Loading...
1// SPDX-License-Identifier: LGPL-2.1
2/*
3 *
4 * vfs operations that deal with files
5 *
6 * Copyright (C) International Business Machines Corp., 2002,2010
7 * Author(s): Steve French (sfrench@us.ibm.com)
8 * Jeremy Allison (jra@samba.org)
9 *
10 */
11#include <linux/fs.h>
12#include <linux/backing-dev.h>
13#include <linux/stat.h>
14#include <linux/fcntl.h>
15#include <linux/pagemap.h>
16#include <linux/pagevec.h>
17#include <linux/writeback.h>
18#include <linux/task_io_accounting_ops.h>
19#include <linux/delay.h>
20#include <linux/mount.h>
21#include <linux/slab.h>
22#include <linux/swap.h>
23#include <linux/mm.h>
24#include <asm/div64.h>
25#include "cifsfs.h"
26#include "cifspdu.h"
27#include "cifsglob.h"
28#include "cifsproto.h"
29#include "smb2proto.h"
30#include "cifs_unicode.h"
31#include "cifs_debug.h"
32#include "cifs_fs_sb.h"
33#include "fscache.h"
34#include "smbdirect.h"
35#include "fs_context.h"
36#include "cifs_ioctl.h"
37#include "cached_dir.h"
38
39/*
40 * Mark as invalid, all open files on tree connections since they
41 * were closed when session to server was lost.
42 */
43void
44cifs_mark_open_files_invalid(struct cifs_tcon *tcon)
45{
46 struct cifsFileInfo *open_file = NULL;
47 struct list_head *tmp;
48 struct list_head *tmp1;
49
50 /* only send once per connect */
51 spin_lock(&tcon->ses->ses_lock);
52 if ((tcon->ses->ses_status != SES_GOOD) || (tcon->status != TID_NEED_RECON)) {
53 spin_unlock(&tcon->ses->ses_lock);
54 return;
55 }
56 tcon->status = TID_IN_FILES_INVALIDATE;
57 spin_unlock(&tcon->ses->ses_lock);
58
59 /* list all files open on tree connection and mark them invalid */
60 spin_lock(&tcon->open_file_lock);
61 list_for_each_safe(tmp, tmp1, &tcon->openFileList) {
62 open_file = list_entry(tmp, struct cifsFileInfo, tlist);
63 open_file->invalidHandle = true;
64 open_file->oplock_break_cancelled = true;
65 }
66 spin_unlock(&tcon->open_file_lock);
67
68 invalidate_all_cached_dirs(tcon);
69 spin_lock(&tcon->tc_lock);
70 if (tcon->status == TID_IN_FILES_INVALIDATE)
71 tcon->status = TID_NEED_TCON;
72 spin_unlock(&tcon->tc_lock);
73
74 /*
75 * BB Add call to invalidate_inodes(sb) for all superblocks mounted
76 * to this tcon.
77 */
78}
79
80static inline int cifs_convert_flags(unsigned int flags)
81{
82 if ((flags & O_ACCMODE) == O_RDONLY)
83 return GENERIC_READ;
84 else if ((flags & O_ACCMODE) == O_WRONLY)
85 return GENERIC_WRITE;
86 else if ((flags & O_ACCMODE) == O_RDWR) {
87 /* GENERIC_ALL is too much permission to request
88 can cause unnecessary access denied on create */
89 /* return GENERIC_ALL; */
90 return (GENERIC_READ | GENERIC_WRITE);
91 }
92
93 return (READ_CONTROL | FILE_WRITE_ATTRIBUTES | FILE_READ_ATTRIBUTES |
94 FILE_WRITE_EA | FILE_APPEND_DATA | FILE_WRITE_DATA |
95 FILE_READ_DATA);
96}
97
98#ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY
99static u32 cifs_posix_convert_flags(unsigned int flags)
100{
101 u32 posix_flags = 0;
102
103 if ((flags & O_ACCMODE) == O_RDONLY)
104 posix_flags = SMB_O_RDONLY;
105 else if ((flags & O_ACCMODE) == O_WRONLY)
106 posix_flags = SMB_O_WRONLY;
107 else if ((flags & O_ACCMODE) == O_RDWR)
108 posix_flags = SMB_O_RDWR;
109
110 if (flags & O_CREAT) {
111 posix_flags |= SMB_O_CREAT;
112 if (flags & O_EXCL)
113 posix_flags |= SMB_O_EXCL;
114 } else if (flags & O_EXCL)
115 cifs_dbg(FYI, "Application %s pid %d has incorrectly set O_EXCL flag but not O_CREAT on file open. Ignoring O_EXCL\n",
116 current->comm, current->tgid);
117
118 if (flags & O_TRUNC)
119 posix_flags |= SMB_O_TRUNC;
120 /* be safe and imply O_SYNC for O_DSYNC */
121 if (flags & O_DSYNC)
122 posix_flags |= SMB_O_SYNC;
123 if (flags & O_DIRECTORY)
124 posix_flags |= SMB_O_DIRECTORY;
125 if (flags & O_NOFOLLOW)
126 posix_flags |= SMB_O_NOFOLLOW;
127 if (flags & O_DIRECT)
128 posix_flags |= SMB_O_DIRECT;
129
130 return posix_flags;
131}
132#endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */
133
134static inline int cifs_get_disposition(unsigned int flags)
135{
136 if ((flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
137 return FILE_CREATE;
138 else if ((flags & (O_CREAT | O_TRUNC)) == (O_CREAT | O_TRUNC))
139 return FILE_OVERWRITE_IF;
140 else if ((flags & O_CREAT) == O_CREAT)
141 return FILE_OPEN_IF;
142 else if ((flags & O_TRUNC) == O_TRUNC)
143 return FILE_OVERWRITE;
144 else
145 return FILE_OPEN;
146}
147
148#ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY
149int cifs_posix_open(const char *full_path, struct inode **pinode,
150 struct super_block *sb, int mode, unsigned int f_flags,
151 __u32 *poplock, __u16 *pnetfid, unsigned int xid)
152{
153 int rc;
154 FILE_UNIX_BASIC_INFO *presp_data;
155 __u32 posix_flags = 0;
156 struct cifs_sb_info *cifs_sb = CIFS_SB(sb);
157 struct cifs_fattr fattr;
158 struct tcon_link *tlink;
159 struct cifs_tcon *tcon;
160
161 cifs_dbg(FYI, "posix open %s\n", full_path);
162
163 presp_data = kzalloc(sizeof(FILE_UNIX_BASIC_INFO), GFP_KERNEL);
164 if (presp_data == NULL)
165 return -ENOMEM;
166
167 tlink = cifs_sb_tlink(cifs_sb);
168 if (IS_ERR(tlink)) {
169 rc = PTR_ERR(tlink);
170 goto posix_open_ret;
171 }
172
173 tcon = tlink_tcon(tlink);
174 mode &= ~current_umask();
175
176 posix_flags = cifs_posix_convert_flags(f_flags);
177 rc = CIFSPOSIXCreate(xid, tcon, posix_flags, mode, pnetfid, presp_data,
178 poplock, full_path, cifs_sb->local_nls,
179 cifs_remap(cifs_sb));
180 cifs_put_tlink(tlink);
181
182 if (rc)
183 goto posix_open_ret;
184
185 if (presp_data->Type == cpu_to_le32(-1))
186 goto posix_open_ret; /* open ok, caller does qpathinfo */
187
188 if (!pinode)
189 goto posix_open_ret; /* caller does not need info */
190
191 cifs_unix_basic_to_fattr(&fattr, presp_data, cifs_sb);
192
193 /* get new inode and set it up */
194 if (*pinode == NULL) {
195 cifs_fill_uniqueid(sb, &fattr);
196 *pinode = cifs_iget(sb, &fattr);
197 if (!*pinode) {
198 rc = -ENOMEM;
199 goto posix_open_ret;
200 }
201 } else {
202 cifs_revalidate_mapping(*pinode);
203 rc = cifs_fattr_to_inode(*pinode, &fattr);
204 }
205
206posix_open_ret:
207 kfree(presp_data);
208 return rc;
209}
210#endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */
211
212static int cifs_nt_open(const char *full_path, struct inode *inode, struct cifs_sb_info *cifs_sb,
213 struct cifs_tcon *tcon, unsigned int f_flags, __u32 *oplock,
214 struct cifs_fid *fid, unsigned int xid, struct cifs_open_info_data *buf)
215{
216 int rc;
217 int desired_access;
218 int disposition;
219 int create_options = CREATE_NOT_DIR;
220 struct TCP_Server_Info *server = tcon->ses->server;
221 struct cifs_open_parms oparms;
222
223 if (!server->ops->open)
224 return -ENOSYS;
225
226 desired_access = cifs_convert_flags(f_flags);
227
228/*********************************************************************
229 * open flag mapping table:
230 *
231 * POSIX Flag CIFS Disposition
232 * ---------- ----------------
233 * O_CREAT FILE_OPEN_IF
234 * O_CREAT | O_EXCL FILE_CREATE
235 * O_CREAT | O_TRUNC FILE_OVERWRITE_IF
236 * O_TRUNC FILE_OVERWRITE
237 * none of the above FILE_OPEN
238 *
239 * Note that there is not a direct match between disposition
240 * FILE_SUPERSEDE (ie create whether or not file exists although
241 * O_CREAT | O_TRUNC is similar but truncates the existing
242 * file rather than creating a new file as FILE_SUPERSEDE does
243 * (which uses the attributes / metadata passed in on open call)
244 *?
245 *? O_SYNC is a reasonable match to CIFS writethrough flag
246 *? and the read write flags match reasonably. O_LARGEFILE
247 *? is irrelevant because largefile support is always used
248 *? by this client. Flags O_APPEND, O_DIRECT, O_DIRECTORY,
249 * O_FASYNC, O_NOFOLLOW, O_NONBLOCK need further investigation
250 *********************************************************************/
251
252 disposition = cifs_get_disposition(f_flags);
253
254 /* BB pass O_SYNC flag through on file attributes .. BB */
255
256 /* O_SYNC also has bit for O_DSYNC so following check picks up either */
257 if (f_flags & O_SYNC)
258 create_options |= CREATE_WRITE_THROUGH;
259
260 if (f_flags & O_DIRECT)
261 create_options |= CREATE_NO_BUFFER;
262
263 oparms.tcon = tcon;
264 oparms.cifs_sb = cifs_sb;
265 oparms.desired_access = desired_access;
266 oparms.create_options = cifs_create_options(cifs_sb, create_options);
267 oparms.disposition = disposition;
268 oparms.path = full_path;
269 oparms.fid = fid;
270 oparms.reconnect = false;
271
272 rc = server->ops->open(xid, &oparms, oplock, buf);
273 if (rc)
274 return rc;
275
276 /* TODO: Add support for calling posix query info but with passing in fid */
277 if (tcon->unix_ext)
278 rc = cifs_get_inode_info_unix(&inode, full_path, inode->i_sb,
279 xid);
280 else
281 rc = cifs_get_inode_info(&inode, full_path, buf, inode->i_sb,
282 xid, fid);
283
284 if (rc) {
285 server->ops->close(xid, tcon, fid);
286 if (rc == -ESTALE)
287 rc = -EOPENSTALE;
288 }
289
290 return rc;
291}
292
293static bool
294cifs_has_mand_locks(struct cifsInodeInfo *cinode)
295{
296 struct cifs_fid_locks *cur;
297 bool has_locks = false;
298
299 down_read(&cinode->lock_sem);
300 list_for_each_entry(cur, &cinode->llist, llist) {
301 if (!list_empty(&cur->locks)) {
302 has_locks = true;
303 break;
304 }
305 }
306 up_read(&cinode->lock_sem);
307 return has_locks;
308}
309
310void
311cifs_down_write(struct rw_semaphore *sem)
312{
313 while (!down_write_trylock(sem))
314 msleep(10);
315}
316
317static void cifsFileInfo_put_work(struct work_struct *work);
318
319struct cifsFileInfo *cifs_new_fileinfo(struct cifs_fid *fid, struct file *file,
320 struct tcon_link *tlink, __u32 oplock,
321 const char *symlink_target)
322{
323 struct dentry *dentry = file_dentry(file);
324 struct inode *inode = d_inode(dentry);
325 struct cifsInodeInfo *cinode = CIFS_I(inode);
326 struct cifsFileInfo *cfile;
327 struct cifs_fid_locks *fdlocks;
328 struct cifs_tcon *tcon = tlink_tcon(tlink);
329 struct TCP_Server_Info *server = tcon->ses->server;
330
331 cfile = kzalloc(sizeof(struct cifsFileInfo), GFP_KERNEL);
332 if (cfile == NULL)
333 return cfile;
334
335 fdlocks = kzalloc(sizeof(struct cifs_fid_locks), GFP_KERNEL);
336 if (!fdlocks) {
337 kfree(cfile);
338 return NULL;
339 }
340
341 if (symlink_target) {
342 cfile->symlink_target = kstrdup(symlink_target, GFP_KERNEL);
343 if (!cfile->symlink_target) {
344 kfree(fdlocks);
345 kfree(cfile);
346 return NULL;
347 }
348 }
349
350 INIT_LIST_HEAD(&fdlocks->locks);
351 fdlocks->cfile = cfile;
352 cfile->llist = fdlocks;
353
354 cfile->count = 1;
355 cfile->pid = current->tgid;
356 cfile->uid = current_fsuid();
357 cfile->dentry = dget(dentry);
358 cfile->f_flags = file->f_flags;
359 cfile->invalidHandle = false;
360 cfile->deferred_close_scheduled = false;
361 cfile->tlink = cifs_get_tlink(tlink);
362 INIT_WORK(&cfile->oplock_break, cifs_oplock_break);
363 INIT_WORK(&cfile->put, cifsFileInfo_put_work);
364 INIT_DELAYED_WORK(&cfile->deferred, smb2_deferred_work_close);
365 mutex_init(&cfile->fh_mutex);
366 spin_lock_init(&cfile->file_info_lock);
367
368 cifs_sb_active(inode->i_sb);
369
370 /*
371 * If the server returned a read oplock and we have mandatory brlocks,
372 * set oplock level to None.
373 */
374 if (server->ops->is_read_op(oplock) && cifs_has_mand_locks(cinode)) {
375 cifs_dbg(FYI, "Reset oplock val from read to None due to mand locks\n");
376 oplock = 0;
377 }
378
379 cifs_down_write(&cinode->lock_sem);
380 list_add(&fdlocks->llist, &cinode->llist);
381 up_write(&cinode->lock_sem);
382
383 spin_lock(&tcon->open_file_lock);
384 if (fid->pending_open->oplock != CIFS_OPLOCK_NO_CHANGE && oplock)
385 oplock = fid->pending_open->oplock;
386 list_del(&fid->pending_open->olist);
387
388 fid->purge_cache = false;
389 server->ops->set_fid(cfile, fid, oplock);
390
391 list_add(&cfile->tlist, &tcon->openFileList);
392 atomic_inc(&tcon->num_local_opens);
393
394 /* if readable file instance put first in list*/
395 spin_lock(&cinode->open_file_lock);
396 if (file->f_mode & FMODE_READ)
397 list_add(&cfile->flist, &cinode->openFileList);
398 else
399 list_add_tail(&cfile->flist, &cinode->openFileList);
400 spin_unlock(&cinode->open_file_lock);
401 spin_unlock(&tcon->open_file_lock);
402
403 if (fid->purge_cache)
404 cifs_zap_mapping(inode);
405
406 file->private_data = cfile;
407 return cfile;
408}
409
410struct cifsFileInfo *
411cifsFileInfo_get(struct cifsFileInfo *cifs_file)
412{
413 spin_lock(&cifs_file->file_info_lock);
414 cifsFileInfo_get_locked(cifs_file);
415 spin_unlock(&cifs_file->file_info_lock);
416 return cifs_file;
417}
418
419static void cifsFileInfo_put_final(struct cifsFileInfo *cifs_file)
420{
421 struct inode *inode = d_inode(cifs_file->dentry);
422 struct cifsInodeInfo *cifsi = CIFS_I(inode);
423 struct cifsLockInfo *li, *tmp;
424 struct super_block *sb = inode->i_sb;
425
426 /*
427 * Delete any outstanding lock records. We'll lose them when the file
428 * is closed anyway.
429 */
430 cifs_down_write(&cifsi->lock_sem);
431 list_for_each_entry_safe(li, tmp, &cifs_file->llist->locks, llist) {
432 list_del(&li->llist);
433 cifs_del_lock_waiters(li);
434 kfree(li);
435 }
436 list_del(&cifs_file->llist->llist);
437 kfree(cifs_file->llist);
438 up_write(&cifsi->lock_sem);
439
440 cifs_put_tlink(cifs_file->tlink);
441 dput(cifs_file->dentry);
442 cifs_sb_deactive(sb);
443 kfree(cifs_file->symlink_target);
444 kfree(cifs_file);
445}
446
447static void cifsFileInfo_put_work(struct work_struct *work)
448{
449 struct cifsFileInfo *cifs_file = container_of(work,
450 struct cifsFileInfo, put);
451
452 cifsFileInfo_put_final(cifs_file);
453}
454
455/**
456 * cifsFileInfo_put - release a reference of file priv data
457 *
458 * Always potentially wait for oplock handler. See _cifsFileInfo_put().
459 *
460 * @cifs_file: cifs/smb3 specific info (eg refcounts) for an open file
461 */
462void cifsFileInfo_put(struct cifsFileInfo *cifs_file)
463{
464 _cifsFileInfo_put(cifs_file, true, true);
465}
466
467/**
468 * _cifsFileInfo_put - release a reference of file priv data
469 *
470 * This may involve closing the filehandle @cifs_file out on the
471 * server. Must be called without holding tcon->open_file_lock,
472 * cinode->open_file_lock and cifs_file->file_info_lock.
473 *
474 * If @wait_for_oplock_handler is true and we are releasing the last
475 * reference, wait for any running oplock break handler of the file
476 * and cancel any pending one.
477 *
478 * @cifs_file: cifs/smb3 specific info (eg refcounts) for an open file
479 * @wait_oplock_handler: must be false if called from oplock_break_handler
480 * @offload: not offloaded on close and oplock breaks
481 *
482 */
483void _cifsFileInfo_put(struct cifsFileInfo *cifs_file,
484 bool wait_oplock_handler, bool offload)
485{
486 struct inode *inode = d_inode(cifs_file->dentry);
487 struct cifs_tcon *tcon = tlink_tcon(cifs_file->tlink);
488 struct TCP_Server_Info *server = tcon->ses->server;
489 struct cifsInodeInfo *cifsi = CIFS_I(inode);
490 struct super_block *sb = inode->i_sb;
491 struct cifs_sb_info *cifs_sb = CIFS_SB(sb);
492 struct cifs_fid fid = {};
493 struct cifs_pending_open open;
494 bool oplock_break_cancelled;
495
496 spin_lock(&tcon->open_file_lock);
497 spin_lock(&cifsi->open_file_lock);
498 spin_lock(&cifs_file->file_info_lock);
499 if (--cifs_file->count > 0) {
500 spin_unlock(&cifs_file->file_info_lock);
501 spin_unlock(&cifsi->open_file_lock);
502 spin_unlock(&tcon->open_file_lock);
503 return;
504 }
505 spin_unlock(&cifs_file->file_info_lock);
506
507 if (server->ops->get_lease_key)
508 server->ops->get_lease_key(inode, &fid);
509
510 /* store open in pending opens to make sure we don't miss lease break */
511 cifs_add_pending_open_locked(&fid, cifs_file->tlink, &open);
512
513 /* remove it from the lists */
514 list_del(&cifs_file->flist);
515 list_del(&cifs_file->tlist);
516 atomic_dec(&tcon->num_local_opens);
517
518 if (list_empty(&cifsi->openFileList)) {
519 cifs_dbg(FYI, "closing last open instance for inode %p\n",
520 d_inode(cifs_file->dentry));
521 /*
522 * In strict cache mode we need invalidate mapping on the last
523 * close because it may cause a error when we open this file
524 * again and get at least level II oplock.
525 */
526 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_STRICT_IO)
527 set_bit(CIFS_INO_INVALID_MAPPING, &cifsi->flags);
528 cifs_set_oplock_level(cifsi, 0);
529 }
530
531 spin_unlock(&cifsi->open_file_lock);
532 spin_unlock(&tcon->open_file_lock);
533
534 oplock_break_cancelled = wait_oplock_handler ?
535 cancel_work_sync(&cifs_file->oplock_break) : false;
536
537 if (!tcon->need_reconnect && !cifs_file->invalidHandle) {
538 struct TCP_Server_Info *server = tcon->ses->server;
539 unsigned int xid;
540
541 xid = get_xid();
542 if (server->ops->close_getattr)
543 server->ops->close_getattr(xid, tcon, cifs_file);
544 else if (server->ops->close)
545 server->ops->close(xid, tcon, &cifs_file->fid);
546 _free_xid(xid);
547 }
548
549 if (oplock_break_cancelled)
550 cifs_done_oplock_break(cifsi);
551
552 cifs_del_pending_open(&open);
553
554 if (offload)
555 queue_work(fileinfo_put_wq, &cifs_file->put);
556 else
557 cifsFileInfo_put_final(cifs_file);
558}
559
560int cifs_open(struct inode *inode, struct file *file)
561
562{
563 int rc = -EACCES;
564 unsigned int xid;
565 __u32 oplock;
566 struct cifs_sb_info *cifs_sb;
567 struct TCP_Server_Info *server;
568 struct cifs_tcon *tcon;
569 struct tcon_link *tlink;
570 struct cifsFileInfo *cfile = NULL;
571 void *page;
572 const char *full_path;
573 bool posix_open_ok = false;
574 struct cifs_fid fid = {};
575 struct cifs_pending_open open;
576 struct cifs_open_info_data data = {};
577
578 xid = get_xid();
579
580 cifs_sb = CIFS_SB(inode->i_sb);
581 if (unlikely(cifs_forced_shutdown(cifs_sb))) {
582 free_xid(xid);
583 return -EIO;
584 }
585
586 tlink = cifs_sb_tlink(cifs_sb);
587 if (IS_ERR(tlink)) {
588 free_xid(xid);
589 return PTR_ERR(tlink);
590 }
591 tcon = tlink_tcon(tlink);
592 server = tcon->ses->server;
593
594 page = alloc_dentry_path();
595 full_path = build_path_from_dentry(file_dentry(file), page);
596 if (IS_ERR(full_path)) {
597 rc = PTR_ERR(full_path);
598 goto out;
599 }
600
601 cifs_dbg(FYI, "inode = 0x%p file flags are 0x%x for %s\n",
602 inode, file->f_flags, full_path);
603
604 if (file->f_flags & O_DIRECT &&
605 cifs_sb->mnt_cifs_flags & CIFS_MOUNT_STRICT_IO) {
606 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_BRL)
607 file->f_op = &cifs_file_direct_nobrl_ops;
608 else
609 file->f_op = &cifs_file_direct_ops;
610 }
611
612 /* Get the cached handle as SMB2 close is deferred */
613 rc = cifs_get_readable_path(tcon, full_path, &cfile);
614 if (rc == 0) {
615 if (file->f_flags == cfile->f_flags) {
616 file->private_data = cfile;
617 spin_lock(&CIFS_I(inode)->deferred_lock);
618 cifs_del_deferred_close(cfile);
619 spin_unlock(&CIFS_I(inode)->deferred_lock);
620 goto use_cache;
621 } else {
622 _cifsFileInfo_put(cfile, true, false);
623 }
624 }
625
626 if (server->oplocks)
627 oplock = REQ_OPLOCK;
628 else
629 oplock = 0;
630
631#ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY
632 if (!tcon->broken_posix_open && tcon->unix_ext &&
633 cap_unix(tcon->ses) && (CIFS_UNIX_POSIX_PATH_OPS_CAP &
634 le64_to_cpu(tcon->fsUnixInfo.Capability))) {
635 /* can not refresh inode info since size could be stale */
636 rc = cifs_posix_open(full_path, &inode, inode->i_sb,
637 cifs_sb->ctx->file_mode /* ignored */,
638 file->f_flags, &oplock, &fid.netfid, xid);
639 if (rc == 0) {
640 cifs_dbg(FYI, "posix open succeeded\n");
641 posix_open_ok = true;
642 } else if ((rc == -EINVAL) || (rc == -EOPNOTSUPP)) {
643 if (tcon->ses->serverNOS)
644 cifs_dbg(VFS, "server %s of type %s returned unexpected error on SMB posix open, disabling posix open support. Check if server update available.\n",
645 tcon->ses->ip_addr,
646 tcon->ses->serverNOS);
647 tcon->broken_posix_open = true;
648 } else if ((rc != -EIO) && (rc != -EREMOTE) &&
649 (rc != -EOPNOTSUPP)) /* path not found or net err */
650 goto out;
651 /*
652 * Else fallthrough to retry open the old way on network i/o
653 * or DFS errors.
654 */
655 }
656#endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */
657
658 if (server->ops->get_lease_key)
659 server->ops->get_lease_key(inode, &fid);
660
661 cifs_add_pending_open(&fid, tlink, &open);
662
663 if (!posix_open_ok) {
664 if (server->ops->get_lease_key)
665 server->ops->get_lease_key(inode, &fid);
666
667 rc = cifs_nt_open(full_path, inode, cifs_sb, tcon, file->f_flags, &oplock, &fid,
668 xid, &data);
669 if (rc) {
670 cifs_del_pending_open(&open);
671 goto out;
672 }
673 }
674
675 cfile = cifs_new_fileinfo(&fid, file, tlink, oplock, data.symlink_target);
676 if (cfile == NULL) {
677 if (server->ops->close)
678 server->ops->close(xid, tcon, &fid);
679 cifs_del_pending_open(&open);
680 rc = -ENOMEM;
681 goto out;
682 }
683
684#ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY
685 if ((oplock & CIFS_CREATE_ACTION) && !posix_open_ok && tcon->unix_ext) {
686 /*
687 * Time to set mode which we can not set earlier due to
688 * problems creating new read-only files.
689 */
690 struct cifs_unix_set_info_args args = {
691 .mode = inode->i_mode,
692 .uid = INVALID_UID, /* no change */
693 .gid = INVALID_GID, /* no change */
694 .ctime = NO_CHANGE_64,
695 .atime = NO_CHANGE_64,
696 .mtime = NO_CHANGE_64,
697 .device = 0,
698 };
699 CIFSSMBUnixSetFileInfo(xid, tcon, &args, fid.netfid,
700 cfile->pid);
701 }
702#endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */
703
704use_cache:
705 fscache_use_cookie(cifs_inode_cookie(file_inode(file)),
706 file->f_mode & FMODE_WRITE);
707 if (file->f_flags & O_DIRECT &&
708 (!((file->f_flags & O_ACCMODE) != O_RDONLY) ||
709 file->f_flags & O_APPEND))
710 cifs_invalidate_cache(file_inode(file),
711 FSCACHE_INVAL_DIO_WRITE);
712
713out:
714 free_dentry_path(page);
715 free_xid(xid);
716 cifs_put_tlink(tlink);
717 cifs_free_open_info(&data);
718 return rc;
719}
720
721#ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY
722static int cifs_push_posix_locks(struct cifsFileInfo *cfile);
723#endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */
724
725/*
726 * Try to reacquire byte range locks that were released when session
727 * to server was lost.
728 */
729static int
730cifs_relock_file(struct cifsFileInfo *cfile)
731{
732 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
733 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
734 int rc = 0;
735#ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY
736 struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb);
737#endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */
738
739 down_read_nested(&cinode->lock_sem, SINGLE_DEPTH_NESTING);
740 if (cinode->can_cache_brlcks) {
741 /* can cache locks - no need to relock */
742 up_read(&cinode->lock_sem);
743 return rc;
744 }
745
746#ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY
747 if (cap_unix(tcon->ses) &&
748 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
749 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
750 rc = cifs_push_posix_locks(cfile);
751 else
752#endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */
753 rc = tcon->ses->server->ops->push_mand_locks(cfile);
754
755 up_read(&cinode->lock_sem);
756 return rc;
757}
758
759static int
760cifs_reopen_file(struct cifsFileInfo *cfile, bool can_flush)
761{
762 int rc = -EACCES;
763 unsigned int xid;
764 __u32 oplock;
765 struct cifs_sb_info *cifs_sb;
766 struct cifs_tcon *tcon;
767 struct TCP_Server_Info *server;
768 struct cifsInodeInfo *cinode;
769 struct inode *inode;
770 void *page;
771 const char *full_path;
772 int desired_access;
773 int disposition = FILE_OPEN;
774 int create_options = CREATE_NOT_DIR;
775 struct cifs_open_parms oparms;
776
777 xid = get_xid();
778 mutex_lock(&cfile->fh_mutex);
779 if (!cfile->invalidHandle) {
780 mutex_unlock(&cfile->fh_mutex);
781 free_xid(xid);
782 return 0;
783 }
784
785 inode = d_inode(cfile->dentry);
786 cifs_sb = CIFS_SB(inode->i_sb);
787 tcon = tlink_tcon(cfile->tlink);
788 server = tcon->ses->server;
789
790 /*
791 * Can not grab rename sem here because various ops, including those
792 * that already have the rename sem can end up causing writepage to get
793 * called and if the server was down that means we end up here, and we
794 * can never tell if the caller already has the rename_sem.
795 */
796 page = alloc_dentry_path();
797 full_path = build_path_from_dentry(cfile->dentry, page);
798 if (IS_ERR(full_path)) {
799 mutex_unlock(&cfile->fh_mutex);
800 free_dentry_path(page);
801 free_xid(xid);
802 return PTR_ERR(full_path);
803 }
804
805 cifs_dbg(FYI, "inode = 0x%p file flags 0x%x for %s\n",
806 inode, cfile->f_flags, full_path);
807
808 if (tcon->ses->server->oplocks)
809 oplock = REQ_OPLOCK;
810 else
811 oplock = 0;
812
813#ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY
814 if (tcon->unix_ext && cap_unix(tcon->ses) &&
815 (CIFS_UNIX_POSIX_PATH_OPS_CAP &
816 le64_to_cpu(tcon->fsUnixInfo.Capability))) {
817 /*
818 * O_CREAT, O_EXCL and O_TRUNC already had their effect on the
819 * original open. Must mask them off for a reopen.
820 */
821 unsigned int oflags = cfile->f_flags &
822 ~(O_CREAT | O_EXCL | O_TRUNC);
823
824 rc = cifs_posix_open(full_path, NULL, inode->i_sb,
825 cifs_sb->ctx->file_mode /* ignored */,
826 oflags, &oplock, &cfile->fid.netfid, xid);
827 if (rc == 0) {
828 cifs_dbg(FYI, "posix reopen succeeded\n");
829 oparms.reconnect = true;
830 goto reopen_success;
831 }
832 /*
833 * fallthrough to retry open the old way on errors, especially
834 * in the reconnect path it is important to retry hard
835 */
836 }
837#endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */
838
839 desired_access = cifs_convert_flags(cfile->f_flags);
840
841 /* O_SYNC also has bit for O_DSYNC so following check picks up either */
842 if (cfile->f_flags & O_SYNC)
843 create_options |= CREATE_WRITE_THROUGH;
844
845 if (cfile->f_flags & O_DIRECT)
846 create_options |= CREATE_NO_BUFFER;
847
848 if (server->ops->get_lease_key)
849 server->ops->get_lease_key(inode, &cfile->fid);
850
851 oparms.tcon = tcon;
852 oparms.cifs_sb = cifs_sb;
853 oparms.desired_access = desired_access;
854 oparms.create_options = cifs_create_options(cifs_sb, create_options);
855 oparms.disposition = disposition;
856 oparms.path = full_path;
857 oparms.fid = &cfile->fid;
858 oparms.reconnect = true;
859
860 /*
861 * Can not refresh inode by passing in file_info buf to be returned by
862 * ops->open and then calling get_inode_info with returned buf since
863 * file might have write behind data that needs to be flushed and server
864 * version of file size can be stale. If we knew for sure that inode was
865 * not dirty locally we could do this.
866 */
867 rc = server->ops->open(xid, &oparms, &oplock, NULL);
868 if (rc == -ENOENT && oparms.reconnect == false) {
869 /* durable handle timeout is expired - open the file again */
870 rc = server->ops->open(xid, &oparms, &oplock, NULL);
871 /* indicate that we need to relock the file */
872 oparms.reconnect = true;
873 }
874
875 if (rc) {
876 mutex_unlock(&cfile->fh_mutex);
877 cifs_dbg(FYI, "cifs_reopen returned 0x%x\n", rc);
878 cifs_dbg(FYI, "oplock: %d\n", oplock);
879 goto reopen_error_exit;
880 }
881
882#ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY
883reopen_success:
884#endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */
885 cfile->invalidHandle = false;
886 mutex_unlock(&cfile->fh_mutex);
887 cinode = CIFS_I(inode);
888
889 if (can_flush) {
890 rc = filemap_write_and_wait(inode->i_mapping);
891 if (!is_interrupt_error(rc))
892 mapping_set_error(inode->i_mapping, rc);
893
894 if (tcon->posix_extensions)
895 rc = smb311_posix_get_inode_info(&inode, full_path, inode->i_sb, xid);
896 else if (tcon->unix_ext)
897 rc = cifs_get_inode_info_unix(&inode, full_path,
898 inode->i_sb, xid);
899 else
900 rc = cifs_get_inode_info(&inode, full_path, NULL,
901 inode->i_sb, xid, NULL);
902 }
903 /*
904 * Else we are writing out data to server already and could deadlock if
905 * we tried to flush data, and since we do not know if we have data that
906 * would invalidate the current end of file on the server we can not go
907 * to the server to get the new inode info.
908 */
909
910 /*
911 * If the server returned a read oplock and we have mandatory brlocks,
912 * set oplock level to None.
913 */
914 if (server->ops->is_read_op(oplock) && cifs_has_mand_locks(cinode)) {
915 cifs_dbg(FYI, "Reset oplock val from read to None due to mand locks\n");
916 oplock = 0;
917 }
918
919 server->ops->set_fid(cfile, &cfile->fid, oplock);
920 if (oparms.reconnect)
921 cifs_relock_file(cfile);
922
923reopen_error_exit:
924 free_dentry_path(page);
925 free_xid(xid);
926 return rc;
927}
928
929void smb2_deferred_work_close(struct work_struct *work)
930{
931 struct cifsFileInfo *cfile = container_of(work,
932 struct cifsFileInfo, deferred.work);
933
934 spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
935 cifs_del_deferred_close(cfile);
936 cfile->deferred_close_scheduled = false;
937 spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
938 _cifsFileInfo_put(cfile, true, false);
939}
940
941int cifs_close(struct inode *inode, struct file *file)
942{
943 struct cifsFileInfo *cfile;
944 struct cifsInodeInfo *cinode = CIFS_I(inode);
945 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
946 struct cifs_deferred_close *dclose;
947
948 cifs_fscache_unuse_inode_cookie(inode, file->f_mode & FMODE_WRITE);
949
950 if (file->private_data != NULL) {
951 cfile = file->private_data;
952 file->private_data = NULL;
953 dclose = kmalloc(sizeof(struct cifs_deferred_close), GFP_KERNEL);
954 if ((cinode->oplock == CIFS_CACHE_RHW_FLG) &&
955 cinode->lease_granted &&
956 !test_bit(CIFS_INO_CLOSE_ON_LOCK, &cinode->flags) &&
957 dclose) {
958 if (test_and_clear_bit(CIFS_INO_MODIFIED_ATTR, &cinode->flags)) {
959 inode->i_ctime = inode->i_mtime = current_time(inode);
960 }
961 spin_lock(&cinode->deferred_lock);
962 cifs_add_deferred_close(cfile, dclose);
963 if (cfile->deferred_close_scheduled &&
964 delayed_work_pending(&cfile->deferred)) {
965 /*
966 * If there is no pending work, mod_delayed_work queues new work.
967 * So, Increase the ref count to avoid use-after-free.
968 */
969 if (!mod_delayed_work(deferredclose_wq,
970 &cfile->deferred, cifs_sb->ctx->closetimeo))
971 cifsFileInfo_get(cfile);
972 } else {
973 /* Deferred close for files */
974 queue_delayed_work(deferredclose_wq,
975 &cfile->deferred, cifs_sb->ctx->closetimeo);
976 cfile->deferred_close_scheduled = true;
977 spin_unlock(&cinode->deferred_lock);
978 return 0;
979 }
980 spin_unlock(&cinode->deferred_lock);
981 _cifsFileInfo_put(cfile, true, false);
982 } else {
983 _cifsFileInfo_put(cfile, true, false);
984 kfree(dclose);
985 }
986 }
987
988 /* return code from the ->release op is always ignored */
989 return 0;
990}
991
992void
993cifs_reopen_persistent_handles(struct cifs_tcon *tcon)
994{
995 struct cifsFileInfo *open_file, *tmp;
996 struct list_head tmp_list;
997
998 if (!tcon->use_persistent || !tcon->need_reopen_files)
999 return;
1000
1001 tcon->need_reopen_files = false;
1002
1003 cifs_dbg(FYI, "Reopen persistent handles\n");
1004 INIT_LIST_HEAD(&tmp_list);
1005
1006 /* list all files open on tree connection, reopen resilient handles */
1007 spin_lock(&tcon->open_file_lock);
1008 list_for_each_entry(open_file, &tcon->openFileList, tlist) {
1009 if (!open_file->invalidHandle)
1010 continue;
1011 cifsFileInfo_get(open_file);
1012 list_add_tail(&open_file->rlist, &tmp_list);
1013 }
1014 spin_unlock(&tcon->open_file_lock);
1015
1016 list_for_each_entry_safe(open_file, tmp, &tmp_list, rlist) {
1017 if (cifs_reopen_file(open_file, false /* do not flush */))
1018 tcon->need_reopen_files = true;
1019 list_del_init(&open_file->rlist);
1020 cifsFileInfo_put(open_file);
1021 }
1022}
1023
1024int cifs_closedir(struct inode *inode, struct file *file)
1025{
1026 int rc = 0;
1027 unsigned int xid;
1028 struct cifsFileInfo *cfile = file->private_data;
1029 struct cifs_tcon *tcon;
1030 struct TCP_Server_Info *server;
1031 char *buf;
1032
1033 cifs_dbg(FYI, "Closedir inode = 0x%p\n", inode);
1034
1035 if (cfile == NULL)
1036 return rc;
1037
1038 xid = get_xid();
1039 tcon = tlink_tcon(cfile->tlink);
1040 server = tcon->ses->server;
1041
1042 cifs_dbg(FYI, "Freeing private data in close dir\n");
1043 spin_lock(&cfile->file_info_lock);
1044 if (server->ops->dir_needs_close(cfile)) {
1045 cfile->invalidHandle = true;
1046 spin_unlock(&cfile->file_info_lock);
1047 if (server->ops->close_dir)
1048 rc = server->ops->close_dir(xid, tcon, &cfile->fid);
1049 else
1050 rc = -ENOSYS;
1051 cifs_dbg(FYI, "Closing uncompleted readdir with rc %d\n", rc);
1052 /* not much we can do if it fails anyway, ignore rc */
1053 rc = 0;
1054 } else
1055 spin_unlock(&cfile->file_info_lock);
1056
1057 buf = cfile->srch_inf.ntwrk_buf_start;
1058 if (buf) {
1059 cifs_dbg(FYI, "closedir free smb buf in srch struct\n");
1060 cfile->srch_inf.ntwrk_buf_start = NULL;
1061 if (cfile->srch_inf.smallBuf)
1062 cifs_small_buf_release(buf);
1063 else
1064 cifs_buf_release(buf);
1065 }
1066
1067 cifs_put_tlink(cfile->tlink);
1068 kfree(file->private_data);
1069 file->private_data = NULL;
1070 /* BB can we lock the filestruct while this is going on? */
1071 free_xid(xid);
1072 return rc;
1073}
1074
1075static struct cifsLockInfo *
1076cifs_lock_init(__u64 offset, __u64 length, __u8 type, __u16 flags)
1077{
1078 struct cifsLockInfo *lock =
1079 kmalloc(sizeof(struct cifsLockInfo), GFP_KERNEL);
1080 if (!lock)
1081 return lock;
1082 lock->offset = offset;
1083 lock->length = length;
1084 lock->type = type;
1085 lock->pid = current->tgid;
1086 lock->flags = flags;
1087 INIT_LIST_HEAD(&lock->blist);
1088 init_waitqueue_head(&lock->block_q);
1089 return lock;
1090}
1091
1092void
1093cifs_del_lock_waiters(struct cifsLockInfo *lock)
1094{
1095 struct cifsLockInfo *li, *tmp;
1096 list_for_each_entry_safe(li, tmp, &lock->blist, blist) {
1097 list_del_init(&li->blist);
1098 wake_up(&li->block_q);
1099 }
1100}
1101
1102#define CIFS_LOCK_OP 0
1103#define CIFS_READ_OP 1
1104#define CIFS_WRITE_OP 2
1105
1106/* @rw_check : 0 - no op, 1 - read, 2 - write */
1107static bool
1108cifs_find_fid_lock_conflict(struct cifs_fid_locks *fdlocks, __u64 offset,
1109 __u64 length, __u8 type, __u16 flags,
1110 struct cifsFileInfo *cfile,
1111 struct cifsLockInfo **conf_lock, int rw_check)
1112{
1113 struct cifsLockInfo *li;
1114 struct cifsFileInfo *cur_cfile = fdlocks->cfile;
1115 struct TCP_Server_Info *server = tlink_tcon(cfile->tlink)->ses->server;
1116
1117 list_for_each_entry(li, &fdlocks->locks, llist) {
1118 if (offset + length <= li->offset ||
1119 offset >= li->offset + li->length)
1120 continue;
1121 if (rw_check != CIFS_LOCK_OP && current->tgid == li->pid &&
1122 server->ops->compare_fids(cfile, cur_cfile)) {
1123 /* shared lock prevents write op through the same fid */
1124 if (!(li->type & server->vals->shared_lock_type) ||
1125 rw_check != CIFS_WRITE_OP)
1126 continue;
1127 }
1128 if ((type & server->vals->shared_lock_type) &&
1129 ((server->ops->compare_fids(cfile, cur_cfile) &&
1130 current->tgid == li->pid) || type == li->type))
1131 continue;
1132 if (rw_check == CIFS_LOCK_OP &&
1133 (flags & FL_OFDLCK) && (li->flags & FL_OFDLCK) &&
1134 server->ops->compare_fids(cfile, cur_cfile))
1135 continue;
1136 if (conf_lock)
1137 *conf_lock = li;
1138 return true;
1139 }
1140 return false;
1141}
1142
1143bool
1144cifs_find_lock_conflict(struct cifsFileInfo *cfile, __u64 offset, __u64 length,
1145 __u8 type, __u16 flags,
1146 struct cifsLockInfo **conf_lock, int rw_check)
1147{
1148 bool rc = false;
1149 struct cifs_fid_locks *cur;
1150 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
1151
1152 list_for_each_entry(cur, &cinode->llist, llist) {
1153 rc = cifs_find_fid_lock_conflict(cur, offset, length, type,
1154 flags, cfile, conf_lock,
1155 rw_check);
1156 if (rc)
1157 break;
1158 }
1159
1160 return rc;
1161}
1162
1163/*
1164 * Check if there is another lock that prevents us to set the lock (mandatory
1165 * style). If such a lock exists, update the flock structure with its
1166 * properties. Otherwise, set the flock type to F_UNLCK if we can cache brlocks
1167 * or leave it the same if we can't. Returns 0 if we don't need to request to
1168 * the server or 1 otherwise.
