	 * archs such as power and arm64.  As per-cpu pools created
6086	 * previously could be missing node hint and unbound pools NUMA
6087	 * affinity, fix them up.
6088	 *
6089	 * Also, while iterating workqueues, create rescuers if requested.
6090	 */
6091	wq_numa_init();
6092
6093	mutex_lock(&wq_pool_mutex);
6094
6095	for_each_possible_cpu(cpu) {
6096		for_each_cpu_worker_pool(pool, cpu) {
6097			pool->node = cpu_to_node(cpu);
6098		}
6099	}
6100
6101	list_for_each_entry(wq, &workqueues, list) {
6102		wq_update_unbound_numa(wq, smp_processor_id(), true);
6103		WARN(init_rescuer(wq),
6104		     "workqueue: failed to create early rescuer for %s",
6105		     wq->name);
6106	}
6107
6108	mutex_unlock(&wq_pool_mutex);
6109
6110	/* create the initial workers */
6111	for_each_online_cpu(cpu) {
6112		for_each_cpu_worker_pool(pool, cpu) {
6113			pool->flags &= ~POOL_DISASSOCIATED;
6114			BUG_ON(!create_worker(pool));
6115		}
6116	}
6117
6118	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6119		BUG_ON(!create_worker(pool));
6120
6121	wq_online = true;
6122	wq_watchdog_init();
6123}
6124
6125/*
6126 * Despite the naming, this is a no-op function which is here only for avoiding
6127 * link error. Since compile-time warning may fail to catch, we will need to
6128 * emit run-time warning from __flush_workqueue().
6129 */
6130void __warn_flushing_systemwide_wq(void) { }
6131EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kernel/workqueue.c - generic async execution with shared worker pool
   4 *
   5 * Copyright (C) 2002		Ingo Molnar
   6 *
   7 *   Derived from the taskqueue/keventd code by:
   8 *     David Woodhouse <dwmw2@infradead.org>
   9 *     Andrew Morton
  10 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
  11 *     Theodore Ts'o <tytso@mit.edu>
  12 *
  13 * Made to use alloc_percpu by Christoph Lameter.
  14 *
  15 * Copyright (C) 2010		SUSE Linux Products GmbH
  16 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  17 *
  18 * This is the generic async execution mechanism.  Work items as are
  19 * executed in process context.  The worker pool is shared and
  20 * automatically managed.  There are two worker pools for each CPU (one for
  21 * normal work items and the other for high priority ones) and some extra
  22 * pools for workqueues which are not bound to any specific CPU - the
  23 * number of these backing pools is dynamic.
  24 *
  25 * Please read Documentation/core-api/workqueue.rst for details.
  26 */
  27
  28#include <linux/export.h>
  29#include <linux/kernel.h>
  30#include <linux/sched.h>
  31#include <linux/init.h>
  32#include <linux/signal.h>
  33#include <linux/completion.h>
  34#include <linux/workqueue.h>
  35#include <linux/slab.h>
  36#include <linux/cpu.h>
  37#include <linux/notifier.h>
  38#include <linux/kthread.h>
  39#include <linux/hardirq.h>
  40#include <linux/mempolicy.h>
  41#include <linux/freezer.h>
  42#include <linux/debug_locks.h>
  43#include <linux/lockdep.h>
  44#include <linux/idr.h>
  45#include <linux/jhash.h>
  46#include <linux/hashtable.h>
  47#include <linux/rculist.h>
  48#include <linux/nodemask.h>
  49#include <linux/moduleparam.h>
  50#include <linux/uaccess.h>
  51#include <linux/sched/isolation.h>
  52#include <linux/nmi.h>
  53#include <linux/kvm_para.h>
  54
  55#include "workqueue_internal.h"
  56
  57enum {
  58	/*
  59	 * worker_pool flags
  60	 *
  61	 * A bound pool is either associated or disassociated with its CPU.
  62	 * While associated (!DISASSOCIATED), all workers are bound to the
  63	 * CPU and none has %WORKER_UNBOUND set and concurrency management
  64	 * is in effect.
  65	 *
  66	 * While DISASSOCIATED, the cpu may be offline and all workers have
  67	 * %WORKER_UNBOUND set and concurrency management disabled, and may
  68	 * be executing on any CPU.  The pool behaves as an unbound one.
  69	 *
  70	 * Note that DISASSOCIATED should be flipped only while holding
  71	 * wq_pool_attach_mutex to avoid changing binding state while
  72	 * worker_attach_to_pool() is in progress.
  73	 */
  74	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
  75	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
  76
  77	/* worker flags */
  78	WORKER_DIE		= 1 << 1,	/* die die die */
  79	WORKER_IDLE		= 1 << 2,	/* is idle */
  80	WORKER_PREP		= 1 << 3,	/* preparing to run works */
  81	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
  82	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
  83	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
  84
  85	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
  86				  WORKER_UNBOUND | WORKER_REBOUND,
  87
  88	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
  89
  90	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
  91	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
  92
  93	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
  94	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
  95
  96	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
  97						/* call for help after 10ms
  98						   (min two ticks) */
  99	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
 100	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
 101
 102	/*
 103	 * Rescue workers are used only on emergencies and shared by
 104	 * all cpus.  Give MIN_NICE.
 105	 */
 106	RESCUER_NICE_LEVEL	= MIN_NICE,
 107	HIGHPRI_NICE_LEVEL	= MIN_NICE,
 108
 109	WQ_NAME_LEN		= 24,
 110};
 111
 112/*
 113 * Structure fields follow one of the following exclusion rules.
 114 *
 115 * I: Modifiable by initialization/destruction paths and read-only for
 116 *    everyone else.
 117 *
 118 * P: Preemption protected.  Disabling preemption is enough and should
 119 *    only be modified and accessed from the local cpu.
 120 *
 121 * L: pool->lock protected.  Access with pool->lock held.
 122 *
 123 * X: During normal operation, modification requires pool->lock and should
 124 *    be done only from local cpu.  Either disabling preemption on local
 125 *    cpu or grabbing pool->lock is enough for read access.  If
 126 *    POOL_DISASSOCIATED is set, it's identical to L.
 127 *
 128 * A: wq_pool_attach_mutex protected.
 129 *
 130 * PL: wq_pool_mutex protected.
 131 *
 132 * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
 133 *
 134 * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
 135 *
 136 * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
 137 *      RCU for reads.
 138 *
 139 * WQ: wq->mutex protected.
 140 *
 141 * WR: wq->mutex protected for writes.  RCU protected for reads.
 142 *
 143 * MD: wq_mayday_lock protected.
 144 */
 145
 146/* struct worker is defined in workqueue_internal.h */
 147
 148struct worker_pool {
 149	raw_spinlock_t		lock;		/* the pool lock */
 150	int			cpu;		/* I: the associated cpu */
 151	int			node;		/* I: the associated node ID */
 152	int			id;		/* I: pool ID */
 153	unsigned int		flags;		/* X: flags */
 154
 155	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
 156
 
 
 
 
 
 
 
 
 157	struct list_head	worklist;	/* L: list of pending works */
 158
 159	int			nr_workers;	/* L: total number of workers */
 160	int			nr_idle;	/* L: currently idle workers */
 161
 162	struct list_head	idle_list;	/* X: list of idle workers */
 163	struct timer_list	idle_timer;	/* L: worker idle timeout */
 164	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
 165
 166	/* a workers is either on busy_hash or idle_list, or the manager */
 167	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
 168						/* L: hash of busy workers */
 169
 170	struct worker		*manager;	/* L: purely informational */
 171	struct list_head	workers;	/* A: attached workers */
 172	struct completion	*detach_completion; /* all workers detached */
 173
 174	struct ida		worker_ida;	/* worker IDs for task name */
 175
 176	struct workqueue_attrs	*attrs;		/* I: worker attributes */
 177	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
 178	int			refcnt;		/* PL: refcnt for unbound pools */
 179
 180	/*
 181	 * The current concurrency level.  As it's likely to be accessed
 182	 * from other CPUs during try_to_wake_up(), put it in a separate
 183	 * cacheline.
 184	 */
 185	atomic_t		nr_running ____cacheline_aligned_in_smp;
 186
 187	/*
 188	 * Destruction of pool is RCU protected to allow dereferences
 189	 * from get_work_pool().
 190	 */
 191	struct rcu_head		rcu;
 192} ____cacheline_aligned_in_smp;
 193
 194/*
 195 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 196 * of work_struct->data are used for flags and the remaining high bits
 197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 198 * number of flag bits.
 199 */
 200struct pool_workqueue {
 201	struct worker_pool	*pool;		/* I: the associated pool */
 202	struct workqueue_struct *wq;		/* I: the owning workqueue */
 203	int			work_color;	/* L: current color */
 204	int			flush_color;	/* L: flushing color */
 205	int			refcnt;		/* L: reference count */
 206	int			nr_in_flight[WORK_NR_COLORS];
 207						/* L: nr of in_flight works */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 208	int			nr_active;	/* L: nr of active works */
 209	int			max_active;	/* L: max active works */
 210	struct list_head	delayed_works;	/* L: delayed works */
 211	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
 212	struct list_head	mayday_node;	/* MD: node on wq->maydays */
 213
 214	/*
 215	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
 216	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
 217	 * itself is also RCU protected so that the first pwq can be
 218	 * determined without grabbing wq->mutex.
 219	 */
 220	struct work_struct	unbound_release_work;
 221	struct rcu_head		rcu;
 222} __aligned(1 << WORK_STRUCT_FLAG_BITS);
 223
 224/*
 225 * Structure used to wait for workqueue flush.
 226 */
 227struct wq_flusher {
 228	struct list_head	list;		/* WQ: list of flushers */
 229	int			flush_color;	/* WQ: flush color waiting for */
 230	struct completion	done;		/* flush completion */
 231};
 232
 233struct wq_device;
 234
 235/*
 236 * The externally visible workqueue.  It relays the issued work items to
 237 * the appropriate worker_pool through its pool_workqueues.
 238 */
 239struct workqueue_struct {
 240	struct list_head	pwqs;		/* WR: all pwqs of this wq */
 241	struct list_head	list;		/* PR: list of all workqueues */
 242
 243	struct mutex		mutex;		/* protects this wq */
 244	int			work_color;	/* WQ: current work color */
 245	int			flush_color;	/* WQ: current flush color */
 246	atomic_t		nr_pwqs_to_flush; /* flush in progress */
 247	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
 248	struct list_head	flusher_queue;	/* WQ: flush waiters */
 249	struct list_head	flusher_overflow; /* WQ: flush overflow list */
 250
 251	struct list_head	maydays;	/* MD: pwqs requesting rescue */
 252	struct worker		*rescuer;	/* MD: rescue worker */
 253
 254	int			nr_drainers;	/* WQ: drain in progress */
 255	int			saved_max_active; /* WQ: saved pwq max_active */
 256
 257	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
 258	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
 259
 260#ifdef CONFIG_SYSFS
 261	struct wq_device	*wq_dev;	/* I: for sysfs interface */
 262#endif
 263#ifdef CONFIG_LOCKDEP
 264	char			*lock_name;
 265	struct lock_class_key	key;
 266	struct lockdep_map	lockdep_map;
 267#endif
 268	char			name[WQ_NAME_LEN]; /* I: workqueue name */
 269
 270	/*
 271	 * Destruction of workqueue_struct is RCU protected to allow walking
 272	 * the workqueues list without grabbing wq_pool_mutex.
 273	 * This is used to dump all workqueues from sysrq.
 274	 */
 275	struct rcu_head		rcu;
 276
 277	/* hot fields used during command issue, aligned to cacheline */
 278	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
 279	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
 280	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
 281};
 282
 283static struct kmem_cache *pwq_cache;
 284
 285static cpumask_var_t *wq_numa_possible_cpumask;
 286					/* possible CPUs of each node */
 287
 288static bool wq_disable_numa;
 289module_param_named(disable_numa, wq_disable_numa, bool, 0444);
 290
 291/* see the comment above the definition of WQ_POWER_EFFICIENT */
 292static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
 293module_param_named(power_efficient, wq_power_efficient, bool, 0444);
 294
 295static bool wq_online;			/* can kworkers be created yet? */
 296
 297static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
 298
 299/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
 300static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
 301
 302static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
 303static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
 304static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
 305/* wait for manager to go away */
 306static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
 307
 308static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
 309static bool workqueue_freezing;		/* PL: have wqs started freezing? */
 310
 311/* PL: allowable cpus for unbound wqs and work items */
 312static cpumask_var_t wq_unbound_cpumask;
 313
 314/* CPU where unbound work was last round robin scheduled from this CPU */
 315static DEFINE_PER_CPU(int, wq_rr_cpu_last);
 316
 317/*
 318 * Local execution of unbound work items is no longer guaranteed.  The
 319 * following always forces round-robin CPU selection on unbound work items
 320 * to uncover usages which depend on it.
 321 */
 322#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
 323static bool wq_debug_force_rr_cpu = true;
 324#else
 325static bool wq_debug_force_rr_cpu = false;
 326#endif
 327module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
 328
 329/* the per-cpu worker pools */
 330static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
 331
 332static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
 333
 334/* PL: hash of all unbound pools keyed by pool->attrs */
 335static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
 336
 337/* I: attributes used when instantiating standard unbound pools on demand */
 338static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
 339
 340/* I: attributes used when instantiating ordered pools on demand */
 341static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
 342
 343struct workqueue_struct *system_wq __read_mostly;
 344EXPORT_SYMBOL(system_wq);
 345struct workqueue_struct *system_highpri_wq __read_mostly;
 346EXPORT_SYMBOL_GPL(system_highpri_wq);
 347struct workqueue_struct *system_long_wq __read_mostly;
 348EXPORT_SYMBOL_GPL(system_long_wq);
 349struct workqueue_struct *system_unbound_wq __read_mostly;
 350EXPORT_SYMBOL_GPL(system_unbound_wq);
 351struct workqueue_struct *system_freezable_wq __read_mostly;
 352EXPORT_SYMBOL_GPL(system_freezable_wq);
 353struct workqueue_struct *system_power_efficient_wq __read_mostly;
 354EXPORT_SYMBOL_GPL(system_power_efficient_wq);
 355struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
 356EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
 357
 358static int worker_thread(void *__worker);
 359static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
 360static void show_pwq(struct pool_workqueue *pwq);
 
 361
 362#define CREATE_TRACE_POINTS
 363#include <trace/events/workqueue.h>
 364
 365#define assert_rcu_or_pool_mutex()					\
 366	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
 367			 !lockdep_is_held(&wq_pool_mutex),		\
 368			 "RCU or wq_pool_mutex should be held")
 369
 370#define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
 371	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
 372			 !lockdep_is_held(&wq->mutex) &&		\
 373			 !lockdep_is_held(&wq_pool_mutex),		\
 374			 "RCU, wq->mutex or wq_pool_mutex should be held")
 375
 376#define for_each_cpu_worker_pool(pool, cpu)				\
 377	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
 378	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
 379	     (pool)++)
 380
 381/**
 382 * for_each_pool - iterate through all worker_pools in the system
 383 * @pool: iteration cursor
 384 * @pi: integer used for iteration
 385 *
 386 * This must be called either with wq_pool_mutex held or RCU read
 387 * locked.  If the pool needs to be used beyond the locking in effect, the
 388 * caller is responsible for guaranteeing that the pool stays online.
 389 *
 390 * The if/else clause exists only for the lockdep assertion and can be
 391 * ignored.
 392 */
 393#define for_each_pool(pool, pi)						\
 394	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
 395		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
 396		else
 397
 398/**
 399 * for_each_pool_worker - iterate through all workers of a worker_pool
 400 * @worker: iteration cursor
 401 * @pool: worker_pool to iterate workers of
 402 *
 403 * This must be called with wq_pool_attach_mutex.
 404 *
 405 * The if/else clause exists only for the lockdep assertion and can be
 406 * ignored.
 407 */
 408#define for_each_pool_worker(worker, pool)				\
 409	list_for_each_entry((worker), &(pool)->workers, node)		\
 410		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
 411		else
 412
 413/**
 414 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 415 * @pwq: iteration cursor
 416 * @wq: the target workqueue
 417 *
 418 * This must be called either with wq->mutex held or RCU read locked.
 419 * If the pwq needs to be used beyond the locking in effect, the caller is
 420 * responsible for guaranteeing that the pwq stays online.
 421 *
 422 * The if/else clause exists only for the lockdep assertion and can be
 423 * ignored.
 424 */
 425#define for_each_pwq(pwq, wq)						\
 426	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
 427				 lockdep_is_held(&(wq->mutex)))
 428
 429#ifdef CONFIG_DEBUG_OBJECTS_WORK
 430
 431static const struct debug_obj_descr work_debug_descr;
 432
 433static void *work_debug_hint(void *addr)
 434{
 435	return ((struct work_struct *) addr)->func;
 436}
 437
 438static bool work_is_static_object(void *addr)
 439{
 440	struct work_struct *work = addr;
 441
 442	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
 443}
 444
 445/*
 446 * fixup_init is called when:
 447 * - an active object is initialized
 448 */
 449static bool work_fixup_init(void *addr, enum debug_obj_state state)
 450{
 451	struct work_struct *work = addr;
 452
 453	switch (state) {
 454	case ODEBUG_STATE_ACTIVE:
 455		cancel_work_sync(work);
 456		debug_object_init(work, &work_debug_descr);
 457		return true;
 458	default:
 459		return false;
 460	}
 461}
 462
 463/*
 464 * fixup_free is called when:
 465 * - an active object is freed
 466 */
 467static bool work_fixup_free(void *addr, enum debug_obj_state state)
 468{
 469	struct work_struct *work = addr;
 470
 471	switch (state) {
 472	case ODEBUG_STATE_ACTIVE:
 473		cancel_work_sync(work);
 474		debug_object_free(work, &work_debug_descr);
 475		return true;
 476	default:
 477		return false;
 478	}
 479}
 480
 481static const struct debug_obj_descr work_debug_descr = {
 482	.name		= "work_struct",
 483	.debug_hint	= work_debug_hint,
 484	.is_static_object = work_is_static_object,
 485	.fixup_init	= work_fixup_init,
 486	.fixup_free	= work_fixup_free,
 487};
 488
 489static inline void debug_work_activate(struct work_struct *work)
 490{
 491	debug_object_activate(work, &work_debug_descr);
 492}
 493
 494static inline void debug_work_deactivate(struct work_struct *work)
 495{
 496	debug_object_deactivate(work, &work_debug_descr);
 497}
 498
 499void __init_work(struct work_struct *work, int onstack)
 500{
 501	if (onstack)
 502		debug_object_init_on_stack(work, &work_debug_descr);
 503	else
 504		debug_object_init(work, &work_debug_descr);
 505}
 506EXPORT_SYMBOL_GPL(__init_work);
 507
 508void destroy_work_on_stack(struct work_struct *work)
 509{
 510	debug_object_free(work, &work_debug_descr);
 511}
 512EXPORT_SYMBOL_GPL(destroy_work_on_stack);
 513
 514void destroy_delayed_work_on_stack(struct delayed_work *work)
 515{
 516	destroy_timer_on_stack(&work->timer);
 517	debug_object_free(&work->work, &work_debug_descr);
 518}
 519EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
 520
 521#else
 522static inline void debug_work_activate(struct work_struct *work) { }
 523static inline void debug_work_deactivate(struct work_struct *work) { }
 524#endif
 525
 526/**
 527 * worker_pool_assign_id - allocate ID and assing it to @pool
 528 * @pool: the pool pointer of interest
 529 *
 530 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 531 * successfully, -errno on failure.
 532 */
 533static int worker_pool_assign_id(struct worker_pool *pool)
 534{
 535	int ret;
 536
 537	lockdep_assert_held(&wq_pool_mutex);
 538
 539	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
 540			GFP_KERNEL);
 541	if (ret >= 0) {
 542		pool->id = ret;
 543		return 0;
 544	}
 545	return ret;
 546}
 547
 548/**
 549 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 550 * @wq: the target workqueue
 551 * @node: the node ID
 552 *
 553 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
 554 * read locked.
 555 * If the pwq needs to be used beyond the locking in effect, the caller is
 556 * responsible for guaranteeing that the pwq stays online.
 557 *
 558 * Return: The unbound pool_workqueue for @node.
 559 */
 560static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
 561						  int node)
 562{
 563	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
 564
 565	/*
 566	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
 567	 * delayed item is pending.  The plan is to keep CPU -> NODE
 568	 * mapping valid and stable across CPU on/offlines.  Once that
 569	 * happens, this workaround can be removed.
 570	 */
 571	if (unlikely(node == NUMA_NO_NODE))
 572		return wq->dfl_pwq;
 573
 574	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
 575}
 576
 577static unsigned int work_color_to_flags(int color)
 578{
 579	return color << WORK_STRUCT_COLOR_SHIFT;
 580}
 581
 582static int get_work_color(struct work_struct *work)
 583{
 584	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
 585		((1 << WORK_STRUCT_COLOR_BITS) - 1);
 586}
 587
 588static int work_next_color(int color)
 589{
 590	return (color + 1) % WORK_NR_COLORS;
 591}
 592
 593/*
 594 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 595 * contain the pointer to the queued pwq.  Once execution starts, the flag
 596 * is cleared and the high bits contain OFFQ flags and pool ID.
 597 *
 598 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 599 * and clear_work_data() can be used to set the pwq, pool or clear
 600 * work->data.  These functions should only be called while the work is
 601 * owned - ie. while the PENDING bit is set.
 602 *
 603 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
 604 * corresponding to a work.  Pool is available once the work has been
 605 * queued anywhere after initialization until it is sync canceled.  pwq is
 606 * available only while the work item is queued.
 607 *
 608 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 609 * canceled.  While being canceled, a work item may have its PENDING set
 610 * but stay off timer and worklist for arbitrarily long and nobody should
 611 * try to steal the PENDING bit.
 612 */
 613static inline void set_work_data(struct work_struct *work, unsigned long data,
 614				 unsigned long flags)
 615{
 616	WARN_ON_ONCE(!work_pending(work));
 617	atomic_long_set(&work->data, data | flags | work_static(work));
 618}
 619
 620static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
 621			 unsigned long extra_flags)
 622{
 623	set_work_data(work, (unsigned long)pwq,
 624		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
 625}
 626
 627static void set_work_pool_and_keep_pending(struct work_struct *work,
 628					   int pool_id)
 629{
 630	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
 631		      WORK_STRUCT_PENDING);
 632}
 633
 634static void set_work_pool_and_clear_pending(struct work_struct *work,
 635					    int pool_id)
 636{
 637	/*
 638	 * The following wmb is paired with the implied mb in
 639	 * test_and_set_bit(PENDING) and ensures all updates to @work made
 640	 * here are visible to and precede any updates by the next PENDING
 641	 * owner.
 642	 */
 643	smp_wmb();
 644	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
 645	/*
 646	 * The following mb guarantees that previous clear of a PENDING bit
 647	 * will not be reordered with any speculative LOADS or STORES from
 648	 * work->current_func, which is executed afterwards.  This possible
 649	 * reordering can lead to a missed execution on attempt to queue
 650	 * the same @work.  E.g. consider this case:
 651	 *
 652	 *   CPU#0                         CPU#1
 653	 *   ----------------------------  --------------------------------
 654	 *
 655	 * 1  STORE event_indicated
 656	 * 2  queue_work_on() {
 657	 * 3    test_and_set_bit(PENDING)
 658	 * 4 }                             set_..._and_clear_pending() {
 659	 * 5                                 set_work_data() # clear bit
 660	 * 6                                 smp_mb()
 661	 * 7                               work->current_func() {
 662	 * 8				      LOAD event_indicated
 663	 *				   }
 664	 *
 665	 * Without an explicit full barrier speculative LOAD on line 8 can
 666	 * be executed before CPU#0 does STORE on line 1.  If that happens,
 667	 * CPU#0 observes the PENDING bit is still set and new execution of
 668	 * a @work is not queued in a hope, that CPU#1 will eventually
 669	 * finish the queued @work.  Meanwhile CPU#1 does not see
 670	 * event_indicated is set, because speculative LOAD was executed
 671	 * before actual STORE.
 672	 */
 673	smp_mb();
 674}
 675
 676static void clear_work_data(struct work_struct *work)
 677{
 678	smp_wmb();	/* see set_work_pool_and_clear_pending() */
 679	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
 680}
 681
 682static struct pool_workqueue *get_work_pwq(struct work_struct *work)
 683{
 684	unsigned long data = atomic_long_read(&work->data);
 685
 686	if (data & WORK_STRUCT_PWQ)
 687		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
 688	else
 689		return NULL;
 690}
 691
 692/**
 693 * get_work_pool - return the worker_pool a given work was associated with
 694 * @work: the work item of interest
 695 *
 696 * Pools are created and destroyed under wq_pool_mutex, and allows read
 697 * access under RCU read lock.  As such, this function should be
 698 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
 699 *
 700 * All fields of the returned pool are accessible as long as the above
 701 * mentioned locking is in effect.  If the returned pool needs to be used
 702 * beyond the critical section, the caller is responsible for ensuring the
 703 * returned pool is and stays online.
 704 *
 705 * Return: The worker_pool @work was last associated with.  %NULL if none.
 706 */
 707static struct worker_pool *get_work_pool(struct work_struct *work)
 708{
 709	unsigned long data = atomic_long_read(&work->data);
 710	int pool_id;
 711
 712	assert_rcu_or_pool_mutex();
 713
 714	if (data & WORK_STRUCT_PWQ)
 715		return ((struct pool_workqueue *)
 716			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
 717
 718	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
 719	if (pool_id == WORK_OFFQ_POOL_NONE)
 720		return NULL;
 721
 722	return idr_find(&worker_pool_idr, pool_id);
 723}
 724
 725/**
 726 * get_work_pool_id - return the worker pool ID a given work is associated with
 727 * @work: the work item of interest
 728 *
 729 * Return: The worker_pool ID @work was last associated with.
 730 * %WORK_OFFQ_POOL_NONE if none.
 731 */
 732static int get_work_pool_id(struct work_struct *work)
 733{
 734	unsigned long data = atomic_long_read(&work->data);
 735
 736	if (data & WORK_STRUCT_PWQ)
 737		return ((struct pool_workqueue *)
 738			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
 739
 740	return data >> WORK_OFFQ_POOL_SHIFT;
 741}
 742
 743static void mark_work_canceling(struct work_struct *work)
 744{
 745	unsigned long pool_id = get_work_pool_id(work);
 746
 747	pool_id <<= WORK_OFFQ_POOL_SHIFT;
 748	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
 749}
 750
 751static bool work_is_canceling(struct work_struct *work)
 752{
 753	unsigned long data = atomic_long_read(&work->data);
 754
 755	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
 756}
 757
 758/*
 759 * Policy functions.  These define the policies on how the global worker
 760 * pools are managed.  Unless noted otherwise, these functions assume that
 761 * they're being called with pool->lock held.
 762 */
 763
 764static bool __need_more_worker(struct worker_pool *pool)
 765{
 766	return !atomic_read(&pool->nr_running);
 767}
 768
 769/*
 770 * Need to wake up a worker?  Called from anything but currently
 771 * running workers.
 772 *
 773 * Note that, because unbound workers never contribute to nr_running, this
 774 * function will always return %true for unbound pools as long as the
 775 * worklist isn't empty.
 776 */
 777static bool need_more_worker(struct worker_pool *pool)
 778{
 779	return !list_empty(&pool->worklist) && __need_more_worker(pool);
 780}
 781
 782/* Can I start working?  Called from busy but !running workers. */
 783static bool may_start_working(struct worker_pool *pool)
 784{
 785	return pool->nr_idle;
 786}
 787
 788/* Do I need to keep working?  Called from currently running workers. */
 789static bool keep_working(struct worker_pool *pool)
 790{
 791	return !list_empty(&pool->worklist) &&
 792		atomic_read(&pool->nr_running) <= 1;
 793}
 794
 795/* Do we need a new worker?  Called from manager. */
 796static bool need_to_create_worker(struct worker_pool *pool)
 797{
 798	return need_more_worker(pool) && !may_start_working(pool);
 799}
 800
 801/* Do we have too many workers and should some go away? */
 802static bool too_many_workers(struct worker_pool *pool)
 803{
 804	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
 805	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
 806	int nr_busy = pool->nr_workers - nr_idle;
 807
 808	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
 809}
 810
 811/*
 812 * Wake up functions.
 813 */
 814
 815/* Return the first idle worker.  Safe with preemption disabled */
 816static struct worker *first_idle_worker(struct worker_pool *pool)
 817{
 818	if (unlikely(list_empty(&pool->idle_list)))
 819		return NULL;
 820
 821	return list_first_entry(&pool->idle_list, struct worker, entry);
 822}
 823
 824/**
 825 * wake_up_worker - wake up an idle worker
 826 * @pool: worker pool to wake worker from
 827 *
 828 * Wake up the first idle worker of @pool.
 829 *
 830 * CONTEXT:
 831 * raw_spin_lock_irq(pool->lock).
 832 */
 833static void wake_up_worker(struct worker_pool *pool)
 834{
 835	struct worker *worker = first_idle_worker(pool);
 836
 837	if (likely(worker))
 838		wake_up_process(worker->task);
 839}
 840
 841/**
 842 * wq_worker_running - a worker is running again
 843 * @task: task waking up
 844 *
 845 * This function is called when a worker returns from schedule()
 846 */
 847void wq_worker_running(struct task_struct *task)
 848{
 849	struct worker *worker = kthread_data(task);
 850
 851	if (!worker->sleeping)
 852		return;
 
