Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kernel/workqueue.c - generic async execution with shared worker pool
   4 *
   5 * Copyright (C) 2002		Ingo Molnar
   6 *
   7 *   Derived from the taskqueue/keventd code by:
   8 *     David Woodhouse <dwmw2@infradead.org>
   9 *     Andrew Morton
  10 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
  11 *     Theodore Ts'o <tytso@mit.edu>
  12 *
  13 * Made to use alloc_percpu by Christoph Lameter.
  14 *
  15 * Copyright (C) 2010		SUSE Linux Products GmbH
  16 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  17 *
  18 * This is the generic async execution mechanism.  Work items as are
  19 * executed in process context.  The worker pool is shared and
  20 * automatically managed.  There are two worker pools for each CPU (one for
  21 * normal work items and the other for high priority ones) and some extra
  22 * pools for workqueues which are not bound to any specific CPU - the
  23 * number of these backing pools is dynamic.
  24 *
  25 * Please read Documentation/core-api/workqueue.rst for details.
  26 */
  27
  28#include <linux/export.h>
  29#include <linux/kernel.h>
  30#include <linux/sched.h>
  31#include <linux/init.h>
  32#include <linux/signal.h>
  33#include <linux/completion.h>
  34#include <linux/workqueue.h>
  35#include <linux/slab.h>
  36#include <linux/cpu.h>
  37#include <linux/notifier.h>
  38#include <linux/kthread.h>
  39#include <linux/hardirq.h>
  40#include <linux/mempolicy.h>
  41#include <linux/freezer.h>
 
  42#include <linux/debug_locks.h>
  43#include <linux/lockdep.h>
  44#include <linux/idr.h>
  45#include <linux/jhash.h>
  46#include <linux/hashtable.h>
  47#include <linux/rculist.h>
  48#include <linux/nodemask.h>
  49#include <linux/moduleparam.h>
  50#include <linux/uaccess.h>
  51#include <linux/sched/isolation.h>
  52#include <linux/nmi.h>
  53#include <linux/kvm_para.h>
  54
  55#include "workqueue_internal.h"
  56
  57enum {
  58	/*
  59	 * worker_pool flags
  60	 *
  61	 * A bound pool is either associated or disassociated with its CPU.
  62	 * While associated (!DISASSOCIATED), all workers are bound to the
  63	 * CPU and none has %WORKER_UNBOUND set and concurrency management
  64	 * is in effect.
  65	 *
  66	 * While DISASSOCIATED, the cpu may be offline and all workers have
  67	 * %WORKER_UNBOUND set and concurrency management disabled, and may
  68	 * be executing on any CPU.  The pool behaves as an unbound one.
  69	 *
  70	 * Note that DISASSOCIATED should be flipped only while holding
  71	 * wq_pool_attach_mutex to avoid changing binding state while
  72	 * worker_attach_to_pool() is in progress.
  73	 */
  74	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
  75	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
  76
  77	/* worker flags */
 
  78	WORKER_DIE		= 1 << 1,	/* die die die */
  79	WORKER_IDLE		= 1 << 2,	/* is idle */
  80	WORKER_PREP		= 1 << 3,	/* preparing to run works */
 
 
  81	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
  82	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
  83	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
  84
  85	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
  86				  WORKER_UNBOUND | WORKER_REBOUND,
  87
  88	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
 
 
 
 
 
  89
  90	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
  91	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
 
 
  92
  93	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
  94	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
  95
  96	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
  97						/* call for help after 10ms
  98						   (min two ticks) */
  99	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
 100	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
 
 101
 102	/*
 103	 * Rescue workers are used only on emergencies and shared by
 104	 * all cpus.  Give MIN_NICE.
 105	 */
 106	RESCUER_NICE_LEVEL	= MIN_NICE,
 107	HIGHPRI_NICE_LEVEL	= MIN_NICE,
 108
 109	WQ_NAME_LEN		= 24,
 110};
 111
 112/*
 113 * Structure fields follow one of the following exclusion rules.
 114 *
 115 * I: Modifiable by initialization/destruction paths and read-only for
 116 *    everyone else.
 117 *
 118 * P: Preemption protected.  Disabling preemption is enough and should
 119 *    only be modified and accessed from the local cpu.
 120 *
 121 * L: pool->lock protected.  Access with pool->lock held.
 122 *
 123 * X: During normal operation, modification requires pool->lock and should
 124 *    be done only from local cpu.  Either disabling preemption on local
 125 *    cpu or grabbing pool->lock is enough for read access.  If
 126 *    POOL_DISASSOCIATED is set, it's identical to L.
 127 *
 128 * A: wq_pool_attach_mutex protected.
 129 *
 130 * PL: wq_pool_mutex protected.
 
 
 
 131 *
 132 * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
 133 *
 134 * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
 135 *
 136 * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
 137 *      RCU for reads.
 138 *
 139 * WQ: wq->mutex protected.
 140 *
 141 * WR: wq->mutex protected for writes.  RCU protected for reads.
 142 *
 143 * MD: wq_mayday_lock protected.
 144 */
 145
 146/* struct worker is defined in workqueue_internal.h */
 147
 148struct worker_pool {
 149	raw_spinlock_t		lock;		/* the pool lock */
 150	int			cpu;		/* I: the associated cpu */
 151	int			node;		/* I: the associated node ID */
 152	int			id;		/* I: pool ID */
 153	unsigned int		flags;		/* X: flags */
 154
 155	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
 
 
 156
 157	/*
 158	 * The counter is incremented in a process context on the associated CPU
 159	 * w/ preemption disabled, and decremented or reset in the same context
 160	 * but w/ pool->lock held. The readers grab pool->lock and are
 161	 * guaranteed to see if the counter reached zero.
 162	 */
 163	int			nr_running;
 
 
 
 
 164
 
 
 
 
 
 
 
 165	struct list_head	worklist;	/* L: list of pending works */
 
 
 166
 167	int			nr_workers;	/* L: total number of workers */
 168	int			nr_idle;	/* L: currently idle workers */
 169
 170	struct list_head	idle_list;	/* L: list of idle workers */
 171	struct timer_list	idle_timer;	/* L: worker idle timeout */
 172	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
 173
 174	/* a workers is either on busy_hash or idle_list, or the manager */
 175	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
 176						/* L: hash of busy workers */
 177
 178	struct worker		*manager;	/* L: purely informational */
 179	struct list_head	workers;	/* A: attached workers */
 180	struct completion	*detach_completion; /* all workers detached */
 181
 182	struct ida		worker_ida;	/* worker IDs for task name */
 183
 184	struct workqueue_attrs	*attrs;		/* I: worker attributes */
 185	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
 186	int			refcnt;		/* PL: refcnt for unbound pools */
 187
 188	/*
 189	 * Destruction of pool is RCU protected to allow dereferences
 190	 * from get_work_pool().
 191	 */
 192	struct rcu_head		rcu;
 193};
 
 194
 195/*
 196 * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
 197 * of work_struct->data are used for flags and the remaining high bits
 198 * point to the pwq; thus, pwqs need to be aligned at two's power of the
 199 * number of flag bits.
 200 */
 201struct pool_workqueue {
 202	struct worker_pool	*pool;		/* I: the associated pool */
 203	struct workqueue_struct *wq;		/* I: the owning workqueue */
 204	int			work_color;	/* L: current color */
 205	int			flush_color;	/* L: flushing color */
 206	int			refcnt;		/* L: reference count */
 207	int			nr_in_flight[WORK_NR_COLORS];
 208						/* L: nr of in_flight works */
 209
 210	/*
 211	 * nr_active management and WORK_STRUCT_INACTIVE:
 212	 *
 213	 * When pwq->nr_active >= max_active, new work item is queued to
 214	 * pwq->inactive_works instead of pool->worklist and marked with
 215	 * WORK_STRUCT_INACTIVE.
 216	 *
 217	 * All work items marked with WORK_STRUCT_INACTIVE do not participate
 218	 * in pwq->nr_active and all work items in pwq->inactive_works are
 219	 * marked with WORK_STRUCT_INACTIVE.  But not all WORK_STRUCT_INACTIVE
 220	 * work items are in pwq->inactive_works.  Some of them are ready to
 221	 * run in pool->worklist or worker->scheduled.  Those work itmes are
 222	 * only struct wq_barrier which is used for flush_work() and should
 223	 * not participate in pwq->nr_active.  For non-barrier work item, it
 224	 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
 225	 */
 226	int			nr_active;	/* L: nr of active works */
 227	int			max_active;	/* L: max active works */
 228	struct list_head	inactive_works;	/* L: inactive works */
 229	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
 230	struct list_head	mayday_node;	/* MD: node on wq->maydays */
 231
 232	/*
 233	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
 234	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
 235	 * itself is also RCU protected so that the first pwq can be
 236	 * determined without grabbing wq->mutex.
 237	 */
 238	struct work_struct	unbound_release_work;
 239	struct rcu_head		rcu;
 240} __aligned(1 << WORK_STRUCT_FLAG_BITS);
 241
 242/*
 243 * Structure used to wait for workqueue flush.
 244 */
 245struct wq_flusher {
 246	struct list_head	list;		/* WQ: list of flushers */
 247	int			flush_color;	/* WQ: flush color waiting for */
 248	struct completion	done;		/* flush completion */
 249};
 250
 251struct wq_device;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 252
 253/*
 254 * The externally visible workqueue.  It relays the issued work items to
 255 * the appropriate worker_pool through its pool_workqueues.
 256 */
 257struct workqueue_struct {
 258	struct list_head	pwqs;		/* WR: all pwqs of this wq */
 259	struct list_head	list;		/* PR: list of all workqueues */
 260
 261	struct mutex		mutex;		/* protects this wq */
 262	int			work_color;	/* WQ: current work color */
 263	int			flush_color;	/* WQ: current flush color */
 264	atomic_t		nr_pwqs_to_flush; /* flush in progress */
 265	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
 266	struct list_head	flusher_queue;	/* WQ: flush waiters */
 267	struct list_head	flusher_overflow; /* WQ: flush overflow list */
 268
 269	struct list_head	maydays;	/* MD: pwqs requesting rescue */
 270	struct worker		*rescuer;	/* MD: rescue worker */
 271
 272	int			nr_drainers;	/* WQ: drain in progress */
 273	int			saved_max_active; /* WQ: saved pwq max_active */
 274
 275	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
 276	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
 277
 278#ifdef CONFIG_SYSFS
 279	struct wq_device	*wq_dev;	/* I: for sysfs interface */
 280#endif
 281#ifdef CONFIG_LOCKDEP
 282	char			*lock_name;
 283	struct lock_class_key	key;
 284	struct lockdep_map	lockdep_map;
 285#endif
 286	char			name[WQ_NAME_LEN]; /* I: workqueue name */
 287
 288	/*
 289	 * Destruction of workqueue_struct is RCU protected to allow walking
 290	 * the workqueues list without grabbing wq_pool_mutex.
 291	 * This is used to dump all workqueues from sysrq.
 292	 */
 293	struct rcu_head		rcu;
 294
 295	/* hot fields used during command issue, aligned to cacheline */
 296	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
 297	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
 298	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
 299};
 300
 301static struct kmem_cache *pwq_cache;
 302
 303static cpumask_var_t *wq_numa_possible_cpumask;
 304					/* possible CPUs of each node */
 305
 306static bool wq_disable_numa;
 307module_param_named(disable_numa, wq_disable_numa, bool, 0444);
 308
 309/* see the comment above the definition of WQ_POWER_EFFICIENT */
 310static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
 311module_param_named(power_efficient, wq_power_efficient, bool, 0444);
 312
 313static bool wq_online;			/* can kworkers be created yet? */
 314
 315static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
 316
 317/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
 318static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
 319
 320static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
 321static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
 322static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
 323/* wait for manager to go away */
 324static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
 325
 326static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
 327static bool workqueue_freezing;		/* PL: have wqs started freezing? */
 328
 329/* PL: allowable cpus for unbound wqs and work items */
 330static cpumask_var_t wq_unbound_cpumask;
 331
 332/* CPU where unbound work was last round robin scheduled from this CPU */
 333static DEFINE_PER_CPU(int, wq_rr_cpu_last);
 334
 335/*
 336 * Local execution of unbound work items is no longer guaranteed.  The
 337 * following always forces round-robin CPU selection on unbound work items
 338 * to uncover usages which depend on it.
 339 */
 340#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
 341static bool wq_debug_force_rr_cpu = true;
 342#else
 343static bool wq_debug_force_rr_cpu = false;
 344#endif
 345module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
 346
 347/* the per-cpu worker pools */
 348static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
 349
 350static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
 351
 352/* PL: hash of all unbound pools keyed by pool->attrs */
 353static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
 354
 355/* I: attributes used when instantiating standard unbound pools on demand */
 356static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
 357
 358/* I: attributes used when instantiating ordered pools on demand */
 359static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
 360
 361struct workqueue_struct *system_wq __read_mostly;
 362EXPORT_SYMBOL(system_wq);
 363struct workqueue_struct *system_highpri_wq __read_mostly;
 364EXPORT_SYMBOL_GPL(system_highpri_wq);
 365struct workqueue_struct *system_long_wq __read_mostly;
 366EXPORT_SYMBOL_GPL(system_long_wq);
 367struct workqueue_struct *system_unbound_wq __read_mostly;
 368EXPORT_SYMBOL_GPL(system_unbound_wq);
 369struct workqueue_struct *system_freezable_wq __read_mostly;
 
 
 
 
 370EXPORT_SYMBOL_GPL(system_freezable_wq);
 371struct workqueue_struct *system_power_efficient_wq __read_mostly;
 372EXPORT_SYMBOL_GPL(system_power_efficient_wq);
 373struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
 374EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
 375
 376static int worker_thread(void *__worker);
 377static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
 378static void show_pwq(struct pool_workqueue *pwq);
 379static void show_one_worker_pool(struct worker_pool *pool);
 380
 381#define CREATE_TRACE_POINTS
 382#include <trace/events/workqueue.h>
 383
 384#define assert_rcu_or_pool_mutex()					\
 385	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
 386			 !lockdep_is_held(&wq_pool_mutex),		\
 387			 "RCU or wq_pool_mutex should be held")
 388
 389#define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
 390	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
 391			 !lockdep_is_held(&wq->mutex) &&		\
 392			 !lockdep_is_held(&wq_pool_mutex),		\
 393			 "RCU, wq->mutex or wq_pool_mutex should be held")
 394
 395#define for_each_cpu_worker_pool(pool, cpu)				\
 396	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
 397	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
 398	     (pool)++)
 399
 400/**
 401 * for_each_pool - iterate through all worker_pools in the system
 402 * @pool: iteration cursor
 403 * @pi: integer used for iteration
 404 *
 405 * This must be called either with wq_pool_mutex held or RCU read
 406 * locked.  If the pool needs to be used beyond the locking in effect, the
 407 * caller is responsible for guaranteeing that the pool stays online.
 408 *
 409 * The if/else clause exists only for the lockdep assertion and can be
 410 * ignored.
 411 */
 412#define for_each_pool(pool, pi)						\
 413	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
 414		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
 415		else
 416
 417/**
 418 * for_each_pool_worker - iterate through all workers of a worker_pool
 419 * @worker: iteration cursor
 420 * @pool: worker_pool to iterate workers of
 421 *
 422 * This must be called with wq_pool_attach_mutex.
 423 *
 424 * The if/else clause exists only for the lockdep assertion and can be
 425 * ignored.
 426 */
 427#define for_each_pool_worker(worker, pool)				\
 428	list_for_each_entry((worker), &(pool)->workers, node)		\
 429		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
 430		else
 431
 432/**
 433 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
 434 * @pwq: iteration cursor
 435 * @wq: the target workqueue
 436 *
 437 * This must be called either with wq->mutex held or RCU read locked.
 438 * If the pwq needs to be used beyond the locking in effect, the caller is
 439 * responsible for guaranteeing that the pwq stays online.
 440 *
 441 * The if/else clause exists only for the lockdep assertion and can be
 442 * ignored.
 443 */
 444#define for_each_pwq(pwq, wq)						\
 445	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
 446				 lockdep_is_held(&(wq->mutex)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 447
 448#ifdef CONFIG_DEBUG_OBJECTS_WORK
 449
 450static const struct debug_obj_descr work_debug_descr;
 451
 452static void *work_debug_hint(void *addr)
 453{
 454	return ((struct work_struct *) addr)->func;
 455}
 456
 457static bool work_is_static_object(void *addr)
 
 
 
 
 458{
 459	struct work_struct *work = addr;
 460
 461	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
 
 
 
 
 
 
 
 462}
 463
 464/*
 465 * fixup_init is called when:
 466 * - an active object is initialized
 
 467 */
 468static bool work_fixup_init(void *addr, enum debug_obj_state state)
 469{
 470	struct work_struct *work = addr;
 471
 472	switch (state) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 473	case ODEBUG_STATE_ACTIVE:
 474		cancel_work_sync(work);
 475		debug_object_init(work, &work_debug_descr);
 476		return true;
 477	default:
 478		return false;
 479	}
 480}
 481
 482/*
 483 * fixup_free is called when:
 484 * - an active object is freed
 485 */
 486static bool work_fixup_free(void *addr, enum debug_obj_state state)
 487{
 488	struct work_struct *work = addr;
 489
 490	switch (state) {
 491	case ODEBUG_STATE_ACTIVE:
 492		cancel_work_sync(work);
 493		debug_object_free(work, &work_debug_descr);
 494		return true;
 495	default:
 496		return false;
 497	}
 498}
 499
 500static const struct debug_obj_descr work_debug_descr = {
 501	.name		= "work_struct",
 502	.debug_hint	= work_debug_hint,
 503	.is_static_object = work_is_static_object,
 504	.fixup_init	= work_fixup_init,
 
 505	.fixup_free	= work_fixup_free,
 506};
 507
 508static inline void debug_work_activate(struct work_struct *work)
 509{
 510	debug_object_activate(work, &work_debug_descr);
 511}
 512
 513static inline void debug_work_deactivate(struct work_struct *work)
 514{
 515	debug_object_deactivate(work, &work_debug_descr);
 516}
 517
 518void __init_work(struct work_struct *work, int onstack)
 519{
 520	if (onstack)
 521		debug_object_init_on_stack(work, &work_debug_descr);
 522	else
 523		debug_object_init(work, &work_debug_descr);
 524}
 525EXPORT_SYMBOL_GPL(__init_work);
 526
 527void destroy_work_on_stack(struct work_struct *work)
 528{
 529	debug_object_free(work, &work_debug_descr);
 530}
 531EXPORT_SYMBOL_GPL(destroy_work_on_stack);
 532
 533void destroy_delayed_work_on_stack(struct delayed_work *work)
 534{
 535	destroy_timer_on_stack(&work->timer);
 536	debug_object_free(&work->work, &work_debug_descr);
 537}
 538EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
 539
 540#else
 541static inline void debug_work_activate(struct work_struct *work) { }
 542static inline void debug_work_deactivate(struct work_struct *work) { }
 543#endif
 544
 545/**
 546 * worker_pool_assign_id - allocate ID and assign it to @pool
 547 * @pool: the pool pointer of interest
 548 *
 549 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
 550 * successfully, -errno on failure.
 
 
 
 551 */
 552static int worker_pool_assign_id(struct worker_pool *pool)
 553{
 554	int ret;
 555
 556	lockdep_assert_held(&wq_pool_mutex);
 
 
 
 
 
 
 557
 558	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
 559			GFP_KERNEL);
 560	if (ret >= 0) {
 561		pool->id = ret;
 562		return 0;
 563	}
 564	return ret;
 565}
 566
 567/**
 568 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
 569 * @wq: the target workqueue
 570 * @node: the node ID
 571 *
 572 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
 573 * read locked.
 574 * If the pwq needs to be used beyond the locking in effect, the caller is
 575 * responsible for guaranteeing that the pwq stays online.
 576 *
 577 * Return: The unbound pool_workqueue for @node.
 578 */
 579static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
 580						  int node)
 581{
 582	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
 
 
 
 
 583
 584	/*
 585	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
 586	 * delayed item is pending.  The plan is to keep CPU -> NODE
 587	 * mapping valid and stable across CPU on/offlines.  Once that
 588	 * happens, this workaround can be removed.
 589	 */
 590	if (unlikely(node == NUMA_NO_NODE))
 591		return wq->dfl_pwq;
 592
 593	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 594}
 595
 596static unsigned int work_color_to_flags(int color)
 597{
 598	return color << WORK_STRUCT_COLOR_SHIFT;
 599}
 600
 601static int get_work_color(unsigned long work_data)
 602{
 603	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
 604		((1 << WORK_STRUCT_COLOR_BITS) - 1);
 605}
 606
 607static int work_next_color(int color)
 608{
 609	return (color + 1) % WORK_NR_COLORS;
 610}
 611
 612/*
 613 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
 614 * contain the pointer to the queued pwq.  Once execution starts, the flag
 615 * is cleared and the high bits contain OFFQ flags and pool ID.
 616 *
 617 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
 618 * and clear_work_data() can be used to set the pwq, pool or clear
 619 * work->data.  These functions should only be called while the work is
 620 * owned - ie. while the PENDING bit is set.
 621 *
 622 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
 623 * corresponding to a work.  Pool is available once the work has been
 624 * queued anywhere after initialization until it is sync canceled.  pwq is
 625 * available only while the work item is queued.
 626 *
 627 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
 628 * canceled.  While being canceled, a work item may have its PENDING set
 629 * but stay off timer and worklist for arbitrarily long and nobody should
 630 * try to steal the PENDING bit.
 631 */
 632static inline void set_work_data(struct work_struct *work, unsigned long data,
 633				 unsigned long flags)
 634{
 635	WARN_ON_ONCE(!work_pending(work));
 636	atomic_long_set(&work->data, data | flags | work_static(work));
 637}
 638
 639static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
 
 640			 unsigned long extra_flags)
 641{
 642	set_work_data(work, (unsigned long)pwq,
 643		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
 644}
 645
 646static void set_work_pool_and_keep_pending(struct work_struct *work,
 647					   int pool_id)
 648{
 649	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
 650		      WORK_STRUCT_PENDING);
 651}
 652
 653static void set_work_pool_and_clear_pending(struct work_struct *work,
 654					    int pool_id)
 655{
 656	/*
 657	 * The following wmb is paired with the implied mb in
 658	 * test_and_set_bit(PENDING) and ensures all updates to @work made
 659	 * here are visible to and precede any updates by the next PENDING
 660	 * owner.
 661	 */
 662	smp_wmb();
 663	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
 664	/*
 665	 * The following mb guarantees that previous clear of a PENDING bit
 666	 * will not be reordered with any speculative LOADS or STORES from
 667	 * work->current_func, which is executed afterwards.  This possible
 668	 * reordering can lead to a missed execution on attempt to queue
 669	 * the same @work.  E.g. consider this case:
 670	 *
 671	 *   CPU#0                         CPU#1
 672	 *   ----------------------------  --------------------------------
 673	 *
 674	 * 1  STORE event_indicated
 675	 * 2  queue_work_on() {
 676	 * 3    test_and_set_bit(PENDING)
 677	 * 4 }                             set_..._and_clear_pending() {
 678	 * 5                                 set_work_data() # clear bit
 679	 * 6                                 smp_mb()
 680	 * 7                               work->current_func() {
 681	 * 8				      LOAD event_indicated
 682	 *				   }
 683	 *
 684	 * Without an explicit full barrier speculative LOAD on line 8 can
 685	 * be executed before CPU#0 does STORE on line 1.  If that happens,
 686	 * CPU#0 observes the PENDING bit is still set and new execution of
 687	 * a @work is not queued in a hope, that CPU#1 will eventually
 688	 * finish the queued @work.  Meanwhile CPU#1 does not see
 689	 * event_indicated is set, because speculative LOAD was executed
 690	 * before actual STORE.
 691	 */
 692	smp_mb();
 693}
 694
 695static void clear_work_data(struct work_struct *work)
 696{
 697	smp_wmb();	/* see set_work_pool_and_clear_pending() */
 698	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
 699}
 700
 701static struct pool_workqueue *get_work_pwq(struct work_struct *work)
 702{
 703	unsigned long data = atomic_long_read(&work->data);
 704
 705	if (data & WORK_STRUCT_PWQ)
 706		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
 707	else
 708		return NULL;
 709}
 710
 711/**
 712 * get_work_pool - return the worker_pool a given work was associated with
 713 * @work: the work item of interest
 714 *
 715 * Pools are created and destroyed under wq_pool_mutex, and allows read
 716 * access under RCU read lock.  As such, this function should be
 717 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
 718 *
 719 * All fields of the returned pool are accessible as long as the above
 720 * mentioned locking is in effect.  If the returned pool needs to be used
 721 * beyond the critical section, the caller is responsible for ensuring the
 722 * returned pool is and stays online.
 723 *
 724 * Return: The worker_pool @work was last associated with.  %NULL if none.
 725 */
 726static struct worker_pool *get_work_pool(struct work_struct *work)
 727{
 728	unsigned long data = atomic_long_read(&work->data);
 729	int pool_id;
 730
 731	assert_rcu_or_pool_mutex();
 
 
 732
 733	if (data & WORK_STRUCT_PWQ)
 734		return ((struct pool_workqueue *)
 735			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
 736
 737	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
 738	if (pool_id == WORK_OFFQ_POOL_NONE)
 739		return NULL;
 740
 741	return idr_find(&worker_pool_idr, pool_id);
 742}
 743
 744/**
 745 * get_work_pool_id - return the worker pool ID a given work is associated with
 746 * @work: the work item of interest
 747 *
 748 * Return: The worker_pool ID @work was last associated with.
 749 * %WORK_OFFQ_POOL_NONE if none.
 750 */
 751static int get_work_pool_id(struct work_struct *work)
 752{
 753	unsigned long data = atomic_long_read(&work->data);
 754
 755	if (data & WORK_STRUCT_PWQ)
 756		return ((struct pool_workqueue *)
 757			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
 758
 759	return data >> WORK_OFFQ_POOL_SHIFT;
 760}
 761
 762static void mark_work_canceling(struct work_struct *work)
 763{
 764	unsigned long pool_id = get_work_pool_id(work);
 765
 766	pool_id <<= WORK_OFFQ_POOL_SHIFT;
 767	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
 768}
 769
 770static bool work_is_canceling(struct work_struct *work)
 771{
 772	unsigned long data = atomic_long_read(&work->data);
 773
 774	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
 775}
 776
 777/*
 778 * Policy functions.  These define the policies on how the global worker
 779 * pools are managed.  Unless noted otherwise, these functions assume that
 780 * they're being called with pool->lock held.
 781 */
 782
 783static bool __need_more_worker(struct worker_pool *pool)
 784{
 785	return !pool->nr_running;
 
 786}
 787
 788/*
 789 * Need to wake up a worker?  Called from anything but currently
 790 * running workers.
 791 *
 792 * Note that, because unbound workers never contribute to nr_running, this
 793 * function will always return %true for unbound pools as long as the
 794 * worklist isn't empty.
 795 */
 796static bool need_more_worker(struct worker_pool *pool)
 797{
 798	return !list_empty(&pool->worklist) && __need_more_worker(pool);
 799}
 800
 801/* Can I start working?  Called from busy but !running workers. */
 802static bool may_start_working(struct worker_pool *pool)
 803{
 804	return pool->nr_idle;
 805}
 806
 807/* Do I need to keep working?  Called from currently running workers. */
 808static bool keep_working(struct worker_pool *pool)
 809{
 810	return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
 
 
 
 
 811}
 812
 813/* Do we need a new worker?  Called from manager. */
 814static bool need_to_create_worker(struct worker_pool *pool)
 
 
 
 
 
 
 815{
 816	return need_more_worker(pool) && !may_start_working(pool);
 817}
 818
 819/* Do we have too many workers and should some go away? */
 820static bool too_many_workers(struct worker_pool *pool)
 821{
 822	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
 823	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
 824	int nr_busy = pool->nr_workers - nr_idle;
 825
 826	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
 827}
 828
 829/*
 830 * Wake up functions.
 831 */
 832
 833/* Return the first idle worker.  Called with pool->lock held. */
 834static struct worker *first_idle_worker(struct worker_pool *pool)
 835{
 836	if (unlikely(list_empty(&pool->idle_list)))
 837		return NULL;
 838
 839	return list_first_entry(&pool->idle_list, struct worker, entry);
 840}
 841
 842/**
 843 * wake_up_worker - wake up an idle worker
 844 * @pool: worker pool to wake worker from
 845 *
 846 * Wake up the first idle worker of @pool.
 847 *
 848 * CONTEXT:
 849 * raw_spin_lock_irq(pool->lock).
 850 */
 851static void wake_up_worker(struct worker_pool *pool)
 852{
 853	struct worker *worker = first_idle_worker(pool);
 854
 855	if (likely(worker))
 856		wake_up_process(worker->task);
 857}
 858
 859/**
 860 * wq_worker_running - a worker is running again
 861 * @task: task waking up
 
 862 *
 863 * This function is called when a worker returns from schedule()
 
 
 
 
 864 */
 865void wq_worker_running(struct task_struct *task)
 866{
 867	struct worker *worker = kthread_data(task);
 868
 869	if (!worker->sleeping)
 870		return;
 871
 872	/*
 873	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
 874	 * and the nr_running increment below, we may ruin the nr_running reset
 875	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
 876	 * pool. Protect against such race.
 877	 */
 878	preempt_disable();
 879	if (!(worker->flags & WORKER_NOT_RUNNING))
 880		worker->pool->nr_running++;
 881	preempt_enable();
 882	worker->sleeping = 0;
 883}
 884
 885/**
 886 * wq_worker_sleeping - a worker is going to sleep
 887 * @task: task going to sleep
 
 
 
 
 
 888 *
 889 * This function is called from schedule() when a busy worker is
 890 * going to sleep.
 
 
 
 891 */
 892void wq_worker_sleeping(struct task_struct *task)
 
 893{
 894	struct worker *worker = kthread_data(task);
 895	struct worker_pool *pool;
 
 896
 897	/*
 898	 * Rescuers, which may not have all the fields set up like normal
 899	 * workers, also reach here, let's not access anything before
 900	 * checking NOT_RUNNING.
 901	 */
 902	if (worker->flags & WORKER_NOT_RUNNING)
 903		return;
 904
 905	pool = worker->pool;
 906
 907	/* Return if preempted before wq_worker_running() was reached */
 908	if (worker->sleeping)
 909		return;
 910
 911	worker->sleeping = 1;
 912	raw_spin_lock_irq(&pool->lock);
 913
 914	/*
 915	 * Recheck in case unbind_workers() preempted us. We don't
 916	 * want to decrement nr_running after the worker is unbound
 917	 * and nr_running has been reset.
 918	 */
 919	if (worker->flags & WORKER_NOT_RUNNING) {
 920		raw_spin_unlock_irq(&pool->lock);
 921		return;
 922	}
 923
 924	pool->nr_running--;
 925	if (need_more_worker(pool))
 926		wake_up_worker(pool);
 927	raw_spin_unlock_irq(&pool->lock);
 928}
 929
 930/**
 931 * wq_worker_last_func - retrieve worker's last work function
 932 * @task: Task to retrieve last work function of.
 933 *
 934 * Determine the last function a worker executed. This is called from
 935 * the scheduler to get a worker's last known identity.
 936 *
 937 * CONTEXT:
 938 * raw_spin_lock_irq(rq->lock)
 939 *
 940 * This function is called during schedule() when a kworker is going
 941 * to sleep. It's used by psi to identify aggregation workers during
 942 * dequeuing, to allow periodic aggregation to shut-off when that
 943 * worker is the last task in the system or cgroup to go to sleep.
 944 *
 945 * As this function doesn't involve any workqueue-related locking, it
 946 * only returns stable values when called from inside the scheduler's
 947 * queuing and dequeuing paths, when @task, which must be a kworker,
 948 * is guaranteed to not be processing any works.
 949 *
 950 * Return:
 951 * The last work function %current executed as a worker, NULL if it
 952 * hasn't executed any work yet.
 953 */
 954work_func_t wq_worker_last_func(struct task_struct *task)
 955{
 956	struct worker *worker = kthread_data(task);
 957
 958	return worker->last_func;
 959}
 960
 961/**
 962 * worker_set_flags - set worker flags and adjust nr_running accordingly
 963 * @worker: self
 964 * @flags: flags to set
 
 965 *
 966 * Set @flags in @worker->flags and adjust nr_running accordingly.
 
 
 967 *
 968 * CONTEXT:
 969 * raw_spin_lock_irq(pool->lock)
 970 */
 971static inline void worker_set_flags(struct worker *worker, unsigned int flags)
 
 972{
 973	struct worker_pool *pool = worker->pool;
 974
 975	WARN_ON_ONCE(worker->task != current);
 976
 977	/* If transitioning into NOT_RUNNING, adjust nr_running. */
 
 
 
 
 978	if ((flags & WORKER_NOT_RUNNING) &&
 979	    !(worker->flags & WORKER_NOT_RUNNING)) {
 980		pool->nr_running--;
 
 
 
 
 
 
 
 981	}
 982
 983	worker->flags |= flags;
 984}
 985
 986/**
 987 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
 988 * @worker: self
 989 * @flags: flags to clear
 990 *
 991 * Clear @flags in @worker->flags and adjust nr_running accordingly.
 992 *
 993 * CONTEXT:
 994 * raw_spin_lock_irq(pool->lock)
 995 */
 996static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
 997{
 998	struct worker_pool *pool = worker->pool;
 999	unsigned int oflags = worker->flags;
1000
1001	WARN_ON_ONCE(worker->task != current);
1002
1003	worker->flags &= ~flags;
1004
1005	/*
1006	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
1007	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
1008	 * of multiple flags, not a single flag.
1009	 */
1010	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1011		if (!(worker->flags & WORKER_NOT_RUNNING))
1012			pool->nr_running++;
1013}
1014
1015/**
1016 * find_worker_executing_work - find worker which is executing a work
1017 * @pool: pool of interest
1018 * @work: work to find worker for
1019 *
1020 * Find a worker which is executing @work on @pool by searching
1021 * @pool->busy_hash which is keyed by the address of @work.  For a worker
1022 * to match, its current execution should match the address of @work and
1023 * its work function.  This is to avoid unwanted dependency between
1024 * unrelated work executions through a work item being recycled while still
1025 * being executed.
1026 *
1027 * This is a bit tricky.  A work item may be freed once its execution
1028 * starts and nothing prevents the freed area from being recycled for
1029 * another work item.  If the same work item address ends up being reused
1030 * before the original execution finishes, workqueue will identify the
1031 * recycled work item as currently executing and make it wait until the
1032 * current execution finishes, introducing an unwanted dependency.
1033 *
1034 * This function checks the work item address and work function to avoid
1035 * false positives.  Note that this isn't complete as one may construct a
1036 * work function which can introduce dependency onto itself through a
1037 * recycled work item.  Well, if somebody wants to shoot oneself in the
1038 * foot that badly, there's only so much we can do, and if such deadlock
1039 * actually occurs, it should be easy to locate the culprit work function.
1040 *
1041 * CONTEXT:
1042 * raw_spin_lock_irq(pool->lock).
1043 *
1044 * Return:
1045 * Pointer to worker which is executing @work if found, %NULL
1046 * otherwise.
1047 */
1048static struct worker *find_worker_executing_work(struct worker_pool *pool,
1049						 struct work_struct *work)
1050{
1051	struct worker *worker;
 
1052
1053	hash_for_each_possible(pool->busy_hash, worker, hentry,
1054			       (unsigned long)work)
1055		if (worker->current_work == work &&
1056		    worker->current_func == work->func)
1057			return worker;
1058
1059	return NULL;
1060}
1061
1062/**
1063 * move_linked_works - move linked works to a list
1064 * @work: start of series of works to be scheduled
1065 * @head: target list to append @work to
1066 * @nextp: out parameter for nested worklist walking
1067 *
1068 * Schedule linked works starting from @work to @head.  Work series to
1069 * be scheduled starts at @work and includes any consecutive work with
1070 * WORK_STRUCT_LINKED set in its predecessor.
1071 *
1072 * If @nextp is not NULL, it's updated to point to the next work of
1073 * the last scheduled work.  This allows move_linked_works() to be
1074 * nested inside outer list_for_each_entry_safe().
1075 *
1076 * CONTEXT:
1077 * raw_spin_lock_irq(pool->lock).
1078 */
1079static void move_linked_works(struct work_struct *work, struct list_head *head,
1080			      struct work_struct **nextp)
1081{
1082	struct work_struct *n;
1083
1084	/*
1085	 * Linked worklist will always end before the end of the list,
1086	 * use NULL for list head.
1087	 */
1088	list_for_each_entry_safe_from(work, n, NULL, entry) {
1089		list_move_tail(&work->entry, head);
1090		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1091			break;
1092	}
1093
1094	/*
1095	 * If we're already inside safe list traversal and have moved
1096	 * multiple works to the scheduled queue, the next position
1097	 * needs to be updated.
1098	 */
1099	if (nextp)
1100		*nextp = n;
1101}
1102
1103/**
1104 * get_pwq - get an extra reference on the specified pool_workqueue
1105 * @pwq: pool_workqueue to get
1106 *
1107 * Obtain an extra reference on @pwq.  The caller should guarantee that
1108 * @pwq has positive refcnt and be holding the matching pool->lock.
1109 */
1110static void get_pwq(struct pool_workqueue *pwq)
1111{
1112	lockdep_assert_held(&pwq->pool->lock);
1113	WARN_ON_ONCE(pwq->refcnt <= 0);
1114	pwq->refcnt++;
1115}
1116
1117/**
1118 * put_pwq - put a pool_workqueue reference
1119 * @pwq: pool_workqueue to put
1120 *
1121 * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1122 * destruction.  The caller should be holding the matching pool->lock.
1123 */
1124static void put_pwq(struct pool_workqueue *pwq)
1125{
1126	lockdep_assert_held(&pwq->pool->lock);
1127	if (likely(--pwq->refcnt))
1128		return;
1129	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1130		return;
1131	/*
1132	 * @pwq can't be released under pool->lock, bounce to
1133	 * pwq_unbound_release_workfn().  This never recurses on the same
1134	 * pool->lock as this path is taken only for unbound workqueues and
1135	 * the release work item is scheduled on a per-cpu workqueue.  To
1136	 * avoid lockdep warning, unbound pool->locks are given lockdep
1137	 * subclass of 1 in get_unbound_pool().
1138	 */
1139	schedule_work(&pwq->unbound_release_work);
1140}
1141
1142/**
1143 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1144 * @pwq: pool_workqueue to put (can be %NULL)
1145 *
1146 * put_pwq() with locking.  This function also allows %NULL @pwq.
 
 
1147 */
1148static void put_pwq_unlocked(struct pool_workqueue *pwq)
 
 
1149{
1150	if (pwq) {
1151		/*
1152		 * As both pwqs and pools are RCU protected, the
1153		 * following lock operations are safe.
1154		 */
1155		raw_spin_lock_irq(&pwq->pool->lock);
1156		put_pwq(pwq);
1157		raw_spin_unlock_irq(&pwq->pool->lock);
1158	}
1159}
1160
1161static void pwq_activate_inactive_work(struct work_struct *work)
1162{
1163	struct pool_workqueue *pwq = get_work_pwq(work);
1164
1165	trace_workqueue_activate_work(work);
1166	if (list_empty(&pwq->pool->worklist))
1167		pwq->pool->watchdog_ts = jiffies;
1168	move_linked_works(work, &pwq->pool->worklist, NULL);
1169	__clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
1170	pwq->nr_active++;
1171}
1172
1173static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
1174{
1175	struct work_struct *work = list_first_entry(&pwq->inactive_works,
1176						    struct work_struct, entry);
1177
1178	pwq_activate_inactive_work(work);
 
 
 
1179}
1180
1181/**
1182 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1183 * @pwq: pwq of interest
1184 * @work_data: work_data of work which left the queue
1185 *
1186 * A work either has completed or is removed from pending queue,
1187 * decrement nr_in_flight of its pwq and handle workqueue flushing.
 
1188 *
1189 * CONTEXT:
1190 * raw_spin_lock_irq(pool->lock).
 