1169 */
1170static int
1171cifs_lock_test(struct cifsFileInfo *cfile, __u64 offset, __u64 length,
1172 __u8 type, struct file_lock *flock)
1173{
1174 int rc = 0;
1175 struct cifsLockInfo *conf_lock;
1176 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
1177 struct TCP_Server_Info *server = tlink_tcon(cfile->tlink)->ses->server;
1178 bool exist;
1179
1180 down_read(&cinode->lock_sem);
1181
1182 exist = cifs_find_lock_conflict(cfile, offset, length, type,
1183 flock->fl_flags, &conf_lock,
1184 CIFS_LOCK_OP);
1185 if (exist) {
1186 flock->fl_start = conf_lock->offset;
1187 flock->fl_end = conf_lock->offset + conf_lock->length - 1;
1188 flock->fl_pid = conf_lock->pid;
1189 if (conf_lock->type & server->vals->shared_lock_type)
1190 flock->fl_type = F_RDLCK;
1191 else
1192 flock->fl_type = F_WRLCK;
1193 } else if (!cinode->can_cache_brlcks)
1194 rc = 1;
1195 else
1196 flock->fl_type = F_UNLCK;
1197
1198 up_read(&cinode->lock_sem);
1199 return rc;
1200}
1201
1202static void
1203cifs_lock_add(struct cifsFileInfo *cfile, struct cifsLockInfo *lock)
1204{
1205 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
1206 cifs_down_write(&cinode->lock_sem);
1207 list_add_tail(&lock->llist, &cfile->llist->locks);
1208 up_write(&cinode->lock_sem);
1209}
1210
1211/*
1212 * Set the byte-range lock (mandatory style). Returns:
1213 * 1) 0, if we set the lock and don't need to request to the server;
1214 * 2) 1, if no locks prevent us but we need to request to the server;
1215 * 3) -EACCES, if there is a lock that prevents us and wait is false.
1216 */
1217static int
1218cifs_lock_add_if(struct cifsFileInfo *cfile, struct cifsLockInfo *lock,
1219 bool wait)
1220{
1221 struct cifsLockInfo *conf_lock;
1222 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
1223 bool exist;
1224 int rc = 0;
1225
1226try_again:
1227 exist = false;
1228 cifs_down_write(&cinode->lock_sem);
1229
1230 exist = cifs_find_lock_conflict(cfile, lock->offset, lock->length,
1231 lock->type, lock->flags, &conf_lock,
1232 CIFS_LOCK_OP);
1233 if (!exist && cinode->can_cache_brlcks) {
1234 list_add_tail(&lock->llist, &cfile->llist->locks);
1235 up_write(&cinode->lock_sem);
1236 return rc;
1237 }
1238
1239 if (!exist)
1240 rc = 1;
1241 else if (!wait)
1242 rc = -EACCES;
1243 else {
1244 list_add_tail(&lock->blist, &conf_lock->blist);
1245 up_write(&cinode->lock_sem);
1246 rc = wait_event_interruptible(lock->block_q,
1247 (lock->blist.prev == &lock->blist) &&
1248 (lock->blist.next == &lock->blist));
1249 if (!rc)
1250 goto try_again;
1251 cifs_down_write(&cinode->lock_sem);
1252 list_del_init(&lock->blist);
1253 }
1254
1255 up_write(&cinode->lock_sem);
1256 return rc;
1257}
1258
1259#ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY
1260/*
1261 * Check if there is another lock that prevents us to set the lock (posix
1262 * style). If such a lock exists, update the flock structure with its
1263 * properties. Otherwise, set the flock type to F_UNLCK if we can cache brlocks
1264 * or leave it the same if we can't. Returns 0 if we don't need to request to
1265 * the server or 1 otherwise.
1266 */
1267static int
1268cifs_posix_lock_test(struct file *file, struct file_lock *flock)
1269{
1270 int rc = 0;
1271 struct cifsInodeInfo *cinode = CIFS_I(file_inode(file));
1272 unsigned char saved_type = flock->fl_type;
1273
1274 if ((flock->fl_flags & FL_POSIX) == 0)
1275 return 1;
1276
1277 down_read(&cinode->lock_sem);
1278 posix_test_lock(file, flock);
1279
1280 if (flock->fl_type == F_UNLCK && !cinode->can_cache_brlcks) {
1281 flock->fl_type = saved_type;
1282 rc = 1;
1283 }
1284
1285 up_read(&cinode->lock_sem);
1286 return rc;
1287}
1288
1289/*
1290 * Set the byte-range lock (posix style). Returns:
1291 * 1) <0, if the error occurs while setting the lock;
1292 * 2) 0, if we set the lock and don't need to request to the server;
1293 * 3) FILE_LOCK_DEFERRED, if we will wait for some other file_lock;
1294 * 4) FILE_LOCK_DEFERRED + 1, if we need to request to the server.
1295 */
1296static int
1297cifs_posix_lock_set(struct file *file, struct file_lock *flock)
1298{
1299 struct cifsInodeInfo *cinode = CIFS_I(file_inode(file));
1300 int rc = FILE_LOCK_DEFERRED + 1;
1301
1302 if ((flock->fl_flags & FL_POSIX) == 0)
1303 return rc;
1304
1305 cifs_down_write(&cinode->lock_sem);
1306 if (!cinode->can_cache_brlcks) {
1307 up_write(&cinode->lock_sem);
1308 return rc;
1309 }
1310
1311 rc = posix_lock_file(file, flock, NULL);
1312 up_write(&cinode->lock_sem);
1313 return rc;
1314}
1315
1316int
1317cifs_push_mandatory_locks(struct cifsFileInfo *cfile)
1318{
1319 unsigned int xid;
1320 int rc = 0, stored_rc;
1321 struct cifsLockInfo *li, *tmp;
1322 struct cifs_tcon *tcon;
1323 unsigned int num, max_num, max_buf;
1324 LOCKING_ANDX_RANGE *buf, *cur;
1325 static const int types[] = {
1326 LOCKING_ANDX_LARGE_FILES,
1327 LOCKING_ANDX_SHARED_LOCK | LOCKING_ANDX_LARGE_FILES
1328 };
1329 int i;
1330
1331 xid = get_xid();
1332 tcon = tlink_tcon(cfile->tlink);
1333
1334 /*
1335 * Accessing maxBuf is racy with cifs_reconnect - need to store value
1336 * and check it before using.
1337 */
1338 max_buf = tcon->ses->server->maxBuf;
1339 if (max_buf < (sizeof(struct smb_hdr) + sizeof(LOCKING_ANDX_RANGE))) {
1340 free_xid(xid);
1341 return -EINVAL;
1342 }
1343
1344 BUILD_BUG_ON(sizeof(struct smb_hdr) + sizeof(LOCKING_ANDX_RANGE) >
1345 PAGE_SIZE);
1346 max_buf = min_t(unsigned int, max_buf - sizeof(struct smb_hdr),
1347 PAGE_SIZE);
1348 max_num = (max_buf - sizeof(struct smb_hdr)) /
1349 sizeof(LOCKING_ANDX_RANGE);
1350 buf = kcalloc(max_num, sizeof(LOCKING_ANDX_RANGE), GFP_KERNEL);
1351 if (!buf) {
1352 free_xid(xid);
1353 return -ENOMEM;
1354 }
1355
1356 for (i = 0; i < 2; i++) {
1357 cur = buf;
1358 num = 0;
1359 list_for_each_entry_safe(li, tmp, &cfile->llist->locks, llist) {
1360 if (li->type != types[i])
1361 continue;
1362 cur->Pid = cpu_to_le16(li->pid);
1363 cur->LengthLow = cpu_to_le32((u32)li->length);
1364 cur->LengthHigh = cpu_to_le32((u32)(li->length>>32));
1365 cur->OffsetLow = cpu_to_le32((u32)li->offset);
1366 cur->OffsetHigh = cpu_to_le32((u32)(li->offset>>32));
1367 if (++num == max_num) {
1368 stored_rc = cifs_lockv(xid, tcon,
1369 cfile->fid.netfid,
1370 (__u8)li->type, 0, num,
1371 buf);
1372 if (stored_rc)
1373 rc = stored_rc;
1374 cur = buf;
1375 num = 0;
1376 } else
1377 cur++;
1378 }
1379
1380 if (num) {
1381 stored_rc = cifs_lockv(xid, tcon, cfile->fid.netfid,
1382 (__u8)types[i], 0, num, buf);
1383 if (stored_rc)
1384 rc = stored_rc;
1385 }
1386 }
1387
1388 kfree(buf);
1389 free_xid(xid);
1390 return rc;
1391}
1392
1393static __u32
1394hash_lockowner(fl_owner_t owner)
1395{
1396 return cifs_lock_secret ^ hash32_ptr((const void *)owner);
1397}
1398#endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */
1399
1400struct lock_to_push {
1401 struct list_head llist;
1402 __u64 offset;
1403 __u64 length;
1404 __u32 pid;
1405 __u16 netfid;
1406 __u8 type;
1407};
1408
1409#ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY
1410static int
1411cifs_push_posix_locks(struct cifsFileInfo *cfile)
1412{
1413 struct inode *inode = d_inode(cfile->dentry);
1414 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1415 struct file_lock *flock;
1416 struct file_lock_context *flctx = locks_inode_context(inode);
1417 unsigned int count = 0, i;
1418 int rc = 0, xid, type;
1419 struct list_head locks_to_send, *el;
1420 struct lock_to_push *lck, *tmp;
1421 __u64 length;
1422
1423 xid = get_xid();
1424
1425 if (!flctx)
1426 goto out;
1427
1428 spin_lock(&flctx->flc_lock);
1429 list_for_each(el, &flctx->flc_posix) {
1430 count++;
1431 }
1432 spin_unlock(&flctx->flc_lock);
1433
1434 INIT_LIST_HEAD(&locks_to_send);
1435
1436 /*
1437 * Allocating count locks is enough because no FL_POSIX locks can be
1438 * added to the list while we are holding cinode->lock_sem that
1439 * protects locking operations of this inode.
1440 */
1441 for (i = 0; i < count; i++) {
1442 lck = kmalloc(sizeof(struct lock_to_push), GFP_KERNEL);
1443 if (!lck) {
1444 rc = -ENOMEM;
1445 goto err_out;
1446 }
1447 list_add_tail(&lck->llist, &locks_to_send);
1448 }
1449
1450 el = locks_to_send.next;
1451 spin_lock(&flctx->flc_lock);
1452 list_for_each_entry(flock, &flctx->flc_posix, fl_list) {
1453 if (el == &locks_to_send) {
1454 /*
1455 * The list ended. We don't have enough allocated
1456 * structures - something is really wrong.
1457 */
1458 cifs_dbg(VFS, "Can't push all brlocks!\n");
1459 break;
1460 }
1461 length = cifs_flock_len(flock);
1462 if (flock->fl_type == F_RDLCK || flock->fl_type == F_SHLCK)
1463 type = CIFS_RDLCK;
1464 else
1465 type = CIFS_WRLCK;
1466 lck = list_entry(el, struct lock_to_push, llist);
1467 lck->pid = hash_lockowner(flock->fl_owner);
1468 lck->netfid = cfile->fid.netfid;
1469 lck->length = length;
1470 lck->type = type;
1471 lck->offset = flock->fl_start;
1472 }
1473 spin_unlock(&flctx->flc_lock);
1474
1475 list_for_each_entry_safe(lck, tmp, &locks_to_send, llist) {
1476 int stored_rc;
1477
1478 stored_rc = CIFSSMBPosixLock(xid, tcon, lck->netfid, lck->pid,
1479 lck->offset, lck->length, NULL,
1480 lck->type, 0);
1481 if (stored_rc)
1482 rc = stored_rc;
1483 list_del(&lck->llist);
1484 kfree(lck);
1485 }
1486
1487out:
1488 free_xid(xid);
1489 return rc;
1490err_out:
1491 list_for_each_entry_safe(lck, tmp, &locks_to_send, llist) {
1492 list_del(&lck->llist);
1493 kfree(lck);
1494 }
1495 goto out;
1496}
1497#endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */
1498
1499static int
1500cifs_push_locks(struct cifsFileInfo *cfile)
1501{
1502 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
1503 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1504 int rc = 0;
1505#ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY
1506 struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb);
1507#endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */
1508
1509 /* we are going to update can_cache_brlcks here - need a write access */
1510 cifs_down_write(&cinode->lock_sem);
1511 if (!cinode->can_cache_brlcks) {
1512 up_write(&cinode->lock_sem);
1513 return rc;
1514 }
1515
1516#ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY
1517 if (cap_unix(tcon->ses) &&
1518 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
1519 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
1520 rc = cifs_push_posix_locks(cfile);
1521 else
1522#endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */
1523 rc = tcon->ses->server->ops->push_mand_locks(cfile);
1524
1525 cinode->can_cache_brlcks = false;
1526 up_write(&cinode->lock_sem);
1527 return rc;
1528}
1529
1530static void
1531cifs_read_flock(struct file_lock *flock, __u32 *type, int *lock, int *unlock,
1532 bool *wait_flag, struct TCP_Server_Info *server)
1533{
1534 if (flock->fl_flags & FL_POSIX)
1535 cifs_dbg(FYI, "Posix\n");
1536 if (flock->fl_flags & FL_FLOCK)
1537 cifs_dbg(FYI, "Flock\n");
1538 if (flock->fl_flags & FL_SLEEP) {
1539 cifs_dbg(FYI, "Blocking lock\n");
1540 *wait_flag = true;
1541 }
1542 if (flock->fl_flags & FL_ACCESS)
1543 cifs_dbg(FYI, "Process suspended by mandatory locking - not implemented yet\n");
1544 if (flock->fl_flags & FL_LEASE)
1545 cifs_dbg(FYI, "Lease on file - not implemented yet\n");
1546 if (flock->fl_flags &
1547 (~(FL_POSIX | FL_FLOCK | FL_SLEEP |
1548 FL_ACCESS | FL_LEASE | FL_CLOSE | FL_OFDLCK)))
1549 cifs_dbg(FYI, "Unknown lock flags 0x%x\n", flock->fl_flags);
1550
1551 *type = server->vals->large_lock_type;
1552 if (flock->fl_type == F_WRLCK) {
1553 cifs_dbg(FYI, "F_WRLCK\n");
1554 *type |= server->vals->exclusive_lock_type;
1555 *lock = 1;
1556 } else if (flock->fl_type == F_UNLCK) {
1557 cifs_dbg(FYI, "F_UNLCK\n");
1558 *type |= server->vals->unlock_lock_type;
1559 *unlock = 1;
1560 /* Check if unlock includes more than one lock range */
1561 } else if (flock->fl_type == F_RDLCK) {
1562 cifs_dbg(FYI, "F_RDLCK\n");
1563 *type |= server->vals->shared_lock_type;
1564 *lock = 1;
1565 } else if (flock->fl_type == F_EXLCK) {
1566 cifs_dbg(FYI, "F_EXLCK\n");
1567 *type |= server->vals->exclusive_lock_type;
1568 *lock = 1;
1569 } else if (flock->fl_type == F_SHLCK) {
1570 cifs_dbg(FYI, "F_SHLCK\n");
1571 *type |= server->vals->shared_lock_type;
1572 *lock = 1;
1573 } else
1574 cifs_dbg(FYI, "Unknown type of lock\n");
1575}
1576
1577static int
1578cifs_getlk(struct file *file, struct file_lock *flock, __u32 type,
1579 bool wait_flag, bool posix_lck, unsigned int xid)
1580{
1581 int rc = 0;
1582 __u64 length = cifs_flock_len(flock);
1583 struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data;
1584 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1585 struct TCP_Server_Info *server = tcon->ses->server;
1586#ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY
1587 __u16 netfid = cfile->fid.netfid;
1588
1589 if (posix_lck) {
1590 int posix_lock_type;
1591
1592 rc = cifs_posix_lock_test(file, flock);
1593 if (!rc)
1594 return rc;
1595
1596 if (type & server->vals->shared_lock_type)
1597 posix_lock_type = CIFS_RDLCK;
1598 else
1599 posix_lock_type = CIFS_WRLCK;
1600 rc = CIFSSMBPosixLock(xid, tcon, netfid,
1601 hash_lockowner(flock->fl_owner),
1602 flock->fl_start, length, flock,
1603 posix_lock_type, wait_flag);
1604 return rc;
1605 }
1606#endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */
1607
1608 rc = cifs_lock_test(cfile, flock->fl_start, length, type, flock);
1609 if (!rc)
1610 return rc;
1611
1612 /* BB we could chain these into one lock request BB */
1613 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length, type,
1614 1, 0, false);
1615 if (rc == 0) {
1616 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length,
1617 type, 0, 1, false);
1618 flock->fl_type = F_UNLCK;
1619 if (rc != 0)
1620 cifs_dbg(VFS, "Error unlocking previously locked range %d during test of lock\n",
1621 rc);
1622 return 0;
1623 }
1624
1625 if (type & server->vals->shared_lock_type) {
1626 flock->fl_type = F_WRLCK;
1627 return 0;
1628 }
1629
1630 type &= ~server->vals->exclusive_lock_type;
1631
1632 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length,
1633 type | server->vals->shared_lock_type,
1634 1, 0, false);
1635 if (rc == 0) {
1636 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length,
1637 type | server->vals->shared_lock_type, 0, 1, false);
1638 flock->fl_type = F_RDLCK;
1639 if (rc != 0)
1640 cifs_dbg(VFS, "Error unlocking previously locked range %d during test of lock\n",
1641 rc);
1642 } else
1643 flock->fl_type = F_WRLCK;
1644
1645 return 0;
1646}
1647
1648void
1649cifs_move_llist(struct list_head *source, struct list_head *dest)
1650{
1651 struct list_head *li, *tmp;
1652 list_for_each_safe(li, tmp, source)
1653 list_move(li, dest);
1654}
1655
1656void
1657cifs_free_llist(struct list_head *llist)
1658{
1659 struct cifsLockInfo *li, *tmp;
1660 list_for_each_entry_safe(li, tmp, llist, llist) {
1661 cifs_del_lock_waiters(li);
1662 list_del(&li->llist);
1663 kfree(li);
1664 }
1665}
1666
1667#ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY
1668int
1669cifs_unlock_range(struct cifsFileInfo *cfile, struct file_lock *flock,
1670 unsigned int xid)
1671{
1672 int rc = 0, stored_rc;
1673 static const int types[] = {
1674 LOCKING_ANDX_LARGE_FILES,
1675 LOCKING_ANDX_SHARED_LOCK | LOCKING_ANDX_LARGE_FILES
1676 };
1677 unsigned int i;
1678 unsigned int max_num, num, max_buf;
1679 LOCKING_ANDX_RANGE *buf, *cur;
1680 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1681 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
1682 struct cifsLockInfo *li, *tmp;
1683 __u64 length = cifs_flock_len(flock);
1684 struct list_head tmp_llist;
1685
1686 INIT_LIST_HEAD(&tmp_llist);
1687
1688 /*
1689 * Accessing maxBuf is racy with cifs_reconnect - need to store value
1690 * and check it before using.
1691 */
1692 max_buf = tcon->ses->server->maxBuf;
1693 if (max_buf < (sizeof(struct smb_hdr) + sizeof(LOCKING_ANDX_RANGE)))
1694 return -EINVAL;
1695
1696 BUILD_BUG_ON(sizeof(struct smb_hdr) + sizeof(LOCKING_ANDX_RANGE) >
1697 PAGE_SIZE);
1698 max_buf = min_t(unsigned int, max_buf - sizeof(struct smb_hdr),
1699 PAGE_SIZE);
1700 max_num = (max_buf - sizeof(struct smb_hdr)) /
1701 sizeof(LOCKING_ANDX_RANGE);
1702 buf = kcalloc(max_num, sizeof(LOCKING_ANDX_RANGE), GFP_KERNEL);
1703 if (!buf)
1704 return -ENOMEM;
1705
1706 cifs_down_write(&cinode->lock_sem);
1707 for (i = 0; i < 2; i++) {
1708 cur = buf;
1709 num = 0;
1710 list_for_each_entry_safe(li, tmp, &cfile->llist->locks, llist) {
1711 if (flock->fl_start > li->offset ||
1712 (flock->fl_start + length) <
1713 (li->offset + li->length))
1714 continue;
1715 if (current->tgid != li->pid)
1716 continue;
1717 if (types[i] != li->type)
1718 continue;
1719 if (cinode->can_cache_brlcks) {
1720 /*
1721 * We can cache brlock requests - simply remove
1722 * a lock from the file's list.
1723 */
1724 list_del(&li->llist);
1725 cifs_del_lock_waiters(li);
1726 kfree(li);
1727 continue;
1728 }
1729 cur->Pid = cpu_to_le16(li->pid);
1730 cur->LengthLow = cpu_to_le32((u32)li->length);
1731 cur->LengthHigh = cpu_to_le32((u32)(li->length>>32));
1732 cur->OffsetLow = cpu_to_le32((u32)li->offset);
1733 cur->OffsetHigh = cpu_to_le32((u32)(li->offset>>32));
1734 /*
1735 * We need to save a lock here to let us add it again to
1736 * the file's list if the unlock range request fails on
1737 * the server.
1738 */
1739 list_move(&li->llist, &tmp_llist);
1740 if (++num == max_num) {
1741 stored_rc = cifs_lockv(xid, tcon,
1742 cfile->fid.netfid,
1743 li->type, num, 0, buf);
1744 if (stored_rc) {
1745 /*
1746 * We failed on the unlock range
1747 * request - add all locks from the tmp
1748 * list to the head of the file's list.
1749 */
1750 cifs_move_llist(&tmp_llist,
1751 &cfile->llist->locks);
1752 rc = stored_rc;
1753 } else
1754 /*
1755 * The unlock range request succeed -
1756 * free the tmp list.
1757 */
1758 cifs_free_llist(&tmp_llist);
1759 cur = buf;
1760 num = 0;
1761 } else
1762 cur++;
1763 }
1764 if (num) {
1765 stored_rc = cifs_lockv(xid, tcon, cfile->fid.netfid,
1766 types[i], num, 0, buf);
1767 if (stored_rc) {
1768 cifs_move_llist(&tmp_llist,
1769 &cfile->llist->locks);
1770 rc = stored_rc;
1771 } else
1772 cifs_free_llist(&tmp_llist);
1773 }
1774 }
1775
1776 up_write(&cinode->lock_sem);
1777 kfree(buf);
1778 return rc;
1779}
1780#endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */
1781
1782static int
1783cifs_setlk(struct file *file, struct file_lock *flock, __u32 type,
1784 bool wait_flag, bool posix_lck, int lock, int unlock,
1785 unsigned int xid)
1786{
1787 int rc = 0;
1788 __u64 length = cifs_flock_len(flock);
1789 struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data;
1790 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1791 struct TCP_Server_Info *server = tcon->ses->server;
1792 struct inode *inode = d_inode(cfile->dentry);
1793
1794#ifdef CONFIG_CIFS_ALLOW_INSECURE_LEGACY
1795 if (posix_lck) {
1796 int posix_lock_type;
1797
1798 rc = cifs_posix_lock_set(file, flock);
1799 if (rc <= FILE_LOCK_DEFERRED)
1800 return rc;
1801
1802 if (type & server->vals->shared_lock_type)
1803 posix_lock_type = CIFS_RDLCK;
1804 else
1805 posix_lock_type = CIFS_WRLCK;
1806
1807 if (unlock == 1)
1808 posix_lock_type = CIFS_UNLCK;
1809
1810 rc = CIFSSMBPosixLock(xid, tcon, cfile->fid.netfid,
1811 hash_lockowner(flock->fl_owner),
1812 flock->fl_start, length,
1813 NULL, posix_lock_type, wait_flag);
1814 goto out;
1815 }
1816#endif /* CONFIG_CIFS_ALLOW_INSECURE_LEGACY */
1817 if (lock) {
1818 struct cifsLockInfo *lock;
1819
1820 lock = cifs_lock_init(flock->fl_start, length, type,
1821 flock->fl_flags);
1822 if (!lock)
1823 return -ENOMEM;
1824
1825 rc = cifs_lock_add_if(cfile, lock, wait_flag);
1826 if (rc < 0) {
1827 kfree(lock);
1828 return rc;
1829 }
1830 if (!rc)
1831 goto out;
1832
1833 /*
1834 * Windows 7 server can delay breaking lease from read to None
1835 * if we set a byte-range lock on a file - break it explicitly
1836 * before sending the lock to the server to be sure the next
1837 * read won't conflict with non-overlapted locks due to
1838 * pagereading.
1839 */
1840 if (!CIFS_CACHE_WRITE(CIFS_I(inode)) &&
1841 CIFS_CACHE_READ(CIFS_I(inode))) {
1842 cifs_zap_mapping(inode);
1843 cifs_dbg(FYI, "Set no oplock for inode=%p due to mand locks\n",
1844 inode);
1845 CIFS_I(inode)->oplock = 0;
1846 }
1847
1848 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length,
1849 type, 1, 0, wait_flag);
1850 if (rc) {
1851 kfree(lock);
1852 return rc;
1853 }
1854
1855 cifs_lock_add(cfile, lock);
1856 } else if (unlock)
1857 rc = server->ops->mand_unlock_range(cfile, flock, xid);
1858
1859out:
1860 if ((flock->fl_flags & FL_POSIX) || (flock->fl_flags & FL_FLOCK)) {
1861 /*
1862 * If this is a request to remove all locks because we
1863 * are closing the file, it doesn't matter if the
1864 * unlocking failed as both cifs.ko and the SMB server
1865 * remove the lock on file close
1866 */
1867 if (rc) {
1868 cifs_dbg(VFS, "%s failed rc=%d\n", __func__, rc);
1869 if (!(flock->fl_flags & FL_CLOSE))
1870 return rc;
1871 }
1872 rc = locks_lock_file_wait(file, flock);
1873 }
1874 return rc;
1875}
1876
1877int cifs_flock(struct file *file, int cmd, struct file_lock *fl)
1878{
1879 int rc, xid;
1880 int lock = 0, unlock = 0;
1881 bool wait_flag = false;
1882 bool posix_lck = false;
1883 struct cifs_sb_info *cifs_sb;
1884 struct cifs_tcon *tcon;
1885 struct cifsFileInfo *cfile;
1886 __u32 type;
1887
1888 xid = get_xid();
1889
1890 if (!(fl->fl_flags & FL_FLOCK)) {
1891 rc = -ENOLCK;
1892 free_xid(xid);
1893 return rc;
1894 }
1895
1896 cfile = (struct cifsFileInfo *)file->private_data;
1897 tcon = tlink_tcon(cfile->tlink);
1898
1899 cifs_read_flock(fl, &type, &lock, &unlock, &wait_flag,
1900 tcon->ses->server);
1901 cifs_sb = CIFS_FILE_SB(file);
1902
1903 if (cap_unix(tcon->ses) &&
1904 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
1905 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
1906 posix_lck = true;
1907
1908 if (!lock && !unlock) {
1909 /*
1910 * if no lock or unlock then nothing to do since we do not
1911 * know what it is
1912 */
1913 rc = -EOPNOTSUPP;
1914 free_xid(xid);
1915 return rc;
1916 }
1917
1918 rc = cifs_setlk(file, fl, type, wait_flag, posix_lck, lock, unlock,
1919 xid);
1920 free_xid(xid);
1921 return rc;
1922
1923
1924}
1925
1926int cifs_lock(struct file *file, int cmd, struct file_lock *flock)
1927{
1928 int rc, xid;
1929 int lock = 0, unlock = 0;
1930 bool wait_flag = false;
1931 bool posix_lck = false;
1932 struct cifs_sb_info *cifs_sb;
1933 struct cifs_tcon *tcon;
1934 struct cifsFileInfo *cfile;
1935 __u32 type;
1936
1937 rc = -EACCES;
1938 xid = get_xid();
1939
1940 cifs_dbg(FYI, "%s: %pD2 cmd=0x%x type=0x%x flags=0x%x r=%lld:%lld\n", __func__, file, cmd,
1941 flock->fl_flags, flock->fl_type, (long long)flock->fl_start,
1942 (long long)flock->fl_end);
1943
1944 cfile = (struct cifsFileInfo *)file->private_data;
1945 tcon = tlink_tcon(cfile->tlink);
1946
1947 cifs_read_flock(flock, &type, &lock, &unlock, &wait_flag,
1948 tcon->ses->server);
1949 cifs_sb = CIFS_FILE_SB(file);
1950 set_bit(CIFS_INO_CLOSE_ON_LOCK, &CIFS_I(d_inode(cfile->dentry))->flags);
1951
1952 if (cap_unix(tcon->ses) &&
1953 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
1954 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
1955 posix_lck = true;
1956 /*
1957 * BB add code here to normalize offset and length to account for
1958 * negative length which we can not accept over the wire.
1959 */
1960 if (IS_GETLK(cmd)) {
1961 rc = cifs_getlk(file, flock, type, wait_flag, posix_lck, xid);
1962 free_xid(xid);
1963 return rc;
1964 }
1965
1966 if (!lock && !unlock) {
1967 /*
1968 * if no lock or unlock then nothing to do since we do not
1969 * know what it is
1970 */
1971 free_xid(xid);
1972 return -EOPNOTSUPP;
1973 }
1974
1975 rc = cifs_setlk(file, flock, type, wait_flag, posix_lck, lock, unlock,
1976 xid);
1977 free_xid(xid);
1978 return rc;
1979}
1980
1981/*
1982 * update the file size (if needed) after a write. Should be called with
1983 * the inode->i_lock held
1984 */
1985void
1986cifs_update_eof(struct cifsInodeInfo *cifsi, loff_t offset,
1987 unsigned int bytes_written)
1988{
1989 loff_t end_of_write = offset + bytes_written;
1990
1991 if (end_of_write > cifsi->server_eof)
1992 cifsi->server_eof = end_of_write;
1993}
1994
1995static ssize_t
1996cifs_write(struct cifsFileInfo *open_file, __u32 pid, const char *write_data,
1997 size_t write_size, loff_t *offset)
1998{
1999 int rc = 0;
2000 unsigned int bytes_written = 0;
2001 unsigned int total_written;
2002 struct cifs_tcon *tcon;
2003 struct TCP_Server_Info *server;
2004 unsigned int xid;
2005 struct dentry *dentry = open_file->dentry;
2006 struct cifsInodeInfo *cifsi = CIFS_I(d_inode(dentry));
2007 struct cifs_io_parms io_parms = {0};
2008
2009 cifs_dbg(FYI, "write %zd bytes to offset %lld of %pd\n",
2010 write_size, *offset, dentry);
2011
2012 tcon = tlink_tcon(open_file->tlink);
2013 server = tcon->ses->server;
2014
2015 if (!server->ops->sync_write)
2016 return -ENOSYS;
2017
2018 xid = get_xid();
2019
2020 for (total_written = 0; write_size > total_written;
2021 total_written += bytes_written) {
2022 rc = -EAGAIN;
2023 while (rc == -EAGAIN) {
2024 struct kvec iov[2];
2025 unsigned int len;
2026
2027 if (open_file->invalidHandle) {
2028 /* we could deadlock if we called
2029 filemap_fdatawait from here so tell
2030 reopen_file not to flush data to
2031 server now */
2032 rc = cifs_reopen_file(open_file, false);
2033 if (rc != 0)
2034 break;
2035 }
2036
2037 len = min(server->ops->wp_retry_size(d_inode(dentry)),
2038 (unsigned int)write_size - total_written);
2039 /* iov[0] is reserved for smb header */
2040 iov[1].iov_base = (char *)write_data + total_written;
2041 iov[1].iov_len = len;
2042 io_parms.pid = pid;
2043 io_parms.tcon = tcon;
2044 io_parms.offset = *offset;
2045 io_parms.length = len;
2046 rc = server->ops->sync_write(xid, &open_file->fid,
2047 &io_parms, &bytes_written, iov, 1);
2048 }
2049 if (rc || (bytes_written == 0)) {
2050 if (total_written)
2051 break;
2052 else {
2053 free_xid(xid);
2054 return rc;
2055 }
2056 } else {
2057 spin_lock(&d_inode(dentry)->i_lock);
2058 cifs_update_eof(cifsi, *offset, bytes_written);
2059 spin_unlock(&d_inode(dentry)->i_lock);
2060 *offset += bytes_written;
2061 }
2062 }
2063
2064 cifs_stats_bytes_written(tcon, total_written);
2065
2066 if (total_written > 0) {
2067 spin_lock(&d_inode(dentry)->i_lock);
2068 if (*offset > d_inode(dentry)->i_size) {
2069 i_size_write(d_inode(dentry), *offset);
2070 d_inode(dentry)->i_blocks = (512 - 1 + *offset) >> 9;
2071 }
2072 spin_unlock(&d_inode(dentry)->i_lock);
2073 }
2074 mark_inode_dirty_sync(d_inode(dentry));
2075 free_xid(xid);
2076 return total_written;
2077}
2078
2079struct cifsFileInfo *find_readable_file(struct cifsInodeInfo *cifs_inode,
2080 bool fsuid_only)
2081{
2082 struct cifsFileInfo *open_file = NULL;
2083 struct cifs_sb_info *cifs_sb = CIFS_SB(cifs_inode->netfs.inode.i_sb);
2084
2085 /* only filter by fsuid on multiuser mounts */
2086 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MULTIUSER))
2087 fsuid_only = false;
2088
2089 spin_lock(&cifs_inode->open_file_lock);
2090 /* we could simply get the first_list_entry since write-only entries
2091 are always at the end of the list but since the first entry might
2092 have a close pending, we go through the whole list */
2093 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
2094 if (fsuid_only && !uid_eq(open_file->uid, current_fsuid()))
2095 continue;
2096 if (OPEN_FMODE(open_file->f_flags) & FMODE_READ) {
2097 if ((!open_file->invalidHandle)) {
2098 /* found a good file */
2099 /* lock it so it will not be closed on us */
2100 cifsFileInfo_get(open_file);
2101 spin_unlock(&cifs_inode->open_file_lock);
2102 return open_file;
2103 } /* else might as well continue, and look for
2104 another, or simply have the caller reopen it
2105 again rather than trying to fix this handle */
2106 } else /* write only file */
2107 break; /* write only files are last so must be done */
2108 }
2109 spin_unlock(&cifs_inode->open_file_lock);
2110 return NULL;
2111}
2112
2113/* Return -EBADF if no handle is found and general rc otherwise */
2114int
2115cifs_get_writable_file(struct cifsInodeInfo *cifs_inode, int flags,
2116 struct cifsFileInfo **ret_file)
2117{
2118 struct cifsFileInfo *open_file, *inv_file = NULL;
2119 struct cifs_sb_info *cifs_sb;
2120 bool any_available = false;
2121 int rc = -EBADF;
2122 unsigned int refind = 0;
2123 bool fsuid_only = flags & FIND_WR_FSUID_ONLY;
2124 bool with_delete = flags & FIND_WR_WITH_DELETE;
2125 *ret_file = NULL;
2126
2127 /*
2128 * Having a null inode here (because mapping->host was set to zero by
2129 * the VFS or MM) should not happen but we had reports of on oops (due
2130 * to it being zero) during stress testcases so we need to check for it
2131 */
2132
2133 if (cifs_inode == NULL) {
2134 cifs_dbg(VFS, "Null inode passed to cifs_writeable_file\n");
2135 dump_stack();
2136 return rc;
2137 }
2138
2139 cifs_sb = CIFS_SB(cifs_inode->netfs.inode.i_sb);
2140
2141 /* only filter by fsuid on multiuser mounts */
2142 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MULTIUSER))
2143 fsuid_only = false;
2144
2145 spin_lock(&cifs_inode->open_file_lock);
2146refind_writable:
2147 if (refind > MAX_REOPEN_ATT) {
2148 spin_unlock(&cifs_inode->open_file_lock);
2149 return rc;
2150 }
2151 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
2152 if (!any_available && open_file->pid != current->tgid)
2153 continue;
2154 if (fsuid_only && !uid_eq(open_file->uid, current_fsuid()))
2155 continue;
2156 if (with_delete && !(open_file->fid.access & DELETE))
2157 continue;
2158 if (OPEN_FMODE(open_file->f_flags) & FMODE_WRITE) {
2159 if (!open_file->invalidHandle) {
2160 /* found a good writable file */
2161 cifsFileInfo_get(open_file);
2162 spin_unlock(&cifs_inode->open_file_lock);
2163 *ret_file = open_file;
2164 return 0;
2165 } else {
2166 if (!inv_file)
2167 inv_file = open_file;
2168 }
2169 }
2170 }
2171 /* couldn't find useable FH with same pid, try any available */
2172 if (!any_available) {
2173 any_available = true;
2174 goto refind_writable;
2175 }
2176
2177 if (inv_file) {
2178 any_available = false;
2179 cifsFileInfo_get(inv_file);
2180 }
2181
2182 spin_unlock(&cifs_inode->open_file_lock);
2183
2184 if (inv_file) {
2185 rc = cifs_reopen_file(inv_file, false);
2186 if (!rc) {
2187 *ret_file = inv_file;
2188 return 0;
2189 }
2190
2191 spin_lock(&cifs_inode->open_file_lock);
2192 list_move_tail(&inv_file->flist, &cifs_inode->openFileList);
2193 spin_unlock(&cifs_inode->open_file_lock);
2194 cifsFileInfo_put(inv_file);
2195 ++refind;
2196 inv_file = NULL;
2197 spin_lock(&cifs_inode->open_file_lock);
2198 goto refind_writable;
2199 }
2200
2201 return rc;
2202}
2203
2204struct cifsFileInfo *
2205find_writable_file(struct cifsInodeInfo *cifs_inode, int flags)
2206{
2207 struct cifsFileInfo *cfile;
2208 int rc;
2209
2210 rc = cifs_get_writable_file(cifs_inode, flags, &cfile);
2211 if (rc)
2212 cifs_dbg(FYI, "Couldn't find writable handle rc=%d\n", rc);
2213
2214 return cfile;
2215}
2216
2217int
2218cifs_get_writable_path(struct cifs_tcon *tcon, const char *name,
2219 int flags,
2220 struct cifsFileInfo **ret_file)
2221{
2222 struct cifsFileInfo *cfile;
2223 void *page = alloc_dentry_path();
2224
2225 *ret_file = NULL;
2226
2227 spin_lock(&tcon->open_file_lock);
2228 list_for_each_entry(cfile, &tcon->openFileList, tlist) {
2229 struct cifsInodeInfo *cinode;
2230 const char *full_path = build_path_from_dentry(cfile->dentry, page);
2231 if (IS_ERR(full_path)) {
2232 spin_unlock(&tcon->open_file_lock);
2233 free_dentry_path(page);
2234 return PTR_ERR(full_path);
2235 }
2236 if (strcmp(full_path, name))
2237 continue;
2238
2239 cinode = CIFS_I(d_inode(cfile->dentry));
2240 spin_unlock(&tcon->open_file_lock);
2241 free_dentry_path(page);
2242 return cifs_get_writable_file(cinode, flags, ret_file);
2243 }
2244
2245 spin_unlock(&tcon->open_file_lock);
2246 free_dentry_path(page);
2247 return -ENOENT;
2248}
2249
2250int
2251cifs_get_readable_path(struct cifs_tcon *tcon, const char *name,
2252 struct cifsFileInfo **ret_file)
2253{
2254 struct cifsFileInfo *cfile;
2255 void *page = alloc_dentry_path();
2256
2257 *ret_file = NULL;
2258
2259 spin_lock(&tcon->open_file_lock);
2260 list_for_each_entry(cfile, &tcon->openFileList, tlist) {
2261 struct cifsInodeInfo *cinode;
2262 const char *full_path = build_path_from_dentry(cfile->dentry, page);
2263 if (IS_ERR(full_path)) {
2264 spin_unlock(&tcon->open_file_lock);
2265 free_dentry_path(page);
2266 return PTR_ERR(full_path);
2267 }
2268 if (strcmp(full_path, name))
2269 continue;
2270
2271 cinode = CIFS_I(d_inode(cfile->dentry));
2272 spin_unlock(&tcon->open_file_lock);
2273 free_dentry_path(page);
2274 *ret_file = find_readable_file(cinode, 0);
2275 return *ret_file ? 0 : -ENOENT;
2276 }
2277
2278 spin_unlock(&tcon->open_file_lock);
2279 free_dentry_path(page);
2280 return -ENOENT;
2281}
2282
2283void
2284cifs_writedata_release(struct kref *refcount)
2285{
2286 struct cifs_writedata *wdata = container_of(refcount,
2287 struct cifs_writedata, refcount);
2288#ifdef CONFIG_CIFS_SMB_DIRECT
2289 if (wdata->mr) {
2290 smbd_deregister_mr(wdata->mr);
2291 wdata->mr = NULL;
2292 }
2293#endif
2294
2295 if (wdata->cfile)
2296 cifsFileInfo_put(wdata->cfile);
2297
2298 kvfree(wdata->pages);
2299 kfree(wdata);
2300}
2301
2302/*
2303 * Write failed with a retryable error. Resend the write request. It's also
2304 * possible that the page was redirtied so re-clean the page.