 
 
 
 
 
 
 
 853	if (!(worker->flags & WORKER_NOT_RUNNING))
 854		atomic_inc(&worker->pool->nr_running);
 
 855	worker->sleeping = 0;
 856}
 857
 858/**
 859 * wq_worker_sleeping - a worker is going to sleep
 860 * @task: task going to sleep
 861 *
 862 * This function is called from schedule() when a busy worker is
 863 * going to sleep. Preemption needs to be disabled to protect ->sleeping
 864 * assignment.
 865 */
 866void wq_worker_sleeping(struct task_struct *task)
 867{
 868	struct worker *next, *worker = kthread_data(task);
 869	struct worker_pool *pool;
 870
 871	/*
 872	 * Rescuers, which may not have all the fields set up like normal
 873	 * workers, also reach here, let's not access anything before
 874	 * checking NOT_RUNNING.
 875	 */
 876	if (worker->flags & WORKER_NOT_RUNNING)
 877		return;
 878
 879	pool = worker->pool;
 880
 881	/* Return if preempted before wq_worker_running() was reached */
 882	if (worker->sleeping)
 883		return;
 884
 885	worker->sleeping = 1;
 886	raw_spin_lock_irq(&pool->lock);
 887
 888	/*
 889	 * The counterpart of the following dec_and_test, implied mb,
 890	 * worklist not empty test sequence is in insert_work().
 891	 * Please read comment there.
 892	 *
 893	 * NOT_RUNNING is clear.  This means that we're bound to and
 894	 * running on the local cpu w/ rq lock held and preemption
 895	 * disabled, which in turn means that none else could be
 896	 * manipulating idle_list, so dereferencing idle_list without pool
 897	 * lock is safe.
 898	 */
 899	if (atomic_dec_and_test(&pool->nr_running) &&
 900	    !list_empty(&pool->worklist)) {
 901		next = first_idle_worker(pool);
 902		if (next)
 903			wake_up_process(next->task);
 904	}
 
 
 
 
 905	raw_spin_unlock_irq(&pool->lock);
 906}
 907
 908/**
 909 * wq_worker_last_func - retrieve worker's last work function
 910 * @task: Task to retrieve last work function of.
 911 *
 912 * Determine the last function a worker executed. This is called from
 913 * the scheduler to get a worker's last known identity.
 914 *
 915 * CONTEXT:
 916 * raw_spin_lock_irq(rq->lock)
 917 *
 918 * This function is called during schedule() when a kworker is going
 919 * to sleep. It's used by psi to identify aggregation workers during
 920 * dequeuing, to allow periodic aggregation to shut-off when that
 921 * worker is the last task in the system or cgroup to go to sleep.
 922 *
 923 * As this function doesn't involve any workqueue-related locking, it
 924 * only returns stable values when called from inside the scheduler's
 925 * queuing and dequeuing paths, when @task, which must be a kworker,
 926 * is guaranteed to not be processing any works.
 927 *
 928 * Return:
 929 * The last work function %current executed as a worker, NULL if it
 930 * hasn't executed any work yet.
 931 */
 932work_func_t wq_worker_last_func(struct task_struct *task)
 933{
 934	struct worker *worker = kthread_data(task);
 935
 936	return worker->last_func;
 937}
 938
 939/**
 940 * worker_set_flags - set worker flags and adjust nr_running accordingly
 941 * @worker: self
 942 * @flags: flags to set
 943 *
 944 * Set @flags in @worker->flags and adjust nr_running accordingly.
 945 *
 946 * CONTEXT:
 947 * raw_spin_lock_irq(pool->lock)
 948 */
 949static inline void worker_set_flags(struct worker *worker, unsigned int flags)
 950{
 951	struct worker_pool *pool = worker->pool;
 952
 953	WARN_ON_ONCE(worker->task != current);
 954
 955	/* If transitioning into NOT_RUNNING, adjust nr_running. */
 956	if ((flags & WORKER_NOT_RUNNING) &&
 957	    !(worker->flags & WORKER_NOT_RUNNING)) {
 958		atomic_dec(&pool->nr_running);
 959	}
 960
 961	worker->flags |= flags;
 962}
 963
 964/**
 965 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
 966 * @worker: self
 967 * @flags: flags to clear
 968 *
 969 * Clear @flags in @worker->flags and adjust nr_running accordingly.
 970 *
 971 * CONTEXT:
 972 * raw_spin_lock_irq(pool->lock)
 973 */
 974static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
 975{
 976	struct worker_pool *pool = worker->pool;
 977	unsigned int oflags = worker->flags;
 978
 979	WARN_ON_ONCE(worker->task != current);
 980
 981	worker->flags &= ~flags;
 982
 983	/*
 984	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
 985	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
 986	 * of multiple flags, not a single flag.
 987	 */
 988	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
 989		if (!(worker->flags & WORKER_NOT_RUNNING))
 990			atomic_inc(&pool->nr_running);
 991}
 992
 993/**
 994 * find_worker_executing_work - find worker which is executing a work
 995 * @pool: pool of interest
 996 * @work: work to find worker for
 997 *
 998 * Find a worker which is executing @work on @pool by searching
 999 * @pool->busy_hash which is keyed by the address of @work.  For a worker
1000 * to match, its current execution should match the address of @work and
1001 * its work function.  This is to avoid unwanted dependency between
1002 * unrelated work executions through a work item being recycled while still
1003 * being executed.
1004 *
1005 * This is a bit tricky.  A work item may be freed once its execution
1006 * starts and nothing prevents the freed area from being recycled for
1007 * another work item.  If the same work item address ends up being reused
1008 * before the original execution finishes, workqueue will identify the
1009 * recycled work item as currently executing and make it wait until the
1010 * current execution finishes, introducing an unwanted dependency.
1011 *
1012 * This function checks the work item address and work function to avoid
1013 * false positives.  Note that this isn't complete as one may construct a
1014 * work function which can introduce dependency onto itself through a
1015 * recycled work item.  Well, if somebody wants to shoot oneself in the
1016 * foot that badly, there's only so much we can do, and if such deadlock
1017 * actually occurs, it should be easy to locate the culprit work function.
1018 *
1019 * CONTEXT:
1020 * raw_spin_lock_irq(pool->lock).
1021 *
1022 * Return:
1023 * Pointer to worker which is executing @work if found, %NULL
1024 * otherwise.
1025 */
1026static struct worker *find_worker_executing_work(struct worker_pool *pool,
1027						 struct work_struct *work)
1028{
1029	struct worker *worker;
1030
1031	hash_for_each_possible(pool->busy_hash, worker, hentry,
1032			       (unsigned long)work)
1033		if (worker->current_work == work &&
1034		    worker->current_func == work->func)
1035			return worker;
1036
1037	return NULL;
1038}
1039
1040/**
1041 * move_linked_works - move linked works to a list
1042 * @work: start of series of works to be scheduled
1043 * @head: target list to append @work to
1044 * @nextp: out parameter for nested worklist walking
1045 *
1046 * Schedule linked works starting from @work to @head.  Work series to
1047 * be scheduled starts at @work and includes any consecutive work with
1048 * WORK_STRUCT_LINKED set in its predecessor.
1049 *
1050 * If @nextp is not NULL, it's updated to point to the next work of
1051 * the last scheduled work.  This allows move_linked_works() to be
1052 * nested inside outer list_for_each_entry_safe().
1053 *
1054 * CONTEXT:
1055 * raw_spin_lock_irq(pool->lock).
1056 */
1057static void move_linked_works(struct work_struct *work, struct list_head *head,
1058			      struct work_struct **nextp)
1059{
1060	struct work_struct *n;
1061
1062	/*
1063	 * Linked worklist will always end before the end of the list,
1064	 * use NULL for list head.
1065	 */
1066	list_for_each_entry_safe_from(work, n, NULL, entry) {
1067		list_move_tail(&work->entry, head);
1068		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1069			break;
1070	}
1071
1072	/*
1073	 * If we're already inside safe list traversal and have moved
1074	 * multiple works to the scheduled queue, the next position
1075	 * needs to be updated.
1076	 */
1077	if (nextp)
1078		*nextp = n;
1079}
1080
1081/**
1082 * get_pwq - get an extra reference on the specified pool_workqueue
1083 * @pwq: pool_workqueue to get
1084 *
1085 * Obtain an extra reference on @pwq.  The caller should guarantee that
1086 * @pwq has positive refcnt and be holding the matching pool->lock.
1087 */
1088static void get_pwq(struct pool_workqueue *pwq)
1089{
1090	lockdep_assert_held(&pwq->pool->lock);
1091	WARN_ON_ONCE(pwq->refcnt <= 0);
1092	pwq->refcnt++;
1093}
1094
1095/**
1096 * put_pwq - put a pool_workqueue reference
1097 * @pwq: pool_workqueue to put
1098 *
1099 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1100 * destruction.  The caller should be holding the matching pool->lock.
1101 */
1102static void put_pwq(struct pool_workqueue *pwq)
1103{
1104	lockdep_assert_held(&pwq->pool->lock);
1105	if (likely(--pwq->refcnt))
1106		return;
1107	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1108		return;
1109	/*
1110	 * @pwq can't be released under pool->lock, bounce to
1111	 * pwq_unbound_release_workfn().  This never recurses on the same
1112	 * pool->lock as this path is taken only for unbound workqueues and
1113	 * the release work item is scheduled on a per-cpu workqueue.  To
1114	 * avoid lockdep warning, unbound pool->locks are given lockdep
1115	 * subclass of 1 in get_unbound_pool().
1116	 */
1117	schedule_work(&pwq->unbound_release_work);
1118}
1119
1120/**
1121 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1122 * @pwq: pool_workqueue to put (can be %NULL)
1123 *
1124 * put_pwq() with locking.  This function also allows %NULL @pwq.
1125 */
1126static void put_pwq_unlocked(struct pool_workqueue *pwq)
1127{
1128	if (pwq) {
1129		/*
1130		 * As both pwqs and pools are RCU protected, the
1131		 * following lock operations are safe.
1132		 */
1133		raw_spin_lock_irq(&pwq->pool->lock);
1134		put_pwq(pwq);
1135		raw_spin_unlock_irq(&pwq->pool->lock);
1136	}
1137}
1138
1139static void pwq_activate_delayed_work(struct work_struct *work)
1140{
1141	struct pool_workqueue *pwq = get_work_pwq(work);
1142
1143	trace_workqueue_activate_work(work);
1144	if (list_empty(&pwq->pool->worklist))
1145		pwq->pool->watchdog_ts = jiffies;
1146	move_linked_works(work, &pwq->pool->worklist, NULL);
1147	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1148	pwq->nr_active++;
1149}
1150
1151static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1152{
1153	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1154						    struct work_struct, entry);
1155
1156	pwq_activate_delayed_work(work);
1157}
1158
1159/**
1160 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1161 * @pwq: pwq of interest
1162 * @color: color of work which left the queue
1163 *
1164 * A work either has completed or is removed from pending queue,
1165 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1166 *
1167 * CONTEXT:
1168 * raw_spin_lock_irq(pool->lock).
1169 */
1170static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1171{
1172	/* uncolored work items don't participate in flushing or nr_active */
1173	if (color == WORK_NO_COLOR)
1174		goto out_put;
 
 
 
 
 
 
 
1175
1176	pwq->nr_in_flight[color]--;
1177
1178	pwq->nr_active--;
1179	if (!list_empty(&pwq->delayed_works)) {
1180		/* one down, submit a delayed one */
1181		if (pwq->nr_active < pwq->max_active)
1182			pwq_activate_first_delayed(pwq);
1183	}
1184
1185	/* is flush in progress and are we at the flushing tip? */
1186	if (likely(pwq->flush_color != color))
1187		goto out_put;
1188
1189	/* are there still in-flight works? */
1190	if (pwq->nr_in_flight[color])
1191		goto out_put;
1192
1193	/* this pwq is done, clear flush_color */
1194	pwq->flush_color = -1;
1195
1196	/*
1197	 * If this was the last pwq, wake up the first flusher.  It
1198	 * will handle the rest.
1199	 */
1200	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1201		complete(&pwq->wq->first_flusher->done);
1202out_put:
1203	put_pwq(pwq);
1204}
1205
1206/**
1207 * try_to_grab_pending - steal work item from worklist and disable irq
1208 * @work: work item to steal
1209 * @is_dwork: @work is a delayed_work
1210 * @flags: place to store irq state
1211 *
1212 * Try to grab PENDING bit of @work.  This function can handle @work in any
1213 * stable state - idle, on timer or on worklist.
1214 *
1215 * Return:
1216 *
1217 *  ========	================================================================
1218 *  1		if @work was pending and we successfully stole PENDING
1219 *  0		if @work was idle and we claimed PENDING
1220 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1221 *  -ENOENT	if someone else is canceling @work, this state may persist
1222 *		for arbitrarily long
1223 *  ========	================================================================
1224 *
1225 * Note:
1226 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1227 * interrupted while holding PENDING and @work off queue, irq must be
1228 * disabled on entry.  This, combined with delayed_work->timer being
1229 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1230 *
1231 * On successful return, >= 0, irq is disabled and the caller is
1232 * responsible for releasing it using local_irq_restore(*@flags).
1233 *
1234 * This function is safe to call from any context including IRQ handler.
1235 */
1236static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1237			       unsigned long *flags)
1238{
1239	struct worker_pool *pool;
1240	struct pool_workqueue *pwq;
1241
1242	local_irq_save(*flags);
1243
1244	/* try to steal the timer if it exists */
1245	if (is_dwork) {
1246		struct delayed_work *dwork = to_delayed_work(work);
1247
1248		/*
1249		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1250		 * guaranteed that the timer is not queued anywhere and not
1251		 * running on the local CPU.
1252		 */
1253		if (likely(del_timer(&dwork->timer)))
1254			return 1;
1255	}
1256
1257	/* try to claim PENDING the normal way */
1258	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1259		return 0;
1260
1261	rcu_read_lock();
1262	/*
1263	 * The queueing is in progress, or it is already queued. Try to
1264	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1265	 */
1266	pool = get_work_pool(work);
1267	if (!pool)
1268		goto fail;
1269
1270	raw_spin_lock(&pool->lock);
1271	/*
1272	 * work->data is guaranteed to point to pwq only while the work
1273	 * item is queued on pwq->wq, and both updating work->data to point
1274	 * to pwq on queueing and to pool on dequeueing are done under
1275	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1276	 * points to pwq which is associated with a locked pool, the work
1277	 * item is currently queued on that pool.
1278	 */
1279	pwq = get_work_pwq(work);
1280	if (pwq && pwq->pool == pool) {
1281		debug_work_deactivate(work);
1282
1283		/*
1284		 * A delayed work item cannot be grabbed directly because
1285		 * it might have linked NO_COLOR work items which, if left
1286		 * on the delayed_list, will confuse pwq->nr_active
 
 
 
 
1287		 * management later on and cause stall.  Make sure the work
1288		 * item is activated before grabbing.
1289		 */
1290		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1291			pwq_activate_delayed_work(work);
1292
1293		list_del_init(&work->entry);
1294		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1295
1296		/* work->data points to pwq iff queued, point to pool */
1297		set_work_pool_and_keep_pending(work, pool->id);
1298
1299		raw_spin_unlock(&pool->lock);
1300		rcu_read_unlock();
1301		return 1;
1302	}
1303	raw_spin_unlock(&pool->lock);
1304fail:
1305	rcu_read_unlock();
1306	local_irq_restore(*flags);
1307	if (work_is_canceling(work))
1308		return -ENOENT;
1309	cpu_relax();
1310	return -EAGAIN;
1311}
1312
1313/**
1314 * insert_work - insert a work into a pool
1315 * @pwq: pwq @work belongs to
1316 * @work: work to insert
1317 * @head: insertion point
1318 * @extra_flags: extra WORK_STRUCT_* flags to set
1319 *
1320 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1321 * work_struct flags.
1322 *
1323 * CONTEXT:
1324 * raw_spin_lock_irq(pool->lock).
1325 */
1326static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1327			struct list_head *head, unsigned int extra_flags)
1328{
1329	struct worker_pool *pool = pwq->pool;
1330
1331	/* record the work call stack in order to print it in KASAN reports */
1332	kasan_record_aux_stack(work);
1333
1334	/* we own @work, set data and link */
1335	set_work_pwq(work, pwq, extra_flags);
1336	list_add_tail(&work->entry, head);
1337	get_pwq(pwq);
1338
1339	/*
1340	 * Ensure either wq_worker_sleeping() sees the above
1341	 * list_add_tail() or we see zero nr_running to avoid workers lying
1342	 * around lazily while there are works to be processed.
1343	 */
1344	smp_mb();
1345
1346	if (__need_more_worker(pool))
1347		wake_up_worker(pool);
1348}
1349
1350/*
1351 * Test whether @work is being queued from another work executing on the
1352 * same workqueue.
1353 */
1354static bool is_chained_work(struct workqueue_struct *wq)
1355{
1356	struct worker *worker;
1357
1358	worker = current_wq_worker();
1359	/*
1360	 * Return %true iff I'm a worker executing a work item on @wq.  If
1361	 * I'm @worker, it's safe to dereference it without locking.
1362	 */
1363	return worker && worker->current_pwq->wq == wq;
1364}
1365
1366/*
1367 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1368 * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1369 * avoid perturbing sensitive tasks.
1370 */
1371static int wq_select_unbound_cpu(int cpu)
1372{
1373	static bool printed_dbg_warning;
1374	int new_cpu;
1375
1376	if (likely(!wq_debug_force_rr_cpu)) {
1377		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1378			return cpu;
1379	} else if (!printed_dbg_warning) {
1380		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1381		printed_dbg_warning = true;
1382	}
1383
1384	if (cpumask_empty(wq_unbound_cpumask))
1385		return cpu;
1386
1387	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1388	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1389	if (unlikely(new_cpu >= nr_cpu_ids)) {
1390		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1391		if (unlikely(new_cpu >= nr_cpu_ids))
1392			return cpu;
1393	}
1394	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1395
1396	return new_cpu;
1397}
1398
1399static void __queue_work(int cpu, struct workqueue_struct *wq,
1400			 struct work_struct *work)
1401{
1402	struct pool_workqueue *pwq;
1403	struct worker_pool *last_pool;
1404	struct list_head *worklist;
1405	unsigned int work_flags;
1406	unsigned int req_cpu = cpu;
1407
1408	/*
1409	 * While a work item is PENDING && off queue, a task trying to
1410	 * steal the PENDING will busy-loop waiting for it to either get
1411	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1412	 * happen with IRQ disabled.
1413	 */
1414	lockdep_assert_irqs_disabled();
1415
1416
1417	/* if draining, only works from the same workqueue are allowed */
1418	if (unlikely(wq->flags & __WQ_DRAINING) &&
1419	    WARN_ON_ONCE(!is_chained_work(wq)))
1420		return;
1421	rcu_read_lock();
1422retry:
1423	/* pwq which will be used unless @work is executing elsewhere */
1424	if (wq->flags & WQ_UNBOUND) {
1425		if (req_cpu == WORK_CPU_UNBOUND)
1426			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1427		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1428	} else {
1429		if (req_cpu == WORK_CPU_UNBOUND)
1430			cpu = raw_smp_processor_id();
1431		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1432	}
1433
1434	/*
1435	 * If @work was previously on a different pool, it might still be
1436	 * running there, in which case the work needs to be queued on that
1437	 * pool to guarantee non-reentrancy.
1438	 */
1439	last_pool = get_work_pool(work);
1440	if (last_pool && last_pool != pwq->pool) {
1441		struct worker *worker;
1442
1443		raw_spin_lock(&last_pool->lock);
1444
1445		worker = find_worker_executing_work(last_pool, work);
1446
1447		if (worker && worker->current_pwq->wq == wq) {
1448			pwq = worker->current_pwq;
1449		} else {
1450			/* meh... not running there, queue here */
1451			raw_spin_unlock(&last_pool->lock);
1452			raw_spin_lock(&pwq->pool->lock);
1453		}
1454	} else {
1455		raw_spin_lock(&pwq->pool->lock);
1456	}
1457
1458	/*
1459	 * pwq is determined and locked.  For unbound pools, we could have
1460	 * raced with pwq release and it could already be dead.  If its
1461	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1462	 * without another pwq replacing it in the numa_pwq_tbl or while
1463	 * work items are executing on it, so the retrying is guaranteed to
1464	 * make forward-progress.
1465	 */
1466	if (unlikely(!pwq->refcnt)) {
1467		if (wq->flags & WQ_UNBOUND) {
1468			raw_spin_unlock(&pwq->pool->lock);
1469			cpu_relax();
1470			goto retry;
1471		}
1472		/* oops */
1473		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1474			  wq->name, cpu);
1475	}
1476
1477	/* pwq determined, queue */
1478	trace_workqueue_queue_work(req_cpu, pwq, work);
1479
1480	if (WARN_ON(!list_empty(&work->entry)))
1481		goto out;
1482
1483	pwq->nr_in_flight[pwq->work_color]++;
1484	work_flags = work_color_to_flags(pwq->work_color);
1485
1486	if (likely(pwq->nr_active < pwq->max_active)) {
1487		trace_workqueue_activate_work(work);
1488		pwq->nr_active++;
1489		worklist = &pwq->pool->worklist;
1490		if (list_empty(worklist))
1491			pwq->pool->watchdog_ts = jiffies;
1492	} else {
1493		work_flags |= WORK_STRUCT_DELAYED;
1494		worklist = &pwq->delayed_works;
1495	}
1496
1497	debug_work_activate(work);
1498	insert_work(pwq, work, worklist, work_flags);
1499
1500out:
1501	raw_spin_unlock(&pwq->pool->lock);
1502	rcu_read_unlock();
1503}
1504
1505/**
1506 * queue_work_on - queue work on specific cpu
1507 * @cpu: CPU number to execute work on
1508 * @wq: workqueue to use
1509 * @work: work to queue
1510 *
1511 * We queue the work to a specific CPU, the caller must ensure it
1512 * can't go away.
 