 
 
 
1191 */
1192static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
 
1193{
1194	int color = get_work_color(work_data);
1195
1196	if (!(work_data & WORK_STRUCT_INACTIVE)) {
1197		pwq->nr_active--;
1198		if (!list_empty(&pwq->inactive_works)) {
1199			/* one down, submit an inactive one */
1200			if (pwq->nr_active < pwq->max_active)
1201				pwq_activate_first_inactive(pwq);
1202		}
1203	}
1204
1205	pwq->nr_in_flight[color]--;
1206
1207	/* is flush in progress and are we at the flushing tip? */
1208	if (likely(pwq->flush_color != color))
1209		goto out_put;
1210
1211	/* are there still in-flight works? */
1212	if (pwq->nr_in_flight[color])
1213		goto out_put;
1214
1215	/* this pwq is done, clear flush_color */
1216	pwq->flush_color = -1;
1217
1218	/*
1219	 * If this was the last pwq, wake up the first flusher.  It
1220	 * will handle the rest.
1221	 */
1222	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1223		complete(&pwq->wq->first_flusher->done);
1224out_put:
1225	put_pwq(pwq);
1226}
1227
1228/**
1229 * try_to_grab_pending - steal work item from worklist and disable irq
1230 * @work: work item to steal
1231 * @is_dwork: @work is a delayed_work
1232 * @flags: place to store irq state
1233 *
1234 * Try to grab PENDING bit of @work.  This function can handle @work in any
1235 * stable state - idle, on timer or on worklist.
1236 *
1237 * Return:
1238 *
1239 *  ========	================================================================
1240 *  1		if @work was pending and we successfully stole PENDING
1241 *  0		if @work was idle and we claimed PENDING
1242 *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1243 *  -ENOENT	if someone else is canceling @work, this state may persist
1244 *		for arbitrarily long
1245 *  ========	================================================================
1246 *
1247 * Note:
1248 * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1249 * interrupted while holding PENDING and @work off queue, irq must be
1250 * disabled on entry.  This, combined with delayed_work->timer being
1251 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
 
1252 *
1253 * On successful return, >= 0, irq is disabled and the caller is
1254 * responsible for releasing it using local_irq_restore(*@flags).
1255 *
1256 * This function is safe to call from any context including IRQ handler.
 
1257 */
1258static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1259			       unsigned long *flags)
1260{
1261	struct worker_pool *pool;
1262	struct pool_workqueue *pwq;
1263
1264	local_irq_save(*flags);
 
1265
1266	/* try to steal the timer if it exists */
1267	if (is_dwork) {
1268		struct delayed_work *dwork = to_delayed_work(work);
1269
1270		/*
1271		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1272		 * guaranteed that the timer is not queued anywhere and not
1273		 * running on the local CPU.
1274		 */
1275		if (likely(del_timer(&dwork->timer)))
1276			return 1;
1277	}
1278
1279	/* try to claim PENDING the normal way */
1280	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1281		return 0;
1282
1283	rcu_read_lock();
1284	/*
1285	 * The queueing is in progress, or it is already queued. Try to
1286	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1287	 */
1288	pool = get_work_pool(work);
1289	if (!pool)
1290		goto fail;
1291
1292	raw_spin_lock(&pool->lock);
1293	/*
1294	 * work->data is guaranteed to point to pwq only while the work
1295	 * item is queued on pwq->wq, and both updating work->data to point
1296	 * to pwq on queueing and to pool on dequeueing are done under
1297	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1298	 * points to pwq which is associated with a locked pool, the work
1299	 * item is currently queued on that pool.
1300	 */
1301	pwq = get_work_pwq(work);
1302	if (pwq && pwq->pool == pool) {
1303		debug_work_deactivate(work);
1304
1305		/*
1306		 * A cancelable inactive work item must be in the
1307		 * pwq->inactive_works since a queued barrier can't be
1308		 * canceled (see the comments in insert_wq_barrier()).
1309		 *
1310		 * An inactive work item cannot be grabbed directly because
1311		 * it might have linked barrier work items which, if left
1312		 * on the inactive_works list, will confuse pwq->nr_active
1313		 * management later on and cause stall.  Make sure the work
1314		 * item is activated before grabbing.
1315		 */
1316		if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
1317			pwq_activate_inactive_work(work);
1318
1319		list_del_init(&work->entry);
1320		pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
1321
1322		/* work->data points to pwq iff queued, point to pool */
1323		set_work_pool_and_keep_pending(work, pool->id);
1324
1325		raw_spin_unlock(&pool->lock);
1326		rcu_read_unlock();
1327		return 1;
1328	}
1329	raw_spin_unlock(&pool->lock);
1330fail:
1331	rcu_read_unlock();
1332	local_irq_restore(*flags);
1333	if (work_is_canceling(work))
1334		return -ENOENT;
1335	cpu_relax();
1336	return -EAGAIN;
1337}
1338
1339/**
1340 * insert_work - insert a work into a pool
1341 * @pwq: pwq @work belongs to
1342 * @work: work to insert
1343 * @head: insertion point
1344 * @extra_flags: extra WORK_STRUCT_* flags to set
1345 *
1346 * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1347 * work_struct flags.
1348 *
1349 * CONTEXT:
1350 * raw_spin_lock_irq(pool->lock).
1351 */
1352static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1353			struct list_head *head, unsigned int extra_flags)
 
1354{
1355	struct worker_pool *pool = pwq->pool;
1356
1357	/* record the work call stack in order to print it in KASAN reports */
1358	kasan_record_aux_stack_noalloc(work);
1359
1360	/* we own @work, set data and link */
1361	set_work_pwq(work, pwq, extra_flags);
1362	list_add_tail(&work->entry, head);
1363	get_pwq(pwq);
1364
1365	if (__need_more_worker(pool))
1366		wake_up_worker(pool);
1367}
 
 
1368
1369/*
1370 * Test whether @work is being queued from another work executing on the
1371 * same workqueue.
1372 */
1373static bool is_chained_work(struct workqueue_struct *wq)
1374{
1375	struct worker *worker;
1376
1377	worker = current_wq_worker();
1378	/*
1379	 * Return %true iff I'm a worker executing a work item on @wq.  If
1380	 * I'm @worker, it's safe to dereference it without locking.
 
1381	 */
1382	return worker && worker->current_pwq->wq == wq;
 
 
 
1383}
1384
1385/*
1386 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1387 * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1388 * avoid perturbing sensitive tasks.
1389 */
1390static int wq_select_unbound_cpu(int cpu)
1391{
1392	static bool printed_dbg_warning;
1393	int new_cpu;
1394
1395	if (likely(!wq_debug_force_rr_cpu)) {
1396		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1397			return cpu;
1398	} else if (!printed_dbg_warning) {
1399		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1400		printed_dbg_warning = true;
1401	}
1402
1403	if (cpumask_empty(wq_unbound_cpumask))
1404		return cpu;
 
 
 
1405
1406	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1407	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1408	if (unlikely(new_cpu >= nr_cpu_ids)) {
1409		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1410		if (unlikely(new_cpu >= nr_cpu_ids))
1411			return cpu;
 
 
 
 
 
 
1412	}
1413	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1414
1415	return new_cpu;
1416}
1417
1418static void __queue_work(int cpu, struct workqueue_struct *wq,
1419			 struct work_struct *work)
1420{
1421	struct pool_workqueue *pwq;
1422	struct worker_pool *last_pool;
1423	struct list_head *worklist;
1424	unsigned int work_flags;
1425	unsigned int req_cpu = cpu;
1426
1427	/*
1428	 * While a work item is PENDING && off queue, a task trying to
1429	 * steal the PENDING will busy-loop waiting for it to either get
1430	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1431	 * happen with IRQ disabled.
1432	 */
1433	lockdep_assert_irqs_disabled();
1434
 
1435
1436	/* if draining, only works from the same workqueue are allowed */
1437	if (unlikely(wq->flags & __WQ_DRAINING) &&
1438	    WARN_ON_ONCE(!is_chained_work(wq)))
1439		return;
1440	rcu_read_lock();
1441retry:
1442	/* pwq which will be used unless @work is executing elsewhere */
1443	if (wq->flags & WQ_UNBOUND) {
1444		if (req_cpu == WORK_CPU_UNBOUND)
1445			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1446		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1447	} else {
1448		if (req_cpu == WORK_CPU_UNBOUND)
1449			cpu = raw_smp_processor_id();
1450		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1451	}
1452
1453	/*
1454	 * If @work was previously on a different pool, it might still be
1455	 * running there, in which case the work needs to be queued on that
1456	 * pool to guarantee non-reentrancy.
1457	 */
1458	last_pool = get_work_pool(work);
1459	if (last_pool && last_pool != pwq->pool) {
1460		struct worker *worker;
1461
1462		raw_spin_lock(&last_pool->lock);
1463
1464		worker = find_worker_executing_work(last_pool, work);
 
1465
1466		if (worker && worker->current_pwq->wq == wq) {
1467			pwq = worker->current_pwq;
1468		} else {
1469			/* meh... not running there, queue here */
1470			raw_spin_unlock(&last_pool->lock);
1471			raw_spin_lock(&pwq->pool->lock);
1472		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1473	} else {
1474		raw_spin_lock(&pwq->pool->lock);
1475	}
1476
1477	/*
1478	 * pwq is determined and locked.  For unbound pools, we could have
1479	 * raced with pwq release and it could already be dead.  If its
1480	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1481	 * without another pwq replacing it in the numa_pwq_tbl or while
1482	 * work items are executing on it, so the retrying is guaranteed to
1483	 * make forward-progress.
1484	 */
1485	if (unlikely(!pwq->refcnt)) {
1486		if (wq->flags & WQ_UNBOUND) {
1487			raw_spin_unlock(&pwq->pool->lock);
1488			cpu_relax();
1489			goto retry;
1490		}
1491		/* oops */
1492		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1493			  wq->name, cpu);
1494	}
1495
1496	/* pwq determined, queue */
1497	trace_workqueue_queue_work(req_cpu, pwq, work);
 
1498
1499	if (WARN_ON(!list_empty(&work->entry)))
1500		goto out;
1501
1502	pwq->nr_in_flight[pwq->work_color]++;
1503	work_flags = work_color_to_flags(pwq->work_color);
1504
1505	if (likely(pwq->nr_active < pwq->max_active)) {
1506		trace_workqueue_activate_work(work);
1507		pwq->nr_active++;
1508		worklist = &pwq->pool->worklist;
1509		if (list_empty(worklist))
1510			pwq->pool->watchdog_ts = jiffies;
1511	} else {
1512		work_flags |= WORK_STRUCT_INACTIVE;
1513		worklist = &pwq->inactive_works;
1514	}
1515
1516	debug_work_activate(work);
1517	insert_work(pwq, work, worklist, work_flags);
1518
1519out:
1520	raw_spin_unlock(&pwq->pool->lock);
1521	rcu_read_unlock();
1522}
1523
1524/**
1525 * queue_work_on - queue work on specific cpu
1526 * @cpu: CPU number to execute work on
1527 * @wq: workqueue to use
1528 * @work: work to queue
1529 *
1530 * We queue the work to a specific CPU, the caller must ensure it
1531 * can't go away.  Callers that fail to ensure that the specified
1532 * CPU cannot go away will execute on a randomly chosen CPU.
1533 *
1534 * Return: %false if @work was already on a queue, %true otherwise.
 
1535 */
1536bool queue_work_on(int cpu, struct workqueue_struct *wq,
1537		   struct work_struct *work)
1538{
1539	bool ret = false;
1540	unsigned long flags;
1541
1542	local_irq_save(flags);
 
1543
1544	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1545		__queue_work(cpu, wq, work);
1546		ret = true;
1547	}
1548
1549	local_irq_restore(flags);
1550	return ret;
1551}
1552EXPORT_SYMBOL(queue_work_on);
1553
1554/**
1555 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1556 * @node: NUMA node ID that we want to select a CPU from
1557 *
1558 * This function will attempt to find a "random" cpu available on a given
1559 * node. If there are no CPUs available on the given node it will return
1560 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1561 * available CPU if we need to schedule this work.
1562 */
1563static int workqueue_select_cpu_near(int node)
1564{
1565	int cpu;
1566
1567	/* No point in doing this if NUMA isn't enabled for workqueues */
1568	if (!wq_numa_enabled)
1569		return WORK_CPU_UNBOUND;
1570
1571	/* Delay binding to CPU if node is not valid or online */
1572	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1573		return WORK_CPU_UNBOUND;
1574
1575	/* Use local node/cpu if we are already there */
1576	cpu = raw_smp_processor_id();
1577	if (node == cpu_to_node(cpu))
1578		return cpu;
1579
1580	/* Use "random" otherwise know as "first" online CPU of node */
1581	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1582
1583	/* If CPU is valid return that, otherwise just defer */
1584	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1585}
1586
1587/**
1588 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1589 * @node: NUMA node that we are targeting the work for
1590 * @wq: workqueue to use
1591 * @work: work to queue
1592 *
1593 * We queue the work to a "random" CPU within a given NUMA node. The basic
1594 * idea here is to provide a way to somehow associate work with a given
1595 * NUMA node.
1596 *
1597 * This function will only make a best effort attempt at getting this onto
1598 * the right NUMA node. If no node is requested or the requested node is
1599 * offline then we just fall back to standard queue_work behavior.
1600 *
1601 * Currently the "random" CPU ends up being the first available CPU in the
1602 * intersection of cpu_online_mask and the cpumask of the node, unless we
1603 * are running on the node. In that case we just use the current CPU.
1604 *
1605 * Return: %false if @work was already on a queue, %true otherwise.
 
1606 */
1607bool queue_work_node(int node, struct workqueue_struct *wq,
1608		     struct work_struct *work)
1609{
1610	unsigned long flags;
1611	bool ret = false;
1612
1613	/*
1614	 * This current implementation is specific to unbound workqueues.
1615	 * Specifically we only return the first available CPU for a given
1616	 * node instead of cycling through individual CPUs within the node.
1617	 *
1618	 * If this is used with a per-cpu workqueue then the logic in
1619	 * workqueue_select_cpu_near would need to be updated to allow for
1620	 * some round robin type logic.
1621	 */
1622	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1623
1624	local_irq_save(flags);
1625
1626	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1627		int cpu = workqueue_select_cpu_near(node);
1628
1629		__queue_work(cpu, wq, work);
1630		ret = true;
1631	}
1632
1633	local_irq_restore(flags);
1634	return ret;
1635}
1636EXPORT_SYMBOL_GPL(queue_work_node);
1637
1638void delayed_work_timer_fn(struct timer_list *t)
1639{
1640	struct delayed_work *dwork = from_timer(dwork, t, timer);
 
1641
1642	/* should have been called from irqsafe timer with irq already off */
1643	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1644}
1645EXPORT_SYMBOL(delayed_work_timer_fn);
1646
1647static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1648				struct delayed_work *dwork, unsigned long delay)
1649{
1650	struct timer_list *timer = &dwork->timer;
1651	struct work_struct *work = &dwork->work;
1652
1653	WARN_ON_ONCE(!wq);
1654	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1655	WARN_ON_ONCE(timer_pending(timer));
1656	WARN_ON_ONCE(!list_empty(&work->entry));
1657
1658	/*
1659	 * If @delay is 0, queue @dwork->work immediately.  This is for
1660	 * both optimization and correctness.  The earliest @timer can
1661	 * expire is on the closest next tick and delayed_work users depend
1662	 * on that there's no such delay when @delay is 0.
1663	 */
1664	if (!delay) {
1665		__queue_work(cpu, wq, &dwork->work);
1666		return;
1667	}
1668
1669	dwork->wq = wq;
1670	dwork->cpu = cpu;
1671	timer->expires = jiffies + delay;
1672
1673	if (unlikely(cpu != WORK_CPU_UNBOUND))
1674		add_timer_on(timer, cpu);
1675	else
1676		add_timer(timer);
1677}
1678
1679/**
1680 * queue_delayed_work_on - queue work on specific CPU after delay
1681 * @cpu: CPU number to execute work on
1682 * @wq: workqueue to use
1683 * @dwork: work to queue
1684 * @delay: number of jiffies to wait before queueing
1685 *
1686 * Return: %false if @work was already on a queue, %true otherwise.  If
1687 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1688 * execution.
1689 */
1690bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1691			   struct delayed_work *dwork, unsigned long delay)
1692{
1693	struct work_struct *work = &dwork->work;
1694	bool ret = false;
1695	unsigned long flags;
1696
1697	/* read the comment in __queue_work() */
1698	local_irq_save(flags);
1699
1700	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1701		__queue_delayed_work(cpu, wq, dwork, delay);
1702		ret = true;
1703	}
1704
1705	local_irq_restore(flags);
1706	return ret;
1707}
1708EXPORT_SYMBOL(queue_delayed_work_on);
1709
1710/**
1711 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1712 * @cpu: CPU number to execute work on
1713 * @wq: workqueue to use
1714 * @dwork: work to queue
1715 * @delay: number of jiffies to wait before queueing
1716 *
1717 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1718 * modify @dwork's timer so that it expires after @delay.  If @delay is
1719 * zero, @work is guaranteed to be scheduled immediately regardless of its
1720 * current state.
1721 *
1722 * Return: %false if @dwork was idle and queued, %true if @dwork was
1723 * pending and its timer was modified.
1724 *
1725 * This function is safe to call from any context including IRQ handler.
1726 * See try_to_grab_pending() for details.
1727 */
1728bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1729			 struct delayed_work *dwork, unsigned long delay)
1730{
1731	unsigned long flags;
1732	int ret;
1733
1734	do {
1735		ret = try_to_grab_pending(&dwork->work, true, &flags);
1736	} while (unlikely(ret == -EAGAIN));
1737
1738	if (likely(ret >= 0)) {
1739		__queue_delayed_work(cpu, wq, dwork, delay);
1740		local_irq_restore(flags);
1741	}
1742
1743	/* -ENOENT from try_to_grab_pending() becomes %true */
1744	return ret;
1745}
1746EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1747
1748static void rcu_work_rcufn(struct rcu_head *rcu)
1749{
1750	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1751
1752	/* read the comment in __queue_work() */
1753	local_irq_disable();
1754	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1755	local_irq_enable();
1756}
 
 
1757
1758/**
1759 * queue_rcu_work - queue work after a RCU grace period
1760 * @wq: workqueue to use
1761 * @rwork: work to queue
1762 *
1763 * Return: %false if @rwork was already pending, %true otherwise.  Note
1764 * that a full RCU grace period is guaranteed only after a %true return.
1765 * While @rwork is guaranteed to be executed after a %false return, the
1766 * execution may happen before a full RCU grace period has passed.
1767 */
1768bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1769{
1770	struct work_struct *work = &rwork->work;
1771
1772	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1773		rwork->wq = wq;
1774		call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
1775		return true;
 
1776	}
1777
1778	return false;
1779}
1780EXPORT_SYMBOL(queue_rcu_work);
1781
1782/**
1783 * worker_enter_idle - enter idle state
1784 * @worker: worker which is entering idle state
1785 *
1786 * @worker is entering idle state.  Update stats and idle timer if
1787 * necessary.
1788 *
1789 * LOCKING:
1790 * raw_spin_lock_irq(pool->lock).
1791 */
1792static void worker_enter_idle(struct worker *worker)
1793{
1794	struct worker_pool *pool = worker->pool;
1795
1796	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1797	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1798			 (worker->hentry.next || worker->hentry.pprev)))
1799		return;
1800
1801	/* can't use worker_set_flags(), also called from create_worker() */
1802	worker->flags |= WORKER_IDLE;
1803	pool->nr_idle++;
1804	worker->last_active = jiffies;
1805
1806	/* idle_list is LIFO */
1807	list_add(&worker->entry, &pool->idle_list);
1808
1809	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1810		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1811
1812	/* Sanity check nr_running. */
1813	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
 
 
 
 
 
1814}
1815
1816/**
1817 * worker_leave_idle - leave idle state
1818 * @worker: worker which is leaving idle state
1819 *
1820 * @worker is leaving idle state.  Update stats.
1821 *
1822 * LOCKING:
1823 * raw_spin_lock_irq(pool->lock).
1824 */
1825static void worker_leave_idle(struct worker *worker)
1826{
1827	struct worker_pool *pool = worker->pool;
1828
1829	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1830		return;
1831	worker_clr_flags(worker, WORKER_IDLE);
1832	pool->nr_idle--;
1833	list_del_init(&worker->entry);
1834}
1835
1836static struct worker *alloc_worker(int node)
1837{
1838	struct worker *worker;
1839
1840	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1841	if (worker) {
1842		INIT_LIST_HEAD(&worker->entry);
1843		INIT_LIST_HEAD(&worker->scheduled);
1844		INIT_LIST_HEAD(&worker->node);
1845		/* on creation a worker is in !idle && prep state */
1846		worker->flags = WORKER_PREP;
1847	}
1848	return worker;
1849}
1850
1851/**
1852 * worker_attach_to_pool() - attach a worker to a pool
1853 * @worker: worker to be attached
1854 * @pool: the target pool
1855 *
1856 * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1857 * cpu-binding of @worker are kept coordinated with the pool across
1858 * cpu-[un]hotplugs.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1859 */
1860static void worker_attach_to_pool(struct worker *worker,
1861				   struct worker_pool *pool)
1862{
1863	mutex_lock(&wq_pool_attach_mutex);
 
1864
1865	/*
1866	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1867	 * stable across this function.  See the comments above the flag
1868	 * definition for details.
1869	 */
1870	if (pool->flags & POOL_DISASSOCIATED)
1871		worker->flags |= WORKER_UNBOUND;
1872	else
1873		kthread_set_per_cpu(worker->task, pool->cpu);
1874
1875	if (worker->rescue_wq)
1876		set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1877
1878	list_add_tail(&worker->node, &pool->workers);
1879	worker->pool = pool;
 
 
 
1880
1881	mutex_unlock(&wq_pool_attach_mutex);
 
 
 
 
 
 
 
 
1882}
1883
1884/**
1885 * worker_detach_from_pool() - detach a worker from its pool
1886 * @worker: worker which is attached to its pool
1887 *
1888 * Undo the attaching which had been done in worker_attach_to_pool().  The
1889 * caller worker shouldn't access to the pool after detached except it has
1890 * other reference to the pool.
1891 */
1892static void worker_detach_from_pool(struct worker *worker)
1893{
1894	struct worker_pool *pool = worker->pool;
1895	struct completion *detach_completion = NULL;
1896
1897	mutex_lock(&wq_pool_attach_mutex);
1898
1899	kthread_set_per_cpu(worker->task, -1);
1900	list_del(&worker->node);
1901	worker->pool = NULL;
1902
1903	if (list_empty(&pool->workers))
1904		detach_completion = pool->detach_completion;
1905	mutex_unlock(&wq_pool_attach_mutex);
1906
1907	/* clear leftover flags without pool->lock after it is detached */
1908	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
 
1909
1910	if (detach_completion)
1911		complete(detach_completion);
 
 
 
 
 
 
 
1912}
1913
1914/**
1915 * create_worker - create a new workqueue worker
1916 * @pool: pool the new worker will belong to
 
1917 *
1918 * Create and start a new worker which is attached to @pool.
 
 
1919 *
1920 * CONTEXT:
1921 * Might sleep.  Does GFP_KERNEL allocations.
1922 *
1923 * Return:
1924 * Pointer to the newly created worker.
1925 */
1926static struct worker *create_worker(struct worker_pool *pool)
1927{
1928	struct worker *worker;
1929	int id;
1930	char id_buf[16];
1931
1932	/* ID is needed to determine kthread name */
1933	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
1934	if (id < 0)
1935		return NULL;
 
 
 
 
1936
1937	worker = alloc_worker(pool->node);
1938	if (!worker)
1939		goto fail;
1940
 
1941	worker->id = id;
1942
1943	if (pool->cpu >= 0)
1944		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1945			 pool->attrs->nice < 0  ? "H" : "");
 
 
1946	else
1947		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1948
1949	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1950					      "kworker/%s", id_buf);
1951	if (IS_ERR(worker->task))
1952		goto fail;
1953
1954	set_user_nice(worker->task, pool->attrs->nice);
1955	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1956
1957	/* successful, attach the worker to the pool */
1958	worker_attach_to_pool(worker, pool);
1959
1960	/* start the newly created worker */
1961	raw_spin_lock_irq(&pool->lock);
1962	worker->pool->nr_workers++;
1963	worker_enter_idle(worker);
1964	wake_up_process(worker->task);
1965	raw_spin_unlock_irq(&pool->lock);
1966
1967	return worker;
1968
1969fail:
1970	ida_free(&pool->worker_ida, id);
 
 
 
 
1971	kfree(worker);
1972	return NULL;
1973}
1974
1975/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1976 * destroy_worker - destroy a workqueue worker
1977 * @worker: worker to be destroyed
1978 *
1979 * Destroy @worker and adjust @pool stats accordingly.  The worker should
1980 * be idle.
1981 *
1982 * CONTEXT:
1983 * raw_spin_lock_irq(pool->lock).
1984 */
1985static void destroy_worker(struct worker *worker)
1986{
1987	struct worker_pool *pool = worker->pool;
1988
1989	lockdep_assert_held(&pool->lock);
1990
1991	/* sanity check frenzy */
1992	if (WARN_ON(worker->current_work) ||
1993	    WARN_ON(!list_empty(&worker->scheduled)) ||
1994	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1995		return;
1996
1997	pool->nr_workers--;
1998	pool->nr_idle--;
 
 
1999
2000	list_del_init(&worker->entry);
2001	worker->flags |= WORKER_DIE;
2002	wake_up_process(worker->task);
 
 
 
 
 
 
 
2003}
2004
2005static void idle_worker_timeout(struct timer_list *t)
2006{
2007	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2008
2009	raw_spin_lock_irq(&pool->lock);
2010
2011	while (too_many_workers(pool)) {
2012		struct worker *worker;
2013		unsigned long expires;
2014
2015		/* idle_list is kept in LIFO order, check the last one */
2016		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2017		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2018
2019		if (time_before(jiffies, expires)) {
2020			mod_timer(&pool->idle_timer, expires);
2021			break;
 
 
 
2022		}
2023
2024		destroy_worker(worker);
2025	}
2026
2027	raw_spin_unlock_irq(&pool->lock);
2028}
2029
2030static void send_mayday(struct work_struct *work)
2031{
2032	struct pool_workqueue *pwq = get_work_pwq(work);
2033	struct workqueue_struct *wq = pwq->wq;
 
2034
2035	lockdep_assert_held(&wq_mayday_lock);
2036
2037	if (!wq->rescuer)
2038		return;
2039
2040	/* mayday mayday mayday */
2041	if (list_empty(&pwq->mayday_node)) {
2042		/*
2043		 * If @pwq is for an unbound wq, its base ref may be put at
2044		 * any time due to an attribute change.  Pin @pwq until the
2045		 * rescuer is done with it.
2046		 */
2047		get_pwq(pwq);
2048		list_add_tail(&pwq->mayday_node, &wq->maydays);
2049		wake_up_process(wq->rescuer->task);
2050	}
2051}
2052
2053static void pool_mayday_timeout(struct timer_list *t)
2054{
2055	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2056	struct work_struct *work;
2057
2058	raw_spin_lock_irq(&pool->lock);
2059	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2060
2061	if (need_to_create_worker(pool)) {
2062		/*
2063		 * We've been trying to create a new worker but
2064		 * haven't been successful.  We might be hitting an
2065		 * allocation deadlock.  Send distress signals to
2066		 * rescuers.
2067		 */
2068		list_for_each_entry(work, &pool->worklist, entry)
2069			send_mayday(work);
2070	}
2071
2072	raw_spin_unlock(&wq_mayday_lock);
2073	raw_spin_unlock_irq(&pool->lock);
2074
2075	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2076}
2077
2078/**
2079 * maybe_create_worker - create a new worker if necessary
2080 * @pool: pool to create a new worker for
2081 *
2082 * Create a new worker for @pool if necessary.  @pool is guaranteed to
2083 * have at least one idle worker on return from this function.  If
2084 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2085 * sent to all rescuers with works scheduled on @pool to resolve
2086 * possible allocation deadlock.
2087 *
2088 * On return, need_to_create_worker() is guaranteed to be %false and
2089 * may_start_working() %true.
2090 *
2091 * LOCKING:
2092 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2093 * multiple times.  Does GFP_KERNEL allocations.  Called only from
2094 * manager.
 
 
 
 
2095 */
2096static void maybe_create_worker(struct worker_pool *pool)
2097__releases(&pool->lock)
2098__acquires(&pool->lock)
2099{
 
 
2100restart:
2101	raw_spin_unlock_irq(&pool->lock);
2102
2103	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2104	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2105
2106	while (true) {
2107		if (create_worker(pool) || !need_to_create_worker(pool))
 
 
 
 
 
 
 
 
 
 
 
2108			break;
2109
2110		schedule_timeout_interruptible(CREATE_COOLDOWN);
 
2111
2112		if (!need_to_create_worker(pool))
2113			break;
2114	}
2115
2116	del_timer_sync(&pool->mayday_timer);
2117	raw_spin_lock_irq(&pool->lock);
2118	/*
2119	 * This is necessary even after a new worker was just successfully
2120	 * created as @pool->lock was dropped and the new worker might have
2121	 * already become busy.
2122	 */
2123	if (need_to_create_worker(pool))
2124		goto restart;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2125}
2126
2127/**
2128 * manage_workers - manage worker pool
2129 * @worker: self
2130 *
2131 * Assume the manager role and manage the worker pool @worker belongs
2132 * to.  At any given time, there can be only zero or one manager per
2133 * pool.  The exclusion is handled automatically by this function.
2134 *
2135 * The caller can safely start processing works on false return.  On
2136 * true return, it's guaranteed that need_to_create_worker() is false
2137 * and may_start_working() is true.
2138 *
2139 * CONTEXT:
2140 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2141 * multiple times.  Does GFP_KERNEL allocations.
2142 *
2143 * Return:
2144 * %false if the pool doesn't need management and the caller can safely
2145 * start processing works, %true if management function was performed and
2146 * the conditions that the caller verified before calling the function may
2147 * no longer be true.
2148 */
2149static bool manage_workers(struct worker *worker)
2150{
2151	struct worker_pool *pool = worker->pool;
 
2152
2153	if (pool->flags & POOL_MANAGER_ACTIVE)
2154		return false;
 
 
 
2155
2156	pool->flags |= POOL_MANAGER_ACTIVE;
2157	pool->manager = worker;
 
 
 
 
2158
2159	maybe_create_worker(pool);
2160
2161	pool->manager = NULL;
2162	pool->flags &= ~POOL_MANAGER_ACTIVE;
2163	rcuwait_wake_up(&manager_wait);
2164	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2165}
2166
2167/**
2168 * process_one_work - process single work
2169 * @worker: self
2170 * @work: work to process
2171 *
2172 * Process @work.  This function contains all the logics necessary to
2173 * process a single work including synchronization against and
2174 * interaction with other workers on the same cpu, queueing and
2175 * flushing.  As long as context requirement is met, any worker can
2176 * call this function to process a work.
2177 *
2178 * CONTEXT:
2179 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2180 */
2181static void process_one_work(struct worker *worker, struct work_struct *work)
2182__releases(&pool->lock)
2183__acquires(&pool->lock)
2184{
2185	struct pool_workqueue *pwq = get_work_pwq(work);
2186	struct worker_pool *pool = worker->pool;
2187	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2188	unsigned long work_data;
 
 
2189	struct worker *collision;
2190#ifdef CONFIG_LOCKDEP
2191	/*
2192	 * It is permissible to free the struct work_struct from
2193	 * inside the function that is called from it, this we need to
2194	 * take into account for lockdep too.  To avoid bogus "held
2195	 * lock freed" warnings as well as problems when looking into
2196	 * work->lockdep_map, make a copy and use that here.
2197	 */
2198	struct lockdep_map lockdep_map;
2199
2200	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2201#endif
2202	/* ensure we're on the correct CPU */
2203	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2204		     raw_smp_processor_id() != pool->cpu);
2205
2206	/*
2207	 * A single work shouldn't be executed concurrently by
2208	 * multiple workers on a single cpu.  Check whether anyone is
2209	 * already processing the work.  If so, defer the work to the
2210	 * currently executing one.
2211	 */
2212	collision = find_worker_executing_work(pool, work);
2213	if (unlikely(collision)) {
2214		move_linked_works(work, &collision->scheduled, NULL);
2215		return;
2216	}
2217
2218	/* claim and dequeue */
2219	debug_work_deactivate(work);
2220	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2221	worker->current_work = work;
2222	worker->current_func = work->func;
2223	worker->current_pwq = pwq;
2224	work_data = *work_data_bits(work);
2225	worker->current_color = get_work_color(work_data);
2226
2227	/*
2228	 * Record wq name for cmdline and debug reporting, may get
2229	 * overridden through set_worker_desc().
2230	 */
2231	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2232
 
 
2233	list_del_init(&work->entry);
2234
2235	/*
2236	 * CPU intensive works don't participate in concurrency management.
2237	 * They're the scheduler's responsibility.  This takes @worker out
2238	 * of concurrency management and the next code block will chain
2239	 * execution of the pending work items.
2240	 */
2241	if (unlikely(cpu_intensive))
2242		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
 
2243
2244	/*
2245	 * Wake up another worker if necessary.  The condition is always
2246	 * false for normal per-cpu workers since nr_running would always
2247	 * be >= 1 at this point.  This is used to chain execution of the
2248	 * pending work items for WORKER_NOT_RUNNING workers such as the
2249	 * UNBOUND and CPU_INTENSIVE ones.
2250	 */
2251	if (need_more_worker(pool))
2252		wake_up_worker(pool);
2253
2254	/*
2255	 * Record the last pool and clear PENDING which should be the last
2256	 * update to @work.  Also, do this inside @pool->lock so that
2257	 * PENDING and queued state changes happen together while IRQ is
2258	 * disabled.
2259	 */
2260	set_work_pool_and_clear_pending(work, pool->id);
 
2261
2262	raw_spin_unlock_irq(&pool->lock);
2263
2264	lock_map_acquire(&pwq->wq->lockdep_map);
 
2265	lock_map_acquire(&lockdep_map);
2266	/*
2267	 * Strictly speaking we should mark the invariant state without holding
2268	 * any locks, that is, before these two lock_map_acquire()'s.
2269	 *
2270	 * However, that would result in:
2271	 *
2272	 *   A(W1)
2273	 *   WFC(C)
2274	 *		A(W1)
2275	 *		C(C)
2276	 *
2277	 * Which would create W1->C->W1 dependencies, even though there is no
2278	 * actual deadlock possible. There are two solutions, using a
2279	 * read-recursive acquire on the work(queue) 'locks', but this will then
2280	 * hit the lockdep limitation on recursive locks, or simply discard
2281	 * these locks.
2282	 *
2283	 * AFAICT there is no possible deadlock scenario between the
2284	 * flush_work() and complete() primitives (except for single-threaded
2285	 * workqueues), so hiding them isn't a problem.
2286	 */
2287	lockdep_invariant_state(true);
2288	trace_workqueue_execute_start(work);
2289	worker->current_func(work);
2290	/*
2291	 * While we must be careful to not use "work" after this, the trace
2292	 * point will only record its address.
2293	 */
2294	trace_workqueue_execute_end(work, worker->current_func);
2295	lock_map_release(&lockdep_map);
2296	lock_map_release(&pwq->wq->lockdep_map);
2297
2298	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2299		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2300		       "     last function: %ps\n",
2301		       current->comm, preempt_count(), task_pid_nr(current),
2302		       worker->current_func);
 
2303		debug_show_held_locks(current);
2304		dump_stack();
2305	}
2306
2307	/*
2308	 * The following prevents a kworker from hogging CPU on !PREEMPTION
2309	 * kernels, where a requeueing work item waiting for something to
2310	 * happen could deadlock with stop_machine as such work item could
2311	 * indefinitely requeue itself while all other CPUs are trapped in
2312	 * stop_machine. At the same time, report a quiescent RCU state so
2313	 * the same condition doesn't freeze RCU.
2314	 */
2315	cond_resched();
2316
2317	raw_spin_lock_irq(&pool->lock);
2318
2319	/* clear cpu intensive status */
2320	if (unlikely(cpu_intensive))
2321		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2322
2323	/* tag the worker for identification in schedule() */
2324	worker->last_func = worker->current_func;
2325
2326	/* we're done with it, release */
2327	hash_del(&worker->hentry);
2328	worker->current_work = NULL;
2329	worker->current_func = NULL;
2330	worker->current_pwq = NULL;
2331	worker->current_color = INT_MAX;
2332	pwq_dec_nr_in_flight(pwq, work_data);
2333}
2334
2335/**
2336 * process_scheduled_works - process scheduled works
2337 * @worker: self
2338 *
2339 * Process all scheduled works.  Please note that the scheduled list
2340 * may change while processing a work, so this function repeatedly
2341 * fetches a work from the top and executes it.
2342 *
2343 * CONTEXT:
2344 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2345 * multiple times.
2346 */
2347static void process_scheduled_works(struct worker *worker)
2348{
2349	while (!list_empty(&worker->scheduled)) {
2350		struct work_struct *work = list_first_entry(&worker->scheduled,
2351						struct work_struct, entry);
2352		process_one_work(worker, work);
2353	}
2354}
2355
2356static void set_pf_worker(bool val)
2357{
2358	mutex_lock(&wq_pool_attach_mutex);
2359	if (val)
2360		current->flags |= PF_WQ_WORKER;
2361	else
2362		current->flags &= ~PF_WQ_WORKER;
2363	mutex_unlock(&wq_pool_attach_mutex);
2364}
2365
2366/**
2367 * worker_thread - the worker thread function
2368 * @__worker: self
2369 *
2370 * The worker thread function.  All workers belong to a worker_pool -
2371 * either a per-cpu one or dynamic unbound one.  These workers process all
2372 * work items regardless of their specific target workqueue.  The only
2373 * exception is work items which belong to workqueues with a rescuer which
2374 * will be explained in rescuer_thread().
2375 *
2376 * Return: 0
2377 */
2378static int worker_thread(void *__worker)
2379{
2380	struct worker *worker = __worker;
2381	struct worker_pool *pool = worker->pool;
2382
2383	/* tell the scheduler that this is a workqueue worker */
2384	set_pf_worker(true);
2385woke_up:
2386	raw_spin_lock_irq(&pool->lock);
2387
2388	/* am I supposed to die? */
2389	if (unlikely(worker->flags & WORKER_DIE)) {
2390		raw_spin_unlock_irq(&pool->lock);
2391		WARN_ON_ONCE(!list_empty(&worker->entry));
2392		set_pf_worker(false);
2393
2394		set_task_comm(worker->task, "kworker/dying");
2395		ida_free(&pool->worker_ida, worker->id);
2396		worker_detach_from_pool(worker);
2397		kfree(worker);
2398		return 0;
2399	}
2400
2401	worker_leave_idle(worker);
2402recheck:
2403	/* no more worker necessary? */
2404	if (!need_more_worker(pool))
2405		goto sleep;
2406
2407	/* do we need to manage? */
2408	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2409		goto recheck;
2410
2411	/*
2412	 * ->scheduled list can only be filled while a worker is
2413	 * preparing to process a work or actually processing it.
2414	 * Make sure nobody diddled with it while I was sleeping.
2415	 */
2416	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2417
2418	/*
2419	 * Finish PREP stage.  We're guaranteed to have at least one idle
2420	 * worker or that someone else has already assumed the manager
2421	 * role.  This is where @worker starts participating in concurrency
2422	 * management if applicable and concurrency management is restored
2423	 * after being rebound.  See rebind_workers() for details.
2424	 */
2425	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2426
2427	do {
2428		struct work_struct *work =
2429			list_first_entry(&pool->worklist,
2430					 struct work_struct, entry);
2431
2432		pool->watchdog_ts = jiffies;
2433
2434		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2435			/* optimization path, not strictly necessary */
2436			process_one_work(worker, work);
2437			if (unlikely(!list_empty(&worker->scheduled)))
2438				process_scheduled_works(worker);
2439		} else {
2440			move_linked_works(work, &worker->scheduled, NULL);
2441			process_scheduled_works(worker);
2442		}
2443	} while (keep_working(pool));
2444
2445	worker_set_flags(worker, WORKER_PREP);
2446sleep:
 
 
 
2447	/*
2448	 * pool->lock is held and there's no work to process and no need to
2449	 * manage, sleep.  Workers are woken up only while holding
2450	 * pool->lock or from local cpu, so setting the current state
2451	 * before releasing pool->lock is enough to prevent losing any
2452	 * event.
2453	 */
2454	worker_enter_idle(worker);
2455	__set_current_state(TASK_IDLE);
2456	raw_spin_unlock_irq(&pool->lock);
2457	schedule();
2458	goto woke_up;
2459}
2460
2461/**
2462 * rescuer_thread - the rescuer thread function
2463 * @__rescuer: self
2464 *
2465 * Workqueue rescuer thread function.  There's one rescuer for each
2466 * workqueue which has WQ_MEM_RECLAIM set.
2467 *
2468 * Regular work processing on a pool may block trying to create a new
2469 * worker which uses GFP_KERNEL allocation which has slight chance of
2470 * developing into deadlock if some works currently on the same queue
2471 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2472 * the problem rescuer solves.
2473 *
2474 * When such condition is possible, the pool summons rescuers of all
2475 * workqueues which have works queued on the pool and let them process
2476 * those works so that forward progress can be guaranteed.
2477 *
2478 * This should happen rarely.
2479 *
2480 * Return: 0
2481 */
2482static int rescuer_thread(void *__rescuer)
2483{
2484	struct worker *rescuer = __rescuer;
2485	struct workqueue_struct *wq = rescuer->rescue_wq;
2486	struct list_head *scheduled = &rescuer->scheduled;
2487	bool should_stop;
 