2305 */
2306static void
2307cifs_writev_requeue(struct cifs_writedata *wdata)
2308{
2309 int i, rc = 0;
2310 struct inode *inode = d_inode(wdata->cfile->dentry);
2311 struct TCP_Server_Info *server;
2312 unsigned int rest_len;
2313
2314 server = tlink_tcon(wdata->cfile->tlink)->ses->server;
2315 i = 0;
2316 rest_len = wdata->bytes;
2317 do {
2318 struct cifs_writedata *wdata2;
2319 unsigned int j, nr_pages, wsize, tailsz, cur_len;
2320
2321 wsize = server->ops->wp_retry_size(inode);
2322 if (wsize < rest_len) {
2323 nr_pages = wsize / PAGE_SIZE;
2324 if (!nr_pages) {
2325 rc = -EOPNOTSUPP;
2326 break;
2327 }
2328 cur_len = nr_pages * PAGE_SIZE;
2329 tailsz = PAGE_SIZE;
2330 } else {
2331 nr_pages = DIV_ROUND_UP(rest_len, PAGE_SIZE);
2332 cur_len = rest_len;
2333 tailsz = rest_len - (nr_pages - 1) * PAGE_SIZE;
2334 }
2335
2336 wdata2 = cifs_writedata_alloc(nr_pages, cifs_writev_complete);
2337 if (!wdata2) {
2338 rc = -ENOMEM;
2339 break;
2340 }
2341
2342 for (j = 0; j < nr_pages; j++) {
2343 wdata2->pages[j] = wdata->pages[i + j];
2344 lock_page(wdata2->pages[j]);
2345 clear_page_dirty_for_io(wdata2->pages[j]);
2346 }
2347
2348 wdata2->sync_mode = wdata->sync_mode;
2349 wdata2->nr_pages = nr_pages;
2350 wdata2->offset = page_offset(wdata2->pages[0]);
2351 wdata2->pagesz = PAGE_SIZE;
2352 wdata2->tailsz = tailsz;
2353 wdata2->bytes = cur_len;
2354
2355 rc = cifs_get_writable_file(CIFS_I(inode), FIND_WR_ANY,
2356 &wdata2->cfile);
2357 if (!wdata2->cfile) {
2358 cifs_dbg(VFS, "No writable handle to retry writepages rc=%d\n",
2359 rc);
2360 if (!is_retryable_error(rc))
2361 rc = -EBADF;
2362 } else {
2363 wdata2->pid = wdata2->cfile->pid;
2364 rc = server->ops->async_writev(wdata2,
2365 cifs_writedata_release);
2366 }
2367
2368 for (j = 0; j < nr_pages; j++) {
2369 unlock_page(wdata2->pages[j]);
2370 if (rc != 0 && !is_retryable_error(rc)) {
2371 SetPageError(wdata2->pages[j]);
2372 end_page_writeback(wdata2->pages[j]);
2373 put_page(wdata2->pages[j]);
2374 }
2375 }
2376
2377 kref_put(&wdata2->refcount, cifs_writedata_release);
2378 if (rc) {
2379 if (is_retryable_error(rc))
2380 continue;
2381 i += nr_pages;
2382 break;
2383 }
2384
2385 rest_len -= cur_len;
2386 i += nr_pages;
2387 } while (i < wdata->nr_pages);
2388
2389 /* cleanup remaining pages from the original wdata */
2390 for (; i < wdata->nr_pages; i++) {
2391 SetPageError(wdata->pages[i]);
2392 end_page_writeback(wdata->pages[i]);
2393 put_page(wdata->pages[i]);
2394 }
2395
2396 if (rc != 0 && !is_retryable_error(rc))
2397 mapping_set_error(inode->i_mapping, rc);
2398 kref_put(&wdata->refcount, cifs_writedata_release);
2399}
2400
2401void
2402cifs_writev_complete(struct work_struct *work)
2403{
2404 struct cifs_writedata *wdata = container_of(work,
2405 struct cifs_writedata, work);
2406 struct inode *inode = d_inode(wdata->cfile->dentry);
2407 int i = 0;
2408
2409 if (wdata->result == 0) {
2410 spin_lock(&inode->i_lock);
2411 cifs_update_eof(CIFS_I(inode), wdata->offset, wdata->bytes);
2412 spin_unlock(&inode->i_lock);
2413 cifs_stats_bytes_written(tlink_tcon(wdata->cfile->tlink),
2414 wdata->bytes);
2415 } else if (wdata->sync_mode == WB_SYNC_ALL && wdata->result == -EAGAIN)
2416 return cifs_writev_requeue(wdata);
2417
2418 for (i = 0; i < wdata->nr_pages; i++) {
2419 struct page *page = wdata->pages[i];
2420
2421 if (wdata->result == -EAGAIN)
2422 __set_page_dirty_nobuffers(page);
2423 else if (wdata->result < 0)
2424 SetPageError(page);
2425 end_page_writeback(page);
2426 cifs_readpage_to_fscache(inode, page);
2427 put_page(page);
2428 }
2429 if (wdata->result != -EAGAIN)
2430 mapping_set_error(inode->i_mapping, wdata->result);
2431 kref_put(&wdata->refcount, cifs_writedata_release);
2432}
2433
2434struct cifs_writedata *
2435cifs_writedata_alloc(unsigned int nr_pages, work_func_t complete)
2436{
2437 struct cifs_writedata *writedata = NULL;
2438 struct page **pages =
2439 kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
2440 if (pages) {
2441 writedata = cifs_writedata_direct_alloc(pages, complete);
2442 if (!writedata)
2443 kvfree(pages);
2444 }
2445
2446 return writedata;
2447}
2448
2449struct cifs_writedata *
2450cifs_writedata_direct_alloc(struct page **pages, work_func_t complete)
2451{
2452 struct cifs_writedata *wdata;
2453
2454 wdata = kzalloc(sizeof(*wdata), GFP_NOFS);
2455 if (wdata != NULL) {
2456 wdata->pages = pages;
2457 kref_init(&wdata->refcount);
2458 INIT_LIST_HEAD(&wdata->list);
2459 init_completion(&wdata->done);
2460 INIT_WORK(&wdata->work, complete);
2461 }
2462 return wdata;
2463}
2464
2465
2466static int cifs_partialpagewrite(struct page *page, unsigned from, unsigned to)
2467{
2468 struct address_space *mapping = page->mapping;
2469 loff_t offset = (loff_t)page->index << PAGE_SHIFT;
2470 char *write_data;
2471 int rc = -EFAULT;
2472 int bytes_written = 0;
2473 struct inode *inode;
2474 struct cifsFileInfo *open_file;
2475
2476 if (!mapping || !mapping->host)
2477 return -EFAULT;
2478
2479 inode = page->mapping->host;
2480
2481 offset += (loff_t)from;
2482 write_data = kmap(page);
2483 write_data += from;
2484
2485 if ((to > PAGE_SIZE) || (from > to)) {
2486 kunmap(page);
2487 return -EIO;
2488 }
2489
2490 /* racing with truncate? */
2491 if (offset > mapping->host->i_size) {
2492 kunmap(page);
2493 return 0; /* don't care */
2494 }
2495
2496 /* check to make sure that we are not extending the file */
2497 if (mapping->host->i_size - offset < (loff_t)to)
2498 to = (unsigned)(mapping->host->i_size - offset);
2499
2500 rc = cifs_get_writable_file(CIFS_I(mapping->host), FIND_WR_ANY,
2501 &open_file);
2502 if (!rc) {
2503 bytes_written = cifs_write(open_file, open_file->pid,
2504 write_data, to - from, &offset);
2505 cifsFileInfo_put(open_file);
2506 /* Does mm or vfs already set times? */
2507 inode->i_atime = inode->i_mtime = current_time(inode);
2508 if ((bytes_written > 0) && (offset))
2509 rc = 0;
2510 else if (bytes_written < 0)
2511 rc = bytes_written;
2512 else
2513 rc = -EFAULT;
2514 } else {
2515 cifs_dbg(FYI, "No writable handle for write page rc=%d\n", rc);
2516 if (!is_retryable_error(rc))
2517 rc = -EIO;
2518 }
2519
2520 kunmap(page);
2521 return rc;
2522}
2523
2524static struct cifs_writedata *
2525wdata_alloc_and_fillpages(pgoff_t tofind, struct address_space *mapping,
2526 pgoff_t end, pgoff_t *index,
2527 unsigned int *found_pages)
2528{
2529 struct cifs_writedata *wdata;
2530
2531 wdata = cifs_writedata_alloc((unsigned int)tofind,
2532 cifs_writev_complete);
2533 if (!wdata)
2534 return NULL;
2535
2536 *found_pages = find_get_pages_range_tag(mapping, index, end,
2537 PAGECACHE_TAG_DIRTY, tofind, wdata->pages);
2538 return wdata;
2539}
2540
2541static unsigned int
2542wdata_prepare_pages(struct cifs_writedata *wdata, unsigned int found_pages,
2543 struct address_space *mapping,
2544 struct writeback_control *wbc,
2545 pgoff_t end, pgoff_t *index, pgoff_t *next, bool *done)
2546{
2547 unsigned int nr_pages = 0, i;
2548 struct page *page;
2549
2550 for (i = 0; i < found_pages; i++) {
2551 page = wdata->pages[i];
2552 /*
2553 * At this point we hold neither the i_pages lock nor the
2554 * page lock: the page may be truncated or invalidated
2555 * (changing page->mapping to NULL), or even swizzled
2556 * back from swapper_space to tmpfs file mapping
2557 */
2558
2559 if (nr_pages == 0)
2560 lock_page(page);
2561 else if (!trylock_page(page))
2562 break;
2563
2564 if (unlikely(page->mapping != mapping)) {
2565 unlock_page(page);
2566 break;
2567 }
2568
2569 if (!wbc->range_cyclic && page->index > end) {
2570 *done = true;
2571 unlock_page(page);
2572 break;
2573 }
2574
2575 if (*next && (page->index != *next)) {
2576 /* Not next consecutive page */
2577 unlock_page(page);
2578 break;
2579 }
2580
2581 if (wbc->sync_mode != WB_SYNC_NONE)
2582 wait_on_page_writeback(page);
2583
2584 if (PageWriteback(page) ||
2585 !clear_page_dirty_for_io(page)) {
2586 unlock_page(page);
2587 break;
2588 }
2589
2590 /*
2591 * This actually clears the dirty bit in the radix tree.
2592 * See cifs_writepage() for more commentary.
2593 */
2594 set_page_writeback(page);
2595 if (page_offset(page) >= i_size_read(mapping->host)) {
2596 *done = true;
2597 unlock_page(page);
2598 end_page_writeback(page);
2599 break;
2600 }
2601
2602 wdata->pages[i] = page;
2603 *next = page->index + 1;
2604 ++nr_pages;
2605 }
2606
2607 /* reset index to refind any pages skipped */
2608 if (nr_pages == 0)
2609 *index = wdata->pages[0]->index + 1;
2610
2611 /* put any pages we aren't going to use */
2612 for (i = nr_pages; i < found_pages; i++) {
2613 put_page(wdata->pages[i]);
2614 wdata->pages[i] = NULL;
2615 }
2616
2617 return nr_pages;
2618}
2619
2620static int
2621wdata_send_pages(struct cifs_writedata *wdata, unsigned int nr_pages,
2622 struct address_space *mapping, struct writeback_control *wbc)
2623{
2624 int rc;
2625
2626 wdata->sync_mode = wbc->sync_mode;
2627 wdata->nr_pages = nr_pages;
2628 wdata->offset = page_offset(wdata->pages[0]);
2629 wdata->pagesz = PAGE_SIZE;
2630 wdata->tailsz = min(i_size_read(mapping->host) -
2631 page_offset(wdata->pages[nr_pages - 1]),
2632 (loff_t)PAGE_SIZE);
2633 wdata->bytes = ((nr_pages - 1) * PAGE_SIZE) + wdata->tailsz;
2634 wdata->pid = wdata->cfile->pid;
2635
2636 rc = adjust_credits(wdata->server, &wdata->credits, wdata->bytes);
2637 if (rc)
2638 return rc;
2639
2640 if (wdata->cfile->invalidHandle)
2641 rc = -EAGAIN;
2642 else
2643 rc = wdata->server->ops->async_writev(wdata,
2644 cifs_writedata_release);
2645
2646 return rc;
2647}
2648
2649static int
2650cifs_writepage_locked(struct page *page, struct writeback_control *wbc);
2651
2652static int cifs_write_one_page(struct page *page, struct writeback_control *wbc,
2653 void *data)
2654{
2655 struct address_space *mapping = data;
2656 int ret;
2657
2658 ret = cifs_writepage_locked(page, wbc);
2659 unlock_page(page);
2660 mapping_set_error(mapping, ret);
2661 return ret;
2662}
2663
2664static int cifs_writepages(struct address_space *mapping,
2665 struct writeback_control *wbc)
2666{
2667 struct inode *inode = mapping->host;
2668 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
2669 struct TCP_Server_Info *server;
2670 bool done = false, scanned = false, range_whole = false;
2671 pgoff_t end, index;
2672 struct cifs_writedata *wdata;
2673 struct cifsFileInfo *cfile = NULL;
2674 int rc = 0;
2675 int saved_rc = 0;
2676 unsigned int xid;
2677
2678 /*
2679 * If wsize is smaller than the page cache size, default to writing
2680 * one page at a time.
2681 */
2682 if (cifs_sb->ctx->wsize < PAGE_SIZE)
2683 return write_cache_pages(mapping, wbc, cifs_write_one_page,
2684 mapping);
2685
2686 xid = get_xid();
2687 if (wbc->range_cyclic) {
2688 index = mapping->writeback_index; /* Start from prev offset */
2689 end = -1;
2690 } else {
2691 index = wbc->range_start >> PAGE_SHIFT;
2692 end = wbc->range_end >> PAGE_SHIFT;
2693 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2694 range_whole = true;
2695 scanned = true;
2696 }
2697 server = cifs_pick_channel(cifs_sb_master_tcon(cifs_sb)->ses);
2698
2699retry:
2700 while (!done && index <= end) {
2701 unsigned int i, nr_pages, found_pages, wsize;
2702 pgoff_t next = 0, tofind, saved_index = index;
2703 struct cifs_credits credits_on_stack;
2704 struct cifs_credits *credits = &credits_on_stack;
2705 int get_file_rc = 0;
2706
2707 if (cfile)
2708 cifsFileInfo_put(cfile);
2709
2710 rc = cifs_get_writable_file(CIFS_I(inode), FIND_WR_ANY, &cfile);
2711
2712 /* in case of an error store it to return later */
2713 if (rc)
2714 get_file_rc = rc;
2715
2716 rc = server->ops->wait_mtu_credits(server, cifs_sb->ctx->wsize,
2717 &wsize, credits);
2718 if (rc != 0) {
2719 done = true;
2720 break;
2721 }
2722
2723 tofind = min((wsize / PAGE_SIZE) - 1, end - index) + 1;
2724
2725 wdata = wdata_alloc_and_fillpages(tofind, mapping, end, &index,
2726 &found_pages);
2727 if (!wdata) {
2728 rc = -ENOMEM;
2729 done = true;
2730 add_credits_and_wake_if(server, credits, 0);
2731 break;
2732 }
2733
2734 if (found_pages == 0) {
2735 kref_put(&wdata->refcount, cifs_writedata_release);
2736 add_credits_and_wake_if(server, credits, 0);
2737 break;
2738 }
2739
2740 nr_pages = wdata_prepare_pages(wdata, found_pages, mapping, wbc,
2741 end, &index, &next, &done);
2742
2743 /* nothing to write? */
2744 if (nr_pages == 0) {
2745 kref_put(&wdata->refcount, cifs_writedata_release);
2746 add_credits_and_wake_if(server, credits, 0);
2747 continue;
2748 }
2749
2750 wdata->credits = credits_on_stack;
2751 wdata->cfile = cfile;
2752 wdata->server = server;
2753 cfile = NULL;
2754
2755 if (!wdata->cfile) {
2756 cifs_dbg(VFS, "No writable handle in writepages rc=%d\n",
2757 get_file_rc);
2758 if (is_retryable_error(get_file_rc))
2759 rc = get_file_rc;
2760 else
2761 rc = -EBADF;
2762 } else
2763 rc = wdata_send_pages(wdata, nr_pages, mapping, wbc);
2764
2765 for (i = 0; i < nr_pages; ++i)
2766 unlock_page(wdata->pages[i]);
2767
2768 /* send failure -- clean up the mess */
2769 if (rc != 0) {
2770 add_credits_and_wake_if(server, &wdata->credits, 0);
2771 for (i = 0; i < nr_pages; ++i) {
2772 if (is_retryable_error(rc))
2773 redirty_page_for_writepage(wbc,
2774 wdata->pages[i]);
2775 else
2776 SetPageError(wdata->pages[i]);
2777 end_page_writeback(wdata->pages[i]);
2778 put_page(wdata->pages[i]);
2779 }
2780 if (!is_retryable_error(rc))
2781 mapping_set_error(mapping, rc);
2782 }
2783 kref_put(&wdata->refcount, cifs_writedata_release);
2784
2785 if (wbc->sync_mode == WB_SYNC_ALL && rc == -EAGAIN) {
2786 index = saved_index;
2787 continue;
2788 }
2789
2790 /* Return immediately if we received a signal during writing */
2791 if (is_interrupt_error(rc)) {
2792 done = true;
2793 break;
2794 }
2795
2796 if (rc != 0 && saved_rc == 0)
2797 saved_rc = rc;
2798
2799 wbc->nr_to_write -= nr_pages;
2800 if (wbc->nr_to_write <= 0)
2801 done = true;
2802
2803 index = next;
2804 }
2805
2806 if (!scanned && !done) {
2807 /*
2808 * We hit the last page and there is more work to be done: wrap
2809 * back to the start of the file
2810 */
2811 scanned = true;
2812 index = 0;
2813 goto retry;
2814 }
2815
2816 if (saved_rc != 0)
2817 rc = saved_rc;
2818
2819 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2820 mapping->writeback_index = index;
2821
2822 if (cfile)
2823 cifsFileInfo_put(cfile);
2824 free_xid(xid);
2825 /* Indication to update ctime and mtime as close is deferred */
2826 set_bit(CIFS_INO_MODIFIED_ATTR, &CIFS_I(inode)->flags);
2827 return rc;
2828}
2829
2830static int
2831cifs_writepage_locked(struct page *page, struct writeback_control *wbc)
2832{
2833 int rc;
2834 unsigned int xid;
2835
2836 xid = get_xid();
2837/* BB add check for wbc flags */
2838 get_page(page);
2839 if (!PageUptodate(page))
2840 cifs_dbg(FYI, "ppw - page not up to date\n");
2841
2842 /*
2843 * Set the "writeback" flag, and clear "dirty" in the radix tree.
2844 *
2845 * A writepage() implementation always needs to do either this,
2846 * or re-dirty the page with "redirty_page_for_writepage()" in
2847 * the case of a failure.
2848 *
2849 * Just unlocking the page will cause the radix tree tag-bits
2850 * to fail to update with the state of the page correctly.
2851 */
2852 set_page_writeback(page);
2853retry_write:
2854 rc = cifs_partialpagewrite(page, 0, PAGE_SIZE);
2855 if (is_retryable_error(rc)) {
2856 if (wbc->sync_mode == WB_SYNC_ALL && rc == -EAGAIN)
2857 goto retry_write;
2858 redirty_page_for_writepage(wbc, page);
2859 } else if (rc != 0) {
2860 SetPageError(page);
2861 mapping_set_error(page->mapping, rc);
2862 } else {
2863 SetPageUptodate(page);
2864 }
2865 end_page_writeback(page);
2866 put_page(page);
2867 free_xid(xid);
2868 return rc;
2869}
2870
2871static int cifs_write_end(struct file *file, struct address_space *mapping,
2872 loff_t pos, unsigned len, unsigned copied,
2873 struct page *page, void *fsdata)
2874{
2875 int rc;
2876 struct inode *inode = mapping->host;
2877 struct cifsFileInfo *cfile = file->private_data;
2878 struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb);
2879 __u32 pid;
2880
2881 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2882 pid = cfile->pid;
2883 else
2884 pid = current->tgid;
2885
2886 cifs_dbg(FYI, "write_end for page %p from pos %lld with %d bytes\n",
2887 page, pos, copied);
2888
2889 if (PageChecked(page)) {
2890 if (copied == len)
2891 SetPageUptodate(page);
2892 ClearPageChecked(page);
2893 } else if (!PageUptodate(page) && copied == PAGE_SIZE)
2894 SetPageUptodate(page);
2895
2896 if (!PageUptodate(page)) {
2897 char *page_data;
2898 unsigned offset = pos & (PAGE_SIZE - 1);
2899 unsigned int xid;
2900
2901 xid = get_xid();
2902 /* this is probably better than directly calling
2903 partialpage_write since in this function the file handle is
2904 known which we might as well leverage */
2905 /* BB check if anything else missing out of ppw
2906 such as updating last write time */
2907 page_data = kmap(page);
2908 rc = cifs_write(cfile, pid, page_data + offset, copied, &pos);
2909 /* if (rc < 0) should we set writebehind rc? */
2910 kunmap(page);
2911
2912 free_xid(xid);
2913 } else {
2914 rc = copied;
2915 pos += copied;
2916 set_page_dirty(page);
2917 }
2918
2919 if (rc > 0) {
2920 spin_lock(&inode->i_lock);
2921 if (pos > inode->i_size) {
2922 i_size_write(inode, pos);
2923 inode->i_blocks = (512 - 1 + pos) >> 9;
2924 }
2925 spin_unlock(&inode->i_lock);
2926 }
2927
2928 unlock_page(page);
2929 put_page(page);
2930 /* Indication to update ctime and mtime as close is deferred */
2931 set_bit(CIFS_INO_MODIFIED_ATTR, &CIFS_I(inode)->flags);
2932
2933 return rc;
2934}
2935
2936int cifs_strict_fsync(struct file *file, loff_t start, loff_t end,
2937 int datasync)
2938{
2939 unsigned int xid;
2940 int rc = 0;
2941 struct cifs_tcon *tcon;
2942 struct TCP_Server_Info *server;
2943 struct cifsFileInfo *smbfile = file->private_data;
2944 struct inode *inode = file_inode(file);
2945 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
2946
2947 rc = file_write_and_wait_range(file, start, end);
2948 if (rc) {
2949 trace_cifs_fsync_err(inode->i_ino, rc);
2950 return rc;
2951 }
2952
2953 xid = get_xid();
2954
2955 cifs_dbg(FYI, "Sync file - name: %pD datasync: 0x%x\n",
2956 file, datasync);
2957
2958 if (!CIFS_CACHE_READ(CIFS_I(inode))) {
2959 rc = cifs_zap_mapping(inode);
2960 if (rc) {
2961 cifs_dbg(FYI, "rc: %d during invalidate phase\n", rc);
2962 rc = 0; /* don't care about it in fsync */
2963 }
2964 }
2965
2966 tcon = tlink_tcon(smbfile->tlink);
2967 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOSSYNC)) {
2968 server = tcon->ses->server;
2969 if (server->ops->flush == NULL) {
2970 rc = -ENOSYS;
2971 goto strict_fsync_exit;
2972 }
2973
2974 if ((OPEN_FMODE(smbfile->f_flags) & FMODE_WRITE) == 0) {
2975 smbfile = find_writable_file(CIFS_I(inode), FIND_WR_ANY);
2976 if (smbfile) {
2977 rc = server->ops->flush(xid, tcon, &smbfile->fid);
2978 cifsFileInfo_put(smbfile);
2979 } else
2980 cifs_dbg(FYI, "ignore fsync for file not open for write\n");
2981 } else
2982 rc = server->ops->flush(xid, tcon, &smbfile->fid);
2983 }
2984
2985strict_fsync_exit:
2986 free_xid(xid);
2987 return rc;
2988}
2989
2990int cifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
2991{
2992 unsigned int xid;
2993 int rc = 0;
2994 struct cifs_tcon *tcon;
2995 struct TCP_Server_Info *server;
2996 struct cifsFileInfo *smbfile = file->private_data;
2997 struct inode *inode = file_inode(file);
2998 struct cifs_sb_info *cifs_sb = CIFS_FILE_SB(file);
2999
3000 rc = file_write_and_wait_range(file, start, end);
3001 if (rc) {
3002 trace_cifs_fsync_err(file_inode(file)->i_ino, rc);
3003 return rc;
3004 }
3005
3006 xid = get_xid();
3007
3008 cifs_dbg(FYI, "Sync file - name: %pD datasync: 0x%x\n",
3009 file, datasync);
3010
3011 tcon = tlink_tcon(smbfile->tlink);
3012 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOSSYNC)) {
3013 server = tcon->ses->server;
3014 if (server->ops->flush == NULL) {
3015 rc = -ENOSYS;
3016 goto fsync_exit;
3017 }
3018
3019 if ((OPEN_FMODE(smbfile->f_flags) & FMODE_WRITE) == 0) {
3020 smbfile = find_writable_file(CIFS_I(inode), FIND_WR_ANY);
3021 if (smbfile) {
3022 rc = server->ops->flush(xid, tcon, &smbfile->fid);
3023 cifsFileInfo_put(smbfile);
3024 } else
3025 cifs_dbg(FYI, "ignore fsync for file not open for write\n");
3026 } else
3027 rc = server->ops->flush(xid, tcon, &smbfile->fid);
3028 }
3029
3030fsync_exit:
3031 free_xid(xid);
3032 return rc;
3033}
3034
3035/*
3036 * As file closes, flush all cached write data for this inode checking
3037 * for write behind errors.
3038 */
3039int cifs_flush(struct file *file, fl_owner_t id)
3040{
3041 struct inode *inode = file_inode(file);
3042 int rc = 0;
3043
3044 if (file->f_mode & FMODE_WRITE)
3045 rc = filemap_write_and_wait(inode->i_mapping);
3046
3047 cifs_dbg(FYI, "Flush inode %p file %p rc %d\n", inode, file, rc);
3048 if (rc) {
3049 /* get more nuanced writeback errors */
3050 rc = filemap_check_wb_err(file->f_mapping, 0);
3051 trace_cifs_flush_err(inode->i_ino, rc);
3052 }
3053 return rc;
3054}
3055
3056static int
3057cifs_write_allocate_pages(struct page **pages, unsigned long num_pages)
3058{
3059 int rc = 0;
3060 unsigned long i;
3061
3062 for (i = 0; i < num_pages; i++) {
3063 pages[i] = alloc_page(GFP_KERNEL|__GFP_HIGHMEM);
3064 if (!pages[i]) {
3065 /*
3066 * save number of pages we have already allocated and
3067 * return with ENOMEM error
3068 */
3069 num_pages = i;
3070 rc = -ENOMEM;
3071 break;
3072 }
3073 }
3074
3075 if (rc) {
3076 for (i = 0; i < num_pages; i++)
3077 put_page(pages[i]);
3078 }
3079 return rc;
3080}
3081
3082static inline
3083size_t get_numpages(const size_t wsize, const size_t len, size_t *cur_len)
3084{
3085 size_t num_pages;
3086 size_t clen;
3087
3088 clen = min_t(const size_t, len, wsize);
3089 num_pages = DIV_ROUND_UP(clen, PAGE_SIZE);
3090
3091 if (cur_len)
3092 *cur_len = clen;
3093
3094 return num_pages;
3095}
3096
3097static void
3098cifs_uncached_writedata_release(struct kref *refcount)
3099{
3100 int i;
3101 struct cifs_writedata *wdata = container_of(refcount,
3102 struct cifs_writedata, refcount);
3103
3104 kref_put(&wdata->ctx->refcount, cifs_aio_ctx_release);
3105 for (i = 0; i < wdata->nr_pages; i++)
3106 put_page(wdata->pages[i]);
3107 cifs_writedata_release(refcount);
3108}
3109
3110static void collect_uncached_write_data(struct cifs_aio_ctx *ctx);
3111
3112static void
3113cifs_uncached_writev_complete(struct work_struct *work)
3114{
3115 struct cifs_writedata *wdata = container_of(work,
3116 struct cifs_writedata, work);
3117 struct inode *inode = d_inode(wdata->cfile->dentry);
3118 struct cifsInodeInfo *cifsi = CIFS_I(inode);
3119
3120 spin_lock(&inode->i_lock);
3121 cifs_update_eof(cifsi, wdata->offset, wdata->bytes);
3122 if (cifsi->server_eof > inode->i_size)
3123 i_size_write(inode, cifsi->server_eof);
3124 spin_unlock(&inode->i_lock);
3125
3126 complete(&wdata->done);
3127 collect_uncached_write_data(wdata->ctx);
3128 /* the below call can possibly free the last ref to aio ctx */
3129 kref_put(&wdata->refcount, cifs_uncached_writedata_release);
3130}
3131
3132static int
3133wdata_fill_from_iovec(struct cifs_writedata *wdata, struct iov_iter *from,
3134 size_t *len, unsigned long *num_pages)
3135{
3136 size_t save_len, copied, bytes, cur_len = *len;
3137 unsigned long i, nr_pages = *num_pages;
3138
3139 save_len = cur_len;
3140 for (i = 0; i < nr_pages; i++) {
3141 bytes = min_t(const size_t, cur_len, PAGE_SIZE);
3142 copied = copy_page_from_iter(wdata->pages[i], 0, bytes, from);
3143 cur_len -= copied;
3144 /*
3145 * If we didn't copy as much as we expected, then that
3146 * may mean we trod into an unmapped area. Stop copying
3147 * at that point. On the next pass through the big
3148 * loop, we'll likely end up getting a zero-length
3149 * write and bailing out of it.
3150 */
3151 if (copied < bytes)
3152 break;
3153 }
3154 cur_len = save_len - cur_len;
3155 *len = cur_len;
3156
3157 /*
3158 * If we have no data to send, then that probably means that
3159 * the copy above failed altogether. That's most likely because
3160 * the address in the iovec was bogus. Return -EFAULT and let
3161 * the caller free anything we allocated and bail out.
3162 */
3163 if (!cur_len)
3164 return -EFAULT;
3165
3166 /*
3167 * i + 1 now represents the number of pages we actually used in
3168 * the copy phase above.
3169 */
3170 *num_pages = i + 1;
3171 return 0;
3172}
3173
3174static int
3175cifs_resend_wdata(struct cifs_writedata *wdata, struct list_head *wdata_list,
3176 struct cifs_aio_ctx *ctx)
3177{
3178 unsigned int wsize;
3179 struct cifs_credits credits;
3180 int rc;
3181 struct TCP_Server_Info *server = wdata->server;
3182
3183 do {
3184 if (wdata->cfile->invalidHandle) {
3185 rc = cifs_reopen_file(wdata->cfile, false);
3186 if (rc == -EAGAIN)
3187 continue;
3188 else if (rc)
3189 break;
3190 }
3191
3192
3193 /*
3194 * Wait for credits to resend this wdata.
3195 * Note: we are attempting to resend the whole wdata not in
3196 * segments
3197 */
3198 do {
3199 rc = server->ops->wait_mtu_credits(server, wdata->bytes,
3200 &wsize, &credits);
3201 if (rc)
3202 goto fail;
3203
3204 if (wsize < wdata->bytes) {
3205 add_credits_and_wake_if(server, &credits, 0);
3206 msleep(1000);
3207 }
3208 } while (wsize < wdata->bytes);
3209 wdata->credits = credits;
3210
3211 rc = adjust_credits(server, &wdata->credits, wdata->bytes);
3212
3213 if (!rc) {
3214 if (wdata->cfile->invalidHandle)
3215 rc = -EAGAIN;
3216 else {
3217#ifdef CONFIG_CIFS_SMB_DIRECT
3218 if (wdata->mr) {
3219 wdata->mr->need_invalidate = true;
3220 smbd_deregister_mr(wdata->mr);
3221 wdata->mr = NULL;
3222 }
3223#endif
3224 rc = server->ops->async_writev(wdata,
3225 cifs_uncached_writedata_release);
3226 }
3227 }
3228
3229 /* If the write was successfully sent, we are done */
3230 if (!rc) {
3231 list_add_tail(&wdata->list, wdata_list);
3232 return 0;
3233 }
3234
3235 /* Roll back credits and retry if needed */
3236 add_credits_and_wake_if(server, &wdata->credits, 0);
3237 } while (rc == -EAGAIN);
3238
3239fail:
3240 kref_put(&wdata->refcount, cifs_uncached_writedata_release);
3241 return rc;
3242}
3243
3244static int
3245cifs_write_from_iter(loff_t offset, size_t len, struct iov_iter *from,
3246 struct cifsFileInfo *open_file,
3247 struct cifs_sb_info *cifs_sb, struct list_head *wdata_list,
3248 struct cifs_aio_ctx *ctx)
3249{
3250 int rc = 0;
3251 size_t cur_len;
3252 unsigned long nr_pages, num_pages, i;
3253 struct cifs_writedata *wdata;
3254 struct iov_iter saved_from = *from;
3255 loff_t saved_offset = offset;
3256 pid_t pid;
3257 struct TCP_Server_Info *server;
3258 struct page **pagevec;
3259 size_t start;
3260 unsigned int xid;
3261
3262 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
3263 pid = open_file->pid;
3264 else
3265 pid = current->tgid;
3266
3267 server = cifs_pick_channel(tlink_tcon(open_file->tlink)->ses);
3268 xid = get_xid();
3269
3270 do {
3271 unsigned int wsize;
3272 struct cifs_credits credits_on_stack;
3273 struct cifs_credits *credits = &credits_on_stack;
3274
3275 if (open_file->invalidHandle) {
3276 rc = cifs_reopen_file(open_file, false);
3277 if (rc == -EAGAIN)
3278 continue;
3279 else if (rc)
3280 break;
3281 }
3282
3283 rc = server->ops->wait_mtu_credits(server, cifs_sb->ctx->wsize,
3284 &wsize, credits);
3285 if (rc)
3286 break;
3287
3288 cur_len = min_t(const size_t, len, wsize);
3289
3290 if (ctx->direct_io) {
3291 ssize_t result;
3292
3293 result = iov_iter_get_pages_alloc2(
3294 from, &pagevec, cur_len, &start);
3295 if (result < 0) {
3296 cifs_dbg(VFS,
3297 "direct_writev couldn't get user pages (rc=%zd) iter type %d iov_offset %zd count %zd\n",
3298 result, iov_iter_type(from),
3299 from->iov_offset, from->count);
3300 dump_stack();
3301
3302 rc = result;
3303 add_credits_and_wake_if(server, credits, 0);
3304 break;
3305 }
3306 cur_len = (size_t)result;
3307
3308 nr_pages =
3309 (cur_len + start + PAGE_SIZE - 1) / PAGE_SIZE;
3310
3311 wdata = cifs_writedata_direct_alloc(pagevec,
3312 cifs_uncached_writev_complete);
3313 if (!wdata) {
3314 rc = -ENOMEM;
3315 for (i = 0; i < nr_pages; i++)
3316 put_page(pagevec[i]);
3317 kvfree(pagevec);
3318 add_credits_and_wake_if(server, credits, 0);
3319 break;
3320 }
3321
3322
3323 wdata->page_offset = start;
3324 wdata->tailsz =
3325 nr_pages > 1 ?
3326 cur_len - (PAGE_SIZE - start) -
3327 (nr_pages - 2) * PAGE_SIZE :
3328 cur_len;
3329 } else {
3330 nr_pages = get_numpages(wsize, len, &cur_len);
3331 wdata = cifs_writedata_alloc(nr_pages,
3332 cifs_uncached_writev_complete);
3333 if (!wdata) {
3334 rc = -ENOMEM;
3335 add_credits_and_wake_if(server, credits, 0);
3336 break;
3337 }
3338
3339 rc = cifs_write_allocate_pages(wdata->pages, nr_pages);
3340 if (rc) {
3341 kvfree(wdata->pages);
3342 kfree(wdata);
3343 add_credits_and_wake_if(server, credits, 0);
3344 break;
3345 }
3346
3347 num_pages = nr_pages;
3348 rc = wdata_fill_from_iovec(
3349 wdata, from, &cur_len, &num_pages);
3350 if (rc) {
3351 for (i = 0; i < nr_pages; i++)
3352 put_page(wdata->pages[i]);
3353 kvfree(wdata->pages);
3354 kfree(wdata);
3355 add_credits_and_wake_if(server, credits, 0);
3356 break;
3357 }
3358
3359 /*
3360 * Bring nr_pages down to the number of pages we
3361 * actually used, and free any pages that we didn't use.
3362 */
3363 for ( ; nr_pages > num_pages; nr_pages--)
3364 put_page(wdata->pages[nr_pages - 1]);
3365
3366 wdata->tailsz = cur_len - ((nr_pages - 1) * PAGE_SIZE);
3367 }
3368
3369 wdata->sync_mode = WB_SYNC_ALL;
3370 wdata->nr_pages = nr_pages;
3371 wdata->offset = (__u64)offset;
3372 wdata->cfile = cifsFileInfo_get(open_file);
3373 wdata->server = server;
3374 wdata->pid = pid;
3375 wdata->bytes = cur_len;
3376 wdata->pagesz = PAGE_SIZE;
3377 wdata->credits = credits_on_stack;
3378 wdata->ctx = ctx;
3379 kref_get(&ctx->refcount);
3380
3381 rc = adjust_credits(server, &wdata->credits, wdata->bytes);
3382
3383 if (!rc) {
3384 if (wdata->cfile->invalidHandle)
3385 rc = -EAGAIN;
3386 else
3387 rc = server->ops->async_writev(wdata,
3388 cifs_uncached_writedata_release);
3389 }
3390
3391 if (rc) {
3392 add_credits_and_wake_if(server, &wdata->credits, 0);
3393 kref_put(&wdata->refcount,
3394 cifs_uncached_writedata_release);
3395 if (rc == -EAGAIN) {
3396 *from = saved_from;
3397 iov_iter_advance(from, offset - saved_offset);
3398 continue;
3399 }
3400 break;
3401 }
3402
3403 list_add_tail(&wdata->list, wdata_list);
3404 offset += cur_len;
3405 len -= cur_len;
3406 } while (len > 0);
3407
3408 free_xid(xid);
3409 return rc;
3410}
3411
3412static void collect_uncached_write_data(struct cifs_aio_ctx *ctx)
3413{
3414 struct cifs_writedata *wdata, *tmp;
3415 struct cifs_tcon *tcon;
3416 struct cifs_sb_info *cifs_sb;
3417 struct dentry *dentry = ctx->cfile->dentry;
3418 ssize_t rc;
3419
3420 tcon = tlink_tcon(ctx->cfile->tlink);
3421 cifs_sb = CIFS_SB(dentry->d_sb);
3422
3423 mutex_lock(&ctx->aio_mutex);
3424
3425 if (list_empty(&ctx->list)) {
3426 mutex_unlock(&ctx->aio_mutex);
3427 return;
3428 }
3429
3430 rc = ctx->rc;
3431 /*
3432 * Wait for and collect replies for any successful sends in order of
3433 * increasing offset. Once an error is hit, then return without waiting
3434 * for any more replies.
3435 */
3436restart_loop:
3437 list_for_each_entry_safe(wdata, tmp, &ctx->list, list) {
3438 if (!rc) {
3439 if (!try_wait_for_completion(&wdata->done)) {
3440 mutex_unlock(&ctx->aio_mutex);
3441 return;
3442 }
3443
3444 if (wdata->result)
3445 rc = wdata->result;
3446 else
3447 ctx->total_len += wdata->bytes;
3448
3449 /* resend call if it's a retryable error */
3450 if (rc == -EAGAIN) {
3451 struct list_head tmp_list;
3452 struct iov_iter tmp_from = ctx->iter;
3453
3454 INIT_LIST_HEAD(&tmp_list);
3455 list_del_init(&wdata->list);
3456
3457 if (ctx->direct_io)
3458 rc = cifs_resend_wdata(
3459 wdata, &tmp_list, ctx);
3460 else {
3461 iov_iter_advance(&tmp_from,
3462 wdata->offset - ctx->pos);
3463
3464 rc = cifs_write_from_iter(wdata->offset,
3465 wdata->bytes, &tmp_from,
3466 ctx->cfile, cifs_sb, &tmp_list,
3467 ctx);
3468
3469 kref_put(&wdata->refcount,
3470 cifs_uncached_writedata_release);
3471 }
3472
3473 list_splice(&tmp_list, &ctx->list);
3474 goto restart_loop;
3475 }
3476 }
3477 list_del_init(&wdata->list);
3478 kref_put(&wdata->refcount, cifs_uncached_writedata_release);
3479 }
3480
3481 cifs_stats_bytes_written(tcon, ctx->total_len);
3482 set_bit(CIFS_INO_INVALID_MAPPING, &CIFS_I(dentry->d_inode)->flags);
3483
3484 ctx->rc = (rc == 0) ? ctx->total_len : rc;
3485
3486 mutex_unlock(&ctx->aio_mutex);
3487
3488 if (ctx->iocb && ctx->iocb->ki_complete)
3489 ctx->iocb->ki_complete(ctx->iocb, ctx->rc);
3490 else
3491 complete(&ctx->done);
3492}
3493
3494static ssize_t __cifs_writev(
3495 struct kiocb *iocb, struct iov_iter *from, bool direct)
3496{
3497 struct file *file = iocb->ki_filp;
3498 ssize_t total_written = 0;
3499 struct cifsFileInfo *cfile;
3500 struct cifs_tcon *tcon;
3501 struct cifs_sb_info *cifs_sb;
3502 struct cifs_aio_ctx *ctx;
3503 struct iov_iter saved_from = *from;
3504 size_t len = iov_iter_count(from);
3505 int rc;
3506
3507 /*
3508 * iov_iter_get_pages_alloc doesn't work with ITER_KVEC.
3509 * In this case, fall back to non-direct write function.
3510 * this could be improved by getting pages directly in ITER_KVEC
3511 */
3512 if (direct && iov_iter_is_kvec(from)) {
3513 cifs_dbg(FYI, "use non-direct cifs_writev for kvec I/O\n");
3514 direct = false;
3515 }
3516
3517 rc = generic_write_checks(iocb, from);
3518 if (rc <= 0)
3519 return rc;
3520
3521 cifs_sb = CIFS_FILE_SB(file);
3522 cfile = file->private_data;
3523 tcon = tlink_tcon(cfile->tlink);
3524
3525 if (!tcon->ses->server->ops->async_writev)
3526 return -ENOSYS;
3527
3528 ctx = cifs_aio_ctx_alloc();
3529 if (!ctx)
3530 return -ENOMEM;
3531
3532 ctx->cfile = cifsFileInfo_get(cfile);
3533
3534 if (!is_sync_kiocb(iocb))
3535 ctx->iocb = iocb;
3536
3537 ctx->pos = iocb->ki_pos;
3538
3539 if (direct) {
3540 ctx->direct_io = true;
3541 ctx->iter = *from;
3542 ctx->len = len;
3543 } else {
3544 rc = setup_aio_ctx_iter(ctx, from, ITER_SOURCE);
3545 if (rc) {
3546 kref_put(&ctx->refcount, cifs_aio_ctx_release);
3547 return rc;
3548 }
3549 }
3550
3551 /* grab a lock here due to read response handlers can access ctx */
3552 mutex_lock(&ctx->aio_mutex);
3553
3554 rc = cifs_write_from_iter(iocb->ki_pos, ctx->len, &saved_from,
3555 cfile, cifs_sb, &ctx->list, ctx);
3556
3557 /*
3558 * If at least one write was successfully sent, then discard any rc
3559 * value from the later writes. If the other write succeeds, then
3560 * we'll end up returning whatever was written. If it fails, then
3561 * we'll get a new rc value from that.