1513 *
1514 * Return: %false if @work was already on a queue, %true otherwise.
1515 */
1516bool queue_work_on(int cpu, struct workqueue_struct *wq,
1517		   struct work_struct *work)
1518{
1519	bool ret = false;
1520	unsigned long flags;
1521
1522	local_irq_save(flags);
1523
1524	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1525		__queue_work(cpu, wq, work);
1526		ret = true;
1527	}
1528
1529	local_irq_restore(flags);
1530	return ret;
1531}
1532EXPORT_SYMBOL(queue_work_on);
1533
1534/**
1535 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1536 * @node: NUMA node ID that we want to select a CPU from
1537 *
1538 * This function will attempt to find a "random" cpu available on a given
1539 * node. If there are no CPUs available on the given node it will return
1540 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1541 * available CPU if we need to schedule this work.
1542 */
1543static int workqueue_select_cpu_near(int node)
1544{
1545	int cpu;
1546
1547	/* No point in doing this if NUMA isn't enabled for workqueues */
1548	if (!wq_numa_enabled)
1549		return WORK_CPU_UNBOUND;
1550
1551	/* Delay binding to CPU if node is not valid or online */
1552	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1553		return WORK_CPU_UNBOUND;
1554
1555	/* Use local node/cpu if we are already there */
1556	cpu = raw_smp_processor_id();
1557	if (node == cpu_to_node(cpu))
1558		return cpu;
1559
1560	/* Use "random" otherwise know as "first" online CPU of node */
1561	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1562
1563	/* If CPU is valid return that, otherwise just defer */
1564	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1565}
1566
1567/**
1568 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1569 * @node: NUMA node that we are targeting the work for
1570 * @wq: workqueue to use
1571 * @work: work to queue
1572 *
1573 * We queue the work to a "random" CPU within a given NUMA node. The basic
1574 * idea here is to provide a way to somehow associate work with a given
1575 * NUMA node.
1576 *
1577 * This function will only make a best effort attempt at getting this onto
1578 * the right NUMA node. If no node is requested or the requested node is
1579 * offline then we just fall back to standard queue_work behavior.
1580 *
1581 * Currently the "random" CPU ends up being the first available CPU in the
1582 * intersection of cpu_online_mask and the cpumask of the node, unless we
1583 * are running on the node. In that case we just use the current CPU.
1584 *
1585 * Return: %false if @work was already on a queue, %true otherwise.
1586 */
1587bool queue_work_node(int node, struct workqueue_struct *wq,
1588		     struct work_struct *work)
1589{
1590	unsigned long flags;
1591	bool ret = false;
1592
1593	/*
1594	 * This current implementation is specific to unbound workqueues.
1595	 * Specifically we only return the first available CPU for a given
1596	 * node instead of cycling through individual CPUs within the node.
1597	 *
1598	 * If this is used with a per-cpu workqueue then the logic in
1599	 * workqueue_select_cpu_near would need to be updated to allow for
1600	 * some round robin type logic.
1601	 */
1602	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1603
1604	local_irq_save(flags);
1605
1606	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1607		int cpu = workqueue_select_cpu_near(node);
1608
1609		__queue_work(cpu, wq, work);
1610		ret = true;
1611	}
1612
1613	local_irq_restore(flags);
1614	return ret;
1615}
1616EXPORT_SYMBOL_GPL(queue_work_node);
1617
1618void delayed_work_timer_fn(struct timer_list *t)
1619{
1620	struct delayed_work *dwork = from_timer(dwork, t, timer);
1621
1622	/* should have been called from irqsafe timer with irq already off */
1623	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1624}
1625EXPORT_SYMBOL(delayed_work_timer_fn);
1626
1627static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1628				struct delayed_work *dwork, unsigned long delay)
1629{
1630	struct timer_list *timer = &dwork->timer;
1631	struct work_struct *work = &dwork->work;
1632
1633	WARN_ON_ONCE(!wq);
1634	WARN_ON_FUNCTION_MISMATCH(timer->function, delayed_work_timer_fn);
1635	WARN_ON_ONCE(timer_pending(timer));
1636	WARN_ON_ONCE(!list_empty(&work->entry));
1637
1638	/*
1639	 * If @delay is 0, queue @dwork->work immediately.  This is for
1640	 * both optimization and correctness.  The earliest @timer can
1641	 * expire is on the closest next tick and delayed_work users depend
1642	 * on that there's no such delay when @delay is 0.
1643	 */
1644	if (!delay) {
1645		__queue_work(cpu, wq, &dwork->work);
1646		return;
1647	}
1648
1649	dwork->wq = wq;
1650	dwork->cpu = cpu;
1651	timer->expires = jiffies + delay;
1652
1653	if (unlikely(cpu != WORK_CPU_UNBOUND))
1654		add_timer_on(timer, cpu);
1655	else
1656		add_timer(timer);
1657}
1658
1659/**
1660 * queue_delayed_work_on - queue work on specific CPU after delay
1661 * @cpu: CPU number to execute work on
1662 * @wq: workqueue to use
1663 * @dwork: work to queue
1664 * @delay: number of jiffies to wait before queueing
1665 *
1666 * Return: %false if @work was already on a queue, %true otherwise.  If
1667 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1668 * execution.
1669 */
1670bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1671			   struct delayed_work *dwork, unsigned long delay)
1672{
1673	struct work_struct *work = &dwork->work;
1674	bool ret = false;
1675	unsigned long flags;
1676
1677	/* read the comment in __queue_work() */
1678	local_irq_save(flags);
1679
1680	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1681		__queue_delayed_work(cpu, wq, dwork, delay);
1682		ret = true;
1683	}
1684
1685	local_irq_restore(flags);
1686	return ret;
1687}
1688EXPORT_SYMBOL(queue_delayed_work_on);
1689
1690/**
1691 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1692 * @cpu: CPU number to execute work on
1693 * @wq: workqueue to use
1694 * @dwork: work to queue
1695 * @delay: number of jiffies to wait before queueing
1696 *
1697 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1698 * modify @dwork's timer so that it expires after @delay.  If @delay is
1699 * zero, @work is guaranteed to be scheduled immediately regardless of its
1700 * current state.
1701 *
1702 * Return: %false if @dwork was idle and queued, %true if @dwork was
1703 * pending and its timer was modified.
1704 *
1705 * This function is safe to call from any context including IRQ handler.
1706 * See try_to_grab_pending() for details.
1707 */
1708bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1709			 struct delayed_work *dwork, unsigned long delay)
1710{
1711	unsigned long flags;
1712	int ret;
1713
1714	do {
1715		ret = try_to_grab_pending(&dwork->work, true, &flags);
1716	} while (unlikely(ret == -EAGAIN));
1717
1718	if (likely(ret >= 0)) {
1719		__queue_delayed_work(cpu, wq, dwork, delay);
1720		local_irq_restore(flags);
1721	}
1722
1723	/* -ENOENT from try_to_grab_pending() becomes %true */
1724	return ret;
1725}
1726EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1727
1728static void rcu_work_rcufn(struct rcu_head *rcu)
1729{
1730	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1731
1732	/* read the comment in __queue_work() */
1733	local_irq_disable();
1734	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1735	local_irq_enable();
1736}
1737
1738/**
1739 * queue_rcu_work - queue work after a RCU grace period
1740 * @wq: workqueue to use
1741 * @rwork: work to queue
1742 *
1743 * Return: %false if @rwork was already pending, %true otherwise.  Note
1744 * that a full RCU grace period is guaranteed only after a %true return.
1745 * While @rwork is guaranteed to be executed after a %false return, the
1746 * execution may happen before a full RCU grace period has passed.
1747 */
1748bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1749{
1750	struct work_struct *work = &rwork->work;
1751
1752	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1753		rwork->wq = wq;
1754		call_rcu(&rwork->rcu, rcu_work_rcufn);
1755		return true;
1756	}
1757
1758	return false;
1759}
1760EXPORT_SYMBOL(queue_rcu_work);
1761
1762/**
1763 * worker_enter_idle - enter idle state
1764 * @worker: worker which is entering idle state
1765 *
1766 * @worker is entering idle state.  Update stats and idle timer if
1767 * necessary.
1768 *
1769 * LOCKING:
1770 * raw_spin_lock_irq(pool->lock).
1771 */
1772static void worker_enter_idle(struct worker *worker)
1773{
1774	struct worker_pool *pool = worker->pool;
1775
1776	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1777	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1778			 (worker->hentry.next || worker->hentry.pprev)))
1779		return;
1780
1781	/* can't use worker_set_flags(), also called from create_worker() */
1782	worker->flags |= WORKER_IDLE;
1783	pool->nr_idle++;
1784	worker->last_active = jiffies;
1785
1786	/* idle_list is LIFO */
1787	list_add(&worker->entry, &pool->idle_list);
1788
1789	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1790		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1791
1792	/*
1793	 * Sanity check nr_running.  Because unbind_workers() releases
1794	 * pool->lock between setting %WORKER_UNBOUND and zapping
1795	 * nr_running, the warning may trigger spuriously.  Check iff
1796	 * unbind is not in progress.
1797	 */
1798	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1799		     pool->nr_workers == pool->nr_idle &&
1800		     atomic_read(&pool->nr_running));
1801}
1802
1803/**
1804 * worker_leave_idle - leave idle state
1805 * @worker: worker which is leaving idle state
1806 *
1807 * @worker is leaving idle state.  Update stats.
1808 *
1809 * LOCKING:
1810 * raw_spin_lock_irq(pool->lock).
1811 */
1812static void worker_leave_idle(struct worker *worker)
1813{
1814	struct worker_pool *pool = worker->pool;
1815
1816	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1817		return;
1818	worker_clr_flags(worker, WORKER_IDLE);
1819	pool->nr_idle--;
1820	list_del_init(&worker->entry);
1821}
1822
1823static struct worker *alloc_worker(int node)
1824{
1825	struct worker *worker;
1826
1827	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1828	if (worker) {
1829		INIT_LIST_HEAD(&worker->entry);
1830		INIT_LIST_HEAD(&worker->scheduled);
1831		INIT_LIST_HEAD(&worker->node);
1832		/* on creation a worker is in !idle && prep state */
1833		worker->flags = WORKER_PREP;
1834	}
1835	return worker;
1836}
1837
1838/**
1839 * worker_attach_to_pool() - attach a worker to a pool
1840 * @worker: worker to be attached
1841 * @pool: the target pool
1842 *
1843 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1844 * cpu-binding of @worker are kept coordinated with the pool across
1845 * cpu-[un]hotplugs.
1846 */
1847static void worker_attach_to_pool(struct worker *worker,
1848				   struct worker_pool *pool)
1849{
1850	mutex_lock(&wq_pool_attach_mutex);
1851
1852	/*
1853	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1854	 * stable across this function.  See the comments above the flag
1855	 * definition for details.
1856	 */
1857	if (pool->flags & POOL_DISASSOCIATED)
1858		worker->flags |= WORKER_UNBOUND;
1859	else
1860		kthread_set_per_cpu(worker->task, pool->cpu);
1861
1862	if (worker->rescue_wq)
1863		set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1864
1865	list_add_tail(&worker->node, &pool->workers);
1866	worker->pool = pool;
1867
1868	mutex_unlock(&wq_pool_attach_mutex);
1869}
1870
1871/**
1872 * worker_detach_from_pool() - detach a worker from its pool
1873 * @worker: worker which is attached to its pool
1874 *
1875 * Undo the attaching which had been done in worker_attach_to_pool().  The
1876 * caller worker shouldn't access to the pool after detached except it has
1877 * other reference to the pool.
1878 */
1879static void worker_detach_from_pool(struct worker *worker)
1880{
1881	struct worker_pool *pool = worker->pool;
1882	struct completion *detach_completion = NULL;
1883
1884	mutex_lock(&wq_pool_attach_mutex);
1885
1886	kthread_set_per_cpu(worker->task, -1);
1887	list_del(&worker->node);
1888	worker->pool = NULL;
1889
1890	if (list_empty(&pool->workers))
1891		detach_completion = pool->detach_completion;
1892	mutex_unlock(&wq_pool_attach_mutex);
1893
1894	/* clear leftover flags without pool->lock after it is detached */
1895	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1896
1897	if (detach_completion)
1898		complete(detach_completion);
1899}
1900
1901/**
1902 * create_worker - create a new workqueue worker
1903 * @pool: pool the new worker will belong to
1904 *
1905 * Create and start a new worker which is attached to @pool.
1906 *
1907 * CONTEXT:
1908 * Might sleep.  Does GFP_KERNEL allocations.
1909 *
1910 * Return:
1911 * Pointer to the newly created worker.
1912 */
1913static struct worker *create_worker(struct worker_pool *pool)
1914{
1915	struct worker *worker = NULL;
1916	int id = -1;
1917	char id_buf[16];
1918
1919	/* ID is needed to determine kthread name */
1920	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1921	if (id < 0)
1922		goto fail;
1923
1924	worker = alloc_worker(pool->node);
1925	if (!worker)
1926		goto fail;
1927
1928	worker->id = id;
1929
1930	if (pool->cpu >= 0)
1931		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1932			 pool->attrs->nice < 0  ? "H" : "");
1933	else
1934		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1935
1936	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1937					      "kworker/%s", id_buf);
1938	if (IS_ERR(worker->task))
1939		goto fail;
1940
1941	set_user_nice(worker->task, pool->attrs->nice);
1942	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1943
1944	/* successful, attach the worker to the pool */
1945	worker_attach_to_pool(worker, pool);
1946
1947	/* start the newly created worker */
1948	raw_spin_lock_irq(&pool->lock);
1949	worker->pool->nr_workers++;
1950	worker_enter_idle(worker);
1951	wake_up_process(worker->task);
1952	raw_spin_unlock_irq(&pool->lock);
1953
1954	return worker;
1955
1956fail:
1957	if (id >= 0)
1958		ida_simple_remove(&pool->worker_ida, id);
1959	kfree(worker);
1960	return NULL;
1961}
1962
1963/**
1964 * destroy_worker - destroy a workqueue worker
1965 * @worker: worker to be destroyed
1966 *
1967 * Destroy @worker and adjust @pool stats accordingly.  The worker should
1968 * be idle.
1969 *
1970 * CONTEXT:
1971 * raw_spin_lock_irq(pool->lock).
1972 */
1973static void destroy_worker(struct worker *worker)
1974{
1975	struct worker_pool *pool = worker->pool;
1976
1977	lockdep_assert_held(&pool->lock);
1978
1979	/* sanity check frenzy */
1980	if (WARN_ON(worker->current_work) ||
1981	    WARN_ON(!list_empty(&worker->scheduled)) ||
1982	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1983		return;
1984
1985	pool->nr_workers--;
1986	pool->nr_idle--;
1987
1988	list_del_init(&worker->entry);
1989	worker->flags |= WORKER_DIE;
1990	wake_up_process(worker->task);
1991}
1992
1993static void idle_worker_timeout(struct timer_list *t)
1994{
1995	struct worker_pool *pool = from_timer(pool, t, idle_timer);
1996
1997	raw_spin_lock_irq(&pool->lock);
1998
1999	while (too_many_workers(pool)) {
2000		struct worker *worker;
2001		unsigned long expires;
2002
2003		/* idle_list is kept in LIFO order, check the last one */
2004		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2005		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2006
2007		if (time_before(jiffies, expires)) {
2008			mod_timer(&pool->idle_timer, expires);
2009			break;
2010		}
2011
2012		destroy_worker(worker);
2013	}
2014
2015	raw_spin_unlock_irq(&pool->lock);
2016}
2017
2018static void send_mayday(struct work_struct *work)
2019{
2020	struct pool_workqueue *pwq = get_work_pwq(work);
2021	struct workqueue_struct *wq = pwq->wq;
2022
2023	lockdep_assert_held(&wq_mayday_lock);
2024
2025	if (!wq->rescuer)
2026		return;
2027
2028	/* mayday mayday mayday */
2029	if (list_empty(&pwq->mayday_node)) {
2030		/*
2031		 * If @pwq is for an unbound wq, its base ref may be put at
2032		 * any time due to an attribute change.  Pin @pwq until the
2033		 * rescuer is done with it.
2034		 */
2035		get_pwq(pwq);
2036		list_add_tail(&pwq->mayday_node, &wq->maydays);
2037		wake_up_process(wq->rescuer->task);
2038	}
2039}
2040
2041static void pool_mayday_timeout(struct timer_list *t)
2042{
2043	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2044	struct work_struct *work;
2045
2046	raw_spin_lock_irq(&pool->lock);
2047	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2048
2049	if (need_to_create_worker(pool)) {
2050		/*
2051		 * We've been trying to create a new worker but
2052		 * haven't been successful.  We might be hitting an
2053		 * allocation deadlock.  Send distress signals to
2054		 * rescuers.
2055		 */
2056		list_for_each_entry(work, &pool->worklist, entry)
2057			send_mayday(work);
2058	}
2059
2060	raw_spin_unlock(&wq_mayday_lock);
2061	raw_spin_unlock_irq(&pool->lock);
2062
2063	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2064}
2065
2066/**
2067 * maybe_create_worker - create a new worker if necessary
2068 * @pool: pool to create a new worker for
2069 *
2070 * Create a new worker for @pool if necessary.  @pool is guaranteed to
2071 * have at least one idle worker on return from this function.  If
2072 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2073 * sent to all rescuers with works scheduled on @pool to resolve
2074 * possible allocation deadlock.
2075 *
2076 * On return, need_to_create_worker() is guaranteed to be %false and
2077 * may_start_working() %true.
2078 *
2079 * LOCKING:
2080 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2081 * multiple times.  Does GFP_KERNEL allocations.  Called only from
2082 * manager.
2083 */
2084static void maybe_create_worker(struct worker_pool *pool)
2085__releases(&pool->lock)
2086__acquires(&pool->lock)
2087{
2088restart:
2089	raw_spin_unlock_irq(&pool->lock);
2090
2091	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2092	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2093
2094	while (true) {
2095		if (create_worker(pool) || !need_to_create_worker(pool))
2096			break;
2097
2098		schedule_timeout_interruptible(CREATE_COOLDOWN);
2099
2100		if (!need_to_create_worker(pool))
2101			break;
2102	}
2103
2104	del_timer_sync(&pool->mayday_timer);
2105	raw_spin_lock_irq(&pool->lock);
2106	/*
2107	 * This is necessary even after a new worker was just successfully
2108	 * created as @pool->lock was dropped and the new worker might have
2109	 * already become busy.
2110	 */
2111	if (need_to_create_worker(pool))
2112		goto restart;
2113}
2114
2115/**
2116 * manage_workers - manage worker pool
2117 * @worker: self
2118 *
2119 * Assume the manager role and manage the worker pool @worker belongs
2120 * to.  At any given time, there can be only zero or one manager per
2121 * pool.  The exclusion is handled automatically by this function.
2122 *
2123 * The caller can safely start processing works on false return.  On
2124 * true return, it's guaranteed that need_to_create_worker() is false
2125 * and may_start_working() is true.
2126 *
2127 * CONTEXT:
2128 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2129 * multiple times.  Does GFP_KERNEL allocations.
2130 *
2131 * Return:
2132 * %false if the pool doesn't need management and the caller can safely
2133 * start processing works, %true if management function was performed and
2134 * the conditions that the caller verified before calling the function may
2135 * no longer be true.
2136 */
2137static bool manage_workers(struct worker *worker)
2138{
2139	struct worker_pool *pool = worker->pool;
2140
2141	if (pool->flags & POOL_MANAGER_ACTIVE)
2142		return false;
2143
2144	pool->flags |= POOL_MANAGER_ACTIVE;
2145	pool->manager = worker;
2146
2147	maybe_create_worker(pool);
2148
2149	pool->manager = NULL;
2150	pool->flags &= ~POOL_MANAGER_ACTIVE;
2151	rcuwait_wake_up(&manager_wait);
2152	return true;
2153}
2154
2155/**
2156 * process_one_work - process single work
2157 * @worker: self
2158 * @work: work to process
2159 *
2160 * Process @work.  This function contains all the logics necessary to
2161 * process a single work including synchronization against and
2162 * interaction with other workers on the same cpu, queueing and
2163 * flushing.  As long as context requirement is met, any worker can
2164 * call this function to process a work.
2165 *
2166 * CONTEXT:
2167 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2168 */
2169static void process_one_work(struct worker *worker, struct work_struct *work)
2170__releases(&pool->lock)
2171__acquires(&pool->lock)
2172{
2173	struct pool_workqueue *pwq = get_work_pwq(work);
2174	struct worker_pool *pool = worker->pool;
2175	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2176	int work_color;
2177	struct worker *collision;
2178#ifdef CONFIG_LOCKDEP
2179	/*
2180	 * It is permissible to free the struct work_struct from
2181	 * inside the function that is called from it, this we need to
2182	 * take into account for lockdep too.  To avoid bogus "held
2183	 * lock freed" warnings as well as problems when looking into
2184	 * work->lockdep_map, make a copy and use that here.
2185	 */
2186	struct lockdep_map lockdep_map;
2187
2188	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2189#endif
2190	/* ensure we're on the correct CPU */
2191	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2192		     raw_smp_processor_id() != pool->cpu);
2193
2194	/*
2195	 * A single work shouldn't be executed concurrently by
2196	 * multiple workers on a single cpu.  Check whether anyone is
2197	 * already processing the work.  If so, defer the work to the
2198	 * currently executing one.
2199	 */
2200	collision = find_worker_executing_work(pool, work);
2201	if (unlikely(collision)) {
2202		move_linked_works(work, &collision->scheduled, NULL);
2203		return;
2204	}
2205
2206	/* claim and dequeue */
2207	debug_work_deactivate(work);
2208	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2209	worker->current_work = work;
2210	worker->current_func = work->func;
2211	worker->current_pwq = pwq;
2212	work_color = get_work_color(work);
 