2488
2489	set_user_nice(current, RESCUER_NICE_LEVEL);
2490
2491	/*
2492	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2493	 * doesn't participate in concurrency management.
2494	 */
2495	set_pf_worker(true);
2496repeat:
2497	set_current_state(TASK_IDLE);
 
 
 
2498
2499	/*
2500	 * By the time the rescuer is requested to stop, the workqueue
2501	 * shouldn't have any work pending, but @wq->maydays may still have
2502	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2503	 * all the work items before the rescuer got to them.  Go through
2504	 * @wq->maydays processing before acting on should_stop so that the
2505	 * list is always empty on exit.
2506	 */
2507	should_stop = kthread_should_stop();
2508
2509	/* see whether any pwq is asking for help */
2510	raw_spin_lock_irq(&wq_mayday_lock);
2511
2512	while (!list_empty(&wq->maydays)) {
2513		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2514					struct pool_workqueue, mayday_node);
2515		struct worker_pool *pool = pwq->pool;
2516		struct work_struct *work, *n;
2517		bool first = true;
2518
2519		__set_current_state(TASK_RUNNING);
2520		list_del_init(&pwq->mayday_node);
2521
2522		raw_spin_unlock_irq(&wq_mayday_lock);
2523
2524		worker_attach_to_pool(rescuer, pool);
2525
2526		raw_spin_lock_irq(&pool->lock);
2527
2528		/*
2529		 * Slurp in all works issued via this workqueue and
2530		 * process'em.
2531		 */
2532		WARN_ON_ONCE(!list_empty(scheduled));
2533		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2534			if (get_work_pwq(work) == pwq) {
2535				if (first)
2536					pool->watchdog_ts = jiffies;
2537				move_linked_works(work, scheduled, &n);
2538			}
2539			first = false;
2540		}
2541
2542		if (!list_empty(scheduled)) {
2543			process_scheduled_works(rescuer);
2544
2545			/*
2546			 * The above execution of rescued work items could
2547			 * have created more to rescue through
2548			 * pwq_activate_first_inactive() or chained
2549			 * queueing.  Let's put @pwq back on mayday list so
2550			 * that such back-to-back work items, which may be
2551			 * being used to relieve memory pressure, don't
2552			 * incur MAYDAY_INTERVAL delay inbetween.
2553			 */
2554			if (pwq->nr_active && need_to_create_worker(pool)) {
2555				raw_spin_lock(&wq_mayday_lock);
2556				/*
2557				 * Queue iff we aren't racing destruction
2558				 * and somebody else hasn't queued it already.
2559				 */
2560				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2561					get_pwq(pwq);
2562					list_add_tail(&pwq->mayday_node, &wq->maydays);
2563				}
2564				raw_spin_unlock(&wq_mayday_lock);
2565			}
2566		}
2567
2568		/*
2569		 * Put the reference grabbed by send_mayday().  @pool won't
2570		 * go away while we're still attached to it.
2571		 */
2572		put_pwq(pwq);
2573
2574		/*
2575		 * Leave this pool.  If need_more_worker() is %true, notify a
2576		 * regular worker; otherwise, we end up with 0 concurrency
2577		 * and stalling the execution.
2578		 */
2579		if (need_more_worker(pool))
2580			wake_up_worker(pool);
2581
2582		raw_spin_unlock_irq(&pool->lock);
2583
2584		worker_detach_from_pool(rescuer);
2585
2586		raw_spin_lock_irq(&wq_mayday_lock);
2587	}
2588
2589	raw_spin_unlock_irq(&wq_mayday_lock);
2590
2591	if (should_stop) {
2592		__set_current_state(TASK_RUNNING);
2593		set_pf_worker(false);
2594		return 0;
2595	}
2596
2597	/* rescuers should never participate in concurrency management */
2598	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2599	schedule();
2600	goto repeat;
2601}
2602
2603/**
2604 * check_flush_dependency - check for flush dependency sanity
2605 * @target_wq: workqueue being flushed
2606 * @target_work: work item being flushed (NULL for workqueue flushes)
2607 *
2608 * %current is trying to flush the whole @target_wq or @target_work on it.
2609 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2610 * reclaiming memory or running on a workqueue which doesn't have
2611 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2612 * a deadlock.
2613 */
2614static void check_flush_dependency(struct workqueue_struct *target_wq,
2615				   struct work_struct *target_work)
2616{
2617	work_func_t target_func = target_work ? target_work->func : NULL;
2618	struct worker *worker;
2619
2620	if (target_wq->flags & WQ_MEM_RECLAIM)
2621		return;
2622
2623	worker = current_wq_worker();
2624
2625	WARN_ONCE(current->flags & PF_MEMALLOC,
2626		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2627		  current->pid, current->comm, target_wq->name, target_func);
2628	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2629			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2630		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2631		  worker->current_pwq->wq->name, worker->current_func,
2632		  target_wq->name, target_func);
2633}
2634
2635struct wq_barrier {
2636	struct work_struct	work;
2637	struct completion	done;
2638	struct task_struct	*task;	/* purely informational */
2639};
2640
2641static void wq_barrier_func(struct work_struct *work)
2642{
2643	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2644	complete(&barr->done);
2645}
2646
2647/**
2648 * insert_wq_barrier - insert a barrier work
2649 * @pwq: pwq to insert barrier into
2650 * @barr: wq_barrier to insert
2651 * @target: target work to attach @barr to
2652 * @worker: worker currently executing @target, NULL if @target is not executing
2653 *
2654 * @barr is linked to @target such that @barr is completed only after
2655 * @target finishes execution.  Please note that the ordering
2656 * guarantee is observed only with respect to @target and on the local
2657 * cpu.
2658 *
2659 * Currently, a queued barrier can't be canceled.  This is because
2660 * try_to_grab_pending() can't determine whether the work to be
2661 * grabbed is at the head of the queue and thus can't clear LINKED
2662 * flag of the previous work while there must be a valid next work
2663 * after a work with LINKED flag set.
2664 *
2665 * Note that when @worker is non-NULL, @target may be modified
2666 * underneath us, so we can't reliably determine pwq from @target.
2667 *
2668 * CONTEXT:
2669 * raw_spin_lock_irq(pool->lock).
2670 */
2671static void insert_wq_barrier(struct pool_workqueue *pwq,
2672			      struct wq_barrier *barr,
2673			      struct work_struct *target, struct worker *worker)
2674{
2675	unsigned int work_flags = 0;
2676	unsigned int work_color;
2677	struct list_head *head;
 
2678
2679	/*
2680	 * debugobject calls are safe here even with pool->lock locked
2681	 * as we know for sure that this will not trigger any of the
2682	 * checks and call back into the fixup functions where we
2683	 * might deadlock.
2684	 */
2685	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2686	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2687
2688	init_completion_map(&barr->done, &target->lockdep_map);
2689
2690	barr->task = current;
2691
2692	/* The barrier work item does not participate in pwq->nr_active. */
2693	work_flags |= WORK_STRUCT_INACTIVE;
2694
2695	/*
2696	 * If @target is currently being executed, schedule the
2697	 * barrier to the worker; otherwise, put it after @target.
2698	 */
2699	if (worker) {
2700		head = worker->scheduled.next;
2701		work_color = worker->current_color;
2702	} else {
2703		unsigned long *bits = work_data_bits(target);
2704
2705		head = target->entry.next;
2706		/* there can already be other linked works, inherit and set */
2707		work_flags |= *bits & WORK_STRUCT_LINKED;
2708		work_color = get_work_color(*bits);
2709		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2710	}
2711
2712	pwq->nr_in_flight[work_color]++;
2713	work_flags |= work_color_to_flags(work_color);
2714
2715	debug_work_activate(&barr->work);
2716	insert_work(pwq, &barr->work, head, work_flags);
 
2717}
2718
2719/**
2720 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2721 * @wq: workqueue being flushed
2722 * @flush_color: new flush color, < 0 for no-op
2723 * @work_color: new work color, < 0 for no-op
2724 *
2725 * Prepare pwqs for workqueue flushing.
2726 *
2727 * If @flush_color is non-negative, flush_color on all pwqs should be
2728 * -1.  If no pwq has in-flight commands at the specified color, all
2729 * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2730 * has in flight commands, its pwq->flush_color is set to
2731 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2732 * wakeup logic is armed and %true is returned.
2733 *
2734 * The caller should have initialized @wq->first_flusher prior to
2735 * calling this function with non-negative @flush_color.  If
2736 * @flush_color is negative, no flush color update is done and %false
2737 * is returned.
2738 *
2739 * If @work_color is non-negative, all pwqs should have the same
2740 * work_color which is previous to @work_color and all will be
2741 * advanced to @work_color.
2742 *
2743 * CONTEXT:
2744 * mutex_lock(wq->mutex).
2745 *
2746 * Return:
2747 * %true if @flush_color >= 0 and there's something to flush.  %false
2748 * otherwise.
2749 */
2750static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2751				      int flush_color, int work_color)
2752{
2753	bool wait = false;
2754	struct pool_workqueue *pwq;
2755
2756	if (flush_color >= 0) {
2757		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2758		atomic_set(&wq->nr_pwqs_to_flush, 1);
2759	}
2760
2761	for_each_pwq(pwq, wq) {
2762		struct worker_pool *pool = pwq->pool;
 
2763
2764		raw_spin_lock_irq(&pool->lock);
2765
2766		if (flush_color >= 0) {
2767			WARN_ON_ONCE(pwq->flush_color != -1);
2768
2769			if (pwq->nr_in_flight[flush_color]) {
2770				pwq->flush_color = flush_color;
2771				atomic_inc(&wq->nr_pwqs_to_flush);
2772				wait = true;
2773			}
2774		}
2775
2776		if (work_color >= 0) {
2777			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2778			pwq->work_color = work_color;
2779		}
2780
2781		raw_spin_unlock_irq(&pool->lock);
2782	}
2783
2784	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2785		complete(&wq->first_flusher->done);
2786
2787	return wait;
2788}
2789
2790/**
2791 * __flush_workqueue - ensure that any scheduled work has run to completion.
2792 * @wq: workqueue to flush
2793 *
2794 * This function sleeps until all work items which were queued on entry
2795 * have finished execution, but it is not livelocked by new incoming ones.
 
 
 
2796 */
2797void __flush_workqueue(struct workqueue_struct *wq)
2798{
2799	struct wq_flusher this_flusher = {
2800		.list = LIST_HEAD_INIT(this_flusher.list),
2801		.flush_color = -1,
2802		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2803	};
2804	int next_color;
2805
2806	if (WARN_ON(!wq_online))
2807		return;
2808
2809	lock_map_acquire(&wq->lockdep_map);
2810	lock_map_release(&wq->lockdep_map);
2811
2812	mutex_lock(&wq->mutex);
2813
2814	/*
2815	 * Start-to-wait phase
2816	 */
2817	next_color = work_next_color(wq->work_color);
2818
2819	if (next_color != wq->flush_color) {
2820		/*
2821		 * Color space is not full.  The current work_color
2822		 * becomes our flush_color and work_color is advanced
2823		 * by one.
2824		 */
2825		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2826		this_flusher.flush_color = wq->work_color;
2827		wq->work_color = next_color;
2828
2829		if (!wq->first_flusher) {
2830			/* no flush in progress, become the first flusher */
2831			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2832
2833			wq->first_flusher = &this_flusher;
2834
2835			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2836						       wq->work_color)) {
2837				/* nothing to flush, done */
2838				wq->flush_color = next_color;
2839				wq->first_flusher = NULL;
2840				goto out_unlock;
2841			}
2842		} else {
2843			/* wait in queue */
2844			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2845			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2846			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2847		}
2848	} else {
2849		/*
2850		 * Oops, color space is full, wait on overflow queue.
2851		 * The next flush completion will assign us
2852		 * flush_color and transfer to flusher_queue.
2853		 */
2854		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2855	}
2856
2857	check_flush_dependency(wq, NULL);
2858
2859	mutex_unlock(&wq->mutex);
2860
2861	wait_for_completion(&this_flusher.done);
2862
2863	/*
2864	 * Wake-up-and-cascade phase
2865	 *
2866	 * First flushers are responsible for cascading flushes and
2867	 * handling overflow.  Non-first flushers can simply return.
2868	 */
2869	if (READ_ONCE(wq->first_flusher) != &this_flusher)
2870		return;
2871
2872	mutex_lock(&wq->mutex);
2873
2874	/* we might have raced, check again with mutex held */
2875	if (wq->first_flusher != &this_flusher)
2876		goto out_unlock;
2877
2878	WRITE_ONCE(wq->first_flusher, NULL);
2879
2880	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2881	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2882
2883	while (true) {
2884		struct wq_flusher *next, *tmp;
2885
2886		/* complete all the flushers sharing the current flush color */
2887		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2888			if (next->flush_color != wq->flush_color)
2889				break;
2890			list_del_init(&next->list);
2891			complete(&next->done);
2892		}
2893
2894		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2895			     wq->flush_color != work_next_color(wq->work_color));
2896
2897		/* this flush_color is finished, advance by one */
2898		wq->flush_color = work_next_color(wq->flush_color);
2899
2900		/* one color has been freed, handle overflow queue */
2901		if (!list_empty(&wq->flusher_overflow)) {
2902			/*
2903			 * Assign the same color to all overflowed
2904			 * flushers, advance work_color and append to
2905			 * flusher_queue.  This is the start-to-wait
2906			 * phase for these overflowed flushers.
2907			 */
2908			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2909				tmp->flush_color = wq->work_color;
2910
2911			wq->work_color = work_next_color(wq->work_color);
2912
2913			list_splice_tail_init(&wq->flusher_overflow,
2914					      &wq->flusher_queue);
2915			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2916		}
2917
2918		if (list_empty(&wq->flusher_queue)) {
2919			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2920			break;
2921		}
2922
2923		/*
2924		 * Need to flush more colors.  Make the next flusher
2925		 * the new first flusher and arm pwqs.
2926		 */
2927		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2928		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2929
2930		list_del_init(&next->list);
2931		wq->first_flusher = next;
2932
2933		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2934			break;
2935
2936		/*
2937		 * Meh... this color is already done, clear first
2938		 * flusher and repeat cascading.
2939		 */
2940		wq->first_flusher = NULL;
2941	}
2942
2943out_unlock:
2944	mutex_unlock(&wq->mutex);
2945}
2946EXPORT_SYMBOL(__flush_workqueue);
2947
2948/**
2949 * drain_workqueue - drain a workqueue
2950 * @wq: workqueue to drain
2951 *
2952 * Wait until the workqueue becomes empty.  While draining is in progress,
2953 * only chain queueing is allowed.  IOW, only currently pending or running
2954 * work items on @wq can queue further work items on it.  @wq is flushed
2955 * repeatedly until it becomes empty.  The number of flushing is determined
2956 * by the depth of chaining and should be relatively short.  Whine if it
2957 * takes too long.
2958 */
2959void drain_workqueue(struct workqueue_struct *wq)
2960{
2961	unsigned int flush_cnt = 0;
2962	struct pool_workqueue *pwq;
2963
2964	/*
2965	 * __queue_work() needs to test whether there are drainers, is much
2966	 * hotter than drain_workqueue() and already looks at @wq->flags.
2967	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2968	 */
2969	mutex_lock(&wq->mutex);
2970	if (!wq->nr_drainers++)
2971		wq->flags |= __WQ_DRAINING;
2972	mutex_unlock(&wq->mutex);
2973reflush:
2974	__flush_workqueue(wq);
2975
2976	mutex_lock(&wq->mutex);
2977
2978	for_each_pwq(pwq, wq) {
 
2979		bool drained;
2980
2981		raw_spin_lock_irq(&pwq->pool->lock);
2982		drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
2983		raw_spin_unlock_irq(&pwq->pool->lock);
2984
2985		if (drained)
2986			continue;
2987
2988		if (++flush_cnt == 10 ||
2989		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2990			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
2991				wq->name, __func__, flush_cnt);
2992
2993		mutex_unlock(&wq->mutex);
2994		goto reflush;
2995	}
2996
 
2997	if (!--wq->nr_drainers)
2998		wq->flags &= ~__WQ_DRAINING;
2999	mutex_unlock(&wq->mutex);
3000}
3001EXPORT_SYMBOL_GPL(drain_workqueue);
3002
3003static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3004			     bool from_cancel)
3005{
3006	struct worker *worker = NULL;
3007	struct worker_pool *pool;
3008	struct pool_workqueue *pwq;
3009
3010	might_sleep();
3011
3012	rcu_read_lock();
3013	pool = get_work_pool(work);
3014	if (!pool) {
3015		rcu_read_unlock();
3016		return false;
3017	}
3018
3019	raw_spin_lock_irq(&pool->lock);
3020	/* see the comment in try_to_grab_pending() with the same code */
3021	pwq = get_work_pwq(work);
3022	if (pwq) {
3023		if (unlikely(pwq->pool != pool))
 
 
 
 
 
3024			goto already_gone;
3025	} else {
3026		worker = find_worker_executing_work(pool, work);
3027		if (!worker)
3028			goto already_gone;
3029		pwq = worker->current_pwq;
3030	}
 
3031
3032	check_flush_dependency(pwq->wq, work);
3033
3034	insert_wq_barrier(pwq, barr, work, worker);
3035	raw_spin_unlock_irq(&pool->lock);
3036
3037	/*
3038	 * Force a lock recursion deadlock when using flush_work() inside a
3039	 * single-threaded or rescuer equipped workqueue.
3040	 *
3041	 * For single threaded workqueues the deadlock happens when the work
3042	 * is after the work issuing the flush_work(). For rescuer equipped
3043	 * workqueues the deadlock happens when the rescuer stalls, blocking
3044	 * forward progress.
3045	 */
3046	if (!from_cancel &&
3047	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3048		lock_map_acquire(&pwq->wq->lockdep_map);
3049		lock_map_release(&pwq->wq->lockdep_map);
3050	}
3051	rcu_read_unlock();
3052	return true;
3053already_gone:
3054	raw_spin_unlock_irq(&pool->lock);
3055	rcu_read_unlock();
3056	return false;
3057}
3058
3059static bool __flush_work(struct work_struct *work, bool from_cancel)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3060{
3061	struct wq_barrier barr;
3062
3063	if (WARN_ON(!wq_online))
 
 
 
 
3064		return false;
 
 
3065
3066	if (WARN_ON(!work->func))
3067		return false;
 
 
3068
3069	lock_map_acquire(&work->lockdep_map);
3070	lock_map_release(&work->lockdep_map);
 
 
 
 
 
3071
3072	if (start_flush_work(work, &barr, from_cancel)) {
3073		wait_for_completion(&barr.done);
3074		destroy_work_on_stack(&barr.work);
3075		return true;
3076	} else {
3077		return false;
3078	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3079}
3080
3081/**
3082 * flush_work - wait for a work to finish executing the last queueing instance
3083 * @work: the work to flush
3084 *
3085 * Wait until @work has finished execution.  @work is guaranteed to be idle
3086 * on return if it hasn't been requeued since flush started.
 
 
 
3087 *
3088 * Return:
3089 * %true if flush_work() waited for the work to finish execution,
3090 * %false if it was already idle.
3091 */
3092bool flush_work(struct work_struct *work)
3093{
3094	return __flush_work(work, false);
3095}
3096EXPORT_SYMBOL_GPL(flush_work);
3097
3098struct cwt_wait {
3099	wait_queue_entry_t		wait;
3100	struct work_struct	*work;
3101};
3102
3103static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3104{
3105	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
 
3106
3107	if (cwait->work != key)
3108		return 0;
3109	return autoremove_wake_function(wait, mode, sync, key);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3110}
3111
3112static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
 
3113{
3114	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3115	unsigned long flags;
3116	int ret;
3117
3118	do {
3119		ret = try_to_grab_pending(work, is_dwork, &flags);
3120		/*
3121		 * If someone else is already canceling, wait for it to
3122		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3123		 * because we may get scheduled between @work's completion
3124		 * and the other canceling task resuming and clearing
3125		 * CANCELING - flush_work() will return false immediately
3126		 * as @work is no longer busy, try_to_grab_pending() will
3127		 * return -ENOENT as @work is still being canceled and the
3128		 * other canceling task won't be able to clear CANCELING as
3129		 * we're hogging the CPU.
3130		 *
3131		 * Let's wait for completion using a waitqueue.  As this
3132		 * may lead to the thundering herd problem, use a custom
3133		 * wake function which matches @work along with exclusive
3134		 * wait and wakeup.
3135		 */
3136		if (unlikely(ret == -ENOENT)) {
3137			struct cwt_wait cwait;
3138
3139			init_wait(&cwait.wait);
3140			cwait.wait.func = cwt_wakefn;
3141			cwait.work = work;
3142
3143			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3144						  TASK_UNINTERRUPTIBLE);
3145			if (work_is_canceling(work))
3146				schedule();
3147			finish_wait(&cancel_waitq, &cwait.wait);
3148		}
3149	} while (unlikely(ret < 0));
3150
3151	/* tell other tasks trying to grab @work to back off */
3152	mark_work_canceling(work);
3153	local_irq_restore(flags);
3154
3155	/*
3156	 * This allows canceling during early boot.  We know that @work
3157	 * isn't executing.
3158	 */
3159	if (wq_online)
3160		__flush_work(work, true);
3161
3162	clear_work_data(work);
3163
3164	/*
3165	 * Paired with prepare_to_wait() above so that either
3166	 * waitqueue_active() is visible here or !work_is_canceling() is
3167	 * visible there.
3168	 */
3169	smp_mb();
3170	if (waitqueue_active(&cancel_waitq))
3171		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3172
3173	return ret;
3174}
3175
3176/**
3177 * cancel_work_sync - cancel a work and wait for it to finish
3178 * @work: the work to cancel
3179 *
3180 * Cancel @work and wait for its execution to finish.  This function
3181 * can be used even if the work re-queues itself or migrates to
3182 * another workqueue.  On return from this function, @work is
3183 * guaranteed to be not pending or executing on any CPU.
3184 *
3185 * cancel_work_sync(&delayed_work->work) must not be used for
3186 * delayed_work's.  Use cancel_delayed_work_sync() instead.
3187 *
3188 * The caller must ensure that the workqueue on which @work was last
3189 * queued can't be destroyed before this function returns.
3190 *
3191 * Return:
3192 * %true if @work was pending, %false otherwise.
3193 */
3194bool cancel_work_sync(struct work_struct *work)
3195{
3196	return __cancel_work_timer(work, false);
3197}
3198EXPORT_SYMBOL_GPL(cancel_work_sync);
3199
3200/**
3201 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3202 * @dwork: the delayed work to flush
3203 *
3204 * Delayed timer is cancelled and the pending work is queued for
3205 * immediate execution.  Like flush_work(), this function only
3206 * considers the last queueing instance of @dwork.
3207 *
3208 * Return:
3209 * %true if flush_work() waited for the work to finish execution,
3210 * %false if it was already idle.
3211 */
3212bool flush_delayed_work(struct delayed_work *dwork)
3213{
3214	local_irq_disable();
3215	if (del_timer_sync(&dwork->timer))
3216		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3217	local_irq_enable();
3218	return flush_work(&dwork->work);
3219}
3220EXPORT_SYMBOL(flush_delayed_work);
3221
3222/**
3223 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3224 * @rwork: the rcu work to flush
 
 
 
 
3225 *
3226 * Return:
3227 * %true if flush_rcu_work() waited for the work to finish execution,
3228 * %false if it was already idle.
3229 */
3230bool flush_rcu_work(struct rcu_work *rwork)
3231{
3232	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3233		rcu_barrier();
3234		flush_work(&rwork->work);
3235		return true;
3236	} else {
3237		return flush_work(&rwork->work);
3238	}
3239}
3240EXPORT_SYMBOL(flush_rcu_work);
3241
3242static bool __cancel_work(struct work_struct *work, bool is_dwork)
 
 
 
 
 
 
 
 
 
3243{
3244	unsigned long flags;
3245	int ret;
3246
3247	do {
3248		ret = try_to_grab_pending(work, is_dwork, &flags);
3249	} while (unlikely(ret == -EAGAIN));
3250
3251	if (unlikely(ret < 0))
3252		return false;
3253
3254	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3255	local_irq_restore(flags);
3256	return ret;
 
 
 
 
 
 
 
 
 
 
 
3257}
 
3258
3259/*
3260 * See cancel_delayed_work()
 
 
 
 
3261 */
3262bool cancel_work(struct work_struct *work)
3263{
3264	return __cancel_work(work, false);
3265}
3266EXPORT_SYMBOL(cancel_work);
3267
3268/**
3269 * cancel_delayed_work - cancel a delayed work
3270 * @dwork: delayed_work to cancel
3271 *
3272 * Kill off a pending delayed_work.
3273 *
3274 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3275 * pending.
3276 *
3277 * Note:
3278 * The work callback function may still be running on return, unless
3279 * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3280 * use cancel_delayed_work_sync() to wait on it.
3281 *
3282 * This function is safe to call from any context including IRQ handler.
3283 */
3284bool cancel_delayed_work(struct delayed_work *dwork)
 
3285{
3286	return __cancel_work(&dwork->work, true);
3287}
3288EXPORT_SYMBOL(cancel_delayed_work);
3289
3290/**
3291 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3292 * @dwork: the delayed work cancel
 
 
3293 *
3294 * This is cancel_work_sync() for delayed works.
3295 *
3296 * Return:
3297 * %true if @dwork was pending, %false otherwise.
3298 */
3299bool cancel_delayed_work_sync(struct delayed_work *dwork)
 
3300{
3301	return __cancel_work_timer(&dwork->work, true);
3302}
3303EXPORT_SYMBOL(cancel_delayed_work_sync);
3304
3305/**
3306 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3307 * @func: the function to call
3308 *
3309 * schedule_on_each_cpu() executes @func on each online CPU using the
3310 * system workqueue and blocks until all CPUs have completed.
3311 * schedule_on_each_cpu() is very slow.
3312 *
3313 * Return:
3314 * 0 on success, -errno on failure.
3315 */
3316int schedule_on_each_cpu(work_func_t func)
3317{
3318	int cpu;
3319	struct work_struct __percpu *works;
3320
3321	works = alloc_percpu(struct work_struct);
3322	if (!works)
3323		return -ENOMEM;
3324
3325	cpus_read_lock();
3326
3327	for_each_online_cpu(cpu) {
3328		struct work_struct *work = per_cpu_ptr(works, cpu);
3329
3330		INIT_WORK(work, func);
3331		schedule_work_on(cpu, work);
3332	}
3333
3334	for_each_online_cpu(cpu)
3335		flush_work(per_cpu_ptr(works, cpu));
3336
3337	cpus_read_unlock();
3338	free_percpu(works);
3339	return 0;
3340}
3341
3342/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3343 * execute_in_process_context - reliably execute the routine with user context
3344 * @fn:		the function to execute
3345 * @ew:		guaranteed storage for the execute work structure (must
3346 *		be available when the work executes)
3347 *
3348 * Executes the function immediately if process context is available,
3349 * otherwise schedules the function for delayed execution.
3350 *
3351 * Return:	0 - function was executed
3352 *		1 - function was scheduled for execution
3353 */
3354int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3355{
3356	if (!in_interrupt()) {
3357		fn(&ew->work);
3358		return 0;
3359	}
3360
3361	INIT_WORK(&ew->work, fn);
3362	schedule_work(&ew->work);
3363
3364	return 1;
3365}
3366EXPORT_SYMBOL_GPL(execute_in_process_context);
3367
3368/**
3369 * free_workqueue_attrs - free a workqueue_attrs
3370 * @attrs: workqueue_attrs to free
3371 *
3372 * Undo alloc_workqueue_attrs().
3373 */
3374void free_workqueue_attrs(struct workqueue_attrs *attrs)
3375{
3376	if (attrs) {
3377		free_cpumask_var(attrs->cpumask);
3378		kfree(attrs);
3379	}
3380}
3381
3382/**
3383 * alloc_workqueue_attrs - allocate a workqueue_attrs
3384 *
3385 * Allocate a new workqueue_attrs, initialize with default settings and
3386 * return it.
3387 *
3388 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3389 */
3390struct workqueue_attrs *alloc_workqueue_attrs(void)
3391{
3392	struct workqueue_attrs *attrs;
3393
3394	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3395	if (!attrs)
3396		goto fail;
3397	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3398		goto fail;
3399
3400	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3401	return attrs;
3402fail:
3403	free_workqueue_attrs(attrs);
3404	return NULL;
3405}
3406
3407static void copy_workqueue_attrs(struct workqueue_attrs *to,
3408				 const struct workqueue_attrs *from)
3409{
3410	to->nice = from->nice;
3411	cpumask_copy(to->cpumask, from->cpumask);
3412	/*
3413	 * Unlike hash and equality test, this function doesn't ignore
3414	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3415	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3416	 */
3417	to->no_numa = from->no_numa;
3418}
3419
3420/* hash value of the content of @attr */
3421static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3422{
3423	u32 hash = 0;
3424
3425	hash = jhash_1word(attrs->nice, hash);
3426	hash = jhash(cpumask_bits(attrs->cpumask),
3427		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3428	return hash;
3429}
3430
3431/* content equality test */
3432static bool wqattrs_equal(const struct workqueue_attrs *a,
3433			  const struct workqueue_attrs *b)
3434{
3435	if (a->nice != b->nice)
3436		return false;
3437	if (!cpumask_equal(a->cpumask, b->cpumask))
3438		return false;
3439	return true;
3440}
3441
3442/**
3443 * init_worker_pool - initialize a newly zalloc'd worker_pool
3444 * @pool: worker_pool to initialize
3445 *
3446 * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3447 *
3448 * Return: 0 on success, -errno on failure.  Even on failure, all fields
3449 * inside @pool proper are initialized and put_unbound_pool() can be called
3450 * on @pool safely to release it.
3451 */
3452static int init_worker_pool(struct worker_pool *pool)
3453{
3454	raw_spin_lock_init(&pool->lock);
3455	pool->id = -1;
3456	pool->cpu = -1;
3457	pool->node = NUMA_NO_NODE;
3458	pool->flags |= POOL_DISASSOCIATED;
3459	pool->watchdog_ts = jiffies;
3460	INIT_LIST_HEAD(&pool->worklist);
3461	INIT_LIST_HEAD(&pool->idle_list);
3462	hash_init(pool->busy_hash);
3463
3464	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3465
3466	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3467
3468	INIT_LIST_HEAD(&pool->workers);
3469
3470	ida_init(&pool->worker_ida);
3471	INIT_HLIST_NODE(&pool->hash_node);
3472	pool->refcnt = 1;
3473
3474	/* shouldn't fail above this point */
3475	pool->attrs = alloc_workqueue_attrs();
3476	if (!pool->attrs)
3477		return -ENOMEM;
3478	return 0;
3479}
3480
3481#ifdef CONFIG_LOCKDEP
3482static void wq_init_lockdep(struct workqueue_struct *wq)
3483{
3484	char *lock_name;
3485
3486	lockdep_register_key(&wq->key);
3487	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3488	if (!lock_name)
3489		lock_name = wq->name;
3490
3491	wq->lock_name = lock_name;
3492	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3493}
3494
3495static void wq_unregister_lockdep(struct workqueue_struct *wq)
3496{
3497	lockdep_unregister_key(&wq->key);
3498}
3499
3500static void wq_free_lockdep(struct workqueue_struct *wq)
3501{
3502	if (wq->lock_name != wq->name)
3503		kfree(wq->lock_name);
3504}
3505#else
3506static void wq_init_lockdep(struct workqueue_struct *wq)
3507{
3508}
3509
3510static void wq_unregister_lockdep(struct workqueue_struct *wq)
3511{
3512}
3513
3514static void wq_free_lockdep(struct workqueue_struct *wq)
3515{
3516}
3517#endif
3518
3519static void rcu_free_wq(struct rcu_head *rcu)
3520{
3521	struct workqueue_struct *wq =
3522		container_of(rcu, struct workqueue_struct, rcu);
3523
3524	wq_free_lockdep(wq);
3525
3526	if (!(wq->flags & WQ_UNBOUND))
3527		free_percpu(wq->cpu_pwqs);
3528	else
3529		free_workqueue_attrs(wq->unbound_attrs);
3530
3531	kfree(wq);
3532}
3533
3534static void rcu_free_pool(struct rcu_head *rcu)
3535{
3536	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3537
3538	ida_destroy(&pool->worker_ida);
3539	free_workqueue_attrs(pool->attrs);
3540	kfree(pool);
3541}
3542
3543/* This returns with the lock held on success (pool manager is inactive). */
3544static bool wq_manager_inactive(struct worker_pool *pool)
3545{
3546	raw_spin_lock_irq(&pool->lock);
3547
3548	if (pool->flags & POOL_MANAGER_ACTIVE) {
3549		raw_spin_unlock_irq(&pool->lock);
3550		return false;
3551	}
3552	return true;
3553}
3554
3555/**
3556 * put_unbound_pool - put a worker_pool
3557 * @pool: worker_pool to put
3558 *
3559 * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
3560 * safe manner.  get_unbound_pool() calls this function on its failure path
3561 * and this function should be able to release pools which went through,
3562 * successfully or not, init_worker_pool().
3563 *
3564 * Should be called with wq_pool_mutex held.
3565 */
3566static void put_unbound_pool(struct worker_pool *pool)
3567{
3568	DECLARE_COMPLETION_ONSTACK(detach_completion);
3569	struct worker *worker;
3570
3571	lockdep_assert_held(&wq_pool_mutex);
3572
3573	if (--pool->refcnt)
3574		return;
3575
3576	/* sanity checks */
3577	if (WARN_ON(!(pool->cpu < 0)) ||
3578	    WARN_ON(!list_empty(&pool->worklist)))
3579		return;
3580
3581	/* release id and unhash */
3582	if (pool->id >= 0)
3583		idr_remove(&worker_pool_idr, pool->id);
3584	hash_del(&pool->hash_node);
3585
3586	/*
3587	 * Become the manager and destroy all workers.  This prevents
3588	 * @pool's workers from blocking on attach_mutex.  We're the last
3589	 * manager and @pool gets freed with the flag set.
3590	 * Because of how wq_manager_inactive() works, we will hold the
3591	 * spinlock after a successful wait.
3592	 */
3593	rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3594			   TASK_UNINTERRUPTIBLE);
3595	pool->flags |= POOL_MANAGER_ACTIVE;
3596
3597	while ((worker = first_idle_worker(pool)))
3598		destroy_worker(worker);
3599	WARN_ON(pool->nr_workers || pool->nr_idle);
3600	raw_spin_unlock_irq(&pool->lock);
3601
3602	mutex_lock(&wq_pool_attach_mutex);
3603	if (!list_empty(&pool->workers))
3604		pool->detach_completion = &detach_completion;
3605	mutex_unlock(&wq_pool_attach_mutex);
3606
3607	if (pool->detach_completion)
3608		wait_for_completion(pool->detach_completion);
3609
3610	/* shut down the timers */
3611	del_timer_sync(&pool->idle_timer);
3612	del_timer_sync(&pool->mayday_timer);
3613
3614	/* RCU protected to allow dereferences from get_work_pool() */
3615	call_rcu(&pool->rcu, rcu_free_pool);
3616}
3617
3618/**
3619 * get_unbound_pool - get a worker_pool with the specified attributes
3620 * @attrs: the attributes of the worker_pool to get
3621 *
3622 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3623 * reference count and return it.  If there already is a matching
3624 * worker_pool, it will be used; otherwise, this function attempts to
3625 * create a new one.
3626 *
3627 * Should be called with wq_pool_mutex held.
3628 *
3629 * Return: On success, a worker_pool with the same attributes as @attrs.
3630 * On failure, %NULL.
3631 */
3632static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3633{
3634	u32 hash = wqattrs_hash(attrs);
3635	struct worker_pool *pool;
3636	int node;
3637	int target_node = NUMA_NO_NODE;
3638
3639	lockdep_assert_held(&wq_pool_mutex);
3640
3641	/* do we already have a matching pool? */
3642	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3643		if (wqattrs_equal(pool->attrs, attrs)) {
3644			pool->refcnt++;
3645			return pool;
3646		}
3647	}
3648
3649	/* if cpumask is contained inside a NUMA node, we belong to that node */
3650	if (wq_numa_enabled) {
3651		for_each_node(node) {
3652			if (cpumask_subset(attrs->cpumask,
3653					   wq_numa_possible_cpumask[node])) {
3654				target_node = node;
3655				break;
3656			}
3657		}
3658	}
3659
3660	/* nope, create a new one */
3661	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3662	if (!pool || init_worker_pool(pool) < 0)
3663		goto fail;
3664
3665	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3666	copy_workqueue_attrs(pool->attrs, attrs);
3667	pool->node = target_node;
3668
3669	/*
3670	 * no_numa isn't a worker_pool attribute, always clear it.  See
3671	 * 'struct workqueue_attrs' comments for detail.
3672	 */
3673	pool->attrs->no_numa = false;
3674
3675	if (worker_pool_assign_id(pool) < 0)
3676		goto fail;
3677
3678	/* create and start the initial worker */
3679	if (wq_online && !create_worker(pool))
3680		goto fail;
3681
3682	/* install */
3683	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3684
3685	return pool;
3686fail:
3687	if (pool)
3688		put_unbound_pool(pool);
3689	return NULL;
3690}
3691
3692static void rcu_free_pwq(struct rcu_head *rcu)
3693{
3694	kmem_cache_free(pwq_cache,
3695			container_of(rcu, struct pool_workqueue, rcu));
3696}
3697
3698/*
3699 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3700 * and needs to be destroyed.
3701 */
3702static void pwq_unbound_release_workfn(struct work_struct *work)
3703{
3704	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3705						  unbound_release_work);
3706	struct workqueue_struct *wq = pwq->wq;
3707	struct worker_pool *pool = pwq->pool;
3708	bool is_last = false;
3709
3710	/*
3711	 * when @pwq is not linked, it doesn't hold any reference to the
3712	 * @wq, and @wq is invalid to access.
3713	 */
3714	if (!list_empty(&pwq->pwqs_node)) {
3715		if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3716			return;
3717
3718		mutex_lock(&wq->mutex);
3719		list_del_rcu(&pwq->pwqs_node);
3720		is_last = list_empty(&wq->pwqs);
3721		mutex_unlock(&wq->mutex);
3722	}
3723
3724	mutex_lock(&wq_pool_mutex);
3725	put_unbound_pool(pool);
3726	mutex_unlock(&wq_pool_mutex);
3727
3728	call_rcu(&pwq->rcu, rcu_free_pwq);
3729
3730	/*
3731	 * If we're the last pwq going away, @wq is already dead and no one
3732	 * is gonna access it anymore.  Schedule RCU free.
3733	 */
3734	if (is_last) {
3735		wq_unregister_lockdep(wq);
3736		call_rcu(&wq->rcu, rcu_free_wq);
3737	}
3738}
3739
3740/**
3741 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3742 * @pwq: target pool_workqueue
3743 *
3744 * If @pwq isn't freezing, set @pwq->max_active to the associated
3745 * workqueue's saved_max_active and activate inactive work items
3746 * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3747 */
3748static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3749{
3750	struct workqueue_struct *wq = pwq->wq;
3751	bool freezable = wq->flags & WQ_FREEZABLE;
3752	unsigned long flags;
3753
3754	/* for @wq->saved_max_active */
3755	lockdep_assert_held(&wq->mutex);
3756
3757	/* fast exit for non-freezable wqs */
3758	if (!freezable && pwq->max_active == wq->saved_max_active)
3759		return;
3760
3761	/* this function can be called during early boot w/ irq disabled */
3762	raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3763
3764	/*
3765	 * During [un]freezing, the caller is responsible for ensuring that
3766	 * this function is called at least once after @workqueue_freezing
3767	 * is updated and visible.
3768	 */
3769	if (!freezable || !workqueue_freezing) {
3770		bool kick = false;
3771
3772		pwq->max_active = wq->saved_max_active;
3773
3774		while (!list_empty(&pwq->inactive_works) &&
3775		       pwq->nr_active < pwq->max_active) {
3776			pwq_activate_first_inactive(pwq);
3777			kick = true;
3778		}
3779
3780		/*
3781		 * Need to kick a worker after thawed or an unbound wq's
3782		 * max_active is bumped. In realtime scenarios, always kicking a
3783		 * worker will cause interference on the isolated cpu cores, so
3784		 * let's kick iff work items were activated.
3785		 */
3786		if (kick)
3787			wake_up_worker(pwq->pool);
3788	} else {
3789		pwq->max_active = 0;
3790	}
3791
3792	raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
3793}
3794
3795/* initialize newly allocated @pwq which is associated with @wq and @pool */
3796static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3797		     struct worker_pool *pool)
3798{
3799	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3800
3801	memset(pwq, 0, sizeof(*pwq));
3802
3803	pwq->pool = pool;
3804	pwq->wq = wq;
3805	pwq->flush_color = -1;
3806	pwq->refcnt = 1;
3807	INIT_LIST_HEAD(&pwq->inactive_works);
3808	INIT_LIST_HEAD(&pwq->pwqs_node);
3809	INIT_LIST_HEAD(&pwq->mayday_node);
3810	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3811}
3812
3813/* sync @pwq with the current state of its associated wq and link it */
3814static void link_pwq(struct pool_workqueue *pwq)
3815{
3816	struct workqueue_struct *wq = pwq->wq;
3817
3818	lockdep_assert_held(&wq->mutex);
3819
3820	/* may be called multiple times, ignore if already linked */
3821	if (!list_empty(&pwq->pwqs_node))
3822		return;
3823
3824	/* set the matching work_color */
3825	pwq->work_color = wq->work_color;
3826
3827	/* sync max_active to the current setting */
3828	pwq_adjust_max_active(pwq);
3829
3830	/* link in @pwq */
3831	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3832}
3833
3834/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3835static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3836					const struct workqueue_attrs *attrs)
3837{
3838	struct worker_pool *pool;
3839	struct pool_workqueue *pwq;
3840
3841	lockdep_assert_held(&wq_pool_mutex);
3842
3843	pool = get_unbound_pool(attrs);
3844	if (!pool)
3845		return NULL;
3846
3847	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3848	if (!pwq) {
3849		put_unbound_pool(pool);
3850		return NULL;
3851	}
3852
3853	init_pwq(pwq, wq, pool);
3854	return pwq;
3855}
3856
3857/**
3858 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3859 * @attrs: the wq_attrs of the default pwq of the target workqueue
3860 * @node: the target NUMA node
3861 * @cpu_going_down: if >= 0, the CPU to consider as offline
3862 * @cpumask: outarg, the resulting cpumask
3863 *
3864 * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3865 * @cpu_going_down is >= 0, that cpu is considered offline during
3866 * calculation.  The result is stored in @cpumask.
3867 *
3868 * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3869 * enabled and @node has online CPUs requested by @attrs, the returned
3870 * cpumask is the intersection of the possible CPUs of @node and
3871 * @attrs->cpumask.
3872 *
3873 * The caller is responsible for ensuring that the cpumask of @node stays
3874 * stable.
3875 *
3876 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3877 * %false if equal.
3878 */
3879static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3880				 int cpu_going_down, cpumask_t *cpumask)
3881{
3882	if (!wq_numa_enabled || attrs->no_numa)
3883		goto use_dfl;
3884
3885	/* does @node have any online CPUs @attrs wants? */
3886	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3887	if (cpu_going_down >= 0)
3888		cpumask_clear_cpu(cpu_going_down, cpumask);
3889
3890	if (cpumask_empty(cpumask))
3891		goto use_dfl;
3892
3893	/* yeap, return possible CPUs in @node that @attrs wants */
3894	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3895
3896	if (cpumask_empty(cpumask)) {
3897		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3898				"possible intersect\n");
3899		return false;
3900	}
3901
3902	return !cpumask_equal(cpumask, attrs->cpumask);
3903
3904use_dfl:
3905	cpumask_copy(cpumask, attrs->cpumask);
3906	return false;
3907}
3908
3909/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3910static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3911						   int node,
3912						   struct pool_workqueue *pwq)
3913{
3914	struct pool_workqueue *old_pwq;
3915
3916	lockdep_assert_held(&wq_pool_mutex);
3917	lockdep_assert_held(&wq->mutex);
3918
3919	/* link_pwq() can handle duplicate calls */
3920	link_pwq(pwq);
3921
3922	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3923	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3924	return old_pwq;
3925}
3926
3927/* context to store the prepared attrs & pwqs before applying */
3928struct apply_wqattrs_ctx {
3929	struct workqueue_struct	*wq;		/* target workqueue */
3930	struct workqueue_attrs	*attrs;		/* attrs to apply */
3931	struct list_head	list;		/* queued for batching commit */
3932	struct pool_workqueue	*dfl_pwq;
3933	struct pool_workqueue	*pwq_tbl[];
3934};
3935
3936/* free the resources after success or abort */
3937static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3938{
3939	if (ctx) {
3940		int node;
3941
3942		for_each_node(node)
3943			put_pwq_unlocked(ctx->pwq_tbl[node]);
3944		put_pwq_unlocked(ctx->dfl_pwq);
3945
3946		free_workqueue_attrs(ctx->attrs);
3947
3948		kfree(ctx);
3949	}
3950}
3951
3952/* allocate the attrs and pwqs for later installation */
3953static struct apply_wqattrs_ctx *
3954apply_wqattrs_prepare(struct workqueue_struct *wq,
3955		      const struct workqueue_attrs *attrs)
3956{
3957	struct apply_wqattrs_ctx *ctx;
3958	struct workqueue_attrs *new_attrs, *tmp_attrs;
3959	int node;
3960
3961	lockdep_assert_held(&wq_pool_mutex);
3962
3963	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3964
3965	new_attrs = alloc_workqueue_attrs();
3966	tmp_attrs = alloc_workqueue_attrs();
3967	if (!ctx || !new_attrs || !tmp_attrs)
3968		goto out_free;
3969
3970	/*
3971	 * Calculate the attrs of the default pwq.
3972	 * If the user configured cpumask doesn't overlap with the
3973	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3974	 */
3975	copy_workqueue_attrs(new_attrs, attrs);
3976	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3977	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3978		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3979
3980	/*
3981	 * We may create multiple pwqs with differing cpumasks.  Make a
3982	 * copy of @new_attrs which will be modified and used to obtain
3983	 * pools.
3984	 */
3985	copy_workqueue_attrs(tmp_attrs, new_attrs);
3986
3987	/*
3988	 * If something goes wrong during CPU up/down, we'll fall back to
3989	 * the default pwq covering whole @attrs->cpumask.  Always create
3990	 * it even if we don't use it immediately.
3991	 */
3992	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3993	if (!ctx->dfl_pwq)
3994		goto out_free;
3995
3996	for_each_node(node) {
3997		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3998			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3999			if (!ctx->pwq_tbl[node])
4000				goto out_free;
4001		} else {
4002			ctx->dfl_pwq->refcnt++;
4003			ctx->pwq_tbl[node] = ctx->dfl_pwq;
4004		}
4005	}
4006
4007	/* save the user configured attrs and sanitize it. */
4008	copy_workqueue_attrs(new_attrs, attrs);
4009	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
4010	ctx->attrs = new_attrs;
4011
4012	ctx->wq = wq;
4013	free_workqueue_attrs(tmp_attrs);
4014	return ctx;
4015
4016out_free:
4017	free_workqueue_attrs(tmp_attrs);
4018	free_workqueue_attrs(new_attrs);
4019	apply_wqattrs_cleanup(ctx);
4020	return NULL;
4021}
4022
4023/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
4024static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4025{
4026	int node;
4027
4028	/* all pwqs have been created successfully, let's install'em */
4029	mutex_lock(&ctx->wq->mutex);
4030
4031	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4032
4033	/* save the previous pwq and install the new one */
4034	for_each_node(node)
4035		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4036							  ctx->pwq_tbl[node]);
4037
4038	/* @dfl_pwq might not have been used, ensure it's linked */
4039	link_pwq(ctx->dfl_pwq);
4040	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4041
4042	mutex_unlock(&ctx->wq->mutex);
4043}
4044
4045static void apply_wqattrs_lock(void)
4046{
4047	/* CPUs should stay stable across pwq creations and installations */
4048	cpus_read_lock();
4049	mutex_lock(&wq_pool_mutex);
4050}
4051
4052static void apply_wqattrs_unlock(void)
4053{
4054	mutex_unlock(&wq_pool_mutex);
4055	cpus_read_unlock();
4056}
4057
4058static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4059					const struct workqueue_attrs *attrs)
4060{
4061	struct apply_wqattrs_ctx *ctx;
4062
4063	/* only unbound workqueues can change attributes */
4064	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4065		return -EINVAL;
4066
4067	/* creating multiple pwqs breaks ordering guarantee */
4068	if (!list_empty(&wq->pwqs)) {
4069		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4070			return -EINVAL;
4071
4072		wq->flags &= ~__WQ_ORDERED;
4073	}
4074
4075	ctx = apply_wqattrs_prepare(wq, attrs);
4076	if (!ctx)
4077		return -ENOMEM;
4078
4079	/* the ctx has been prepared successfully, let's commit it */
4080	apply_wqattrs_commit(ctx);
4081	apply_wqattrs_cleanup(ctx);
4082
4083	return 0;
4084}
4085
4086/**
4087 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4088 * @wq: the target workqueue
4089 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4090 *
4091 * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
4092 * machines, this function maps a separate pwq to each NUMA node with
4093 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4094 * NUMA node it was issued on.  Older pwqs are released as in-flight work
4095 * items finish.  Note that a work item which repeatedly requeues itself
4096 * back-to-back will stay on its current pwq.
4097 *
4098 * Performs GFP_KERNEL allocations.
4099 *
4100 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
4101 *
4102 * Return: 0 on success and -errno on failure.
4103 */
4104int apply_workqueue_attrs(struct workqueue_struct *wq,
4105			  const struct workqueue_attrs *attrs)
4106{
4107	int ret;
4108
4109	lockdep_assert_cpus_held();
4110
4111	mutex_lock(&wq_pool_mutex);
4112	ret = apply_workqueue_attrs_locked(wq, attrs);
4113	mutex_unlock(&wq_pool_mutex);
4114
4115	return ret;
4116}
4117
4118/**
4119 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4120 * @wq: the target workqueue
4121 * @cpu: the CPU coming up or going down
4122 * @online: whether @cpu is coming up or going down
4123 *
4124 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4125 * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4126 * @wq accordingly.
4127 *
4128 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4129 * falls back to @wq->dfl_pwq which may not be optimal but is always
4130 * correct.
4131 *
4132 * Note that when the last allowed CPU of a NUMA node goes offline for a
4133 * workqueue with a cpumask spanning multiple nodes, the workers which were
4134 * already executing the work items for the workqueue will lose their CPU
4135 * affinity and may execute on any CPU.  This is similar to how per-cpu
4136 * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4137 * affinity, it's the user's responsibility to flush the work item from
4138 * CPU_DOWN_PREPARE.
4139 */
4140static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4141				   bool online)
4142{
4143	int node = cpu_to_node(cpu);
4144	int cpu_off = online ? -1 : cpu;
4145	struct pool_workqueue *old_pwq = NULL, *pwq;
4146	struct workqueue_attrs *target_attrs;
4147	cpumask_t *cpumask;
4148
4149	lockdep_assert_held(&wq_pool_mutex);
4150
4151	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4152	    wq->unbound_attrs->no_numa)
4153		return;
4154
4155	/*
4156	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4157	 * Let's use a preallocated one.  The following buf is protected by
4158	 * CPU hotplug exclusion.
4159	 */
4160	target_attrs = wq_update_unbound_numa_attrs_buf;
4161	cpumask = target_attrs->cpumask;
4162
4163	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4164	pwq = unbound_pwq_by_node(wq, node);
4165
4166	/*
4167	 * Let's determine what needs to be done.  If the target cpumask is
4168	 * different from the default pwq's, we need to compare it to @pwq's
4169	 * and create a new one if they don't match.  If the target cpumask
4170	 * equals the default pwq's, the default pwq should be used.
4171	 */
4172	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4173		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4174			return;
4175	} else {
4176		goto use_dfl_pwq;
4177	}
4178
4179	/* create a new pwq */
4180	pwq = alloc_unbound_pwq(wq, target_attrs);
4181	if (!pwq) {
4182		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4183			wq->name);
4184		goto use_dfl_pwq;
4185	}
4186
4187	/* Install the new pwq. */
4188	mutex_lock(&wq->mutex);
4189	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4190	goto out_unlock;
4191
4192use_dfl_pwq:
4193	mutex_lock(&wq->mutex);
4194	raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4195	get_pwq(wq->dfl_pwq);
4196	raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4197	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4198out_unlock:
4199	mutex_unlock(&wq->mutex);
4200	put_pwq_unlocked(old_pwq);
4201}
4202
4203static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4204{
4205	bool highpri = wq->flags & WQ_HIGHPRI;
4206	int cpu, ret;
4207
4208	if (!(wq->flags & WQ_UNBOUND)) {
4209		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4210		if (!wq->cpu_pwqs)
4211			return -ENOMEM;
4212
4213		for_each_possible_cpu(cpu) {
4214			struct pool_workqueue *pwq =
4215				per_cpu_ptr(wq->cpu_pwqs, cpu);
4216			struct worker_pool *cpu_pools =
4217				per_cpu(cpu_worker_pools, cpu);
4218
4219			init_pwq(pwq, wq, &cpu_pools[highpri]);
4220
4221			mutex_lock(&wq->mutex);
4222			link_pwq(pwq);
4223			mutex_unlock(&wq->mutex);
4224		}
4225		return 0;
4226	}
4227
4228	cpus_read_lock();
4229	if (wq->flags & __WQ_ORDERED) {
4230		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4231		/* there should only be single pwq for ordering guarantee */
4232		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4233			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4234		     "ordering guarantee broken for workqueue %s\n", wq->name);
4235	} else {
4236		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4237	}
4238	cpus_read_unlock();
4239
4240	return ret;
4241}
4242
4243static int wq_clamp_max_active(int max_active, unsigned int flags,
4244			       const char *name)
4245{
4246	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4247
4248	if (max_active < 1 || max_active > lim)
4249		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4250			max_active, name, 1, lim);
 