3562 */
3563 if (!list_empty(&ctx->list))
3564 rc = 0;
3565
3566 mutex_unlock(&ctx->aio_mutex);
3567
3568 if (rc) {
3569 kref_put(&ctx->refcount, cifs_aio_ctx_release);
3570 return rc;
3571 }
3572
3573 if (!is_sync_kiocb(iocb)) {
3574 kref_put(&ctx->refcount, cifs_aio_ctx_release);
3575 return -EIOCBQUEUED;
3576 }
3577
3578 rc = wait_for_completion_killable(&ctx->done);
3579 if (rc) {
3580 mutex_lock(&ctx->aio_mutex);
3581 ctx->rc = rc = -EINTR;
3582 total_written = ctx->total_len;
3583 mutex_unlock(&ctx->aio_mutex);
3584 } else {
3585 rc = ctx->rc;
3586 total_written = ctx->total_len;
3587 }
3588
3589 kref_put(&ctx->refcount, cifs_aio_ctx_release);
3590
3591 if (unlikely(!total_written))
3592 return rc;
3593
3594 iocb->ki_pos += total_written;
3595 return total_written;
3596}
3597
3598ssize_t cifs_direct_writev(struct kiocb *iocb, struct iov_iter *from)
3599{
3600 struct file *file = iocb->ki_filp;
3601
3602 cifs_revalidate_mapping(file->f_inode);
3603 return __cifs_writev(iocb, from, true);
3604}
3605
3606ssize_t cifs_user_writev(struct kiocb *iocb, struct iov_iter *from)
3607{
3608 return __cifs_writev(iocb, from, false);
3609}
3610
3611static ssize_t
3612cifs_writev(struct kiocb *iocb, struct iov_iter *from)
3613{
3614 struct file *file = iocb->ki_filp;
3615 struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data;
3616 struct inode *inode = file->f_mapping->host;
3617 struct cifsInodeInfo *cinode = CIFS_I(inode);
3618 struct TCP_Server_Info *server = tlink_tcon(cfile->tlink)->ses->server;
3619 ssize_t rc;
3620
3621 inode_lock(inode);
3622 /*
3623 * We need to hold the sem to be sure nobody modifies lock list
3624 * with a brlock that prevents writing.
3625 */
3626 down_read(&cinode->lock_sem);
3627
3628 rc = generic_write_checks(iocb, from);
3629 if (rc <= 0)
3630 goto out;
3631
3632 if (!cifs_find_lock_conflict(cfile, iocb->ki_pos, iov_iter_count(from),
3633 server->vals->exclusive_lock_type, 0,
3634 NULL, CIFS_WRITE_OP))
3635 rc = __generic_file_write_iter(iocb, from);
3636 else
3637 rc = -EACCES;
3638out:
3639 up_read(&cinode->lock_sem);
3640 inode_unlock(inode);
3641
3642 if (rc > 0)
3643 rc = generic_write_sync(iocb, rc);
3644 return rc;
3645}
3646
3647ssize_t
3648cifs_strict_writev(struct kiocb *iocb, struct iov_iter *from)
3649{
3650 struct inode *inode = file_inode(iocb->ki_filp);
3651 struct cifsInodeInfo *cinode = CIFS_I(inode);
3652 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
3653 struct cifsFileInfo *cfile = (struct cifsFileInfo *)
3654 iocb->ki_filp->private_data;
3655 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
3656 ssize_t written;
3657
3658 written = cifs_get_writer(cinode);
3659 if (written)
3660 return written;
3661
3662 if (CIFS_CACHE_WRITE(cinode)) {
3663 if (cap_unix(tcon->ses) &&
3664 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability))
3665 && ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0)) {
3666 written = generic_file_write_iter(iocb, from);
3667 goto out;
3668 }
3669 written = cifs_writev(iocb, from);
3670 goto out;
3671 }
3672 /*
3673 * For non-oplocked files in strict cache mode we need to write the data
3674 * to the server exactly from the pos to pos+len-1 rather than flush all
3675 * affected pages because it may cause a error with mandatory locks on
3676 * these pages but not on the region from pos to ppos+len-1.
3677 */
3678 written = cifs_user_writev(iocb, from);
3679 if (CIFS_CACHE_READ(cinode)) {
3680 /*
3681 * We have read level caching and we have just sent a write
3682 * request to the server thus making data in the cache stale.
3683 * Zap the cache and set oplock/lease level to NONE to avoid
3684 * reading stale data from the cache. All subsequent read
3685 * operations will read new data from the server.
3686 */
3687 cifs_zap_mapping(inode);
3688 cifs_dbg(FYI, "Set Oplock/Lease to NONE for inode=%p after write\n",
3689 inode);
3690 cinode->oplock = 0;
3691 }
3692out:
3693 cifs_put_writer(cinode);
3694 return written;
3695}
3696
3697static struct cifs_readdata *
3698cifs_readdata_direct_alloc(struct page **pages, work_func_t complete)
3699{
3700 struct cifs_readdata *rdata;
3701
3702 rdata = kzalloc(sizeof(*rdata), GFP_KERNEL);
3703 if (rdata != NULL) {
3704 rdata->pages = pages;
3705 kref_init(&rdata->refcount);
3706 INIT_LIST_HEAD(&rdata->list);
3707 init_completion(&rdata->done);
3708 INIT_WORK(&rdata->work, complete);
3709 }
3710
3711 return rdata;
3712}
3713
3714static struct cifs_readdata *
3715cifs_readdata_alloc(unsigned int nr_pages, work_func_t complete)
3716{
3717 struct page **pages =
3718 kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
3719 struct cifs_readdata *ret = NULL;
3720
3721 if (pages) {
3722 ret = cifs_readdata_direct_alloc(pages, complete);
3723 if (!ret)
3724 kfree(pages);
3725 }
3726
3727 return ret;
3728}
3729
3730void
3731cifs_readdata_release(struct kref *refcount)
3732{
3733 struct cifs_readdata *rdata = container_of(refcount,
3734 struct cifs_readdata, refcount);
3735#ifdef CONFIG_CIFS_SMB_DIRECT
3736 if (rdata->mr) {
3737 smbd_deregister_mr(rdata->mr);
3738 rdata->mr = NULL;
3739 }
3740#endif
3741 if (rdata->cfile)
3742 cifsFileInfo_put(rdata->cfile);
3743
3744 kvfree(rdata->pages);
3745 kfree(rdata);
3746}
3747
3748static int
3749cifs_read_allocate_pages(struct cifs_readdata *rdata, unsigned int nr_pages)
3750{
3751 int rc = 0;
3752 struct page *page;
3753 unsigned int i;
3754
3755 for (i = 0; i < nr_pages; i++) {
3756 page = alloc_page(GFP_KERNEL|__GFP_HIGHMEM);
3757 if (!page) {
3758 rc = -ENOMEM;
3759 break;
3760 }
3761 rdata->pages[i] = page;
3762 }
3763
3764 if (rc) {
3765 unsigned int nr_page_failed = i;
3766
3767 for (i = 0; i < nr_page_failed; i++) {
3768 put_page(rdata->pages[i]);
3769 rdata->pages[i] = NULL;
3770 }
3771 }
3772 return rc;
3773}
3774
3775static void
3776cifs_uncached_readdata_release(struct kref *refcount)
3777{
3778 struct cifs_readdata *rdata = container_of(refcount,
3779 struct cifs_readdata, refcount);
3780 unsigned int i;
3781
3782 kref_put(&rdata->ctx->refcount, cifs_aio_ctx_release);
3783 for (i = 0; i < rdata->nr_pages; i++) {
3784 put_page(rdata->pages[i]);
3785 }
3786 cifs_readdata_release(refcount);
3787}
3788
3789/**
3790 * cifs_readdata_to_iov - copy data from pages in response to an iovec
3791 * @rdata: the readdata response with list of pages holding data
3792 * @iter: destination for our data
3793 *
3794 * This function copies data from a list of pages in a readdata response into
3795 * an array of iovecs. It will first calculate where the data should go
3796 * based on the info in the readdata and then copy the data into that spot.
3797 */
3798static int
3799cifs_readdata_to_iov(struct cifs_readdata *rdata, struct iov_iter *iter)
3800{
3801 size_t remaining = rdata->got_bytes;
3802 unsigned int i;
3803
3804 for (i = 0; i < rdata->nr_pages; i++) {
3805 struct page *page = rdata->pages[i];
3806 size_t copy = min_t(size_t, remaining, PAGE_SIZE);
3807 size_t written;
3808
3809 if (unlikely(iov_iter_is_pipe(iter))) {
3810 void *addr = kmap_atomic(page);
3811
3812 written = copy_to_iter(addr, copy, iter);
3813 kunmap_atomic(addr);
3814 } else
3815 written = copy_page_to_iter(page, 0, copy, iter);
3816 remaining -= written;
3817 if (written < copy && iov_iter_count(iter) > 0)
3818 break;
3819 }
3820 return remaining ? -EFAULT : 0;
3821}
3822
3823static void collect_uncached_read_data(struct cifs_aio_ctx *ctx);
3824
3825static void
3826cifs_uncached_readv_complete(struct work_struct *work)
3827{
3828 struct cifs_readdata *rdata = container_of(work,
3829 struct cifs_readdata, work);
3830
3831 complete(&rdata->done);
3832 collect_uncached_read_data(rdata->ctx);
3833 /* the below call can possibly free the last ref to aio ctx */
3834 kref_put(&rdata->refcount, cifs_uncached_readdata_release);
3835}
3836
3837static int
3838uncached_fill_pages(struct TCP_Server_Info *server,
3839 struct cifs_readdata *rdata, struct iov_iter *iter,
3840 unsigned int len)
3841{
3842 int result = 0;
3843 unsigned int i;
3844 unsigned int nr_pages = rdata->nr_pages;
3845 unsigned int page_offset = rdata->page_offset;
3846
3847 rdata->got_bytes = 0;
3848 rdata->tailsz = PAGE_SIZE;
3849 for (i = 0; i < nr_pages; i++) {
3850 struct page *page = rdata->pages[i];
3851 size_t n;
3852 unsigned int segment_size = rdata->pagesz;
3853
3854 if (i == 0)
3855 segment_size -= page_offset;
3856 else
3857 page_offset = 0;
3858
3859
3860 if (len <= 0) {
3861 /* no need to hold page hostage */
3862 rdata->pages[i] = NULL;
3863 rdata->nr_pages--;
3864 put_page(page);
3865 continue;
3866 }
3867
3868 n = len;
3869 if (len >= segment_size)
3870 /* enough data to fill the page */
3871 n = segment_size;
3872 else
3873 rdata->tailsz = len;
3874 len -= n;
3875
3876 if (iter)
3877 result = copy_page_from_iter(
3878 page, page_offset, n, iter);
3879#ifdef CONFIG_CIFS_SMB_DIRECT
3880 else if (rdata->mr)
3881 result = n;
3882#endif
3883 else
3884 result = cifs_read_page_from_socket(
3885 server, page, page_offset, n);
3886 if (result < 0)
3887 break;
3888
3889 rdata->got_bytes += result;
3890 }
3891
3892 return result != -ECONNABORTED && rdata->got_bytes > 0 ?
3893 rdata->got_bytes : result;
3894}
3895
3896static int
3897cifs_uncached_read_into_pages(struct TCP_Server_Info *server,
3898 struct cifs_readdata *rdata, unsigned int len)
3899{
3900 return uncached_fill_pages(server, rdata, NULL, len);
3901}
3902
3903static int
3904cifs_uncached_copy_into_pages(struct TCP_Server_Info *server,
3905 struct cifs_readdata *rdata,
3906 struct iov_iter *iter)
3907{
3908 return uncached_fill_pages(server, rdata, iter, iter->count);
3909}
3910
3911static int cifs_resend_rdata(struct cifs_readdata *rdata,
3912 struct list_head *rdata_list,
3913 struct cifs_aio_ctx *ctx)
3914{
3915 unsigned int rsize;
3916 struct cifs_credits credits;
3917 int rc;
3918 struct TCP_Server_Info *server;
3919
3920 /* XXX: should we pick a new channel here? */
3921 server = rdata->server;
3922
3923 do {
3924 if (rdata->cfile->invalidHandle) {
3925 rc = cifs_reopen_file(rdata->cfile, true);
3926 if (rc == -EAGAIN)
3927 continue;
3928 else if (rc)
3929 break;
3930 }
3931
3932 /*
3933 * Wait for credits to resend this rdata.
3934 * Note: we are attempting to resend the whole rdata not in
3935 * segments
3936 */
3937 do {
3938 rc = server->ops->wait_mtu_credits(server, rdata->bytes,
3939 &rsize, &credits);
3940
3941 if (rc)
3942 goto fail;
3943
3944 if (rsize < rdata->bytes) {
3945 add_credits_and_wake_if(server, &credits, 0);
3946 msleep(1000);
3947 }
3948 } while (rsize < rdata->bytes);
3949 rdata->credits = credits;
3950
3951 rc = adjust_credits(server, &rdata->credits, rdata->bytes);
3952 if (!rc) {
3953 if (rdata->cfile->invalidHandle)
3954 rc = -EAGAIN;
3955 else {
3956#ifdef CONFIG_CIFS_SMB_DIRECT
3957 if (rdata->mr) {
3958 rdata->mr->need_invalidate = true;
3959 smbd_deregister_mr(rdata->mr);
3960 rdata->mr = NULL;
3961 }
3962#endif
3963 rc = server->ops->async_readv(rdata);
3964 }
3965 }
3966
3967 /* If the read was successfully sent, we are done */
3968 if (!rc) {
3969 /* Add to aio pending list */
3970 list_add_tail(&rdata->list, rdata_list);
3971 return 0;
3972 }
3973
3974 /* Roll back credits and retry if needed */
3975 add_credits_and_wake_if(server, &rdata->credits, 0);
3976 } while (rc == -EAGAIN);
3977
3978fail:
3979 kref_put(&rdata->refcount, cifs_uncached_readdata_release);
3980 return rc;
3981}
3982
3983static int
3984cifs_send_async_read(loff_t offset, size_t len, struct cifsFileInfo *open_file,
3985 struct cifs_sb_info *cifs_sb, struct list_head *rdata_list,
3986 struct cifs_aio_ctx *ctx)
3987{
3988 struct cifs_readdata *rdata;
3989 unsigned int npages, rsize;
3990 struct cifs_credits credits_on_stack;
3991 struct cifs_credits *credits = &credits_on_stack;
3992 size_t cur_len;
3993 int rc;
3994 pid_t pid;
3995 struct TCP_Server_Info *server;
3996 struct page **pagevec;
3997 size_t start;
3998 struct iov_iter direct_iov = ctx->iter;
3999
4000 server = cifs_pick_channel(tlink_tcon(open_file->tlink)->ses);
4001
4002 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
4003 pid = open_file->pid;
4004 else
4005 pid = current->tgid;
4006
4007 if (ctx->direct_io)
4008 iov_iter_advance(&direct_iov, offset - ctx->pos);
4009
4010 do {
4011 if (open_file->invalidHandle) {
4012 rc = cifs_reopen_file(open_file, true);
4013 if (rc == -EAGAIN)
4014 continue;
4015 else if (rc)
4016 break;
4017 }
4018
4019 if (cifs_sb->ctx->rsize == 0)
4020 cifs_sb->ctx->rsize =
4021 server->ops->negotiate_rsize(tlink_tcon(open_file->tlink),
4022 cifs_sb->ctx);
4023
4024 rc = server->ops->wait_mtu_credits(server, cifs_sb->ctx->rsize,
4025 &rsize, credits);
4026 if (rc)
4027 break;
4028
4029 cur_len = min_t(const size_t, len, rsize);
4030
4031 if (ctx->direct_io) {
4032 ssize_t result;
4033
4034 result = iov_iter_get_pages_alloc2(
4035 &direct_iov, &pagevec,
4036 cur_len, &start);
4037 if (result < 0) {
4038 cifs_dbg(VFS,
4039 "Couldn't get user pages (rc=%zd) iter type %d iov_offset %zd count %zd\n",
4040 result, iov_iter_type(&direct_iov),
4041 direct_iov.iov_offset,
4042 direct_iov.count);
4043 dump_stack();
4044
4045 rc = result;
4046 add_credits_and_wake_if(server, credits, 0);
4047 break;
4048 }
4049 cur_len = (size_t)result;
4050
4051 rdata = cifs_readdata_direct_alloc(
4052 pagevec, cifs_uncached_readv_complete);
4053 if (!rdata) {
4054 add_credits_and_wake_if(server, credits, 0);
4055 rc = -ENOMEM;
4056 break;
4057 }
4058
4059 npages = (cur_len + start + PAGE_SIZE-1) / PAGE_SIZE;
4060 rdata->page_offset = start;
4061 rdata->tailsz = npages > 1 ?
4062 cur_len-(PAGE_SIZE-start)-(npages-2)*PAGE_SIZE :
4063 cur_len;
4064
4065 } else {
4066
4067 npages = DIV_ROUND_UP(cur_len, PAGE_SIZE);
4068 /* allocate a readdata struct */
4069 rdata = cifs_readdata_alloc(npages,
4070 cifs_uncached_readv_complete);
4071 if (!rdata) {
4072 add_credits_and_wake_if(server, credits, 0);
4073 rc = -ENOMEM;
4074 break;
4075 }
4076
4077 rc = cifs_read_allocate_pages(rdata, npages);
4078 if (rc) {
4079 kvfree(rdata->pages);
4080 kfree(rdata);
4081 add_credits_and_wake_if(server, credits, 0);
4082 break;
4083 }
4084
4085 rdata->tailsz = PAGE_SIZE;
4086 }
4087
4088 rdata->server = server;
4089 rdata->cfile = cifsFileInfo_get(open_file);
4090 rdata->nr_pages = npages;
4091 rdata->offset = offset;
4092 rdata->bytes = cur_len;
4093 rdata->pid = pid;
4094 rdata->pagesz = PAGE_SIZE;
4095 rdata->read_into_pages = cifs_uncached_read_into_pages;
4096 rdata->copy_into_pages = cifs_uncached_copy_into_pages;
4097 rdata->credits = credits_on_stack;
4098 rdata->ctx = ctx;
4099 kref_get(&ctx->refcount);
4100
4101 rc = adjust_credits(server, &rdata->credits, rdata->bytes);
4102
4103 if (!rc) {
4104 if (rdata->cfile->invalidHandle)
4105 rc = -EAGAIN;
4106 else
4107 rc = server->ops->async_readv(rdata);
4108 }
4109
4110 if (rc) {
4111 add_credits_and_wake_if(server, &rdata->credits, 0);
4112 kref_put(&rdata->refcount,
4113 cifs_uncached_readdata_release);
4114 if (rc == -EAGAIN) {
4115 iov_iter_revert(&direct_iov, cur_len);
4116 continue;
4117 }
4118 break;
4119 }
4120
4121 list_add_tail(&rdata->list, rdata_list);
4122 offset += cur_len;
4123 len -= cur_len;
4124 } while (len > 0);
4125
4126 return rc;
4127}
4128
4129static void
4130collect_uncached_read_data(struct cifs_aio_ctx *ctx)
4131{
4132 struct cifs_readdata *rdata, *tmp;
4133 struct iov_iter *to = &ctx->iter;
4134 struct cifs_sb_info *cifs_sb;
4135 int rc;
4136
4137 cifs_sb = CIFS_SB(ctx->cfile->dentry->d_sb);
4138
4139 mutex_lock(&ctx->aio_mutex);
4140
4141 if (list_empty(&ctx->list)) {
4142 mutex_unlock(&ctx->aio_mutex);
4143 return;
4144 }
4145
4146 rc = ctx->rc;
4147 /* the loop below should proceed in the order of increasing offsets */
4148again:
4149 list_for_each_entry_safe(rdata, tmp, &ctx->list, list) {
4150 if (!rc) {
4151 if (!try_wait_for_completion(&rdata->done)) {
4152 mutex_unlock(&ctx->aio_mutex);
4153 return;
4154 }
4155
4156 if (rdata->result == -EAGAIN) {
4157 /* resend call if it's a retryable error */
4158 struct list_head tmp_list;
4159 unsigned int got_bytes = rdata->got_bytes;
4160
4161 list_del_init(&rdata->list);
4162 INIT_LIST_HEAD(&tmp_list);
4163
4164 /*
4165 * Got a part of data and then reconnect has
4166 * happened -- fill the buffer and continue
4167 * reading.
4168 */
4169 if (got_bytes && got_bytes < rdata->bytes) {
4170 rc = 0;
4171 if (!ctx->direct_io)
4172 rc = cifs_readdata_to_iov(rdata, to);
4173 if (rc) {
4174 kref_put(&rdata->refcount,
4175 cifs_uncached_readdata_release);
4176 continue;
4177 }
4178 }
4179
4180 if (ctx->direct_io) {
4181 /*
4182 * Re-use rdata as this is a
4183 * direct I/O
4184 */
4185 rc = cifs_resend_rdata(
4186 rdata,
4187 &tmp_list, ctx);
4188 } else {
4189 rc = cifs_send_async_read(
4190 rdata->offset + got_bytes,
4191 rdata->bytes - got_bytes,
4192 rdata->cfile, cifs_sb,
4193 &tmp_list, ctx);
4194
4195 kref_put(&rdata->refcount,
4196 cifs_uncached_readdata_release);
4197 }
4198
4199 list_splice(&tmp_list, &ctx->list);
4200
4201 goto again;
4202 } else if (rdata->result)
4203 rc = rdata->result;
4204 else if (!ctx->direct_io)
4205 rc = cifs_readdata_to_iov(rdata, to);
4206
4207 /* if there was a short read -- discard anything left */
4208 if (rdata->got_bytes && rdata->got_bytes < rdata->bytes)
4209 rc = -ENODATA;
4210
4211 ctx->total_len += rdata->got_bytes;
4212 }
4213 list_del_init(&rdata->list);
4214 kref_put(&rdata->refcount, cifs_uncached_readdata_release);
4215 }
4216
4217 if (!ctx->direct_io)
4218 ctx->total_len = ctx->len - iov_iter_count(to);
4219
4220 /* mask nodata case */
4221 if (rc == -ENODATA)
4222 rc = 0;
4223
4224 ctx->rc = (rc == 0) ? (ssize_t)ctx->total_len : rc;
4225
4226 mutex_unlock(&ctx->aio_mutex);
4227
4228 if (ctx->iocb && ctx->iocb->ki_complete)
4229 ctx->iocb->ki_complete(ctx->iocb, ctx->rc);
4230 else
4231 complete(&ctx->done);
4232}
4233
4234static ssize_t __cifs_readv(
4235 struct kiocb *iocb, struct iov_iter *to, bool direct)
4236{
4237 size_t len;
4238 struct file *file = iocb->ki_filp;
4239 struct cifs_sb_info *cifs_sb;
4240 struct cifsFileInfo *cfile;
4241 struct cifs_tcon *tcon;
4242 ssize_t rc, total_read = 0;
4243 loff_t offset = iocb->ki_pos;
4244 struct cifs_aio_ctx *ctx;
4245
4246 /*
4247 * iov_iter_get_pages_alloc() doesn't work with ITER_KVEC,
4248 * fall back to data copy read path
4249 * this could be improved by getting pages directly in ITER_KVEC
4250 */
4251 if (direct && iov_iter_is_kvec(to)) {
4252 cifs_dbg(FYI, "use non-direct cifs_user_readv for kvec I/O\n");
4253 direct = false;
4254 }
4255
4256 len = iov_iter_count(to);
4257 if (!len)
4258 return 0;
4259
4260 cifs_sb = CIFS_FILE_SB(file);
4261 cfile = file->private_data;
4262 tcon = tlink_tcon(cfile->tlink);
4263
4264 if (!tcon->ses->server->ops->async_readv)
4265 return -ENOSYS;
4266
4267 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
4268 cifs_dbg(FYI, "attempting read on write only file instance\n");
4269
4270 ctx = cifs_aio_ctx_alloc();
4271 if (!ctx)
4272 return -ENOMEM;
4273
4274 ctx->cfile = cifsFileInfo_get(cfile);
4275
4276 if (!is_sync_kiocb(iocb))
4277 ctx->iocb = iocb;
4278
4279 if (user_backed_iter(to))
4280 ctx->should_dirty = true;
4281
4282 if (direct) {
4283 ctx->pos = offset;
4284 ctx->direct_io = true;
4285 ctx->iter = *to;
4286 ctx->len = len;
4287 } else {
4288 rc = setup_aio_ctx_iter(ctx, to, ITER_DEST);
4289 if (rc) {
4290 kref_put(&ctx->refcount, cifs_aio_ctx_release);
4291 return rc;
4292 }
4293 len = ctx->len;
4294 }
4295
4296 if (direct) {
4297 rc = filemap_write_and_wait_range(file->f_inode->i_mapping,
4298 offset, offset + len - 1);
4299 if (rc) {
4300 kref_put(&ctx->refcount, cifs_aio_ctx_release);
4301 return -EAGAIN;
4302 }
4303 }
4304
4305 /* grab a lock here due to read response handlers can access ctx */
4306 mutex_lock(&ctx->aio_mutex);
4307
4308 rc = cifs_send_async_read(offset, len, cfile, cifs_sb, &ctx->list, ctx);
4309
4310 /* if at least one read request send succeeded, then reset rc */
4311 if (!list_empty(&ctx->list))
4312 rc = 0;
4313
4314 mutex_unlock(&ctx->aio_mutex);
4315
4316 if (rc) {
4317 kref_put(&ctx->refcount, cifs_aio_ctx_release);
4318 return rc;
4319 }
4320
4321 if (!is_sync_kiocb(iocb)) {
4322 kref_put(&ctx->refcount, cifs_aio_ctx_release);
4323 return -EIOCBQUEUED;
4324 }
4325
4326 rc = wait_for_completion_killable(&ctx->done);
4327 if (rc) {
4328 mutex_lock(&ctx->aio_mutex);
4329 ctx->rc = rc = -EINTR;
4330 total_read = ctx->total_len;
4331 mutex_unlock(&ctx->aio_mutex);
4332 } else {
4333 rc = ctx->rc;
4334 total_read = ctx->total_len;
4335 }
4336
4337 kref_put(&ctx->refcount, cifs_aio_ctx_release);
4338
4339 if (total_read) {
4340 iocb->ki_pos += total_read;
4341 return total_read;
4342 }
4343 return rc;
4344}
4345
4346ssize_t cifs_direct_readv(struct kiocb *iocb, struct iov_iter *to)
4347{
4348 return __cifs_readv(iocb, to, true);
4349}
4350
4351ssize_t cifs_user_readv(struct kiocb *iocb, struct iov_iter *to)
4352{
4353 return __cifs_readv(iocb, to, false);
4354}
4355
4356ssize_t
4357cifs_strict_readv(struct kiocb *iocb, struct iov_iter *to)
4358{
4359 struct inode *inode = file_inode(iocb->ki_filp);
4360 struct cifsInodeInfo *cinode = CIFS_I(inode);
4361 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
4362 struct cifsFileInfo *cfile = (struct cifsFileInfo *)
4363 iocb->ki_filp->private_data;
4364 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
4365 int rc = -EACCES;
4366
4367 /*
4368 * In strict cache mode we need to read from the server all the time
4369 * if we don't have level II oplock because the server can delay mtime
4370 * change - so we can't make a decision about inode invalidating.
4371 * And we can also fail with pagereading if there are mandatory locks
4372 * on pages affected by this read but not on the region from pos to
4373 * pos+len-1.
4374 */
4375 if (!CIFS_CACHE_READ(cinode))
4376 return cifs_user_readv(iocb, to);
4377
4378 if (cap_unix(tcon->ses) &&
4379 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
4380 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
4381 return generic_file_read_iter(iocb, to);
4382
4383 /*
4384 * We need to hold the sem to be sure nobody modifies lock list
4385 * with a brlock that prevents reading.
4386 */
4387 down_read(&cinode->lock_sem);
4388 if (!cifs_find_lock_conflict(cfile, iocb->ki_pos, iov_iter_count(to),
4389 tcon->ses->server->vals->shared_lock_type,
4390 0, NULL, CIFS_READ_OP))
4391 rc = generic_file_read_iter(iocb, to);
4392 up_read(&cinode->lock_sem);
4393 return rc;
4394}
4395
4396static ssize_t
4397cifs_read(struct file *file, char *read_data, size_t read_size, loff_t *offset)
4398{
4399 int rc = -EACCES;
4400 unsigned int bytes_read = 0;
4401 unsigned int total_read;
4402 unsigned int current_read_size;
4403 unsigned int rsize;
4404 struct cifs_sb_info *cifs_sb;
4405 struct cifs_tcon *tcon;
4406 struct TCP_Server_Info *server;
4407 unsigned int xid;
4408 char *cur_offset;
4409 struct cifsFileInfo *open_file;
4410 struct cifs_io_parms io_parms = {0};
4411 int buf_type = CIFS_NO_BUFFER;
4412 __u32 pid;
4413
4414 xid = get_xid();
4415 cifs_sb = CIFS_FILE_SB(file);
4416
4417 /* FIXME: set up handlers for larger reads and/or convert to async */
4418 rsize = min_t(unsigned int, cifs_sb->ctx->rsize, CIFSMaxBufSize);
4419
4420 if (file->private_data == NULL) {
4421 rc = -EBADF;
4422 free_xid(xid);
4423 return rc;
4424 }
4425 open_file = file->private_data;
4426 tcon = tlink_tcon(open_file->tlink);
4427 server = cifs_pick_channel(tcon->ses);
4428
4429 if (!server->ops->sync_read) {
4430 free_xid(xid);
4431 return -ENOSYS;
4432 }
4433
4434 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
4435 pid = open_file->pid;
4436 else
4437 pid = current->tgid;
4438
4439 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
4440 cifs_dbg(FYI, "attempting read on write only file instance\n");
4441
4442 for (total_read = 0, cur_offset = read_data; read_size > total_read;
4443 total_read += bytes_read, cur_offset += bytes_read) {
4444 do {
4445 current_read_size = min_t(uint, read_size - total_read,
4446 rsize);
4447 /*
4448 * For windows me and 9x we do not want to request more
4449 * than it negotiated since it will refuse the read
4450 * then.
4451 */
4452 if (!(tcon->ses->capabilities &
4453 tcon->ses->server->vals->cap_large_files)) {
4454 current_read_size = min_t(uint,
4455 current_read_size, CIFSMaxBufSize);
4456 }
4457 if (open_file->invalidHandle) {
4458 rc = cifs_reopen_file(open_file, true);
4459 if (rc != 0)
4460 break;
4461 }
4462 io_parms.pid = pid;
4463 io_parms.tcon = tcon;
4464 io_parms.offset = *offset;
4465 io_parms.length = current_read_size;
4466 io_parms.server = server;
4467 rc = server->ops->sync_read(xid, &open_file->fid, &io_parms,
4468 &bytes_read, &cur_offset,
4469 &buf_type);
4470 } while (rc == -EAGAIN);
4471
4472 if (rc || (bytes_read == 0)) {
4473 if (total_read) {
4474 break;
4475 } else {
4476 free_xid(xid);
4477 return rc;
4478 }
4479 } else {
4480 cifs_stats_bytes_read(tcon, total_read);
4481 *offset += bytes_read;
4482 }
4483 }
4484 free_xid(xid);
4485 return total_read;
4486}
4487
4488/*
4489 * If the page is mmap'ed into a process' page tables, then we need to make
4490 * sure that it doesn't change while being written back.
4491 */
4492static vm_fault_t
4493cifs_page_mkwrite(struct vm_fault *vmf)
4494{
4495 struct page *page = vmf->page;
4496
4497 /* Wait for the page to be written to the cache before we allow it to
4498 * be modified. We then assume the entire page will need writing back.
4499 */
4500#ifdef CONFIG_CIFS_FSCACHE
4501 if (PageFsCache(page) &&
4502 wait_on_page_fscache_killable(page) < 0)
4503 return VM_FAULT_RETRY;
4504#endif
4505
4506 wait_on_page_writeback(page);
4507
4508 if (lock_page_killable(page) < 0)
4509 return VM_FAULT_RETRY;
4510 return VM_FAULT_LOCKED;
4511}
4512
4513static const struct vm_operations_struct cifs_file_vm_ops = {
4514 .fault = filemap_fault,
4515 .map_pages = filemap_map_pages,
4516 .page_mkwrite = cifs_page_mkwrite,
4517};
4518
4519int cifs_file_strict_mmap(struct file *file, struct vm_area_struct *vma)
4520{
4521 int xid, rc = 0;
4522 struct inode *inode = file_inode(file);
4523
4524 xid = get_xid();
4525
4526 if (!CIFS_CACHE_READ(CIFS_I(inode)))
4527 rc = cifs_zap_mapping(inode);
4528 if (!rc)
4529 rc = generic_file_mmap(file, vma);
4530 if (!rc)
4531 vma->vm_ops = &cifs_file_vm_ops;
4532
4533 free_xid(xid);
4534 return rc;
4535}
4536
4537int cifs_file_mmap(struct file *file, struct vm_area_struct *vma)
4538{
4539 int rc, xid;
4540
4541 xid = get_xid();
4542
4543 rc = cifs_revalidate_file(file);
4544 if (rc)
4545 cifs_dbg(FYI, "Validation prior to mmap failed, error=%d\n",
4546 rc);
4547 if (!rc)
4548 rc = generic_file_mmap(file, vma);
4549 if (!rc)
4550 vma->vm_ops = &cifs_file_vm_ops;
4551
4552 free_xid(xid);
4553 return rc;
4554}
4555
4556static void
4557cifs_readv_complete(struct work_struct *work)
4558{
4559 unsigned int i, got_bytes;
4560 struct cifs_readdata *rdata = container_of(work,
4561 struct cifs_readdata, work);
4562
4563 got_bytes = rdata->got_bytes;
4564 for (i = 0; i < rdata->nr_pages; i++) {
4565 struct page *page = rdata->pages[i];
4566
4567 if (rdata->result == 0 ||
4568 (rdata->result == -EAGAIN && got_bytes)) {
4569 flush_dcache_page(page);
4570 SetPageUptodate(page);
4571 } else
4572 SetPageError(page);
4573
4574 if (rdata->result == 0 ||
4575 (rdata->result == -EAGAIN && got_bytes))
4576 cifs_readpage_to_fscache(rdata->mapping->host, page);
4577
4578 unlock_page(page);
4579
4580 got_bytes -= min_t(unsigned int, PAGE_SIZE, got_bytes);
4581
4582 put_page(page);
4583 rdata->pages[i] = NULL;
4584 }
4585 kref_put(&rdata->refcount, cifs_readdata_release);
4586}
4587
4588static int
4589readpages_fill_pages(struct TCP_Server_Info *server,
4590 struct cifs_readdata *rdata, struct iov_iter *iter,
4591 unsigned int len)
4592{
4593 int result = 0;
4594 unsigned int i;
4595 u64 eof;
4596 pgoff_t eof_index;
4597 unsigned int nr_pages = rdata->nr_pages;
4598 unsigned int page_offset = rdata->page_offset;
4599
4600 /* determine the eof that the server (probably) has */
4601 eof = CIFS_I(rdata->mapping->host)->server_eof;
4602 eof_index = eof ? (eof - 1) >> PAGE_SHIFT : 0;
4603 cifs_dbg(FYI, "eof=%llu eof_index=%lu\n", eof, eof_index);
4604
4605 rdata->got_bytes = 0;
4606 rdata->tailsz = PAGE_SIZE;
4607 for (i = 0; i < nr_pages; i++) {
4608 struct page *page = rdata->pages[i];
4609 unsigned int to_read = rdata->pagesz;
4610 size_t n;
4611
4612 if (i == 0)
4613 to_read -= page_offset;
4614 else
4615 page_offset = 0;
4616
4617 n = to_read;
4618
4619 if (len >= to_read) {
4620 len -= to_read;
4621 } else if (len > 0) {
4622 /* enough for partial page, fill and zero the rest */
4623 zero_user(page, len + page_offset, to_read - len);
4624 n = rdata->tailsz = len;
4625 len = 0;
4626 } else if (page->index > eof_index) {
4627 /*
4628 * The VFS will not try to do readahead past the
4629 * i_size, but it's possible that we have outstanding
4630 * writes with gaps in the middle and the i_size hasn't
4631 * caught up yet. Populate those with zeroed out pages
4632 * to prevent the VFS from repeatedly attempting to
4633 * fill them until the writes are flushed.
4634 */
4635 zero_user(page, 0, PAGE_SIZE);
4636 flush_dcache_page(page);
4637 SetPageUptodate(page);
4638 unlock_page(page);
4639 put_page(page);
4640 rdata->pages[i] = NULL;
4641 rdata->nr_pages--;
4642 continue;
4643 } else {
4644 /* no need to hold page hostage */
4645 unlock_page(page);
4646 put_page(page);
4647 rdata->pages[i] = NULL;
4648 rdata->nr_pages--;
4649 continue;
4650 }
4651
4652 if (iter)
4653 result = copy_page_from_iter(
4654 page, page_offset, n, iter);
4655#ifdef CONFIG_CIFS_SMB_DIRECT
4656 else if (rdata->mr)
4657 result = n;
4658#endif
4659 else
4660 result = cifs_read_page_from_socket(
4661 server, page, page_offset, n);
4662 if (result < 0)
4663 break;
4664
4665 rdata->got_bytes += result;
4666 }
4667
4668 return result != -ECONNABORTED && rdata->got_bytes > 0 ?
4669 rdata->got_bytes : result;
4670}
4671
4672static int
4673cifs_readpages_read_into_pages(struct TCP_Server_Info *server,
4674 struct cifs_readdata *rdata, unsigned int len)
4675{
4676 return readpages_fill_pages(server, rdata, NULL, len);
4677}
4678
4679static int
4680cifs_readpages_copy_into_pages(struct TCP_Server_Info *server,
4681 struct cifs_readdata *rdata,
4682 struct iov_iter *iter)
4683{
4684 return readpages_fill_pages(server, rdata, iter, iter->count);
4685}
4686
4687static void cifs_readahead(struct readahead_control *ractl)
4688{
4689 int rc;
4690 struct cifsFileInfo *open_file = ractl->file->private_data;
4691 struct cifs_sb_info *cifs_sb = CIFS_FILE_SB(ractl->file);
4692 struct TCP_Server_Info *server;
4693 pid_t pid;
4694 unsigned int xid, nr_pages, last_batch_size = 0, cache_nr_pages = 0;
4695 pgoff_t next_cached = ULONG_MAX;
4696 bool caching = fscache_cookie_enabled(cifs_inode_cookie(ractl->mapping->host)) &&
4697 cifs_inode_cookie(ractl->mapping->host)->cache_priv;
4698 bool check_cache = caching;
4699
4700 xid = get_xid();
4701
4702 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
4703 pid = open_file->pid;
4704 else
4705 pid = current->tgid;
4706
4707 rc = 0;
4708 server = cifs_pick_channel(tlink_tcon(open_file->tlink)->ses);
4709
4710 cifs_dbg(FYI, "%s: file=%p mapping=%p num_pages=%u\n",
4711 __func__, ractl->file, ractl->mapping, readahead_count(ractl));
4712
4713 /*
4714 * Chop the readahead request up into rsize-sized read requests.
4715 */
4716 while ((nr_pages = readahead_count(ractl) - last_batch_size)) {
4717 unsigned int i, got, rsize;
4718 struct page *page;
4719 struct cifs_readdata *rdata;
4720 struct cifs_credits credits_on_stack;
4721 struct cifs_credits *credits = &credits_on_stack;
4722 pgoff_t index = readahead_index(ractl) + last_batch_size;
4723
4724 /*
4725 * Find out if we have anything cached in the range of
4726 * interest, and if so, where the next chunk of cached data is.
4727 */
4728 if (caching) {
4729 if (check_cache) {
4730 rc = cifs_fscache_query_occupancy(
4731 ractl->mapping->host, index, nr_pages,
4732 &next_cached, &cache_nr_pages);
4733 if (rc < 0)
4734 caching = false;
4735 check_cache = false;
4736 }
4737
4738 if (index == next_cached) {
4739 /*
4740 * TODO: Send a whole batch of pages to be read
4741 * by the cache.
4742 */
4743 struct folio *folio = readahead_folio(ractl);
4744
4745 last_batch_size = folio_nr_pages(folio);
4746 if (cifs_readpage_from_fscache(ractl->mapping->host,
4747 &folio->page) < 0) {
4748 /*
4749 * TODO: Deal with cache read failure
4750 * here, but for the moment, delegate
4751 * that to readpage.
4752 */
4753 caching = false;
4754 }
4755 folio_unlock(folio);
4756 next_cached++;
4757 cache_nr_pages--;
4758 if (cache_nr_pages == 0)
4759 check_cache = true;
4760 continue;
4761 }
4762 }
4763
4764 if (open_file->invalidHandle) {
4765 rc = cifs_reopen_file(open_file, true);
4766 if (rc) {
4767 if (rc == -EAGAIN)
4768 continue;
4769 break;
4770 }
4771 }
4772
4773 if (cifs_sb->ctx->rsize == 0)
4774 cifs_sb->ctx->rsize =
4775 server->ops->negotiate_rsize(tlink_tcon(open_file->tlink),
4776 cifs_sb->ctx);
4777
4778 rc = server->ops->wait_mtu_credits(server, cifs_sb->ctx->rsize,
4779 &rsize, credits);
4780 if (rc)
4781 break;
4782 nr_pages = min_t(size_t, rsize / PAGE_SIZE, readahead_count(ractl));
4783 nr_pages = min_t(size_t, nr_pages, next_cached - index);
4784
4785 /*
4786 * Give up immediately if rsize is too small to read an entire
4787 * page. The VFS will fall back to readpage. We should never
4788 * reach this point however since we set ra_pages to 0 when the
4789 * rsize is smaller than a cache page.