2213
2214	/*
2215	 * Record wq name for cmdline and debug reporting, may get
2216	 * overridden through set_worker_desc().
2217	 */
2218	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2219
2220	list_del_init(&work->entry);
2221
2222	/*
2223	 * CPU intensive works don't participate in concurrency management.
2224	 * They're the scheduler's responsibility.  This takes @worker out
2225	 * of concurrency management and the next code block will chain
2226	 * execution of the pending work items.
2227	 */
2228	if (unlikely(cpu_intensive))
2229		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2230
2231	/*
2232	 * Wake up another worker if necessary.  The condition is always
2233	 * false for normal per-cpu workers since nr_running would always
2234	 * be >= 1 at this point.  This is used to chain execution of the
2235	 * pending work items for WORKER_NOT_RUNNING workers such as the
2236	 * UNBOUND and CPU_INTENSIVE ones.
2237	 */
2238	if (need_more_worker(pool))
2239		wake_up_worker(pool);
2240
2241	/*
2242	 * Record the last pool and clear PENDING which should be the last
2243	 * update to @work.  Also, do this inside @pool->lock so that
2244	 * PENDING and queued state changes happen together while IRQ is
2245	 * disabled.
2246	 */
2247	set_work_pool_and_clear_pending(work, pool->id);
2248
2249	raw_spin_unlock_irq(&pool->lock);
2250
2251	lock_map_acquire(&pwq->wq->lockdep_map);
2252	lock_map_acquire(&lockdep_map);
2253	/*
2254	 * Strictly speaking we should mark the invariant state without holding
2255	 * any locks, that is, before these two lock_map_acquire()'s.
2256	 *
2257	 * However, that would result in:
2258	 *
2259	 *   A(W1)
2260	 *   WFC(C)
2261	 *		A(W1)
2262	 *		C(C)
2263	 *
2264	 * Which would create W1->C->W1 dependencies, even though there is no
2265	 * actual deadlock possible. There are two solutions, using a
2266	 * read-recursive acquire on the work(queue) 'locks', but this will then
2267	 * hit the lockdep limitation on recursive locks, or simply discard
2268	 * these locks.
2269	 *
2270	 * AFAICT there is no possible deadlock scenario between the
2271	 * flush_work() and complete() primitives (except for single-threaded
2272	 * workqueues), so hiding them isn't a problem.
2273	 */
2274	lockdep_invariant_state(true);
2275	trace_workqueue_execute_start(work);
2276	worker->current_func(work);
2277	/*
2278	 * While we must be careful to not use "work" after this, the trace
2279	 * point will only record its address.
2280	 */
2281	trace_workqueue_execute_end(work, worker->current_func);
2282	lock_map_release(&lockdep_map);
2283	lock_map_release(&pwq->wq->lockdep_map);
2284
2285	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2286		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2287		       "     last function: %ps\n",
2288		       current->comm, preempt_count(), task_pid_nr(current),
2289		       worker->current_func);
2290		debug_show_held_locks(current);
2291		dump_stack();
2292	}
2293
2294	/*
2295	 * The following prevents a kworker from hogging CPU on !PREEMPTION
2296	 * kernels, where a requeueing work item waiting for something to
2297	 * happen could deadlock with stop_machine as such work item could
2298	 * indefinitely requeue itself while all other CPUs are trapped in
2299	 * stop_machine. At the same time, report a quiescent RCU state so
2300	 * the same condition doesn't freeze RCU.
2301	 */
2302	cond_resched();
2303
2304	raw_spin_lock_irq(&pool->lock);
2305
2306	/* clear cpu intensive status */
2307	if (unlikely(cpu_intensive))
2308		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2309
2310	/* tag the worker for identification in schedule() */
2311	worker->last_func = worker->current_func;
2312
2313	/* we're done with it, release */
2314	hash_del(&worker->hentry);
2315	worker->current_work = NULL;
2316	worker->current_func = NULL;
2317	worker->current_pwq = NULL;
2318	pwq_dec_nr_in_flight(pwq, work_color);
 
2319}
2320
2321/**
2322 * process_scheduled_works - process scheduled works
2323 * @worker: self
2324 *
2325 * Process all scheduled works.  Please note that the scheduled list
2326 * may change while processing a work, so this function repeatedly
2327 * fetches a work from the top and executes it.
2328 *
2329 * CONTEXT:
2330 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2331 * multiple times.
2332 */
2333static void process_scheduled_works(struct worker *worker)
2334{
2335	while (!list_empty(&worker->scheduled)) {
2336		struct work_struct *work = list_first_entry(&worker->scheduled,
2337						struct work_struct, entry);
2338		process_one_work(worker, work);
2339	}
2340}
2341
2342static void set_pf_worker(bool val)
2343{
2344	mutex_lock(&wq_pool_attach_mutex);
2345	if (val)
2346		current->flags |= PF_WQ_WORKER;
2347	else
2348		current->flags &= ~PF_WQ_WORKER;
2349	mutex_unlock(&wq_pool_attach_mutex);
2350}
2351
2352/**
2353 * worker_thread - the worker thread function
2354 * @__worker: self
2355 *
2356 * The worker thread function.  All workers belong to a worker_pool -
2357 * either a per-cpu one or dynamic unbound one.  These workers process all
2358 * work items regardless of their specific target workqueue.  The only
2359 * exception is work items which belong to workqueues with a rescuer which
2360 * will be explained in rescuer_thread().
2361 *
2362 * Return: 0
2363 */
2364static int worker_thread(void *__worker)
2365{
2366	struct worker *worker = __worker;
2367	struct worker_pool *pool = worker->pool;
2368
2369	/* tell the scheduler that this is a workqueue worker */
2370	set_pf_worker(true);
2371woke_up:
2372	raw_spin_lock_irq(&pool->lock);
2373
2374	/* am I supposed to die? */
2375	if (unlikely(worker->flags & WORKER_DIE)) {
2376		raw_spin_unlock_irq(&pool->lock);
2377		WARN_ON_ONCE(!list_empty(&worker->entry));
2378		set_pf_worker(false);
2379
2380		set_task_comm(worker->task, "kworker/dying");
2381		ida_simple_remove(&pool->worker_ida, worker->id);
2382		worker_detach_from_pool(worker);
2383		kfree(worker);
2384		return 0;
2385	}
2386
2387	worker_leave_idle(worker);
2388recheck:
2389	/* no more worker necessary? */
2390	if (!need_more_worker(pool))
2391		goto sleep;
2392
2393	/* do we need to manage? */
2394	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2395		goto recheck;
2396
2397	/*
2398	 * ->scheduled list can only be filled while a worker is
2399	 * preparing to process a work or actually processing it.
2400	 * Make sure nobody diddled with it while I was sleeping.
2401	 */
2402	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2403
2404	/*
2405	 * Finish PREP stage.  We're guaranteed to have at least one idle
2406	 * worker or that someone else has already assumed the manager
2407	 * role.  This is where @worker starts participating in concurrency
2408	 * management if applicable and concurrency management is restored
2409	 * after being rebound.  See rebind_workers() for details.
2410	 */
2411	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2412
2413	do {
2414		struct work_struct *work =
2415			list_first_entry(&pool->worklist,
2416					 struct work_struct, entry);
2417
2418		pool->watchdog_ts = jiffies;
2419
2420		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2421			/* optimization path, not strictly necessary */
2422			process_one_work(worker, work);
2423			if (unlikely(!list_empty(&worker->scheduled)))
2424				process_scheduled_works(worker);
2425		} else {
2426			move_linked_works(work, &worker->scheduled, NULL);
2427			process_scheduled_works(worker);
2428		}
2429	} while (keep_working(pool));
2430
2431	worker_set_flags(worker, WORKER_PREP);
2432sleep:
2433	/*
2434	 * pool->lock is held and there's no work to process and no need to
2435	 * manage, sleep.  Workers are woken up only while holding
2436	 * pool->lock or from local cpu, so setting the current state
2437	 * before releasing pool->lock is enough to prevent losing any
2438	 * event.
2439	 */
2440	worker_enter_idle(worker);
2441	__set_current_state(TASK_IDLE);
2442	raw_spin_unlock_irq(&pool->lock);
2443	schedule();
2444	goto woke_up;
2445}
2446
2447/**
2448 * rescuer_thread - the rescuer thread function
2449 * @__rescuer: self
2450 *
2451 * Workqueue rescuer thread function.  There's one rescuer for each
2452 * workqueue which has WQ_MEM_RECLAIM set.
2453 *
2454 * Regular work processing on a pool may block trying to create a new
2455 * worker which uses GFP_KERNEL allocation which has slight chance of
2456 * developing into deadlock if some works currently on the same queue
2457 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2458 * the problem rescuer solves.
2459 *
2460 * When such condition is possible, the pool summons rescuers of all
2461 * workqueues which have works queued on the pool and let them process
2462 * those works so that forward progress can be guaranteed.
2463 *
2464 * This should happen rarely.
2465 *
2466 * Return: 0
2467 */
2468static int rescuer_thread(void *__rescuer)
2469{
2470	struct worker *rescuer = __rescuer;
2471	struct workqueue_struct *wq = rescuer->rescue_wq;
2472	struct list_head *scheduled = &rescuer->scheduled;
2473	bool should_stop;
2474
2475	set_user_nice(current, RESCUER_NICE_LEVEL);
2476
2477	/*
2478	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2479	 * doesn't participate in concurrency management.
2480	 */
2481	set_pf_worker(true);
2482repeat:
2483	set_current_state(TASK_IDLE);
2484
2485	/*
2486	 * By the time the rescuer is requested to stop, the workqueue
2487	 * shouldn't have any work pending, but @wq->maydays may still have
2488	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2489	 * all the work items before the rescuer got to them.  Go through
2490	 * @wq->maydays processing before acting on should_stop so that the
2491	 * list is always empty on exit.
2492	 */
2493	should_stop = kthread_should_stop();
2494
2495	/* see whether any pwq is asking for help */
2496	raw_spin_lock_irq(&wq_mayday_lock);
2497
2498	while (!list_empty(&wq->maydays)) {
2499		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2500					struct pool_workqueue, mayday_node);
2501		struct worker_pool *pool = pwq->pool;
2502		struct work_struct *work, *n;
2503		bool first = true;
2504
2505		__set_current_state(TASK_RUNNING);
2506		list_del_init(&pwq->mayday_node);
2507
2508		raw_spin_unlock_irq(&wq_mayday_lock);
2509
2510		worker_attach_to_pool(rescuer, pool);
2511
2512		raw_spin_lock_irq(&pool->lock);
2513
2514		/*
2515		 * Slurp in all works issued via this workqueue and
2516		 * process'em.
2517		 */
2518		WARN_ON_ONCE(!list_empty(scheduled));
2519		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2520			if (get_work_pwq(work) == pwq) {
2521				if (first)
2522					pool->watchdog_ts = jiffies;
2523				move_linked_works(work, scheduled, &n);
2524			}
2525			first = false;
2526		}
2527
2528		if (!list_empty(scheduled)) {
2529			process_scheduled_works(rescuer);
2530
2531			/*
2532			 * The above execution of rescued work items could
2533			 * have created more to rescue through
2534			 * pwq_activate_first_delayed() or chained
2535			 * queueing.  Let's put @pwq back on mayday list so
2536			 * that such back-to-back work items, which may be
2537			 * being used to relieve memory pressure, don't
2538			 * incur MAYDAY_INTERVAL delay inbetween.
2539			 */
2540			if (pwq->nr_active && need_to_create_worker(pool)) {
2541				raw_spin_lock(&wq_mayday_lock);
2542				/*
2543				 * Queue iff we aren't racing destruction
2544				 * and somebody else hasn't queued it already.
2545				 */
2546				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2547					get_pwq(pwq);
2548					list_add_tail(&pwq->mayday_node, &wq->maydays);
2549				}
2550				raw_spin_unlock(&wq_mayday_lock);
2551			}
2552		}
2553
2554		/*
2555		 * Put the reference grabbed by send_mayday().  @pool won't
2556		 * go away while we're still attached to it.
2557		 */
2558		put_pwq(pwq);
2559
2560		/*
2561		 * Leave this pool.  If need_more_worker() is %true, notify a
2562		 * regular worker; otherwise, we end up with 0 concurrency
2563		 * and stalling the execution.
2564		 */
2565		if (need_more_worker(pool))
2566			wake_up_worker(pool);
2567
2568		raw_spin_unlock_irq(&pool->lock);
2569
2570		worker_detach_from_pool(rescuer);
2571
2572		raw_spin_lock_irq(&wq_mayday_lock);
2573	}
2574
2575	raw_spin_unlock_irq(&wq_mayday_lock);
2576
2577	if (should_stop) {
2578		__set_current_state(TASK_RUNNING);
2579		set_pf_worker(false);
2580		return 0;
2581	}
2582
2583	/* rescuers should never participate in concurrency management */
2584	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2585	schedule();
2586	goto repeat;
2587}
2588
2589/**
2590 * check_flush_dependency - check for flush dependency sanity
2591 * @target_wq: workqueue being flushed
2592 * @target_work: work item being flushed (NULL for workqueue flushes)
2593 *
2594 * %current is trying to flush the whole @target_wq or @target_work on it.
2595 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2596 * reclaiming memory or running on a workqueue which doesn't have
2597 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2598 * a deadlock.
2599 */
2600static void check_flush_dependency(struct workqueue_struct *target_wq,
2601				   struct work_struct *target_work)
2602{
2603	work_func_t target_func = target_work ? target_work->func : NULL;
2604	struct worker *worker;
2605
2606	if (target_wq->flags & WQ_MEM_RECLAIM)
2607		return;
2608
2609	worker = current_wq_worker();
2610
2611	WARN_ONCE(current->flags & PF_MEMALLOC,
2612		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2613		  current->pid, current->comm, target_wq->name, target_func);
2614	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2615			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2616		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2617		  worker->current_pwq->wq->name, worker->current_func,
2618		  target_wq->name, target_func);
2619}
2620
2621struct wq_barrier {
2622	struct work_struct	work;
2623	struct completion	done;
2624	struct task_struct	*task;	/* purely informational */
2625};
2626
2627static void wq_barrier_func(struct work_struct *work)
2628{
2629	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2630	complete(&barr->done);
2631}
2632
2633/**
2634 * insert_wq_barrier - insert a barrier work
2635 * @pwq: pwq to insert barrier into
2636 * @barr: wq_barrier to insert
2637 * @target: target work to attach @barr to
2638 * @worker: worker currently executing @target, NULL if @target is not executing
2639 *
2640 * @barr is linked to @target such that @barr is completed only after
2641 * @target finishes execution.  Please note that the ordering
2642 * guarantee is observed only with respect to @target and on the local
2643 * cpu.
2644 *
2645 * Currently, a queued barrier can't be canceled.  This is because
2646 * try_to_grab_pending() can't determine whether the work to be
2647 * grabbed is at the head of the queue and thus can't clear LINKED
2648 * flag of the previous work while there must be a valid next work
2649 * after a work with LINKED flag set.
2650 *
2651 * Note that when @worker is non-NULL, @target may be modified
2652 * underneath us, so we can't reliably determine pwq from @target.
2653 *
2654 * CONTEXT:
2655 * raw_spin_lock_irq(pool->lock).
2656 */
2657static void insert_wq_barrier(struct pool_workqueue *pwq,
2658			      struct wq_barrier *barr,
2659			      struct work_struct *target, struct worker *worker)
2660{
 
 
2661	struct list_head *head;
2662	unsigned int linked = 0;
2663
2664	/*
2665	 * debugobject calls are safe here even with pool->lock locked
2666	 * as we know for sure that this will not trigger any of the
2667	 * checks and call back into the fixup functions where we
2668	 * might deadlock.
2669	 */
2670	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2671	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2672
2673	init_completion_map(&barr->done, &target->lockdep_map);
2674
2675	barr->task = current;
2676
 
 
 
2677	/*
2678	 * If @target is currently being executed, schedule the
2679	 * barrier to the worker; otherwise, put it after @target.
2680	 */
2681	if (worker)
2682		head = worker->scheduled.next;
2683	else {
 
2684		unsigned long *bits = work_data_bits(target);
2685
2686		head = target->entry.next;
2687		/* there can already be other linked works, inherit and set */
2688		linked = *bits & WORK_STRUCT_LINKED;
 
2689		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2690	}
2691
 
 
 