4251
4252	return clamp_val(max_active, 1, lim);
4253}
4254
4255/*
4256 * Workqueues which may be used during memory reclaim should have a rescuer
4257 * to guarantee forward progress.
4258 */
4259static int init_rescuer(struct workqueue_struct *wq)
4260{
4261	struct worker *rescuer;
4262	int ret;
4263
4264	if (!(wq->flags & WQ_MEM_RECLAIM))
4265		return 0;
4266
4267	rescuer = alloc_worker(NUMA_NO_NODE);
4268	if (!rescuer)
4269		return -ENOMEM;
4270
4271	rescuer->rescue_wq = wq;
4272	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4273	if (IS_ERR(rescuer->task)) {
4274		ret = PTR_ERR(rescuer->task);
4275		kfree(rescuer);
4276		return ret;
4277	}
4278
4279	wq->rescuer = rescuer;
4280	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4281	wake_up_process(rescuer->task);
4282
4283	return 0;
4284}
4285
4286__printf(1, 4)
4287struct workqueue_struct *alloc_workqueue(const char *fmt,
4288					 unsigned int flags,
4289					 int max_active, ...)
4290{
4291	size_t tbl_size = 0;
4292	va_list args;
4293	struct workqueue_struct *wq;
4294	struct pool_workqueue *pwq;
4295
4296	/*
4297	 * Unbound && max_active == 1 used to imply ordered, which is no
4298	 * longer the case on NUMA machines due to per-node pools.  While
4299	 * alloc_ordered_workqueue() is the right way to create an ordered
4300	 * workqueue, keep the previous behavior to avoid subtle breakages
4301	 * on NUMA.
4302	 */
4303	if ((flags & WQ_UNBOUND) && max_active == 1)
4304		flags |= __WQ_ORDERED;
4305
4306	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4307	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4308		flags |= WQ_UNBOUND;
4309
4310	/* allocate wq and format name */
4311	if (flags & WQ_UNBOUND)
4312		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4313
4314	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4315	if (!wq)
4316		return NULL;
4317
4318	if (flags & WQ_UNBOUND) {
4319		wq->unbound_attrs = alloc_workqueue_attrs();
4320		if (!wq->unbound_attrs)
4321			goto err_free_wq;
4322	}
4323
4324	va_start(args, max_active);
4325	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4326	va_end(args);
4327
4328	max_active = max_active ?: WQ_DFL_ACTIVE;
4329	max_active = wq_clamp_max_active(max_active, flags, wq->name);
 
 
 
 
4330
4331	/* init wq */
4332	wq->flags = flags;
4333	wq->saved_max_active = max_active;
4334	mutex_init(&wq->mutex);
4335	atomic_set(&wq->nr_pwqs_to_flush, 0);
4336	INIT_LIST_HEAD(&wq->pwqs);
4337	INIT_LIST_HEAD(&wq->flusher_queue);
4338	INIT_LIST_HEAD(&wq->flusher_overflow);
4339	INIT_LIST_HEAD(&wq->maydays);
4340
4341	wq_init_lockdep(wq);
 
4342	INIT_LIST_HEAD(&wq->list);
4343
4344	if (alloc_and_link_pwqs(wq) < 0)
4345		goto err_unreg_lockdep;
4346
4347	if (wq_online && init_rescuer(wq) < 0)
4348		goto err_destroy;
 
4349
4350	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4351		goto err_destroy;
 
 
 
 
 
4352
4353	/*
4354	 * wq_pool_mutex protects global freeze state and workqueues list.
4355	 * Grab it, adjust max_active and add the new @wq to workqueues
4356	 * list.
4357	 */
4358	mutex_lock(&wq_pool_mutex);
4359
4360	mutex_lock(&wq->mutex);
4361	for_each_pwq(pwq, wq)
4362		pwq_adjust_max_active(pwq);
4363	mutex_unlock(&wq->mutex);
4364
4365	list_add_tail_rcu(&wq->list, &workqueues);
 
 
4366
4367	mutex_unlock(&wq_pool_mutex);
 
 
4368
4369	return wq;
 
 
4370
4371err_unreg_lockdep:
4372	wq_unregister_lockdep(wq);
4373	wq_free_lockdep(wq);
4374err_free_wq:
4375	free_workqueue_attrs(wq->unbound_attrs);
4376	kfree(wq);
4377	return NULL;
4378err_destroy:
4379	destroy_workqueue(wq);
4380	return NULL;
4381}
4382EXPORT_SYMBOL_GPL(alloc_workqueue);
4383
4384static bool pwq_busy(struct pool_workqueue *pwq)
4385{
4386	int i;
4387
4388	for (i = 0; i < WORK_NR_COLORS; i++)
4389		if (pwq->nr_in_flight[i])
4390			return true;
4391
4392	if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4393		return true;
4394	if (pwq->nr_active || !list_empty(&pwq->inactive_works))
4395		return true;
4396
4397	return false;
 
 
 
 
 
 
 
 
4398}
 
4399
4400/**
4401 * destroy_workqueue - safely terminate a workqueue
4402 * @wq: target workqueue
4403 *
4404 * Safely destroy a workqueue. All work currently pending will be done first.
4405 */
4406void destroy_workqueue(struct workqueue_struct *wq)
4407{
4408	struct pool_workqueue *pwq;
4409	int node;
4410
4411	/*
4412	 * Remove it from sysfs first so that sanity check failure doesn't
4413	 * lead to sysfs name conflicts.
4414	 */
4415	workqueue_sysfs_unregister(wq);
4416
4417	/* drain it before proceeding with destruction */
4418	drain_workqueue(wq);
4419
4420	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4421	if (wq->rescuer) {
4422		struct worker *rescuer = wq->rescuer;
4423
4424		/* this prevents new queueing */
4425		raw_spin_lock_irq(&wq_mayday_lock);
4426		wq->rescuer = NULL;
4427		raw_spin_unlock_irq(&wq_mayday_lock);
4428
4429		/* rescuer will empty maydays list before exiting */
4430		kthread_stop(rescuer->task);
4431		kfree(rescuer);
4432	}
4433
4434	/*
4435	 * Sanity checks - grab all the locks so that we wait for all
4436	 * in-flight operations which may do put_pwq().
4437	 */
4438	mutex_lock(&wq_pool_mutex);
4439	mutex_lock(&wq->mutex);
4440	for_each_pwq(pwq, wq) {
4441		raw_spin_lock_irq(&pwq->pool->lock);
4442		if (WARN_ON(pwq_busy(pwq))) {
4443			pr_warn("%s: %s has the following busy pwq\n",
4444				__func__, wq->name);
4445			show_pwq(pwq);
4446			raw_spin_unlock_irq(&pwq->pool->lock);
4447			mutex_unlock(&wq->mutex);
4448			mutex_unlock(&wq_pool_mutex);
4449			show_one_workqueue(wq);
4450			return;
4451		}
4452		raw_spin_unlock_irq(&pwq->pool->lock);
4453	}
4454	mutex_unlock(&wq->mutex);
4455
4456	/*
4457	 * wq list is used to freeze wq, remove from list after
4458	 * flushing is complete in case freeze races us.
4459	 */
4460	list_del_rcu(&wq->list);
4461	mutex_unlock(&wq_pool_mutex);
 
4462
4463	if (!(wq->flags & WQ_UNBOUND)) {
4464		wq_unregister_lockdep(wq);
4465		/*
4466		 * The base ref is never dropped on per-cpu pwqs.  Directly
4467		 * schedule RCU free.
4468		 */
4469		call_rcu(&wq->rcu, rcu_free_wq);
4470	} else {
4471		/*
4472		 * We're the sole accessor of @wq at this point.  Directly
4473		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4474		 * @wq will be freed when the last pwq is released.
4475		 */
4476		for_each_node(node) {
4477			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4478			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4479			put_pwq_unlocked(pwq);
4480		}
4481
4482		/*
4483		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4484		 * put.  Don't access it afterwards.
4485		 */
4486		pwq = wq->dfl_pwq;
4487		wq->dfl_pwq = NULL;
4488		put_pwq_unlocked(pwq);
4489	}
 
 
 
 
 
 
 
 
 
4490}
4491EXPORT_SYMBOL_GPL(destroy_workqueue);
4492
4493/**
4494 * workqueue_set_max_active - adjust max_active of a workqueue
4495 * @wq: target workqueue
4496 * @max_active: new max_active value.
4497 *
4498 * Set max_active of @wq to @max_active.
4499 *
4500 * CONTEXT:
4501 * Don't call from IRQ context.
4502 */
4503void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4504{
4505	struct pool_workqueue *pwq;
4506
4507	/* disallow meddling with max_active for ordered workqueues */
4508	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4509		return;
4510
4511	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4512
4513	mutex_lock(&wq->mutex);
4514
4515	wq->flags &= ~__WQ_ORDERED;
4516	wq->saved_max_active = max_active;
4517
4518	for_each_pwq(pwq, wq)
4519		pwq_adjust_max_active(pwq);
4520
4521	mutex_unlock(&wq->mutex);
4522}
4523EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4524
4525/**
4526 * current_work - retrieve %current task's work struct
4527 *
4528 * Determine if %current task is a workqueue worker and what it's working on.
4529 * Useful to find out the context that the %current task is running in.
4530 *
4531 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4532 */
4533struct work_struct *current_work(void)
4534{
4535	struct worker *worker = current_wq_worker();
4536
4537	return worker ? worker->current_work : NULL;
4538}
4539EXPORT_SYMBOL(current_work);
4540
4541/**
4542 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4543 *
4544 * Determine whether %current is a workqueue rescuer.  Can be used from
4545 * work functions to determine whether it's being run off the rescuer task.
4546 *
4547 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4548 */
4549bool current_is_workqueue_rescuer(void)
4550{
4551	struct worker *worker = current_wq_worker();
4552
4553	return worker && worker->rescue_wq;
4554}
 
4555
4556/**
4557 * workqueue_congested - test whether a workqueue is congested
4558 * @cpu: CPU in question
4559 * @wq: target workqueue
4560 *
4561 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4562 * no synchronization around this function and the test result is
4563 * unreliable and only useful as advisory hints or for debugging.
4564 *
4565 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4566 * Note that both per-cpu and unbound workqueues may be associated with
4567 * multiple pool_workqueues which have separate congested states.  A
4568 * workqueue being congested on one CPU doesn't mean the workqueue is also
4569 * contested on other CPUs / NUMA nodes.
4570 *
4571 * Return:
4572 * %true if congested, %false otherwise.
4573 */
4574bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4575{
4576	struct pool_workqueue *pwq;
4577	bool ret;
4578
4579	rcu_read_lock();
4580	preempt_disable();
4581
4582	if (cpu == WORK_CPU_UNBOUND)
4583		cpu = smp_processor_id();
4584
4585	if (!(wq->flags & WQ_UNBOUND))
4586		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4587	else
4588		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4589
4590	ret = !list_empty(&pwq->inactive_works);
4591	preempt_enable();
4592	rcu_read_unlock();
 
 
 
 
 
 
 
4593
4594	return ret;
4595}
4596EXPORT_SYMBOL_GPL(workqueue_congested);
4597
4598/**
4599 * work_busy - test whether a work is currently pending or running
4600 * @work: the work to be tested
4601 *
4602 * Test whether @work is currently pending or running.  There is no
4603 * synchronization around this function and the test result is
4604 * unreliable and only useful as advisory hints or for debugging.
 
 
4605 *
4606 * Return:
4607 * OR'd bitmask of WORK_BUSY_* bits.
4608 */
4609unsigned int work_busy(struct work_struct *work)
4610{
4611	struct worker_pool *pool;
4612	unsigned long flags;
4613	unsigned int ret = 0;
4614
 
 
 
 
 
4615	if (work_pending(work))
4616		ret |= WORK_BUSY_PENDING;
 
 
4617
4618	rcu_read_lock();
4619	pool = get_work_pool(work);
4620	if (pool) {
4621		raw_spin_lock_irqsave(&pool->lock, flags);
4622		if (find_worker_executing_work(pool, work))
4623			ret |= WORK_BUSY_RUNNING;
4624		raw_spin_unlock_irqrestore(&pool->lock, flags);
4625	}
4626	rcu_read_unlock();
4627
4628	return ret;
4629}
4630EXPORT_SYMBOL_GPL(work_busy);
4631
4632/**
4633 * set_worker_desc - set description for the current work item
4634 * @fmt: printf-style format string
4635 * @...: arguments for the format string
4636 *
4637 * This function can be called by a running work function to describe what
4638 * the work item is about.  If the worker task gets dumped, this
4639 * information will be printed out together to help debugging.  The
4640 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4641 */
4642void set_worker_desc(const char *fmt, ...)
4643{
4644	struct worker *worker = current_wq_worker();
4645	va_list args;
4646
4647	if (worker) {
4648		va_start(args, fmt);
4649		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4650		va_end(args);
4651	}
4652}
4653EXPORT_SYMBOL_GPL(set_worker_desc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4654
4655/**
4656 * print_worker_info - print out worker information and description
4657 * @log_lvl: the log level to use when printing
4658 * @task: target task
 
 
4659 *
4660 * If @task is a worker and currently executing a work item, print out the
4661 * name of the workqueue being serviced and worker description set with
4662 * set_worker_desc() by the currently executing work item.
4663 *
4664 * This function can be safely called on any task as long as the
4665 * task_struct itself is accessible.  While safe, this function isn't
4666 * synchronized and may print out mixups or garbages of limited length.
4667 */
4668void print_worker_info(const char *log_lvl, struct task_struct *task)
 
 
 
 
 
 
4669{
4670	work_func_t *fn = NULL;
4671	char name[WQ_NAME_LEN] = { };
4672	char desc[WORKER_DESC_LEN] = { };
4673	struct pool_workqueue *pwq = NULL;
4674	struct workqueue_struct *wq = NULL;
4675	struct worker *worker;
 
 
 
 
4676
4677	if (!(task->flags & PF_WQ_WORKER))
4678		return;
4679
 
4680	/*
4681	 * This function is called without any synchronization and @task
4682	 * could be in any state.  Be careful with dereferences.
 
4683	 */
4684	worker = kthread_probe_data(task);
 
 
4685
4686	/*
4687	 * Carefully copy the associated workqueue's workfn, name and desc.
4688	 * Keep the original last '\0' in case the original is garbage.
4689	 */
4690	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4691	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4692	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4693	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4694	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4695
4696	if (fn || name[0] || desc[0]) {
4697		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4698		if (strcmp(name, desc))
4699			pr_cont(" (%s)", desc);
4700		pr_cont("\n");
4701	}
4702}
4703
4704static void pr_cont_pool_info(struct worker_pool *pool)
4705{
4706	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4707	if (pool->node != NUMA_NO_NODE)
4708		pr_cont(" node=%d", pool->node);
4709	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4710}
4711
4712static void pr_cont_work(bool comma, struct work_struct *work)
4713{
4714	if (work->func == wq_barrier_func) {
4715		struct wq_barrier *barr;
4716
4717		barr = container_of(work, struct wq_barrier, work);
4718
4719		pr_cont("%s BAR(%d)", comma ? "," : "",
4720			task_pid_nr(barr->task));
4721	} else {
4722		pr_cont("%s %ps", comma ? "," : "", work->func);
4723	}
4724}
4725
4726static void show_pwq(struct pool_workqueue *pwq)
4727{
4728	struct worker_pool *pool = pwq->pool;
4729	struct work_struct *work;
4730	struct worker *worker;
4731	bool has_in_flight = false, has_pending = false;
4732	int bkt;
4733
4734	pr_info("  pwq %d:", pool->id);
4735	pr_cont_pool_info(pool);
 
 
 
 
 
4736
4737	pr_cont(" active=%d/%d refcnt=%d%s\n",
4738		pwq->nr_active, pwq->max_active, pwq->refcnt,
4739		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4740
4741	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4742		if (worker->current_pwq == pwq) {
4743			has_in_flight = true;
4744			break;
4745		}
4746	}
4747	if (has_in_flight) {
4748		bool comma = false;
4749
4750		pr_info("    in-flight:");
4751		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4752			if (worker->current_pwq != pwq)
4753				continue;
 
 
 
 
4754
4755			pr_cont("%s %d%s:%ps", comma ? "," : "",
4756				task_pid_nr(worker->task),
4757				worker->rescue_wq ? "(RESCUER)" : "",
4758				worker->current_func);
4759			list_for_each_entry(work, &worker->scheduled, entry)
4760				pr_cont_work(false, work);
4761			comma = true;
4762		}
4763		pr_cont("\n");
4764	}
 
 
 
 
4765
4766	list_for_each_entry(work, &pool->worklist, entry) {
4767		if (get_work_pwq(work) == pwq) {
4768			has_pending = true;
4769			break;
4770		}
4771	}
4772	if (has_pending) {
4773		bool comma = false;
4774
4775		pr_info("    pending:");
4776		list_for_each_entry(work, &pool->worklist, entry) {
4777			if (get_work_pwq(work) != pwq)
4778				continue;
4779
4780			pr_cont_work(comma, work);
4781			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
 
 
4782		}
4783		pr_cont("\n");
4784	}
4785
4786	if (!list_empty(&pwq->inactive_works)) {
4787		bool comma = false;
4788
4789		pr_info("    inactive:");
4790		list_for_each_entry(work, &pwq->inactive_works, entry) {
4791			pr_cont_work(comma, work);
4792			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
 
 
 
 
4793		}
4794		pr_cont("\n");
4795	}
4796}
4797
4798/**
4799 * show_one_workqueue - dump state of specified workqueue
4800 * @wq: workqueue whose state will be printed
4801 */
4802void show_one_workqueue(struct workqueue_struct *wq)
4803{
4804	struct pool_workqueue *pwq;
4805	bool idle = true;
4806	unsigned long flags;
4807
4808	for_each_pwq(pwq, wq) {
4809		if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4810			idle = false;
4811			break;
4812		}
4813	}
4814	if (idle) /* Nothing to print for idle workqueue */
4815		return;
4816
4817	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4818
4819	for_each_pwq(pwq, wq) {
4820		raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4821		if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4822			/*
4823			 * Defer printing to avoid deadlocks in console
4824			 * drivers that queue work while holding locks
4825			 * also taken in their write paths.
4826			 */
4827			printk_deferred_enter();
4828			show_pwq(pwq);
4829			printk_deferred_exit();
4830		}
4831		raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4832		/*
4833		 * We could be printing a lot from atomic context, e.g.
4834		 * sysrq-t -> show_all_workqueues(). Avoid triggering
4835		 * hard lockup.
4836		 */
4837		touch_nmi_watchdog();
4838	}
4839
4840}
4841
4842/**
4843 * show_one_worker_pool - dump state of specified worker pool
4844 * @pool: worker pool whose state will be printed
4845 */
4846static void show_one_worker_pool(struct worker_pool *pool)
4847{
4848	struct worker *worker;
4849	bool first = true;
4850	unsigned long flags;
4851
4852	raw_spin_lock_irqsave(&pool->lock, flags);
4853	if (pool->nr_workers == pool->nr_idle)
4854		goto next_pool;
4855	/*
4856	 * Defer printing to avoid deadlocks in console drivers that
4857	 * queue work while holding locks also taken in their write
4858	 * paths.
4859	 */
4860	printk_deferred_enter();
4861	pr_info("pool %d:", pool->id);
4862	pr_cont_pool_info(pool);
4863	pr_cont(" hung=%us workers=%d",
4864		jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4865		pool->nr_workers);
4866	if (pool->manager)
4867		pr_cont(" manager: %d",
4868			task_pid_nr(pool->manager->task));
4869	list_for_each_entry(worker, &pool->idle_list, entry) {
4870		pr_cont(" %s%d", first ? "idle: " : "",
4871			task_pid_nr(worker->task));
4872		first = false;
4873	}
4874	pr_cont("\n");
4875	printk_deferred_exit();
4876next_pool:
4877	raw_spin_unlock_irqrestore(&pool->lock, flags);
4878	/*
4879	 * We could be printing a lot from atomic context, e.g.
4880	 * sysrq-t -> show_all_workqueues(). Avoid triggering
4881	 * hard lockup.
 
 
4882	 */
4883	touch_nmi_watchdog();
4884
4885}
4886
4887/**
4888 * show_all_workqueues - dump workqueue state
4889 *
4890 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4891 * all busy workqueues and pools.
4892 */
4893void show_all_workqueues(void)
4894{
4895	struct workqueue_struct *wq;
4896	struct worker_pool *pool;
4897	int pi;
4898
4899	rcu_read_lock();
4900
4901	pr_info("Showing busy workqueues and worker pools:\n");
4902
4903	list_for_each_entry_rcu(wq, &workqueues, list)
4904		show_one_workqueue(wq);
4905
4906	for_each_pool(pool, pi)
4907		show_one_worker_pool(pool);
4908
4909	rcu_read_unlock();
4910}
4911
4912/* used to show worker information through /proc/PID/{comm,stat,status} */
4913void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4914{
4915	int off;
4916
4917	/* always show the actual comm */
4918	off = strscpy(buf, task->comm, size);
4919	if (off < 0)
4920		return;
4921
4922	/* stabilize PF_WQ_WORKER and worker pool association */
4923	mutex_lock(&wq_pool_attach_mutex);
4924
4925	if (task->flags & PF_WQ_WORKER) {
4926		struct worker *worker = kthread_data(task);
4927		struct worker_pool *pool = worker->pool;
4928
4929		if (pool) {
4930			raw_spin_lock_irq(&pool->lock);
4931			/*
4932			 * ->desc tracks information (wq name or
4933			 * set_worker_desc()) for the latest execution.  If
4934			 * current, prepend '+', otherwise '-'.
4935			 */
4936			if (worker->desc[0] != '\0') {
4937				if (worker->current_work)
4938					scnprintf(buf + off, size - off, "+%s",
4939						  worker->desc);
4940				else
4941					scnprintf(buf + off, size - off, "-%s",
4942						  worker->desc);
4943			}
4944			raw_spin_unlock_irq(&pool->lock);
4945		}
4946	}
4947
4948	mutex_unlock(&wq_pool_attach_mutex);
4949}
4950
4951#ifdef CONFIG_SMP
4952
4953/*
4954 * CPU hotplug.
4955 *
4956 * There are two challenges in supporting CPU hotplug.  Firstly, there
4957 * are a lot of assumptions on strong associations among work, pwq and
4958 * pool which make migrating pending and scheduled works very
4959 * difficult to implement without impacting hot paths.  Secondly,
4960 * worker pools serve mix of short, long and very long running works making
4961 * blocked draining impractical.
4962 *
4963 * This is solved by allowing the pools to be disassociated from the CPU
4964 * running as an unbound one and allowing it to be reattached later if the
4965 * cpu comes back online.
4966 */
4967
4968static void unbind_workers(int cpu)
4969{
4970	struct worker_pool *pool;
4971	struct worker *worker;
4972
4973	for_each_cpu_worker_pool(pool, cpu) {
4974		mutex_lock(&wq_pool_attach_mutex);
4975		raw_spin_lock_irq(&pool->lock);
4976
4977		/*
4978		 * We've blocked all attach/detach operations. Make all workers
4979		 * unbound and set DISASSOCIATED.  Before this, all workers
4980		 * must be on the cpu.  After this, they may become diasporas.
4981		 * And the preemption disabled section in their sched callbacks
4982		 * are guaranteed to see WORKER_UNBOUND since the code here
4983		 * is on the same cpu.
4984		 */
4985		for_each_pool_worker(worker, pool)
4986			worker->flags |= WORKER_UNBOUND;
4987
4988		pool->flags |= POOL_DISASSOCIATED;
4989
4990		/*
4991		 * The handling of nr_running in sched callbacks are disabled
4992		 * now.  Zap nr_running.  After this, nr_running stays zero and
4993		 * need_more_worker() and keep_working() are always true as
4994		 * long as the worklist is not empty.  This pool now behaves as
4995		 * an unbound (in terms of concurrency management) pool which
4996		 * are served by workers tied to the pool.
4997		 */
4998		pool->nr_running = 0;
4999
5000		/*
5001		 * With concurrency management just turned off, a busy
5002		 * worker blocking could lead to lengthy stalls.  Kick off
5003		 * unbound chain execution of currently pending work items.
5004		 */
5005		wake_up_worker(pool);
5006
5007		raw_spin_unlock_irq(&pool->lock);
5008
5009		for_each_pool_worker(worker, pool) {
5010			kthread_set_per_cpu(worker->task, -1);
5011			if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
5012				WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
5013			else
5014				WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
5015		}
5016
5017		mutex_unlock(&wq_pool_attach_mutex);
5018	}
5019}
5020
5021/**
5022 * rebind_workers - rebind all workers of a pool to the associated CPU
5023 * @pool: pool of interest
5024 *
5025 * @pool->cpu is coming online.  Rebind all workers to the CPU.
5026 */
5027static void rebind_workers(struct worker_pool *pool)
5028{
5029	struct worker *worker;
5030
5031	lockdep_assert_held(&wq_pool_attach_mutex);
5032
5033	/*
5034	 * Restore CPU affinity of all workers.  As all idle workers should
5035	 * be on the run-queue of the associated CPU before any local
5036	 * wake-ups for concurrency management happen, restore CPU affinity
5037	 * of all workers first and then clear UNBOUND.  As we're called
5038	 * from CPU_ONLINE, the following shouldn't fail.
5039	 */
5040	for_each_pool_worker(worker, pool) {
5041		kthread_set_per_cpu(worker->task, pool->cpu);
5042		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5043						  pool->attrs->cpumask) < 0);
5044	}
5045
5046	raw_spin_lock_irq(&pool->lock);
5047
5048	pool->flags &= ~POOL_DISASSOCIATED;
5049
5050	for_each_pool_worker(worker, pool) {
5051		unsigned int worker_flags = worker->flags;
5052
5053		/*
5054		 * We want to clear UNBOUND but can't directly call
5055		 * worker_clr_flags() or adjust nr_running.  Atomically
5056		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5057		 * @worker will clear REBOUND using worker_clr_flags() when
5058		 * it initiates the next execution cycle thus restoring
5059		 * concurrency management.  Note that when or whether
5060		 * @worker clears REBOUND doesn't affect correctness.
5061		 *
5062		 * WRITE_ONCE() is necessary because @worker->flags may be
5063		 * tested without holding any lock in
5064		 * wq_worker_running().  Without it, NOT_RUNNING test may
5065		 * fail incorrectly leading to premature concurrency
5066		 * management operations.
5067		 */
5068		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5069		worker_flags |= WORKER_REBOUND;
5070		worker_flags &= ~WORKER_UNBOUND;
5071		WRITE_ONCE(worker->flags, worker_flags);
5072	}
5073
5074	raw_spin_unlock_irq(&pool->lock);
 
 
 
 
 
 
 
 
5075}
5076
5077/**
5078 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5079 * @pool: unbound pool of interest
5080 * @cpu: the CPU which is coming up
5081 *
5082 * An unbound pool may end up with a cpumask which doesn't have any online
5083 * CPUs.  When a worker of such pool get scheduled, the scheduler resets
5084 * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
5085 * online CPU before, cpus_allowed of all its workers should be restored.
 