4790 */
4791 if (unlikely(!nr_pages)) {
4792 add_credits_and_wake_if(server, credits, 0);
4793 break;
4794 }
4795
4796 rdata = cifs_readdata_alloc(nr_pages, cifs_readv_complete);
4797 if (!rdata) {
4798 /* best to give up if we're out of mem */
4799 add_credits_and_wake_if(server, credits, 0);
4800 break;
4801 }
4802
4803 got = __readahead_batch(ractl, rdata->pages, nr_pages);
4804 if (got != nr_pages) {
4805 pr_warn("__readahead_batch() returned %u/%u\n",
4806 got, nr_pages);
4807 nr_pages = got;
4808 }
4809
4810 rdata->nr_pages = nr_pages;
4811 rdata->bytes = readahead_batch_length(ractl);
4812 rdata->cfile = cifsFileInfo_get(open_file);
4813 rdata->server = server;
4814 rdata->mapping = ractl->mapping;
4815 rdata->offset = readahead_pos(ractl);
4816 rdata->pid = pid;
4817 rdata->pagesz = PAGE_SIZE;
4818 rdata->tailsz = PAGE_SIZE;
4819 rdata->read_into_pages = cifs_readpages_read_into_pages;
4820 rdata->copy_into_pages = cifs_readpages_copy_into_pages;
4821 rdata->credits = credits_on_stack;
4822
4823 rc = adjust_credits(server, &rdata->credits, rdata->bytes);
4824 if (!rc) {
4825 if (rdata->cfile->invalidHandle)
4826 rc = -EAGAIN;
4827 else
4828 rc = server->ops->async_readv(rdata);
4829 }
4830
4831 if (rc) {
4832 add_credits_and_wake_if(server, &rdata->credits, 0);
4833 for (i = 0; i < rdata->nr_pages; i++) {
4834 page = rdata->pages[i];
4835 unlock_page(page);
4836 put_page(page);
4837 }
4838 /* Fallback to the readpage in error/reconnect cases */
4839 kref_put(&rdata->refcount, cifs_readdata_release);
4840 break;
4841 }
4842
4843 kref_put(&rdata->refcount, cifs_readdata_release);
4844 last_batch_size = nr_pages;
4845 }
4846
4847 free_xid(xid);
4848}
4849
4850/*
4851 * cifs_readpage_worker must be called with the page pinned
4852 */
4853static int cifs_readpage_worker(struct file *file, struct page *page,
4854 loff_t *poffset)
4855{
4856 char *read_data;
4857 int rc;
4858
4859 /* Is the page cached? */
4860 rc = cifs_readpage_from_fscache(file_inode(file), page);
4861 if (rc == 0)
4862 goto read_complete;
4863
4864 read_data = kmap(page);
4865 /* for reads over a certain size could initiate async read ahead */
4866
4867 rc = cifs_read(file, read_data, PAGE_SIZE, poffset);
4868
4869 if (rc < 0)
4870 goto io_error;
4871 else
4872 cifs_dbg(FYI, "Bytes read %d\n", rc);
4873
4874 /* we do not want atime to be less than mtime, it broke some apps */
4875 file_inode(file)->i_atime = current_time(file_inode(file));
4876 if (timespec64_compare(&(file_inode(file)->i_atime), &(file_inode(file)->i_mtime)))
4877 file_inode(file)->i_atime = file_inode(file)->i_mtime;
4878 else
4879 file_inode(file)->i_atime = current_time(file_inode(file));
4880
4881 if (PAGE_SIZE > rc)
4882 memset(read_data + rc, 0, PAGE_SIZE - rc);
4883
4884 flush_dcache_page(page);
4885 SetPageUptodate(page);
4886
4887 /* send this page to the cache */
4888 cifs_readpage_to_fscache(file_inode(file), page);
4889
4890 rc = 0;
4891
4892io_error:
4893 kunmap(page);
4894 unlock_page(page);
4895
4896read_complete:
4897 return rc;
4898}
4899
4900static int cifs_read_folio(struct file *file, struct folio *folio)
4901{
4902 struct page *page = &folio->page;
4903 loff_t offset = page_file_offset(page);
4904 int rc = -EACCES;
4905 unsigned int xid;
4906
4907 xid = get_xid();
4908
4909 if (file->private_data == NULL) {
4910 rc = -EBADF;
4911 free_xid(xid);
4912 return rc;
4913 }
4914
4915 cifs_dbg(FYI, "read_folio %p at offset %d 0x%x\n",
4916 page, (int)offset, (int)offset);
4917
4918 rc = cifs_readpage_worker(file, page, &offset);
4919
4920 free_xid(xid);
4921 return rc;
4922}
4923
4924static int is_inode_writable(struct cifsInodeInfo *cifs_inode)
4925{
4926 struct cifsFileInfo *open_file;
4927
4928 spin_lock(&cifs_inode->open_file_lock);
4929 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
4930 if (OPEN_FMODE(open_file->f_flags) & FMODE_WRITE) {
4931 spin_unlock(&cifs_inode->open_file_lock);
4932 return 1;
4933 }
4934 }
4935 spin_unlock(&cifs_inode->open_file_lock);
4936 return 0;
4937}
4938
4939/* We do not want to update the file size from server for inodes
4940 open for write - to avoid races with writepage extending
4941 the file - in the future we could consider allowing
4942 refreshing the inode only on increases in the file size
4943 but this is tricky to do without racing with writebehind
4944 page caching in the current Linux kernel design */
4945bool is_size_safe_to_change(struct cifsInodeInfo *cifsInode, __u64 end_of_file)
4946{
4947 if (!cifsInode)
4948 return true;
4949
4950 if (is_inode_writable(cifsInode)) {
4951 /* This inode is open for write at least once */
4952 struct cifs_sb_info *cifs_sb;
4953
4954 cifs_sb = CIFS_SB(cifsInode->netfs.inode.i_sb);
4955 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_DIRECT_IO) {
4956 /* since no page cache to corrupt on directio
4957 we can change size safely */
4958 return true;
4959 }
4960
4961 if (i_size_read(&cifsInode->netfs.inode) < end_of_file)
4962 return true;
4963
4964 return false;
4965 } else
4966 return true;
4967}
4968
4969static int cifs_write_begin(struct file *file, struct address_space *mapping,
4970 loff_t pos, unsigned len,
4971 struct page **pagep, void **fsdata)
4972{
4973 int oncethru = 0;
4974 pgoff_t index = pos >> PAGE_SHIFT;
4975 loff_t offset = pos & (PAGE_SIZE - 1);
4976 loff_t page_start = pos & PAGE_MASK;
4977 loff_t i_size;
4978 struct page *page;
4979 int rc = 0;
4980
4981 cifs_dbg(FYI, "write_begin from %lld len %d\n", (long long)pos, len);
4982
4983start:
4984 page = grab_cache_page_write_begin(mapping, index);
4985 if (!page) {
4986 rc = -ENOMEM;
4987 goto out;
4988 }
4989
4990 if (PageUptodate(page))
4991 goto out;
4992
4993 /*
4994 * If we write a full page it will be up to date, no need to read from
4995 * the server. If the write is short, we'll end up doing a sync write
4996 * instead.
4997 */
4998 if (len == PAGE_SIZE)
4999 goto out;
5000
5001 /*
5002 * optimize away the read when we have an oplock, and we're not
5003 * expecting to use any of the data we'd be reading in. That
5004 * is, when the page lies beyond the EOF, or straddles the EOF
5005 * and the write will cover all of the existing data.
5006 */
5007 if (CIFS_CACHE_READ(CIFS_I(mapping->host))) {
5008 i_size = i_size_read(mapping->host);
5009 if (page_start >= i_size ||
5010 (offset == 0 && (pos + len) >= i_size)) {
5011 zero_user_segments(page, 0, offset,
5012 offset + len,
5013 PAGE_SIZE);
5014 /*
5015 * PageChecked means that the parts of the page
5016 * to which we're not writing are considered up
5017 * to date. Once the data is copied to the
5018 * page, it can be set uptodate.
5019 */
5020 SetPageChecked(page);
5021 goto out;
5022 }
5023 }
5024
5025 if ((file->f_flags & O_ACCMODE) != O_WRONLY && !oncethru) {
5026 /*
5027 * might as well read a page, it is fast enough. If we get
5028 * an error, we don't need to return it. cifs_write_end will
5029 * do a sync write instead since PG_uptodate isn't set.
5030 */
5031 cifs_readpage_worker(file, page, &page_start);
5032 put_page(page);
5033 oncethru = 1;
5034 goto start;
5035 } else {
5036 /* we could try using another file handle if there is one -
5037 but how would we lock it to prevent close of that handle
5038 racing with this read? In any case
5039 this will be written out by write_end so is fine */
5040 }
5041out:
5042 *pagep = page;
5043 return rc;
5044}
5045
5046static bool cifs_release_folio(struct folio *folio, gfp_t gfp)
5047{
5048 if (folio_test_private(folio))
5049 return 0;
5050 if (folio_test_fscache(folio)) {
5051 if (current_is_kswapd() || !(gfp & __GFP_FS))
5052 return false;
5053 folio_wait_fscache(folio);
5054 }
5055 fscache_note_page_release(cifs_inode_cookie(folio->mapping->host));
5056 return true;
5057}
5058
5059static void cifs_invalidate_folio(struct folio *folio, size_t offset,
5060 size_t length)
5061{
5062 folio_wait_fscache(folio);
5063}
5064
5065static int cifs_launder_folio(struct folio *folio)
5066{
5067 int rc = 0;
5068 loff_t range_start = folio_pos(folio);
5069 loff_t range_end = range_start + folio_size(folio);
5070 struct writeback_control wbc = {
5071 .sync_mode = WB_SYNC_ALL,
5072 .nr_to_write = 0,
5073 .range_start = range_start,
5074 .range_end = range_end,
5075 };
5076
5077 cifs_dbg(FYI, "Launder page: %lu\n", folio->index);
5078
5079 if (folio_clear_dirty_for_io(folio))
5080 rc = cifs_writepage_locked(&folio->page, &wbc);
5081
5082 folio_wait_fscache(folio);
5083 return rc;
5084}
5085
5086void cifs_oplock_break(struct work_struct *work)
5087{
5088 struct cifsFileInfo *cfile = container_of(work, struct cifsFileInfo,
5089 oplock_break);
5090 struct inode *inode = d_inode(cfile->dentry);
5091 struct cifsInodeInfo *cinode = CIFS_I(inode);
5092 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
5093 struct TCP_Server_Info *server = tcon->ses->server;
5094 int rc = 0;
5095 bool purge_cache = false;
5096
5097 wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS,
5098 TASK_UNINTERRUPTIBLE);
5099
5100 server->ops->downgrade_oplock(server, cinode, cfile->oplock_level,
5101 cfile->oplock_epoch, &purge_cache);
5102
5103 if (!CIFS_CACHE_WRITE(cinode) && CIFS_CACHE_READ(cinode) &&
5104 cifs_has_mand_locks(cinode)) {
5105 cifs_dbg(FYI, "Reset oplock to None for inode=%p due to mand locks\n",
5106 inode);
5107 cinode->oplock = 0;
5108 }
5109
5110 if (inode && S_ISREG(inode->i_mode)) {
5111 if (CIFS_CACHE_READ(cinode))
5112 break_lease(inode, O_RDONLY);
5113 else
5114 break_lease(inode, O_WRONLY);
5115 rc = filemap_fdatawrite(inode->i_mapping);
5116 if (!CIFS_CACHE_READ(cinode) || purge_cache) {
5117 rc = filemap_fdatawait(inode->i_mapping);
5118 mapping_set_error(inode->i_mapping, rc);
5119 cifs_zap_mapping(inode);
5120 }
5121 cifs_dbg(FYI, "Oplock flush inode %p rc %d\n", inode, rc);
5122 if (CIFS_CACHE_WRITE(cinode))
5123 goto oplock_break_ack;
5124 }
5125
5126 rc = cifs_push_locks(cfile);
5127 if (rc)
5128 cifs_dbg(VFS, "Push locks rc = %d\n", rc);
5129
5130oplock_break_ack:
5131 /*
5132 * releasing stale oplock after recent reconnect of smb session using
5133 * a now incorrect file handle is not a data integrity issue but do
5134 * not bother sending an oplock release if session to server still is
5135 * disconnected since oplock already released by the server
5136 */
5137 if (!cfile->oplock_break_cancelled) {
5138 rc = tcon->ses->server->ops->oplock_response(tcon, &cfile->fid,
5139 cinode);
5140 cifs_dbg(FYI, "Oplock release rc = %d\n", rc);
5141 }
5142
5143 _cifsFileInfo_put(cfile, false /* do not wait for ourself */, false);
5144 cifs_done_oplock_break(cinode);
5145}
5146
5147/*
5148 * The presence of cifs_direct_io() in the address space ops vector
5149 * allowes open() O_DIRECT flags which would have failed otherwise.
5150 *
5151 * In the non-cached mode (mount with cache=none), we shunt off direct read and write requests
5152 * so this method should never be called.
5153 *
5154 * Direct IO is not yet supported in the cached mode.
5155 */
5156static ssize_t
5157cifs_direct_io(struct kiocb *iocb, struct iov_iter *iter)
5158{
5159 /*
5160 * FIXME
5161 * Eventually need to support direct IO for non forcedirectio mounts
5162 */
5163 return -EINVAL;
5164}
5165
5166static int cifs_swap_activate(struct swap_info_struct *sis,
5167 struct file *swap_file, sector_t *span)
5168{
5169 struct cifsFileInfo *cfile = swap_file->private_data;
5170 struct inode *inode = swap_file->f_mapping->host;
5171 unsigned long blocks;
5172 long long isize;
5173
5174 cifs_dbg(FYI, "swap activate\n");
5175
5176 if (!swap_file->f_mapping->a_ops->swap_rw)
5177 /* Cannot support swap */
5178 return -EINVAL;
5179
5180 spin_lock(&inode->i_lock);
5181 blocks = inode->i_blocks;
5182 isize = inode->i_size;
5183 spin_unlock(&inode->i_lock);
5184 if (blocks*512 < isize) {
5185 pr_warn("swap activate: swapfile has holes\n");
5186 return -EINVAL;
5187 }
5188 *span = sis->pages;
5189
5190 pr_warn_once("Swap support over SMB3 is experimental\n");
5191
5192 /*
5193 * TODO: consider adding ACL (or documenting how) to prevent other
5194 * users (on this or other systems) from reading it
5195 */
5196
5197
5198 /* TODO: add sk_set_memalloc(inet) or similar */
5199
5200 if (cfile)
5201 cfile->swapfile = true;
5202 /*
5203 * TODO: Since file already open, we can't open with DENY_ALL here
5204 * but we could add call to grab a byte range lock to prevent others
5205 * from reading or writing the file
5206 */
5207
5208 sis->flags |= SWP_FS_OPS;
5209 return add_swap_extent(sis, 0, sis->max, 0);
5210}
5211
5212static void cifs_swap_deactivate(struct file *file)
5213{
5214 struct cifsFileInfo *cfile = file->private_data;
5215
5216 cifs_dbg(FYI, "swap deactivate\n");
5217
5218 /* TODO: undo sk_set_memalloc(inet) will eventually be needed */
5219
5220 if (cfile)
5221 cfile->swapfile = false;
5222
5223 /* do we need to unpin (or unlock) the file */
5224}
5225
5226/*
5227 * Mark a page as having been made dirty and thus needing writeback. We also
5228 * need to pin the cache object to write back to.
5229 */
5230#ifdef CONFIG_CIFS_FSCACHE
5231static bool cifs_dirty_folio(struct address_space *mapping, struct folio *folio)
5232{
5233 return fscache_dirty_folio(mapping, folio,
5234 cifs_inode_cookie(mapping->host));
5235}
5236#else
5237#define cifs_dirty_folio filemap_dirty_folio
5238#endif
5239
5240const struct address_space_operations cifs_addr_ops = {
5241 .read_folio = cifs_read_folio,
5242 .readahead = cifs_readahead,
5243 .writepages = cifs_writepages,
5244 .write_begin = cifs_write_begin,
5245 .write_end = cifs_write_end,
5246 .dirty_folio = cifs_dirty_folio,
5247 .release_folio = cifs_release_folio,
5248 .direct_IO = cifs_direct_io,
5249 .invalidate_folio = cifs_invalidate_folio,
5250 .launder_folio = cifs_launder_folio,
5251 .migrate_folio = filemap_migrate_folio,
5252 /*
5253 * TODO: investigate and if useful we could add an is_dirty_writeback
5254 * helper if needed
5255 */
5256 .swap_activate = cifs_swap_activate,
5257 .swap_deactivate = cifs_swap_deactivate,
5258};
5259
5260/*
5261 * cifs_readahead requires the server to support a buffer large enough to
5262 * contain the header plus one complete page of data. Otherwise, we need
5263 * to leave cifs_readahead out of the address space operations.
5264 */
5265const struct address_space_operations cifs_addr_ops_smallbuf = {
5266 .read_folio = cifs_read_folio,
5267 .writepages = cifs_writepages,
5268 .write_begin = cifs_write_begin,
5269 .write_end = cifs_write_end,
5270 .dirty_folio = cifs_dirty_folio,
5271 .release_folio = cifs_release_folio,
5272 .invalidate_folio = cifs_invalidate_folio,
5273 .launder_folio = cifs_launder_folio,
5274 .migrate_folio = filemap_migrate_folio,
5275};
1// SPDX-License-Identifier: LGPL-2.1
2/*
3 * fs/cifs/file.c
4 *
5 * vfs operations that deal with files
6 *
7 * Copyright (C) International Business Machines Corp., 2002,2010
8 * Author(s): Steve French (sfrench@us.ibm.com)
9 * Jeremy Allison (jra@samba.org)
10 *
11 */
12#include <linux/fs.h>
13#include <linux/backing-dev.h>
14#include <linux/stat.h>
15#include <linux/fcntl.h>
16#include <linux/pagemap.h>
17#include <linux/pagevec.h>
18#include <linux/writeback.h>
19#include <linux/task_io_accounting_ops.h>
20#include <linux/delay.h>
21#include <linux/mount.h>
22#include <linux/slab.h>
23#include <linux/swap.h>
24#include <linux/mm.h>
25#include <asm/div64.h>
26#include "cifsfs.h"
27#include "cifspdu.h"
28#include "cifsglob.h"
29#include "cifsproto.h"
30#include "cifs_unicode.h"
31#include "cifs_debug.h"
32#include "cifs_fs_sb.h"
33#include "fscache.h"
34#include "smbdirect.h"
35#include "fs_context.h"
36#include "cifs_ioctl.h"
37
38static inline int cifs_convert_flags(unsigned int flags)
39{
40 if ((flags & O_ACCMODE) == O_RDONLY)
41 return GENERIC_READ;
42 else if ((flags & O_ACCMODE) == O_WRONLY)
43 return GENERIC_WRITE;
44 else if ((flags & O_ACCMODE) == O_RDWR) {
45 /* GENERIC_ALL is too much permission to request
46 can cause unnecessary access denied on create */
47 /* return GENERIC_ALL; */
48 return (GENERIC_READ | GENERIC_WRITE);
49 }
50
51 return (READ_CONTROL | FILE_WRITE_ATTRIBUTES | FILE_READ_ATTRIBUTES |
52 FILE_WRITE_EA | FILE_APPEND_DATA | FILE_WRITE_DATA |
53 FILE_READ_DATA);
54}
55
56static u32 cifs_posix_convert_flags(unsigned int flags)
57{
58 u32 posix_flags = 0;
59
60 if ((flags & O_ACCMODE) == O_RDONLY)
61 posix_flags = SMB_O_RDONLY;
62 else if ((flags & O_ACCMODE) == O_WRONLY)
63 posix_flags = SMB_O_WRONLY;
64 else if ((flags & O_ACCMODE) == O_RDWR)
65 posix_flags = SMB_O_RDWR;
66
67 if (flags & O_CREAT) {
68 posix_flags |= SMB_O_CREAT;
69 if (flags & O_EXCL)
70 posix_flags |= SMB_O_EXCL;
71 } else if (flags & O_EXCL)
72 cifs_dbg(FYI, "Application %s pid %d has incorrectly set O_EXCL flag but not O_CREAT on file open. Ignoring O_EXCL\n",
73 current->comm, current->tgid);
74
75 if (flags & O_TRUNC)
76 posix_flags |= SMB_O_TRUNC;
77 /* be safe and imply O_SYNC for O_DSYNC */
78 if (flags & O_DSYNC)
79 posix_flags |= SMB_O_SYNC;
80 if (flags & O_DIRECTORY)
81 posix_flags |= SMB_O_DIRECTORY;
82 if (flags & O_NOFOLLOW)
83 posix_flags |= SMB_O_NOFOLLOW;
84 if (flags & O_DIRECT)
85 posix_flags |= SMB_O_DIRECT;
86
87 return posix_flags;
88}
89
90static inline int cifs_get_disposition(unsigned int flags)
91{
92 if ((flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
93 return FILE_CREATE;
94 else if ((flags & (O_CREAT | O_TRUNC)) == (O_CREAT | O_TRUNC))
95 return FILE_OVERWRITE_IF;
96 else if ((flags & O_CREAT) == O_CREAT)
97 return FILE_OPEN_IF;
98 else if ((flags & O_TRUNC) == O_TRUNC)
99 return FILE_OVERWRITE;
100 else
101 return FILE_OPEN;
102}
103
104int cifs_posix_open(const char *full_path, struct inode **pinode,
105 struct super_block *sb, int mode, unsigned int f_flags,
106 __u32 *poplock, __u16 *pnetfid, unsigned int xid)
107{
108 int rc;
109 FILE_UNIX_BASIC_INFO *presp_data;
110 __u32 posix_flags = 0;
111 struct cifs_sb_info *cifs_sb = CIFS_SB(sb);
112 struct cifs_fattr fattr;
113 struct tcon_link *tlink;
114 struct cifs_tcon *tcon;
115
116 cifs_dbg(FYI, "posix open %s\n", full_path);
117
118 presp_data = kzalloc(sizeof(FILE_UNIX_BASIC_INFO), GFP_KERNEL);
119 if (presp_data == NULL)
120 return -ENOMEM;
121
122 tlink = cifs_sb_tlink(cifs_sb);
123 if (IS_ERR(tlink)) {
124 rc = PTR_ERR(tlink);
125 goto posix_open_ret;
126 }
127
128 tcon = tlink_tcon(tlink);
129 mode &= ~current_umask();
130
131 posix_flags = cifs_posix_convert_flags(f_flags);
132 rc = CIFSPOSIXCreate(xid, tcon, posix_flags, mode, pnetfid, presp_data,
133 poplock, full_path, cifs_sb->local_nls,
134 cifs_remap(cifs_sb));
135 cifs_put_tlink(tlink);
136
137 if (rc)
138 goto posix_open_ret;
139
140 if (presp_data->Type == cpu_to_le32(-1))
141 goto posix_open_ret; /* open ok, caller does qpathinfo */
142
143 if (!pinode)
144 goto posix_open_ret; /* caller does not need info */
145
146 cifs_unix_basic_to_fattr(&fattr, presp_data, cifs_sb);
147
148 /* get new inode and set it up */
149 if (*pinode == NULL) {
150 cifs_fill_uniqueid(sb, &fattr);
151 *pinode = cifs_iget(sb, &fattr);
152 if (!*pinode) {
153 rc = -ENOMEM;
154 goto posix_open_ret;
155 }
156 } else {
157 cifs_revalidate_mapping(*pinode);
158 rc = cifs_fattr_to_inode(*pinode, &fattr);
159 }
160
161posix_open_ret:
162 kfree(presp_data);
163 return rc;
164}
165
166static int
167cifs_nt_open(const char *full_path, struct inode *inode, struct cifs_sb_info *cifs_sb,
168 struct cifs_tcon *tcon, unsigned int f_flags, __u32 *oplock,
169 struct cifs_fid *fid, unsigned int xid)
170{
171 int rc;
172 int desired_access;
173 int disposition;
174 int create_options = CREATE_NOT_DIR;
175 FILE_ALL_INFO *buf;
176 struct TCP_Server_Info *server = tcon->ses->server;
177 struct cifs_open_parms oparms;
178
179 if (!server->ops->open)
180 return -ENOSYS;
181
182 desired_access = cifs_convert_flags(f_flags);
183
184/*********************************************************************
185 * open flag mapping table:
186 *
187 * POSIX Flag CIFS Disposition
188 * ---------- ----------------
189 * O_CREAT FILE_OPEN_IF
190 * O_CREAT | O_EXCL FILE_CREATE
191 * O_CREAT | O_TRUNC FILE_OVERWRITE_IF
192 * O_TRUNC FILE_OVERWRITE
193 * none of the above FILE_OPEN
194 *
195 * Note that there is not a direct match between disposition
196 * FILE_SUPERSEDE (ie create whether or not file exists although
197 * O_CREAT | O_TRUNC is similar but truncates the existing
198 * file rather than creating a new file as FILE_SUPERSEDE does
199 * (which uses the attributes / metadata passed in on open call)
200 *?
201 *? O_SYNC is a reasonable match to CIFS writethrough flag
202 *? and the read write flags match reasonably. O_LARGEFILE
203 *? is irrelevant because largefile support is always used
204 *? by this client. Flags O_APPEND, O_DIRECT, O_DIRECTORY,
205 * O_FASYNC, O_NOFOLLOW, O_NONBLOCK need further investigation
206 *********************************************************************/
207
208 disposition = cifs_get_disposition(f_flags);
209
210 /* BB pass O_SYNC flag through on file attributes .. BB */
211
212 buf = kmalloc(sizeof(FILE_ALL_INFO), GFP_KERNEL);
213 if (!buf)
214 return -ENOMEM;
215
216 /* O_SYNC also has bit for O_DSYNC so following check picks up either */
217 if (f_flags & O_SYNC)
218 create_options |= CREATE_WRITE_THROUGH;
219
220 if (f_flags & O_DIRECT)
221 create_options |= CREATE_NO_BUFFER;
222
223 oparms.tcon = tcon;
224 oparms.cifs_sb = cifs_sb;
225 oparms.desired_access = desired_access;
226 oparms.create_options = cifs_create_options(cifs_sb, create_options);
227 oparms.disposition = disposition;
228 oparms.path = full_path;
229 oparms.fid = fid;
230 oparms.reconnect = false;
231
232 rc = server->ops->open(xid, &oparms, oplock, buf);
233
234 if (rc)
235 goto out;
236
237 /* TODO: Add support for calling posix query info but with passing in fid */
238 if (tcon->unix_ext)
239 rc = cifs_get_inode_info_unix(&inode, full_path, inode->i_sb,
240 xid);
241 else
242 rc = cifs_get_inode_info(&inode, full_path, buf, inode->i_sb,
243 xid, fid);
244
245 if (rc) {
246 server->ops->close(xid, tcon, fid);
247 if (rc == -ESTALE)
248 rc = -EOPENSTALE;
249 }
250
251out:
252 kfree(buf);
253 return rc;
254}
255
256static bool
257cifs_has_mand_locks(struct cifsInodeInfo *cinode)
258{
259 struct cifs_fid_locks *cur;
260 bool has_locks = false;
261
262 down_read(&cinode->lock_sem);
263 list_for_each_entry(cur, &cinode->llist, llist) {
264 if (!list_empty(&cur->locks)) {
265 has_locks = true;
266 break;
267 }
268 }
269 up_read(&cinode->lock_sem);
270 return has_locks;
271}
272
273void
274cifs_down_write(struct rw_semaphore *sem)
275{
276 while (!down_write_trylock(sem))
277 msleep(10);
278}
279
280static void cifsFileInfo_put_work(struct work_struct *work);
281
282struct cifsFileInfo *
283cifs_new_fileinfo(struct cifs_fid *fid, struct file *file,
284 struct tcon_link *tlink, __u32 oplock)
285{
286 struct dentry *dentry = file_dentry(file);
287 struct inode *inode = d_inode(dentry);
288 struct cifsInodeInfo *cinode = CIFS_I(inode);
289 struct cifsFileInfo *cfile;
290 struct cifs_fid_locks *fdlocks;
291 struct cifs_tcon *tcon = tlink_tcon(tlink);
292 struct TCP_Server_Info *server = tcon->ses->server;
293
294 cfile = kzalloc(sizeof(struct cifsFileInfo), GFP_KERNEL);
295 if (cfile == NULL)
296 return cfile;
297
298 fdlocks = kzalloc(sizeof(struct cifs_fid_locks), GFP_KERNEL);
299 if (!fdlocks) {
300 kfree(cfile);
301 return NULL;
302 }
303
304 INIT_LIST_HEAD(&fdlocks->locks);
305 fdlocks->cfile = cfile;
306 cfile->llist = fdlocks;
307
308 cfile->count = 1;
309 cfile->pid = current->tgid;
310 cfile->uid = current_fsuid();
311 cfile->dentry = dget(dentry);
312 cfile->f_flags = file->f_flags;
313 cfile->invalidHandle = false;
314 cfile->deferred_close_scheduled = false;
315 cfile->tlink = cifs_get_tlink(tlink);
316 INIT_WORK(&cfile->oplock_break, cifs_oplock_break);
317 INIT_WORK(&cfile->put, cifsFileInfo_put_work);
318 INIT_DELAYED_WORK(&cfile->deferred, smb2_deferred_work_close);
319 mutex_init(&cfile->fh_mutex);
320 spin_lock_init(&cfile->file_info_lock);
321
322 cifs_sb_active(inode->i_sb);
323
324 /*
325 * If the server returned a read oplock and we have mandatory brlocks,
326 * set oplock level to None.
327 */
328 if (server->ops->is_read_op(oplock) && cifs_has_mand_locks(cinode)) {
329 cifs_dbg(FYI, "Reset oplock val from read to None due to mand locks\n");
330 oplock = 0;
331 }
332
333 cifs_down_write(&cinode->lock_sem);
334 list_add(&fdlocks->llist, &cinode->llist);
335 up_write(&cinode->lock_sem);
336
337 spin_lock(&tcon->open_file_lock);
338 if (fid->pending_open->oplock != CIFS_OPLOCK_NO_CHANGE && oplock)
339 oplock = fid->pending_open->oplock;
340 list_del(&fid->pending_open->olist);
341
342 fid->purge_cache = false;
343 server->ops->set_fid(cfile, fid, oplock);
344
345 list_add(&cfile->tlist, &tcon->openFileList);
346 atomic_inc(&tcon->num_local_opens);
347
348 /* if readable file instance put first in list*/
349 spin_lock(&cinode->open_file_lock);
350 if (file->f_mode & FMODE_READ)
351 list_add(&cfile->flist, &cinode->openFileList);
352 else
353 list_add_tail(&cfile->flist, &cinode->openFileList);
354 spin_unlock(&cinode->open_file_lock);
355 spin_unlock(&tcon->open_file_lock);
356
357 if (fid->purge_cache)
358 cifs_zap_mapping(inode);
359
360 file->private_data = cfile;
361 return cfile;
362}
363
364struct cifsFileInfo *
365cifsFileInfo_get(struct cifsFileInfo *cifs_file)
366{
367 spin_lock(&cifs_file->file_info_lock);
368 cifsFileInfo_get_locked(cifs_file);
369 spin_unlock(&cifs_file->file_info_lock);
370 return cifs_file;
371}
372
373static void cifsFileInfo_put_final(struct cifsFileInfo *cifs_file)
374{
375 struct inode *inode = d_inode(cifs_file->dentry);
376 struct cifsInodeInfo *cifsi = CIFS_I(inode);
377 struct cifsLockInfo *li, *tmp;
378 struct super_block *sb = inode->i_sb;
379
380 /*
381 * Delete any outstanding lock records. We'll lose them when the file
382 * is closed anyway.
383 */
384 cifs_down_write(&cifsi->lock_sem);
385 list_for_each_entry_safe(li, tmp, &cifs_file->llist->locks, llist) {
386 list_del(&li->llist);
387 cifs_del_lock_waiters(li);
388 kfree(li);
389 }
390 list_del(&cifs_file->llist->llist);
391 kfree(cifs_file->llist);
392 up_write(&cifsi->lock_sem);
393
394 cifs_put_tlink(cifs_file->tlink);
395 dput(cifs_file->dentry);
396 cifs_sb_deactive(sb);
397 kfree(cifs_file);
398}
399
400static void cifsFileInfo_put_work(struct work_struct *work)
401{
402 struct cifsFileInfo *cifs_file = container_of(work,
403 struct cifsFileInfo, put);
404
405 cifsFileInfo_put_final(cifs_file);
406}
407
408/**
409 * cifsFileInfo_put - release a reference of file priv data
410 *
411 * Always potentially wait for oplock handler. See _cifsFileInfo_put().
412 *
413 * @cifs_file: cifs/smb3 specific info (eg refcounts) for an open file
414 */
415void cifsFileInfo_put(struct cifsFileInfo *cifs_file)
416{
417 _cifsFileInfo_put(cifs_file, true, true);
418}
419
420/**
421 * _cifsFileInfo_put - release a reference of file priv data
422 *
423 * This may involve closing the filehandle @cifs_file out on the
424 * server. Must be called without holding tcon->open_file_lock,
425 * cinode->open_file_lock and cifs_file->file_info_lock.
426 *
427 * If @wait_for_oplock_handler is true and we are releasing the last
428 * reference, wait for any running oplock break handler of the file
429 * and cancel any pending one.
430 *
431 * @cifs_file: cifs/smb3 specific info (eg refcounts) for an open file
432 * @wait_oplock_handler: must be false if called from oplock_break_handler
433 * @offload: not offloaded on close and oplock breaks
434 *
435 */
436void _cifsFileInfo_put(struct cifsFileInfo *cifs_file,
437 bool wait_oplock_handler, bool offload)
438{
439 struct inode *inode = d_inode(cifs_file->dentry);
440 struct cifs_tcon *tcon = tlink_tcon(cifs_file->tlink);
441 struct TCP_Server_Info *server = tcon->ses->server;
442 struct cifsInodeInfo *cifsi = CIFS_I(inode);
443 struct super_block *sb = inode->i_sb;
444 struct cifs_sb_info *cifs_sb = CIFS_SB(sb);
445 struct cifs_fid fid;
446 struct cifs_pending_open open;
447 bool oplock_break_cancelled;
448
449 spin_lock(&tcon->open_file_lock);
450 spin_lock(&cifsi->open_file_lock);
451 spin_lock(&cifs_file->file_info_lock);
452 if (--cifs_file->count > 0) {
453 spin_unlock(&cifs_file->file_info_lock);
454 spin_unlock(&cifsi->open_file_lock);
455 spin_unlock(&tcon->open_file_lock);
456 return;
457 }
458 spin_unlock(&cifs_file->file_info_lock);
459
460 if (server->ops->get_lease_key)
461 server->ops->get_lease_key(inode, &fid);
462
463 /* store open in pending opens to make sure we don't miss lease break */
464 cifs_add_pending_open_locked(&fid, cifs_file->tlink, &open);
465
466 /* remove it from the lists */
467 list_del(&cifs_file->flist);
468 list_del(&cifs_file->tlist);
469 atomic_dec(&tcon->num_local_opens);
470
471 if (list_empty(&cifsi->openFileList)) {
472 cifs_dbg(FYI, "closing last open instance for inode %p\n",
473 d_inode(cifs_file->dentry));
474 /*
475 * In strict cache mode we need invalidate mapping on the last
476 * close because it may cause a error when we open this file
477 * again and get at least level II oplock.
478 */
479 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_STRICT_IO)
480 set_bit(CIFS_INO_INVALID_MAPPING, &cifsi->flags);
481 cifs_set_oplock_level(cifsi, 0);
482 }
483
484 spin_unlock(&cifsi->open_file_lock);
485 spin_unlock(&tcon->open_file_lock);
486
487 oplock_break_cancelled = wait_oplock_handler ?
488 cancel_work_sync(&cifs_file->oplock_break) : false;
489
490 if (!tcon->need_reconnect && !cifs_file->invalidHandle) {
491 struct TCP_Server_Info *server = tcon->ses->server;
492 unsigned int xid;
493
494 xid = get_xid();
495 if (server->ops->close_getattr)
496 server->ops->close_getattr(xid, tcon, cifs_file);
497 else if (server->ops->close)
498 server->ops->close(xid, tcon, &cifs_file->fid);
499 _free_xid(xid);
500 }
501
502 if (oplock_break_cancelled)
503 cifs_done_oplock_break(cifsi);
504
505 cifs_del_pending_open(&open);
506
507 if (offload)
508 queue_work(fileinfo_put_wq, &cifs_file->put);
509 else
510 cifsFileInfo_put_final(cifs_file);
511}
512
513int cifs_open(struct inode *inode, struct file *file)
514
515{
516 int rc = -EACCES;
517 unsigned int xid;
518 __u32 oplock;
519 struct cifs_sb_info *cifs_sb;
520 struct TCP_Server_Info *server;
521 struct cifs_tcon *tcon;
522 struct tcon_link *tlink;
523 struct cifsFileInfo *cfile = NULL;
524 void *page;
525 const char *full_path;
526 bool posix_open_ok = false;
527 struct cifs_fid fid;
528 struct cifs_pending_open open;
529
530 xid = get_xid();
531
532 cifs_sb = CIFS_SB(inode->i_sb);
533 if (unlikely(cifs_forced_shutdown(cifs_sb))) {
534 free_xid(xid);
535 return -EIO;
536 }
537
538 tlink = cifs_sb_tlink(cifs_sb);
539 if (IS_ERR(tlink)) {
540 free_xid(xid);
541 return PTR_ERR(tlink);
542 }
543 tcon = tlink_tcon(tlink);
544 server = tcon->ses->server;
545
546 page = alloc_dentry_path();
547 full_path = build_path_from_dentry(file_dentry(file), page);
548 if (IS_ERR(full_path)) {
549 rc = PTR_ERR(full_path);
550 goto out;
551 }
552
553 cifs_dbg(FYI, "inode = 0x%p file flags are 0x%x for %s\n",
554 inode, file->f_flags, full_path);
555
556 if (file->f_flags & O_DIRECT &&
557 cifs_sb->mnt_cifs_flags & CIFS_MOUNT_STRICT_IO) {
558 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_BRL)
559 file->f_op = &cifs_file_direct_nobrl_ops;
560 else
561 file->f_op = &cifs_file_direct_ops;
562 }
563
564 /* Get the cached handle as SMB2 close is deferred */
565 rc = cifs_get_readable_path(tcon, full_path, &cfile);
566 if (rc == 0) {
567 if (file->f_flags == cfile->f_flags) {
568 file->private_data = cfile;
569 spin_lock(&CIFS_I(inode)->deferred_lock);
570 cifs_del_deferred_close(cfile);
571 spin_unlock(&CIFS_I(inode)->deferred_lock);
572 goto out;
573 } else {
574 _cifsFileInfo_put(cfile, true, false);
575 }
576 }
577
578 if (server->oplocks)
579 oplock = REQ_OPLOCK;
580 else
581 oplock = 0;
582
583 if (!tcon->broken_posix_open && tcon->unix_ext &&
584 cap_unix(tcon->ses) && (CIFS_UNIX_POSIX_PATH_OPS_CAP &
585 le64_to_cpu(tcon->fsUnixInfo.Capability))) {
586 /* can not refresh inode info since size could be stale */
587 rc = cifs_posix_open(full_path, &inode, inode->i_sb,
588 cifs_sb->ctx->file_mode /* ignored */,
589 file->f_flags, &oplock, &fid.netfid, xid);
590 if (rc == 0) {
591 cifs_dbg(FYI, "posix open succeeded\n");
592 posix_open_ok = true;
593 } else if ((rc == -EINVAL) || (rc == -EOPNOTSUPP)) {
594 if (tcon->ses->serverNOS)
595 cifs_dbg(VFS, "server %s of type %s returned unexpected error on SMB posix open, disabling posix open support. Check if server update available.\n",
596 tcon->ses->ip_addr,
597 tcon->ses->serverNOS);
598 tcon->broken_posix_open = true;
599 } else if ((rc != -EIO) && (rc != -EREMOTE) &&
600 (rc != -EOPNOTSUPP)) /* path not found or net err */
601 goto out;
602 /*
603 * Else fallthrough to retry open the old way on network i/o
604 * or DFS errors.
605 */
606 }
607
608 if (server->ops->get_lease_key)
609 server->ops->get_lease_key(inode, &fid);
610
611 cifs_add_pending_open(&fid, tlink, &open);
612
613 if (!posix_open_ok) {
614 if (server->ops->get_lease_key)
615 server->ops->get_lease_key(inode, &fid);
616
617 rc = cifs_nt_open(full_path, inode, cifs_sb, tcon,
618 file->f_flags, &oplock, &fid, xid);
619 if (rc) {
620 cifs_del_pending_open(&open);
621 goto out;
622 }
623 }
624
625 cfile = cifs_new_fileinfo(&fid, file, tlink, oplock);
626 if (cfile == NULL) {
627 if (server->ops->close)
628 server->ops->close(xid, tcon, &fid);
629 cifs_del_pending_open(&open);
630 rc = -ENOMEM;
631 goto out;
632 }
633
634 cifs_fscache_set_inode_cookie(inode, file);
635
636 if ((oplock & CIFS_CREATE_ACTION) && !posix_open_ok && tcon->unix_ext) {
637 /*
638 * Time to set mode which we can not set earlier due to
639 * problems creating new read-only files.
640 */
641 struct cifs_unix_set_info_args args = {
642 .mode = inode->i_mode,
643 .uid = INVALID_UID, /* no change */
644 .gid = INVALID_GID, /* no change */
645 .ctime = NO_CHANGE_64,
646 .atime = NO_CHANGE_64,
647 .mtime = NO_CHANGE_64,
648 .device = 0,
649 };
650 CIFSSMBUnixSetFileInfo(xid, tcon, &args, fid.netfid,
651 cfile->pid);
652 }
653
654out:
655 free_dentry_path(page);
656 free_xid(xid);
657 cifs_put_tlink(tlink);
658 return rc;
659}
660
661static int cifs_push_posix_locks(struct cifsFileInfo *cfile);
662
663/*
664 * Try to reacquire byte range locks that were released when session
665 * to server was lost.