2692	debug_work_activate(&barr->work);
2693	insert_work(pwq, &barr->work, head,
2694		    work_color_to_flags(WORK_NO_COLOR) | linked);
2695}
2696
2697/**
2698 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2699 * @wq: workqueue being flushed
2700 * @flush_color: new flush color, < 0 for no-op
2701 * @work_color: new work color, < 0 for no-op
2702 *
2703 * Prepare pwqs for workqueue flushing.
2704 *
2705 * If @flush_color is non-negative, flush_color on all pwqs should be
2706 * -1.  If no pwq has in-flight commands at the specified color, all
2707 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2708 * has in flight commands, its pwq->flush_color is set to
2709 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2710 * wakeup logic is armed and %true is returned.
2711 *
2712 * The caller should have initialized @wq->first_flusher prior to
2713 * calling this function with non-negative @flush_color.  If
2714 * @flush_color is negative, no flush color update is done and %false
2715 * is returned.
2716 *
2717 * If @work_color is non-negative, all pwqs should have the same
2718 * work_color which is previous to @work_color and all will be
2719 * advanced to @work_color.
2720 *
2721 * CONTEXT:
2722 * mutex_lock(wq->mutex).
2723 *
2724 * Return:
2725 * %true if @flush_color >= 0 and there's something to flush.  %false
2726 * otherwise.
2727 */
2728static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2729				      int flush_color, int work_color)
2730{
2731	bool wait = false;
2732	struct pool_workqueue *pwq;
2733
2734	if (flush_color >= 0) {
2735		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2736		atomic_set(&wq->nr_pwqs_to_flush, 1);
2737	}
2738
2739	for_each_pwq(pwq, wq) {
2740		struct worker_pool *pool = pwq->pool;
2741
2742		raw_spin_lock_irq(&pool->lock);
2743
2744		if (flush_color >= 0) {
2745			WARN_ON_ONCE(pwq->flush_color != -1);
2746
2747			if (pwq->nr_in_flight[flush_color]) {
2748				pwq->flush_color = flush_color;
2749				atomic_inc(&wq->nr_pwqs_to_flush);
2750				wait = true;
2751			}
2752		}
2753
2754		if (work_color >= 0) {
2755			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2756			pwq->work_color = work_color;
2757		}
2758
2759		raw_spin_unlock_irq(&pool->lock);
2760	}
2761
2762	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2763		complete(&wq->first_flusher->done);
2764
2765	return wait;
2766}
2767
2768/**
2769 * flush_workqueue - ensure that any scheduled work has run to completion.
2770 * @wq: workqueue to flush
2771 *
2772 * This function sleeps until all work items which were queued on entry
2773 * have finished execution, but it is not livelocked by new incoming ones.
2774 */
2775void flush_workqueue(struct workqueue_struct *wq)
2776{
2777	struct wq_flusher this_flusher = {
2778		.list = LIST_HEAD_INIT(this_flusher.list),
2779		.flush_color = -1,
2780		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2781	};
2782	int next_color;
2783
2784	if (WARN_ON(!wq_online))
2785		return;
2786
2787	lock_map_acquire(&wq->lockdep_map);
2788	lock_map_release(&wq->lockdep_map);
2789
2790	mutex_lock(&wq->mutex);
2791
2792	/*
2793	 * Start-to-wait phase
2794	 */
2795	next_color = work_next_color(wq->work_color);
2796
2797	if (next_color != wq->flush_color) {
2798		/*
2799		 * Color space is not full.  The current work_color
2800		 * becomes our flush_color and work_color is advanced
2801		 * by one.
2802		 */
2803		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2804		this_flusher.flush_color = wq->work_color;
2805		wq->work_color = next_color;
2806
2807		if (!wq->first_flusher) {
2808			/* no flush in progress, become the first flusher */
2809			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2810
2811			wq->first_flusher = &this_flusher;
2812
2813			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2814						       wq->work_color)) {
2815				/* nothing to flush, done */
2816				wq->flush_color = next_color;
2817				wq->first_flusher = NULL;
2818				goto out_unlock;
2819			}
2820		} else {
2821			/* wait in queue */
2822			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2823			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2824			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2825		}
2826	} else {
2827		/*
2828		 * Oops, color space is full, wait on overflow queue.
2829		 * The next flush completion will assign us
2830		 * flush_color and transfer to flusher_queue.
2831		 */
2832		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2833	}
2834
2835	check_flush_dependency(wq, NULL);
2836
2837	mutex_unlock(&wq->mutex);
2838
2839	wait_for_completion(&this_flusher.done);
2840
2841	/*
2842	 * Wake-up-and-cascade phase
2843	 *
2844	 * First flushers are responsible for cascading flushes and
2845	 * handling overflow.  Non-first flushers can simply return.
2846	 */
2847	if (READ_ONCE(wq->first_flusher) != &this_flusher)
2848		return;
2849
2850	mutex_lock(&wq->mutex);
2851
2852	/* we might have raced, check again with mutex held */
2853	if (wq->first_flusher != &this_flusher)
2854		goto out_unlock;
2855
2856	WRITE_ONCE(wq->first_flusher, NULL);
2857
2858	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2859	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2860
2861	while (true) {
2862		struct wq_flusher *next, *tmp;
2863
2864		/* complete all the flushers sharing the current flush color */
2865		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2866			if (next->flush_color != wq->flush_color)
2867				break;
2868			list_del_init(&next->list);
2869			complete(&next->done);
2870		}
2871
2872		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2873			     wq->flush_color != work_next_color(wq->work_color));
2874
2875		/* this flush_color is finished, advance by one */
2876		wq->flush_color = work_next_color(wq->flush_color);
2877
2878		/* one color has been freed, handle overflow queue */
2879		if (!list_empty(&wq->flusher_overflow)) {
2880			/*
2881			 * Assign the same color to all overflowed
2882			 * flushers, advance work_color and append to
2883			 * flusher_queue.  This is the start-to-wait
2884			 * phase for these overflowed flushers.
2885			 */
2886			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2887				tmp->flush_color = wq->work_color;
2888
2889			wq->work_color = work_next_color(wq->work_color);
2890
2891			list_splice_tail_init(&wq->flusher_overflow,
2892					      &wq->flusher_queue);
2893			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2894		}
2895
2896		if (list_empty(&wq->flusher_queue)) {
2897			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2898			break;
2899		}
2900
2901		/*
2902		 * Need to flush more colors.  Make the next flusher
2903		 * the new first flusher and arm pwqs.
2904		 */
2905		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2906		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2907
2908		list_del_init(&next->list);
2909		wq->first_flusher = next;
2910
2911		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2912			break;
2913
2914		/*
2915		 * Meh... this color is already done, clear first
2916		 * flusher and repeat cascading.
2917		 */
2918		wq->first_flusher = NULL;
2919	}
2920
2921out_unlock:
2922	mutex_unlock(&wq->mutex);
2923}
2924EXPORT_SYMBOL(flush_workqueue);
2925
2926/**
2927 * drain_workqueue - drain a workqueue
2928 * @wq: workqueue to drain
2929 *
2930 * Wait until the workqueue becomes empty.  While draining is in progress,
2931 * only chain queueing is allowed.  IOW, only currently pending or running
2932 * work items on @wq can queue further work items on it.  @wq is flushed
2933 * repeatedly until it becomes empty.  The number of flushing is determined
2934 * by the depth of chaining and should be relatively short.  Whine if it
2935 * takes too long.
2936 */
2937void drain_workqueue(struct workqueue_struct *wq)
2938{
2939	unsigned int flush_cnt = 0;
2940	struct pool_workqueue *pwq;
2941
2942	/*
2943	 * __queue_work() needs to test whether there are drainers, is much
2944	 * hotter than drain_workqueue() and already looks at @wq->flags.
2945	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2946	 */
2947	mutex_lock(&wq->mutex);
2948	if (!wq->nr_drainers++)
2949		wq->flags |= __WQ_DRAINING;
2950	mutex_unlock(&wq->mutex);
2951reflush:
2952	flush_workqueue(wq);
2953
2954	mutex_lock(&wq->mutex);
2955
2956	for_each_pwq(pwq, wq) {
2957		bool drained;
2958
2959		raw_spin_lock_irq(&pwq->pool->lock);
2960		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2961		raw_spin_unlock_irq(&pwq->pool->lock);
2962
2963		if (drained)
2964			continue;
2965
2966		if (++flush_cnt == 10 ||
2967		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2968			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
2969				wq->name, __func__, flush_cnt);
2970
2971		mutex_unlock(&wq->mutex);
2972		goto reflush;
2973	}
2974
2975	if (!--wq->nr_drainers)
2976		wq->flags &= ~__WQ_DRAINING;
2977	mutex_unlock(&wq->mutex);
2978}
2979EXPORT_SYMBOL_GPL(drain_workqueue);
2980
2981static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2982			     bool from_cancel)
2983{
2984	struct worker *worker = NULL;
2985	struct worker_pool *pool;
2986	struct pool_workqueue *pwq;
2987
2988	might_sleep();
2989
2990	rcu_read_lock();
2991	pool = get_work_pool(work);
2992	if (!pool) {
2993		rcu_read_unlock();
2994		return false;
2995	}
2996
2997	raw_spin_lock_irq(&pool->lock);
2998	/* see the comment in try_to_grab_pending() with the same code */
2999	pwq = get_work_pwq(work);
3000	if (pwq) {
3001		if (unlikely(pwq->pool != pool))
3002			goto already_gone;
3003	} else {
3004		worker = find_worker_executing_work(pool, work);
3005		if (!worker)
3006			goto already_gone;
3007		pwq = worker->current_pwq;
3008	}
3009
3010	check_flush_dependency(pwq->wq, work);
3011
3012	insert_wq_barrier(pwq, barr, work, worker);
3013	raw_spin_unlock_irq(&pool->lock);
3014
3015	/*
3016	 * Force a lock recursion deadlock when using flush_work() inside a
3017	 * single-threaded or rescuer equipped workqueue.
3018	 *
3019	 * For single threaded workqueues the deadlock happens when the work
3020	 * is after the work issuing the flush_work(). For rescuer equipped
3021	 * workqueues the deadlock happens when the rescuer stalls, blocking
3022	 * forward progress.
3023	 */
3024	if (!from_cancel &&
3025	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3026		lock_map_acquire(&pwq->wq->lockdep_map);
3027		lock_map_release(&pwq->wq->lockdep_map);
3028	}
3029	rcu_read_unlock();
3030	return true;
3031already_gone:
3032	raw_spin_unlock_irq(&pool->lock);
3033	rcu_read_unlock();
3034	return false;
3035}
3036
3037static bool __flush_work(struct work_struct *work, bool from_cancel)
3038{
3039	struct wq_barrier barr;
3040
3041	if (WARN_ON(!wq_online))
3042		return false;
3043
3044	if (WARN_ON(!work->func))
3045		return false;
3046
3047	if (!from_cancel) {
3048		lock_map_acquire(&work->lockdep_map);
3049		lock_map_release(&work->lockdep_map);
3050	}
3051
3052	if (start_flush_work(work, &barr, from_cancel)) {
3053		wait_for_completion(&barr.done);
3054		destroy_work_on_stack(&barr.work);
3055		return true;
3056	} else {
3057		return false;
3058	}
3059}
3060
3061/**
3062 * flush_work - wait for a work to finish executing the last queueing instance
3063 * @work: the work to flush
3064 *
3065 * Wait until @work has finished execution.  @work is guaranteed to be idle
3066 * on return if it hasn't been requeued since flush started.
3067 *
3068 * Return:
3069 * %true if flush_work() waited for the work to finish execution,
3070 * %false if it was already idle.
3071 */
3072bool flush_work(struct work_struct *work)
3073{
3074	return __flush_work(work, false);
3075}
3076EXPORT_SYMBOL_GPL(flush_work);
3077
3078struct cwt_wait {
3079	wait_queue_entry_t		wait;
3080	struct work_struct	*work;
3081};
3082
3083static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3084{
3085	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3086
3087	if (cwait->work != key)
3088		return 0;
3089	return autoremove_wake_function(wait, mode, sync, key);
3090}
3091
3092static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3093{
3094	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3095	unsigned long flags;
3096	int ret;
3097
3098	do {
3099		ret = try_to_grab_pending(work, is_dwork, &flags);
3100		/*
3101		 * If someone else is already canceling, wait for it to
3102		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3103		 * because we may get scheduled between @work's completion
3104		 * and the other canceling task resuming and clearing
3105		 * CANCELING - flush_work() will return false immediately
3106		 * as @work is no longer busy, try_to_grab_pending() will
3107		 * return -ENOENT as @work is still being canceled and the
3108		 * other canceling task won't be able to clear CANCELING as
3109		 * we're hogging the CPU.
3110		 *
3111		 * Let's wait for completion using a waitqueue.  As this
3112		 * may lead to the thundering herd problem, use a custom
3113		 * wake function which matches @work along with exclusive
3114		 * wait and wakeup.
3115		 */
3116		if (unlikely(ret == -ENOENT)) {
3117			struct cwt_wait cwait;
3118
3119			init_wait(&cwait.wait);
3120			cwait.wait.func = cwt_wakefn;
3121			cwait.work = work;
3122
3123			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3124						  TASK_UNINTERRUPTIBLE);
3125			if (work_is_canceling(work))
3126				schedule();
3127			finish_wait(&cancel_waitq, &cwait.wait);
3128		}
3129	} while (unlikely(ret < 0));
3130
3131	/* tell other tasks trying to grab @work to back off */
3132	mark_work_canceling(work);
3133	local_irq_restore(flags);
3134
3135	/*
3136	 * This allows canceling during early boot.  We know that @work
3137	 * isn't executing.
3138	 */
3139	if (wq_online)
3140		__flush_work(work, true);
3141
3142	clear_work_data(work);
3143
3144	/*
3145	 * Paired with prepare_to_wait() above so that either
3146	 * waitqueue_active() is visible here or !work_is_canceling() is
3147	 * visible there.
3148	 */
3149	smp_mb();
3150	if (waitqueue_active(&cancel_waitq))
3151		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3152
3153	return ret;
3154}
3155
3156/**
3157 * cancel_work_sync - cancel a work and wait for it to finish
3158 * @work: the work to cancel
3159 *
3160 * Cancel @work and wait for its execution to finish.  This function
3161 * can be used even if the work re-queues itself or migrates to
3162 * another workqueue.  On return from this function, @work is
3163 * guaranteed to be not pending or executing on any CPU.
3164 *
3165 * cancel_work_sync(&delayed_work->work) must not be used for
3166 * delayed_work's.  Use cancel_delayed_work_sync() instead.
3167 *
3168 * The caller must ensure that the workqueue on which @work was last
3169 * queued can't be destroyed before this function returns.
3170 *
3171 * Return:
3172 * %true if @work was pending, %false otherwise.
3173 */
3174bool cancel_work_sync(struct work_struct *work)
3175{
3176	return __cancel_work_timer(work, false);
3177}
3178EXPORT_SYMBOL_GPL(cancel_work_sync);
3179
3180/**
3181 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3182 * @dwork: the delayed work to flush
3183 *
3184 * Delayed timer is cancelled and the pending work is queued for
3185 * immediate execution.  Like flush_work(), this function only
3186 * considers the last queueing instance of @dwork.
3187 *
3188 * Return:
3189 * %true if flush_work() waited for the work to finish execution,
3190 * %false if it was already idle.
3191 */
3192bool flush_delayed_work(struct delayed_work *dwork)
3193{
3194	local_irq_disable();
3195	if (del_timer_sync(&dwork->timer))
3196		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3197	local_irq_enable();
3198	return flush_work(&dwork->work);
3199}
3200EXPORT_SYMBOL(flush_delayed_work);
3201
3202/**
3203 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3204 * @rwork: the rcu work to flush
3205 *
3206 * Return:
3207 * %true if flush_rcu_work() waited for the work to finish execution,
3208 * %false if it was already idle.
3209 */
3210bool flush_rcu_work(struct rcu_work *rwork)
3211{
3212	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3213		rcu_barrier();
3214		flush_work(&rwork->work);
3215		return true;
3216	} else {
3217		return flush_work(&rwork->work);
3218	}
3219}
3220EXPORT_SYMBOL(flush_rcu_work);
3221
3222static bool __cancel_work(struct work_struct *work, bool is_dwork)
3223{
3224	unsigned long flags;
3225	int ret;
3226
3227	do {
3228		ret = try_to_grab_pending(work, is_dwork, &flags);
3229	} while (unlikely(ret == -EAGAIN));
3230
3231	if (unlikely(ret < 0))
3232		return false;
3233
3234	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3235	local_irq_restore(flags);
3236	return ret;
3237}
3238
 
 
 
 
 
 
 
 
 