5086 */
5087static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5088{
5089	static cpumask_t cpumask;
5090	struct worker *worker;
5091
5092	lockdep_assert_held(&wq_pool_attach_mutex);
5093
5094	/* is @cpu allowed for @pool? */
5095	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5096		return;
5097
5098	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5099
5100	/* as we're called from CPU_ONLINE, the following shouldn't fail */
5101	for_each_pool_worker(worker, pool)
5102		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5103}
5104
5105int workqueue_prepare_cpu(unsigned int cpu)
5106{
5107	struct worker_pool *pool;
5108
5109	for_each_cpu_worker_pool(pool, cpu) {
5110		if (pool->nr_workers)
5111			continue;
5112		if (!create_worker(pool))
5113			return -ENOMEM;
5114	}
5115	return 0;
5116}
5117
5118int workqueue_online_cpu(unsigned int cpu)
5119{
5120	struct worker_pool *pool;
5121	struct workqueue_struct *wq;
5122	int pi;
5123
5124	mutex_lock(&wq_pool_mutex);
5125
5126	for_each_pool(pool, pi) {
5127		mutex_lock(&wq_pool_attach_mutex);
5128
5129		if (pool->cpu == cpu)
5130			rebind_workers(pool);
5131		else if (pool->cpu < 0)
5132			restore_unbound_workers_cpumask(pool, cpu);
5133
5134		mutex_unlock(&wq_pool_attach_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5135	}
5136
5137	/* update NUMA affinity of unbound workqueues */
5138	list_for_each_entry(wq, &workqueues, list)
5139		wq_update_unbound_numa(wq, cpu, true);
5140
5141	mutex_unlock(&wq_pool_mutex);
5142	return 0;
5143}
5144
5145int workqueue_offline_cpu(unsigned int cpu)
5146{
5147	struct workqueue_struct *wq;
5148
5149	/* unbinding per-cpu workers should happen on the local CPU */
5150	if (WARN_ON(cpu != smp_processor_id()))
5151		return -1;
5152
5153	unbind_workers(cpu);
5154
5155	/* update NUMA affinity of unbound workqueues */
5156	mutex_lock(&wq_pool_mutex);
5157	list_for_each_entry(wq, &workqueues, list)
5158		wq_update_unbound_numa(wq, cpu, false);
5159	mutex_unlock(&wq_pool_mutex);
5160
5161	return 0;
5162}
5163
5164struct work_for_cpu {
5165	struct work_struct work;
5166	long (*fn)(void *);
5167	void *arg;
5168	long ret;
5169};
5170
5171static void work_for_cpu_fn(struct work_struct *work)
5172{
5173	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5174
5175	wfc->ret = wfc->fn(wfc->arg);
 
 
5176}
5177
5178/**
5179 * work_on_cpu - run a function in thread context on a particular cpu
5180 * @cpu: the cpu to run on
5181 * @fn: the function to run
5182 * @arg: the function arg
5183 *
 
5184 * It is up to the caller to ensure that the cpu doesn't go offline.
5185 * The caller must not hold any locks which would prevent @fn from completing.
5186 *
5187 * Return: The value @fn returns.
5188 */
5189long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5190{
5191	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
 
 
 
 
 
5192
5193	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5194	schedule_work_on(cpu, &wfc.work);
5195	flush_work(&wfc.work);
5196	destroy_work_on_stack(&wfc.work);
 
 
5197	return wfc.ret;
5198}
5199EXPORT_SYMBOL_GPL(work_on_cpu);
5200
5201/**
5202 * work_on_cpu_safe - run a function in thread context on a particular cpu
5203 * @cpu: the cpu to run on
5204 * @fn:  the function to run
5205 * @arg: the function argument
5206 *
5207 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5208 * any locks which would prevent @fn from completing.
5209 *
5210 * Return: The value @fn returns.
5211 */
5212long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5213{
5214	long ret = -ENODEV;
5215
5216	cpus_read_lock();
5217	if (cpu_online(cpu))
5218		ret = work_on_cpu(cpu, fn, arg);
5219	cpus_read_unlock();
5220	return ret;
5221}
5222EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5223#endif /* CONFIG_SMP */
5224
5225#ifdef CONFIG_FREEZER
5226
5227/**
5228 * freeze_workqueues_begin - begin freezing workqueues
5229 *
5230 * Start freezing workqueues.  After this function returns, all freezable
5231 * workqueues will queue new works to their inactive_works list instead of
5232 * pool->worklist.
5233 *
5234 * CONTEXT:
5235 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5236 */
5237void freeze_workqueues_begin(void)
5238{
5239	struct workqueue_struct *wq;
5240	struct pool_workqueue *pwq;
5241
5242	mutex_lock(&wq_pool_mutex);
5243
5244	WARN_ON_ONCE(workqueue_freezing);
5245	workqueue_freezing = true;
5246
5247	list_for_each_entry(wq, &workqueues, list) {
5248		mutex_lock(&wq->mutex);
5249		for_each_pwq(pwq, wq)
5250			pwq_adjust_max_active(pwq);
5251		mutex_unlock(&wq->mutex);
 
 
 
 
 
 
 
 
 
 
 
 
5252	}
5253
5254	mutex_unlock(&wq_pool_mutex);
5255}
5256
5257/**
5258 * freeze_workqueues_busy - are freezable workqueues still busy?
5259 *
5260 * Check whether freezing is complete.  This function must be called
5261 * between freeze_workqueues_begin() and thaw_workqueues().
5262 *
5263 * CONTEXT:
5264 * Grabs and releases wq_pool_mutex.
5265 *
5266 * Return:
5267 * %true if some freezable workqueues are still busy.  %false if freezing
5268 * is complete.
5269 */
5270bool freeze_workqueues_busy(void)
5271{
 
5272	bool busy = false;
5273	struct workqueue_struct *wq;
5274	struct pool_workqueue *pwq;
5275
5276	mutex_lock(&wq_pool_mutex);
5277
5278	WARN_ON_ONCE(!workqueue_freezing);
5279
5280	list_for_each_entry(wq, &workqueues, list) {
5281		if (!(wq->flags & WQ_FREEZABLE))
5282			continue;
5283		/*
5284		 * nr_active is monotonically decreasing.  It's safe
5285		 * to peek without lock.
5286		 */
5287		rcu_read_lock();
5288		for_each_pwq(pwq, wq) {
5289			WARN_ON_ONCE(pwq->nr_active < 0);
5290			if (pwq->nr_active) {
 
 
 
 
5291				busy = true;
5292				rcu_read_unlock();
5293				goto out_unlock;
5294			}
5295		}
5296		rcu_read_unlock();
5297	}
5298out_unlock:
5299	mutex_unlock(&wq_pool_mutex);
5300	return busy;
5301}
5302
5303/**
5304 * thaw_workqueues - thaw workqueues
5305 *
5306 * Thaw workqueues.  Normal queueing is restored and all collected
5307 * frozen works are transferred to their respective pool worklists.
5308 *
5309 * CONTEXT:
5310 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5311 */
5312void thaw_workqueues(void)
5313{
5314	struct workqueue_struct *wq;
5315	struct pool_workqueue *pwq;
5316
5317	mutex_lock(&wq_pool_mutex);
5318
5319	if (!workqueue_freezing)
5320		goto out_unlock;
5321
5322	workqueue_freezing = false;
5323
5324	/* restore max_active and repopulate worklist */
5325	list_for_each_entry(wq, &workqueues, list) {
5326		mutex_lock(&wq->mutex);
5327		for_each_pwq(pwq, wq)
5328			pwq_adjust_max_active(pwq);
5329		mutex_unlock(&wq->mutex);
5330	}
5331
5332out_unlock:
5333	mutex_unlock(&wq_pool_mutex);
5334}
5335#endif /* CONFIG_FREEZER */
5336
5337static int workqueue_apply_unbound_cpumask(void)
5338{
5339	LIST_HEAD(ctxs);
5340	int ret = 0;
5341	struct workqueue_struct *wq;
5342	struct apply_wqattrs_ctx *ctx, *n;
5343
5344	lockdep_assert_held(&wq_pool_mutex);
 
5345
5346	list_for_each_entry(wq, &workqueues, list) {
5347		if (!(wq->flags & WQ_UNBOUND))
5348			continue;
5349		/* creating multiple pwqs breaks ordering guarantee */
5350		if (wq->flags & __WQ_ORDERED)
5351			continue;
5352
5353		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5354		if (!ctx) {
5355			ret = -ENOMEM;
5356			break;
5357		}
5358
5359		list_add_tail(&ctx->list, &ctxs);
5360	}
5361
5362	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5363		if (!ret)
5364			apply_wqattrs_commit(ctx);
5365		apply_wqattrs_cleanup(ctx);
5366	}
5367
5368	return ret;
5369}
5370
5371/**
5372 *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5373 *  @cpumask: the cpumask to set
5374 *
5375 *  The low-level workqueues cpumask is a global cpumask that limits
5376 *  the affinity of all unbound workqueues.  This function check the @cpumask
5377 *  and apply it to all unbound workqueues and updates all pwqs of them.
5378 *
5379 *  Return:	0	- Success
5380 *  		-EINVAL	- Invalid @cpumask
5381 *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5382 */
5383int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5384{
5385	int ret = -EINVAL;
5386	cpumask_var_t saved_cpumask;
5387
5388	/*
5389	 * Not excluding isolated cpus on purpose.
5390	 * If the user wishes to include them, we allow that.
5391	 */
5392	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5393	if (!cpumask_empty(cpumask)) {
5394		apply_wqattrs_lock();
5395		if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5396			ret = 0;
5397			goto out_unlock;
5398		}
5399
5400		if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) {
5401			ret = -ENOMEM;
5402			goto out_unlock;
5403		}
5404
5405		/* save the old wq_unbound_cpumask. */
5406		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5407
5408		/* update wq_unbound_cpumask at first and apply it to wqs. */
5409		cpumask_copy(wq_unbound_cpumask, cpumask);
5410		ret = workqueue_apply_unbound_cpumask();
5411
5412		/* restore the wq_unbound_cpumask when failed. */
5413		if (ret < 0)
5414			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5415
5416		free_cpumask_var(saved_cpumask);
5417out_unlock:
5418		apply_wqattrs_unlock();
5419	}
5420
5421	return ret;
5422}
5423
5424#ifdef CONFIG_SYSFS
5425/*
5426 * Workqueues with WQ_SYSFS flag set is visible to userland via
5427 * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5428 * following attributes.
5429 *
5430 *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5431 *  max_active	RW int	: maximum number of in-flight work items
5432 *
5433 * Unbound workqueues have the following extra attributes.
5434 *
5435 *  pool_ids	RO int	: the associated pool IDs for each node
5436 *  nice	RW int	: nice value of the workers
5437 *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5438 *  numa	RW bool	: whether enable NUMA affinity
5439 */
5440struct wq_device {
5441	struct workqueue_struct		*wq;
5442	struct device			dev;
5443};
5444
5445static struct workqueue_struct *dev_to_wq(struct device *dev)
5446{
5447	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5448
5449	return wq_dev->wq;
5450}
5451
5452static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5453			    char *buf)
5454{
5455	struct workqueue_struct *wq = dev_to_wq(dev);
5456
5457	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5458}
5459static DEVICE_ATTR_RO(per_cpu);
5460
5461static ssize_t max_active_show(struct device *dev,
5462			       struct device_attribute *attr, char *buf)
5463{
5464	struct workqueue_struct *wq = dev_to_wq(dev);
5465
5466	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5467}
5468
5469static ssize_t max_active_store(struct device *dev,
5470				struct device_attribute *attr, const char *buf,
5471				size_t count)
5472{
5473	struct workqueue_struct *wq = dev_to_wq(dev);
5474	int val;
5475
5476	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5477		return -EINVAL;
5478
5479	workqueue_set_max_active(wq, val);
5480	return count;
5481}
5482static DEVICE_ATTR_RW(max_active);
5483
5484static struct attribute *wq_sysfs_attrs[] = {
5485	&dev_attr_per_cpu.attr,
5486	&dev_attr_max_active.attr,
5487	NULL,
5488};
5489ATTRIBUTE_GROUPS(wq_sysfs);
5490
5491static ssize_t wq_pool_ids_show(struct device *dev,
5492				struct device_attribute *attr, char *buf)
5493{
5494	struct workqueue_struct *wq = dev_to_wq(dev);
5495	const char *delim = "";
5496	int node, written = 0;
5497
5498	cpus_read_lock();
5499	rcu_read_lock();
5500	for_each_node(node) {
5501		written += scnprintf(buf + written, PAGE_SIZE - written,
5502				     "%s%d:%d", delim, node,
5503				     unbound_pwq_by_node(wq, node)->pool->id);
5504		delim = " ";
5505	}
5506	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5507	rcu_read_unlock();
5508	cpus_read_unlock();
5509
5510	return written;
5511}
5512
5513static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5514			    char *buf)
5515{
5516	struct workqueue_struct *wq = dev_to_wq(dev);
5517	int written;
5518
5519	mutex_lock(&wq->mutex);
5520	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5521	mutex_unlock(&wq->mutex);
5522
5523	return written;
5524}
5525
5526/* prepare workqueue_attrs for sysfs store operations */
5527static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5528{
5529	struct workqueue_attrs *attrs;
5530
5531	lockdep_assert_held(&wq_pool_mutex);
5532
5533	attrs = alloc_workqueue_attrs();
5534	if (!attrs)
5535		return NULL;
5536
5537	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5538	return attrs;
5539}
5540
5541static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5542			     const char *buf, size_t count)
5543{
5544	struct workqueue_struct *wq = dev_to_wq(dev);
5545	struct workqueue_attrs *attrs;
5546	int ret = -ENOMEM;
5547
5548	apply_wqattrs_lock();
5549
5550	attrs = wq_sysfs_prep_attrs(wq);
5551	if (!attrs)
5552		goto out_unlock;
5553
5554	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5555	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5556		ret = apply_workqueue_attrs_locked(wq, attrs);
5557	else
5558		ret = -EINVAL;
5559
5560out_unlock:
5561	apply_wqattrs_unlock();
5562	free_workqueue_attrs(attrs);
5563	return ret ?: count;
5564}
5565
5566static ssize_t wq_cpumask_show(struct device *dev,
5567			       struct device_attribute *attr, char *buf)
5568{
5569	struct workqueue_struct *wq = dev_to_wq(dev);
5570	int written;
5571
5572	mutex_lock(&wq->mutex);
5573	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5574			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5575	mutex_unlock(&wq->mutex);
5576	return written;
5577}
5578
5579static ssize_t wq_cpumask_store(struct device *dev,
5580				struct device_attribute *attr,
5581				const char *buf, size_t count)
5582{
5583	struct workqueue_struct *wq = dev_to_wq(dev);
5584	struct workqueue_attrs *attrs;
5585	int ret = -ENOMEM;
5586
5587	apply_wqattrs_lock();
5588
5589	attrs = wq_sysfs_prep_attrs(wq);
5590	if (!attrs)
5591		goto out_unlock;
5592
5593	ret = cpumask_parse(buf, attrs->cpumask);
5594	if (!ret)
5595		ret = apply_workqueue_attrs_locked(wq, attrs);
5596
5597out_unlock:
5598	apply_wqattrs_unlock();
5599	free_workqueue_attrs(attrs);
5600	return ret ?: count;
5601}
5602
5603static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5604			    char *buf)
5605{
5606	struct workqueue_struct *wq = dev_to_wq(dev);
5607	int written;
5608
5609	mutex_lock(&wq->mutex);
5610	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5611			    !wq->unbound_attrs->no_numa);
5612	mutex_unlock(&wq->mutex);
5613
5614	return written;
5615}
5616
5617static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5618			     const char *buf, size_t count)
5619{
5620	struct workqueue_struct *wq = dev_to_wq(dev);
5621	struct workqueue_attrs *attrs;
5622	int v, ret = -ENOMEM;
5623
5624	apply_wqattrs_lock();
5625
5626	attrs = wq_sysfs_prep_attrs(wq);
5627	if (!attrs)
5628		goto out_unlock;
5629
5630	ret = -EINVAL;
5631	if (sscanf(buf, "%d", &v) == 1) {
5632		attrs->no_numa = !v;
5633		ret = apply_workqueue_attrs_locked(wq, attrs);
5634	}
5635
 
5636out_unlock:
5637	apply_wqattrs_unlock();
5638	free_workqueue_attrs(attrs);
5639	return ret ?: count;
5640}
5641
5642static struct device_attribute wq_sysfs_unbound_attrs[] = {
5643	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5644	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5645	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5646	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5647	__ATTR_NULL,
5648};
5649
5650static struct bus_type wq_subsys = {
5651	.name				= "workqueue",
5652	.dev_groups			= wq_sysfs_groups,
5653};
5654
5655static ssize_t wq_unbound_cpumask_show(struct device *dev,
5656		struct device_attribute *attr, char *buf)
5657{
5658	int written;
5659
5660	mutex_lock(&wq_pool_mutex);
5661	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5662			    cpumask_pr_args(wq_unbound_cpumask));
5663	mutex_unlock(&wq_pool_mutex);
5664
5665	return written;
5666}
5667
5668static ssize_t wq_unbound_cpumask_store(struct device *dev,
5669		struct device_attribute *attr, const char *buf, size_t count)
5670{
5671	cpumask_var_t cpumask;
5672	int ret;
5673
5674	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5675		return -ENOMEM;
5676
5677	ret = cpumask_parse(buf, cpumask);
5678	if (!ret)
5679		ret = workqueue_set_unbound_cpumask(cpumask);
5680
5681	free_cpumask_var(cpumask);
5682	return ret ? ret : count;
5683}
5684
5685static struct device_attribute wq_sysfs_cpumask_attr =
5686	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5687	       wq_unbound_cpumask_store);
5688
5689static int __init wq_sysfs_init(void)
5690{
5691	int err;
5692
5693	err = subsys_virtual_register(&wq_subsys, NULL);
5694	if (err)
5695		return err;
5696
5697	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5698}
5699core_initcall(wq_sysfs_init);
5700
5701static void wq_device_release(struct device *dev)
5702{
5703	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5704
5705	kfree(wq_dev);
5706}
5707
5708/**
5709 * workqueue_sysfs_register - make a workqueue visible in sysfs
5710 * @wq: the workqueue to register
5711 *
5712 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5713 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5714 * which is the preferred method.
5715 *
5716 * Workqueue user should use this function directly iff it wants to apply
5717 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5718 * apply_workqueue_attrs() may race against userland updating the
5719 * attributes.
5720 *
5721 * Return: 0 on success, -errno on failure.
5722 */
5723int workqueue_sysfs_register(struct workqueue_struct *wq)
5724{
5725	struct wq_device *wq_dev;
5726	int ret;
5727
5728	/*
5729	 * Adjusting max_active or creating new pwqs by applying
5730	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5731	 * workqueues.
5732	 */
5733	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5734		return -EINVAL;
5735
5736	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5737	if (!wq_dev)
5738		return -ENOMEM;
5739
5740	wq_dev->wq = wq;
5741	wq_dev->dev.bus = &wq_subsys;
5742	wq_dev->dev.release = wq_device_release;
5743	dev_set_name(&wq_dev->dev, "%s", wq->name);
5744
5745	/*
5746	 * unbound_attrs are created separately.  Suppress uevent until
5747	 * everything is ready.
5748	 */
5749	dev_set_uevent_suppress(&wq_dev->dev, true);
5750
5751	ret = device_register(&wq_dev->dev);
5752	if (ret) {
5753		put_device(&wq_dev->dev);
5754		wq->wq_dev = NULL;
5755		return ret;
5756	}
5757
5758	if (wq->flags & WQ_UNBOUND) {
5759		struct device_attribute *attr;
5760
5761		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5762			ret = device_create_file(&wq_dev->dev, attr);
5763			if (ret) {
5764				device_unregister(&wq_dev->dev);
5765				wq->wq_dev = NULL;
5766				return ret;
5767			}
5768		}
5769	}
5770
5771	dev_set_uevent_suppress(&wq_dev->dev, false);
5772	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5773	return 0;
5774}
5775
5776/**
5777 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5778 * @wq: the workqueue to unregister
5779 *
5780 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5781 */
5782static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5783{
5784	struct wq_device *wq_dev = wq->wq_dev;
5785
5786	if (!wq->wq_dev)
5787		return;
5788
5789	wq->wq_dev = NULL;
5790	device_unregister(&wq_dev->dev);
5791}
5792#else	/* CONFIG_SYSFS */
5793static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5794#endif	/* CONFIG_SYSFS */
5795
5796/*
5797 * Workqueue watchdog.
5798 *
5799 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5800 * flush dependency, a concurrency managed work item which stays RUNNING
5801 * indefinitely.  Workqueue stalls can be very difficult to debug as the
5802 * usual warning mechanisms don't trigger and internal workqueue state is
5803 * largely opaque.
5804 *
5805 * Workqueue watchdog monitors all worker pools periodically and dumps
5806 * state if some pools failed to make forward progress for a while where
5807 * forward progress is defined as the first item on ->worklist changing.
5808 *
5809 * This mechanism is controlled through the kernel parameter
5810 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5811 * corresponding sysfs parameter file.
5812 */
5813#ifdef CONFIG_WQ_WATCHDOG
5814
5815static unsigned long wq_watchdog_thresh = 30;
5816static struct timer_list wq_watchdog_timer;
5817
5818static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5819static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5820
5821static void wq_watchdog_reset_touched(void)
5822{
5823	int cpu;
5824
5825	wq_watchdog_touched = jiffies;
5826	for_each_possible_cpu(cpu)
5827		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5828}
5829
5830static void wq_watchdog_timer_fn(struct timer_list *unused)
5831{
5832	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5833	bool lockup_detected = false;
5834	unsigned long now = jiffies;
5835	struct worker_pool *pool;
5836	int pi;
5837
5838	if (!thresh)
5839		return;
5840
5841	rcu_read_lock();
5842
5843	for_each_pool(pool, pi) {
5844		unsigned long pool_ts, touched, ts;
5845
5846		if (list_empty(&pool->worklist))
5847			continue;
5848
5849		/*
5850		 * If a virtual machine is stopped by the host it can look to
5851		 * the watchdog like a stall.
5852		 */
5853		kvm_check_and_clear_guest_paused();
5854
5855		/* get the latest of pool and touched timestamps */
5856		if (pool->cpu >= 0)
5857			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
5858		else
5859			touched = READ_ONCE(wq_watchdog_touched);
5860		pool_ts = READ_ONCE(pool->watchdog_ts);
5861
5862		if (time_after(pool_ts, touched))
5863			ts = pool_ts;
5864		else
5865			ts = touched;
5866
5867		/* did we stall? */
5868		if (time_after(now, ts + thresh)) {
5869			lockup_detected = true;
5870			pr_emerg("BUG: workqueue lockup - pool");
5871			pr_cont_pool_info(pool);
5872			pr_cont(" stuck for %us!\n",
5873				jiffies_to_msecs(now - pool_ts) / 1000);
5874		}
5875	}
5876
5877	rcu_read_unlock();
5878
5879	if (lockup_detected)
5880		show_all_workqueues();
5881
5882	wq_watchdog_reset_touched();
5883	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5884}
5885
5886notrace void wq_watchdog_touch(int cpu)
5887{
5888	if (cpu >= 0)
5889		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5890
5891	wq_watchdog_touched = jiffies;
5892}
5893
5894static void wq_watchdog_set_thresh(unsigned long thresh)
5895{
5896	wq_watchdog_thresh = 0;
5897	del_timer_sync(&wq_watchdog_timer);
5898
5899	if (thresh) {
5900		wq_watchdog_thresh = thresh;
5901		wq_watchdog_reset_touched();
5902		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5903	}
5904}
5905
5906static int wq_watchdog_param_set_thresh(const char *val,
5907					const struct kernel_param *kp)
5908{
5909	unsigned long thresh;
5910	int ret;
5911
5912	ret = kstrtoul(val, 0, &thresh);
5913	if (ret)
5914		return ret;
5915
5916	if (system_wq)
5917		wq_watchdog_set_thresh(thresh);
5918	else
5919		wq_watchdog_thresh = thresh;
5920
5921	return 0;
5922}
5923
5924static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5925	.set	= wq_watchdog_param_set_thresh,
5926	.get	= param_get_ulong,
5927};
5928
5929module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5930		0644);
5931
5932static void wq_watchdog_init(void)
5933{
5934	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5935	wq_watchdog_set_thresh(wq_watchdog_thresh);
5936}
5937
5938#else	/* CONFIG_WQ_WATCHDOG */
5939
5940static inline void wq_watchdog_init(void) { }
5941
5942#endif	/* CONFIG_WQ_WATCHDOG */
5943
5944static void __init wq_numa_init(void)
5945{
5946	cpumask_var_t *tbl;
5947	int node, cpu;
5948
5949	if (num_possible_nodes() <= 1)
5950		return;
5951
5952	if (wq_disable_numa) {
5953		pr_info("workqueue: NUMA affinity support disabled\n");
5954		return;
5955	}
5956
5957	for_each_possible_cpu(cpu) {
5958		if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
5959			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5960			return;
5961		}
5962	}
5963
5964	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5965	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5966
5967	/*
5968	 * We want masks of possible CPUs of each node which isn't readily
5969	 * available.  Build one from cpu_to_node() which should have been
5970	 * fully initialized by now.
5971	 */
5972	tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5973	BUG_ON(!tbl);
5974
5975	for_each_node(node)
5976		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5977				node_online(node) ? node : NUMA_NO_NODE));
5978
5979	for_each_possible_cpu(cpu) {
5980		node = cpu_to_node(cpu);
5981		cpumask_set_cpu(cpu, tbl[node]);
5982	}
5983
5984	wq_numa_possible_cpumask = tbl;
5985	wq_numa_enabled = true;
5986}
5987
5988/**
5989 * workqueue_init_early - early init for workqueue subsystem
5990 *
5991 * This is the first half of two-staged workqueue subsystem initialization
5992 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5993 * idr are up.  It sets up all the data structures and system workqueues
5994 * and allows early boot code to create workqueues and queue/cancel work
5995 * items.  Actual work item execution starts only after kthreads can be
5996 * created and scheduled right before early initcalls.
5997 */
5998void __init workqueue_init_early(void)
5999{
6000	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
6001	int i, cpu;
6002
6003	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
 
 
 
6004
6005	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
6006	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_WQ));
6007	cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_DOMAIN));
6008
6009	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
 
 
6010
6011	/* initialize CPU pools */
6012	for_each_possible_cpu(cpu) {
6013		struct worker_pool *pool;
6014
6015		i = 0;
6016		for_each_cpu_worker_pool(pool, cpu) {
6017			BUG_ON(init_worker_pool(pool));
6018			pool->cpu = cpu;
6019			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
6020			pool->attrs->nice = std_nice[i++];
6021			pool->node = cpu_to_node(cpu);
6022
6023			/* alloc pool ID */
6024			mutex_lock(&wq_pool_mutex);
6025			BUG_ON(worker_pool_assign_id(pool));
6026			mutex_unlock(&wq_pool_mutex);
6027		}
6028	}
6029
6030	/* create default unbound and ordered wq attrs */
6031	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6032		struct workqueue_attrs *attrs;
6033
6034		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6035		attrs->nice = std_nice[i];
6036		unbound_std_wq_attrs[i] = attrs;
6037
6038		/*
6039		 * An ordered wq should have only one pwq as ordering is
6040		 * guaranteed by max_active which is enforced by pwqs.
6041		 * Turn off NUMA so that dfl_pwq is used for all nodes.
6042		 */
6043		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6044		attrs->nice = std_nice[i];
6045		attrs->no_numa = true;
6046		ordered_wq_attrs[i] = attrs;
6047	}
6048
6049	system_wq = alloc_workqueue("events", 0, 0);
6050	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
6051	system_long_wq = alloc_workqueue("events_long", 0, 0);
 
6052	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6053					    WQ_UNBOUND_MAX_ACTIVE);
6054	system_freezable_wq = alloc_workqueue("events_freezable",
6055					      WQ_FREEZABLE, 0);
6056	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6057					      WQ_POWER_EFFICIENT, 0);
6058	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6059					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6060					      0);
6061	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6062	       !system_unbound_wq || !system_freezable_wq ||
6063	       !system_power_efficient_wq ||
6064	       !system_freezable_power_efficient_wq);
6065}
6066
6067/**
6068 * workqueue_init - bring workqueue subsystem fully online
6069 *
6070 * This is the latter half of two-staged workqueue subsystem initialization
6071 * and invoked as soon as kthreads can be created and scheduled.
6072 * Workqueues have been created and work items queued on them, but there
6073 * are no kworkers executing the work items yet.  Populate the worker pools
6074 * with the initial workers and enable future kworker creations.
6075 */
6076void __init workqueue_init(void)
6077{
6078	struct workqueue_struct *wq;
6079	struct worker_pool *pool;
6080	int cpu, bkt;
6081
6082	/*
6083	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6084	 * CPU to node mapping may not be available that early on some
6085	 * archs such as power and arm64.  As per-cpu pools created
6086	 * previously could be missing node hint and unbound pools NUMA
6087	 * affinity, fix them up.
6088	 *
6089	 * Also, while iterating workqueues, create rescuers if requested.
6090	 */
6091	wq_numa_init();
6092
6093	mutex_lock(&wq_pool_mutex);
6094
6095	for_each_possible_cpu(cpu) {
6096		for_each_cpu_worker_pool(pool, cpu) {
6097			pool->node = cpu_to_node(cpu);
6098		}
6099	}
6100
6101	list_for_each_entry(wq, &workqueues, list) {
6102		wq_update_unbound_numa(wq, smp_processor_id(), true);
6103		WARN(init_rescuer(wq),
6104		     "workqueue: failed to create early rescuer for %s",
6105		     wq->name);
6106	}
6107
6108	mutex_unlock(&wq_pool_mutex);
6109
6110	/* create the initial workers */
6111	for_each_online_cpu(cpu) {
6112		for_each_cpu_worker_pool(pool, cpu) {
6113			pool->flags &= ~POOL_DISASSOCIATED;
6114			BUG_ON(!create_worker(pool));
6115		}
6116	}
6117
6118	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6119		BUG_ON(!create_worker(pool));
6120
6121	wq_online = true;
6122	wq_watchdog_init();
6123}
6124
6125/*
6126 * Despite the naming, this is a no-op function which is here only for avoiding
6127 * link error. Since compile-time warning may fail to catch, we will need to
6128 * emit run-time warning from __flush_workqueue().
6129 */
6130void __warn_flushing_systemwide_wq(void) { }
6131EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
v3.1
 
   1/*
   2 * kernel/workqueue.c - generic async execution with shared worker pool
   3 *
   4 * Copyright (C) 2002		Ingo Molnar
   5 *
   6 *   Derived from the taskqueue/keventd code by:
   7 *     David Woodhouse <dwmw2@infradead.org>
   8 *     Andrew Morton
   9 *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
  10 *     Theodore Ts'o <tytso@mit.edu>
  11 *
  12 * Made to use alloc_percpu by Christoph Lameter.
  13 *
  14 * Copyright (C) 2010		SUSE Linux Products GmbH
  15 * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
  16 *
  17 * This is the generic async execution mechanism.  Work items as are
  18 * executed in process context.  The worker pool is shared and
  19 * automatically managed.  There is one worker pool for each CPU and
  20 * one extra for works which are better served by workers which are
  21 * not bound to any specific CPU.
 
  22 *
  23 * Please read Documentation/workqueue.txt for details.
  24 */
  25
  26#include <linux/module.h>
  27#include <linux/kernel.h>
  28#include <linux/sched.h>
  29#include <linux/init.h>
  30#include <linux/signal.h>
  31#include <linux/completion.h>
  32#include <linux/workqueue.h>
  33#include <linux/slab.h>
  34#include <linux/cpu.h>
  35#include <linux/notifier.h>
  36#include <linux/kthread.h>
  37#include <linux/hardirq.h>
  38#include <linux/mempolicy.h>
  39#include <linux/freezer.h>
  40#include <linux/kallsyms.h>
  41#include <linux/debug_locks.h>
  42#include <linux/lockdep.h>
  43#include <linux/idr.h>
 
 
 
 
 
 
 
 
 
  44
  45#include "workqueue_sched.h"
  46
  47enum {
  48	/* global_cwq flags */
  49	GCWQ_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
  50	GCWQ_MANAGING_WORKERS	= 1 << 1,	/* managing workers */
  51	GCWQ_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
  52	GCWQ_FREEZING		= 1 << 3,	/* freeze in progress */
  53	GCWQ_HIGHPRI_PENDING	= 1 << 4,	/* highpri works on queue */
 
 
 
 
 
 
 
 
 
 
 
 
  54
  55	/* worker flags */
  56	WORKER_STARTED		= 1 << 0,	/* started */
  57	WORKER_DIE		= 1 << 1,	/* die die die */
  58	WORKER_IDLE		= 1 << 2,	/* is idle */
  59	WORKER_PREP		= 1 << 3,	/* preparing to run works */
  60	WORKER_ROGUE		= 1 << 4,	/* not bound to any cpu */
  61	WORKER_REBIND		= 1 << 5,	/* mom is home, come back */
  62	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
  63	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
 
  64
  65	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_ROGUE | WORKER_REBIND |
  66				  WORKER_CPU_INTENSIVE | WORKER_UNBOUND,
  67
  68	/* gcwq->trustee_state */
  69	TRUSTEE_START		= 0,		/* start */
  70	TRUSTEE_IN_CHARGE	= 1,		/* trustee in charge of gcwq */
  71	TRUSTEE_BUTCHER		= 2,		/* butcher workers */
  72	TRUSTEE_RELEASE		= 3,		/* release workers */
  73	TRUSTEE_DONE		= 4,		/* trustee is done */
  74
 
  75	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
  76	BUSY_WORKER_HASH_SIZE	= 1 << BUSY_WORKER_HASH_ORDER,
  77	BUSY_WORKER_HASH_MASK	= BUSY_WORKER_HASH_SIZE - 1,
  78
  79	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
  80	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
  81
  82	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
  83						/* call for help after 10ms
  84						   (min two ticks) */
  85	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
  86	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
  87	TRUSTEE_COOLDOWN	= HZ / 10,	/* for trustee draining */
  88
  89	/*
  90	 * Rescue workers are used only on emergencies and shared by
  91	 * all cpus.  Give -20.
  92	 */
  93	RESCUER_NICE_LEVEL	= -20,
 
 
 
  94};
  95
  96/*
  97 * Structure fields follow one of the following exclusion rules.
  98 *
  99 * I: Modifiable by initialization/destruction paths and read-only for
 100 *    everyone else.
 101 *
 102 * P: Preemption protected.  Disabling preemption is enough and should
 103 *    only be modified and accessed from the local cpu.
 104 *
 105 * L: gcwq->lock protected.  Access with gcwq->lock held.
 
 
 
 
 
 
 
 106 *
 107 * X: During normal operation, modification requires gcwq->lock and
 108 *    should be done only from local cpu.  Either disabling preemption
 109 *    on local cpu or grabbing gcwq->lock is enough for read access.
 110 *    If GCWQ_DISASSOCIATED is set, it's identical to L.
 111 *
 112 * F: wq->flush_mutex protected.
 113 *
 114 * W: workqueue_lock protected.
 
 
 
 
 
 
 
 
 
 115 */
 116
 117struct global_cwq;
 118
 119/*
 120 * The poor guys doing the actual heavy lifting.  All on-duty workers
 121 * are either serving the manager role, on idle list or on busy hash.
 122 */
 123struct worker {
 124	/* on idle list while idle, on busy hash table while busy */
 125	union {
 126		struct list_head	entry;	/* L: while idle */
 127		struct hlist_node	hentry;	/* L: while busy */
 128	};
 129
 130	struct work_struct	*current_work;	/* L: work being processed */
 131	struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
 132	struct list_head	scheduled;	/* L: scheduled works */
 133	struct task_struct	*task;		/* I: worker task */
 134	struct global_cwq	*gcwq;		/* I: the associated gcwq */
 135	/* 64 bytes boundary on 64bit, 32 on 32bit */
 136	unsigned long		last_active;	/* L: last active timestamp */
 137	unsigned int		flags;		/* X: flags */
 138	int			id;		/* I: worker id */
 139	struct work_struct	rebind_work;	/* L: rebind worker to cpu */
 140};
 141
 142/*
 143 * Global per-cpu workqueue.  There's one and only one for each cpu
 144 * and all works are queued and processed here regardless of their
 145 * target workqueues.
 146 */
 147struct global_cwq {
 148	spinlock_t		lock;		/* the gcwq lock */
 149	struct list_head	worklist;	/* L: list of pending works */
 150	unsigned int		cpu;		/* I: the associated cpu */
 151	unsigned int		flags;		/* L: GCWQ_* flags */
 152
 153	int			nr_workers;	/* L: total number of workers */
 154	int			nr_idle;	/* L: currently idle ones */
 155
 156	/* workers are chained either in the idle_list or busy_hash */
 157	struct list_head	idle_list;	/* X: list of idle workers */
 158	struct hlist_head	busy_hash[BUSY_WORKER_HASH_SIZE];
 
 
 
 159						/* L: hash of busy workers */
 160
 161	struct timer_list	idle_timer;	/* L: worker idle timeout */
 162	struct timer_list	mayday_timer;	/* L: SOS timer for dworkers */
 
 
 
 
 
 
 
 163
 164	struct ida		worker_ida;	/* L: for worker IDs */
 165
 166	struct task_struct	*trustee;	/* L: for gcwq shutdown */
 167	unsigned int		trustee_state;	/* L: trustee state */
 168	wait_queue_head_t	trustee_wait;	/* trustee wait */
 169	struct worker		*first_idle;	/* L: first idle worker */
 170} ____cacheline_aligned_in_smp;
 171
 172/*
 173 * The per-CPU workqueue.  The lower WORK_STRUCT_FLAG_BITS of
 174 * work_struct->data are used for flags and thus cwqs need to be
 175 * aligned at two's power of the number of flag bits.
 