666 */
667static int
668cifs_relock_file(struct cifsFileInfo *cfile)
669{
670 struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb);
671 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
672 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
673 int rc = 0;
674
675 down_read_nested(&cinode->lock_sem, SINGLE_DEPTH_NESTING);
676 if (cinode->can_cache_brlcks) {
677 /* can cache locks - no need to relock */
678 up_read(&cinode->lock_sem);
679 return rc;
680 }
681
682 if (cap_unix(tcon->ses) &&
683 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
684 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
685 rc = cifs_push_posix_locks(cfile);
686 else
687 rc = tcon->ses->server->ops->push_mand_locks(cfile);
688
689 up_read(&cinode->lock_sem);
690 return rc;
691}
692
693static int
694cifs_reopen_file(struct cifsFileInfo *cfile, bool can_flush)
695{
696 int rc = -EACCES;
697 unsigned int xid;
698 __u32 oplock;
699 struct cifs_sb_info *cifs_sb;
700 struct cifs_tcon *tcon;
701 struct TCP_Server_Info *server;
702 struct cifsInodeInfo *cinode;
703 struct inode *inode;
704 void *page;
705 const char *full_path;
706 int desired_access;
707 int disposition = FILE_OPEN;
708 int create_options = CREATE_NOT_DIR;
709 struct cifs_open_parms oparms;
710
711 xid = get_xid();
712 mutex_lock(&cfile->fh_mutex);
713 if (!cfile->invalidHandle) {
714 mutex_unlock(&cfile->fh_mutex);
715 free_xid(xid);
716 return 0;
717 }
718
719 inode = d_inode(cfile->dentry);
720 cifs_sb = CIFS_SB(inode->i_sb);
721 tcon = tlink_tcon(cfile->tlink);
722 server = tcon->ses->server;
723
724 /*
725 * Can not grab rename sem here because various ops, including those
726 * that already have the rename sem can end up causing writepage to get
727 * called and if the server was down that means we end up here, and we
728 * can never tell if the caller already has the rename_sem.
729 */
730 page = alloc_dentry_path();
731 full_path = build_path_from_dentry(cfile->dentry, page);
732 if (IS_ERR(full_path)) {
733 mutex_unlock(&cfile->fh_mutex);
734 free_dentry_path(page);
735 free_xid(xid);
736 return PTR_ERR(full_path);
737 }
738
739 cifs_dbg(FYI, "inode = 0x%p file flags 0x%x for %s\n",
740 inode, cfile->f_flags, full_path);
741
742 if (tcon->ses->server->oplocks)
743 oplock = REQ_OPLOCK;
744 else
745 oplock = 0;
746
747 if (tcon->unix_ext && cap_unix(tcon->ses) &&
748 (CIFS_UNIX_POSIX_PATH_OPS_CAP &
749 le64_to_cpu(tcon->fsUnixInfo.Capability))) {
750 /*
751 * O_CREAT, O_EXCL and O_TRUNC already had their effect on the
752 * original open. Must mask them off for a reopen.
753 */
754 unsigned int oflags = cfile->f_flags &
755 ~(O_CREAT | O_EXCL | O_TRUNC);
756
757 rc = cifs_posix_open(full_path, NULL, inode->i_sb,
758 cifs_sb->ctx->file_mode /* ignored */,
759 oflags, &oplock, &cfile->fid.netfid, xid);
760 if (rc == 0) {
761 cifs_dbg(FYI, "posix reopen succeeded\n");
762 oparms.reconnect = true;
763 goto reopen_success;
764 }
765 /*
766 * fallthrough to retry open the old way on errors, especially
767 * in the reconnect path it is important to retry hard
768 */
769 }
770
771 desired_access = cifs_convert_flags(cfile->f_flags);
772
773 /* O_SYNC also has bit for O_DSYNC so following check picks up either */
774 if (cfile->f_flags & O_SYNC)
775 create_options |= CREATE_WRITE_THROUGH;
776
777 if (cfile->f_flags & O_DIRECT)
778 create_options |= CREATE_NO_BUFFER;
779
780 if (server->ops->get_lease_key)
781 server->ops->get_lease_key(inode, &cfile->fid);
782
783 oparms.tcon = tcon;
784 oparms.cifs_sb = cifs_sb;
785 oparms.desired_access = desired_access;
786 oparms.create_options = cifs_create_options(cifs_sb, create_options);
787 oparms.disposition = disposition;
788 oparms.path = full_path;
789 oparms.fid = &cfile->fid;
790 oparms.reconnect = true;
791
792 /*
793 * Can not refresh inode by passing in file_info buf to be returned by
794 * ops->open and then calling get_inode_info with returned buf since
795 * file might have write behind data that needs to be flushed and server
796 * version of file size can be stale. If we knew for sure that inode was
797 * not dirty locally we could do this.
798 */
799 rc = server->ops->open(xid, &oparms, &oplock, NULL);
800 if (rc == -ENOENT && oparms.reconnect == false) {
801 /* durable handle timeout is expired - open the file again */
802 rc = server->ops->open(xid, &oparms, &oplock, NULL);
803 /* indicate that we need to relock the file */
804 oparms.reconnect = true;
805 }
806
807 if (rc) {
808 mutex_unlock(&cfile->fh_mutex);
809 cifs_dbg(FYI, "cifs_reopen returned 0x%x\n", rc);
810 cifs_dbg(FYI, "oplock: %d\n", oplock);
811 goto reopen_error_exit;
812 }
813
814reopen_success:
815 cfile->invalidHandle = false;
816 mutex_unlock(&cfile->fh_mutex);
817 cinode = CIFS_I(inode);
818
819 if (can_flush) {
820 rc = filemap_write_and_wait(inode->i_mapping);
821 if (!is_interrupt_error(rc))
822 mapping_set_error(inode->i_mapping, rc);
823
824 if (tcon->posix_extensions)
825 rc = smb311_posix_get_inode_info(&inode, full_path, inode->i_sb, xid);
826 else if (tcon->unix_ext)
827 rc = cifs_get_inode_info_unix(&inode, full_path,
828 inode->i_sb, xid);
829 else
830 rc = cifs_get_inode_info(&inode, full_path, NULL,
831 inode->i_sb, xid, NULL);
832 }
833 /*
834 * Else we are writing out data to server already and could deadlock if
835 * we tried to flush data, and since we do not know if we have data that
836 * would invalidate the current end of file on the server we can not go
837 * to the server to get the new inode info.
838 */
839
840 /*
841 * If the server returned a read oplock and we have mandatory brlocks,
842 * set oplock level to None.
843 */
844 if (server->ops->is_read_op(oplock) && cifs_has_mand_locks(cinode)) {
845 cifs_dbg(FYI, "Reset oplock val from read to None due to mand locks\n");
846 oplock = 0;
847 }
848
849 server->ops->set_fid(cfile, &cfile->fid, oplock);
850 if (oparms.reconnect)
851 cifs_relock_file(cfile);
852
853reopen_error_exit:
854 free_dentry_path(page);
855 free_xid(xid);
856 return rc;
857}
858
859void smb2_deferred_work_close(struct work_struct *work)
860{
861 struct cifsFileInfo *cfile = container_of(work,
862 struct cifsFileInfo, deferred.work);
863
864 spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
865 cifs_del_deferred_close(cfile);
866 cfile->deferred_close_scheduled = false;
867 spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
868 _cifsFileInfo_put(cfile, true, false);
869}
870
871int cifs_close(struct inode *inode, struct file *file)
872{
873 struct cifsFileInfo *cfile;
874 struct cifsInodeInfo *cinode = CIFS_I(inode);
875 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
876 struct cifs_deferred_close *dclose;
877
878 if (file->private_data != NULL) {
879 cfile = file->private_data;
880 file->private_data = NULL;
881 dclose = kmalloc(sizeof(struct cifs_deferred_close), GFP_KERNEL);
882 if ((cinode->oplock == CIFS_CACHE_RHW_FLG) &&
883 cinode->lease_granted &&
884 !test_bit(CIFS_INO_CLOSE_ON_LOCK, &cinode->flags) &&
885 dclose) {
886 if (test_bit(CIFS_INO_MODIFIED_ATTR, &cinode->flags))
887 inode->i_ctime = inode->i_mtime = current_time(inode);
888 spin_lock(&cinode->deferred_lock);
889 cifs_add_deferred_close(cfile, dclose);
890 if (cfile->deferred_close_scheduled &&
891 delayed_work_pending(&cfile->deferred)) {
892 /*
893 * If there is no pending work, mod_delayed_work queues new work.
894 * So, Increase the ref count to avoid use-after-free.
895 */
896 if (!mod_delayed_work(deferredclose_wq,
897 &cfile->deferred, cifs_sb->ctx->acregmax))
898 cifsFileInfo_get(cfile);
899 } else {
900 /* Deferred close for files */
901 queue_delayed_work(deferredclose_wq,
902 &cfile->deferred, cifs_sb->ctx->acregmax);
903 cfile->deferred_close_scheduled = true;
904 spin_unlock(&cinode->deferred_lock);
905 return 0;
906 }
907 spin_unlock(&cinode->deferred_lock);
908 _cifsFileInfo_put(cfile, true, false);
909 } else {
910 _cifsFileInfo_put(cfile, true, false);
911 kfree(dclose);
912 }
913 }
914
915 /* return code from the ->release op is always ignored */
916 return 0;
917}
918
919void
920cifs_reopen_persistent_handles(struct cifs_tcon *tcon)
921{
922 struct cifsFileInfo *open_file;
923 struct list_head *tmp;
924 struct list_head *tmp1;
925 struct list_head tmp_list;
926
927 if (!tcon->use_persistent || !tcon->need_reopen_files)
928 return;
929
930 tcon->need_reopen_files = false;
931
932 cifs_dbg(FYI, "Reopen persistent handles\n");
933 INIT_LIST_HEAD(&tmp_list);
934
935 /* list all files open on tree connection, reopen resilient handles */
936 spin_lock(&tcon->open_file_lock);
937 list_for_each(tmp, &tcon->openFileList) {
938 open_file = list_entry(tmp, struct cifsFileInfo, tlist);
939 if (!open_file->invalidHandle)
940 continue;
941 cifsFileInfo_get(open_file);
942 list_add_tail(&open_file->rlist, &tmp_list);
943 }
944 spin_unlock(&tcon->open_file_lock);
945
946 list_for_each_safe(tmp, tmp1, &tmp_list) {
947 open_file = list_entry(tmp, struct cifsFileInfo, rlist);
948 if (cifs_reopen_file(open_file, false /* do not flush */))
949 tcon->need_reopen_files = true;
950 list_del_init(&open_file->rlist);
951 cifsFileInfo_put(open_file);
952 }
953}
954
955int cifs_closedir(struct inode *inode, struct file *file)
956{
957 int rc = 0;
958 unsigned int xid;
959 struct cifsFileInfo *cfile = file->private_data;
960 struct cifs_tcon *tcon;
961 struct TCP_Server_Info *server;
962 char *buf;
963
964 cifs_dbg(FYI, "Closedir inode = 0x%p\n", inode);
965
966 if (cfile == NULL)
967 return rc;
968
969 xid = get_xid();
970 tcon = tlink_tcon(cfile->tlink);
971 server = tcon->ses->server;
972
973 cifs_dbg(FYI, "Freeing private data in close dir\n");
974 spin_lock(&cfile->file_info_lock);
975 if (server->ops->dir_needs_close(cfile)) {
976 cfile->invalidHandle = true;
977 spin_unlock(&cfile->file_info_lock);
978 if (server->ops->close_dir)
979 rc = server->ops->close_dir(xid, tcon, &cfile->fid);
980 else
981 rc = -ENOSYS;
982 cifs_dbg(FYI, "Closing uncompleted readdir with rc %d\n", rc);
983 /* not much we can do if it fails anyway, ignore rc */
984 rc = 0;
985 } else
986 spin_unlock(&cfile->file_info_lock);
987
988 buf = cfile->srch_inf.ntwrk_buf_start;
989 if (buf) {
990 cifs_dbg(FYI, "closedir free smb buf in srch struct\n");
991 cfile->srch_inf.ntwrk_buf_start = NULL;
992 if (cfile->srch_inf.smallBuf)
993 cifs_small_buf_release(buf);
994 else
995 cifs_buf_release(buf);
996 }
997
998 cifs_put_tlink(cfile->tlink);
999 kfree(file->private_data);
1000 file->private_data = NULL;
1001 /* BB can we lock the filestruct while this is going on? */
1002 free_xid(xid);
1003 return rc;
1004}
1005
1006static struct cifsLockInfo *
1007cifs_lock_init(__u64 offset, __u64 length, __u8 type, __u16 flags)
1008{
1009 struct cifsLockInfo *lock =
1010 kmalloc(sizeof(struct cifsLockInfo), GFP_KERNEL);
1011 if (!lock)
1012 return lock;
1013 lock->offset = offset;
1014 lock->length = length;
1015 lock->type = type;
1016 lock->pid = current->tgid;
1017 lock->flags = flags;
1018 INIT_LIST_HEAD(&lock->blist);
1019 init_waitqueue_head(&lock->block_q);
1020 return lock;
1021}
1022
1023void
1024cifs_del_lock_waiters(struct cifsLockInfo *lock)
1025{
1026 struct cifsLockInfo *li, *tmp;
1027 list_for_each_entry_safe(li, tmp, &lock->blist, blist) {
1028 list_del_init(&li->blist);
1029 wake_up(&li->block_q);
1030 }
1031}
1032
1033#define CIFS_LOCK_OP 0
1034#define CIFS_READ_OP 1
1035#define CIFS_WRITE_OP 2
1036
1037/* @rw_check : 0 - no op, 1 - read, 2 - write */
1038static bool
1039cifs_find_fid_lock_conflict(struct cifs_fid_locks *fdlocks, __u64 offset,
1040 __u64 length, __u8 type, __u16 flags,
1041 struct cifsFileInfo *cfile,
1042 struct cifsLockInfo **conf_lock, int rw_check)
1043{
1044 struct cifsLockInfo *li;
1045 struct cifsFileInfo *cur_cfile = fdlocks->cfile;
1046 struct TCP_Server_Info *server = tlink_tcon(cfile->tlink)->ses->server;
1047
1048 list_for_each_entry(li, &fdlocks->locks, llist) {
1049 if (offset + length <= li->offset ||
1050 offset >= li->offset + li->length)
1051 continue;
1052 if (rw_check != CIFS_LOCK_OP && current->tgid == li->pid &&
1053 server->ops->compare_fids(cfile, cur_cfile)) {
1054 /* shared lock prevents write op through the same fid */
1055 if (!(li->type & server->vals->shared_lock_type) ||
1056 rw_check != CIFS_WRITE_OP)
1057 continue;
1058 }
1059 if ((type & server->vals->shared_lock_type) &&
1060 ((server->ops->compare_fids(cfile, cur_cfile) &&
1061 current->tgid == li->pid) || type == li->type))
1062 continue;
1063 if (rw_check == CIFS_LOCK_OP &&
1064 (flags & FL_OFDLCK) && (li->flags & FL_OFDLCK) &&
1065 server->ops->compare_fids(cfile, cur_cfile))
1066 continue;
1067 if (conf_lock)
1068 *conf_lock = li;
1069 return true;
1070 }
1071 return false;
1072}
1073
1074bool
1075cifs_find_lock_conflict(struct cifsFileInfo *cfile, __u64 offset, __u64 length,
1076 __u8 type, __u16 flags,
1077 struct cifsLockInfo **conf_lock, int rw_check)
1078{
1079 bool rc = false;
1080 struct cifs_fid_locks *cur;
1081 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
1082
1083 list_for_each_entry(cur, &cinode->llist, llist) {
1084 rc = cifs_find_fid_lock_conflict(cur, offset, length, type,
1085 flags, cfile, conf_lock,
1086 rw_check);
1087 if (rc)
1088 break;
1089 }
1090
1091 return rc;
1092}
1093
1094/*
1095 * Check if there is another lock that prevents us to set the lock (mandatory
1096 * style). If such a lock exists, update the flock structure with its
1097 * properties. Otherwise, set the flock type to F_UNLCK if we can cache brlocks
1098 * or leave it the same if we can't. Returns 0 if we don't need to request to
1099 * the server or 1 otherwise.
1100 */
1101static int
1102cifs_lock_test(struct cifsFileInfo *cfile, __u64 offset, __u64 length,
1103 __u8 type, struct file_lock *flock)
1104{
1105 int rc = 0;
1106 struct cifsLockInfo *conf_lock;
1107 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
1108 struct TCP_Server_Info *server = tlink_tcon(cfile->tlink)->ses->server;
1109 bool exist;
1110
1111 down_read(&cinode->lock_sem);
1112
1113 exist = cifs_find_lock_conflict(cfile, offset, length, type,
1114 flock->fl_flags, &conf_lock,
1115 CIFS_LOCK_OP);
1116 if (exist) {
1117 flock->fl_start = conf_lock->offset;
1118 flock->fl_end = conf_lock->offset + conf_lock->length - 1;
1119 flock->fl_pid = conf_lock->pid;
1120 if (conf_lock->type & server->vals->shared_lock_type)
1121 flock->fl_type = F_RDLCK;
1122 else
1123 flock->fl_type = F_WRLCK;
1124 } else if (!cinode->can_cache_brlcks)
1125 rc = 1;
1126 else
1127 flock->fl_type = F_UNLCK;
1128
1129 up_read(&cinode->lock_sem);
1130 return rc;
1131}
1132
1133static void
1134cifs_lock_add(struct cifsFileInfo *cfile, struct cifsLockInfo *lock)
1135{
1136 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
1137 cifs_down_write(&cinode->lock_sem);
1138 list_add_tail(&lock->llist, &cfile->llist->locks);
1139 up_write(&cinode->lock_sem);
1140}
1141
1142/*
1143 * Set the byte-range lock (mandatory style). Returns:
1144 * 1) 0, if we set the lock and don't need to request to the server;
1145 * 2) 1, if no locks prevent us but we need to request to the server;
1146 * 3) -EACCES, if there is a lock that prevents us and wait is false.
1147 */
1148static int
1149cifs_lock_add_if(struct cifsFileInfo *cfile, struct cifsLockInfo *lock,
1150 bool wait)
1151{
1152 struct cifsLockInfo *conf_lock;
1153 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
1154 bool exist;
1155 int rc = 0;
1156
1157try_again:
1158 exist = false;
1159 cifs_down_write(&cinode->lock_sem);
1160
1161 exist = cifs_find_lock_conflict(cfile, lock->offset, lock->length,
1162 lock->type, lock->flags, &conf_lock,
1163 CIFS_LOCK_OP);
1164 if (!exist && cinode->can_cache_brlcks) {
1165 list_add_tail(&lock->llist, &cfile->llist->locks);
1166 up_write(&cinode->lock_sem);
1167 return rc;
1168 }
1169
1170 if (!exist)
1171 rc = 1;
1172 else if (!wait)
1173 rc = -EACCES;
1174 else {
1175 list_add_tail(&lock->blist, &conf_lock->blist);
1176 up_write(&cinode->lock_sem);
1177 rc = wait_event_interruptible(lock->block_q,
1178 (lock->blist.prev == &lock->blist) &&
1179 (lock->blist.next == &lock->blist));
1180 if (!rc)
1181 goto try_again;
1182 cifs_down_write(&cinode->lock_sem);
1183 list_del_init(&lock->blist);
1184 }
1185
1186 up_write(&cinode->lock_sem);
1187 return rc;
1188}
1189
1190/*
1191 * Check if there is another lock that prevents us to set the lock (posix
1192 * style). If such a lock exists, update the flock structure with its
1193 * properties. Otherwise, set the flock type to F_UNLCK if we can cache brlocks
1194 * or leave it the same if we can't. Returns 0 if we don't need to request to
1195 * the server or 1 otherwise.
1196 */
1197static int
1198cifs_posix_lock_test(struct file *file, struct file_lock *flock)
1199{
1200 int rc = 0;
1201 struct cifsInodeInfo *cinode = CIFS_I(file_inode(file));
1202 unsigned char saved_type = flock->fl_type;
1203
1204 if ((flock->fl_flags & FL_POSIX) == 0)
1205 return 1;
1206
1207 down_read(&cinode->lock_sem);
1208 posix_test_lock(file, flock);
1209
1210 if (flock->fl_type == F_UNLCK && !cinode->can_cache_brlcks) {
1211 flock->fl_type = saved_type;
1212 rc = 1;
1213 }
1214
1215 up_read(&cinode->lock_sem);
1216 return rc;
1217}
1218
1219/*
1220 * Set the byte-range lock (posix style). Returns:
1221 * 1) <0, if the error occurs while setting the lock;
1222 * 2) 0, if we set the lock and don't need to request to the server;
1223 * 3) FILE_LOCK_DEFERRED, if we will wait for some other file_lock;
1224 * 4) FILE_LOCK_DEFERRED + 1, if we need to request to the server.
1225 */
1226static int
1227cifs_posix_lock_set(struct file *file, struct file_lock *flock)
1228{
1229 struct cifsInodeInfo *cinode = CIFS_I(file_inode(file));
1230 int rc = FILE_LOCK_DEFERRED + 1;
1231
1232 if ((flock->fl_flags & FL_POSIX) == 0)
1233 return rc;
1234
1235 cifs_down_write(&cinode->lock_sem);
1236 if (!cinode->can_cache_brlcks) {
1237 up_write(&cinode->lock_sem);
1238 return rc;
1239 }
1240
1241 rc = posix_lock_file(file, flock, NULL);
1242 up_write(&cinode->lock_sem);
1243 return rc;
1244}
1245
1246int
1247cifs_push_mandatory_locks(struct cifsFileInfo *cfile)
1248{
1249 unsigned int xid;
1250 int rc = 0, stored_rc;
1251 struct cifsLockInfo *li, *tmp;
1252 struct cifs_tcon *tcon;
1253 unsigned int num, max_num, max_buf;
1254 LOCKING_ANDX_RANGE *buf, *cur;
1255 static const int types[] = {
1256 LOCKING_ANDX_LARGE_FILES,
1257 LOCKING_ANDX_SHARED_LOCK | LOCKING_ANDX_LARGE_FILES
1258 };
1259 int i;
1260
1261 xid = get_xid();
1262 tcon = tlink_tcon(cfile->tlink);
1263
1264 /*
1265 * Accessing maxBuf is racy with cifs_reconnect - need to store value
1266 * and check it before using.
1267 */
1268 max_buf = tcon->ses->server->maxBuf;
1269 if (max_buf < (sizeof(struct smb_hdr) + sizeof(LOCKING_ANDX_RANGE))) {
1270 free_xid(xid);
1271 return -EINVAL;
1272 }
1273
1274 BUILD_BUG_ON(sizeof(struct smb_hdr) + sizeof(LOCKING_ANDX_RANGE) >
1275 PAGE_SIZE);
1276 max_buf = min_t(unsigned int, max_buf - sizeof(struct smb_hdr),
1277 PAGE_SIZE);
1278 max_num = (max_buf - sizeof(struct smb_hdr)) /
1279 sizeof(LOCKING_ANDX_RANGE);
1280 buf = kcalloc(max_num, sizeof(LOCKING_ANDX_RANGE), GFP_KERNEL);
1281 if (!buf) {
1282 free_xid(xid);
1283 return -ENOMEM;
1284 }
1285
1286 for (i = 0; i < 2; i++) {
1287 cur = buf;
1288 num = 0;
1289 list_for_each_entry_safe(li, tmp, &cfile->llist->locks, llist) {
1290 if (li->type != types[i])
1291 continue;
1292 cur->Pid = cpu_to_le16(li->pid);
1293 cur->LengthLow = cpu_to_le32((u32)li->length);
1294 cur->LengthHigh = cpu_to_le32((u32)(li->length>>32));
1295 cur->OffsetLow = cpu_to_le32((u32)li->offset);
1296 cur->OffsetHigh = cpu_to_le32((u32)(li->offset>>32));
1297 if (++num == max_num) {
1298 stored_rc = cifs_lockv(xid, tcon,
1299 cfile->fid.netfid,
1300 (__u8)li->type, 0, num,
1301 buf);
1302 if (stored_rc)
1303 rc = stored_rc;
1304 cur = buf;
1305 num = 0;
1306 } else
1307 cur++;
1308 }
1309
1310 if (num) {
1311 stored_rc = cifs_lockv(xid, tcon, cfile->fid.netfid,
1312 (__u8)types[i], 0, num, buf);
1313 if (stored_rc)
1314 rc = stored_rc;
1315 }
1316 }
1317
1318 kfree(buf);
1319 free_xid(xid);
1320 return rc;
1321}
1322
1323static __u32
1324hash_lockowner(fl_owner_t owner)
1325{
1326 return cifs_lock_secret ^ hash32_ptr((const void *)owner);
1327}
1328
1329struct lock_to_push {
1330 struct list_head llist;
1331 __u64 offset;
1332 __u64 length;
1333 __u32 pid;
1334 __u16 netfid;
1335 __u8 type;
1336};
1337
1338static int
1339cifs_push_posix_locks(struct cifsFileInfo *cfile)
1340{
1341 struct inode *inode = d_inode(cfile->dentry);
1342 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1343 struct file_lock *flock;
1344 struct file_lock_context *flctx = inode->i_flctx;
1345 unsigned int count = 0, i;
1346 int rc = 0, xid, type;
1347 struct list_head locks_to_send, *el;
1348 struct lock_to_push *lck, *tmp;
1349 __u64 length;
1350
1351 xid = get_xid();
1352
1353 if (!flctx)
1354 goto out;
1355
1356 spin_lock(&flctx->flc_lock);
1357 list_for_each(el, &flctx->flc_posix) {
1358 count++;
1359 }
1360 spin_unlock(&flctx->flc_lock);
1361
1362 INIT_LIST_HEAD(&locks_to_send);
1363
1364 /*
1365 * Allocating count locks is enough because no FL_POSIX locks can be
1366 * added to the list while we are holding cinode->lock_sem that
1367 * protects locking operations of this inode.
1368 */
1369 for (i = 0; i < count; i++) {
1370 lck = kmalloc(sizeof(struct lock_to_push), GFP_KERNEL);
1371 if (!lck) {
1372 rc = -ENOMEM;
1373 goto err_out;
1374 }
1375 list_add_tail(&lck->llist, &locks_to_send);
1376 }
1377
1378 el = locks_to_send.next;
1379 spin_lock(&flctx->flc_lock);
1380 list_for_each_entry(flock, &flctx->flc_posix, fl_list) {
1381 if (el == &locks_to_send) {
1382 /*
1383 * The list ended. We don't have enough allocated
1384 * structures - something is really wrong.
1385 */
1386 cifs_dbg(VFS, "Can't push all brlocks!\n");
1387 break;
1388 }
1389 length = 1 + flock->fl_end - flock->fl_start;
1390 if (flock->fl_type == F_RDLCK || flock->fl_type == F_SHLCK)
1391 type = CIFS_RDLCK;
1392 else
1393 type = CIFS_WRLCK;
1394 lck = list_entry(el, struct lock_to_push, llist);
1395 lck->pid = hash_lockowner(flock->fl_owner);
1396 lck->netfid = cfile->fid.netfid;
1397 lck->length = length;
1398 lck->type = type;
1399 lck->offset = flock->fl_start;
1400 }
1401 spin_unlock(&flctx->flc_lock);
1402
1403 list_for_each_entry_safe(lck, tmp, &locks_to_send, llist) {
1404 int stored_rc;
1405
1406 stored_rc = CIFSSMBPosixLock(xid, tcon, lck->netfid, lck->pid,
1407 lck->offset, lck->length, NULL,
1408 lck->type, 0);
1409 if (stored_rc)
1410 rc = stored_rc;
1411 list_del(&lck->llist);
1412 kfree(lck);
1413 }
1414
1415out:
1416 free_xid(xid);
1417 return rc;
1418err_out:
1419 list_for_each_entry_safe(lck, tmp, &locks_to_send, llist) {
1420 list_del(&lck->llist);
1421 kfree(lck);
1422 }
1423 goto out;
1424}
1425
1426static int
1427cifs_push_locks(struct cifsFileInfo *cfile)
1428{
1429 struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb);
1430 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
1431 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1432 int rc = 0;
1433
1434 /* we are going to update can_cache_brlcks here - need a write access */
1435 cifs_down_write(&cinode->lock_sem);
1436 if (!cinode->can_cache_brlcks) {
1437 up_write(&cinode->lock_sem);
1438 return rc;
1439 }
1440
1441 if (cap_unix(tcon->ses) &&
1442 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
1443 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
1444 rc = cifs_push_posix_locks(cfile);
1445 else
1446 rc = tcon->ses->server->ops->push_mand_locks(cfile);
1447
1448 cinode->can_cache_brlcks = false;
1449 up_write(&cinode->lock_sem);
1450 return rc;
1451}
1452
1453static void
1454cifs_read_flock(struct file_lock *flock, __u32 *type, int *lock, int *unlock,
1455 bool *wait_flag, struct TCP_Server_Info *server)
1456{
1457 if (flock->fl_flags & FL_POSIX)
1458 cifs_dbg(FYI, "Posix\n");
1459 if (flock->fl_flags & FL_FLOCK)
1460 cifs_dbg(FYI, "Flock\n");
1461 if (flock->fl_flags & FL_SLEEP) {
1462 cifs_dbg(FYI, "Blocking lock\n");
1463 *wait_flag = true;
1464 }
1465 if (flock->fl_flags & FL_ACCESS)
1466 cifs_dbg(FYI, "Process suspended by mandatory locking - not implemented yet\n");
1467 if (flock->fl_flags & FL_LEASE)
1468 cifs_dbg(FYI, "Lease on file - not implemented yet\n");
1469 if (flock->fl_flags &
1470 (~(FL_POSIX | FL_FLOCK | FL_SLEEP |
1471 FL_ACCESS | FL_LEASE | FL_CLOSE | FL_OFDLCK)))
1472 cifs_dbg(FYI, "Unknown lock flags 0x%x\n", flock->fl_flags);
1473
1474 *type = server->vals->large_lock_type;
1475 if (flock->fl_type == F_WRLCK) {
1476 cifs_dbg(FYI, "F_WRLCK\n");
1477 *type |= server->vals->exclusive_lock_type;
1478 *lock = 1;
1479 } else if (flock->fl_type == F_UNLCK) {
1480 cifs_dbg(FYI, "F_UNLCK\n");
1481 *type |= server->vals->unlock_lock_type;
1482 *unlock = 1;
1483 /* Check if unlock includes more than one lock range */
1484 } else if (flock->fl_type == F_RDLCK) {
1485 cifs_dbg(FYI, "F_RDLCK\n");
1486 *type |= server->vals->shared_lock_type;
1487 *lock = 1;
1488 } else if (flock->fl_type == F_EXLCK) {
1489 cifs_dbg(FYI, "F_EXLCK\n");
1490 *type |= server->vals->exclusive_lock_type;
1491 *lock = 1;
1492 } else if (flock->fl_type == F_SHLCK) {
1493 cifs_dbg(FYI, "F_SHLCK\n");
1494 *type |= server->vals->shared_lock_type;
1495 *lock = 1;
1496 } else
1497 cifs_dbg(FYI, "Unknown type of lock\n");
1498}
1499
1500static int
1501cifs_getlk(struct file *file, struct file_lock *flock, __u32 type,
1502 bool wait_flag, bool posix_lck, unsigned int xid)
1503{
1504 int rc = 0;
1505 __u64 length = 1 + flock->fl_end - flock->fl_start;
1506 struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data;
1507 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1508 struct TCP_Server_Info *server = tcon->ses->server;
1509 __u16 netfid = cfile->fid.netfid;
1510
1511 if (posix_lck) {
1512 int posix_lock_type;
1513
1514 rc = cifs_posix_lock_test(file, flock);
1515 if (!rc)
1516 return rc;
1517
1518 if (type & server->vals->shared_lock_type)
1519 posix_lock_type = CIFS_RDLCK;
1520 else
1521 posix_lock_type = CIFS_WRLCK;
1522 rc = CIFSSMBPosixLock(xid, tcon, netfid,
1523 hash_lockowner(flock->fl_owner),
1524 flock->fl_start, length, flock,
1525 posix_lock_type, wait_flag);
1526 return rc;
1527 }
1528
1529 rc = cifs_lock_test(cfile, flock->fl_start, length, type, flock);
1530 if (!rc)
1531 return rc;
1532
1533 /* BB we could chain these into one lock request BB */
1534 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length, type,
1535 1, 0, false);
1536 if (rc == 0) {
1537 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length,
1538 type, 0, 1, false);
1539 flock->fl_type = F_UNLCK;
1540 if (rc != 0)
1541 cifs_dbg(VFS, "Error unlocking previously locked range %d during test of lock\n",
1542 rc);
1543 return 0;
1544 }
1545
1546 if (type & server->vals->shared_lock_type) {
1547 flock->fl_type = F_WRLCK;
1548 return 0;
1549 }
1550
1551 type &= ~server->vals->exclusive_lock_type;
1552
1553 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length,
1554 type | server->vals->shared_lock_type,
1555 1, 0, false);
1556 if (rc == 0) {
1557 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length,
1558 type | server->vals->shared_lock_type, 0, 1, false);
1559 flock->fl_type = F_RDLCK;
1560 if (rc != 0)
1561 cifs_dbg(VFS, "Error unlocking previously locked range %d during test of lock\n",
1562 rc);
1563 } else
1564 flock->fl_type = F_WRLCK;
1565
1566 return 0;
1567}
1568
1569void
1570cifs_move_llist(struct list_head *source, struct list_head *dest)
1571{
1572 struct list_head *li, *tmp;
1573 list_for_each_safe(li, tmp, source)
1574 list_move(li, dest);
1575}
1576
1577void
1578cifs_free_llist(struct list_head *llist)
1579{
1580 struct cifsLockInfo *li, *tmp;
1581 list_for_each_entry_safe(li, tmp, llist, llist) {
1582 cifs_del_lock_waiters(li);
1583 list_del(&li->llist);
1584 kfree(li);
1585 }
1586}
1587
1588int
1589cifs_unlock_range(struct cifsFileInfo *cfile, struct file_lock *flock,
1590 unsigned int xid)
1591{
1592 int rc = 0, stored_rc;
1593 static const int types[] = {
1594 LOCKING_ANDX_LARGE_FILES,
1595 LOCKING_ANDX_SHARED_LOCK | LOCKING_ANDX_LARGE_FILES
1596 };
1597 unsigned int i;
1598 unsigned int max_num, num, max_buf;
1599 LOCKING_ANDX_RANGE *buf, *cur;
1600 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1601 struct cifsInodeInfo *cinode = CIFS_I(d_inode(cfile->dentry));
1602 struct cifsLockInfo *li, *tmp;
1603 __u64 length = 1 + flock->fl_end - flock->fl_start;
1604 struct list_head tmp_llist;
1605
1606 INIT_LIST_HEAD(&tmp_llist);
1607
1608 /*
1609 * Accessing maxBuf is racy with cifs_reconnect - need to store value
1610 * and check it before using.
1611 */
1612 max_buf = tcon->ses->server->maxBuf;
1613 if (max_buf < (sizeof(struct smb_hdr) + sizeof(LOCKING_ANDX_RANGE)))
1614 return -EINVAL;
1615
1616 BUILD_BUG_ON(sizeof(struct smb_hdr) + sizeof(LOCKING_ANDX_RANGE) >
1617 PAGE_SIZE);
1618 max_buf = min_t(unsigned int, max_buf - sizeof(struct smb_hdr),
1619 PAGE_SIZE);
1620 max_num = (max_buf - sizeof(struct smb_hdr)) /
1621 sizeof(LOCKING_ANDX_RANGE);
1622 buf = kcalloc(max_num, sizeof(LOCKING_ANDX_RANGE), GFP_KERNEL);
1623 if (!buf)
1624 return -ENOMEM;
1625
1626 cifs_down_write(&cinode->lock_sem);
1627 for (i = 0; i < 2; i++) {
1628 cur = buf;
1629 num = 0;
1630 list_for_each_entry_safe(li, tmp, &cfile->llist->locks, llist) {
1631 if (flock->fl_start > li->offset ||
1632 (flock->fl_start + length) <
1633 (li->offset + li->length))
1634 continue;
1635 if (current->tgid != li->pid)
1636 continue;
1637 if (types[i] != li->type)
1638 continue;
1639 if (cinode->can_cache_brlcks) {
1640 /*
1641 * We can cache brlock requests - simply remove
1642 * a lock from the file's list.
1643 */
1644 list_del(&li->llist);
1645 cifs_del_lock_waiters(li);
1646 kfree(li);
1647 continue;
1648 }
1649 cur->Pid = cpu_to_le16(li->pid);
1650 cur->LengthLow = cpu_to_le32((u32)li->length);
1651 cur->LengthHigh = cpu_to_le32((u32)(li->length>>32));
1652 cur->OffsetLow = cpu_to_le32((u32)li->offset);
1653 cur->OffsetHigh = cpu_to_le32((u32)(li->offset>>32));
1654 /*
1655 * We need to save a lock here to let us add it again to
1656 * the file's list if the unlock range request fails on
1657 * the server.
1658 */
1659 list_move(&li->llist, &tmp_llist);
1660 if (++num == max_num) {
1661 stored_rc = cifs_lockv(xid, tcon,
1662 cfile->fid.netfid,
1663 li->type, num, 0, buf);
1664 if (stored_rc) {
1665 /*
1666 * We failed on the unlock range
1667 * request - add all locks from the tmp
1668 * list to the head of the file's list.
1669 */
1670 cifs_move_llist(&tmp_llist,
1671 &cfile->llist->locks);
1672 rc = stored_rc;
1673 } else
1674 /*
1675 * The unlock range request succeed -
1676 * free the tmp list.
1677 */
1678 cifs_free_llist(&tmp_llist);
1679 cur = buf;
1680 num = 0;
1681 } else
1682 cur++;
1683 }
1684 if (num) {
1685 stored_rc = cifs_lockv(xid, tcon, cfile->fid.netfid,
1686 types[i], num, 0, buf);
1687 if (stored_rc) {
1688 cifs_move_llist(&tmp_llist,
1689 &cfile->llist->locks);
1690 rc = stored_rc;
1691 } else
1692 cifs_free_llist(&tmp_llist);
1693 }
1694 }
1695
1696 up_write(&cinode->lock_sem);
1697 kfree(buf);
1698 return rc;
1699}
1700
1701static int
1702cifs_setlk(struct file *file, struct file_lock *flock, __u32 type,
1703 bool wait_flag, bool posix_lck, int lock, int unlock,
1704 unsigned int xid)
1705{
1706 int rc = 0;
1707 __u64 length = 1 + flock->fl_end - flock->fl_start;
1708 struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data;
1709 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1710 struct TCP_Server_Info *server = tcon->ses->server;
1711 struct inode *inode = d_inode(cfile->dentry);
1712
1713 if (posix_lck) {
1714 int posix_lock_type;
1715
1716 rc = cifs_posix_lock_set(file, flock);
1717 if (rc <= FILE_LOCK_DEFERRED)
1718 return rc;
1719
1720 if (type & server->vals->shared_lock_type)
1721 posix_lock_type = CIFS_RDLCK;
1722 else
1723 posix_lock_type = CIFS_WRLCK;
1724
1725 if (unlock == 1)
1726 posix_lock_type = CIFS_UNLCK;
1727
1728 rc = CIFSSMBPosixLock(xid, tcon, cfile->fid.netfid,
1729 hash_lockowner(flock->fl_owner),
1730 flock->fl_start, length,
1731 NULL, posix_lock_type, wait_flag);
1732 goto out;
1733 }
1734
1735 if (lock) {
1736 struct cifsLockInfo *lock;
1737
1738 lock = cifs_lock_init(flock->fl_start, length, type,
1739 flock->fl_flags);
1740 if (!lock)
1741 return -ENOMEM;
1742
1743 rc = cifs_lock_add_if(cfile, lock, wait_flag);
1744 if (rc < 0) {
1745 kfree(lock);
1746 return rc;
1747 }
1748 if (!rc)
1749 goto out;
1750
1751 /*
1752 * Windows 7 server can delay breaking lease from read to None
1753 * if we set a byte-range lock on a file - break it explicitly
1754 * before sending the lock to the server to be sure the next
1755 * read won't conflict with non-overlapted locks due to
1756 * pagereading.
1757 */
1758 if (!CIFS_CACHE_WRITE(CIFS_I(inode)) &&
1759 CIFS_CACHE_READ(CIFS_I(inode))) {
1760 cifs_zap_mapping(inode);
1761 cifs_dbg(FYI, "Set no oplock for inode=%p due to mand locks\n",
1762 inode);
1763 CIFS_I(inode)->oplock = 0;
1764 }
1765
1766 rc = server->ops->mand_lock(xid, cfile, flock->fl_start, length,
1767 type, 1, 0, wait_flag);
1768 if (rc) {
1769 kfree(lock);
1770 return rc;
1771 }
1772
1773 cifs_lock_add(cfile, lock);
1774 } else if (unlock)
1775 rc = server->ops->mand_unlock_range(cfile, flock, xid);
1776
1777out:
1778 if ((flock->fl_flags & FL_POSIX) || (flock->fl_flags & FL_FLOCK)) {
1779 /*
1780 * If this is a request to remove all locks because we
1781 * are closing the file, it doesn't matter if the
1782 * unlocking failed as both cifs.ko and the SMB server
1783 * remove the lock on file close
1784 */
1785 if (rc) {
1786 cifs_dbg(VFS, "%s failed rc=%d\n", __func__, rc);
1787 if (!(flock->fl_flags & FL_CLOSE))
1788 return rc;
1789 }
1790 rc = locks_lock_file_wait(file, flock);
1791 }
1792 return rc;
1793}
1794
1795int cifs_flock(struct file *file, int cmd, struct file_lock *fl)
1796{
1797 int rc, xid;
1798 int lock = 0, unlock = 0;
1799 bool wait_flag = false;
1800 bool posix_lck = false;
1801 struct cifs_sb_info *cifs_sb;
1802 struct cifs_tcon *tcon;
1803 struct cifsFileInfo *cfile;
1804 __u32 type;
1805
1806 rc = -EACCES;
1807 xid = get_xid();
1808
1809 if (!(fl->fl_flags & FL_FLOCK))
1810 return -ENOLCK;
1811
1812 cfile = (struct cifsFileInfo *)file->private_data;
1813 tcon = tlink_tcon(cfile->tlink);
1814
1815 cifs_read_flock(fl, &type, &lock, &unlock, &wait_flag,
1816 tcon->ses->server);
1817 cifs_sb = CIFS_FILE_SB(file);
1818
1819 if (cap_unix(tcon->ses) &&
1820 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
1821 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
1822 posix_lck = true;
1823
1824 if (!lock && !unlock) {
1825 /*
1826 * if no lock or unlock then nothing to do since we do not
1827 * know what it is
1828 */
1829 free_xid(xid);
1830 return -EOPNOTSUPP;
1831 }
1832
1833 rc = cifs_setlk(file, fl, type, wait_flag, posix_lck, lock, unlock,
1834 xid);
1835 free_xid(xid);
1836 return rc;
1837
1838
1839}
1840
1841int cifs_lock(struct file *file, int cmd, struct file_lock *flock)
1842{
1843 int rc, xid;
1844 int lock = 0, unlock = 0;
1845 bool wait_flag = false;
1846 bool posix_lck = false;
1847 struct cifs_sb_info *cifs_sb;
1848 struct cifs_tcon *tcon;
1849 struct cifsFileInfo *cfile;
1850 __u32 type;
1851
1852 rc = -EACCES;
1853 xid = get_xid();
1854
1855 cifs_dbg(FYI, "Lock parm: 0x%x flockflags: 0x%x flocktype: 0x%x start: %lld end: %lld\n",
1856 cmd, flock->fl_flags, flock->fl_type,
1857 flock->fl_start, flock->fl_end);
1858
1859 cfile = (struct cifsFileInfo *)file->private_data;
1860 tcon = tlink_tcon(cfile->tlink);
1861
1862 cifs_read_flock(flock, &type, &lock, &unlock, &wait_flag,
1863 tcon->ses->server);
1864 cifs_sb = CIFS_FILE_SB(file);
1865 set_bit(CIFS_INO_CLOSE_ON_LOCK, &CIFS_I(d_inode(cfile->dentry))->flags);
1866
1867 if (cap_unix(tcon->ses) &&
1868 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
1869 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
1870 posix_lck = true;
1871 /*
1872 * BB add code here to normalize offset and length to account for
1873 * negative length which we can not accept over the wire.