3239/**
3240 * cancel_delayed_work - cancel a delayed work
3241 * @dwork: delayed_work to cancel
3242 *
3243 * Kill off a pending delayed_work.
3244 *
3245 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3246 * pending.
3247 *
3248 * Note:
3249 * The work callback function may still be running on return, unless
3250 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3251 * use cancel_delayed_work_sync() to wait on it.
3252 *
3253 * This function is safe to call from any context including IRQ handler.
3254 */
3255bool cancel_delayed_work(struct delayed_work *dwork)
3256{
3257	return __cancel_work(&dwork->work, true);
3258}
3259EXPORT_SYMBOL(cancel_delayed_work);
3260
3261/**
3262 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3263 * @dwork: the delayed work cancel
3264 *
3265 * This is cancel_work_sync() for delayed works.
3266 *
3267 * Return:
3268 * %true if @dwork was pending, %false otherwise.
3269 */
3270bool cancel_delayed_work_sync(struct delayed_work *dwork)
3271{
3272	return __cancel_work_timer(&dwork->work, true);
3273}
3274EXPORT_SYMBOL(cancel_delayed_work_sync);
3275
3276/**
3277 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3278 * @func: the function to call
3279 *
3280 * schedule_on_each_cpu() executes @func on each online CPU using the
3281 * system workqueue and blocks until all CPUs have completed.
3282 * schedule_on_each_cpu() is very slow.
3283 *
3284 * Return:
3285 * 0 on success, -errno on failure.
3286 */
3287int schedule_on_each_cpu(work_func_t func)
3288{
3289	int cpu;
3290	struct work_struct __percpu *works;
3291
3292	works = alloc_percpu(struct work_struct);
3293	if (!works)
3294		return -ENOMEM;
3295
3296	get_online_cpus();
3297
3298	for_each_online_cpu(cpu) {
3299		struct work_struct *work = per_cpu_ptr(works, cpu);
3300
3301		INIT_WORK(work, func);
3302		schedule_work_on(cpu, work);
3303	}
3304
3305	for_each_online_cpu(cpu)
3306		flush_work(per_cpu_ptr(works, cpu));
3307
3308	put_online_cpus();
3309	free_percpu(works);
3310	return 0;
3311}
3312
3313/**
3314 * execute_in_process_context - reliably execute the routine with user context
3315 * @fn:		the function to execute
3316 * @ew:		guaranteed storage for the execute work structure (must
3317 *		be available when the work executes)
3318 *
3319 * Executes the function immediately if process context is available,
3320 * otherwise schedules the function for delayed execution.
3321 *
3322 * Return:	0 - function was executed
3323 *		1 - function was scheduled for execution
3324 */
3325int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3326{
3327	if (!in_interrupt()) {
3328		fn(&ew->work);
3329		return 0;
3330	}
3331
3332	INIT_WORK(&ew->work, fn);
3333	schedule_work(&ew->work);
3334
3335	return 1;
3336}
3337EXPORT_SYMBOL_GPL(execute_in_process_context);
3338
3339/**
3340 * free_workqueue_attrs - free a workqueue_attrs
3341 * @attrs: workqueue_attrs to free
3342 *
3343 * Undo alloc_workqueue_attrs().
3344 */
3345void free_workqueue_attrs(struct workqueue_attrs *attrs)
3346{
3347	if (attrs) {
3348		free_cpumask_var(attrs->cpumask);
3349		kfree(attrs);
3350	}
3351}
3352
3353/**
3354 * alloc_workqueue_attrs - allocate a workqueue_attrs
3355 *
3356 * Allocate a new workqueue_attrs, initialize with default settings and
3357 * return it.
3358 *
3359 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3360 */
3361struct workqueue_attrs *alloc_workqueue_attrs(void)
3362{
3363	struct workqueue_attrs *attrs;
3364
3365	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3366	if (!attrs)
3367		goto fail;
3368	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3369		goto fail;
3370
3371	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3372	return attrs;
3373fail:
3374	free_workqueue_attrs(attrs);
3375	return NULL;
3376}
3377
3378static void copy_workqueue_attrs(struct workqueue_attrs *to,
3379				 const struct workqueue_attrs *from)
3380{
3381	to->nice = from->nice;
3382	cpumask_copy(to->cpumask, from->cpumask);
3383	/*
3384	 * Unlike hash and equality test, this function doesn't ignore
3385	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3386	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3387	 */
3388	to->no_numa = from->no_numa;
3389}
3390
3391/* hash value of the content of @attr */
3392static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3393{
3394	u32 hash = 0;
3395
3396	hash = jhash_1word(attrs->nice, hash);
3397	hash = jhash(cpumask_bits(attrs->cpumask),
3398		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3399	return hash;
3400}
3401
3402/* content equality test */
3403static bool wqattrs_equal(const struct workqueue_attrs *a,
3404			  const struct workqueue_attrs *b)
3405{
3406	if (a->nice != b->nice)
3407		return false;
3408	if (!cpumask_equal(a->cpumask, b->cpumask))
3409		return false;
3410	return true;
3411}
3412
3413/**
3414 * init_worker_pool - initialize a newly zalloc'd worker_pool
3415 * @pool: worker_pool to initialize
3416 *
3417 * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3418 *
3419 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3420 * inside @pool proper are initialized and put_unbound_pool() can be called
3421 * on @pool safely to release it.
3422 */
3423static int init_worker_pool(struct worker_pool *pool)
3424{
3425	raw_spin_lock_init(&pool->lock);
3426	pool->id = -1;
3427	pool->cpu = -1;
3428	pool->node = NUMA_NO_NODE;
3429	pool->flags |= POOL_DISASSOCIATED;
3430	pool->watchdog_ts = jiffies;
3431	INIT_LIST_HEAD(&pool->worklist);
3432	INIT_LIST_HEAD(&pool->idle_list);
3433	hash_init(pool->busy_hash);
3434
3435	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3436
3437	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3438
3439	INIT_LIST_HEAD(&pool->workers);
3440
3441	ida_init(&pool->worker_ida);
3442	INIT_HLIST_NODE(&pool->hash_node);
3443	pool->refcnt = 1;
3444
3445	/* shouldn't fail above this point */
3446	pool->attrs = alloc_workqueue_attrs();
3447	if (!pool->attrs)
3448		return -ENOMEM;
3449	return 0;
3450}
3451
3452#ifdef CONFIG_LOCKDEP
3453static void wq_init_lockdep(struct workqueue_struct *wq)
3454{
3455	char *lock_name;
3456
3457	lockdep_register_key(&wq->key);
3458	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3459	if (!lock_name)
3460		lock_name = wq->name;
3461
3462	wq->lock_name = lock_name;
3463	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3464}
3465
3466static void wq_unregister_lockdep(struct workqueue_struct *wq)
3467{
3468	lockdep_unregister_key(&wq->key);
3469}
3470
3471static void wq_free_lockdep(struct workqueue_struct *wq)
3472{
3473	if (wq->lock_name != wq->name)
3474		kfree(wq->lock_name);
3475}
3476#else
3477static void wq_init_lockdep(struct workqueue_struct *wq)
3478{
3479}
3480
3481static void wq_unregister_lockdep(struct workqueue_struct *wq)
3482{
3483}
3484
3485static void wq_free_lockdep(struct workqueue_struct *wq)
3486{
3487}
3488#endif
3489
3490static void rcu_free_wq(struct rcu_head *rcu)
3491{
3492	struct workqueue_struct *wq =
3493		container_of(rcu, struct workqueue_struct, rcu);
3494
3495	wq_free_lockdep(wq);
3496
3497	if (!(wq->flags & WQ_UNBOUND))
3498		free_percpu(wq->cpu_pwqs);
3499	else
3500		free_workqueue_attrs(wq->unbound_attrs);
3501
3502	kfree(wq);
3503}
3504
3505static void rcu_free_pool(struct rcu_head *rcu)
3506{
3507	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3508
3509	ida_destroy(&pool->worker_ida);
3510	free_workqueue_attrs(pool->attrs);
3511	kfree(pool);
3512}
3513
3514/* This returns with the lock held on success (pool manager is inactive). */
3515static bool wq_manager_inactive(struct worker_pool *pool)
3516{
3517	raw_spin_lock_irq(&pool->lock);
3518
3519	if (pool->flags & POOL_MANAGER_ACTIVE) {
3520		raw_spin_unlock_irq(&pool->lock);
3521		return false;
3522	}
3523	return true;
3524}
3525
3526/**
3527 * put_unbound_pool - put a worker_pool
3528 * @pool: worker_pool to put
3529 *
3530 * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
3531 * safe manner.  get_unbound_pool() calls this function on its failure path
3532 * and this function should be able to release pools which went through,
3533 * successfully or not, init_worker_pool().
3534 *
3535 * Should be called with wq_pool_mutex held.
3536 */
3537static void put_unbound_pool(struct worker_pool *pool)
3538{
3539	DECLARE_COMPLETION_ONSTACK(detach_completion);
3540	struct worker *worker;
3541
3542	lockdep_assert_held(&wq_pool_mutex);
3543
3544	if (--pool->refcnt)
3545		return;
3546
3547	/* sanity checks */
3548	if (WARN_ON(!(pool->cpu < 0)) ||
3549	    WARN_ON(!list_empty(&pool->worklist)))
3550		return;
3551
3552	/* release id and unhash */
3553	if (pool->id >= 0)
3554		idr_remove(&worker_pool_idr, pool->id);
3555	hash_del(&pool->hash_node);
3556
3557	/*
3558	 * Become the manager and destroy all workers.  This prevents
3559	 * @pool's workers from blocking on attach_mutex.  We're the last
3560	 * manager and @pool gets freed with the flag set.
3561	 * Because of how wq_manager_inactive() works, we will hold the
3562	 * spinlock after a successful wait.
3563	 */
3564	rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3565			   TASK_UNINTERRUPTIBLE);
3566	pool->flags |= POOL_MANAGER_ACTIVE;
3567
3568	while ((worker = first_idle_worker(pool)))
3569		destroy_worker(worker);
3570	WARN_ON(pool->nr_workers || pool->nr_idle);
3571	raw_spin_unlock_irq(&pool->lock);
3572
3573	mutex_lock(&wq_pool_attach_mutex);
3574	if (!list_empty(&pool->workers))
3575		pool->detach_completion = &detach_completion;
3576	mutex_unlock(&wq_pool_attach_mutex);
3577
3578	if (pool->detach_completion)
3579		wait_for_completion(pool->detach_completion);
3580
3581	/* shut down the timers */
3582	del_timer_sync(&pool->idle_timer);
3583	del_timer_sync(&pool->mayday_timer);
3584
3585	/* RCU protected to allow dereferences from get_work_pool() */
3586	call_rcu(&pool->rcu, rcu_free_pool);
3587}
3588
3589/**
3590 * get_unbound_pool - get a worker_pool with the specified attributes
3591 * @attrs: the attributes of the worker_pool to get
3592 *
3593 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3594 * reference count and return it.  If there already is a matching
3595 * worker_pool, it will be used; otherwise, this function attempts to
3596 * create a new one.
3597 *
3598 * Should be called with wq_pool_mutex held.
3599 *
3600 * Return: On success, a worker_pool with the same attributes as @attrs.
3601 * On failure, %NULL.
3602 */
3603static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3604{
3605	u32 hash = wqattrs_hash(attrs);
3606	struct worker_pool *pool;
3607	int node;
3608	int target_node = NUMA_NO_NODE;
3609
3610	lockdep_assert_held(&wq_pool_mutex);
3611
3612	/* do we already have a matching pool? */
3613	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3614		if (wqattrs_equal(pool->attrs, attrs)) {
3615			pool->refcnt++;
3616			return pool;
3617		}
3618	}
3619
3620	/* if cpumask is contained inside a NUMA node, we belong to that node */
3621	if (wq_numa_enabled) {
3622		for_each_node(node) {
3623			if (cpumask_subset(attrs->cpumask,
3624					   wq_numa_possible_cpumask[node])) {
3625				target_node = node;
3626				break;
3627			}
3628		}
3629	}
3630
3631	/* nope, create a new one */
3632	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3633	if (!pool || init_worker_pool(pool) < 0)
3634		goto fail;
3635
3636	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3637	copy_workqueue_attrs(pool->attrs, attrs);
3638	pool->node = target_node;
3639
3640	/*
3641	 * no_numa isn't a worker_pool attribute, always clear it.  See
3642	 * 'struct workqueue_attrs' comments for detail.
3643	 */
3644	pool->attrs->no_numa = false;
3645
3646	if (worker_pool_assign_id(pool) < 0)
3647		goto fail;
3648
3649	/* create and start the initial worker */
3650	if (wq_online && !create_worker(pool))
3651		goto fail;
3652
3653	/* install */
3654	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3655
3656	return pool;
3657fail:
3658	if (pool)
3659		put_unbound_pool(pool);
3660	return NULL;
3661}
3662
3663static void rcu_free_pwq(struct rcu_head *rcu)
3664{
3665	kmem_cache_free(pwq_cache,
3666			container_of(rcu, struct pool_workqueue, rcu));
3667}
3668
3669/*
3670 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3671 * and needs to be destroyed.
3672 */
3673static void pwq_unbound_release_workfn(struct work_struct *work)
3674{
3675	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3676						  unbound_release_work);
3677	struct workqueue_struct *wq = pwq->wq;
3678	struct worker_pool *pool = pwq->pool;
3679	bool is_last = false;
3680
3681	/*
3682	 * when @pwq is not linked, it doesn't hold any reference to the
3683	 * @wq, and @wq is invalid to access.
3684	 */
3685	if (!list_empty(&pwq->pwqs_node)) {
3686		if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3687			return;
3688
3689		mutex_lock(&wq->mutex);
3690		list_del_rcu(&pwq->pwqs_node);
3691		is_last = list_empty(&wq->pwqs);
3692		mutex_unlock(&wq->mutex);
3693	}
3694
3695	mutex_lock(&wq_pool_mutex);
3696	put_unbound_pool(pool);
3697	mutex_unlock(&wq_pool_mutex);
3698
3699	call_rcu(&pwq->rcu, rcu_free_pwq);
3700
3701	/*
3702	 * If we're the last pwq going away, @wq is already dead and no one
3703	 * is gonna access it anymore.  Schedule RCU free.
3704	 */
3705	if (is_last) {
3706		wq_unregister_lockdep(wq);
3707		call_rcu(&wq->rcu, rcu_free_wq);
3708	}
3709}
3710
3711/**
3712 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3713 * @pwq: target pool_workqueue
3714 *
3715 * If @pwq isn't freezing, set @pwq->max_active to the associated
3716 * workqueue's saved_max_active and activate delayed work items
3717 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3718 */
3719static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3720{
3721	struct workqueue_struct *wq = pwq->wq;
3722	bool freezable = wq->flags & WQ_FREEZABLE;
3723	unsigned long flags;
3724
3725	/* for @wq->saved_max_active */
3726	lockdep_assert_held(&wq->mutex);
3727
3728	/* fast exit for non-freezable wqs */
3729	if (!freezable && pwq->max_active == wq->saved_max_active)
3730		return;
3731
3732	/* this function can be called during early boot w/ irq disabled */
3733	raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3734
3735	/*
3736	 * During [un]freezing, the caller is responsible for ensuring that
3737	 * this function is called at least once after @workqueue_freezing
3738	 * is updated and visible.
3739	 */
3740	if (!freezable || !workqueue_freezing) {
3741		bool kick = false;
3742
3743		pwq->max_active = wq->saved_max_active;
3744
3745		while (!list_empty(&pwq->delayed_works) &&
3746		       pwq->nr_active < pwq->max_active) {
3747			pwq_activate_first_delayed(pwq);
3748			kick = true;
3749		}
3750
3751		/*
3752		 * Need to kick a worker after thawed or an unbound wq's
3753		 * max_active is bumped. In realtime scenarios, always kicking a
3754		 * worker will cause interference on the isolated cpu cores, so
3755		 * let's kick iff work items were activated.
3756		 */
3757		if (kick)
3758			wake_up_worker(pwq->pool);
3759	} else {
3760		pwq->max_active = 0;
3761	}
3762
3763	raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
3764}
3765
3766/* initialize newly alloced @pwq which is associated with @wq and @pool */
3767static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3768		     struct worker_pool *pool)
3769{
3770	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3771
3772	memset(pwq, 0, sizeof(*pwq));
3773
3774	pwq->pool = pool;
3775	pwq->wq = wq;
3776	pwq->flush_color = -1;
3777	pwq->refcnt = 1;
3778	INIT_LIST_HEAD(&pwq->delayed_works);
3779	INIT_LIST_HEAD(&pwq->pwqs_node);
3780	INIT_LIST_HEAD(&pwq->mayday_node);
3781	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3782}
3783
3784/* sync @pwq with the current state of its associated wq and link it */
3785static void link_pwq(struct pool_workqueue *pwq)
3786{
3787	struct workqueue_struct *wq = pwq->wq;
3788
3789	lockdep_assert_held(&wq->mutex);
3790
3791	/* may be called multiple times, ignore if already linked */
3792	if (!list_empty(&pwq->pwqs_node))
3793		return;
3794
3795	/* set the matching work_color */
3796	pwq->work_color = wq->work_color;
3797
3798	/* sync max_active to the current setting */
3799	pwq_adjust_max_active(pwq);
3800
3801	/* link in @pwq */
3802	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3803}
3804
3805/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3806static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3807					const struct workqueue_attrs *attrs)
3808{
3809	struct worker_pool *pool;
3810	struct pool_workqueue *pwq;
3811
3812	lockdep_assert_held(&wq_pool_mutex);
3813
3814	pool = get_unbound_pool(attrs);
3815	if (!pool)
3816		return NULL;
3817
3818	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3819	if (!pwq) {
3820		put_unbound_pool(pool);
3821		return NULL;
3822	}
3823
3824	init_pwq(pwq, wq, pool);
3825	return pwq;
3826}
3827
3828/**
3829 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3830 * @attrs: the wq_attrs of the default pwq of the target workqueue
3831 * @node: the target NUMA node
3832 * @cpu_going_down: if >= 0, the CPU to consider as offline
3833 * @cpumask: outarg, the resulting cpumask
3834 *
3835 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3836 * @cpu_going_down is >= 0, that cpu is considered offline during
3837 * calculation.  The result is stored in @cpumask.
3838 *
3839 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3840 * enabled and @node has online CPUs requested by @attrs, the returned
3841 * cpumask is the intersection of the possible CPUs of @node and
3842 * @attrs->cpumask.
3843 *
3844 * The caller is responsible for ensuring that the cpumask of @node stays
3845 * stable.
3846 *
3847 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3848 * %false if equal.
3849 */
3850static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3851				 int cpu_going_down, cpumask_t *cpumask)
3852{
3853	if (!wq_numa_enabled || attrs->no_numa)
3854		goto use_dfl;
3855
3856	/* does @node have any online CPUs @attrs wants? */
3857	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3858	if (cpu_going_down >= 0)
3859		cpumask_clear_cpu(cpu_going_down, cpumask);
3860
3861	if (cpumask_empty(cpumask))
3862		goto use_dfl;
3863
3864	/* yeap, return possible CPUs in @node that @attrs wants */
3865	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3866
3867	if (cpumask_empty(cpumask)) {
3868		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3869				"possible intersect\n");
3870		return false;
3871	}
3872
3873	return !cpumask_equal(cpumask, attrs->cpumask);
3874
3875use_dfl:
3876	cpumask_copy(cpumask, attrs->cpumask);
3877	return false;
3878}
3879
3880/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3881static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3882						   int node,
3883						   struct pool_workqueue *pwq)
3884{
3885	struct pool_workqueue *old_pwq;
3886
3887	lockdep_assert_held(&wq_pool_mutex);
3888	lockdep_assert_held(&wq->mutex);
3889
3890	/* link_pwq() can handle duplicate calls */
3891	link_pwq(pwq);
3892
3893	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3894	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3895	return old_pwq;
3896}
3897
3898/* context to store the prepared attrs & pwqs before applying */
3899struct apply_wqattrs_ctx {
3900	struct workqueue_struct	*wq;		/* target workqueue */
3901	struct workqueue_attrs	*attrs;		/* attrs to apply */
3902	struct list_head	list;		/* queued for batching commit */
3903	struct pool_workqueue	*dfl_pwq;
3904	struct pool_workqueue	*pwq_tbl[];
3905};
3906
3907/* free the resources after success or abort */
3908static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3909{
3910	if (ctx) {
3911		int node;
3912
3913		for_each_node(node)
3914			put_pwq_unlocked(ctx->pwq_tbl[node]);
3915		put_pwq_unlocked(ctx->dfl_pwq);
3916
3917		free_workqueue_attrs(ctx->attrs);
3918
3919		kfree(ctx);
3920	}
3921}
3922
3923/* allocate the attrs and pwqs for later installation */
3924static struct apply_wqattrs_ctx *
3925apply_wqattrs_prepare(struct workqueue_struct *wq,
3926		      const struct workqueue_attrs *attrs)
3927{
3928	struct apply_wqattrs_ctx *ctx;
3929	struct workqueue_attrs *new_attrs, *tmp_attrs;
3930	int node;
3931
3932	lockdep_assert_held(&wq_pool_mutex);
3933
3934	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3935
3936	new_attrs = alloc_workqueue_attrs();
3937	tmp_attrs = alloc_workqueue_attrs();
3938	if (!ctx || !new_attrs || !tmp_attrs)
3939		goto out_free;
3940
3941	/*
3942	 * Calculate the attrs of the default pwq.
3943	 * If the user configured cpumask doesn't overlap with the
3944	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3945	 */
3946	copy_workqueue_attrs(new_attrs, attrs);
3947	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3948	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3949		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3950
3951	/*
3952	 * We may create multiple pwqs with differing cpumasks.  Make a
3953	 * copy of @new_attrs which will be modified and used to obtain
3954	 * pools.
3955	 */
3956	copy_workqueue_attrs(tmp_attrs, new_attrs);
3957
3958	/*
3959	 * If something goes wrong during CPU up/down, we'll fall back to
3960	 * the default pwq covering whole @attrs->cpumask.  Always create
3961	 * it even if we don't use it immediately.
3962	 */
3963	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3964	if (!ctx->dfl_pwq)
3965		goto out_free;
3966
3967	for_each_node(node) {
3968		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3969			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3970			if (!ctx->pwq_tbl[node])
3971				goto out_free;
3972		} else {
3973			ctx->dfl_pwq->refcnt++;
3974			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3975		}
3976	}
3977
3978	/* save the user configured attrs and sanitize it. */
3979	copy_workqueue_attrs(new_attrs, attrs);
3980	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3981	ctx->attrs = new_attrs;
3982
3983	ctx->wq = wq;
3984	free_workqueue_attrs(tmp_attrs);
3985	return ctx;
3986
3987out_free:
3988	free_workqueue_attrs(tmp_attrs);
3989	free_workqueue_attrs(new_attrs);
3990	apply_wqattrs_cleanup(ctx);
3991	return NULL;
3992}
3993
3994/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3995static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3996{
3997	int node;
3998
3999	/* all pwqs have been created successfully, let's install'em */
4000	mutex_lock(&ctx->wq->mutex);
4001
4002	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4003
4004	/* save the previous pwq and install the new one */
4005	for_each_node(node)
4006		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4007							  ctx->pwq_tbl[node]);
4008
4009	/* @dfl_pwq might not have been used, ensure it's linked */
4010	link_pwq(ctx->dfl_pwq);
4011	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4012
4013	mutex_unlock(&ctx->wq->mutex);
4014}
4015
4016static void apply_wqattrs_lock(void)
4017{
4018	/* CPUs should stay stable across pwq creations and installations */
4019	get_online_cpus();
4020	mutex_lock(&wq_pool_mutex);
4021}
4022
4023static void apply_wqattrs_unlock(void)
4024{
4025	mutex_unlock(&wq_pool_mutex);
4026	put_online_cpus();
4027}
4028
4029static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4030					const struct workqueue_attrs *attrs)
4031{
4032	struct apply_wqattrs_ctx *ctx;
4033
4034	/* only unbound workqueues can change attributes */
4035	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4036		return -EINVAL;
4037
4038	/* creating multiple pwqs breaks ordering guarantee */
4039	if (!list_empty(&wq->pwqs)) {
4040		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4041			return -EINVAL;
4042
4043		wq->flags &= ~__WQ_ORDERED;
4044	}
4045
4046	ctx = apply_wqattrs_prepare(wq, attrs);
4047	if (!ctx)
4048		return -ENOMEM;
4049
4050	/* the ctx has been prepared successfully, let's commit it */
4051	apply_wqattrs_commit(ctx);
4052	apply_wqattrs_cleanup(ctx);
4053
4054	return 0;
4055}
4056
4057/**
4058 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4059 * @wq: the target workqueue
4060 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4061 *
4062 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
4063 * machines, this function maps a separate pwq to each NUMA node with
4064 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4065 * NUMA node it was issued on.  Older pwqs are released as in-flight work
4066 * items finish.  Note that a work item which repeatedly requeues itself
4067 * back-to-back will stay on its current pwq.
4068 *
4069 * Performs GFP_KERNEL allocations.
4070 *
4071 * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
4072 *
4073 * Return: 0 on success and -errno on failure.
4074 */
4075int apply_workqueue_attrs(struct workqueue_struct *wq,
4076			  const struct workqueue_attrs *attrs)
4077{
4078	int ret;
4079
4080	lockdep_assert_cpus_held();
4081
4082	mutex_lock(&wq_pool_mutex);
4083	ret = apply_workqueue_attrs_locked(wq, attrs);
4084	mutex_unlock(&wq_pool_mutex);
4085
4086	return ret;
4087}
4088
4089/**
4090 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4091 * @wq: the target workqueue
4092 * @cpu: the CPU coming up or going down
4093 * @online: whether @cpu is coming up or going down
4094 *
4095 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4096 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4097 * @wq accordingly.
4098 *
4099 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4100 * falls back to @wq->dfl_pwq which may not be optimal but is always
4101 * correct.
4102 *
4103 * Note that when the last allowed CPU of a NUMA node goes offline for a
4104 * workqueue with a cpumask spanning multiple nodes, the workers which were
4105 * already executing the work items for the workqueue will lose their CPU
4106 * affinity and may execute on any CPU.  This is similar to how per-cpu
4107 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4108 * affinity, it's the user's responsibility to flush the work item from
4109 * CPU_DOWN_PREPARE.
4110 */
4111static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4112				   bool online)
4113{
4114	int node = cpu_to_node(cpu);
4115	int cpu_off = online ? -1 : cpu;
4116	struct pool_workqueue *old_pwq = NULL, *pwq;
4117	struct workqueue_attrs *target_attrs;
4118	cpumask_t *cpumask;
4119
4120	lockdep_assert_held(&wq_pool_mutex);
4121
4122	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4123	    wq->unbound_attrs->no_numa)
4124		return;
4125
4126	/*
4127	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4128	 * Let's use a preallocated one.  The following buf is protected by
4129	 * CPU hotplug exclusion.
4130	 */
4131	target_attrs = wq_update_unbound_numa_attrs_buf;
4132	cpumask = target_attrs->cpumask;
4133
4134	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4135	pwq = unbound_pwq_by_node(wq, node);
4136
4137	/*
4138	 * Let's determine what needs to be done.  If the target cpumask is
4139	 * different from the default pwq's, we need to compare it to @pwq's
4140	 * and create a new one if they don't match.  If the target cpumask
4141	 * equals the default pwq's, the default pwq should be used.
4142	 */
4143	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4144		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4145			return;
4146	} else {
4147		goto use_dfl_pwq;
4148	}
4149
4150	/* create a new pwq */
4151	pwq = alloc_unbound_pwq(wq, target_attrs);
4152	if (!pwq) {
4153		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4154			wq->name);
4155		goto use_dfl_pwq;
4156	}
4157
4158	/* Install the new pwq. */
4159	mutex_lock(&wq->mutex);
4160	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4161	goto out_unlock;
4162
4163use_dfl_pwq:
4164	mutex_lock(&wq->mutex);
4165	raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4166	get_pwq(wq->dfl_pwq);
4167	raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4168	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4169out_unlock:
4170	mutex_unlock(&wq->mutex);
4171	put_pwq_unlocked(old_pwq);
4172}
4173
4174static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4175{
4176	bool highpri = wq->flags & WQ_HIGHPRI;
4177	int cpu, ret;
4178
4179	if (!(wq->flags & WQ_UNBOUND)) {
4180		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4181		if (!wq->cpu_pwqs)
4182			return -ENOMEM;
4183
4184		for_each_possible_cpu(cpu) {
4185			struct pool_workqueue *pwq =
4186				per_cpu_ptr(wq->cpu_pwqs, cpu);
4187			struct worker_pool *cpu_pools =
4188				per_cpu(cpu_worker_pools, cpu);
4189
4190			init_pwq(pwq, wq, &cpu_pools[highpri]);
4191
4192			mutex_lock(&wq->mutex);
4193			link_pwq(pwq);
4194			mutex_unlock(&wq->mutex);
4195		}
4196		return 0;
4197	}
4198
4199	get_online_cpus();
4200	if (wq->flags & __WQ_ORDERED) {
4201		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4202		/* there should only be single pwq for ordering guarantee */
4203		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4204			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4205		     "ordering guarantee broken for workqueue %s\n", wq->name);
4206	} else {
4207		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4208	}
4209	put_online_cpus();
4210
4211	return ret;
4212}
4213
4214static int wq_clamp_max_active(int max_active, unsigned int flags,
4215			       const char *name)
4216{
4217	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4218
4219	if (max_active < 1 || max_active > lim)
4220		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4221			max_active, name, 1, lim);
4222
4223	return clamp_val(max_active, 1, lim);
4224}
4225
4226/*
4227 * Workqueues which may be used during memory reclaim should have a rescuer
4228 * to guarantee forward progress.
4229 */
4230static int init_rescuer(struct workqueue_struct *wq)
4231{
4232	struct worker *rescuer;
4233	int ret;
4234
4235	if (!(wq->flags & WQ_MEM_RECLAIM))
4236		return 0;
4237
4238	rescuer = alloc_worker(NUMA_NO_NODE);
4239	if (!rescuer)
4240		return -ENOMEM;
4241
4242	rescuer->rescue_wq = wq;
4243	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4244	if (IS_ERR(rescuer->task)) {
4245		ret = PTR_ERR(rescuer->task);
4246		kfree(rescuer);
4247		return ret;
4248	}
4249
4250	wq->rescuer = rescuer;
4251	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4252	wake_up_process(rescuer->task);
4253
4254	return 0;
4255}
4256
4257__printf(1, 4)
4258struct workqueue_struct *alloc_workqueue(const char *fmt,
4259					 unsigned int flags,
4260					 int max_active, ...)
4261{
4262	size_t tbl_size = 0;
4263	va_list args;
4264	struct workqueue_struct *wq;
4265	struct pool_workqueue *pwq;
4266
4267	/*
4268	 * Unbound && max_active == 1 used to imply ordered, which is no
4269	 * longer the case on NUMA machines due to per-node pools.  While
4270	 * alloc_ordered_workqueue() is the right way to create an ordered
4271	 * workqueue, keep the previous behavior to avoid subtle breakages
4272	 * on NUMA.
4273	 */
4274	if ((flags & WQ_UNBOUND) && max_active == 1)
4275		flags |= __WQ_ORDERED;
4276
4277	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4278	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4279		flags |= WQ_UNBOUND;
4280
4281	/* allocate wq and format name */
4282	if (flags & WQ_UNBOUND)
4283		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4284
4285	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4286	if (!wq)
4287		return NULL;
4288
4289	if (flags & WQ_UNBOUND) {
4290		wq->unbound_attrs = alloc_workqueue_attrs();
4291		if (!wq->unbound_attrs)
4292			goto err_free_wq;
4293	}
4294
4295	va_start(args, max_active);
4296	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4297	va_end(args);
4298
4299	max_active = max_active ?: WQ_DFL_ACTIVE;
4300	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4301
4302	/* init wq */
4303	wq->flags = flags;
4304	wq->saved_max_active = max_active;
4305	mutex_init(&wq->mutex);
4306	atomic_set(&wq->nr_pwqs_to_flush, 0);
4307	INIT_LIST_HEAD(&wq->pwqs);
4308	INIT_LIST_HEAD(&wq->flusher_queue);
4309	INIT_LIST_HEAD(&wq->flusher_overflow);
4310	INIT_LIST_HEAD(&wq->maydays);
4311
4312	wq_init_lockdep(wq);
4313	INIT_LIST_HEAD(&wq->list);
4314
4315	if (alloc_and_link_pwqs(wq) < 0)
4316		goto err_unreg_lockdep;
4317
4318	if (wq_online && init_rescuer(wq) < 0)
4319		goto err_destroy;
4320
4321	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4322		goto err_destroy;
4323
4324	/*
4325	 * wq_pool_mutex protects global freeze state and workqueues list.
4326	 * Grab it, adjust max_active and add the new @wq to workqueues
4327	 * list.
4328	 */
4329	mutex_lock(&wq_pool_mutex);
4330
4331	mutex_lock(&wq->mutex);
4332	for_each_pwq(pwq, wq)
4333		pwq_adjust_max_active(pwq);
4334	mutex_unlock(&wq->mutex);
4335
4336	list_add_tail_rcu(&wq->list, &workqueues);
4337
4338	mutex_unlock(&wq_pool_mutex);
4339
4340	return wq;
4341
4342err_unreg_lockdep:
4343	wq_unregister_lockdep(wq);
4344	wq_free_lockdep(wq);
4345err_free_wq:
4346	free_workqueue_attrs(wq->unbound_attrs);
4347	kfree(wq);
4348	return NULL;
4349err_destroy:
4350	destroy_workqueue(wq);
4351	return NULL;
4352}
4353EXPORT_SYMBOL_GPL(alloc_workqueue);
4354
4355static bool pwq_busy(struct pool_workqueue *pwq)
4356{
4357	int i;
4358
4359	for (i = 0; i < WORK_NR_COLORS; i++)
4360		if (pwq->nr_in_flight[i])
4361			return true;
4362
4363	if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4364		return true;
4365	if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4366		return true;
4367
4368	return false;
4369}
4370
4371/**
4372 * destroy_workqueue - safely terminate a workqueue
4373 * @wq: target workqueue
4374 *
4375 * Safely destroy a workqueue. All work currently pending will be done first.
4376 */
4377void destroy_workqueue(struct workqueue_struct *wq)
4378{
4379	struct pool_workqueue *pwq;
4380	int node;
4381
4382	/*
4383	 * Remove it from sysfs first so that sanity check failure doesn't
4384	 * lead to sysfs name conflicts.
4385	 */
4386	workqueue_sysfs_unregister(wq);
4387
4388	/* drain it before proceeding with destruction */
4389	drain_workqueue(wq);
4390
4391	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4392	if (wq->rescuer) {
4393		struct worker *rescuer = wq->rescuer;
4394
4395		/* this prevents new queueing */
4396		raw_spin_lock_irq(&wq_mayday_lock);
4397		wq->rescuer = NULL;
4398		raw_spin_unlock_irq(&wq_mayday_lock);
4399
4400		/* rescuer will empty maydays list before exiting */
4401		kthread_stop(rescuer->task);
4402		kfree(rescuer);
4403	}
4404
4405	/*
4406	 * Sanity checks - grab all the locks so that we wait for all
4407	 * in-flight operations which may do put_pwq().
4408	 */
4409	mutex_lock(&wq_pool_mutex);
4410	mutex_lock(&wq->mutex);
4411	for_each_pwq(pwq, wq) {
4412		raw_spin_lock_irq(&pwq->pool->lock);
4413		if (WARN_ON(pwq_busy(pwq))) {
4414			pr_warn("%s: %s has the following busy pwq\n",
4415				__func__, wq->name);
4416			show_pwq(pwq);
4417			raw_spin_unlock_irq(&pwq->pool->lock);
4418			mutex_unlock(&wq->mutex);
4419			mutex_unlock(&wq_pool_mutex);
4420			show_workqueue_state();
4421			return;
4422		}
4423		raw_spin_unlock_irq(&pwq->pool->lock);
4424	}
4425	mutex_unlock(&wq->mutex);
4426
4427	/*
4428	 * wq list is used to freeze wq, remove from list after
4429	 * flushing is complete in case freeze races us.
4430	 */
4431	list_del_rcu(&wq->list);
4432	mutex_unlock(&wq_pool_mutex);
4433
4434	if (!(wq->flags & WQ_UNBOUND)) {
4435		wq_unregister_lockdep(wq);
4436		/*
4437		 * The base ref is never dropped on per-cpu pwqs.  Directly
4438		 * schedule RCU free.
4439		 */
4440		call_rcu(&wq->rcu, rcu_free_wq);
4441	} else {
4442		/*
4443		 * We're the sole accessor of @wq at this point.  Directly
4444		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4445		 * @wq will be freed when the last pwq is released.
4446		 */
4447		for_each_node(node) {
4448			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4449			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4450			put_pwq_unlocked(pwq);
4451		}
4452
4453		/*
4454		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4455		 * put.  Don't access it afterwards.
4456		 */
4457		pwq = wq->dfl_pwq;
4458		wq->dfl_pwq = NULL;
4459		put_pwq_unlocked(pwq);
4460	}
4461}
4462EXPORT_SYMBOL_GPL(destroy_workqueue);
4463
4464/**
4465 * workqueue_set_max_active - adjust max_active of a workqueue
4466 * @wq: target workqueue
4467 * @max_active: new max_active value.
4468 *
4469 * Set max_active of @wq to @max_active.
4470 *
4471 * CONTEXT:
4472 * Don't call from IRQ context.
4473 */
4474void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4475{
4476	struct pool_workqueue *pwq;
4477
4478	/* disallow meddling with max_active for ordered workqueues */
4479	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4480		return;
4481
4482	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4483
4484	mutex_lock(&wq->mutex);
4485
4486	wq->flags &= ~__WQ_ORDERED;
4487	wq->saved_max_active = max_active;
4488
4489	for_each_pwq(pwq, wq)
4490		pwq_adjust_max_active(pwq);
4491
4492	mutex_unlock(&wq->mutex);
4493}
4494EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4495
4496/**
4497 * current_work - retrieve %current task's work struct
4498 *
4499 * Determine if %current task is a workqueue worker and what it's working on.
4500 * Useful to find out the context that the %current task is running in.
4501 *
4502 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4503 */
4504struct work_struct *current_work(void)
4505{
4506	struct worker *worker = current_wq_worker();
4507
4508	return worker ? worker->current_work : NULL;
4509}
4510EXPORT_SYMBOL(current_work);
4511
4512/**
4513 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4514 *
4515 * Determine whether %current is a workqueue rescuer.  Can be used from
4516 * work functions to determine whether it's being run off the rescuer task.
4517 *
4518 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4519 */
4520bool current_is_workqueue_rescuer(void)
4521{
4522	struct worker *worker = current_wq_worker();
4523
4524	return worker && worker->rescue_wq;
4525}
4526
4527/**
4528 * workqueue_congested - test whether a workqueue is congested
4529 * @cpu: CPU in question
4530 * @wq: target workqueue
4531 *
4532 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4533 * no synchronization around this function and the test result is
4534 * unreliable and only useful as advisory hints or for debugging.
4535 *
4536 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4537 * Note that both per-cpu and unbound workqueues may be associated with
4538 * multiple pool_workqueues which have separate congested states.  A
4539 * workqueue being congested on one CPU doesn't mean the workqueue is also
4540 * contested on other CPUs / NUMA nodes.
4541 *
4542 * Return:
4543 * %true if congested, %false otherwise.
4544 */
4545bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4546{
4547	struct pool_workqueue *pwq;
4548	bool ret;
4549
4550	rcu_read_lock();
4551	preempt_disable();
4552
4553	if (cpu == WORK_CPU_UNBOUND)
4554		cpu = smp_processor_id();
4555
4556	if (!(wq->flags & WQ_UNBOUND))
4557		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4558	else
4559		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4560
4561	ret = !list_empty(&pwq->delayed_works);
4562	preempt_enable();
4563	rcu_read_unlock();
4564
4565	return ret;
4566}
4567EXPORT_SYMBOL_GPL(workqueue_congested);
4568
4569/**
4570 * work_busy - test whether a work is currently pending or running
4571 * @work: the work to be tested
4572 *
4573 * Test whether @work is currently pending or running.  There is no
4574 * synchronization around this function and the test result is
4575 * unreliable and only useful as advisory hints or for debugging.
4576 *
4577 * Return:
4578 * OR'd bitmask of WORK_BUSY_* bits.
4579 */
4580unsigned int work_busy(struct work_struct *work)
4581{
4582	struct worker_pool *pool;
4583	unsigned long flags;
4584	unsigned int ret = 0;
4585
4586	if (work_pending(work))
4587		ret |= WORK_BUSY_PENDING;
4588
4589	rcu_read_lock();
4590	pool = get_work_pool(work);
4591	if (pool) {
4592		raw_spin_lock_irqsave(&pool->lock, flags);
4593		if (find_worker_executing_work(pool, work))
4594			ret |= WORK_BUSY_RUNNING;
4595		raw_spin_unlock_irqrestore(&pool->lock, flags);
4596	}
4597	rcu_read_unlock();
4598
4599	return ret;
4600}
4601EXPORT_SYMBOL_GPL(work_busy);
4602
4603/**
4604 * set_worker_desc - set description for the current work item
4605 * @fmt: printf-style format string
4606 * @...: arguments for the format string
4607 *
4608 * This function can be called by a running work function to describe what
4609 * the work item is about.  If the worker task gets dumped, this
4610 * information will be printed out together to help debugging.  The
4611 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4612 */
4613void set_worker_desc(const char *fmt, ...)
4614{
4615	struct worker *worker = current_wq_worker();
4616	va_list args;
4617
4618	if (worker) {
4619		va_start(args, fmt);
4620		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4621		va_end(args);
4622	}
4623}
4624EXPORT_SYMBOL_GPL(set_worker_desc);
4625
4626/**
4627 * print_worker_info - print out worker information and description
4628 * @log_lvl: the log level to use when printing
4629 * @task: target task
4630 *
4631 * If @task is a worker and currently executing a work item, print out the
4632 * name of the workqueue being serviced and worker description set with
4633 * set_worker_desc() by the currently executing work item.
4634 *
4635 * This function can be safely called on any task as long as the
4636 * task_struct itself is accessible.  While safe, this function isn't
4637 * synchronized and may print out mixups or garbages of limited length.
4638 */
4639void print_worker_info(const char *log_lvl, struct task_struct *task)
4640{
4641	work_func_t *fn = NULL;
4642	char name[WQ_NAME_LEN] = { };
4643	char desc[WORKER_DESC_LEN] = { };
4644	struct pool_workqueue *pwq = NULL;
4645	struct workqueue_struct *wq = NULL;
4646	struct worker *worker;
4647
4648	if (!(task->flags & PF_WQ_WORKER))
4649		return;
4650
4651	/*
4652	 * This function is called without any synchronization and @task
4653	 * could be in any state.  Be careful with dereferences.
4654	 */
4655	worker = kthread_probe_data(task);
4656
4657	/*
4658	 * Carefully copy the associated workqueue's workfn, name and desc.
4659	 * Keep the original last '\0' in case the original is garbage.
4660	 */
4661	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4662	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4663	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4664	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4665	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4666
4667	if (fn || name[0] || desc[0]) {
4668		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4669		if (strcmp(name, desc))
4670			pr_cont(" (%s)", desc);
4671		pr_cont("\n");
4672	}
4673}
4674
4675static void pr_cont_pool_info(struct worker_pool *pool)
4676{
4677	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4678	if (pool->node != NUMA_NO_NODE)
4679		pr_cont(" node=%d", pool->node);
4680	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4681}
4682
4683static void pr_cont_work(bool comma, struct work_struct *work)
4684{
4685	if (work->func == wq_barrier_func) {
4686		struct wq_barrier *barr;
4687
4688		barr = container_of(work, struct wq_barrier, work);
4689
4690		pr_cont("%s BAR(%d)", comma ? "," : "",
4691			task_pid_nr(barr->task));
4692	} else {
4693		pr_cont("%s %ps", comma ? "," : "", work->func);
4694	}
4695}
4696
4697static void show_pwq(struct pool_workqueue *pwq)
4698{
4699	struct worker_pool *pool = pwq->pool;
4700	struct work_struct *work;
4701	struct worker *worker;
4702	bool has_in_flight = false, has_pending = false;
4703	int bkt;
4704
4705	pr_info("  pwq %d:", pool->id);
4706	pr_cont_pool_info(pool);
4707
4708	pr_cont(" active=%d/%d refcnt=%d%s\n",
4709		pwq->nr_active, pwq->max_active, pwq->refcnt,
4710		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4711
4712	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4713		if (worker->current_pwq == pwq) {
4714			has_in_flight = true;
4715			break;
4716		}
4717	}
4718	if (has_in_flight) {
4719		bool comma = false;
4720
4721		pr_info("    in-flight:");
4722		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4723			if (worker->current_pwq != pwq)
4724				continue;
4725
4726			pr_cont("%s %d%s:%ps", comma ? "," : "",
4727				task_pid_nr(worker->task),
4728				worker->rescue_wq ? "(RESCUER)" : "",
4729				worker->current_func);
4730			list_for_each_entry(work, &worker->scheduled, entry)
4731				pr_cont_work(false, work);
4732			comma = true;
4733		}
4734		pr_cont("\n");
4735	}
4736
4737	list_for_each_entry(work, &pool->worklist, entry) {
4738		if (get_work_pwq(work) == pwq) {
4739			has_pending = true;
4740			break;
4741		}
4742	}
4743	if (has_pending) {
4744		bool comma = false;
4745
4746		pr_info("    pending:");
4747		list_for_each_entry(work, &pool->worklist, entry) {
4748			if (get_work_pwq(work) != pwq)
4749				continue;
4750
4751			pr_cont_work(comma, work);
4752			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4753		}
4754		pr_cont("\n");
4755	}
4756
4757	if (!list_empty(&pwq->delayed_works)) {
4758		bool comma = false;
4759
4760		pr_info("    delayed:");
4761		list_for_each_entry(work, &pwq->delayed_works, entry) {
4762			pr_cont_work(comma, work);
4763			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4764		}
4765		pr_cont("\n");
4766	}
4767}
4768
4769/**
4770 * show_workqueue_state - dump workqueue state
4771 *
4772 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4773 * all busy workqueues and pools.
4774 */
4775void show_workqueue_state(void)
4776{
4777	struct workqueue_struct *wq;
4778	struct worker_pool *pool;
4779	unsigned long flags;
4780	int pi;
4781
4782	rcu_read_lock();
4783
4784	pr_info("Showing busy workqueues and worker pools:\n");
4785
4786	list_for_each_entry_rcu(wq, &workqueues, list) {
4787		struct pool_workqueue *pwq;
4788		bool idle = true;
4789
4790		for_each_pwq(pwq, wq) {
4791			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4792				idle = false;
4793				break;
4794			}
4795		}
4796		if (idle)
4797			continue;
 