 176 */
 177struct cpu_workqueue_struct {
 178	struct global_cwq	*gcwq;		/* I: the associated gcwq */
 179	struct workqueue_struct *wq;		/* I: the owning workqueue */
 180	int			work_color;	/* L: current color */
 181	int			flush_color;	/* L: flushing color */
 
 182	int			nr_in_flight[WORK_NR_COLORS];
 183						/* L: nr of in_flight works */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 184	int			nr_active;	/* L: nr of active works */
 185	int			max_active;	/* L: max active works */
 186	struct list_head	delayed_works;	/* L: delayed works */
 187};
 
 
 
 
 
 
 
 
 
 
 
 188
 189/*
 190 * Structure used to wait for workqueue flush.
 191 */
 192struct wq_flusher {
 193	struct list_head	list;		/* F: list of flushers */
 194	int			flush_color;	/* F: flush color waiting for */
 195	struct completion	done;		/* flush completion */
 196};
 197
 198/*
 199 * All cpumasks are assumed to be always set on UP and thus can't be
 200 * used to determine whether there's something to be done.
 201 */
 202#ifdef CONFIG_SMP
 203typedef cpumask_var_t mayday_mask_t;
 204#define mayday_test_and_set_cpu(cpu, mask)	\
 205	cpumask_test_and_set_cpu((cpu), (mask))
 206#define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
 207#define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
 208#define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
 209#define free_mayday_mask(mask)			free_cpumask_var((mask))
 210#else
 211typedef unsigned long mayday_mask_t;
 212#define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
 213#define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
 214#define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
 215#define alloc_mayday_mask(maskp, gfp)		true
 216#define free_mayday_mask(mask)			do { } while (0)
 217#endif
 218
 219/*
 220 * The externally visible workqueue abstraction is an array of
 221 * per-CPU workqueues:
 222 */
 223struct workqueue_struct {
 224	unsigned int		flags;		/* W: WQ_* flags */
 225	union {
 226		struct cpu_workqueue_struct __percpu	*pcpu;
 227		struct cpu_workqueue_struct		*single;
 228		unsigned long				v;
 229	} cpu_wq;				/* I: cwq's */
 230	struct list_head	list;		/* W: list of all workqueues */
 231
 232	struct mutex		flush_mutex;	/* protects wq flushing */
 233	int			work_color;	/* F: current work color */
 234	int			flush_color;	/* F: current flush color */
 235	atomic_t		nr_cwqs_to_flush; /* flush in progress */
 236	struct wq_flusher	*first_flusher;	/* F: first flusher */
 237	struct list_head	flusher_queue;	/* F: flush waiters */
 238	struct list_head	flusher_overflow; /* F: flush overflow list */
 239
 240	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
 241	struct worker		*rescuer;	/* I: rescue worker */
 242
 243	int			nr_drainers;	/* W: drain in progress */
 244	int			saved_max_active; /* W: saved cwq max_active */
 245	const char		*name;		/* I: workqueue name */
 
 246#ifdef CONFIG_LOCKDEP
 
 
 247	struct lockdep_map	lockdep_map;
 248#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 249};
 250
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 251struct workqueue_struct *system_wq __read_mostly;
 
 
 
 252struct workqueue_struct *system_long_wq __read_mostly;
 253struct workqueue_struct *system_nrt_wq __read_mostly;
 254struct workqueue_struct *system_unbound_wq __read_mostly;
 
 255struct workqueue_struct *system_freezable_wq __read_mostly;
 256EXPORT_SYMBOL_GPL(system_wq);
 257EXPORT_SYMBOL_GPL(system_long_wq);
 258EXPORT_SYMBOL_GPL(system_nrt_wq);
 259EXPORT_SYMBOL_GPL(system_unbound_wq);
 260EXPORT_SYMBOL_GPL(system_freezable_wq);
 
 
 
 
 
 
 
 
 
 261
 262#define CREATE_TRACE_POINTS
 263#include <trace/events/workqueue.h>
 264
 265#define for_each_busy_worker(worker, i, pos, gcwq)			\
 266	for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)			\
 267		hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 268
 269static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
 270				  unsigned int sw)
 271{
 272	if (cpu < nr_cpu_ids) {
 273		if (sw & 1) {
 274			cpu = cpumask_next(cpu, mask);
 275			if (cpu < nr_cpu_ids)
 276				return cpu;
 277		}
 278		if (sw & 2)
 279			return WORK_CPU_UNBOUND;
 280	}
 281	return WORK_CPU_NONE;
 282}
 283
 284static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
 285				struct workqueue_struct *wq)
 286{
 287	return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
 288}
 289
 290/*
 291 * CPU iterators
 292 *
 293 * An extra gcwq is defined for an invalid cpu number
 294 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
 295 * specific CPU.  The following iterators are similar to
 296 * for_each_*_cpu() iterators but also considers the unbound gcwq.
 297 *
 298 * for_each_gcwq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
 299 * for_each_online_gcwq_cpu()	: online CPUs + WORK_CPU_UNBOUND
 300 * for_each_cwq_cpu()		: possible CPUs for bound workqueues,
 301 *				  WORK_CPU_UNBOUND for unbound workqueues
 302 */
 303#define for_each_gcwq_cpu(cpu)						\
 304	for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3);		\
 305	     (cpu) < WORK_CPU_NONE;					\
 306	     (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
 307
 308#define for_each_online_gcwq_cpu(cpu)					\
 309	for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3);		\
 310	     (cpu) < WORK_CPU_NONE;					\
 311	     (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
 312
 313#define for_each_cwq_cpu(cpu, wq)					\
 314	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq));	\
 315	     (cpu) < WORK_CPU_NONE;					\
 316	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
 317
 318#ifdef CONFIG_DEBUG_OBJECTS_WORK
 319
 320static struct debug_obj_descr work_debug_descr;
 321
 322static void *work_debug_hint(void *addr)
 323{
 324	return ((struct work_struct *) addr)->func;
 325}
 326
 327/*
 328 * fixup_init is called when:
 329 * - an active object is initialized
 330 */
 331static int work_fixup_init(void *addr, enum debug_obj_state state)
 332{
 333	struct work_struct *work = addr;
 334
 335	switch (state) {
 336	case ODEBUG_STATE_ACTIVE:
 337		cancel_work_sync(work);
 338		debug_object_init(work, &work_debug_descr);
 339		return 1;
 340	default:
 341		return 0;
 342	}
 343}
 344
 345/*
 346 * fixup_activate is called when:
 347 * - an active object is activated
 348 * - an unknown object is activated (might be a statically initialized object)
 349 */
 350static int work_fixup_activate(void *addr, enum debug_obj_state state)
 351{
 352	struct work_struct *work = addr;
 353
 354	switch (state) {
 355
 356	case ODEBUG_STATE_NOTAVAILABLE:
 357		/*
 358		 * This is not really a fixup. The work struct was
 359		 * statically initialized. We just make sure that it
 360		 * is tracked in the object tracker.
 361		 */
 362		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
 363			debug_object_init(work, &work_debug_descr);
 364			debug_object_activate(work, &work_debug_descr);
 365			return 0;
 366		}
 367		WARN_ON_ONCE(1);
 368		return 0;
 369
 370	case ODEBUG_STATE_ACTIVE:
 371		WARN_ON(1);
 372
 
 373	default:
 374		return 0;
 375	}
 376}
 377
 378/*
 379 * fixup_free is called when:
 380 * - an active object is freed
 381 */
 382static int work_fixup_free(void *addr, enum debug_obj_state state)
 383{
 384	struct work_struct *work = addr;
 385
 386	switch (state) {
 387	case ODEBUG_STATE_ACTIVE:
 388		cancel_work_sync(work);
 389		debug_object_free(work, &work_debug_descr);
 390		return 1;
 391	default:
 392		return 0;
 393	}
 394}
 395
 396static struct debug_obj_descr work_debug_descr = {
 397	.name		= "work_struct",
 398	.debug_hint	= work_debug_hint,
 
 399	.fixup_init	= work_fixup_init,
 400	.fixup_activate	= work_fixup_activate,
 401	.fixup_free	= work_fixup_free,
 402};
 403
 404static inline void debug_work_activate(struct work_struct *work)
 405{
 406	debug_object_activate(work, &work_debug_descr);
 407}
 408
 409static inline void debug_work_deactivate(struct work_struct *work)
 410{
 411	debug_object_deactivate(work, &work_debug_descr);
 412}
 413
 414void __init_work(struct work_struct *work, int onstack)
 415{
 416	if (onstack)
 417		debug_object_init_on_stack(work, &work_debug_descr);
 418	else
 419		debug_object_init(work, &work_debug_descr);
 420}
 421EXPORT_SYMBOL_GPL(__init_work);
 422
 423void destroy_work_on_stack(struct work_struct *work)
 424{
 425	debug_object_free(work, &work_debug_descr);
 426}
 427EXPORT_SYMBOL_GPL(destroy_work_on_stack);
 428
 
 
 
 
 
 
 
 429#else
 430static inline void debug_work_activate(struct work_struct *work) { }
 431static inline void debug_work_deactivate(struct work_struct *work) { }
 432#endif
 433
 434/* Serializes the accesses to the list of workqueues. */
 435static DEFINE_SPINLOCK(workqueue_lock);
 436static LIST_HEAD(workqueues);
 437static bool workqueue_freezing;		/* W: have wqs started freezing? */
 438
 439/*
 440 * The almighty global cpu workqueues.  nr_running is the only field
 441 * which is expected to be used frequently by other cpus via
 442 * try_to_wake_up().  Put it in a separate cacheline.
 443 */
 444static DEFINE_PER_CPU(struct global_cwq, global_cwq);
 445static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running);
 
 446
 447/*
 448 * Global cpu workqueue and nr_running counter for unbound gcwq.  The
 449 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
 450 * workers have WORKER_UNBOUND set.
 451 */
 452static struct global_cwq unbound_global_cwq;
 453static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0);	/* always 0 */
 454
 455static int worker_thread(void *__worker);
 
 
 
 
 
 
 
 456
 457static struct global_cwq *get_gcwq(unsigned int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 458{
 459	if (cpu != WORK_CPU_UNBOUND)
 460		return &per_cpu(global_cwq, cpu);
 461	else
 462		return &unbound_global_cwq;
 463}
 464
 465static atomic_t *get_gcwq_nr_running(unsigned int cpu)
 466{
 467	if (cpu != WORK_CPU_UNBOUND)
 468		return &per_cpu(gcwq_nr_running, cpu);
 469	else
 470		return &unbound_gcwq_nr_running;
 471}
 
 472
 473static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
 474					    struct workqueue_struct *wq)
 475{
 476	if (!(wq->flags & WQ_UNBOUND)) {
 477		if (likely(cpu < nr_cpu_ids)) {
 478#ifdef CONFIG_SMP
 479			return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
 480#else
 481			return wq->cpu_wq.single;
 482#endif
 483		}
 484	} else if (likely(cpu == WORK_CPU_UNBOUND))
 485		return wq->cpu_wq.single;
 486	return NULL;
 487}
 488
 489static unsigned int work_color_to_flags(int color)
 490{
 491	return color << WORK_STRUCT_COLOR_SHIFT;
 492}
 493
 494static int get_work_color(struct work_struct *work)
 495{
 496	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
 497		((1 << WORK_STRUCT_COLOR_BITS) - 1);
 498}
 499
 500static int work_next_color(int color)
 501{
 502	return (color + 1) % WORK_NR_COLORS;
 503}
 504
 505/*
 506 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
 507 * work is on queue.  Once execution starts, WORK_STRUCT_CWQ is
 508 * cleared and the work data contains the cpu number it was last on.
 509 *
 510 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
 511 * cwq, cpu or clear work->data.  These functions should only be
 512 * called while the work is owned - ie. while the PENDING bit is set.
 513 *
 514 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
 515 * corresponding to a work.  gcwq is available once the work has been
 516 * queued anywhere after initialization.  cwq is available only from
 517 * queueing until execution starts.
 
 
 
 
 
 
 518 */
 519static inline void set_work_data(struct work_struct *work, unsigned long data,
 520				 unsigned long flags)
 521{
 522	BUG_ON(!work_pending(work));
 523	atomic_long_set(&work->data, data | flags | work_static(work));
 524}
 525
 526static void set_work_cwq(struct work_struct *work,
 527			 struct cpu_workqueue_struct *cwq,
 528			 unsigned long extra_flags)
 529{
 530	set_work_data(work, (unsigned long)cwq,
 531		      WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
 532}
 533
 534static void set_work_cpu(struct work_struct *work, unsigned int cpu)
 
 535{
 536	set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 537}
 538
 539static void clear_work_data(struct work_struct *work)
 540{
 541	set_work_data(work, WORK_STRUCT_NO_CPU, 0);
 
 542}
 543
 544static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
 545{
 546	unsigned long data = atomic_long_read(&work->data);
 547
 548	if (data & WORK_STRUCT_CWQ)
 549		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
 550	else
 551		return NULL;
 552}
 553
 554static struct global_cwq *get_work_gcwq(struct work_struct *work)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 555{
 556	unsigned long data = atomic_long_read(&work->data);
 557	unsigned int cpu;
 558
 559	if (data & WORK_STRUCT_CWQ)
 560		return ((struct cpu_workqueue_struct *)
 561			(data & WORK_STRUCT_WQ_DATA_MASK))->gcwq;
 562
 563	cpu = data >> WORK_STRUCT_FLAG_BITS;
 564	if (cpu == WORK_CPU_NONE)
 
 
 
 
 565		return NULL;
 566
 567	BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
 568	return get_gcwq(cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 569}
 570
 571/*
 572 * Policy functions.  These define the policies on how the global
 573 * worker pool is managed.  Unless noted otherwise, these functions
 574 * assume that they're being called with gcwq->lock held.
 575 */
 576
 577static bool __need_more_worker(struct global_cwq *gcwq)
 578{
 579	return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) ||
 580		gcwq->flags & GCWQ_HIGHPRI_PENDING;
 581}
 582
 583/*
 584 * Need to wake up a worker?  Called from anything but currently
 585 * running workers.
 
 
 
 
 586 */
 587static bool need_more_worker(struct global_cwq *gcwq)
 588{
 589	return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq);
 590}
 591
 592/* Can I start working?  Called from busy but !running workers. */
 593static bool may_start_working(struct global_cwq *gcwq)
 594{
 595	return gcwq->nr_idle;
 596}
 597
 598/* Do I need to keep working?  Called from currently running workers. */
 599static bool keep_working(struct global_cwq *gcwq)
 600{
 601	atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
 602
 603	return !list_empty(&gcwq->worklist) &&
 604		(atomic_read(nr_running) <= 1 ||
 605		 gcwq->flags & GCWQ_HIGHPRI_PENDING);
 606}
 607
 608/* Do we need a new worker?  Called from manager. */
 609static bool need_to_create_worker(struct global_cwq *gcwq)
 610{
 611	return need_more_worker(gcwq) && !may_start_working(gcwq);
 612}
 613
 614/* Do I need to be the manager? */
 615static bool need_to_manage_workers(struct global_cwq *gcwq)
 616{
 617	return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS;
 618}
 619
 620/* Do we have too many workers and should some go away? */
 621static bool too_many_workers(struct global_cwq *gcwq)
 622{
 623	bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS;
 624	int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */
 625	int nr_busy = gcwq->nr_workers - nr_idle;
 626
 627	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
 628}
 629
 630/*
 631 * Wake up functions.
 632 */
 633
 634/* Return the first worker.  Safe with preemption disabled */
 635static struct worker *first_worker(struct global_cwq *gcwq)
 636{
 637	if (unlikely(list_empty(&gcwq->idle_list)))
 638		return NULL;
 639
 640	return list_first_entry(&gcwq->idle_list, struct worker, entry);
 641}
 642
 643/**
 644 * wake_up_worker - wake up an idle worker
 645 * @gcwq: gcwq to wake worker for
 646 *
 647 * Wake up the first idle worker of @gcwq.
 648 *
 649 * CONTEXT:
 650 * spin_lock_irq(gcwq->lock).
 651 */
 652static void wake_up_worker(struct global_cwq *gcwq)
 653{
 654	struct worker *worker = first_worker(gcwq);
 655
 656	if (likely(worker))
 657		wake_up_process(worker->task);
 658}
 659
 660/**
 661 * wq_worker_waking_up - a worker is waking up
 662 * @task: task waking up
 663 * @cpu: CPU @task is waking up to
 664 *
 665 * This function is called during try_to_wake_up() when a worker is
 666 * being awoken.
 667 *
 668 * CONTEXT:
 669 * spin_lock_irq(rq->lock)
 670 */
 671void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
 672{
 673	struct worker *worker = kthread_data(task);
 674
 
 
 
 
 
 
 
 
 
 
 675	if (!(worker->flags & WORKER_NOT_RUNNING))
 676		atomic_inc(get_gcwq_nr_running(cpu));
 
 
 677}
 678
 679/**
 680 * wq_worker_sleeping - a worker is going to sleep
 681 * @task: task going to sleep
 682 * @cpu: CPU in question, must be the current CPU number
 683 *
 684 * This function is called during schedule() when a busy worker is
 685 * going to sleep.  Worker on the same cpu can be woken up by
 686 * returning pointer to its task.
 687 *
 688 * CONTEXT:
 689 * spin_lock_irq(rq->lock)
 690 *
 691 * RETURNS:
 692 * Worker task on @cpu to wake up, %NULL if none.
 693 */
 694struct task_struct *wq_worker_sleeping(struct task_struct *task,
 695				       unsigned int cpu)
 696{
 697	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
 698	struct global_cwq *gcwq = get_gcwq(cpu);
 699	atomic_t *nr_running = get_gcwq_nr_running(cpu);
 700
 
 
 
 
 
 701	if (worker->flags & WORKER_NOT_RUNNING)
 702		return NULL;
 
 
 
 
 
 
 703
 704	/* this can only happen on the local cpu */
 705	BUG_ON(cpu != raw_smp_processor_id());
 706
 707	/*
 708	 * The counterpart of the following dec_and_test, implied mb,
 709	 * worklist not empty test sequence is in insert_work().
 710	 * Please read comment there.
 711	 *
 712	 * NOT_RUNNING is clear.  This means that trustee is not in
 713	 * charge and we're running on the local cpu w/ rq lock held
 714	 * and preemption disabled, which in turn means that none else
 715	 * could be manipulating idle_list, so dereferencing idle_list
 716	 * without gcwq lock is safe.
 717	 */
 718	if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist))
 719		to_wakeup = first_worker(gcwq);
 720	return to_wakeup ? to_wakeup->task : NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 721}
 722
 723/**
 724 * worker_set_flags - set worker flags and adjust nr_running accordingly
 725 * @worker: self
 726 * @flags: flags to set
 727 * @wakeup: wakeup an idle worker if necessary
 728 *
 729 * Set @flags in @worker->flags and adjust nr_running accordingly.  If
 730 * nr_running becomes zero and @wakeup is %true, an idle worker is
 731 * woken up.
 732 *
 733 * CONTEXT:
 734 * spin_lock_irq(gcwq->lock)
 735 */
 736static inline void worker_set_flags(struct worker *worker, unsigned int flags,
 737				    bool wakeup)
 738{
 739	struct global_cwq *gcwq = worker->gcwq;
 740
 741	WARN_ON_ONCE(worker->task != current);
 742
 743	/*
 744	 * If transitioning into NOT_RUNNING, adjust nr_running and
 745	 * wake up an idle worker as necessary if requested by
 746	 * @wakeup.
 747	 */
 748	if ((flags & WORKER_NOT_RUNNING) &&
 749	    !(worker->flags & WORKER_NOT_RUNNING)) {
 750		atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
 751
 752		if (wakeup) {
 753			if (atomic_dec_and_test(nr_running) &&
 754			    !list_empty(&gcwq->worklist))
 755				wake_up_worker(gcwq);
 756		} else
 757			atomic_dec(nr_running);
 758	}
 759
 760	worker->flags |= flags;
 761}
 762
 763/**
 764 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
 765 * @worker: self
 766 * @flags: flags to clear
 767 *
 768 * Clear @flags in @worker->flags and adjust nr_running accordingly.
 769 *
 770 * CONTEXT:
 771 * spin_lock_irq(gcwq->lock)
 772 */
 773static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
 774{
 775	struct global_cwq *gcwq = worker->gcwq;
 776	unsigned int oflags = worker->flags;
 777
 778	WARN_ON_ONCE(worker->task != current);
 779
 780	worker->flags &= ~flags;
 781
 782	/*
 783	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
 784	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
 785	 * of multiple flags, not a single flag.
 786	 */
 787	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
 788		if (!(worker->flags & WORKER_NOT_RUNNING))
 789			atomic_inc(get_gcwq_nr_running(gcwq->cpu));
 790}
 791
 792/**
 793 * busy_worker_head - return the busy hash head for a work
 794 * @gcwq: gcwq of interest
 795 * @work: work to be hashed
 796 *
 797 * Return hash head of @gcwq for @work.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 798 *
 799 * CONTEXT:
 800 * spin_lock_irq(gcwq->lock).
 801 *
 802 * RETURNS:
 803 * Pointer to the hash head.
 
 804 */
 805static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
 806					   struct work_struct *work)
 807{
 808	const int base_shift = ilog2(sizeof(struct work_struct));
 809	unsigned long v = (unsigned long)work;
 810
 811	/* simple shift and fold hash, do we need something better? */
 812	v >>= base_shift;
 813	v += v >> BUSY_WORKER_HASH_ORDER;
 814	v &= BUSY_WORKER_HASH_MASK;
 
 815
 816	return &gcwq->busy_hash[v];
 817}
 818
 819/**
 820 * __find_worker_executing_work - find worker which is executing a work
 821 * @gcwq: gcwq of interest
 822 * @bwh: hash head as returned by busy_worker_head()
 823 * @work: work to find worker for
 
 
 
 
 824 *
 825 * Find a worker which is executing @work on @gcwq.  @bwh should be
 826 * the hash head obtained by calling busy_worker_head() with the same
 827 * work.
 828 *
 829 * CONTEXT:
 830 * spin_lock_irq(gcwq->lock).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 831 *
 832 * RETURNS:
 833 * Pointer to worker which is executing @work if found, NULL
 834 * otherwise.
 835 */
 836static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
 837						   struct hlist_head *bwh,
 838						   struct work_struct *work)
 839{
 840	struct worker *worker;
 841	struct hlist_node *tmp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 842
 843	hlist_for_each_entry(worker, tmp, bwh, hentry)
 844		if (worker->current_work == work)
 845			return worker;
 846	return NULL;
 847}
 848
 849/**
 850 * find_worker_executing_work - find worker which is executing a work
 851 * @gcwq: gcwq of interest
 852 * @work: work to find worker for
 853 *
 854 * Find a worker which is executing @work on @gcwq.  This function is
 855 * identical to __find_worker_executing_work() except that this
 856 * function calculates @bwh itself.
 857 *
 858 * CONTEXT:
 859 * spin_lock_irq(gcwq->lock).
 860 *
 861 * RETURNS:
 862 * Pointer to worker which is executing @work if found, NULL
 863 * otherwise.
 864 */
 865static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
 866						 struct work_struct *work)
 867{
 868	return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
 869					    work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 870}
 871
 872/**
 873 * gcwq_determine_ins_pos - find insertion position
 874 * @gcwq: gcwq of interest
 875 * @cwq: cwq a work is being queued for
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 876 *
 877 * A work for @cwq is about to be queued on @gcwq, determine insertion
 878 * position for the work.  If @cwq is for HIGHPRI wq, the work is
 879 * queued at the head of the queue but in FIFO order with respect to
 880 * other HIGHPRI works; otherwise, at the end of the queue.  This
 881 * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that
 882 * there are HIGHPRI works pending.
 883 *
 884 * CONTEXT:
 885 * spin_lock_irq(gcwq->lock).
 886 *
 887 * RETURNS:
 888 * Pointer to inserstion position.
 889 */
 890static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq,
 891					       struct cpu_workqueue_struct *cwq)
 892{
 893	struct work_struct *twork;
 
 894
 895	if (likely(!(cwq->wq->flags & WQ_HIGHPRI)))
 896		return &gcwq->worklist;
 897
 898	list_for_each_entry(twork, &gcwq->worklist, entry) {
 899		struct cpu_workqueue_struct *tcwq = get_work_cwq(twork);
 
 900
 901		if (!(tcwq->wq->flags & WQ_HIGHPRI))
 902			break;
 
 
 
 
 
 903	}
 904
 905	gcwq->flags |= GCWQ_HIGHPRI_PENDING;
 906	return &twork->entry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 907}
 908
 909/**
 910 * insert_work - insert a work into gcwq
 911 * @cwq: cwq @work belongs to
 912 * @work: work to insert
 913 * @head: insertion point
 914 * @extra_flags: extra WORK_STRUCT_* flags to set
 915 *
 916 * Insert @work which belongs to @cwq into @gcwq after @head.
 917 * @extra_flags is or'd to work_struct flags.
 918 *
 919 * CONTEXT:
 920 * spin_lock_irq(gcwq->lock).
 921 */
 922static void insert_work(struct cpu_workqueue_struct *cwq,
 923			struct work_struct *work, struct list_head *head,
 924			unsigned int extra_flags)
 925{
 926	struct global_cwq *gcwq = cwq->gcwq;
 
 
 
 927
 928	/* we own @work, set data and link */
 929	set_work_cwq(work, cwq, extra_flags);
 
 
 930
 931	/*
 932	 * Ensure that we get the right work->data if we see the
 933	 * result of list_add() below, see try_to_grab_pending().
 934	 */
 935	smp_wmb();
 936
 937	list_add_tail(&work->entry, head);
 
 
 
 
 
 
 938
 
 939	/*
 940	 * Ensure either worker_sched_deactivated() sees the above
 941	 * list_add_tail() or we see zero nr_running to avoid workers
 942	 * lying around lazily while there are works to be processed.
 943	 */
 944	smp_mb();
 945
 946	if (__need_more_worker(gcwq))
 947		wake_up_worker(gcwq);
 948}
 949
 950/*
 951 * Test whether @work is being queued from another work executing on the
 952 * same workqueue.  This is rather expensive and should only be used from
 953 * cold paths.
 954 */
 955static bool is_chained_work(struct workqueue_struct *wq)
 956{
 957	unsigned long flags;
 958	unsigned int cpu;
 
 
 
 
 
 
 
 
 959
 960	for_each_gcwq_cpu(cpu) {
 961		struct global_cwq *gcwq = get_gcwq(cpu);
 962		struct worker *worker;
 963		struct hlist_node *pos;
 964		int i;
 965
 966		spin_lock_irqsave(&gcwq->lock, flags);
 967		for_each_busy_worker(worker, i, pos, gcwq) {
 968			if (worker->task != current)
 969				continue;
 970			spin_unlock_irqrestore(&gcwq->lock, flags);
 971			/*
 972			 * I'm @worker, no locking necessary.  See if @work
 973			 * is headed to the same workqueue.
 974			 */
 975			return worker->current_cwq->wq == wq;
 976		}
 977		spin_unlock_irqrestore(&gcwq->lock, flags);
 978	}
 979	return false;
 
 
 980}
 981
 982static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
 983			 struct work_struct *work)
 984{
 985	struct global_cwq *gcwq;
 986	struct cpu_workqueue_struct *cwq;
 987	struct list_head *worklist;
 988	unsigned int work_flags;
 989	unsigned long flags;
 
 
 
 
 
 
 
 
 990
 991	debug_work_activate(work);
 992
 993	/* if dying, only works from the same workqueue are allowed */
 994	if (unlikely(wq->flags & WQ_DRAINING) &&
 995	    WARN_ON_ONCE(!is_chained_work(wq)))
 996		return;
 
 
 
 
 
 
 
 
 
 
 
 
 997
 998	/* determine gcwq to use */
 999	if (!(wq->flags & WQ_UNBOUND)) {
1000		struct global_cwq *last_gcwq;
 
 
 
 
 
 
 
1001
1002		if (unlikely(cpu == WORK_CPU_UNBOUND))
1003			cpu = raw_smp_processor_id();
1004
1005		/*
1006		 * It's multi cpu.  If @wq is non-reentrant and @work
1007		 * was previously on a different cpu, it might still
1008		 * be running there, in which case the work needs to
1009		 * be queued on that cpu to guarantee non-reentrance.
1010		 */
1011		gcwq = get_gcwq(cpu);
1012		if (wq->flags & WQ_NON_REENTRANT &&
1013		    (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
1014			struct worker *worker;
1015
1016			spin_lock_irqsave(&last_gcwq->lock, flags);
1017
1018			worker = find_worker_executing_work(last_gcwq, work);
1019
1020			if (worker && worker->current_cwq->wq == wq)
1021				gcwq = last_gcwq;
1022			else {
1023				/* meh... not running there, queue here */
1024				spin_unlock_irqrestore(&last_gcwq->lock, flags);
1025				spin_lock_irqsave(&gcwq->lock, flags);
1026			}
1027		} else
1028			spin_lock_irqsave(&gcwq->lock, flags);
1029	} else {
1030		gcwq = get_gcwq(WORK_CPU_UNBOUND);
1031		spin_lock_irqsave(&gcwq->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1032	}
1033
1034	/* gcwq determined, get cwq and queue */
1035	cwq = get_cwq(gcwq->cpu, wq);
1036	trace_workqueue_queue_work(cpu, cwq, work);
1037
1038	BUG_ON(!list_empty(&work->entry));
 
1039
1040	cwq->nr_in_flight[cwq->work_color]++;
1041	work_flags = work_color_to_flags(cwq->work_color);
1042
1043	if (likely(cwq->nr_active < cwq->max_active)) {
1044		trace_workqueue_activate_work(work);
1045		cwq->nr_active++;
1046		worklist = gcwq_determine_ins_pos(gcwq, cwq);
 
 
1047	} else {
1048		work_flags |= WORK_STRUCT_DELAYED;
1049		worklist = &cwq->delayed_works;
1050	}
1051
1052	insert_work(cwq, work, worklist, work_flags);
 
1053
1054	spin_unlock_irqrestore(&gcwq->lock, flags);
 
 
1055}
1056
1057/**
1058 * queue_work - queue work on a workqueue
 
1059 * @wq: workqueue to use
1060 * @work: work to queue
1061 *
1062 * Returns 0 if @work was already on a queue, non-zero otherwise.
 
 
1063 *
1064 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1065 * it can be processed by another CPU.
1066 */
1067int queue_work(struct workqueue_struct *wq, struct work_struct *work)
 
1068{
1069	int ret;
 
1070
1071	ret = queue_work_on(get_cpu(), wq, work);
1072	put_cpu();
1073
 
 
 
 
 
 
1074	return ret;
1075}
1076EXPORT_SYMBOL_GPL(queue_work);
1077
1078/**
1079 * queue_work_on - queue work on specific cpu
1080 * @cpu: CPU number to execute work on
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1081 * @wq: workqueue to use
1082 * @work: work to queue
1083 *
1084 * Returns 0 if @work was already on a queue, non-zero otherwise.
 
 
 
 
 
 
 
 
 
 
1085 *
1086 * We queue the work to a specific CPU, the caller must ensure it
1087 * can't go away.
1088 */
1089int
1090queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
1091{
1092	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1093
1094	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
 
 
1095		__queue_work(cpu, wq, work);
1096		ret = 1;
1097	}
 
 
1098	return ret;
1099}
1100EXPORT_SYMBOL_GPL(queue_work_on);
1101
1102static void delayed_work_timer_fn(unsigned long __data)
1103{
1104	struct delayed_work *dwork = (struct delayed_work *)__data;
1105	struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1106
1107	__queue_work(smp_processor_id(), cwq->wq, &dwork->work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1108}
1109
1110/**
1111 * queue_delayed_work - queue work on a workqueue after delay
 
1112 * @wq: workqueue to use
1113 * @dwork: delayable work to queue
1114 * @delay: number of jiffies to wait before queueing
1115 *
1116 * Returns 0 if @work was already on a queue, non-zero otherwise.
 
 
1117 */
1118int queue_delayed_work(struct workqueue_struct *wq,
1119			struct delayed_work *dwork, unsigned long delay)
1120{
1121	if (delay == 0)
1122		return queue_work(wq, &dwork->work);
 
 
 
 
 
 
 
 
 
1123
1124	return queue_delayed_work_on(-1, wq, dwork, delay);
 
1125}
1126EXPORT_SYMBOL_GPL(queue_delayed_work);
1127
1128/**
1129 * queue_delayed_work_on - queue work on specific CPU after delay
1130 * @cpu: CPU number to execute work on
1131 * @wq: workqueue to use
1132 * @dwork: work to queue
1133 * @delay: number of jiffies to wait before queueing
1134 *
1135 * Returns 0 if @work was already on a queue, non-zero otherwise.
 
 
 
 
 
 
 
 
 
1136 */
1137int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1138			struct delayed_work *dwork, unsigned long delay)
1139{
1140	int ret = 0;
1141	struct timer_list *timer = &dwork->timer;
1142	struct work_struct *work = &dwork->work;
 
 
 
1143
1144	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1145		unsigned int lcpu;
 
 
1146
1147		BUG_ON(timer_pending(timer));
1148		BUG_ON(!list_empty(&work->entry));
 
 
1149
1150		timer_stats_timer_set_start_info(&dwork->timer);
 
 
1151
1152		/*
1153		 * This stores cwq for the moment, for the timer_fn.
1154		 * Note that the work's gcwq is preserved to allow
1155		 * reentrance detection for delayed works.
1156		 */
1157		if (!(wq->flags & WQ_UNBOUND)) {
1158			struct global_cwq *gcwq = get_work_gcwq(work);
1159
1160			if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1161				lcpu = gcwq->cpu;
1162			else
1163				lcpu = raw_smp_processor_id();
1164		} else
1165			lcpu = WORK_CPU_UNBOUND;
1166
1167		set_work_cwq(work, get_cwq(lcpu, wq), 0);
1168
1169		timer->expires = jiffies + delay;
1170		timer->data = (unsigned long)dwork;
1171		timer->function = delayed_work_timer_fn;
 
1172
1173		if (unlikely(cpu >= 0))
1174			add_timer_on(timer, cpu);
1175		else
1176			add_timer(timer);
1177		ret = 1;
1178	}
1179	return ret;
 
1180}
1181EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1182
1183/**
1184 * worker_enter_idle - enter idle state
1185 * @worker: worker which is entering idle state
1186 *
1187 * @worker is entering idle state.  Update stats and idle timer if
1188 * necessary.
1189 *
1190 * LOCKING:
1191 * spin_lock_irq(gcwq->lock).
1192 */
1193static void worker_enter_idle(struct worker *worker)
1194{
1195	struct global_cwq *gcwq = worker->gcwq;
1196
1197	BUG_ON(worker->flags & WORKER_IDLE);
1198	BUG_ON(!list_empty(&worker->entry) &&
1199	       (worker->hentry.next || worker->hentry.pprev));
 
1200
1201	/* can't use worker_set_flags(), also called from start_worker() */
1202	worker->flags |= WORKER_IDLE;
1203	gcwq->nr_idle++;
1204	worker->last_active = jiffies;
1205
1206	/* idle_list is LIFO */
1207	list_add(&worker->entry, &gcwq->idle_list);
1208
1209	if (likely(!(worker->flags & WORKER_ROGUE))) {
1210		if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer))
1211			mod_timer(&gcwq->idle_timer,
1212				  jiffies + IDLE_WORKER_TIMEOUT);
1213	} else
1214		wake_up_all(&gcwq->trustee_wait);
1215
1216	/* sanity check nr_running */
1217	WARN_ON_ONCE(gcwq->nr_workers == gcwq->nr_idle &&
1218		     atomic_read(get_gcwq_nr_running(gcwq->cpu)));
1219}
1220
1221/**
1222 * worker_leave_idle - leave idle state
1223 * @worker: worker which is leaving idle state
1224 *
1225 * @worker is leaving idle state.  Update stats.
1226 *
1227 * LOCKING:
1228 * spin_lock_irq(gcwq->lock).
1229 */
1230static void worker_leave_idle(struct worker *worker)
1231{
1232	struct global_cwq *gcwq = worker->gcwq;
1233
1234	BUG_ON(!(worker->flags & WORKER_IDLE));
 
1235	worker_clr_flags(worker, WORKER_IDLE);
1236	gcwq->nr_idle--;
1237	list_del_init(&worker->entry);
1238}
1239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1240/**
1241 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1242 * @worker: self
1243 *
1244 * Works which are scheduled while the cpu is online must at least be
1245 * scheduled to a worker which is bound to the cpu so that if they are
1246 * flushed from cpu callbacks while cpu is going down, they are
1247 * guaranteed to execute on the cpu.
1248 *
1249 * This function is to be used by rogue workers and rescuers to bind
1250 * themselves to the target cpu and may race with cpu going down or
1251 * coming online.  kthread_bind() can't be used because it may put the
1252 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1253 * verbatim as it's best effort and blocking and gcwq may be
1254 * [dis]associated in the meantime.
1255 *
1256 * This function tries set_cpus_allowed() and locks gcwq and verifies
1257 * the binding against GCWQ_DISASSOCIATED which is set during
1258 * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters
1259 * idle state or fetches works without dropping lock, it can guarantee
1260 * the scheduling requirement described in the first paragraph.
1261 *
1262 * CONTEXT:
1263 * Might sleep.  Called without any lock but returns with gcwq->lock
1264 * held.
1265 *
1266 * RETURNS:
1267 * %true if the associated gcwq is online (@worker is successfully
1268 * bound), %false if offline.
1269 */
1270static bool worker_maybe_bind_and_lock(struct worker *worker)
1271__acquires(&gcwq->lock)
1272{
1273	struct global_cwq *gcwq = worker->gcwq;
1274	struct task_struct *task = worker->task;
1275
1276	while (true) {
1277		/*
1278		 * The following call may fail, succeed or succeed
1279		 * without actually migrating the task to the cpu if
1280		 * it races with cpu hotunplug operation.  Verify
1281		 * against GCWQ_DISASSOCIATED.
1282		 */
1283		if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1284			set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1285
1286		spin_lock_irq(&gcwq->lock);
1287		if (gcwq->flags & GCWQ_DISASSOCIATED)
1288			return false;
1289		if (task_cpu(task) == gcwq->cpu &&
1290		    cpumask_equal(&current->cpus_allowed,
1291				  get_cpu_mask(gcwq->cpu)))
1292			return true;
1293		spin_unlock_irq(&gcwq->lock);
1294
1295		/*
1296		 * We've raced with CPU hot[un]plug.  Give it a breather
1297		 * and retry migration.  cond_resched() is required here;
1298		 * otherwise, we might deadlock against cpu_stop trying to
1299		 * bring down the CPU on non-preemptive kernel.
1300		 */
1301		cpu_relax();
1302		cond_resched();
1303	}
1304}
1305
1306/*
1307 * Function for worker->rebind_work used to rebind rogue busy workers
1308 * to the associated cpu which is coming back online.  This is
1309 * scheduled by cpu up but can race with other cpu hotplug operations
1310 * and may be executed twice without intervening cpu down.
 
 
1311 */
1312static void worker_rebind_fn(struct work_struct *work)
1313{
1314	struct worker *worker = container_of(work, struct worker, rebind_work);
1315	struct global_cwq *gcwq = worker->gcwq;
 
 
1316
1317	if (worker_maybe_bind_and_lock(worker))
1318		worker_clr_flags(worker, WORKER_REBIND);
 
1319
1320	spin_unlock_irq(&gcwq->lock);
1321}
 
1322
1323static struct worker *alloc_worker(void)
1324{
1325	struct worker *worker;
1326
1327	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1328	if (worker) {
1329		INIT_LIST_HEAD(&worker->entry);
1330		INIT_LIST_HEAD(&worker->scheduled);
1331		INIT_WORK(&worker->rebind_work, worker_rebind_fn);
1332		/* on creation a worker is in !idle && prep state */
1333		worker->flags = WORKER_PREP;
1334	}
1335	return worker;
1336}
1337
1338/**
1339 * create_worker - create a new workqueue worker
1340 * @gcwq: gcwq the new worker will belong to
1341 * @bind: whether to set affinity to @cpu or not
1342 *
1343 * Create a new worker which is bound to @gcwq.  The returned worker
1344 * can be started by calling start_worker() or destroyed using
1345 * destroy_worker().
1346 *
1347 * CONTEXT:
1348 * Might sleep.  Does GFP_KERNEL allocations.
1349 *
1350 * RETURNS:
1351 * Pointer to the newly created worker.
1352 */
1353static struct worker *create_worker(struct global_cwq *gcwq, bool bind)
1354{
1355	bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND;
1356	struct worker *worker = NULL;
1357	int id = -1;
1358
1359	spin_lock_irq(&gcwq->lock);
1360	while (ida_get_new(&gcwq->worker_ida, &id)) {
1361		spin_unlock_irq(&gcwq->lock);
1362		if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL))
1363			goto fail;
1364		spin_lock_irq(&gcwq->lock);
1365	}
1366	spin_unlock_irq(&gcwq->lock);
1367
1368	worker = alloc_worker();
1369	if (!worker)
1370		goto fail;
1371
1372	worker->gcwq = gcwq;
1373	worker->id = id;
1374
1375	if (!on_unbound_cpu)
1376		worker->task = kthread_create_on_node(worker_thread,
1377						      worker,
1378						      cpu_to_node(gcwq->cpu),
1379						      "kworker/%u:%d", gcwq->cpu, id);
1380	else
1381		worker->task = kthread_create(worker_thread, worker,
1382					      "kworker/u:%d", id);
 
 
1383	if (IS_ERR(worker->task))
1384		goto fail;
1385
1386	/*
1387	 * A rogue worker will become a regular one if CPU comes
1388	 * online later on.  Make sure every worker has
1389	 * PF_THREAD_BOUND set.
1390	 */
1391	if (bind && !on_unbound_cpu)
1392		kthread_bind(worker->task, gcwq->cpu);
1393	else {
1394		worker->task->flags |= PF_THREAD_BOUND;
1395		if (on_unbound_cpu)
1396			worker->flags |= WORKER_UNBOUND;
1397	}
1398
1399	return worker;
 
1400fail:
1401	if (id >= 0) {
1402		spin_lock_irq(&gcwq->lock);
1403		ida_remove(&gcwq->worker_ida, id);
1404		spin_unlock_irq(&gcwq->lock);
1405	}
1406	kfree(worker);
1407	return NULL;
1408}
1409
1410/**
1411 * start_worker - start a newly created worker
1412 * @worker: worker to start
1413 *
1414 * Make the gcwq aware of @worker and start it.
1415 *
1416 * CONTEXT:
1417 * spin_lock_irq(gcwq->lock).
1418 */
1419static void start_worker(struct worker *worker)
1420{
1421	worker->flags |= WORKER_STARTED;
1422	worker->gcwq->nr_workers++;
1423	worker_enter_idle(worker);
1424	wake_up_process(worker->task);
1425}
1426
1427/**
1428 * destroy_worker - destroy a workqueue worker
1429 * @worker: worker to be destroyed
1430 *
1431 * Destroy @worker and adjust @gcwq stats accordingly.
 