1874 */
1875 if (IS_GETLK(cmd)) {
1876 rc = cifs_getlk(file, flock, type, wait_flag, posix_lck, xid);
1877 free_xid(xid);
1878 return rc;
1879 }
1880
1881 if (!lock && !unlock) {
1882 /*
1883 * if no lock or unlock then nothing to do since we do not
1884 * know what it is
1885 */
1886 free_xid(xid);
1887 return -EOPNOTSUPP;
1888 }
1889
1890 rc = cifs_setlk(file, flock, type, wait_flag, posix_lck, lock, unlock,
1891 xid);
1892 free_xid(xid);
1893 return rc;
1894}
1895
1896/*
1897 * update the file size (if needed) after a write. Should be called with
1898 * the inode->i_lock held
1899 */
1900void
1901cifs_update_eof(struct cifsInodeInfo *cifsi, loff_t offset,
1902 unsigned int bytes_written)
1903{
1904 loff_t end_of_write = offset + bytes_written;
1905
1906 if (end_of_write > cifsi->server_eof)
1907 cifsi->server_eof = end_of_write;
1908}
1909
1910static ssize_t
1911cifs_write(struct cifsFileInfo *open_file, __u32 pid, const char *write_data,
1912 size_t write_size, loff_t *offset)
1913{
1914 int rc = 0;
1915 unsigned int bytes_written = 0;
1916 unsigned int total_written;
1917 struct cifs_tcon *tcon;
1918 struct TCP_Server_Info *server;
1919 unsigned int xid;
1920 struct dentry *dentry = open_file->dentry;
1921 struct cifsInodeInfo *cifsi = CIFS_I(d_inode(dentry));
1922 struct cifs_io_parms io_parms = {0};
1923
1924 cifs_dbg(FYI, "write %zd bytes to offset %lld of %pd\n",
1925 write_size, *offset, dentry);
1926
1927 tcon = tlink_tcon(open_file->tlink);
1928 server = tcon->ses->server;
1929
1930 if (!server->ops->sync_write)
1931 return -ENOSYS;
1932
1933 xid = get_xid();
1934
1935 for (total_written = 0; write_size > total_written;
1936 total_written += bytes_written) {
1937 rc = -EAGAIN;
1938 while (rc == -EAGAIN) {
1939 struct kvec iov[2];
1940 unsigned int len;
1941
1942 if (open_file->invalidHandle) {
1943 /* we could deadlock if we called
1944 filemap_fdatawait from here so tell
1945 reopen_file not to flush data to
1946 server now */
1947 rc = cifs_reopen_file(open_file, false);
1948 if (rc != 0)
1949 break;
1950 }
1951
1952 len = min(server->ops->wp_retry_size(d_inode(dentry)),
1953 (unsigned int)write_size - total_written);
1954 /* iov[0] is reserved for smb header */
1955 iov[1].iov_base = (char *)write_data + total_written;
1956 iov[1].iov_len = len;
1957 io_parms.pid = pid;
1958 io_parms.tcon = tcon;
1959 io_parms.offset = *offset;
1960 io_parms.length = len;
1961 rc = server->ops->sync_write(xid, &open_file->fid,
1962 &io_parms, &bytes_written, iov, 1);
1963 }
1964 if (rc || (bytes_written == 0)) {
1965 if (total_written)
1966 break;
1967 else {
1968 free_xid(xid);
1969 return rc;
1970 }
1971 } else {
1972 spin_lock(&d_inode(dentry)->i_lock);
1973 cifs_update_eof(cifsi, *offset, bytes_written);
1974 spin_unlock(&d_inode(dentry)->i_lock);
1975 *offset += bytes_written;
1976 }
1977 }
1978
1979 cifs_stats_bytes_written(tcon, total_written);
1980
1981 if (total_written > 0) {
1982 spin_lock(&d_inode(dentry)->i_lock);
1983 if (*offset > d_inode(dentry)->i_size) {
1984 i_size_write(d_inode(dentry), *offset);
1985 d_inode(dentry)->i_blocks = (512 - 1 + *offset) >> 9;
1986 }
1987 spin_unlock(&d_inode(dentry)->i_lock);
1988 }
1989 mark_inode_dirty_sync(d_inode(dentry));
1990 free_xid(xid);
1991 return total_written;
1992}
1993
1994struct cifsFileInfo *find_readable_file(struct cifsInodeInfo *cifs_inode,
1995 bool fsuid_only)
1996{
1997 struct cifsFileInfo *open_file = NULL;
1998 struct cifs_sb_info *cifs_sb = CIFS_SB(cifs_inode->vfs_inode.i_sb);
1999
2000 /* only filter by fsuid on multiuser mounts */
2001 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MULTIUSER))
2002 fsuid_only = false;
2003
2004 spin_lock(&cifs_inode->open_file_lock);
2005 /* we could simply get the first_list_entry since write-only entries
2006 are always at the end of the list but since the first entry might
2007 have a close pending, we go through the whole list */
2008 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
2009 if (fsuid_only && !uid_eq(open_file->uid, current_fsuid()))
2010 continue;
2011 if (OPEN_FMODE(open_file->f_flags) & FMODE_READ) {
2012 if ((!open_file->invalidHandle)) {
2013 /* found a good file */
2014 /* lock it so it will not be closed on us */
2015 cifsFileInfo_get(open_file);
2016 spin_unlock(&cifs_inode->open_file_lock);
2017 return open_file;
2018 } /* else might as well continue, and look for
2019 another, or simply have the caller reopen it
2020 again rather than trying to fix this handle */
2021 } else /* write only file */
2022 break; /* write only files are last so must be done */
2023 }
2024 spin_unlock(&cifs_inode->open_file_lock);
2025 return NULL;
2026}
2027
2028/* Return -EBADF if no handle is found and general rc otherwise */
2029int
2030cifs_get_writable_file(struct cifsInodeInfo *cifs_inode, int flags,
2031 struct cifsFileInfo **ret_file)
2032{
2033 struct cifsFileInfo *open_file, *inv_file = NULL;
2034 struct cifs_sb_info *cifs_sb;
2035 bool any_available = false;
2036 int rc = -EBADF;
2037 unsigned int refind = 0;
2038 bool fsuid_only = flags & FIND_WR_FSUID_ONLY;
2039 bool with_delete = flags & FIND_WR_WITH_DELETE;
2040 *ret_file = NULL;
2041
2042 /*
2043 * Having a null inode here (because mapping->host was set to zero by
2044 * the VFS or MM) should not happen but we had reports of on oops (due
2045 * to it being zero) during stress testcases so we need to check for it
2046 */
2047
2048 if (cifs_inode == NULL) {
2049 cifs_dbg(VFS, "Null inode passed to cifs_writeable_file\n");
2050 dump_stack();
2051 return rc;
2052 }
2053
2054 cifs_sb = CIFS_SB(cifs_inode->vfs_inode.i_sb);
2055
2056 /* only filter by fsuid on multiuser mounts */
2057 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MULTIUSER))
2058 fsuid_only = false;
2059
2060 spin_lock(&cifs_inode->open_file_lock);
2061refind_writable:
2062 if (refind > MAX_REOPEN_ATT) {
2063 spin_unlock(&cifs_inode->open_file_lock);
2064 return rc;
2065 }
2066 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
2067 if (!any_available && open_file->pid != current->tgid)
2068 continue;
2069 if (fsuid_only && !uid_eq(open_file->uid, current_fsuid()))
2070 continue;
2071 if (with_delete && !(open_file->fid.access & DELETE))
2072 continue;
2073 if (OPEN_FMODE(open_file->f_flags) & FMODE_WRITE) {
2074 if (!open_file->invalidHandle) {
2075 /* found a good writable file */
2076 cifsFileInfo_get(open_file);
2077 spin_unlock(&cifs_inode->open_file_lock);
2078 *ret_file = open_file;
2079 return 0;
2080 } else {
2081 if (!inv_file)
2082 inv_file = open_file;
2083 }
2084 }
2085 }
2086 /* couldn't find useable FH with same pid, try any available */
2087 if (!any_available) {
2088 any_available = true;
2089 goto refind_writable;
2090 }
2091
2092 if (inv_file) {
2093 any_available = false;
2094 cifsFileInfo_get(inv_file);
2095 }
2096
2097 spin_unlock(&cifs_inode->open_file_lock);
2098
2099 if (inv_file) {
2100 rc = cifs_reopen_file(inv_file, false);
2101 if (!rc) {
2102 *ret_file = inv_file;
2103 return 0;
2104 }
2105
2106 spin_lock(&cifs_inode->open_file_lock);
2107 list_move_tail(&inv_file->flist, &cifs_inode->openFileList);
2108 spin_unlock(&cifs_inode->open_file_lock);
2109 cifsFileInfo_put(inv_file);
2110 ++refind;
2111 inv_file = NULL;
2112 spin_lock(&cifs_inode->open_file_lock);
2113 goto refind_writable;
2114 }
2115
2116 return rc;
2117}
2118
2119struct cifsFileInfo *
2120find_writable_file(struct cifsInodeInfo *cifs_inode, int flags)
2121{
2122 struct cifsFileInfo *cfile;
2123 int rc;
2124
2125 rc = cifs_get_writable_file(cifs_inode, flags, &cfile);
2126 if (rc)
2127 cifs_dbg(FYI, "Couldn't find writable handle rc=%d\n", rc);
2128
2129 return cfile;
2130}
2131
2132int
2133cifs_get_writable_path(struct cifs_tcon *tcon, const char *name,
2134 int flags,
2135 struct cifsFileInfo **ret_file)
2136{
2137 struct cifsFileInfo *cfile;
2138 void *page = alloc_dentry_path();
2139
2140 *ret_file = NULL;
2141
2142 spin_lock(&tcon->open_file_lock);
2143 list_for_each_entry(cfile, &tcon->openFileList, tlist) {
2144 struct cifsInodeInfo *cinode;
2145 const char *full_path = build_path_from_dentry(cfile->dentry, page);
2146 if (IS_ERR(full_path)) {
2147 spin_unlock(&tcon->open_file_lock);
2148 free_dentry_path(page);
2149 return PTR_ERR(full_path);
2150 }
2151 if (strcmp(full_path, name))
2152 continue;
2153
2154 cinode = CIFS_I(d_inode(cfile->dentry));
2155 spin_unlock(&tcon->open_file_lock);
2156 free_dentry_path(page);
2157 return cifs_get_writable_file(cinode, flags, ret_file);
2158 }
2159
2160 spin_unlock(&tcon->open_file_lock);
2161 free_dentry_path(page);
2162 return -ENOENT;
2163}
2164
2165int
2166cifs_get_readable_path(struct cifs_tcon *tcon, const char *name,
2167 struct cifsFileInfo **ret_file)
2168{
2169 struct cifsFileInfo *cfile;
2170 void *page = alloc_dentry_path();
2171
2172 *ret_file = NULL;
2173
2174 spin_lock(&tcon->open_file_lock);
2175 list_for_each_entry(cfile, &tcon->openFileList, tlist) {
2176 struct cifsInodeInfo *cinode;
2177 const char *full_path = build_path_from_dentry(cfile->dentry, page);
2178 if (IS_ERR(full_path)) {
2179 spin_unlock(&tcon->open_file_lock);
2180 free_dentry_path(page);
2181 return PTR_ERR(full_path);
2182 }
2183 if (strcmp(full_path, name))
2184 continue;
2185
2186 cinode = CIFS_I(d_inode(cfile->dentry));
2187 spin_unlock(&tcon->open_file_lock);
2188 free_dentry_path(page);
2189 *ret_file = find_readable_file(cinode, 0);
2190 return *ret_file ? 0 : -ENOENT;
2191 }
2192
2193 spin_unlock(&tcon->open_file_lock);
2194 free_dentry_path(page);
2195 return -ENOENT;
2196}
2197
2198static int cifs_partialpagewrite(struct page *page, unsigned from, unsigned to)
2199{
2200 struct address_space *mapping = page->mapping;
2201 loff_t offset = (loff_t)page->index << PAGE_SHIFT;
2202 char *write_data;
2203 int rc = -EFAULT;
2204 int bytes_written = 0;
2205 struct inode *inode;
2206 struct cifsFileInfo *open_file;
2207
2208 if (!mapping || !mapping->host)
2209 return -EFAULT;
2210
2211 inode = page->mapping->host;
2212
2213 offset += (loff_t)from;
2214 write_data = kmap(page);
2215 write_data += from;
2216
2217 if ((to > PAGE_SIZE) || (from > to)) {
2218 kunmap(page);
2219 return -EIO;
2220 }
2221
2222 /* racing with truncate? */
2223 if (offset > mapping->host->i_size) {
2224 kunmap(page);
2225 return 0; /* don't care */
2226 }
2227
2228 /* check to make sure that we are not extending the file */
2229 if (mapping->host->i_size - offset < (loff_t)to)
2230 to = (unsigned)(mapping->host->i_size - offset);
2231
2232 rc = cifs_get_writable_file(CIFS_I(mapping->host), FIND_WR_ANY,
2233 &open_file);
2234 if (!rc) {
2235 bytes_written = cifs_write(open_file, open_file->pid,
2236 write_data, to - from, &offset);
2237 cifsFileInfo_put(open_file);
2238 /* Does mm or vfs already set times? */
2239 inode->i_atime = inode->i_mtime = current_time(inode);
2240 if ((bytes_written > 0) && (offset))
2241 rc = 0;
2242 else if (bytes_written < 0)
2243 rc = bytes_written;
2244 else
2245 rc = -EFAULT;
2246 } else {
2247 cifs_dbg(FYI, "No writable handle for write page rc=%d\n", rc);
2248 if (!is_retryable_error(rc))
2249 rc = -EIO;
2250 }
2251
2252 kunmap(page);
2253 return rc;
2254}
2255
2256static struct cifs_writedata *
2257wdata_alloc_and_fillpages(pgoff_t tofind, struct address_space *mapping,
2258 pgoff_t end, pgoff_t *index,
2259 unsigned int *found_pages)
2260{
2261 struct cifs_writedata *wdata;
2262
2263 wdata = cifs_writedata_alloc((unsigned int)tofind,
2264 cifs_writev_complete);
2265 if (!wdata)
2266 return NULL;
2267
2268 *found_pages = find_get_pages_range_tag(mapping, index, end,
2269 PAGECACHE_TAG_DIRTY, tofind, wdata->pages);
2270 return wdata;
2271}
2272
2273static unsigned int
2274wdata_prepare_pages(struct cifs_writedata *wdata, unsigned int found_pages,
2275 struct address_space *mapping,
2276 struct writeback_control *wbc,
2277 pgoff_t end, pgoff_t *index, pgoff_t *next, bool *done)
2278{
2279 unsigned int nr_pages = 0, i;
2280 struct page *page;
2281
2282 for (i = 0; i < found_pages; i++) {
2283 page = wdata->pages[i];
2284 /*
2285 * At this point we hold neither the i_pages lock nor the
2286 * page lock: the page may be truncated or invalidated
2287 * (changing page->mapping to NULL), or even swizzled
2288 * back from swapper_space to tmpfs file mapping
2289 */
2290
2291 if (nr_pages == 0)
2292 lock_page(page);
2293 else if (!trylock_page(page))
2294 break;
2295
2296 if (unlikely(page->mapping != mapping)) {
2297 unlock_page(page);
2298 break;
2299 }
2300
2301 if (!wbc->range_cyclic && page->index > end) {
2302 *done = true;
2303 unlock_page(page);
2304 break;
2305 }
2306
2307 if (*next && (page->index != *next)) {
2308 /* Not next consecutive page */
2309 unlock_page(page);
2310 break;
2311 }
2312
2313 if (wbc->sync_mode != WB_SYNC_NONE)
2314 wait_on_page_writeback(page);
2315
2316 if (PageWriteback(page) ||
2317 !clear_page_dirty_for_io(page)) {
2318 unlock_page(page);
2319 break;
2320 }
2321
2322 /*
2323 * This actually clears the dirty bit in the radix tree.
2324 * See cifs_writepage() for more commentary.
2325 */
2326 set_page_writeback(page);
2327 if (page_offset(page) >= i_size_read(mapping->host)) {
2328 *done = true;
2329 unlock_page(page);
2330 end_page_writeback(page);
2331 break;
2332 }
2333
2334 wdata->pages[i] = page;
2335 *next = page->index + 1;
2336 ++nr_pages;
2337 }
2338
2339 /* reset index to refind any pages skipped */
2340 if (nr_pages == 0)
2341 *index = wdata->pages[0]->index + 1;
2342
2343 /* put any pages we aren't going to use */
2344 for (i = nr_pages; i < found_pages; i++) {
2345 put_page(wdata->pages[i]);
2346 wdata->pages[i] = NULL;
2347 }
2348
2349 return nr_pages;
2350}
2351
2352static int
2353wdata_send_pages(struct cifs_writedata *wdata, unsigned int nr_pages,
2354 struct address_space *mapping, struct writeback_control *wbc)
2355{
2356 int rc;
2357
2358 wdata->sync_mode = wbc->sync_mode;
2359 wdata->nr_pages = nr_pages;
2360 wdata->offset = page_offset(wdata->pages[0]);
2361 wdata->pagesz = PAGE_SIZE;
2362 wdata->tailsz = min(i_size_read(mapping->host) -
2363 page_offset(wdata->pages[nr_pages - 1]),
2364 (loff_t)PAGE_SIZE);
2365 wdata->bytes = ((nr_pages - 1) * PAGE_SIZE) + wdata->tailsz;
2366 wdata->pid = wdata->cfile->pid;
2367
2368 rc = adjust_credits(wdata->server, &wdata->credits, wdata->bytes);
2369 if (rc)
2370 return rc;
2371
2372 if (wdata->cfile->invalidHandle)
2373 rc = -EAGAIN;
2374 else
2375 rc = wdata->server->ops->async_writev(wdata,
2376 cifs_writedata_release);
2377
2378 return rc;
2379}
2380
2381static int cifs_writepages(struct address_space *mapping,
2382 struct writeback_control *wbc)
2383{
2384 struct inode *inode = mapping->host;
2385 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
2386 struct TCP_Server_Info *server;
2387 bool done = false, scanned = false, range_whole = false;
2388 pgoff_t end, index;
2389 struct cifs_writedata *wdata;
2390 struct cifsFileInfo *cfile = NULL;
2391 int rc = 0;
2392 int saved_rc = 0;
2393 unsigned int xid;
2394
2395 /*
2396 * If wsize is smaller than the page cache size, default to writing
2397 * one page at a time via cifs_writepage
2398 */
2399 if (cifs_sb->ctx->wsize < PAGE_SIZE)
2400 return generic_writepages(mapping, wbc);
2401
2402 xid = get_xid();
2403 if (wbc->range_cyclic) {
2404 index = mapping->writeback_index; /* Start from prev offset */
2405 end = -1;
2406 } else {
2407 index = wbc->range_start >> PAGE_SHIFT;
2408 end = wbc->range_end >> PAGE_SHIFT;
2409 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2410 range_whole = true;
2411 scanned = true;
2412 }
2413 server = cifs_pick_channel(cifs_sb_master_tcon(cifs_sb)->ses);
2414
2415retry:
2416 while (!done && index <= end) {
2417 unsigned int i, nr_pages, found_pages, wsize;
2418 pgoff_t next = 0, tofind, saved_index = index;
2419 struct cifs_credits credits_on_stack;
2420 struct cifs_credits *credits = &credits_on_stack;
2421 int get_file_rc = 0;
2422
2423 if (cfile)
2424 cifsFileInfo_put(cfile);
2425
2426 rc = cifs_get_writable_file(CIFS_I(inode), FIND_WR_ANY, &cfile);
2427
2428 /* in case of an error store it to return later */
2429 if (rc)
2430 get_file_rc = rc;
2431
2432 rc = server->ops->wait_mtu_credits(server, cifs_sb->ctx->wsize,
2433 &wsize, credits);
2434 if (rc != 0) {
2435 done = true;
2436 break;
2437 }
2438
2439 tofind = min((wsize / PAGE_SIZE) - 1, end - index) + 1;
2440
2441 wdata = wdata_alloc_and_fillpages(tofind, mapping, end, &index,
2442 &found_pages);
2443 if (!wdata) {
2444 rc = -ENOMEM;
2445 done = true;
2446 add_credits_and_wake_if(server, credits, 0);
2447 break;
2448 }
2449
2450 if (found_pages == 0) {
2451 kref_put(&wdata->refcount, cifs_writedata_release);
2452 add_credits_and_wake_if(server, credits, 0);
2453 break;
2454 }
2455
2456 nr_pages = wdata_prepare_pages(wdata, found_pages, mapping, wbc,
2457 end, &index, &next, &done);
2458
2459 /* nothing to write? */
2460 if (nr_pages == 0) {
2461 kref_put(&wdata->refcount, cifs_writedata_release);
2462 add_credits_and_wake_if(server, credits, 0);
2463 continue;
2464 }
2465
2466 wdata->credits = credits_on_stack;
2467 wdata->cfile = cfile;
2468 wdata->server = server;
2469 cfile = NULL;
2470
2471 if (!wdata->cfile) {
2472 cifs_dbg(VFS, "No writable handle in writepages rc=%d\n",
2473 get_file_rc);
2474 if (is_retryable_error(get_file_rc))
2475 rc = get_file_rc;
2476 else
2477 rc = -EBADF;
2478 } else
2479 rc = wdata_send_pages(wdata, nr_pages, mapping, wbc);
2480
2481 for (i = 0; i < nr_pages; ++i)
2482 unlock_page(wdata->pages[i]);
2483
2484 /* send failure -- clean up the mess */
2485 if (rc != 0) {
2486 add_credits_and_wake_if(server, &wdata->credits, 0);
2487 for (i = 0; i < nr_pages; ++i) {
2488 if (is_retryable_error(rc))
2489 redirty_page_for_writepage(wbc,
2490 wdata->pages[i]);
2491 else
2492 SetPageError(wdata->pages[i]);
2493 end_page_writeback(wdata->pages[i]);
2494 put_page(wdata->pages[i]);
2495 }
2496 if (!is_retryable_error(rc))
2497 mapping_set_error(mapping, rc);
2498 }
2499 kref_put(&wdata->refcount, cifs_writedata_release);
2500
2501 if (wbc->sync_mode == WB_SYNC_ALL && rc == -EAGAIN) {
2502 index = saved_index;
2503 continue;
2504 }
2505
2506 /* Return immediately if we received a signal during writing */
2507 if (is_interrupt_error(rc)) {
2508 done = true;
2509 break;
2510 }
2511
2512 if (rc != 0 && saved_rc == 0)
2513 saved_rc = rc;
2514
2515 wbc->nr_to_write -= nr_pages;
2516 if (wbc->nr_to_write <= 0)
2517 done = true;
2518
2519 index = next;
2520 }
2521
2522 if (!scanned && !done) {
2523 /*
2524 * We hit the last page and there is more work to be done: wrap
2525 * back to the start of the file
2526 */
2527 scanned = true;
2528 index = 0;
2529 goto retry;
2530 }
2531
2532 if (saved_rc != 0)
2533 rc = saved_rc;
2534
2535 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2536 mapping->writeback_index = index;
2537
2538 if (cfile)
2539 cifsFileInfo_put(cfile);
2540 free_xid(xid);
2541 /* Indication to update ctime and mtime as close is deferred */
2542 set_bit(CIFS_INO_MODIFIED_ATTR, &CIFS_I(inode)->flags);
2543 return rc;
2544}
2545
2546static int
2547cifs_writepage_locked(struct page *page, struct writeback_control *wbc)
2548{
2549 int rc;
2550 unsigned int xid;
2551
2552 xid = get_xid();
2553/* BB add check for wbc flags */
2554 get_page(page);
2555 if (!PageUptodate(page))
2556 cifs_dbg(FYI, "ppw - page not up to date\n");
2557
2558 /*
2559 * Set the "writeback" flag, and clear "dirty" in the radix tree.
2560 *
2561 * A writepage() implementation always needs to do either this,
2562 * or re-dirty the page with "redirty_page_for_writepage()" in
2563 * the case of a failure.
2564 *
2565 * Just unlocking the page will cause the radix tree tag-bits
2566 * to fail to update with the state of the page correctly.
2567 */
2568 set_page_writeback(page);
2569retry_write:
2570 rc = cifs_partialpagewrite(page, 0, PAGE_SIZE);
2571 if (is_retryable_error(rc)) {
2572 if (wbc->sync_mode == WB_SYNC_ALL && rc == -EAGAIN)
2573 goto retry_write;
2574 redirty_page_for_writepage(wbc, page);
2575 } else if (rc != 0) {
2576 SetPageError(page);
2577 mapping_set_error(page->mapping, rc);
2578 } else {
2579 SetPageUptodate(page);
2580 }
2581 end_page_writeback(page);
2582 put_page(page);
2583 free_xid(xid);
2584 return rc;
2585}
2586
2587static int cifs_writepage(struct page *page, struct writeback_control *wbc)
2588{
2589 int rc = cifs_writepage_locked(page, wbc);
2590 unlock_page(page);
2591 return rc;
2592}
2593
2594static int cifs_write_end(struct file *file, struct address_space *mapping,
2595 loff_t pos, unsigned len, unsigned copied,
2596 struct page *page, void *fsdata)
2597{
2598 int rc;
2599 struct inode *inode = mapping->host;
2600 struct cifsFileInfo *cfile = file->private_data;
2601 struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb);
2602 __u32 pid;
2603
2604 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2605 pid = cfile->pid;
2606 else
2607 pid = current->tgid;
2608
2609 cifs_dbg(FYI, "write_end for page %p from pos %lld with %d bytes\n",
2610 page, pos, copied);
2611
2612 if (PageChecked(page)) {
2613 if (copied == len)
2614 SetPageUptodate(page);
2615 ClearPageChecked(page);
2616 } else if (!PageUptodate(page) && copied == PAGE_SIZE)
2617 SetPageUptodate(page);
2618
2619 if (!PageUptodate(page)) {
2620 char *page_data;
2621 unsigned offset = pos & (PAGE_SIZE - 1);
2622 unsigned int xid;
2623
2624 xid = get_xid();
2625 /* this is probably better than directly calling
2626 partialpage_write since in this function the file handle is
2627 known which we might as well leverage */
2628 /* BB check if anything else missing out of ppw
2629 such as updating last write time */
2630 page_data = kmap(page);
2631 rc = cifs_write(cfile, pid, page_data + offset, copied, &pos);
2632 /* if (rc < 0) should we set writebehind rc? */
2633 kunmap(page);
2634
2635 free_xid(xid);
2636 } else {
2637 rc = copied;
2638 pos += copied;
2639 set_page_dirty(page);
2640 }
2641
2642 if (rc > 0) {
2643 spin_lock(&inode->i_lock);
2644 if (pos > inode->i_size) {
2645 i_size_write(inode, pos);
2646 inode->i_blocks = (512 - 1 + pos) >> 9;
2647 }
2648 spin_unlock(&inode->i_lock);
2649 }
2650
2651 unlock_page(page);
2652 put_page(page);
2653 /* Indication to update ctime and mtime as close is deferred */
2654 set_bit(CIFS_INO_MODIFIED_ATTR, &CIFS_I(inode)->flags);
2655
2656 return rc;
2657}
2658
2659int cifs_strict_fsync(struct file *file, loff_t start, loff_t end,
2660 int datasync)
2661{
2662 unsigned int xid;
2663 int rc = 0;
2664 struct cifs_tcon *tcon;
2665 struct TCP_Server_Info *server;
2666 struct cifsFileInfo *smbfile = file->private_data;
2667 struct inode *inode = file_inode(file);
2668 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
2669
2670 rc = file_write_and_wait_range(file, start, end);
2671 if (rc) {
2672 trace_cifs_fsync_err(inode->i_ino, rc);
2673 return rc;
2674 }
2675
2676 xid = get_xid();
2677
2678 cifs_dbg(FYI, "Sync file - name: %pD datasync: 0x%x\n",
2679 file, datasync);
2680
2681 if (!CIFS_CACHE_READ(CIFS_I(inode))) {
2682 rc = cifs_zap_mapping(inode);
2683 if (rc) {
2684 cifs_dbg(FYI, "rc: %d during invalidate phase\n", rc);
2685 rc = 0; /* don't care about it in fsync */
2686 }
2687 }
2688
2689 tcon = tlink_tcon(smbfile->tlink);
2690 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOSSYNC)) {
2691 server = tcon->ses->server;
2692 if (server->ops->flush)
2693 rc = server->ops->flush(xid, tcon, &smbfile->fid);
2694 else
2695 rc = -ENOSYS;
2696 }
2697
2698 free_xid(xid);
2699 return rc;
2700}
2701
2702int cifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
2703{
2704 unsigned int xid;
2705 int rc = 0;
2706 struct cifs_tcon *tcon;
2707 struct TCP_Server_Info *server;
2708 struct cifsFileInfo *smbfile = file->private_data;
2709 struct cifs_sb_info *cifs_sb = CIFS_FILE_SB(file);
2710
2711 rc = file_write_and_wait_range(file, start, end);
2712 if (rc) {
2713 trace_cifs_fsync_err(file_inode(file)->i_ino, rc);
2714 return rc;
2715 }
2716
2717 xid = get_xid();
2718
2719 cifs_dbg(FYI, "Sync file - name: %pD datasync: 0x%x\n",
2720 file, datasync);
2721
2722 tcon = tlink_tcon(smbfile->tlink);
2723 if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOSSYNC)) {
2724 server = tcon->ses->server;
2725 if (server->ops->flush)
2726 rc = server->ops->flush(xid, tcon, &smbfile->fid);
2727 else
2728 rc = -ENOSYS;
2729 }
2730
2731 free_xid(xid);
2732 return rc;
2733}
2734
2735/*
2736 * As file closes, flush all cached write data for this inode checking
2737 * for write behind errors.
2738 */
2739int cifs_flush(struct file *file, fl_owner_t id)
2740{
2741 struct inode *inode = file_inode(file);
2742 int rc = 0;
2743
2744 if (file->f_mode & FMODE_WRITE)
2745 rc = filemap_write_and_wait(inode->i_mapping);
2746
2747 cifs_dbg(FYI, "Flush inode %p file %p rc %d\n", inode, file, rc);
2748 if (rc)
2749 trace_cifs_flush_err(inode->i_ino, rc);
2750 return rc;
2751}
2752
2753static int
2754cifs_write_allocate_pages(struct page **pages, unsigned long num_pages)
2755{
2756 int rc = 0;
2757 unsigned long i;
2758
2759 for (i = 0; i < num_pages; i++) {
2760 pages[i] = alloc_page(GFP_KERNEL|__GFP_HIGHMEM);
2761 if (!pages[i]) {
2762 /*
2763 * save number of pages we have already allocated and
2764 * return with ENOMEM error
2765 */
2766 num_pages = i;
2767 rc = -ENOMEM;
2768 break;
2769 }
2770 }
2771
2772 if (rc) {
2773 for (i = 0; i < num_pages; i++)
2774 put_page(pages[i]);
2775 }
2776 return rc;
2777}
2778
2779static inline
2780size_t get_numpages(const size_t wsize, const size_t len, size_t *cur_len)
2781{
2782 size_t num_pages;
2783 size_t clen;
2784
2785 clen = min_t(const size_t, len, wsize);
2786 num_pages = DIV_ROUND_UP(clen, PAGE_SIZE);
2787
2788 if (cur_len)
2789 *cur_len = clen;
2790
2791 return num_pages;
2792}
2793
2794static void
2795cifs_uncached_writedata_release(struct kref *refcount)
2796{
2797 int i;
2798 struct cifs_writedata *wdata = container_of(refcount,
2799 struct cifs_writedata, refcount);
2800
2801 kref_put(&wdata->ctx->refcount, cifs_aio_ctx_release);
2802 for (i = 0; i < wdata->nr_pages; i++)
2803 put_page(wdata->pages[i]);
2804 cifs_writedata_release(refcount);
2805}
2806
2807static void collect_uncached_write_data(struct cifs_aio_ctx *ctx);
2808
2809static void
2810cifs_uncached_writev_complete(struct work_struct *work)
2811{
2812 struct cifs_writedata *wdata = container_of(work,
2813 struct cifs_writedata, work);
2814 struct inode *inode = d_inode(wdata->cfile->dentry);
2815 struct cifsInodeInfo *cifsi = CIFS_I(inode);
2816
2817 spin_lock(&inode->i_lock);
2818 cifs_update_eof(cifsi, wdata->offset, wdata->bytes);
2819 if (cifsi->server_eof > inode->i_size)
2820 i_size_write(inode, cifsi->server_eof);
2821 spin_unlock(&inode->i_lock);
2822
2823 complete(&wdata->done);
2824 collect_uncached_write_data(wdata->ctx);
2825 /* the below call can possibly free the last ref to aio ctx */
2826 kref_put(&wdata->refcount, cifs_uncached_writedata_release);
2827}
2828
2829static int
2830wdata_fill_from_iovec(struct cifs_writedata *wdata, struct iov_iter *from,
2831 size_t *len, unsigned long *num_pages)
2832{
2833 size_t save_len, copied, bytes, cur_len = *len;
2834 unsigned long i, nr_pages = *num_pages;
2835
2836 save_len = cur_len;
2837 for (i = 0; i < nr_pages; i++) {
2838 bytes = min_t(const size_t, cur_len, PAGE_SIZE);
2839 copied = copy_page_from_iter(wdata->pages[i], 0, bytes, from);
2840 cur_len -= copied;
2841 /*
2842 * If we didn't copy as much as we expected, then that
2843 * may mean we trod into an unmapped area. Stop copying
2844 * at that point. On the next pass through the big
2845 * loop, we'll likely end up getting a zero-length
2846 * write and bailing out of it.
2847 */
2848 if (copied < bytes)
2849 break;
2850 }
2851 cur_len = save_len - cur_len;
2852 *len = cur_len;
2853
2854 /*
2855 * If we have no data to send, then that probably means that
2856 * the copy above failed altogether. That's most likely because
2857 * the address in the iovec was bogus. Return -EFAULT and let
2858 * the caller free anything we allocated and bail out.
2859 */
2860 if (!cur_len)
2861 return -EFAULT;
2862
2863 /*
2864 * i + 1 now represents the number of pages we actually used in
2865 * the copy phase above.
2866 */
2867 *num_pages = i + 1;
2868 return 0;
2869}
2870
2871static int
2872cifs_resend_wdata(struct cifs_writedata *wdata, struct list_head *wdata_list,
2873 struct cifs_aio_ctx *ctx)
2874{
2875 unsigned int wsize;
2876 struct cifs_credits credits;
2877 int rc;
2878 struct TCP_Server_Info *server = wdata->server;
2879
2880 do {
2881 if (wdata->cfile->invalidHandle) {
2882 rc = cifs_reopen_file(wdata->cfile, false);
2883 if (rc == -EAGAIN)
2884 continue;
2885 else if (rc)
2886 break;
2887 }
2888
2889
2890 /*
2891 * Wait for credits to resend this wdata.
2892 * Note: we are attempting to resend the whole wdata not in
2893 * segments
2894 */
2895 do {
2896 rc = server->ops->wait_mtu_credits(server, wdata->bytes,
2897 &wsize, &credits);
2898 if (rc)
2899 goto fail;
2900
2901 if (wsize < wdata->bytes) {
2902 add_credits_and_wake_if(server, &credits, 0);
2903 msleep(1000);
2904 }
2905 } while (wsize < wdata->bytes);
2906 wdata->credits = credits;
2907
2908 rc = adjust_credits(server, &wdata->credits, wdata->bytes);
2909
2910 if (!rc) {
2911 if (wdata->cfile->invalidHandle)
2912 rc = -EAGAIN;
2913 else {
2914#ifdef CONFIG_CIFS_SMB_DIRECT
2915 if (wdata->mr) {
2916 wdata->mr->need_invalidate = true;
2917 smbd_deregister_mr(wdata->mr);
2918 wdata->mr = NULL;
2919 }
2920#endif
2921 rc = server->ops->async_writev(wdata,
2922 cifs_uncached_writedata_release);
2923 }
2924 }
2925
2926 /* If the write was successfully sent, we are done */
2927 if (!rc) {
2928 list_add_tail(&wdata->list, wdata_list);
2929 return 0;
2930 }
2931
2932 /* Roll back credits and retry if needed */
2933 add_credits_and_wake_if(server, &wdata->credits, 0);
2934 } while (rc == -EAGAIN);
2935
2936fail:
2937 kref_put(&wdata->refcount, cifs_uncached_writedata_release);
2938 return rc;
2939}
2940
2941static int
2942cifs_write_from_iter(loff_t offset, size_t len, struct iov_iter *from,
2943 struct cifsFileInfo *open_file,
2944 struct cifs_sb_info *cifs_sb, struct list_head *wdata_list,
2945 struct cifs_aio_ctx *ctx)
2946{
2947 int rc = 0;
2948 size_t cur_len;
2949 unsigned long nr_pages, num_pages, i;
2950 struct cifs_writedata *wdata;
2951 struct iov_iter saved_from = *from;
2952 loff_t saved_offset = offset;
2953 pid_t pid;
2954 struct TCP_Server_Info *server;
2955 struct page **pagevec;
2956 size_t start;
2957 unsigned int xid;
2958
2959 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2960 pid = open_file->pid;
2961 else
2962 pid = current->tgid;
2963
2964 server = cifs_pick_channel(tlink_tcon(open_file->tlink)->ses);
2965 xid = get_xid();
2966
2967 do {
2968 unsigned int wsize;
2969 struct cifs_credits credits_on_stack;
2970 struct cifs_credits *credits = &credits_on_stack;
2971
2972 if (open_file->invalidHandle) {
2973 rc = cifs_reopen_file(open_file, false);
2974 if (rc == -EAGAIN)
2975 continue;
2976 else if (rc)
2977 break;
2978 }
2979
2980 rc = server->ops->wait_mtu_credits(server, cifs_sb->ctx->wsize,
2981 &wsize, credits);
2982 if (rc)
2983 break;
2984
2985 cur_len = min_t(const size_t, len, wsize);
2986
2987 if (ctx->direct_io) {
2988 ssize_t result;
2989
2990 result = iov_iter_get_pages_alloc(
2991 from, &pagevec, cur_len, &start);
2992 if (result < 0) {
2993 cifs_dbg(VFS,
2994 "direct_writev couldn't get user pages (rc=%zd) iter type %d iov_offset %zd count %zd\n",
2995 result, iov_iter_type(from),
2996 from->iov_offset, from->count);
2997 dump_stack();
2998
2999 rc = result;
3000 add_credits_and_wake_if(server, credits, 0);
3001 break;
3002 }
3003 cur_len = (size_t)result;
3004 iov_iter_advance(from, cur_len);
3005
3006 nr_pages =
3007 (cur_len + start + PAGE_SIZE - 1) / PAGE_SIZE;
3008
3009 wdata = cifs_writedata_direct_alloc(pagevec,
3010 cifs_uncached_writev_complete);
3011 if (!wdata) {
3012 rc = -ENOMEM;
3013 add_credits_and_wake_if(server, credits, 0);
3014 break;
3015 }
3016
3017
3018 wdata->page_offset = start;
3019 wdata->tailsz =
3020 nr_pages > 1 ?
3021 cur_len - (PAGE_SIZE - start) -
3022 (nr_pages - 2) * PAGE_SIZE :
3023 cur_len;
3024 } else {
3025 nr_pages = get_numpages(wsize, len, &cur_len);
3026 wdata = cifs_writedata_alloc(nr_pages,
3027 cifs_uncached_writev_complete);
3028 if (!wdata) {
3029 rc = -ENOMEM;
3030 add_credits_and_wake_if(server, credits, 0);
3031 break;
3032 }
3033
3034 rc = cifs_write_allocate_pages(wdata->pages, nr_pages);
3035 if (rc) {
3036 kvfree(wdata->pages);
3037 kfree(wdata);
3038 add_credits_and_wake_if(server, credits, 0);
3039 break;
3040 }
3041
3042 num_pages = nr_pages;
3043 rc = wdata_fill_from_iovec(
3044 wdata, from, &cur_len, &num_pages);
3045 if (rc) {
3046 for (i = 0; i < nr_pages; i++)
3047 put_page(wdata->pages[i]);
3048 kvfree(wdata->pages);
3049 kfree(wdata);
3050 add_credits_and_wake_if(server, credits, 0);
3051 break;
3052 }
3053
3054 /*
3055 * Bring nr_pages down to the number of pages we
3056 * actually used, and free any pages that we didn't use.