4798
4799		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4800
4801		for_each_pwq(pwq, wq) {
4802			raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4803			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4804				show_pwq(pwq);
4805			raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4806			/*
4807			 * We could be printing a lot from atomic context, e.g.
4808			 * sysrq-t -> show_workqueue_state(). Avoid triggering
4809			 * hard lockup.
4810			 */
4811			touch_nmi_watchdog();
 
 
4812		}
4813	}
4814
4815	for_each_pool(pool, pi) {
4816		struct worker *worker;
4817		bool first = true;
4818
4819		raw_spin_lock_irqsave(&pool->lock, flags);
4820		if (pool->nr_workers == pool->nr_idle)
4821			goto next_pool;
4822
4823		pr_info("pool %d:", pool->id);
4824		pr_cont_pool_info(pool);
4825		pr_cont(" hung=%us workers=%d",
4826			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4827			pool->nr_workers);
4828		if (pool->manager)
4829			pr_cont(" manager: %d",
4830				task_pid_nr(pool->manager->task));
4831		list_for_each_entry(worker, &pool->idle_list, entry) {
4832			pr_cont(" %s%d", first ? "idle: " : "",
4833				task_pid_nr(worker->task));
4834			first = false;
4835		}
4836		pr_cont("\n");
4837	next_pool:
4838		raw_spin_unlock_irqrestore(&pool->lock, flags);
4839		/*
4840		 * We could be printing a lot from atomic context, e.g.
4841		 * sysrq-t -> show_workqueue_state(). Avoid triggering
4842		 * hard lockup.
4843		 */
4844		touch_nmi_watchdog();
4845	}
4846
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4847	rcu_read_unlock();
4848}
4849
4850/* used to show worker information through /proc/PID/{comm,stat,status} */
4851void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4852{
4853	int off;
4854
4855	/* always show the actual comm */
4856	off = strscpy(buf, task->comm, size);
4857	if (off < 0)
4858		return;
4859
4860	/* stabilize PF_WQ_WORKER and worker pool association */
4861	mutex_lock(&wq_pool_attach_mutex);
4862
4863	if (task->flags & PF_WQ_WORKER) {
4864		struct worker *worker = kthread_data(task);
4865		struct worker_pool *pool = worker->pool;
4866
4867		if (pool) {
4868			raw_spin_lock_irq(&pool->lock);
4869			/*
4870			 * ->desc tracks information (wq name or
4871			 * set_worker_desc()) for the latest execution.  If
4872			 * current, prepend '+', otherwise '-'.
4873			 */
4874			if (worker->desc[0] != '\0') {
4875				if (worker->current_work)
4876					scnprintf(buf + off, size - off, "+%s",
4877						  worker->desc);
4878				else
4879					scnprintf(buf + off, size - off, "-%s",
4880						  worker->desc);
4881			}
4882			raw_spin_unlock_irq(&pool->lock);
4883		}
4884	}
4885
4886	mutex_unlock(&wq_pool_attach_mutex);
4887}
4888
4889#ifdef CONFIG_SMP
4890
4891/*
4892 * CPU hotplug.
4893 *
4894 * There are two challenges in supporting CPU hotplug.  Firstly, there
4895 * are a lot of assumptions on strong associations among work, pwq and
4896 * pool which make migrating pending and scheduled works very
4897 * difficult to implement without impacting hot paths.  Secondly,
4898 * worker pools serve mix of short, long and very long running works making
4899 * blocked draining impractical.
4900 *
4901 * This is solved by allowing the pools to be disassociated from the CPU
4902 * running as an unbound one and allowing it to be reattached later if the
4903 * cpu comes back online.
4904 */
4905
4906static void unbind_workers(int cpu)
4907{
4908	struct worker_pool *pool;
4909	struct worker *worker;
4910
4911	for_each_cpu_worker_pool(pool, cpu) {
4912		mutex_lock(&wq_pool_attach_mutex);
4913		raw_spin_lock_irq(&pool->lock);
4914
4915		/*
4916		 * We've blocked all attach/detach operations. Make all workers
4917		 * unbound and set DISASSOCIATED.  Before this, all workers
4918		 * except for the ones which are still executing works from
4919		 * before the last CPU down must be on the cpu.  After
4920		 * this, they may become diasporas.
 
4921		 */
4922		for_each_pool_worker(worker, pool)
4923			worker->flags |= WORKER_UNBOUND;
4924
4925		pool->flags |= POOL_DISASSOCIATED;
4926
4927		raw_spin_unlock_irq(&pool->lock);
4928
4929		for_each_pool_worker(worker, pool) {
4930			kthread_set_per_cpu(worker->task, -1);
4931			WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
4932		}
4933
4934		mutex_unlock(&wq_pool_attach_mutex);
4935
4936		/*
4937		 * Call schedule() so that we cross rq->lock and thus can
4938		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4939		 * This is necessary as scheduler callbacks may be invoked
4940		 * from other cpus.
4941		 */
4942		schedule();
4943
4944		/*
4945		 * Sched callbacks are disabled now.  Zap nr_running.
4946		 * After this, nr_running stays zero and need_more_worker()
4947		 * and keep_working() are always true as long as the
4948		 * worklist is not empty.  This pool now behaves as an
4949		 * unbound (in terms of concurrency management) pool which
4950		 * are served by workers tied to the pool.
4951		 */
4952		atomic_set(&pool->nr_running, 0);
4953
4954		/*
4955		 * With concurrency management just turned off, a busy
4956		 * worker blocking could lead to lengthy stalls.  Kick off
4957		 * unbound chain execution of currently pending work items.
4958		 */
4959		raw_spin_lock_irq(&pool->lock);
4960		wake_up_worker(pool);
 
4961		raw_spin_unlock_irq(&pool->lock);
 
 
 
 
 
 
 
 
 
 
4962	}
4963}
4964
4965/**
4966 * rebind_workers - rebind all workers of a pool to the associated CPU
4967 * @pool: pool of interest
4968 *
4969 * @pool->cpu is coming online.  Rebind all workers to the CPU.
4970 */
4971static void rebind_workers(struct worker_pool *pool)
4972{
4973	struct worker *worker;
4974
4975	lockdep_assert_held(&wq_pool_attach_mutex);
4976
4977	/*
4978	 * Restore CPU affinity of all workers.  As all idle workers should
4979	 * be on the run-queue of the associated CPU before any local
4980	 * wake-ups for concurrency management happen, restore CPU affinity
4981	 * of all workers first and then clear UNBOUND.  As we're called
4982	 * from CPU_ONLINE, the following shouldn't fail.
4983	 */
4984	for_each_pool_worker(worker, pool) {
4985		kthread_set_per_cpu(worker->task, pool->cpu);
4986		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4987						  pool->attrs->cpumask) < 0);
4988	}
4989
4990	raw_spin_lock_irq(&pool->lock);
4991
4992	pool->flags &= ~POOL_DISASSOCIATED;
4993
4994	for_each_pool_worker(worker, pool) {
4995		unsigned int worker_flags = worker->flags;
4996
4997		/*
4998		 * A bound idle worker should actually be on the runqueue
4999		 * of the associated CPU for local wake-ups targeting it to
5000		 * work.  Kick all idle workers so that they migrate to the
5001		 * associated CPU.  Doing this in the same loop as
5002		 * replacing UNBOUND with REBOUND is safe as no worker will
5003		 * be bound before @pool->lock is released.
5004		 */
5005		if (worker_flags & WORKER_IDLE)
5006			wake_up_process(worker->task);
5007
5008		/*
5009		 * We want to clear UNBOUND but can't directly call
5010		 * worker_clr_flags() or adjust nr_running.  Atomically
5011		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5012		 * @worker will clear REBOUND using worker_clr_flags() when
5013		 * it initiates the next execution cycle thus restoring
5014		 * concurrency management.  Note that when or whether
5015		 * @worker clears REBOUND doesn't affect correctness.
5016		 *
5017		 * WRITE_ONCE() is necessary because @worker->flags may be
5018		 * tested without holding any lock in
5019		 * wq_worker_running().  Without it, NOT_RUNNING test may
5020		 * fail incorrectly leading to premature concurrency
5021		 * management operations.
5022		 */
5023		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5024		worker_flags |= WORKER_REBOUND;
5025		worker_flags &= ~WORKER_UNBOUND;
5026		WRITE_ONCE(worker->flags, worker_flags);
5027	}
5028
5029	raw_spin_unlock_irq(&pool->lock);
5030}
5031
5032/**
5033 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5034 * @pool: unbound pool of interest
5035 * @cpu: the CPU which is coming up
5036 *
5037 * An unbound pool may end up with a cpumask which doesn't have any online
5038 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
5039 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
5040 * online CPU before, cpus_allowed of all its workers should be restored.
5041 */
5042static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5043{
5044	static cpumask_t cpumask;
5045	struct worker *worker;
5046
5047	lockdep_assert_held(&wq_pool_attach_mutex);
5048
5049	/* is @cpu allowed for @pool? */
5050	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5051		return;
5052
5053	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5054
5055	/* as we're called from CPU_ONLINE, the following shouldn't fail */
5056	for_each_pool_worker(worker, pool)
5057		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5058}
5059
5060int workqueue_prepare_cpu(unsigned int cpu)
5061{
5062	struct worker_pool *pool;
5063
5064	for_each_cpu_worker_pool(pool, cpu) {
5065		if (pool->nr_workers)
5066			continue;
5067		if (!create_worker(pool))
5068			return -ENOMEM;
5069	}
5070	return 0;
5071}
5072
5073int workqueue_online_cpu(unsigned int cpu)
5074{
5075	struct worker_pool *pool;
5076	struct workqueue_struct *wq;
5077	int pi;
5078
5079	mutex_lock(&wq_pool_mutex);
5080
5081	for_each_pool(pool, pi) {
5082		mutex_lock(&wq_pool_attach_mutex);
5083
5084		if (pool->cpu == cpu)
5085			rebind_workers(pool);
5086		else if (pool->cpu < 0)
5087			restore_unbound_workers_cpumask(pool, cpu);
5088
5089		mutex_unlock(&wq_pool_attach_mutex);
5090	}
5091
5092	/* update NUMA affinity of unbound workqueues */
5093	list_for_each_entry(wq, &workqueues, list)
5094		wq_update_unbound_numa(wq, cpu, true);
5095
5096	mutex_unlock(&wq_pool_mutex);
5097	return 0;
5098}
5099
5100int workqueue_offline_cpu(unsigned int cpu)
5101{
5102	struct workqueue_struct *wq;
5103
5104	/* unbinding per-cpu workers should happen on the local CPU */
5105	if (WARN_ON(cpu != smp_processor_id()))
5106		return -1;
5107
5108	unbind_workers(cpu);
5109
5110	/* update NUMA affinity of unbound workqueues */
5111	mutex_lock(&wq_pool_mutex);
5112	list_for_each_entry(wq, &workqueues, list)
5113		wq_update_unbound_numa(wq, cpu, false);
5114	mutex_unlock(&wq_pool_mutex);
5115
5116	return 0;
5117}
5118
5119struct work_for_cpu {
5120	struct work_struct work;
5121	long (*fn)(void *);
5122	void *arg;
5123	long ret;
5124};
5125
5126static void work_for_cpu_fn(struct work_struct *work)
5127{
5128	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5129
5130	wfc->ret = wfc->fn(wfc->arg);
5131}
5132
5133/**
5134 * work_on_cpu - run a function in thread context on a particular cpu
5135 * @cpu: the cpu to run on
5136 * @fn: the function to run
5137 * @arg: the function arg
5138 *
5139 * It is up to the caller to ensure that the cpu doesn't go offline.
5140 * The caller must not hold any locks which would prevent @fn from completing.
5141 *
5142 * Return: The value @fn returns.
5143 */
5144long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5145{
5146	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5147
5148	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5149	schedule_work_on(cpu, &wfc.work);
5150	flush_work(&wfc.work);
5151	destroy_work_on_stack(&wfc.work);
5152	return wfc.ret;
5153}
5154EXPORT_SYMBOL_GPL(work_on_cpu);
5155
5156/**
5157 * work_on_cpu_safe - run a function in thread context on a particular cpu
5158 * @cpu: the cpu to run on
5159 * @fn:  the function to run
5160 * @arg: the function argument
5161 *
5162 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5163 * any locks which would prevent @fn from completing.
5164 *
5165 * Return: The value @fn returns.
5166 */
5167long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5168{
5169	long ret = -ENODEV;
5170
5171	get_online_cpus();
5172	if (cpu_online(cpu))
5173		ret = work_on_cpu(cpu, fn, arg);
5174	put_online_cpus();
5175	return ret;
5176}
5177EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5178#endif /* CONFIG_SMP */
5179
5180#ifdef CONFIG_FREEZER
5181
5182/**
5183 * freeze_workqueues_begin - begin freezing workqueues
5184 *
5185 * Start freezing workqueues.  After this function returns, all freezable
5186 * workqueues will queue new works to their delayed_works list instead of
5187 * pool->worklist.
5188 *
5189 * CONTEXT:
5190 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5191 */
5192void freeze_workqueues_begin(void)
5193{
5194	struct workqueue_struct *wq;
5195	struct pool_workqueue *pwq;
5196
5197	mutex_lock(&wq_pool_mutex);
5198
5199	WARN_ON_ONCE(workqueue_freezing);
5200	workqueue_freezing = true;
5201
5202	list_for_each_entry(wq, &workqueues, list) {
5203		mutex_lock(&wq->mutex);
5204		for_each_pwq(pwq, wq)
5205			pwq_adjust_max_active(pwq);
5206		mutex_unlock(&wq->mutex);
5207	}
5208
5209	mutex_unlock(&wq_pool_mutex);
5210}
5211
5212/**
5213 * freeze_workqueues_busy - are freezable workqueues still busy?
5214 *
5215 * Check whether freezing is complete.  This function must be called
5216 * between freeze_workqueues_begin() and thaw_workqueues().
5217 *
5218 * CONTEXT:
5219 * Grabs and releases wq_pool_mutex.
5220 *
5221 * Return:
5222 * %true if some freezable workqueues are still busy.  %false if freezing
5223 * is complete.
5224 */
5225bool freeze_workqueues_busy(void)
5226{
5227	bool busy = false;
5228	struct workqueue_struct *wq;
5229	struct pool_workqueue *pwq;
5230
5231	mutex_lock(&wq_pool_mutex);
5232
5233	WARN_ON_ONCE(!workqueue_freezing);
5234
5235	list_for_each_entry(wq, &workqueues, list) {
5236		if (!(wq->flags & WQ_FREEZABLE))
5237			continue;
5238		/*
5239		 * nr_active is monotonically decreasing.  It's safe
5240		 * to peek without lock.
5241		 */
5242		rcu_read_lock();
5243		for_each_pwq(pwq, wq) {
5244			WARN_ON_ONCE(pwq->nr_active < 0);
5245			if (pwq->nr_active) {
5246				busy = true;
5247				rcu_read_unlock();
5248				goto out_unlock;
5249			}
5250		}
5251		rcu_read_unlock();
5252	}
5253out_unlock:
5254	mutex_unlock(&wq_pool_mutex);
5255	return busy;
5256}
5257
5258/**
5259 * thaw_workqueues - thaw workqueues
5260 *
5261 * Thaw workqueues.  Normal queueing is restored and all collected
5262 * frozen works are transferred to their respective pool worklists.
5263 *
5264 * CONTEXT:
5265 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5266 */
5267void thaw_workqueues(void)
5268{
5269	struct workqueue_struct *wq;
5270	struct pool_workqueue *pwq;
5271
5272	mutex_lock(&wq_pool_mutex);
5273
5274	if (!workqueue_freezing)
5275		goto out_unlock;
5276
5277	workqueue_freezing = false;
5278
5279	/* restore max_active and repopulate worklist */
5280	list_for_each_entry(wq, &workqueues, list) {
5281		mutex_lock(&wq->mutex);
5282		for_each_pwq(pwq, wq)
5283			pwq_adjust_max_active(pwq);
5284		mutex_unlock(&wq->mutex);
5285	}
5286
5287out_unlock:
5288	mutex_unlock(&wq_pool_mutex);
5289}
5290#endif /* CONFIG_FREEZER */
5291
5292static int workqueue_apply_unbound_cpumask(void)
5293{
5294	LIST_HEAD(ctxs);
5295	int ret = 0;
5296	struct workqueue_struct *wq;
5297	struct apply_wqattrs_ctx *ctx, *n;
5298
5299	lockdep_assert_held(&wq_pool_mutex);
5300
5301	list_for_each_entry(wq, &workqueues, list) {
5302		if (!(wq->flags & WQ_UNBOUND))
5303			continue;
5304		/* creating multiple pwqs breaks ordering guarantee */
5305		if (wq->flags & __WQ_ORDERED)
5306			continue;
5307
5308		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5309		if (!ctx) {
5310			ret = -ENOMEM;
5311			break;
5312		}
5313
5314		list_add_tail(&ctx->list, &ctxs);
5315	}
5316
5317	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5318		if (!ret)
5319			apply_wqattrs_commit(ctx);
5320		apply_wqattrs_cleanup(ctx);
5321	}
5322
5323	return ret;
5324}
5325
5326/**
5327 *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5328 *  @cpumask: the cpumask to set
5329 *
5330 *  The low-level workqueues cpumask is a global cpumask that limits
5331 *  the affinity of all unbound workqueues.  This function check the @cpumask
5332 *  and apply it to all unbound workqueues and updates all pwqs of them.
5333 *
5334 *  Retun:	0	- Success
5335 *  		-EINVAL	- Invalid @cpumask
5336 *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5337 */
5338int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5339{
5340	int ret = -EINVAL;
5341	cpumask_var_t saved_cpumask;
5342
5343	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5344		return -ENOMEM;
5345
5346	/*
5347	 * Not excluding isolated cpus on purpose.
5348	 * If the user wishes to include them, we allow that.
5349	 */
5350	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5351	if (!cpumask_empty(cpumask)) {
5352		apply_wqattrs_lock();
 