1432 *
1433 * CONTEXT:
1434 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1435 */
1436static void destroy_worker(struct worker *worker)
1437{
1438	struct global_cwq *gcwq = worker->gcwq;
1439	int id = worker->id;
 
1440
1441	/* sanity check frenzy */
1442	BUG_ON(worker->current_work);
1443	BUG_ON(!list_empty(&worker->scheduled));
 
 
1444
1445	if (worker->flags & WORKER_STARTED)
1446		gcwq->nr_workers--;
1447	if (worker->flags & WORKER_IDLE)
1448		gcwq->nr_idle--;
1449
1450	list_del_init(&worker->entry);
1451	worker->flags |= WORKER_DIE;
1452
1453	spin_unlock_irq(&gcwq->lock);
1454
1455	kthread_stop(worker->task);
1456	kfree(worker);
1457
1458	spin_lock_irq(&gcwq->lock);
1459	ida_remove(&gcwq->worker_ida, id);
1460}
1461
1462static void idle_worker_timeout(unsigned long __gcwq)
1463{
1464	struct global_cwq *gcwq = (void *)__gcwq;
1465
1466	spin_lock_irq(&gcwq->lock);
1467
1468	if (too_many_workers(gcwq)) {
1469		struct worker *worker;
1470		unsigned long expires;
1471
1472		/* idle_list is kept in LIFO order, check the last one */
1473		worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1474		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1475
1476		if (time_before(jiffies, expires))
1477			mod_timer(&gcwq->idle_timer, expires);
1478		else {
1479			/* it's been idle for too long, wake up manager */
1480			gcwq->flags |= GCWQ_MANAGE_WORKERS;
1481			wake_up_worker(gcwq);
1482		}
 
 
1483	}
1484
1485	spin_unlock_irq(&gcwq->lock);
1486}
1487
1488static bool send_mayday(struct work_struct *work)
1489{
1490	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1491	struct workqueue_struct *wq = cwq->wq;
1492	unsigned int cpu;
1493
1494	if (!(wq->flags & WQ_RESCUER))
1495		return false;
 
 
1496
1497	/* mayday mayday mayday */
1498	cpu = cwq->gcwq->cpu;
1499	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1500	if (cpu == WORK_CPU_UNBOUND)
1501		cpu = 0;
1502	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
 
 
 
1503		wake_up_process(wq->rescuer->task);
1504	return true;
1505}
1506
1507static void gcwq_mayday_timeout(unsigned long __gcwq)
1508{
1509	struct global_cwq *gcwq = (void *)__gcwq;
1510	struct work_struct *work;
1511
1512	spin_lock_irq(&gcwq->lock);
 
1513
1514	if (need_to_create_worker(gcwq)) {
1515		/*
1516		 * We've been trying to create a new worker but
1517		 * haven't been successful.  We might be hitting an
1518		 * allocation deadlock.  Send distress signals to
1519		 * rescuers.
1520		 */
1521		list_for_each_entry(work, &gcwq->worklist, entry)
1522			send_mayday(work);
1523	}
1524
1525	spin_unlock_irq(&gcwq->lock);
 
1526
1527	mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL);
1528}
1529
1530/**
1531 * maybe_create_worker - create a new worker if necessary
1532 * @gcwq: gcwq to create a new worker for
1533 *
1534 * Create a new worker for @gcwq if necessary.  @gcwq is guaranteed to
1535 * have at least one idle worker on return from this function.  If
1536 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1537 * sent to all rescuers with works scheduled on @gcwq to resolve
1538 * possible allocation deadlock.
1539 *
1540 * On return, need_to_create_worker() is guaranteed to be false and
1541 * may_start_working() true.
1542 *
1543 * LOCKING:
1544 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1545 * multiple times.  Does GFP_KERNEL allocations.  Called only from
1546 * manager.
1547 *
1548 * RETURNS:
1549 * false if no action was taken and gcwq->lock stayed locked, true
1550 * otherwise.
1551 */
1552static bool maybe_create_worker(struct global_cwq *gcwq)
1553__releases(&gcwq->lock)
1554__acquires(&gcwq->lock)
1555{
1556	if (!need_to_create_worker(gcwq))
1557		return false;
1558restart:
1559	spin_unlock_irq(&gcwq->lock);
1560
1561	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1562	mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1563
1564	while (true) {
1565		struct worker *worker;
1566
1567		worker = create_worker(gcwq, true);
1568		if (worker) {
1569			del_timer_sync(&gcwq->mayday_timer);
1570			spin_lock_irq(&gcwq->lock);
1571			start_worker(worker);
1572			BUG_ON(need_to_create_worker(gcwq));
1573			return true;
1574		}
1575
1576		if (!need_to_create_worker(gcwq))
1577			break;
1578
1579		__set_current_state(TASK_INTERRUPTIBLE);
1580		schedule_timeout(CREATE_COOLDOWN);
1581
1582		if (!need_to_create_worker(gcwq))
1583			break;
1584	}
1585
1586	del_timer_sync(&gcwq->mayday_timer);
1587	spin_lock_irq(&gcwq->lock);
1588	if (need_to_create_worker(gcwq))
 
 
 
 
 
1589		goto restart;
1590	return true;
1591}
1592
1593/**
1594 * maybe_destroy_worker - destroy workers which have been idle for a while
1595 * @gcwq: gcwq to destroy workers for
1596 *
1597 * Destroy @gcwq workers which have been idle for longer than
1598 * IDLE_WORKER_TIMEOUT.
1599 *
1600 * LOCKING:
1601 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1602 * multiple times.  Called only from manager.
1603 *
1604 * RETURNS:
1605 * false if no action was taken and gcwq->lock stayed locked, true
1606 * otherwise.
1607 */
1608static bool maybe_destroy_workers(struct global_cwq *gcwq)
1609{
1610	bool ret = false;
1611
1612	while (too_many_workers(gcwq)) {
1613		struct worker *worker;
1614		unsigned long expires;
1615
1616		worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1617		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1618
1619		if (time_before(jiffies, expires)) {
1620			mod_timer(&gcwq->idle_timer, expires);
1621			break;
1622		}
1623
1624		destroy_worker(worker);
1625		ret = true;
1626	}
1627
1628	return ret;
1629}
1630
1631/**
1632 * manage_workers - manage worker pool
1633 * @worker: self
1634 *
1635 * Assume the manager role and manage gcwq worker pool @worker belongs
1636 * to.  At any given time, there can be only zero or one manager per
1637 * gcwq.  The exclusion is handled automatically by this function.
1638 *
1639 * The caller can safely start processing works on false return.  On
1640 * true return, it's guaranteed that need_to_create_worker() is false
1641 * and may_start_working() is true.
1642 *
1643 * CONTEXT:
1644 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1645 * multiple times.  Does GFP_KERNEL allocations.
1646 *
1647 * RETURNS:
1648 * false if no action was taken and gcwq->lock stayed locked, true if
1649 * some action was taken.
 
 
1650 */
1651static bool manage_workers(struct worker *worker)
1652{
1653	struct global_cwq *gcwq = worker->gcwq;
1654	bool ret = false;
1655
1656	if (gcwq->flags & GCWQ_MANAGING_WORKERS)
1657		return ret;
1658
1659	gcwq->flags &= ~GCWQ_MANAGE_WORKERS;
1660	gcwq->flags |= GCWQ_MANAGING_WORKERS;
1661
1662	/*
1663	 * Destroy and then create so that may_start_working() is true
1664	 * on return.
1665	 */
1666	ret |= maybe_destroy_workers(gcwq);
1667	ret |= maybe_create_worker(gcwq);
1668
1669	gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
1670
1671	/*
1672	 * The trustee might be waiting to take over the manager
1673	 * position, tell it we're done.
1674	 */
1675	if (unlikely(gcwq->trustee))
1676		wake_up_all(&gcwq->trustee_wait);
1677
1678	return ret;
1679}
1680
1681/**
1682 * move_linked_works - move linked works to a list
1683 * @work: start of series of works to be scheduled
1684 * @head: target list to append @work to
1685 * @nextp: out paramter for nested worklist walking
1686 *
1687 * Schedule linked works starting from @work to @head.  Work series to
1688 * be scheduled starts at @work and includes any consecutive work with
1689 * WORK_STRUCT_LINKED set in its predecessor.
1690 *
1691 * If @nextp is not NULL, it's updated to point to the next work of
1692 * the last scheduled work.  This allows move_linked_works() to be
1693 * nested inside outer list_for_each_entry_safe().
1694 *
1695 * CONTEXT:
1696 * spin_lock_irq(gcwq->lock).
1697 */
1698static void move_linked_works(struct work_struct *work, struct list_head *head,
1699			      struct work_struct **nextp)
1700{
1701	struct work_struct *n;
1702
1703	/*
1704	 * Linked worklist will always end before the end of the list,
1705	 * use NULL for list head.
1706	 */
1707	list_for_each_entry_safe_from(work, n, NULL, entry) {
1708		list_move_tail(&work->entry, head);
1709		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1710			break;
1711	}
1712
1713	/*
1714	 * If we're already inside safe list traversal and have moved
1715	 * multiple works to the scheduled queue, the next position
1716	 * needs to be updated.
1717	 */
1718	if (nextp)
1719		*nextp = n;
1720}
1721
1722static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1723{
1724	struct work_struct *work = list_first_entry(&cwq->delayed_works,
1725						    struct work_struct, entry);
1726	struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq);
1727
1728	trace_workqueue_activate_work(work);
1729	move_linked_works(work, pos, NULL);
1730	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1731	cwq->nr_active++;
1732}
1733
1734/**
1735 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1736 * @cwq: cwq of interest
1737 * @color: color of work which left the queue
1738 * @delayed: for a delayed work
1739 *
1740 * A work either has completed or is removed from pending queue,
1741 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1742 *
1743 * CONTEXT:
1744 * spin_lock_irq(gcwq->lock).
1745 */
1746static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1747				 bool delayed)
1748{
1749	/* ignore uncolored works */
1750	if (color == WORK_NO_COLOR)
1751		return;
1752
1753	cwq->nr_in_flight[color]--;
1754
1755	if (!delayed) {
1756		cwq->nr_active--;
1757		if (!list_empty(&cwq->delayed_works)) {
1758			/* one down, submit a delayed one */
1759			if (cwq->nr_active < cwq->max_active)
1760				cwq_activate_first_delayed(cwq);
1761		}
1762	}
1763
1764	/* is flush in progress and are we at the flushing tip? */
1765	if (likely(cwq->flush_color != color))
1766		return;
1767
1768	/* are there still in-flight works? */
1769	if (cwq->nr_in_flight[color])
1770		return;
1771
1772	/* this cwq is done, clear flush_color */
1773	cwq->flush_color = -1;
1774
1775	/*
1776	 * If this was the last cwq, wake up the first flusher.  It
1777	 * will handle the rest.
1778	 */
1779	if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1780		complete(&cwq->wq->first_flusher->done);
1781}
1782
1783/**
1784 * process_one_work - process single work
1785 * @worker: self
1786 * @work: work to process
1787 *
1788 * Process @work.  This function contains all the logics necessary to
1789 * process a single work including synchronization against and
1790 * interaction with other workers on the same cpu, queueing and
1791 * flushing.  As long as context requirement is met, any worker can
1792 * call this function to process a work.
1793 *
1794 * CONTEXT:
1795 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1796 */
1797static void process_one_work(struct worker *worker, struct work_struct *work)
1798__releases(&gcwq->lock)
1799__acquires(&gcwq->lock)
1800{
1801	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1802	struct global_cwq *gcwq = cwq->gcwq;
1803	struct hlist_head *bwh = busy_worker_head(gcwq, work);
1804	bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
1805	work_func_t f = work->func;
1806	int work_color;
1807	struct worker *collision;
1808#ifdef CONFIG_LOCKDEP
1809	/*
1810	 * It is permissible to free the struct work_struct from
1811	 * inside the function that is called from it, this we need to
1812	 * take into account for lockdep too.  To avoid bogus "held
1813	 * lock freed" warnings as well as problems when looking into
1814	 * work->lockdep_map, make a copy and use that here.
1815	 */
1816	struct lockdep_map lockdep_map = work->lockdep_map;
 
 
1817#endif
 
 
 
 
1818	/*
1819	 * A single work shouldn't be executed concurrently by
1820	 * multiple workers on a single cpu.  Check whether anyone is
1821	 * already processing the work.  If so, defer the work to the
1822	 * currently executing one.
1823	 */
1824	collision = __find_worker_executing_work(gcwq, bwh, work);
1825	if (unlikely(collision)) {
1826		move_linked_works(work, &collision->scheduled, NULL);
1827		return;
1828	}
1829
1830	/* claim and process */
1831	debug_work_deactivate(work);
1832	hlist_add_head(&worker->hentry, bwh);
1833	worker->current_work = work;
1834	worker->current_cwq = cwq;
1835	work_color = get_work_color(work);
 
 
 
 
 
 
 
 
1836
1837	/* record the current cpu number in the work data and dequeue */
1838	set_work_cpu(work, gcwq->cpu);
1839	list_del_init(&work->entry);
1840
1841	/*
1842	 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI,
1843	 * wake up another worker; otherwise, clear HIGHPRI_PENDING.
 
 
1844	 */
1845	if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) {
1846		struct work_struct *nwork = list_first_entry(&gcwq->worklist,
1847						struct work_struct, entry);
1848
1849		if (!list_empty(&gcwq->worklist) &&
1850		    get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI)
1851			wake_up_worker(gcwq);
1852		else
1853			gcwq->flags &= ~GCWQ_HIGHPRI_PENDING;
1854	}
 
 
 
1855
1856	/*
1857	 * CPU intensive works don't participate in concurrency
1858	 * management.  They're the scheduler's responsibility.
 
 
1859	 */
1860	if (unlikely(cpu_intensive))
1861		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
1862
1863	spin_unlock_irq(&gcwq->lock);
1864
1865	work_clear_pending(work);
1866	lock_map_acquire_read(&cwq->wq->lockdep_map);
1867	lock_map_acquire(&lockdep_map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1868	trace_workqueue_execute_start(work);
1869	f(work);
1870	/*
1871	 * While we must be careful to not use "work" after this, the trace
1872	 * point will only record its address.
1873	 */
1874	trace_workqueue_execute_end(work);
1875	lock_map_release(&lockdep_map);
1876	lock_map_release(&cwq->wq->lockdep_map);
1877
1878	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
1879		printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
1880		       "%s/0x%08x/%d\n",
1881		       current->comm, preempt_count(), task_pid_nr(current));
1882		printk(KERN_ERR "    last function: ");
1883		print_symbol("%s\n", (unsigned long)f);
1884		debug_show_held_locks(current);
1885		dump_stack();
1886	}
1887
1888	spin_lock_irq(&gcwq->lock);
 
 
 
 
 
 
 
 
 
 
1889
1890	/* clear cpu intensive status */
1891	if (unlikely(cpu_intensive))
1892		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
1893
 
 
 
1894	/* we're done with it, release */
1895	hlist_del_init(&worker->hentry);
1896	worker->current_work = NULL;
1897	worker->current_cwq = NULL;
1898	cwq_dec_nr_in_flight(cwq, work_color, false);
 
 
1899}
1900
1901/**
1902 * process_scheduled_works - process scheduled works
1903 * @worker: self
1904 *
1905 * Process all scheduled works.  Please note that the scheduled list
1906 * may change while processing a work, so this function repeatedly
1907 * fetches a work from the top and executes it.
1908 *
1909 * CONTEXT:
1910 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1911 * multiple times.
1912 */
1913static void process_scheduled_works(struct worker *worker)
1914{
1915	while (!list_empty(&worker->scheduled)) {
1916		struct work_struct *work = list_first_entry(&worker->scheduled,
1917						struct work_struct, entry);
1918		process_one_work(worker, work);
1919	}
1920}
1921
 
 
 
 
 
 
 
 
 
 
1922/**
1923 * worker_thread - the worker thread function
1924 * @__worker: self
1925 *
1926 * The gcwq worker thread function.  There's a single dynamic pool of
1927 * these per each cpu.  These workers process all works regardless of
1928 * their specific target workqueue.  The only exception is works which
1929 * belong to workqueues with a rescuer which will be explained in
1930 * rescuer_thread().
 
 
1931 */
1932static int worker_thread(void *__worker)
1933{
1934	struct worker *worker = __worker;
1935	struct global_cwq *gcwq = worker->gcwq;
1936
1937	/* tell the scheduler that this is a workqueue worker */
1938	worker->task->flags |= PF_WQ_WORKER;
1939woke_up:
1940	spin_lock_irq(&gcwq->lock);
1941
1942	/* DIE can be set only while we're idle, checking here is enough */
1943	if (worker->flags & WORKER_DIE) {
1944		spin_unlock_irq(&gcwq->lock);
1945		worker->task->flags &= ~PF_WQ_WORKER;
 
 
 
 
 
 
1946		return 0;
1947	}
1948
1949	worker_leave_idle(worker);
1950recheck:
1951	/* no more worker necessary? */
1952	if (!need_more_worker(gcwq))
1953		goto sleep;
1954
1955	/* do we need to manage? */
1956	if (unlikely(!may_start_working(gcwq)) && manage_workers(worker))
1957		goto recheck;
1958
1959	/*
1960	 * ->scheduled list can only be filled while a worker is
1961	 * preparing to process a work or actually processing it.
1962	 * Make sure nobody diddled with it while I was sleeping.
1963	 */
1964	BUG_ON(!list_empty(&worker->scheduled));
1965
1966	/*
1967	 * When control reaches this point, we're guaranteed to have
1968	 * at least one idle worker or that someone else has already
1969	 * assumed the manager role.
 
 
1970	 */
1971	worker_clr_flags(worker, WORKER_PREP);
1972
1973	do {
1974		struct work_struct *work =
1975			list_first_entry(&gcwq->worklist,
1976					 struct work_struct, entry);
1977
 
 
1978		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
1979			/* optimization path, not strictly necessary */
1980			process_one_work(worker, work);
1981			if (unlikely(!list_empty(&worker->scheduled)))
1982				process_scheduled_works(worker);
1983		} else {
1984			move_linked_works(work, &worker->scheduled, NULL);
1985			process_scheduled_works(worker);
1986		}
1987	} while (keep_working(gcwq));
1988
1989	worker_set_flags(worker, WORKER_PREP, false);
1990sleep:
1991	if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker))
1992		goto recheck;
1993
1994	/*
1995	 * gcwq->lock is held and there's no work to process and no
1996	 * need to manage, sleep.  Workers are woken up only while
1997	 * holding gcwq->lock or from local cpu, so setting the
1998	 * current state before releasing gcwq->lock is enough to
1999	 * prevent losing any event.
2000	 */
2001	worker_enter_idle(worker);
2002	__set_current_state(TASK_INTERRUPTIBLE);
2003	spin_unlock_irq(&gcwq->lock);
2004	schedule();
2005	goto woke_up;
2006}
2007
2008/**
2009 * rescuer_thread - the rescuer thread function
2010 * @__wq: the associated workqueue
2011 *
2012 * Workqueue rescuer thread function.  There's one rescuer for each
2013 * workqueue which has WQ_RESCUER set.
2014 *
2015 * Regular work processing on a gcwq may block trying to create a new
2016 * worker which uses GFP_KERNEL allocation which has slight chance of
2017 * developing into deadlock if some works currently on the same queue
2018 * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2019 * the problem rescuer solves.
2020 *
2021 * When such condition is possible, the gcwq summons rescuers of all
2022 * workqueues which have works queued on the gcwq and let them process
2023 * those works so that forward progress can be guaranteed.
2024 *
2025 * This should happen rarely.
 
 
2026 */
2027static int rescuer_thread(void *__wq)
2028{
2029	struct workqueue_struct *wq = __wq;
2030	struct worker *rescuer = wq->rescuer;
2031	struct list_head *scheduled = &rescuer->scheduled;
2032	bool is_unbound = wq->flags & WQ_UNBOUND;
2033	unsigned int cpu;
2034
2035	set_user_nice(current, RESCUER_NICE_LEVEL);
 
 
 
 
 
 
2036repeat:
2037	set_current_state(TASK_INTERRUPTIBLE);
2038
2039	if (kthread_should_stop())
2040		return 0;
2041
2042	/*
2043	 * See whether any cpu is asking for help.  Unbounded
2044	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
 
 
 
 
2045	 */
2046	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2047		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2048		struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2049		struct global_cwq *gcwq = cwq->gcwq;
 
 
 
 
 
2050		struct work_struct *work, *n;
 
2051
2052		__set_current_state(TASK_RUNNING);
2053		mayday_clear_cpu(cpu, wq->mayday_mask);
 
 
2054
2055		/* migrate to the target cpu if possible */
2056		rescuer->gcwq = gcwq;
2057		worker_maybe_bind_and_lock(rescuer);
2058
2059		/*
2060		 * Slurp in all works issued via this workqueue and
2061		 * process'em.
2062		 */
2063		BUG_ON(!list_empty(&rescuer->scheduled));
2064		list_for_each_entry_safe(work, n, &gcwq->worklist, entry)
2065			if (get_work_cwq(work) == cwq)
 
 
2066				move_linked_works(work, scheduled, &n);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2067
2068		process_scheduled_works(rescuer);
 
 
 
 
2069
2070		/*
2071		 * Leave this gcwq.  If keep_working() is %true, notify a
2072		 * regular worker; otherwise, we end up with 0 concurrency
2073		 * and stalling the execution.
2074		 */
2075		if (keep_working(gcwq))
2076			wake_up_worker(gcwq);
2077
2078		spin_unlock_irq(&gcwq->lock);
 
 
 
 
2079	}
2080
 
 
 
 
 
 
 
 
 
 
2081	schedule();
2082	goto repeat;
2083}
2084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2085struct wq_barrier {
2086	struct work_struct	work;
2087	struct completion	done;
 
2088};
2089
2090static void wq_barrier_func(struct work_struct *work)
2091{
2092	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2093	complete(&barr->done);
2094}
2095
2096/**
2097 * insert_wq_barrier - insert a barrier work
2098 * @cwq: cwq to insert barrier into
2099 * @barr: wq_barrier to insert
2100 * @target: target work to attach @barr to
2101 * @worker: worker currently executing @target, NULL if @target is not executing
2102 *
2103 * @barr is linked to @target such that @barr is completed only after
2104 * @target finishes execution.  Please note that the ordering
2105 * guarantee is observed only with respect to @target and on the local
2106 * cpu.
2107 *
2108 * Currently, a queued barrier can't be canceled.  This is because
2109 * try_to_grab_pending() can't determine whether the work to be
2110 * grabbed is at the head of the queue and thus can't clear LINKED
2111 * flag of the previous work while there must be a valid next work
2112 * after a work with LINKED flag set.
2113 *
2114 * Note that when @worker is non-NULL, @target may be modified
2115 * underneath us, so we can't reliably determine cwq from @target.
2116 *
2117 * CONTEXT:
2118 * spin_lock_irq(gcwq->lock).
2119 */
2120static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2121			      struct wq_barrier *barr,
2122			      struct work_struct *target, struct worker *worker)
2123{
 
 
2124	struct list_head *head;
2125	unsigned int linked = 0;
2126
2127	/*
2128	 * debugobject calls are safe here even with gcwq->lock locked
2129	 * as we know for sure that this will not trigger any of the
2130	 * checks and call back into the fixup functions where we
2131	 * might deadlock.
2132	 */
2133	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2134	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2135	init_completion(&barr->done);
 
 
 
 
 
 
2136
2137	/*
2138	 * If @target is currently being executed, schedule the
2139	 * barrier to the worker; otherwise, put it after @target.
2140	 */
2141	if (worker)
2142		head = worker->scheduled.next;
2143	else {
 
2144		unsigned long *bits = work_data_bits(target);
2145
2146		head = target->entry.next;
2147		/* there can already be other linked works, inherit and set */
2148		linked = *bits & WORK_STRUCT_LINKED;
 
2149		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2150	}
2151
 
 
 
2152	debug_work_activate(&barr->work);
2153	insert_work(cwq, &barr->work, head,
2154		    work_color_to_flags(WORK_NO_COLOR) | linked);
2155}
2156
2157/**
2158 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2159 * @wq: workqueue being flushed
2160 * @flush_color: new flush color, < 0 for no-op
2161 * @work_color: new work color, < 0 for no-op
2162 *
2163 * Prepare cwqs for workqueue flushing.
2164 *
2165 * If @flush_color is non-negative, flush_color on all cwqs should be
2166 * -1.  If no cwq has in-flight commands at the specified color, all
2167 * cwq->flush_color's stay at -1 and %false is returned.  If any cwq
2168 * has in flight commands, its cwq->flush_color is set to
2169 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2170 * wakeup logic is armed and %true is returned.
2171 *
2172 * The caller should have initialized @wq->first_flusher prior to
2173 * calling this function with non-negative @flush_color.  If
2174 * @flush_color is negative, no flush color update is done and %false
2175 * is returned.
2176 *
2177 * If @work_color is non-negative, all cwqs should have the same
2178 * work_color which is previous to @work_color and all will be
2179 * advanced to @work_color.
2180 *
2181 * CONTEXT:
2182 * mutex_lock(wq->flush_mutex).
2183 *
2184 * RETURNS:
2185 * %true if @flush_color >= 0 and there's something to flush.  %false
2186 * otherwise.
2187 */
2188static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2189				      int flush_color, int work_color)
2190{
2191	bool wait = false;
2192	unsigned int cpu;
2193
2194	if (flush_color >= 0) {
2195		BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2196		atomic_set(&wq->nr_cwqs_to_flush, 1);
2197	}
2198
2199	for_each_cwq_cpu(cpu, wq) {
2200		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2201		struct global_cwq *gcwq = cwq->gcwq;
2202
2203		spin_lock_irq(&gcwq->lock);
2204
2205		if (flush_color >= 0) {
2206			BUG_ON(cwq->flush_color != -1);
2207
2208			if (cwq->nr_in_flight[flush_color]) {
2209				cwq->flush_color = flush_color;
2210				atomic_inc(&wq->nr_cwqs_to_flush);
2211				wait = true;
2212			}
2213		}
2214
2215		if (work_color >= 0) {
2216			BUG_ON(work_color != work_next_color(cwq->work_color));
2217			cwq->work_color = work_color;
2218		}
2219
2220		spin_unlock_irq(&gcwq->lock);
2221	}
2222
2223	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2224		complete(&wq->first_flusher->done);
2225
2226	return wait;
2227}
2228
2229/**
2230 * flush_workqueue - ensure that any scheduled work has run to completion.
2231 * @wq: workqueue to flush
2232 *
2233 * Forces execution of the workqueue and blocks until its completion.
2234 * This is typically used in driver shutdown handlers.
2235 *
2236 * We sleep until all works which were queued on entry have been handled,
2237 * but we are not livelocked by new incoming ones.
2238 */
2239void flush_workqueue(struct workqueue_struct *wq)
2240{
2241	struct wq_flusher this_flusher = {
2242		.list = LIST_HEAD_INIT(this_flusher.list),
2243		.flush_color = -1,
2244		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2245	};
2246	int next_color;
2247
 
 
 
2248	lock_map_acquire(&wq->lockdep_map);
2249	lock_map_release(&wq->lockdep_map);
2250
2251	mutex_lock(&wq->flush_mutex);
2252
2253	/*
2254	 * Start-to-wait phase
2255	 */
2256	next_color = work_next_color(wq->work_color);
2257
2258	if (next_color != wq->flush_color) {
2259		/*
2260		 * Color space is not full.  The current work_color
2261		 * becomes our flush_color and work_color is advanced
2262		 * by one.
2263		 */
2264		BUG_ON(!list_empty(&wq->flusher_overflow));
2265		this_flusher.flush_color = wq->work_color;
2266		wq->work_color = next_color;
2267
2268		if (!wq->first_flusher) {
2269			/* no flush in progress, become the first flusher */
2270			BUG_ON(wq->flush_color != this_flusher.flush_color);
2271
2272			wq->first_flusher = &this_flusher;
2273
2274			if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2275						       wq->work_color)) {
2276				/* nothing to flush, done */
2277				wq->flush_color = next_color;
2278				wq->first_flusher = NULL;
2279				goto out_unlock;
2280			}
2281		} else {
2282			/* wait in queue */
2283			BUG_ON(wq->flush_color == this_flusher.flush_color);
2284			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2285			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2286		}
2287	} else {
2288		/*
2289		 * Oops, color space is full, wait on overflow queue.
2290		 * The next flush completion will assign us
2291		 * flush_color and transfer to flusher_queue.
2292		 */
2293		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2294	}
2295
2296	mutex_unlock(&wq->flush_mutex);
 
 
2297
2298	wait_for_completion(&this_flusher.done);
2299
2300	/*
2301	 * Wake-up-and-cascade phase
2302	 *
2303	 * First flushers are responsible for cascading flushes and
2304	 * handling overflow.  Non-first flushers can simply return.
2305	 */
2306	if (wq->first_flusher != &this_flusher)
2307		return;
2308
2309	mutex_lock(&wq->flush_mutex);
2310
2311	/* we might have raced, check again with mutex held */
2312	if (wq->first_flusher != &this_flusher)
2313		goto out_unlock;
2314
2315	wq->first_flusher = NULL;
2316
2317	BUG_ON(!list_empty(&this_flusher.list));
2318	BUG_ON(wq->flush_color != this_flusher.flush_color);
2319
2320	while (true) {
2321		struct wq_flusher *next, *tmp;
2322
2323		/* complete all the flushers sharing the current flush color */
2324		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2325			if (next->flush_color != wq->flush_color)
2326				break;
2327			list_del_init(&next->list);
2328			complete(&next->done);
2329		}
2330
2331		BUG_ON(!list_empty(&wq->flusher_overflow) &&
2332		       wq->flush_color != work_next_color(wq->work_color));
2333
2334		/* this flush_color is finished, advance by one */
2335		wq->flush_color = work_next_color(wq->flush_color);
2336
2337		/* one color has been freed, handle overflow queue */
2338		if (!list_empty(&wq->flusher_overflow)) {
2339			/*
2340			 * Assign the same color to all overflowed
2341			 * flushers, advance work_color and append to
2342			 * flusher_queue.  This is the start-to-wait
2343			 * phase for these overflowed flushers.
2344			 */
2345			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2346				tmp->flush_color = wq->work_color;
2347
2348			wq->work_color = work_next_color(wq->work_color);
2349
2350			list_splice_tail_init(&wq->flusher_overflow,
2351					      &wq->flusher_queue);
2352			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2353		}
2354
2355		if (list_empty(&wq->flusher_queue)) {
2356			BUG_ON(wq->flush_color != wq->work_color);
2357			break;
2358		}
2359
2360		/*
2361		 * Need to flush more colors.  Make the next flusher
2362		 * the new first flusher and arm cwqs.
2363		 */
2364		BUG_ON(wq->flush_color == wq->work_color);
2365		BUG_ON(wq->flush_color != next->flush_color);
2366
2367		list_del_init(&next->list);
2368		wq->first_flusher = next;
2369
2370		if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2371			break;
2372
2373		/*
2374		 * Meh... this color is already done, clear first
2375		 * flusher and repeat cascading.
2376		 */
2377		wq->first_flusher = NULL;
2378	}
2379
2380out_unlock:
2381	mutex_unlock(&wq->flush_mutex);
2382}
2383EXPORT_SYMBOL_GPL(flush_workqueue);
2384
2385/**
2386 * drain_workqueue - drain a workqueue
2387 * @wq: workqueue to drain
2388 *
2389 * Wait until the workqueue becomes empty.  While draining is in progress,
2390 * only chain queueing is allowed.  IOW, only currently pending or running
2391 * work items on @wq can queue further work items on it.  @wq is flushed
2392 * repeatedly until it becomes empty.  The number of flushing is detemined
2393 * by the depth of chaining and should be relatively short.  Whine if it
2394 * takes too long.
2395 */
2396void drain_workqueue(struct workqueue_struct *wq)
2397{
2398	unsigned int flush_cnt = 0;
2399	unsigned int cpu;
2400
2401	/*
2402	 * __queue_work() needs to test whether there are drainers, is much
2403	 * hotter than drain_workqueue() and already looks at @wq->flags.
2404	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2405	 */
2406	spin_lock(&workqueue_lock);
2407	if (!wq->nr_drainers++)
2408		wq->flags |= WQ_DRAINING;
2409	spin_unlock(&workqueue_lock);
2410reflush:
2411	flush_workqueue(wq);
 
 
2412
2413	for_each_cwq_cpu(cpu, wq) {
2414		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2415		bool drained;
2416
2417		spin_lock_irq(&cwq->gcwq->lock);
2418		drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2419		spin_unlock_irq(&cwq->gcwq->lock);
2420
2421		if (drained)
2422			continue;
2423
2424		if (++flush_cnt == 10 ||
2425		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2426			pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n",
2427				   wq->name, flush_cnt);
 
 
2428		goto reflush;
2429	}
2430
2431	spin_lock(&workqueue_lock);
2432	if (!--wq->nr_drainers)
2433		wq->flags &= ~WQ_DRAINING;
2434	spin_unlock(&workqueue_lock);
2435}
2436EXPORT_SYMBOL_GPL(drain_workqueue);
2437
2438static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2439			     bool wait_executing)
2440{
2441	struct worker *worker = NULL;
2442	struct global_cwq *gcwq;
2443	struct cpu_workqueue_struct *cwq;
2444
2445	might_sleep();
2446	gcwq = get_work_gcwq(work);
2447	if (!gcwq)
 
 
 
2448		return false;
 
2449
2450	spin_lock_irq(&gcwq->lock);
2451	if (!list_empty(&work->entry)) {
2452		/*
2453		 * See the comment near try_to_grab_pending()->smp_rmb().
2454		 * If it was re-queued to a different gcwq under us, we
2455		 * are not going to wait.
2456		 */
2457		smp_rmb();
2458		cwq = get_work_cwq(work);
2459		if (unlikely(!cwq || gcwq != cwq->gcwq))
2460			goto already_gone;
2461	} else if (wait_executing) {
2462		worker = find_worker_executing_work(gcwq, work);
2463		if (!worker)
2464			goto already_gone;
2465		cwq = worker->current_cwq;
2466	} else
2467		goto already_gone;
2468
2469	insert_wq_barrier(cwq, barr, work, worker);
2470	spin_unlock_irq(&gcwq->lock);
 
 
2471
2472	/*
2473	 * If @max_active is 1 or rescuer is in use, flushing another work
2474	 * item on the same workqueue may lead to deadlock.  Make sure the
2475	 * flusher is not running on the same workqueue by verifying write
2476	 * access.
 
 
 
2477	 */
2478	if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2479		lock_map_acquire(&cwq->wq->lockdep_map);
2480	else
2481		lock_map_acquire_read(&cwq->wq->lockdep_map);
2482	lock_map_release(&cwq->wq->lockdep_map);
2483
2484	return true;
2485already_gone:
2486	spin_unlock_irq(&gcwq->lock);
 
2487	return false;
2488}
2489
2490/**
2491 * flush_work - wait for a work to finish executing the last queueing instance
2492 * @work: the work to flush
2493 *
2494 * Wait until @work has finished execution.  This function considers
2495 * only the last queueing instance of @work.  If @work has been
2496 * enqueued across different CPUs on a non-reentrant workqueue or on
2497 * multiple workqueues, @work might still be executing on return on
2498 * some of the CPUs from earlier queueing.
2499 *
2500 * If @work was queued only on a non-reentrant, ordered or unbound
2501 * workqueue, @work is guaranteed to be idle on return if it hasn't
2502 * been requeued since flush started.
2503 *
2504 * RETURNS:
2505 * %true if flush_work() waited for the work to finish execution,
2506 * %false if it was already idle.
2507 */
2508bool flush_work(struct work_struct *work)
2509{
2510	struct wq_barrier barr;
2511
2512	if (start_flush_work(work, &barr, true)) {
2513		wait_for_completion(&barr.done);
2514		destroy_work_on_stack(&barr.work);
2515		return true;
2516	} else
2517		return false;
2518}
2519EXPORT_SYMBOL_GPL(flush_work);
2520
2521static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2522{
2523	struct wq_barrier barr;
2524	struct worker *worker;
2525
2526	spin_lock_irq(&gcwq->lock);
2527
2528	worker = find_worker_executing_work(gcwq, work);
2529	if (unlikely(worker))
2530		insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2531
2532	spin_unlock_irq(&gcwq->lock);
2533
2534	if (unlikely(worker)) {
2535		wait_for_completion(&barr.done);
2536		destroy_work_on_stack(&barr.work);
2537		return true;
2538	} else
2539		return false;
2540}
2541
2542static bool wait_on_work(struct work_struct *work)
2543{
2544	bool ret = false;
2545	int cpu;
2546
2547	might_sleep();
2548
2549	lock_map_acquire(&work->lockdep_map);
2550	lock_map_release(&work->lockdep_map);
2551
2552	for_each_gcwq_cpu(cpu)
2553		ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2554	return ret;
2555}
2556
2557/**
2558 * flush_work_sync - wait until a work has finished execution
2559 * @work: the work to flush
2560 *
2561 * Wait until @work has finished execution.  On return, it's
2562 * guaranteed that all queueing instances of @work which happened
2563 * before this function is called are finished.  In other words, if
2564 * @work hasn't been requeued since this function was called, @work is
2565 * guaranteed to be idle on return.
2566 *
2567 * RETURNS:
2568 * %true if flush_work_sync() waited for the work to finish execution,
2569 * %false if it was already idle.
2570 */
2571bool flush_work_sync(struct work_struct *work)
2572{
2573	struct wq_barrier barr;
2574	bool pending, waited;
 
2575
2576	/* we'll wait for executions separately, queue barr only if pending */
2577	pending = start_flush_work(work, &barr, false);
 
 
2578
2579	/* wait for executions to finish */
2580	waited = wait_on_work(work);
2581
2582	/* wait for the pending one */
2583	if (pending) {
2584		wait_for_completion(&barr.done);
2585		destroy_work_on_stack(&barr.work);
2586	}
2587
2588	return pending || waited;
2589}
2590EXPORT_SYMBOL_GPL(flush_work_sync);
2591
2592/*
2593 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
2594 * so this work can't be re-armed in any way.
2595 */
2596static int try_to_grab_pending(struct work_struct *work)
2597{
2598	struct global_cwq *gcwq;
2599	int ret = -1;
2600
2601	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2602		return 0;
2603
2604	/*
2605	 * The queueing is in progress, or it is already queued. Try to
2606	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2607	 */
2608	gcwq = get_work_gcwq(work);
2609	if (!gcwq)
2610		return ret;
2611
2612	spin_lock_irq(&gcwq->lock);
2613	if (!list_empty(&work->entry)) {
2614		/*
2615		 * This work is queued, but perhaps we locked the wrong gcwq.
2616		 * In that case we must see the new value after rmb(), see
2617		 * insert_work()->wmb().
2618		 */
2619		smp_rmb();
2620		if (gcwq == get_work_gcwq(work)) {
2621			debug_work_deactivate(work);
2622			list_del_init(&work->entry);
2623			cwq_dec_nr_in_flight(get_work_cwq(work),
2624				get_work_color(work),
2625				*work_data_bits(work) & WORK_STRUCT_DELAYED);
2626			ret = 1;
2627		}
2628	}
2629	spin_unlock_irq(&gcwq->lock);
2630
2631	return ret;
2632}
2633
2634static bool __cancel_work_timer(struct work_struct *work,
2635				struct timer_list* timer)
2636{
 
 
2637	int ret;
2638
2639	do {
2640		ret = (timer && likely(del_timer(timer)));
2641		if (!ret)
2642			ret = try_to_grab_pending(work);
2643		wait_on_work(work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2644	} while (unlikely(ret < 0));
2645
 
 
 
 
 
 
 
 
 
 
 
2646	clear_work_data(work);
 
 
 
 
 
 
 
 
 
 
2647	return ret;
2648}
2649
2650/**
2651 * cancel_work_sync - cancel a work and wait for it to finish
2652 * @work: the work to cancel
2653 *
2654 * Cancel @work and wait for its execution to finish.  This function
2655 * can be used even if the work re-queues itself or migrates to
2656 * another workqueue.  On return from this function, @work is
2657 * guaranteed to be not pending or executing on any CPU.
2658 *
2659 * cancel_work_sync(&delayed_work->work) must not be used for
2660 * delayed_work's.  Use cancel_delayed_work_sync() instead.
2661 *
2662 * The caller must ensure that the workqueue on which @work was last
2663 * queued can't be destroyed before this function returns.
2664 *
2665 * RETURNS:
2666 * %true if @work was pending, %false otherwise.
2667 */
2668bool cancel_work_sync(struct work_struct *work)
2669{
2670	return __cancel_work_timer(work, NULL);
2671}
2672EXPORT_SYMBOL_GPL(cancel_work_sync);
2673
2674/**
2675 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2676 * @dwork: the delayed work to flush
2677 *
2678 * Delayed timer is cancelled and the pending work is queued for
2679 * immediate execution.  Like flush_work(), this function only
2680 * considers the last queueing instance of @dwork.
2681 *
2682 * RETURNS:
2683 * %true if flush_work() waited for the work to finish execution,
2684 * %false if it was already idle.
2685 */
2686bool flush_delayed_work(struct delayed_work *dwork)
2687{
 
2688	if (del_timer_sync(&dwork->timer))
2689		__queue_work(raw_smp_processor_id(),
2690			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2691	return flush_work(&dwork->work);
2692}
2693EXPORT_SYMBOL(flush_delayed_work);
2694
2695/**
2696 * flush_delayed_work_sync - wait for a dwork to finish
2697 * @dwork: the delayed work to flush
2698 *
2699 * Delayed timer is cancelled and the pending work is queued for
2700 * execution immediately.  Other than timer handling, its behavior
2701 * is identical to flush_work_sync().
2702 *
2703 * RETURNS:
2704 * %true if flush_work_sync() waited for the work to finish execution,
2705 * %false if it was already idle.
2706 */
2707bool flush_delayed_work_sync(struct delayed_work *dwork)
2708{
2709	if (del_timer_sync(&dwork->timer))
2710		__queue_work(raw_smp_processor_id(),
2711			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2712	return flush_work_sync(&dwork->work);
 
 
 
2713}
2714EXPORT_SYMBOL(flush_delayed_work_sync);
2715
2716/**
2717 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2718 * @dwork: the delayed work cancel
2719 *
2720 * This is cancel_work_sync() for delayed works.
2721 *
2722 * RETURNS:
2723 * %true if @dwork was pending, %false otherwise.
2724 */
2725bool cancel_delayed_work_sync(struct delayed_work *dwork)
2726{
2727	return __cancel_work_timer(&dwork->work, &dwork->timer);
2728}
2729EXPORT_SYMBOL(cancel_delayed_work_sync);
 
 
 
 
 
 
2730
2731/**
2732 * schedule_work - put work task in global workqueue
2733 * @work: job to be done
2734 *
2735 * Returns zero if @work was already on the kernel-global workqueue and
2736 * non-zero otherwise.
2737 *
2738 * This puts a job in the kernel-global workqueue if it was not already
2739 * queued and leaves it in the same position on the kernel-global
2740 * workqueue otherwise.
2741 */
2742int schedule_work(struct work_struct *work)
2743{
2744	return queue_work(system_wq, work);
2745}
2746EXPORT_SYMBOL(schedule_work);
2747
2748/*
2749 * schedule_work_on - put work task on a specific cpu
2750 * @cpu: cpu to put the work task on
2751 * @work: job to be done
2752 *
2753 * This puts a job on a specific cpu
2754 */
2755int schedule_work_on(int cpu, struct work_struct *work)
2756{
2757	return queue_work_on(cpu, system_wq, work);
2758}
2759EXPORT_SYMBOL(schedule_work_on);
2760
2761/**
2762 * schedule_delayed_work - put work task in global workqueue after delay
2763 * @dwork: job to be done
2764 * @delay: number of jiffies to wait or 0 for immediate execution
 
 
 
 
2765 *
2766 * After waiting for a given time this puts a job in the kernel-global
2767 * workqueue.
 
 
 
 
2768 */
2769int schedule_delayed_work(struct delayed_work *dwork,
2770					unsigned long delay)
2771{
2772	return queue_delayed_work(system_wq, dwork, delay);
2773}
2774EXPORT_SYMBOL(schedule_delayed_work);
2775
2776/**
2777 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2778 * @cpu: cpu to use
2779 * @dwork: job to be done
2780 * @delay: number of jiffies to wait
2781 *
2782 * After waiting for a given time this puts a job in the kernel-global
2783 * workqueue on the specified CPU.
 
 
2784 */
2785int schedule_delayed_work_on(int cpu,
2786			struct delayed_work *dwork, unsigned long delay)
2787{
2788	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
2789}
2790EXPORT_SYMBOL(schedule_delayed_work_on);
2791
2792/**
2793 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2794 * @func: the function to call
2795 *
2796 * schedule_on_each_cpu() executes @func on each online CPU using the
2797 * system workqueue and blocks until all CPUs have completed.
2798 * schedule_on_each_cpu() is very slow.
2799 *
2800 * RETURNS:
2801 * 0 on success, -errno on failure.
2802 */
2803int schedule_on_each_cpu(work_func_t func)
2804{
2805	int cpu;
2806	struct work_struct __percpu *works;
2807
2808	works = alloc_percpu(struct work_struct);
2809	if (!works)
2810		return -ENOMEM;
2811
2812	get_online_cpus();
2813
2814	for_each_online_cpu(cpu) {
2815		struct work_struct *work = per_cpu_ptr(works, cpu);
2816
2817		INIT_WORK(work, func);
2818		schedule_work_on(cpu, work);
2819	}
2820
2821	for_each_online_cpu(cpu)
2822		flush_work(per_cpu_ptr(works, cpu));
2823
2824	put_online_cpus();
2825	free_percpu(works);
2826	return 0;
2827}
2828
2829/**
2830 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2831 *
2832 * Forces execution of the kernel-global workqueue and blocks until its
2833 * completion.
2834 *
2835 * Think twice before calling this function!  It's very easy to get into
2836 * trouble if you don't take great care.  Either of the following situations
2837 * will lead to deadlock:
2838 *
2839 *	One of the work items currently on the workqueue needs to acquire
2840 *	a lock held by your code or its caller.
2841 *
2842 *	Your code is running in the context of a work routine.
2843 *
2844 * They will be detected by lockdep when they occur, but the first might not
2845 * occur very often.  It depends on what work items are on the workqueue and
2846 * what locks they need, which you have no control over.
2847 *
2848 * In most situations flushing the entire workqueue is overkill; you merely
2849 * need to know that a particular work item isn't queued and isn't running.
2850 * In such cases you should use cancel_delayed_work_sync() or
2851 * cancel_work_sync() instead.
2852 */
2853void flush_scheduled_work(void)
2854{
2855	flush_workqueue(system_wq);
2856}
2857EXPORT_SYMBOL(flush_scheduled_work);
2858
2859/**
2860 * execute_in_process_context - reliably execute the routine with user context
2861 * @fn:		the function to execute
2862 * @ew:		guaranteed storage for the execute work structure (must
2863 *		be available when the work executes)
2864 *
2865 * Executes the function immediately if process context is available,
2866 * otherwise schedules the function for delayed execution.
2867 *
2868 * Returns:	0 - function was executed
2869 *		1 - function was scheduled for execution
2870 */
2871int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2872{
2873	if (!in_interrupt()) {
2874		fn(&ew->work);
2875		return 0;
2876	}
2877
2878	INIT_WORK(&ew->work, fn);
2879	schedule_work(&ew->work);
2880
2881	return 1;
2882}
2883EXPORT_SYMBOL_GPL(execute_in_process_context);
2884
2885int keventd_up(void)
 
 
 
 
 
 
2886{
2887	return system_wq != NULL;
 
 
 
2888}
2889
2890static int alloc_cwqs(struct workqueue_struct *wq)
 
 
 
 
 
 
 
 
2891{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2892	/*
2893	 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
2894	 * Make sure that the alignment isn't lower than that of
2895	 * unsigned long long.
2896	 */
2897	const size_t size = sizeof(struct cpu_workqueue_struct);
2898	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
2899				   __alignof__(unsigned long long));
2900#ifdef CONFIG_SMP
2901	bool percpu = !(wq->flags & WQ_UNBOUND);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2902#else
2903	bool percpu = false;
 
 
 
 
 
 
 
 
 
 
2904#endif
2905
2906	if (percpu)
2907		wq->cpu_wq.pcpu = __alloc_percpu(size, align);
2908	else {
2909		void *ptr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2910
2911		/*
2912		 * Allocate enough room to align cwq and put an extra
2913		 * pointer at the end pointing back to the originally
2914		 * allocated pointer which will be used for free.
 
2915		 */
2916		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
2917		if (ptr) {
2918			wq->cpu_wq.single = PTR_ALIGN(ptr, align);
2919			*(void **)(wq->cpu_wq.single + 1) = ptr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2920		}
2921	}
2922
2923	/* just in case, make sure it's actually aligned */
2924	BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
2925	return wq->cpu_wq.v ? 0 : -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2926}
2927
2928static void free_cwqs(struct workqueue_struct *wq)
2929{
2930#ifdef CONFIG_SMP
2931	bool percpu = !(wq->flags & WQ_UNBOUND);
2932#else
2933	bool percpu = false;
2934#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2935
2936	if (percpu)
2937		free_percpu(wq->cpu_wq.pcpu);
2938	else if (wq->cpu_wq.single) {
2939		/* the pointer to free is stored right after the cwq */
2940		kfree(*(void **)(wq->cpu_wq.single + 1));
 
 
 
 
2941	}
 
 
 
2942}
2943
2944static int wq_clamp_max_active(int max_active, unsigned int flags,
2945			       const char *name)
2946{
2947	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
2948
2949	if (max_active < 1 || max_active > lim)
2950		printk(KERN_WARNING "workqueue: max_active %d requested for %s "
2951		       "is out of range, clamping between %d and %d\n",
2952		       max_active, name, 1, lim);
2953
2954	return clamp_val(max_active, 1, lim);
2955}
2956
2957struct workqueue_struct *__alloc_workqueue_key(const char *name,
2958					       unsigned int flags,
2959					       int max_active,
2960					       struct lock_class_key *key,
2961					       const char *lock_name)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2962{
 
 
2963	struct workqueue_struct *wq;
2964	unsigned int cpu;
2965
2966	/*
2967	 * Workqueues which may be used during memory reclaim should
2968	 * have a rescuer to guarantee forward progress.
 
 
 
2969	 */
2970	if (flags & WQ_MEM_RECLAIM)
2971		flags |= WQ_RESCUER;
2972
2973	/*
2974	 * Unbound workqueues aren't concurrency managed and should be
2975	 * dispatched to workers immediately.
2976	 */
 
2977	if (flags & WQ_UNBOUND)
2978		flags |= WQ_HIGHPRI;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2979
2980	max_active = max_active ?: WQ_DFL_ACTIVE;
2981	max_active = wq_clamp_max_active(max_active, flags, name);
2982
2983	wq = kzalloc(sizeof(*wq), GFP_KERNEL);
2984	if (!wq)
2985		goto err;
2986
 
2987	wq->flags = flags;
2988	wq->saved_max_active = max_active;
2989	mutex_init(&wq->flush_mutex);
2990	atomic_set(&wq->nr_cwqs_to_flush, 0);
 
2991	INIT_LIST_HEAD(&wq->flusher_queue);
2992	INIT_LIST_HEAD(&wq->flusher_overflow);
 
2993
2994	wq->name = name;
2995	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
2996	INIT_LIST_HEAD(&wq->list);
2997
2998	if (alloc_cwqs(wq) < 0)
2999		goto err;
3000
3001	for_each_cwq_cpu(cpu, wq) {
3002		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3003		struct global_cwq *gcwq = get_gcwq(cpu);
3004
3005		BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3006		cwq->gcwq = gcwq;
3007		cwq->wq = wq;
3008		cwq->flush_color = -1;
3009		cwq->max_active = max_active;
3010		INIT_LIST_HEAD(&cwq->delayed_works);
3011	}
3012
3013	if (flags & WQ_RESCUER) {
3014		struct worker *rescuer;
 
 
 
 
3015
3016		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3017			goto err;
 
 
3018
3019		wq->rescuer = rescuer = alloc_worker();
3020		if (!rescuer)
3021			goto err;
3022
3023		rescuer->task = kthread_create(rescuer_thread, wq, "%s", name);
3024		if (IS_ERR(rescuer->task))
3025			goto err;
3026
3027		rescuer->task->flags |= PF_THREAD_BOUND;
3028		wake_up_process(rescuer->task);
3029	}
3030
3031	/*
3032	 * workqueue_lock protects global freeze state and workqueues
3033	 * list.  Grab it, set max_active accordingly and add the new
3034	 * workqueue to workqueues list.
3035	 */
3036	spin_lock(&workqueue_lock);
 
 
 
 
 
 
3037
3038	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3039		for_each_cwq_cpu(cpu, wq)
3040			get_cwq(cpu, wq)->max_active = 0;
3041
3042	list_add(&wq->list, &workqueues);
 
 
3043
3044	spin_unlock(&workqueue_lock);
 
 
 
3045
3046	return wq;
3047err:
3048	if (wq) {
3049		free_cwqs(wq);
3050		free_mayday_mask(wq->mayday_mask);
3051		kfree(wq->rescuer);
3052		kfree(wq);
3053	}
3054	return NULL;
3055}
3056EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3057
3058/**
3059 * destroy_workqueue - safely terminate a workqueue
3060 * @wq: target workqueue
3061 *
3062 * Safely destroy a workqueue. All work currently pending will be done first.
3063 */
3064void destroy_workqueue(struct workqueue_struct *wq)
3065{
3066	unsigned int cpu;
 
 
 
 
 
 
 
3067
3068	/* drain it before proceeding with destruction */
3069	drain_workqueue(wq);
3070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3071	/*
3072	 * wq list is used to freeze wq, remove from list after
3073	 * flushing is complete in case freeze races us.
3074	 */
3075	spin_lock(&workqueue_lock);
3076	list_del(&wq->list);
3077	spin_unlock(&workqueue_lock);
3078
3079	/* sanity check */
3080	for_each_cwq_cpu(cpu, wq) {
3081		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3082		int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3083
3084		for (i = 0; i < WORK_NR_COLORS; i++)
3085			BUG_ON(cwq->nr_in_flight[i]);
3086		BUG_ON(cwq->nr_active);
3087		BUG_ON(!list_empty(&cwq->delayed_works));
 
 
 
3088	}
3089
3090	if (wq->flags & WQ_RESCUER) {
3091		kthread_stop(wq->rescuer->task);
3092		free_mayday_mask(wq->mayday_mask);
3093		kfree(wq->rescuer);
3094	}
3095
3096	free_cwqs(wq);
3097	kfree(wq);
3098}
3099EXPORT_SYMBOL_GPL(destroy_workqueue);
3100
3101/**
3102 * workqueue_set_max_active - adjust max_active of a workqueue
3103 * @wq: target workqueue
3104 * @max_active: new max_active value.
3105 *
3106 * Set max_active of @wq to @max_active.
3107 *
3108 * CONTEXT:
3109 * Don't call from IRQ context.
3110 */
3111void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3112{
3113	unsigned int cpu;
 
 
 
 
3114
3115	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3116
3117	spin_lock(&workqueue_lock);
3118
 
3119	wq->saved_max_active = max_active;
3120
3121	for_each_cwq_cpu(cpu, wq) {
3122		struct global_cwq *gcwq = get_gcwq(cpu);
3123
3124		spin_lock_irq(&gcwq->lock);
 
 
3125
3126		if (!(wq->flags & WQ_FREEZABLE) ||
3127		    !(gcwq->flags & GCWQ_FREEZING))
3128			get_cwq(gcwq->cpu, wq)->max_active = max_active;
 
 
 
 
 
 
 
 
 
 
 
 
3129
3130		spin_unlock_irq(&gcwq->lock);
3131	}
 
 
 
 
 
 
 
 
 
3132
3133	spin_unlock(&workqueue_lock);
3134}
3135EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3136
3137/**
3138 * workqueue_congested - test whether a workqueue is congested
3139 * @cpu: CPU in question
3140 * @wq: target workqueue
3141 *
3142 * Test whether @wq's cpu workqueue for @cpu is congested.  There is
3143 * no synchronization around this function and the test result is
3144 * unreliable and only useful as advisory hints or for debugging.
3145 *
3146 * RETURNS:
 
 
 
 
 
 
3147 * %true if congested, %false otherwise.
3148 */
3149bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3150{
3151	struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
 
 
 
 
 
 
 
3152
3153	return !list_empty(&cwq->delayed_works);
3154}
3155EXPORT_SYMBOL_GPL(workqueue_congested);
 
3156
3157/**
3158 * work_cpu - return the last known associated cpu for @work
3159 * @work: the work of interest
3160 *
3161 * RETURNS:
3162 * CPU number if @work was ever queued.  WORK_CPU_NONE otherwise.
3163 */
3164unsigned int work_cpu(struct work_struct *work)
3165{
3166	struct global_cwq *gcwq = get_work_gcwq(work);
3167
3168	return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3169}
3170EXPORT_SYMBOL_GPL(work_cpu);
3171
3172/**
3173 * work_busy - test whether a work is currently pending or running
3174 * @work: the work to be tested
3175 *
3176 * Test whether @work is currently pending or running.  There is no
3177 * synchronization around this function and the test result is
3178 * unreliable and only useful as advisory hints or for debugging.
3179 * Especially for reentrant wqs, the pending state might hide the
3180 * running state.
3181 *
3182 * RETURNS:
3183 * OR'd bitmask of WORK_BUSY_* bits.
3184 */
3185unsigned int work_busy(struct work_struct *work)
3186{
3187	struct global_cwq *gcwq = get_work_gcwq(work);
3188	unsigned long flags;
3189	unsigned int ret = 0;
3190
3191	if (!gcwq)
3192		return false;
3193
3194	spin_lock_irqsave(&gcwq->lock, flags);
3195
3196	if (work_pending(work))
3197		ret |= WORK_BUSY_PENDING;
3198	if (find_worker_executing_work(gcwq, work))
3199		ret |= WORK_BUSY_RUNNING;
3200
3201	spin_unlock_irqrestore(&gcwq->lock, flags);
 
 
 
 
 
 
 
 
3202
3203	return ret;
3204}
3205EXPORT_SYMBOL_GPL(work_busy);
3206
3207/*
3208 * CPU hotplug.
3209 *
3210 * There are two challenges in supporting CPU hotplug.  Firstly, there
3211 * are a lot of assumptions on strong associations among work, cwq and
3212 * gcwq which make migrating pending and scheduled works very
3213 * difficult to implement without impacting hot paths.  Secondly,
3214 * gcwqs serve mix of short, long and very long running works making
3215 * blocked draining impractical.
3216 *
3217 * This is solved by allowing a gcwq to be detached from CPU, running
3218 * it with unbound (rogue) workers and allowing it to be reattached
3219 * later if the cpu comes back online.  A separate thread is created
3220 * to govern a gcwq in such state and is called the trustee of the
3221 * gcwq.
3222 *
3223 * Trustee states and their descriptions.
3224 *
3225 * START	Command state used on startup.  On CPU_DOWN_PREPARE, a
3226 *		new trustee is started with this state.
3227 *
3228 * IN_CHARGE	Once started, trustee will enter this state after
3229 *		assuming the manager role and making all existing
3230 *		workers rogue.  DOWN_PREPARE waits for trustee to
3231 *		enter this state.  After reaching IN_CHARGE, trustee
3232 *		tries to execute the pending worklist until it's empty
3233 *		and the state is set to BUTCHER, or the state is set
3234 *		to RELEASE.
3235 *
3236 * BUTCHER	Command state which is set by the cpu callback after
3237 *		the cpu has went down.  Once this state is set trustee
3238 *		knows that there will be no new works on the worklist
3239 *		and once the worklist is empty it can proceed to
3240 *		killing idle workers.
3241 *
3242 * RELEASE	Command state which is set by the cpu callback if the
3243 *		cpu down has been canceled or it has come online
3244 *		again.  After recognizing this state, trustee stops
3245 *		trying to drain or butcher and clears ROGUE, rebinds
3246 *		all remaining workers back to the cpu and releases
3247 *		manager role.
3248 *
3249 * DONE		Trustee will enter this state after BUTCHER or RELEASE
3250 *		is complete.
3251 *
3252 *          trustee                 CPU                draining
3253 *         took over                down               complete
3254 * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
3255 *                        |                     |                  ^
3256 *                        | CPU is back online  v   return workers |
3257 *                         ----------------> RELEASE --------------
3258 */
 
 
 
 
3259
3260/**
3261 * trustee_wait_event_timeout - timed event wait for trustee
3262 * @cond: condition to wait for
3263 * @timeout: timeout in jiffies
3264 *
3265 * wait_event_timeout() for trustee to use.  Handles locking and
3266 * checks for RELEASE request.
3267 *
3268 * CONTEXT:
3269 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3270 * multiple times.  To be used by trustee.
3271 *
3272 * RETURNS:
3273 * Positive indicating left time if @cond is satisfied, 0 if timed
3274 * out, -1 if canceled.
3275 */
3276#define trustee_wait_event_timeout(cond, timeout) ({			\
3277	long __ret = (timeout);						\
3278	while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) &&	\
3279	       __ret) {							\
3280		spin_unlock_irq(&gcwq->lock);				\
3281		__wait_event_timeout(gcwq->trustee_wait, (cond) ||	\
3282			(gcwq->trustee_state == TRUSTEE_RELEASE),	\
3283			__ret);						\
3284		spin_lock_irq(&gcwq->lock);				\
3285	}								\
3286	gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret);		\
3287})
3288
3289/**
3290 * trustee_wait_event - event wait for trustee
3291 * @cond: condition to wait for
3292 *
3293 * wait_event() for trustee to use.  Automatically handles locking and
3294 * checks for CANCEL request.
3295 *
3296 * CONTEXT:
3297 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3298 * multiple times.  To be used by trustee.
3299 *
3300 * RETURNS:
3301 * 0 if @cond is satisfied, -1 if canceled.
 
3302 */
3303#define trustee_wait_event(cond) ({					\
3304	long __ret1;							\
3305	__ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
3306	__ret1 < 0 ? -1 : 0;						\
3307})
3308
3309static int __cpuinit trustee_thread(void *__gcwq)
3310{
3311	struct global_cwq *gcwq = __gcwq;
 
 
 
 
3312	struct worker *worker;
3313	struct work_struct *work;
3314	struct hlist_node *pos;
3315	long rc;
3316	int i;
3317
3318	BUG_ON(gcwq->cpu != smp_processor_id());
 
3319
3320	spin_lock_irq(&gcwq->lock);
3321	/*
3322	 * Claim the manager position and make all workers rogue.
3323	 * Trustee must be bound to the target cpu and can't be
3324	 * cancelled.
3325	 */
3326	BUG_ON(gcwq->cpu != smp_processor_id());
3327	rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS));
3328	BUG_ON(rc < 0);
3329
3330	gcwq->flags |= GCWQ_MANAGING_WORKERS;
 
 
 
 
 
 
 
 
3331
3332	list_for_each_entry(worker, &gcwq->idle_list, entry)
3333		worker->flags |= WORKER_ROGUE;
 
 
 
 
 
3334
3335	for_each_busy_worker(worker, i, pos, gcwq)
3336		worker->flags |= WORKER_ROGUE;
 
 
 
 
 
 
 
 
 
 
3337
3338	/*
3339	 * Call schedule() so that we cross rq->lock and thus can
3340	 * guarantee sched callbacks see the rogue flag.  This is
3341	 * necessary as scheduler callbacks may be invoked from other
3342	 * cpus.
3343	 */
3344	spin_unlock_irq(&gcwq->lock);
3345	schedule();
3346	spin_lock_irq(&gcwq->lock);
 
 
 
 
 
 
 
3347
3348	/*
3349	 * Sched callbacks are disabled now.  Zap nr_running.  After
3350	 * this, nr_running stays zero and need_more_worker() and
3351	 * keep_working() are always true as long as the worklist is
3352	 * not empty.
3353	 */
3354	atomic_set(get_gcwq_nr_running(gcwq->cpu), 0);
3355
3356	spin_unlock_irq(&gcwq->lock);
3357	del_timer_sync(&gcwq->idle_timer);
3358	spin_lock_irq(&gcwq->lock);
 
 
 
 
 
 
 
 
 
3359
3360	/*
3361	 * We're now in charge.  Notify and proceed to drain.  We need
3362	 * to keep the gcwq running during the whole CPU down
3363	 * procedure as other cpu hotunplug callbacks may need to
3364	 * flush currently running tasks.
3365	 */
3366	gcwq->trustee_state = TRUSTEE_IN_CHARGE;
3367	wake_up_all(&gcwq->trustee_wait);
3368
3369	/*
3370	 * The original cpu is in the process of dying and may go away
3371	 * anytime now.  When that happens, we and all workers would
3372	 * be migrated to other cpus.  Try draining any left work.  We
3373	 * want to get it over with ASAP - spam rescuers, wake up as
3374	 * many idlers as necessary and create new ones till the
3375	 * worklist is empty.  Note that if the gcwq is frozen, there
3376	 * may be frozen works in freezable cwqs.  Don't declare
3377	 * completion while frozen.
3378	 */
3379	while (gcwq->nr_workers != gcwq->nr_idle ||
3380	       gcwq->flags & GCWQ_FREEZING ||
3381	       gcwq->trustee_state == TRUSTEE_IN_CHARGE) {
3382		int nr_works = 0;
3383
3384		list_for_each_entry(work, &gcwq->worklist, entry) {
3385			send_mayday(work);
3386			nr_works++;
 
3387		}
 
 
 
 
 
 
 
 
3388
3389		list_for_each_entry(worker, &gcwq->idle_list, entry) {
3390			if (!nr_works--)
3391				break;
3392			wake_up_process(worker->task);
3393		}
 
 
 
 
 
3394
3395		if (need_to_create_worker(gcwq)) {
3396			spin_unlock_irq(&gcwq->lock);
3397			worker = create_worker(gcwq, false);
3398			spin_lock_irq(&gcwq->lock);
3399			if (worker) {
3400				worker->flags |= WORKER_ROGUE;
3401				start_worker(worker);
3402			}
3403		}
 
 
 
 
 
 
 
 
 
 
 
 
 
3404
3405		/* give a breather */
3406		if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0)
 
3407			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3408	}
3409
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3410	/*
3411	 * Either all works have been scheduled and cpu is down, or
3412	 * cpu down has already been canceled.  Wait for and butcher
3413	 * all workers till we're canceled.
3414	 */
3415	do {
3416		rc = trustee_wait_event(!list_empty(&gcwq->idle_list));
3417		while (!list_empty(&gcwq->idle_list))
3418			destroy_worker(list_first_entry(&gcwq->idle_list,
3419							struct worker, entry));
3420	} while (gcwq->nr_workers && rc >= 0);
3421
 
 
 
 
 
 
 
 
 
 
 
3422	/*
3423	 * At this point, either draining has completed and no worker
3424	 * is left, or cpu down has been canceled or the cpu is being
3425	 * brought back up.  There shouldn't be any idle one left.
3426	 * Tell the remaining busy ones to rebind once it finishes the
3427	 * currently scheduled works by scheduling the rebind_work.
3428	 */
3429	WARN_ON(!list_empty(&gcwq->idle_list));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3430
3431	for_each_busy_worker(worker, i, pos, gcwq) {
3432		struct work_struct *rebind_work = &worker->rebind_work;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3433
3434		/*
3435		 * Rebind_work may race with future cpu hotplug
3436		 * operations.  Use a separate flag to mark that
3437		 * rebinding is scheduled.
3438		 */
3439		worker->flags |= WORKER_REBIND;
3440		worker->flags &= ~WORKER_ROGUE;
 
3441
3442		/* queue rebind_work, wq doesn't matter, use the default one */
3443		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
3444				     work_data_bits(rebind_work)))
3445			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3446
3447		debug_work_activate(rebind_work);
3448		insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
3449			    worker->scheduled.next,
3450			    work_color_to_flags(WORK_NO_COLOR));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3451	}
3452
3453	/* relinquish manager role */
3454	gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
3455
3456	/* notify completion */
3457	gcwq->trustee = NULL;
3458	gcwq->trustee_state = TRUSTEE_DONE;
3459	wake_up_all(&gcwq->trustee_wait);
3460	spin_unlock_irq(&gcwq->lock);
3461	return 0;
3462}
3463
3464/**
3465 * wait_trustee_state - wait for trustee to enter the specified state
3466 * @gcwq: gcwq the trustee of interest belongs to
3467 * @state: target state to wait for
3468 *
3469 * Wait for the trustee to reach @state.  DONE is already matched.
3470 *
3471 * CONTEXT:
3472 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3473 * multiple times.  To be used by cpu_callback.
3474 */
3475static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state)
3476__releases(&gcwq->lock)
3477__acquires(&gcwq->lock)
3478{
3479	if (!(gcwq->trustee_state == state ||
3480	      gcwq->trustee_state == TRUSTEE_DONE)) {
3481		spin_unlock_irq(&gcwq->lock);
3482		__wait_event(gcwq->trustee_wait,
3483			     gcwq->trustee_state == state ||
3484			     gcwq->trustee_state == TRUSTEE_DONE);
3485		spin_lock_irq(&gcwq->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3486	}
 
3487}
3488
3489static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
3490						unsigned long action,
3491						void *hcpu)
3492{
3493	unsigned int cpu = (unsigned long)hcpu;
3494	struct global_cwq *gcwq = get_gcwq(cpu);
3495	struct task_struct *new_trustee = NULL;
3496	struct worker *uninitialized_var(new_worker);
3497	unsigned long flags;
 
3498
3499	action &= ~CPU_TASKS_FROZEN;
 
 
 
3500
3501	switch (action) {
3502	case CPU_DOWN_PREPARE:
3503		new_trustee = kthread_create(trustee_thread, gcwq,
3504					     "workqueue_trustee/%d\n", cpu);
3505		if (IS_ERR(new_trustee))
3506			return notifier_from_errno(PTR_ERR(new_trustee));
3507		kthread_bind(new_trustee, cpu);
3508		/* fall through */
3509	case CPU_UP_PREPARE:
3510		BUG_ON(gcwq->first_idle);
3511		new_worker = create_worker(gcwq, false);
3512		if (!new_worker) {
3513			if (new_trustee)
3514				kthread_stop(new_trustee);
3515			return NOTIFY_BAD;
3516		}
3517	}
3518
3519	/* some are called w/ irq disabled, don't disturb irq status */
3520	spin_lock_irqsave(&gcwq->lock, flags);
3521
3522	switch (action) {
3523	case CPU_DOWN_PREPARE:
3524		/* initialize trustee and tell it to acquire the gcwq */
3525		BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE);
3526		gcwq->trustee = new_trustee;
3527		gcwq->trustee_state = TRUSTEE_START;
3528		wake_up_process(gcwq->trustee);
3529		wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE);
3530		/* fall through */
3531	case CPU_UP_PREPARE:
3532		BUG_ON(gcwq->first_idle);
3533		gcwq->first_idle = new_worker;
3534		break;
3535
3536	case CPU_DYING:
3537		/*
3538		 * Before this, the trustee and all workers except for
3539		 * the ones which are still executing works from
3540		 * before the last CPU down must be on the cpu.  After
3541		 * this, they'll all be diasporas.
3542		 */
3543		gcwq->flags |= GCWQ_DISASSOCIATED;
3544		break;
3545
3546	case CPU_POST_DEAD:
3547		gcwq->trustee_state = TRUSTEE_BUTCHER;
3548		/* fall through */
3549	case CPU_UP_CANCELED:
3550		destroy_worker(gcwq->first_idle);
3551		gcwq->first_idle = NULL;
3552		break;
3553
3554	case CPU_DOWN_FAILED:
3555	case CPU_ONLINE:
3556		gcwq->flags &= ~GCWQ_DISASSOCIATED;
3557		if (gcwq->trustee_state != TRUSTEE_DONE) {
3558			gcwq->trustee_state = TRUSTEE_RELEASE;
3559			wake_up_process(gcwq->trustee);
3560			wait_trustee_state(gcwq, TRUSTEE_DONE);
3561		}
3562
3563		/*
3564		 * Trustee is done and there might be no worker left.
3565		 * Put the first_idle in and request a real manager to
3566		 * take a look.
3567		 */
3568		spin_unlock_irq(&gcwq->lock);
3569		kthread_bind(gcwq->first_idle->task, cpu);
3570		spin_lock_irq(&gcwq->lock);
3571		gcwq->flags |= GCWQ_MANAGE_WORKERS;
3572		start_worker(gcwq->first_idle);
3573		gcwq->first_idle = NULL;
3574		break;
3575	}
3576
3577	spin_unlock_irqrestore(&gcwq->lock, flags);
 
 
3578
3579	return notifier_from_errno(0);
 
3580}
3581
3582#ifdef CONFIG_SMP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3583
3584struct work_for_cpu {
3585	struct completion completion;
3586	long (*fn)(void *);
3587	void *arg;
3588	long ret;
3589};
3590
3591static int do_work_for_cpu(void *_wfc)
3592{
3593	struct work_for_cpu *wfc = _wfc;
 
3594	wfc->ret = wfc->fn(wfc->arg);
3595	complete(&wfc->completion);
3596	return 0;
3597}
3598
3599/**
3600 * work_on_cpu - run a function in user context on a particular cpu
3601 * @cpu: the cpu to run on
3602 * @fn: the function to run
3603 * @arg: the function arg
3604 *
3605 * This will return the value @fn returns.
3606 * It is up to the caller to ensure that the cpu doesn't go offline.
3607 * The caller must not hold any locks which would prevent @fn from completing.
 
 
3608 */
3609long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3610{
3611	struct task_struct *sub_thread;
3612	struct work_for_cpu wfc = {
3613		.completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3614		.fn = fn,
3615		.arg = arg,
3616	};
3617
3618	sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3619	if (IS_ERR(sub_thread))
3620		return PTR_ERR(sub_thread);
3621	kthread_bind(sub_thread, cpu);
3622	wake_up_process(sub_thread);
3623	wait_for_completion(&wfc.completion);
3624	return wfc.ret;
3625}
3626EXPORT_SYMBOL_GPL(work_on_cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3627#endif /* CONFIG_SMP */
3628
3629#ifdef CONFIG_FREEZER
3630
3631/**
3632 * freeze_workqueues_begin - begin freezing workqueues
3633 *
3634 * Start freezing workqueues.  After this function returns, all freezable
3635 * workqueues will queue new works to their frozen_works list instead of
3636 * gcwq->worklist.
3637 *
3638 * CONTEXT:
3639 * Grabs and releases workqueue_lock and gcwq->lock's.
3640 */
3641void freeze_workqueues_begin(void)
3642{
3643	unsigned int cpu;
 
3644
3645	spin_lock(&workqueue_lock);
3646
3647	BUG_ON(workqueue_freezing);
3648	workqueue_freezing = true;
3649
3650	for_each_gcwq_cpu(cpu) {
3651		struct global_cwq *gcwq = get_gcwq(cpu);
3652		struct workqueue_struct *wq;
3653
3654		spin_lock_irq(&gcwq->lock);
3655
3656		BUG_ON(gcwq->flags & GCWQ_FREEZING);
3657		gcwq->flags |= GCWQ_FREEZING;
3658
3659		list_for_each_entry(wq, &workqueues, list) {
3660			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3661
3662			if (cwq && wq->flags & WQ_FREEZABLE)
3663				cwq->max_active = 0;
3664		}
3665
3666		spin_unlock_irq(&gcwq->lock);
3667	}
3668
3669	spin_unlock(&workqueue_lock);
3670}
3671
3672/**
3673 * freeze_workqueues_busy - are freezable workqueues still busy?
3674 *
3675 * Check whether freezing is complete.  This function must be called
3676 * between freeze_workqueues_begin() and thaw_workqueues().
3677 *
3678 * CONTEXT:
3679 * Grabs and releases workqueue_lock.
3680 *
3681 * RETURNS:
3682 * %true if some freezable workqueues are still busy.  %false if freezing
3683 * is complete.
3684 */
3685bool freeze_workqueues_busy(void)
3686{
3687	unsigned int cpu;
3688	bool busy = false;
 
 
3689
3690	spin_lock(&workqueue_lock);
3691
3692	BUG_ON(!workqueue_freezing);
3693
3694	for_each_gcwq_cpu(cpu) {
3695		struct workqueue_struct *wq;
 
3696		/*
3697		 * nr_active is monotonically decreasing.  It's safe
3698		 * to peek without lock.
3699		 */
3700		list_for_each_entry(wq, &workqueues, list) {
3701			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3702
3703			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3704				continue;
3705
3706			BUG_ON(cwq->nr_active < 0);
3707			if (cwq->nr_active) {
3708				busy = true;
 
3709				goto out_unlock;
3710			}
3711		}
 
3712	}
3713out_unlock:
3714	spin_unlock(&workqueue_lock);
3715	return busy;
3716}
3717
3718/**
3719 * thaw_workqueues - thaw workqueues
3720 *
3721 * Thaw workqueues.  Normal queueing is restored and all collected
3722 * frozen works are transferred to their respective gcwq worklists.
3723 *
3724 * CONTEXT:
3725 * Grabs and releases workqueue_lock and gcwq->lock's.
3726 */
3727void thaw_workqueues(void)
3728{
3729	unsigned int cpu;
 
3730
3731	spin_lock(&workqueue_lock);
3732
3733	if (!workqueue_freezing)
3734		goto out_unlock;
3735
3736	for_each_gcwq_cpu(cpu) {
3737		struct global_cwq *gcwq = get_gcwq(cpu);
3738		struct workqueue_struct *wq;
 
 
 
 
 
 
 
 
 
 
 
3739
3740		spin_lock_irq(&gcwq->lock);
 
 
 
 
 
3741
3742		BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3743		gcwq->flags &= ~GCWQ_FREEZING;
3744
3745		list_for_each_entry(wq, &workqueues, list) {
3746			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
 
 
 
 
 
 
 
 
 
 
3747
3748			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3749				continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3750
3751			/* restore max_active and repopulate worklist */
3752			cwq->max_active = wq->saved_max_active;
 
 
 
 
 
 
 
 
 
3753
3754			while (!list_empty(&cwq->delayed_works) &&
3755			       cwq->nr_active < cwq->max_active)
3756				cwq_activate_first_delayed(cwq);
3757		}
3758
3759		wake_up_worker(gcwq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3760
3761		spin_unlock_irq(&gcwq->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3762	}
3763
3764	workqueue_freezing = false;
3765out_unlock:
3766	spin_unlock(&workqueue_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3767}
3768#endif /* CONFIG_FREEZER */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3769
3770static int __init init_workqueues(void)
3771{
3772	unsigned int cpu;
3773	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3774
3775	cpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE);
 
 
3776
3777	/* initialize gcwqs */
3778	for_each_gcwq_cpu(cpu) {
3779		struct global_cwq *gcwq = get_gcwq(cpu);
 
 
 
 
 
 
 
 
 
 
 
3780
3781		spin_lock_init(&gcwq->lock);
3782		INIT_LIST_HEAD(&gcwq->worklist);
3783		gcwq->cpu = cpu;
3784		gcwq->flags |= GCWQ_DISASSOCIATED;
3785
3786		INIT_LIST_HEAD(&gcwq->idle_list);
3787		for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3788			INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3789
3790		init_timer_deferrable(&gcwq->idle_timer);
3791		gcwq->idle_timer.function = idle_worker_timeout;
3792		gcwq->idle_timer.data = (unsigned long)gcwq;
3793
3794		setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout,
3795			    (unsigned long)gcwq);
 
3796
3797		ida_init(&gcwq->worker_ida);
 
 
 
 
 
 
3798
3799		gcwq->trustee_state = TRUSTEE_DONE;
3800		init_waitqueue_head(&gcwq->trustee_wait);
 
 
 
3801	}
3802
3803	/* create the initial worker */
3804	for_each_online_gcwq_cpu(cpu) {
3805		struct global_cwq *gcwq = get_gcwq(cpu);
3806		struct worker *worker;
 
 
 
3807
3808		if (cpu != WORK_CPU_UNBOUND)
3809			gcwq->flags &= ~GCWQ_DISASSOCIATED;
3810		worker = create_worker(gcwq, true);
3811		BUG_ON(!worker);
3812		spin_lock_irq(&gcwq->lock);
3813		start_worker(worker);
3814		spin_unlock_irq(&gcwq->lock);
 
 
3815	}
3816
3817	system_wq = alloc_workqueue("events", 0, 0);
 
3818	system_long_wq = alloc_workqueue("events_long", 0, 0);
3819	system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
3820	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3821					    WQ_UNBOUND_MAX_ACTIVE);
3822	system_freezable_wq = alloc_workqueue("events_freezable",
3823					      WQ_FREEZABLE, 0);
3824	BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
3825	       !system_unbound_wq || !system_freezable_wq);
3826	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3827}
3828early_initcall(init_workqueues);