 
 
 
 
 
 
 
 
5353
5354		/* save the old wq_unbound_cpumask. */
5355		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5356
5357		/* update wq_unbound_cpumask at first and apply it to wqs. */
5358		cpumask_copy(wq_unbound_cpumask, cpumask);
5359		ret = workqueue_apply_unbound_cpumask();
5360
5361		/* restore the wq_unbound_cpumask when failed. */
5362		if (ret < 0)
5363			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5364
 
 
5365		apply_wqattrs_unlock();
5366	}
5367
5368	free_cpumask_var(saved_cpumask);
5369	return ret;
5370}
5371
5372#ifdef CONFIG_SYSFS
5373/*
5374 * Workqueues with WQ_SYSFS flag set is visible to userland via
5375 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5376 * following attributes.
5377 *
5378 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5379 *  max_active	RW int	: maximum number of in-flight work items
5380 *
5381 * Unbound workqueues have the following extra attributes.
5382 *
5383 *  pool_ids	RO int	: the associated pool IDs for each node
5384 *  nice	RW int	: nice value of the workers
5385 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5386 *  numa	RW bool	: whether enable NUMA affinity
5387 */
5388struct wq_device {
5389	struct workqueue_struct		*wq;
5390	struct device			dev;
5391};
5392
5393static struct workqueue_struct *dev_to_wq(struct device *dev)
5394{
5395	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5396
5397	return wq_dev->wq;
5398}
5399
5400static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5401			    char *buf)
5402{
5403	struct workqueue_struct *wq = dev_to_wq(dev);
5404
5405	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5406}
5407static DEVICE_ATTR_RO(per_cpu);
5408
5409static ssize_t max_active_show(struct device *dev,
5410			       struct device_attribute *attr, char *buf)
5411{
5412	struct workqueue_struct *wq = dev_to_wq(dev);
5413
5414	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5415}
5416
5417static ssize_t max_active_store(struct device *dev,
5418				struct device_attribute *attr, const char *buf,
5419				size_t count)
5420{
5421	struct workqueue_struct *wq = dev_to_wq(dev);
5422	int val;
5423
5424	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5425		return -EINVAL;
5426
5427	workqueue_set_max_active(wq, val);
5428	return count;
5429}
5430static DEVICE_ATTR_RW(max_active);
5431
5432static struct attribute *wq_sysfs_attrs[] = {
5433	&dev_attr_per_cpu.attr,
5434	&dev_attr_max_active.attr,
5435	NULL,
5436};
5437ATTRIBUTE_GROUPS(wq_sysfs);
5438
5439static ssize_t wq_pool_ids_show(struct device *dev,
5440				struct device_attribute *attr, char *buf)
5441{
5442	struct workqueue_struct *wq = dev_to_wq(dev);
5443	const char *delim = "";
5444	int node, written = 0;
5445
5446	get_online_cpus();
5447	rcu_read_lock();
5448	for_each_node(node) {
5449		written += scnprintf(buf + written, PAGE_SIZE - written,
5450				     "%s%d:%d", delim, node,
5451				     unbound_pwq_by_node(wq, node)->pool->id);
5452		delim = " ";
5453	}
5454	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5455	rcu_read_unlock();
5456	put_online_cpus();
5457
5458	return written;
5459}
5460
5461static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5462			    char *buf)
5463{
5464	struct workqueue_struct *wq = dev_to_wq(dev);
5465	int written;
5466
5467	mutex_lock(&wq->mutex);
5468	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5469	mutex_unlock(&wq->mutex);
5470
5471	return written;
5472}
5473
5474/* prepare workqueue_attrs for sysfs store operations */
5475static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5476{
5477	struct workqueue_attrs *attrs;
5478
5479	lockdep_assert_held(&wq_pool_mutex);
5480
5481	attrs = alloc_workqueue_attrs();
5482	if (!attrs)
5483		return NULL;
5484
5485	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5486	return attrs;
5487}
5488
5489static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5490			     const char *buf, size_t count)
5491{
5492	struct workqueue_struct *wq = dev_to_wq(dev);
5493	struct workqueue_attrs *attrs;
5494	int ret = -ENOMEM;
5495
5496	apply_wqattrs_lock();
5497
5498	attrs = wq_sysfs_prep_attrs(wq);
5499	if (!attrs)
5500		goto out_unlock;
5501
5502	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5503	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5504		ret = apply_workqueue_attrs_locked(wq, attrs);
5505	else
5506		ret = -EINVAL;
5507
5508out_unlock:
5509	apply_wqattrs_unlock();
5510	free_workqueue_attrs(attrs);
5511	return ret ?: count;
5512}
5513
5514static ssize_t wq_cpumask_show(struct device *dev,
5515			       struct device_attribute *attr, char *buf)
5516{
5517	struct workqueue_struct *wq = dev_to_wq(dev);
5518	int written;
5519
5520	mutex_lock(&wq->mutex);
5521	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5522			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5523	mutex_unlock(&wq->mutex);
5524	return written;
5525}
5526
5527static ssize_t wq_cpumask_store(struct device *dev,
5528				struct device_attribute *attr,
5529				const char *buf, size_t count)
5530{
5531	struct workqueue_struct *wq = dev_to_wq(dev);
5532	struct workqueue_attrs *attrs;
5533	int ret = -ENOMEM;
5534
5535	apply_wqattrs_lock();
5536
5537	attrs = wq_sysfs_prep_attrs(wq);
5538	if (!attrs)
5539		goto out_unlock;
5540
5541	ret = cpumask_parse(buf, attrs->cpumask);
5542	if (!ret)
5543		ret = apply_workqueue_attrs_locked(wq, attrs);
5544
5545out_unlock:
5546	apply_wqattrs_unlock();
5547	free_workqueue_attrs(attrs);
5548	return ret ?: count;
5549}
5550
5551static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5552			    char *buf)
5553{
5554	struct workqueue_struct *wq = dev_to_wq(dev);
5555	int written;
5556
5557	mutex_lock(&wq->mutex);
5558	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5559			    !wq->unbound_attrs->no_numa);
5560	mutex_unlock(&wq->mutex);
5561
5562	return written;
5563}
5564
5565static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5566			     const char *buf, size_t count)
5567{
5568	struct workqueue_struct *wq = dev_to_wq(dev);
5569	struct workqueue_attrs *attrs;
5570	int v, ret = -ENOMEM;
5571
5572	apply_wqattrs_lock();
5573
5574	attrs = wq_sysfs_prep_attrs(wq);
5575	if (!attrs)
5576		goto out_unlock;
5577
5578	ret = -EINVAL;
5579	if (sscanf(buf, "%d", &v) == 1) {
5580		attrs->no_numa = !v;
5581		ret = apply_workqueue_attrs_locked(wq, attrs);
5582	}
5583
5584out_unlock:
5585	apply_wqattrs_unlock();
5586	free_workqueue_attrs(attrs);
5587	return ret ?: count;
5588}
5589
5590static struct device_attribute wq_sysfs_unbound_attrs[] = {
5591	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5592	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5593	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5594	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5595	__ATTR_NULL,
5596};
5597
5598static struct bus_type wq_subsys = {
5599	.name				= "workqueue",
5600	.dev_groups			= wq_sysfs_groups,
5601};
5602
5603static ssize_t wq_unbound_cpumask_show(struct device *dev,
5604		struct device_attribute *attr, char *buf)
5605{
5606	int written;
5607
5608	mutex_lock(&wq_pool_mutex);
5609	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5610			    cpumask_pr_args(wq_unbound_cpumask));
5611	mutex_unlock(&wq_pool_mutex);
5612
5613	return written;
5614}
5615
5616static ssize_t wq_unbound_cpumask_store(struct device *dev,
5617		struct device_attribute *attr, const char *buf, size_t count)
5618{
5619	cpumask_var_t cpumask;
5620	int ret;
5621
5622	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5623		return -ENOMEM;
5624
5625	ret = cpumask_parse(buf, cpumask);
5626	if (!ret)
5627		ret = workqueue_set_unbound_cpumask(cpumask);
5628
5629	free_cpumask_var(cpumask);
5630	return ret ? ret : count;
5631}
5632
5633static struct device_attribute wq_sysfs_cpumask_attr =
5634	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5635	       wq_unbound_cpumask_store);
5636
5637static int __init wq_sysfs_init(void)
5638{
5639	int err;
5640
5641	err = subsys_virtual_register(&wq_subsys, NULL);
5642	if (err)
5643		return err;
5644
5645	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5646}
5647core_initcall(wq_sysfs_init);
5648
5649static void wq_device_release(struct device *dev)
5650{
5651	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5652
5653	kfree(wq_dev);
5654}
5655
5656/**
5657 * workqueue_sysfs_register - make a workqueue visible in sysfs
5658 * @wq: the workqueue to register
5659 *
5660 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5661 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5662 * which is the preferred method.
5663 *
5664 * Workqueue user should use this function directly iff it wants to apply
5665 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5666 * apply_workqueue_attrs() may race against userland updating the
5667 * attributes.
5668 *
5669 * Return: 0 on success, -errno on failure.
5670 */
5671int workqueue_sysfs_register(struct workqueue_struct *wq)
5672{
5673	struct wq_device *wq_dev;
5674	int ret;
5675
5676	/*
5677	 * Adjusting max_active or creating new pwqs by applying
5678	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5679	 * workqueues.
5680	 */
5681	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5682		return -EINVAL;
5683
5684	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5685	if (!wq_dev)
5686		return -ENOMEM;
5687
5688	wq_dev->wq = wq;
5689	wq_dev->dev.bus = &wq_subsys;
5690	wq_dev->dev.release = wq_device_release;
5691	dev_set_name(&wq_dev->dev, "%s", wq->name);
5692
5693	/*
5694	 * unbound_attrs are created separately.  Suppress uevent until
5695	 * everything is ready.
5696	 */
5697	dev_set_uevent_suppress(&wq_dev->dev, true);
5698
5699	ret = device_register(&wq_dev->dev);
5700	if (ret) {
5701		put_device(&wq_dev->dev);
5702		wq->wq_dev = NULL;
5703		return ret;
5704	}
5705
5706	if (wq->flags & WQ_UNBOUND) {
5707		struct device_attribute *attr;
5708
5709		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5710			ret = device_create_file(&wq_dev->dev, attr);
5711			if (ret) {
5712				device_unregister(&wq_dev->dev);
5713				wq->wq_dev = NULL;
5714				return ret;
5715			}
5716		}
5717	}
5718
5719	dev_set_uevent_suppress(&wq_dev->dev, false);
5720	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5721	return 0;
5722}
5723
5724/**
5725 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5726 * @wq: the workqueue to unregister
5727 *
5728 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5729 */
5730static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5731{
5732	struct wq_device *wq_dev = wq->wq_dev;
5733
5734	if (!wq->wq_dev)
5735		return;
5736
5737	wq->wq_dev = NULL;
5738	device_unregister(&wq_dev->dev);
5739}
5740#else	/* CONFIG_SYSFS */
5741static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5742#endif	/* CONFIG_SYSFS */
5743
5744/*
5745 * Workqueue watchdog.
5746 *
5747 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5748 * flush dependency, a concurrency managed work item which stays RUNNING
5749 * indefinitely.  Workqueue stalls can be very difficult to debug as the
5750 * usual warning mechanisms don't trigger and internal workqueue state is
5751 * largely opaque.
5752 *
5753 * Workqueue watchdog monitors all worker pools periodically and dumps
5754 * state if some pools failed to make forward progress for a while where
5755 * forward progress is defined as the first item on ->worklist changing.
5756 *
5757 * This mechanism is controlled through the kernel parameter
5758 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5759 * corresponding sysfs parameter file.
5760 */
5761#ifdef CONFIG_WQ_WATCHDOG
5762
5763static unsigned long wq_watchdog_thresh = 30;
5764static struct timer_list wq_watchdog_timer;
5765
5766static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5767static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5768
5769static void wq_watchdog_reset_touched(void)
5770{
5771	int cpu;
5772
5773	wq_watchdog_touched = jiffies;
5774	for_each_possible_cpu(cpu)
5775		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5776}
5777
5778static void wq_watchdog_timer_fn(struct timer_list *unused)
5779{
5780	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5781	bool lockup_detected = false;
5782	unsigned long now = jiffies;
5783	struct worker_pool *pool;
5784	int pi;
5785
5786	if (!thresh)
5787		return;
5788
5789	rcu_read_lock();
5790
5791	for_each_pool(pool, pi) {
5792		unsigned long pool_ts, touched, ts;
5793
5794		if (list_empty(&pool->worklist))
5795			continue;
5796
5797		/*
5798		 * If a virtual machine is stopped by the host it can look to
5799		 * the watchdog like a stall.
5800		 */
5801		kvm_check_and_clear_guest_paused();
5802
5803		/* get the latest of pool and touched timestamps */
5804		if (pool->cpu >= 0)
5805			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
5806		else
5807			touched = READ_ONCE(wq_watchdog_touched);
5808		pool_ts = READ_ONCE(pool->watchdog_ts);
5809
5810		if (time_after(pool_ts, touched))
5811			ts = pool_ts;
5812		else
5813			ts = touched;
5814
5815		/* did we stall? */
5816		if (time_after(now, ts + thresh)) {
5817			lockup_detected = true;
5818			pr_emerg("BUG: workqueue lockup - pool");
5819			pr_cont_pool_info(pool);
5820			pr_cont(" stuck for %us!\n",
5821				jiffies_to_msecs(now - pool_ts) / 1000);
5822		}
5823	}
5824
5825	rcu_read_unlock();
5826
5827	if (lockup_detected)
5828		show_workqueue_state();
5829
5830	wq_watchdog_reset_touched();
5831	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5832}
5833
5834notrace void wq_watchdog_touch(int cpu)
5835{
5836	if (cpu >= 0)
5837		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5838
5839	wq_watchdog_touched = jiffies;
5840}
5841
5842static void wq_watchdog_set_thresh(unsigned long thresh)
5843{
5844	wq_watchdog_thresh = 0;
5845	del_timer_sync(&wq_watchdog_timer);
5846
5847	if (thresh) {
5848		wq_watchdog_thresh = thresh;
5849		wq_watchdog_reset_touched();
5850		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5851	}
5852}
5853
5854static int wq_watchdog_param_set_thresh(const char *val,
5855					const struct kernel_param *kp)
5856{
5857	unsigned long thresh;
5858	int ret;
5859
5860	ret = kstrtoul(val, 0, &thresh);
5861	if (ret)
5862		return ret;
5863
5864	if (system_wq)
5865		wq_watchdog_set_thresh(thresh);
5866	else
5867		wq_watchdog_thresh = thresh;
5868
5869	return 0;
5870}
5871
5872static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5873	.set	= wq_watchdog_param_set_thresh,
5874	.get	= param_get_ulong,
5875};
5876
5877module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5878		0644);
5879
5880static void wq_watchdog_init(void)
5881{
5882	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5883	wq_watchdog_set_thresh(wq_watchdog_thresh);
5884}
5885
5886#else	/* CONFIG_WQ_WATCHDOG */
5887
5888static inline void wq_watchdog_init(void) { }
5889
5890#endif	/* CONFIG_WQ_WATCHDOG */
5891
5892static void __init wq_numa_init(void)
5893{
5894	cpumask_var_t *tbl;
5895	int node, cpu;
5896
5897	if (num_possible_nodes() <= 1)
5898		return;
5899
5900	if (wq_disable_numa) {
5901		pr_info("workqueue: NUMA affinity support disabled\n");
5902		return;
5903	}
5904
5905	for_each_possible_cpu(cpu) {
5906		if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
5907			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5908			return;
5909		}
5910	}
5911
5912	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5913	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5914
5915	/*
5916	 * We want masks of possible CPUs of each node which isn't readily
5917	 * available.  Build one from cpu_to_node() which should have been
5918	 * fully initialized by now.
5919	 */
5920	tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5921	BUG_ON(!tbl);
5922
5923	for_each_node(node)
5924		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5925				node_online(node) ? node : NUMA_NO_NODE));
5926
5927	for_each_possible_cpu(cpu) {
5928		node = cpu_to_node(cpu);
5929		cpumask_set_cpu(cpu, tbl[node]);
5930	}
5931
5932	wq_numa_possible_cpumask = tbl;
5933	wq_numa_enabled = true;
5934}
5935
5936/**
5937 * workqueue_init_early - early init for workqueue subsystem
5938 *
5939 * This is the first half of two-staged workqueue subsystem initialization
5940 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5941 * idr are up.  It sets up all the data structures and system workqueues
5942 * and allows early boot code to create workqueues and queue/cancel work
5943 * items.  Actual work item execution starts only after kthreads can be
5944 * created and scheduled right before early initcalls.
5945 */
5946void __init workqueue_init_early(void)
5947{
5948	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5949	int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5950	int i, cpu;
5951
5952	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5953
5954	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5955	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
 
5956
5957	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5958
5959	/* initialize CPU pools */
5960	for_each_possible_cpu(cpu) {
5961		struct worker_pool *pool;
5962
5963		i = 0;
5964		for_each_cpu_worker_pool(pool, cpu) {
5965			BUG_ON(init_worker_pool(pool));
5966			pool->cpu = cpu;
5967			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5968			pool->attrs->nice = std_nice[i++];
5969			pool->node = cpu_to_node(cpu);
5970
5971			/* alloc pool ID */
5972			mutex_lock(&wq_pool_mutex);
5973			BUG_ON(worker_pool_assign_id(pool));
5974			mutex_unlock(&wq_pool_mutex);
5975		}
5976	}
5977
5978	/* create default unbound and ordered wq attrs */
5979	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5980		struct workqueue_attrs *attrs;
5981
5982		BUG_ON(!(attrs = alloc_workqueue_attrs()));
5983		attrs->nice = std_nice[i];
5984		unbound_std_wq_attrs[i] = attrs;
5985
5986		/*
5987		 * An ordered wq should have only one pwq as ordering is
5988		 * guaranteed by max_active which is enforced by pwqs.
5989		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5990		 */
5991		BUG_ON(!(attrs = alloc_workqueue_attrs()));
5992		attrs->nice = std_nice[i];
5993		attrs->no_numa = true;
5994		ordered_wq_attrs[i] = attrs;
5995	}
5996
5997	system_wq = alloc_workqueue("events", 0, 0);
5998	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5999	system_long_wq = alloc_workqueue("events_long", 0, 0);
6000	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6001					    WQ_UNBOUND_MAX_ACTIVE);
6002	system_freezable_wq = alloc_workqueue("events_freezable",
6003					      WQ_FREEZABLE, 0);
6004	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6005					      WQ_POWER_EFFICIENT, 0);
6006	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6007					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6008					      0);
6009	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6010	       !system_unbound_wq || !system_freezable_wq ||
6011	       !system_power_efficient_wq ||
6012	       !system_freezable_power_efficient_wq);
6013}
6014
6015/**
6016 * workqueue_init - bring workqueue subsystem fully online
6017 *
6018 * This is the latter half of two-staged workqueue subsystem initialization
6019 * and invoked as soon as kthreads can be created and scheduled.
6020 * Workqueues have been created and work items queued on them, but there
6021 * are no kworkers executing the work items yet.  Populate the worker pools
6022 * with the initial workers and enable future kworker creations.
6023 */
6024void __init workqueue_init(void)
6025{
6026	struct workqueue_struct *wq;
6027	struct worker_pool *pool;
6028	int cpu, bkt;
6029
6030	/*
6031	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6032	 * CPU to node mapping may not be available that early on some
6033	 * archs such as power and arm64.  As per-cpu pools created
6034	 * previously could be missing node hint and unbound pools NUMA
6035	 * affinity, fix them up.
6036	 *
6037	 * Also, while iterating workqueues, create rescuers if requested.
6038	 */
6039	wq_numa_init();
6040
6041	mutex_lock(&wq_pool_mutex);
6042
6043	for_each_possible_cpu(cpu) {
6044		for_each_cpu_worker_pool(pool, cpu) {
6045			pool->node = cpu_to_node(cpu);
6046		}
6047	}
6048
6049	list_for_each_entry(wq, &workqueues, list) {
6050		wq_update_unbound_numa(wq, smp_processor_id(), true);
6051		WARN(init_rescuer(wq),
6052		     "workqueue: failed to create early rescuer for %s",
6053		     wq->name);
6054	}
6055
6056	mutex_unlock(&wq_pool_mutex);
6057
6058	/* create the initial workers */
6059	for_each_online_cpu(cpu) {
6060		for_each_cpu_worker_pool(pool, cpu) {
6061			pool->flags &= ~POOL_DISASSOCIATED;
6062			BUG_ON(!create_worker(pool));
6063		}
6064	}
6065
6066	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6067		BUG_ON(!create_worker(pool));
6068
6069	wq_online = true;
6070	wq_watchdog_init();
6071}