3057 */
3058 for ( ; nr_pages > num_pages; nr_pages--)
3059 put_page(wdata->pages[nr_pages - 1]);
3060
3061 wdata->tailsz = cur_len - ((nr_pages - 1) * PAGE_SIZE);
3062 }
3063
3064 wdata->sync_mode = WB_SYNC_ALL;
3065 wdata->nr_pages = nr_pages;
3066 wdata->offset = (__u64)offset;
3067 wdata->cfile = cifsFileInfo_get(open_file);
3068 wdata->server = server;
3069 wdata->pid = pid;
3070 wdata->bytes = cur_len;
3071 wdata->pagesz = PAGE_SIZE;
3072 wdata->credits = credits_on_stack;
3073 wdata->ctx = ctx;
3074 kref_get(&ctx->refcount);
3075
3076 rc = adjust_credits(server, &wdata->credits, wdata->bytes);
3077
3078 if (!rc) {
3079 if (wdata->cfile->invalidHandle)
3080 rc = -EAGAIN;
3081 else
3082 rc = server->ops->async_writev(wdata,
3083 cifs_uncached_writedata_release);
3084 }
3085
3086 if (rc) {
3087 add_credits_and_wake_if(server, &wdata->credits, 0);
3088 kref_put(&wdata->refcount,
3089 cifs_uncached_writedata_release);
3090 if (rc == -EAGAIN) {
3091 *from = saved_from;
3092 iov_iter_advance(from, offset - saved_offset);
3093 continue;
3094 }
3095 break;
3096 }
3097
3098 list_add_tail(&wdata->list, wdata_list);
3099 offset += cur_len;
3100 len -= cur_len;
3101 } while (len > 0);
3102
3103 free_xid(xid);
3104 return rc;
3105}
3106
3107static void collect_uncached_write_data(struct cifs_aio_ctx *ctx)
3108{
3109 struct cifs_writedata *wdata, *tmp;
3110 struct cifs_tcon *tcon;
3111 struct cifs_sb_info *cifs_sb;
3112 struct dentry *dentry = ctx->cfile->dentry;
3113 ssize_t rc;
3114
3115 tcon = tlink_tcon(ctx->cfile->tlink);
3116 cifs_sb = CIFS_SB(dentry->d_sb);
3117
3118 mutex_lock(&ctx->aio_mutex);
3119
3120 if (list_empty(&ctx->list)) {
3121 mutex_unlock(&ctx->aio_mutex);
3122 return;
3123 }
3124
3125 rc = ctx->rc;
3126 /*
3127 * Wait for and collect replies for any successful sends in order of
3128 * increasing offset. Once an error is hit, then return without waiting
3129 * for any more replies.
3130 */
3131restart_loop:
3132 list_for_each_entry_safe(wdata, tmp, &ctx->list, list) {
3133 if (!rc) {
3134 if (!try_wait_for_completion(&wdata->done)) {
3135 mutex_unlock(&ctx->aio_mutex);
3136 return;
3137 }
3138
3139 if (wdata->result)
3140 rc = wdata->result;
3141 else
3142 ctx->total_len += wdata->bytes;
3143
3144 /* resend call if it's a retryable error */
3145 if (rc == -EAGAIN) {
3146 struct list_head tmp_list;
3147 struct iov_iter tmp_from = ctx->iter;
3148
3149 INIT_LIST_HEAD(&tmp_list);
3150 list_del_init(&wdata->list);
3151
3152 if (ctx->direct_io)
3153 rc = cifs_resend_wdata(
3154 wdata, &tmp_list, ctx);
3155 else {
3156 iov_iter_advance(&tmp_from,
3157 wdata->offset - ctx->pos);
3158
3159 rc = cifs_write_from_iter(wdata->offset,
3160 wdata->bytes, &tmp_from,
3161 ctx->cfile, cifs_sb, &tmp_list,
3162 ctx);
3163
3164 kref_put(&wdata->refcount,
3165 cifs_uncached_writedata_release);
3166 }
3167
3168 list_splice(&tmp_list, &ctx->list);
3169 goto restart_loop;
3170 }
3171 }
3172 list_del_init(&wdata->list);
3173 kref_put(&wdata->refcount, cifs_uncached_writedata_release);
3174 }
3175
3176 cifs_stats_bytes_written(tcon, ctx->total_len);
3177 set_bit(CIFS_INO_INVALID_MAPPING, &CIFS_I(dentry->d_inode)->flags);
3178
3179 ctx->rc = (rc == 0) ? ctx->total_len : rc;
3180
3181 mutex_unlock(&ctx->aio_mutex);
3182
3183 if (ctx->iocb && ctx->iocb->ki_complete)
3184 ctx->iocb->ki_complete(ctx->iocb, ctx->rc, 0);
3185 else
3186 complete(&ctx->done);
3187}
3188
3189static ssize_t __cifs_writev(
3190 struct kiocb *iocb, struct iov_iter *from, bool direct)
3191{
3192 struct file *file = iocb->ki_filp;
3193 ssize_t total_written = 0;
3194 struct cifsFileInfo *cfile;
3195 struct cifs_tcon *tcon;
3196 struct cifs_sb_info *cifs_sb;
3197 struct cifs_aio_ctx *ctx;
3198 struct iov_iter saved_from = *from;
3199 size_t len = iov_iter_count(from);
3200 int rc;
3201
3202 /*
3203 * iov_iter_get_pages_alloc doesn't work with ITER_KVEC.
3204 * In this case, fall back to non-direct write function.
3205 * this could be improved by getting pages directly in ITER_KVEC
3206 */
3207 if (direct && iov_iter_is_kvec(from)) {
3208 cifs_dbg(FYI, "use non-direct cifs_writev for kvec I/O\n");
3209 direct = false;
3210 }
3211
3212 rc = generic_write_checks(iocb, from);
3213 if (rc <= 0)
3214 return rc;
3215
3216 cifs_sb = CIFS_FILE_SB(file);
3217 cfile = file->private_data;
3218 tcon = tlink_tcon(cfile->tlink);
3219
3220 if (!tcon->ses->server->ops->async_writev)
3221 return -ENOSYS;
3222
3223 ctx = cifs_aio_ctx_alloc();
3224 if (!ctx)
3225 return -ENOMEM;
3226
3227 ctx->cfile = cifsFileInfo_get(cfile);
3228
3229 if (!is_sync_kiocb(iocb))
3230 ctx->iocb = iocb;
3231
3232 ctx->pos = iocb->ki_pos;
3233
3234 if (direct) {
3235 ctx->direct_io = true;
3236 ctx->iter = *from;
3237 ctx->len = len;
3238 } else {
3239 rc = setup_aio_ctx_iter(ctx, from, WRITE);
3240 if (rc) {
3241 kref_put(&ctx->refcount, cifs_aio_ctx_release);
3242 return rc;
3243 }
3244 }
3245
3246 /* grab a lock here due to read response handlers can access ctx */
3247 mutex_lock(&ctx->aio_mutex);
3248
3249 rc = cifs_write_from_iter(iocb->ki_pos, ctx->len, &saved_from,
3250 cfile, cifs_sb, &ctx->list, ctx);
3251
3252 /*
3253 * If at least one write was successfully sent, then discard any rc
3254 * value from the later writes. If the other write succeeds, then
3255 * we'll end up returning whatever was written. If it fails, then
3256 * we'll get a new rc value from that.
3257 */
3258 if (!list_empty(&ctx->list))
3259 rc = 0;
3260
3261 mutex_unlock(&ctx->aio_mutex);
3262
3263 if (rc) {
3264 kref_put(&ctx->refcount, cifs_aio_ctx_release);
3265 return rc;
3266 }
3267
3268 if (!is_sync_kiocb(iocb)) {
3269 kref_put(&ctx->refcount, cifs_aio_ctx_release);
3270 return -EIOCBQUEUED;
3271 }
3272
3273 rc = wait_for_completion_killable(&ctx->done);
3274 if (rc) {
3275 mutex_lock(&ctx->aio_mutex);
3276 ctx->rc = rc = -EINTR;
3277 total_written = ctx->total_len;
3278 mutex_unlock(&ctx->aio_mutex);
3279 } else {
3280 rc = ctx->rc;
3281 total_written = ctx->total_len;
3282 }
3283
3284 kref_put(&ctx->refcount, cifs_aio_ctx_release);
3285
3286 if (unlikely(!total_written))
3287 return rc;
3288
3289 iocb->ki_pos += total_written;
3290 return total_written;
3291}
3292
3293ssize_t cifs_direct_writev(struct kiocb *iocb, struct iov_iter *from)
3294{
3295 return __cifs_writev(iocb, from, true);
3296}
3297
3298ssize_t cifs_user_writev(struct kiocb *iocb, struct iov_iter *from)
3299{
3300 return __cifs_writev(iocb, from, false);
3301}
3302
3303static ssize_t
3304cifs_writev(struct kiocb *iocb, struct iov_iter *from)
3305{
3306 struct file *file = iocb->ki_filp;
3307 struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data;
3308 struct inode *inode = file->f_mapping->host;
3309 struct cifsInodeInfo *cinode = CIFS_I(inode);
3310 struct TCP_Server_Info *server = tlink_tcon(cfile->tlink)->ses->server;
3311 ssize_t rc;
3312
3313 inode_lock(inode);
3314 /*
3315 * We need to hold the sem to be sure nobody modifies lock list
3316 * with a brlock that prevents writing.
3317 */
3318 down_read(&cinode->lock_sem);
3319
3320 rc = generic_write_checks(iocb, from);
3321 if (rc <= 0)
3322 goto out;
3323
3324 if (!cifs_find_lock_conflict(cfile, iocb->ki_pos, iov_iter_count(from),
3325 server->vals->exclusive_lock_type, 0,
3326 NULL, CIFS_WRITE_OP))
3327 rc = __generic_file_write_iter(iocb, from);
3328 else
3329 rc = -EACCES;
3330out:
3331 up_read(&cinode->lock_sem);
3332 inode_unlock(inode);
3333
3334 if (rc > 0)
3335 rc = generic_write_sync(iocb, rc);
3336 return rc;
3337}
3338
3339ssize_t
3340cifs_strict_writev(struct kiocb *iocb, struct iov_iter *from)
3341{
3342 struct inode *inode = file_inode(iocb->ki_filp);
3343 struct cifsInodeInfo *cinode = CIFS_I(inode);
3344 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
3345 struct cifsFileInfo *cfile = (struct cifsFileInfo *)
3346 iocb->ki_filp->private_data;
3347 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
3348 ssize_t written;
3349
3350 written = cifs_get_writer(cinode);
3351 if (written)
3352 return written;
3353
3354 if (CIFS_CACHE_WRITE(cinode)) {
3355 if (cap_unix(tcon->ses) &&
3356 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability))
3357 && ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0)) {
3358 written = generic_file_write_iter(iocb, from);
3359 goto out;
3360 }
3361 written = cifs_writev(iocb, from);
3362 goto out;
3363 }
3364 /*
3365 * For non-oplocked files in strict cache mode we need to write the data
3366 * to the server exactly from the pos to pos+len-1 rather than flush all
3367 * affected pages because it may cause a error with mandatory locks on
3368 * these pages but not on the region from pos to ppos+len-1.
3369 */
3370 written = cifs_user_writev(iocb, from);
3371 if (CIFS_CACHE_READ(cinode)) {
3372 /*
3373 * We have read level caching and we have just sent a write
3374 * request to the server thus making data in the cache stale.
3375 * Zap the cache and set oplock/lease level to NONE to avoid
3376 * reading stale data from the cache. All subsequent read
3377 * operations will read new data from the server.
3378 */
3379 cifs_zap_mapping(inode);
3380 cifs_dbg(FYI, "Set Oplock/Lease to NONE for inode=%p after write\n",
3381 inode);
3382 cinode->oplock = 0;
3383 }
3384out:
3385 cifs_put_writer(cinode);
3386 return written;
3387}
3388
3389static struct cifs_readdata *
3390cifs_readdata_direct_alloc(struct page **pages, work_func_t complete)
3391{
3392 struct cifs_readdata *rdata;
3393
3394 rdata = kzalloc(sizeof(*rdata), GFP_KERNEL);
3395 if (rdata != NULL) {
3396 rdata->pages = pages;
3397 kref_init(&rdata->refcount);
3398 INIT_LIST_HEAD(&rdata->list);
3399 init_completion(&rdata->done);
3400 INIT_WORK(&rdata->work, complete);
3401 }
3402
3403 return rdata;
3404}
3405
3406static struct cifs_readdata *
3407cifs_readdata_alloc(unsigned int nr_pages, work_func_t complete)
3408{
3409 struct page **pages =
3410 kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
3411 struct cifs_readdata *ret = NULL;
3412
3413 if (pages) {
3414 ret = cifs_readdata_direct_alloc(pages, complete);
3415 if (!ret)
3416 kfree(pages);
3417 }
3418
3419 return ret;
3420}
3421
3422void
3423cifs_readdata_release(struct kref *refcount)
3424{
3425 struct cifs_readdata *rdata = container_of(refcount,
3426 struct cifs_readdata, refcount);
3427#ifdef CONFIG_CIFS_SMB_DIRECT
3428 if (rdata->mr) {
3429 smbd_deregister_mr(rdata->mr);
3430 rdata->mr = NULL;
3431 }
3432#endif
3433 if (rdata->cfile)
3434 cifsFileInfo_put(rdata->cfile);
3435
3436 kvfree(rdata->pages);
3437 kfree(rdata);
3438}
3439
3440static int
3441cifs_read_allocate_pages(struct cifs_readdata *rdata, unsigned int nr_pages)
3442{
3443 int rc = 0;
3444 struct page *page;
3445 unsigned int i;
3446
3447 for (i = 0; i < nr_pages; i++) {
3448 page = alloc_page(GFP_KERNEL|__GFP_HIGHMEM);
3449 if (!page) {
3450 rc = -ENOMEM;
3451 break;
3452 }
3453 rdata->pages[i] = page;
3454 }
3455
3456 if (rc) {
3457 unsigned int nr_page_failed = i;
3458
3459 for (i = 0; i < nr_page_failed; i++) {
3460 put_page(rdata->pages[i]);
3461 rdata->pages[i] = NULL;
3462 }
3463 }
3464 return rc;
3465}
3466
3467static void
3468cifs_uncached_readdata_release(struct kref *refcount)
3469{
3470 struct cifs_readdata *rdata = container_of(refcount,
3471 struct cifs_readdata, refcount);
3472 unsigned int i;
3473
3474 kref_put(&rdata->ctx->refcount, cifs_aio_ctx_release);
3475 for (i = 0; i < rdata->nr_pages; i++) {
3476 put_page(rdata->pages[i]);
3477 }
3478 cifs_readdata_release(refcount);
3479}
3480
3481/**
3482 * cifs_readdata_to_iov - copy data from pages in response to an iovec
3483 * @rdata: the readdata response with list of pages holding data
3484 * @iter: destination for our data
3485 *
3486 * This function copies data from a list of pages in a readdata response into
3487 * an array of iovecs. It will first calculate where the data should go
3488 * based on the info in the readdata and then copy the data into that spot.
3489 */
3490static int
3491cifs_readdata_to_iov(struct cifs_readdata *rdata, struct iov_iter *iter)
3492{
3493 size_t remaining = rdata->got_bytes;
3494 unsigned int i;
3495
3496 for (i = 0; i < rdata->nr_pages; i++) {
3497 struct page *page = rdata->pages[i];
3498 size_t copy = min_t(size_t, remaining, PAGE_SIZE);
3499 size_t written;
3500
3501 if (unlikely(iov_iter_is_pipe(iter))) {
3502 void *addr = kmap_atomic(page);
3503
3504 written = copy_to_iter(addr, copy, iter);
3505 kunmap_atomic(addr);
3506 } else
3507 written = copy_page_to_iter(page, 0, copy, iter);
3508 remaining -= written;
3509 if (written < copy && iov_iter_count(iter) > 0)
3510 break;
3511 }
3512 return remaining ? -EFAULT : 0;
3513}
3514
3515static void collect_uncached_read_data(struct cifs_aio_ctx *ctx);
3516
3517static void
3518cifs_uncached_readv_complete(struct work_struct *work)
3519{
3520 struct cifs_readdata *rdata = container_of(work,
3521 struct cifs_readdata, work);
3522
3523 complete(&rdata->done);
3524 collect_uncached_read_data(rdata->ctx);
3525 /* the below call can possibly free the last ref to aio ctx */
3526 kref_put(&rdata->refcount, cifs_uncached_readdata_release);
3527}
3528
3529static int
3530uncached_fill_pages(struct TCP_Server_Info *server,
3531 struct cifs_readdata *rdata, struct iov_iter *iter,
3532 unsigned int len)
3533{
3534 int result = 0;
3535 unsigned int i;
3536 unsigned int nr_pages = rdata->nr_pages;
3537 unsigned int page_offset = rdata->page_offset;
3538
3539 rdata->got_bytes = 0;
3540 rdata->tailsz = PAGE_SIZE;
3541 for (i = 0; i < nr_pages; i++) {
3542 struct page *page = rdata->pages[i];
3543 size_t n;
3544 unsigned int segment_size = rdata->pagesz;
3545
3546 if (i == 0)
3547 segment_size -= page_offset;
3548 else
3549 page_offset = 0;
3550
3551
3552 if (len <= 0) {
3553 /* no need to hold page hostage */
3554 rdata->pages[i] = NULL;
3555 rdata->nr_pages--;
3556 put_page(page);
3557 continue;
3558 }
3559
3560 n = len;
3561 if (len >= segment_size)
3562 /* enough data to fill the page */
3563 n = segment_size;
3564 else
3565 rdata->tailsz = len;
3566 len -= n;
3567
3568 if (iter)
3569 result = copy_page_from_iter(
3570 page, page_offset, n, iter);
3571#ifdef CONFIG_CIFS_SMB_DIRECT
3572 else if (rdata->mr)
3573 result = n;
3574#endif
3575 else
3576 result = cifs_read_page_from_socket(
3577 server, page, page_offset, n);
3578 if (result < 0)
3579 break;
3580
3581 rdata->got_bytes += result;
3582 }
3583
3584 return rdata->got_bytes > 0 && result != -ECONNABORTED ?
3585 rdata->got_bytes : result;
3586}
3587
3588static int
3589cifs_uncached_read_into_pages(struct TCP_Server_Info *server,
3590 struct cifs_readdata *rdata, unsigned int len)
3591{
3592 return uncached_fill_pages(server, rdata, NULL, len);
3593}
3594
3595static int
3596cifs_uncached_copy_into_pages(struct TCP_Server_Info *server,
3597 struct cifs_readdata *rdata,
3598 struct iov_iter *iter)
3599{
3600 return uncached_fill_pages(server, rdata, iter, iter->count);
3601}
3602
3603static int cifs_resend_rdata(struct cifs_readdata *rdata,
3604 struct list_head *rdata_list,
3605 struct cifs_aio_ctx *ctx)
3606{
3607 unsigned int rsize;
3608 struct cifs_credits credits;
3609 int rc;
3610 struct TCP_Server_Info *server;
3611
3612 /* XXX: should we pick a new channel here? */
3613 server = rdata->server;
3614
3615 do {
3616 if (rdata->cfile->invalidHandle) {
3617 rc = cifs_reopen_file(rdata->cfile, true);
3618 if (rc == -EAGAIN)
3619 continue;
3620 else if (rc)
3621 break;
3622 }
3623
3624 /*
3625 * Wait for credits to resend this rdata.
3626 * Note: we are attempting to resend the whole rdata not in
3627 * segments
3628 */
3629 do {
3630 rc = server->ops->wait_mtu_credits(server, rdata->bytes,
3631 &rsize, &credits);
3632
3633 if (rc)
3634 goto fail;
3635
3636 if (rsize < rdata->bytes) {
3637 add_credits_and_wake_if(server, &credits, 0);
3638 msleep(1000);
3639 }
3640 } while (rsize < rdata->bytes);
3641 rdata->credits = credits;
3642
3643 rc = adjust_credits(server, &rdata->credits, rdata->bytes);
3644 if (!rc) {
3645 if (rdata->cfile->invalidHandle)
3646 rc = -EAGAIN;
3647 else {
3648#ifdef CONFIG_CIFS_SMB_DIRECT
3649 if (rdata->mr) {
3650 rdata->mr->need_invalidate = true;
3651 smbd_deregister_mr(rdata->mr);
3652 rdata->mr = NULL;
3653 }
3654#endif
3655 rc = server->ops->async_readv(rdata);
3656 }
3657 }
3658
3659 /* If the read was successfully sent, we are done */
3660 if (!rc) {
3661 /* Add to aio pending list */
3662 list_add_tail(&rdata->list, rdata_list);
3663 return 0;
3664 }
3665
3666 /* Roll back credits and retry if needed */
3667 add_credits_and_wake_if(server, &rdata->credits, 0);
3668 } while (rc == -EAGAIN);
3669
3670fail:
3671 kref_put(&rdata->refcount, cifs_uncached_readdata_release);
3672 return rc;
3673}
3674
3675static int
3676cifs_send_async_read(loff_t offset, size_t len, struct cifsFileInfo *open_file,
3677 struct cifs_sb_info *cifs_sb, struct list_head *rdata_list,
3678 struct cifs_aio_ctx *ctx)
3679{
3680 struct cifs_readdata *rdata;
3681 unsigned int npages, rsize;
3682 struct cifs_credits credits_on_stack;
3683 struct cifs_credits *credits = &credits_on_stack;
3684 size_t cur_len;
3685 int rc;
3686 pid_t pid;
3687 struct TCP_Server_Info *server;
3688 struct page **pagevec;
3689 size_t start;
3690 struct iov_iter direct_iov = ctx->iter;
3691
3692 server = cifs_pick_channel(tlink_tcon(open_file->tlink)->ses);
3693
3694 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
3695 pid = open_file->pid;
3696 else
3697 pid = current->tgid;
3698
3699 if (ctx->direct_io)
3700 iov_iter_advance(&direct_iov, offset - ctx->pos);
3701
3702 do {
3703 if (open_file->invalidHandle) {
3704 rc = cifs_reopen_file(open_file, true);
3705 if (rc == -EAGAIN)
3706 continue;
3707 else if (rc)
3708 break;
3709 }
3710
3711 rc = server->ops->wait_mtu_credits(server, cifs_sb->ctx->rsize,
3712 &rsize, credits);
3713 if (rc)
3714 break;
3715
3716 cur_len = min_t(const size_t, len, rsize);
3717
3718 if (ctx->direct_io) {
3719 ssize_t result;
3720
3721 result = iov_iter_get_pages_alloc(
3722 &direct_iov, &pagevec,
3723 cur_len, &start);
3724 if (result < 0) {
3725 cifs_dbg(VFS,
3726 "Couldn't get user pages (rc=%zd) iter type %d iov_offset %zd count %zd\n",
3727 result, iov_iter_type(&direct_iov),
3728 direct_iov.iov_offset,
3729 direct_iov.count);
3730 dump_stack();
3731
3732 rc = result;
3733 add_credits_and_wake_if(server, credits, 0);
3734 break;
3735 }
3736 cur_len = (size_t)result;
3737 iov_iter_advance(&direct_iov, cur_len);
3738
3739 rdata = cifs_readdata_direct_alloc(
3740 pagevec, cifs_uncached_readv_complete);
3741 if (!rdata) {
3742 add_credits_and_wake_if(server, credits, 0);
3743 rc = -ENOMEM;
3744 break;
3745 }
3746
3747 npages = (cur_len + start + PAGE_SIZE-1) / PAGE_SIZE;
3748 rdata->page_offset = start;
3749 rdata->tailsz = npages > 1 ?
3750 cur_len-(PAGE_SIZE-start)-(npages-2)*PAGE_SIZE :
3751 cur_len;
3752
3753 } else {
3754
3755 npages = DIV_ROUND_UP(cur_len, PAGE_SIZE);
3756 /* allocate a readdata struct */
3757 rdata = cifs_readdata_alloc(npages,
3758 cifs_uncached_readv_complete);
3759 if (!rdata) {
3760 add_credits_and_wake_if(server, credits, 0);
3761 rc = -ENOMEM;
3762 break;
3763 }
3764
3765 rc = cifs_read_allocate_pages(rdata, npages);
3766 if (rc) {
3767 kvfree(rdata->pages);
3768 kfree(rdata);
3769 add_credits_and_wake_if(server, credits, 0);
3770 break;
3771 }
3772
3773 rdata->tailsz = PAGE_SIZE;
3774 }
3775
3776 rdata->server = server;
3777 rdata->cfile = cifsFileInfo_get(open_file);
3778 rdata->nr_pages = npages;
3779 rdata->offset = offset;
3780 rdata->bytes = cur_len;
3781 rdata->pid = pid;
3782 rdata->pagesz = PAGE_SIZE;
3783 rdata->read_into_pages = cifs_uncached_read_into_pages;
3784 rdata->copy_into_pages = cifs_uncached_copy_into_pages;
3785 rdata->credits = credits_on_stack;
3786 rdata->ctx = ctx;
3787 kref_get(&ctx->refcount);
3788
3789 rc = adjust_credits(server, &rdata->credits, rdata->bytes);
3790
3791 if (!rc) {
3792 if (rdata->cfile->invalidHandle)
3793 rc = -EAGAIN;
3794 else
3795 rc = server->ops->async_readv(rdata);
3796 }
3797
3798 if (rc) {
3799 add_credits_and_wake_if(server, &rdata->credits, 0);
3800 kref_put(&rdata->refcount,
3801 cifs_uncached_readdata_release);
3802 if (rc == -EAGAIN) {
3803 iov_iter_revert(&direct_iov, cur_len);
3804 continue;
3805 }
3806 break;
3807 }
3808
3809 list_add_tail(&rdata->list, rdata_list);
3810 offset += cur_len;
3811 len -= cur_len;
3812 } while (len > 0);
3813
3814 return rc;
3815}
3816
3817static void
3818collect_uncached_read_data(struct cifs_aio_ctx *ctx)
3819{
3820 struct cifs_readdata *rdata, *tmp;
3821 struct iov_iter *to = &ctx->iter;
3822 struct cifs_sb_info *cifs_sb;
3823 int rc;
3824
3825 cifs_sb = CIFS_SB(ctx->cfile->dentry->d_sb);
3826
3827 mutex_lock(&ctx->aio_mutex);
3828
3829 if (list_empty(&ctx->list)) {
3830 mutex_unlock(&ctx->aio_mutex);
3831 return;
3832 }
3833
3834 rc = ctx->rc;
3835 /* the loop below should proceed in the order of increasing offsets */
3836again:
3837 list_for_each_entry_safe(rdata, tmp, &ctx->list, list) {
3838 if (!rc) {
3839 if (!try_wait_for_completion(&rdata->done)) {
3840 mutex_unlock(&ctx->aio_mutex);
3841 return;
3842 }
3843
3844 if (rdata->result == -EAGAIN) {
3845 /* resend call if it's a retryable error */
3846 struct list_head tmp_list;
3847 unsigned int got_bytes = rdata->got_bytes;
3848
3849 list_del_init(&rdata->list);
3850 INIT_LIST_HEAD(&tmp_list);
3851
3852 /*
3853 * Got a part of data and then reconnect has
3854 * happened -- fill the buffer and continue
3855 * reading.
3856 */
3857 if (got_bytes && got_bytes < rdata->bytes) {
3858 rc = 0;
3859 if (!ctx->direct_io)
3860 rc = cifs_readdata_to_iov(rdata, to);
3861 if (rc) {
3862 kref_put(&rdata->refcount,
3863 cifs_uncached_readdata_release);
3864 continue;
3865 }
3866 }
3867
3868 if (ctx->direct_io) {
3869 /*
3870 * Re-use rdata as this is a
3871 * direct I/O
3872 */
3873 rc = cifs_resend_rdata(
3874 rdata,
3875 &tmp_list, ctx);
3876 } else {
3877 rc = cifs_send_async_read(
3878 rdata->offset + got_bytes,
3879 rdata->bytes - got_bytes,
3880 rdata->cfile, cifs_sb,
3881 &tmp_list, ctx);
3882
3883 kref_put(&rdata->refcount,
3884 cifs_uncached_readdata_release);
3885 }
3886
3887 list_splice(&tmp_list, &ctx->list);
3888
3889 goto again;
3890 } else if (rdata->result)
3891 rc = rdata->result;
3892 else if (!ctx->direct_io)
3893 rc = cifs_readdata_to_iov(rdata, to);
3894
3895 /* if there was a short read -- discard anything left */
3896 if (rdata->got_bytes && rdata->got_bytes < rdata->bytes)
3897 rc = -ENODATA;
3898
3899 ctx->total_len += rdata->got_bytes;
3900 }
3901 list_del_init(&rdata->list);
3902 kref_put(&rdata->refcount, cifs_uncached_readdata_release);
3903 }
3904
3905 if (!ctx->direct_io)
3906 ctx->total_len = ctx->len - iov_iter_count(to);
3907
3908 /* mask nodata case */
3909 if (rc == -ENODATA)
3910 rc = 0;
3911
3912 ctx->rc = (rc == 0) ? (ssize_t)ctx->total_len : rc;
3913
3914 mutex_unlock(&ctx->aio_mutex);
3915
3916 if (ctx->iocb && ctx->iocb->ki_complete)
3917 ctx->iocb->ki_complete(ctx->iocb, ctx->rc, 0);
3918 else
3919 complete(&ctx->done);
3920}
3921
3922static ssize_t __cifs_readv(
3923 struct kiocb *iocb, struct iov_iter *to, bool direct)
3924{
3925 size_t len;
3926 struct file *file = iocb->ki_filp;
3927 struct cifs_sb_info *cifs_sb;
3928 struct cifsFileInfo *cfile;
3929 struct cifs_tcon *tcon;
3930 ssize_t rc, total_read = 0;
3931 loff_t offset = iocb->ki_pos;
3932 struct cifs_aio_ctx *ctx;
3933
3934 /*
3935 * iov_iter_get_pages_alloc() doesn't work with ITER_KVEC,
3936 * fall back to data copy read path
3937 * this could be improved by getting pages directly in ITER_KVEC
3938 */
3939 if (direct && iov_iter_is_kvec(to)) {
3940 cifs_dbg(FYI, "use non-direct cifs_user_readv for kvec I/O\n");
3941 direct = false;
3942 }
3943
3944 len = iov_iter_count(to);
3945 if (!len)
3946 return 0;
3947
3948 cifs_sb = CIFS_FILE_SB(file);
3949 cfile = file->private_data;
3950 tcon = tlink_tcon(cfile->tlink);
3951
3952 if (!tcon->ses->server->ops->async_readv)
3953 return -ENOSYS;
3954
3955 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
3956 cifs_dbg(FYI, "attempting read on write only file instance\n");
3957
3958 ctx = cifs_aio_ctx_alloc();
3959 if (!ctx)
3960 return -ENOMEM;
3961
3962 ctx->cfile = cifsFileInfo_get(cfile);
3963
3964 if (!is_sync_kiocb(iocb))
3965 ctx->iocb = iocb;
3966
3967 if (iter_is_iovec(to))
3968 ctx->should_dirty = true;
3969
3970 if (direct) {
3971 ctx->pos = offset;
3972 ctx->direct_io = true;
3973 ctx->iter = *to;
3974 ctx->len = len;
3975 } else {
3976 rc = setup_aio_ctx_iter(ctx, to, READ);
3977 if (rc) {
3978 kref_put(&ctx->refcount, cifs_aio_ctx_release);
3979 return rc;
3980 }
3981 len = ctx->len;
3982 }
3983
3984 /* grab a lock here due to read response handlers can access ctx */
3985 mutex_lock(&ctx->aio_mutex);
3986
3987 rc = cifs_send_async_read(offset, len, cfile, cifs_sb, &ctx->list, ctx);
3988
3989 /* if at least one read request send succeeded, then reset rc */
3990 if (!list_empty(&ctx->list))
3991 rc = 0;
3992
3993 mutex_unlock(&ctx->aio_mutex);
3994
3995 if (rc) {
3996 kref_put(&ctx->refcount, cifs_aio_ctx_release);
3997 return rc;
3998 }
3999
4000 if (!is_sync_kiocb(iocb)) {
4001 kref_put(&ctx->refcount, cifs_aio_ctx_release);
4002 return -EIOCBQUEUED;
4003 }
4004
4005 rc = wait_for_completion_killable(&ctx->done);
4006 if (rc) {
4007 mutex_lock(&ctx->aio_mutex);
4008 ctx->rc = rc = -EINTR;
4009 total_read = ctx->total_len;
4010 mutex_unlock(&ctx->aio_mutex);
4011 } else {
4012 rc = ctx->rc;
4013 total_read = ctx->total_len;
4014 }
4015
4016 kref_put(&ctx->refcount, cifs_aio_ctx_release);
4017
4018 if (total_read) {
4019 iocb->ki_pos += total_read;
4020 return total_read;
4021 }
4022 return rc;
4023}
4024
4025ssize_t cifs_direct_readv(struct kiocb *iocb, struct iov_iter *to)
4026{
4027 return __cifs_readv(iocb, to, true);
4028}
4029
4030ssize_t cifs_user_readv(struct kiocb *iocb, struct iov_iter *to)
4031{
4032 return __cifs_readv(iocb, to, false);
4033}
4034
4035ssize_t
4036cifs_strict_readv(struct kiocb *iocb, struct iov_iter *to)
4037{
4038 struct inode *inode = file_inode(iocb->ki_filp);
4039 struct cifsInodeInfo *cinode = CIFS_I(inode);
4040 struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
4041 struct cifsFileInfo *cfile = (struct cifsFileInfo *)
4042 iocb->ki_filp->private_data;
4043 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
4044 int rc = -EACCES;
4045
4046 /*
4047 * In strict cache mode we need to read from the server all the time
4048 * if we don't have level II oplock because the server can delay mtime
4049 * change - so we can't make a decision about inode invalidating.
4050 * And we can also fail with pagereading if there are mandatory locks
4051 * on pages affected by this read but not on the region from pos to
4052 * pos+len-1.
4053 */
4054 if (!CIFS_CACHE_READ(cinode))
4055 return cifs_user_readv(iocb, to);
4056
4057 if (cap_unix(tcon->ses) &&
4058 (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
4059 ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
4060 return generic_file_read_iter(iocb, to);
4061
4062 /*
4063 * We need to hold the sem to be sure nobody modifies lock list
4064 * with a brlock that prevents reading.
4065 */
4066 down_read(&cinode->lock_sem);
4067 if (!cifs_find_lock_conflict(cfile, iocb->ki_pos, iov_iter_count(to),
4068 tcon->ses->server->vals->shared_lock_type,
4069 0, NULL, CIFS_READ_OP))
4070 rc = generic_file_read_iter(iocb, to);
4071 up_read(&cinode->lock_sem);
4072 return rc;
4073}
4074
4075static ssize_t
4076cifs_read(struct file *file, char *read_data, size_t read_size, loff_t *offset)
4077{
4078 int rc = -EACCES;
4079 unsigned int bytes_read = 0;
4080 unsigned int total_read;
4081 unsigned int current_read_size;
4082 unsigned int rsize;
4083 struct cifs_sb_info *cifs_sb;
4084 struct cifs_tcon *tcon;
4085 struct TCP_Server_Info *server;
4086 unsigned int xid;
4087 char *cur_offset;
4088 struct cifsFileInfo *open_file;
4089 struct cifs_io_parms io_parms = {0};
4090 int buf_type = CIFS_NO_BUFFER;
4091 __u32 pid;
4092
4093 xid = get_xid();
4094 cifs_sb = CIFS_FILE_SB(file);
4095
4096 /* FIXME: set up handlers for larger reads and/or convert to async */
4097 rsize = min_t(unsigned int, cifs_sb->ctx->rsize, CIFSMaxBufSize);
4098
4099 if (file->private_data == NULL) {
4100 rc = -EBADF;
4101 free_xid(xid);
4102 return rc;
4103 }
4104 open_file = file->private_data;
4105 tcon = tlink_tcon(open_file->tlink);
4106 server = cifs_pick_channel(tcon->ses);
4107
4108 if (!server->ops->sync_read) {
4109 free_xid(xid);
4110 return -ENOSYS;
4111 }
4112
4113 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
4114 pid = open_file->pid;
4115 else
4116 pid = current->tgid;
4117
4118 if ((file->f_flags & O_ACCMODE) == O_WRONLY)
4119 cifs_dbg(FYI, "attempting read on write only file instance\n");
4120
4121 for (total_read = 0, cur_offset = read_data; read_size > total_read;
4122 total_read += bytes_read, cur_offset += bytes_read) {
4123 do {
4124 current_read_size = min_t(uint, read_size - total_read,
4125 rsize);
4126 /*
4127 * For windows me and 9x we do not want to request more
4128 * than it negotiated since it will refuse the read
4129 * then.
4130 */
4131 if (!(tcon->ses->capabilities &
4132 tcon->ses->server->vals->cap_large_files)) {
4133 current_read_size = min_t(uint,
4134 current_read_size, CIFSMaxBufSize);
4135 }
4136 if (open_file->invalidHandle) {
4137 rc = cifs_reopen_file(open_file, true);
4138 if (rc != 0)
4139 break;
4140 }
4141 io_parms.pid = pid;
4142 io_parms.tcon = tcon;
4143 io_parms.offset = *offset;
4144 io_parms.length = current_read_size;
4145 io_parms.server = server;
4146 rc = server->ops->sync_read(xid, &open_file->fid, &io_parms,
4147 &bytes_read, &cur_offset,
4148 &buf_type);
4149 } while (rc == -EAGAIN);
4150
4151 if (rc || (bytes_read == 0)) {
4152 if (total_read) {
4153 break;
4154 } else {
4155 free_xid(xid);
4156 return rc;
4157 }
4158 } else {
4159 cifs_stats_bytes_read(tcon, total_read);
4160 *offset += bytes_read;
4161 }
4162 }
4163 free_xid(xid);
4164 return total_read;
4165}
4166
4167/*
4168 * If the page is mmap'ed into a process' page tables, then we need to make
4169 * sure that it doesn't change while being written back.
4170 */
4171static vm_fault_t
4172cifs_page_mkwrite(struct vm_fault *vmf)
4173{
4174 struct page *page = vmf->page;
4175
4176 lock_page(page);
4177 return VM_FAULT_LOCKED;
4178}
4179
4180static const struct vm_operations_struct cifs_file_vm_ops = {
4181 .fault = filemap_fault,
4182 .map_pages = filemap_map_pages,
4183 .page_mkwrite = cifs_page_mkwrite,
4184};
4185
4186int cifs_file_strict_mmap(struct file *file, struct vm_area_struct *vma)
4187{
4188 int xid, rc = 0;
4189 struct inode *inode = file_inode(file);
4190
4191 xid = get_xid();
4192
4193 if (!CIFS_CACHE_READ(CIFS_I(inode)))
4194 rc = cifs_zap_mapping(inode);
4195 if (!rc)
4196 rc = generic_file_mmap(file, vma);
4197 if (!rc)
4198 vma->vm_ops = &cifs_file_vm_ops;
4199
4200 free_xid(xid);
4201 return rc;
4202}
4203
4204int cifs_file_mmap(struct file *file, struct vm_area_struct *vma)
4205{
4206 int rc, xid;
4207
4208 xid = get_xid();
4209
4210 rc = cifs_revalidate_file(file);
4211 if (rc)
4212 cifs_dbg(FYI, "Validation prior to mmap failed, error=%d\n",
4213 rc);
4214 if (!rc)
4215 rc = generic_file_mmap(file, vma);
4216 if (!rc)
4217 vma->vm_ops = &cifs_file_vm_ops;
4218
4219 free_xid(xid);
4220 return rc;
4221}
4222
4223static void
4224cifs_readv_complete(struct work_struct *work)
4225{
4226 unsigned int i, got_bytes;
4227 struct cifs_readdata *rdata = container_of(work,
4228 struct cifs_readdata, work);
4229
4230 got_bytes = rdata->got_bytes;
4231 for (i = 0; i < rdata->nr_pages; i++) {
4232 struct page *page = rdata->pages[i];
4233
4234 lru_cache_add(page);
4235
4236 if (rdata->result == 0 ||
4237 (rdata->result == -EAGAIN && got_bytes)) {
4238 flush_dcache_page(page);
4239 SetPageUptodate(page);
4240 }
4241
4242 unlock_page(page);
4243
4244 if (rdata->result == 0 ||
4245 (rdata->result == -EAGAIN && got_bytes))
4246 cifs_readpage_to_fscache(rdata->mapping->host, page);
4247
4248 got_bytes -= min_t(unsigned int, PAGE_SIZE, got_bytes);
4249
4250 put_page(page);
4251 rdata->pages[i] = NULL;
4252 }
4253 kref_put(&rdata->refcount, cifs_readdata_release);
4254}
4255
4256static int
4257readpages_fill_pages(struct TCP_Server_Info *server,
4258 struct cifs_readdata *rdata, struct iov_iter *iter,
4259 unsigned int len)
4260{
4261 int result = 0;
4262 unsigned int i;
4263 u64 eof;
4264 pgoff_t eof_index;
4265 unsigned int nr_pages = rdata->nr_pages;
4266 unsigned int page_offset = rdata->page_offset;
4267
4268 /* determine the eof that the server (probably) has */
4269 eof = CIFS_I(rdata->mapping->host)->server_eof;
4270 eof_index = eof ? (eof - 1) >> PAGE_SHIFT : 0;
4271 cifs_dbg(FYI, "eof=%llu eof_index=%lu\n", eof, eof_index);
4272
4273 rdata->got_bytes = 0;
4274 rdata->tailsz = PAGE_SIZE;
4275 for (i = 0; i < nr_pages; i++) {
4276 struct page *page = rdata->pages[i];
4277 unsigned int to_read = rdata->pagesz;
4278 size_t n;
4279
4280 if (i == 0)
4281 to_read -= page_offset;
4282 else
4283 page_offset = 0;
4284
4285 n = to_read;
4286
4287 if (len >= to_read) {
4288 len -= to_read;
4289 } else if (len > 0) {
4290 /* enough for partial page, fill and zero the rest */
4291 zero_user(page, len + page_offset, to_read - len);
4292 n = rdata->tailsz = len;
4293 len = 0;
4294 } else if (page->index > eof_index) {
4295 /*
4296 * The VFS will not try to do readahead past the
4297 * i_size, but it's possible that we have outstanding
4298 * writes with gaps in the middle and the i_size hasn't
4299 * caught up yet. Populate those with zeroed out pages
4300 * to prevent the VFS from repeatedly attempting to
4301 * fill them until the writes are flushed.
4302 */
4303 zero_user(page, 0, PAGE_SIZE);
4304 lru_cache_add(page);
4305 flush_dcache_page(page);
4306 SetPageUptodate(page);
4307 unlock_page(page);
4308 put_page(page);
4309 rdata->pages[i] = NULL;
4310 rdata->nr_pages--;
4311 continue;
4312 } else {
4313 /* no need to hold page hostage */
4314 lru_cache_add(page);
4315 unlock_page(page);
4316 put_page(page);
4317 rdata->pages[i] = NULL;
4318 rdata->nr_pages--;
4319 continue;
4320 }
4321
4322 if (iter)
4323 result = copy_page_from_iter(
4324 page, page_offset, n, iter);
4325#ifdef CONFIG_CIFS_SMB_DIRECT
4326 else if (rdata->mr)
4327 result = n;
4328#endif
4329 else
4330 result = cifs_read_page_from_socket(
4331 server, page, page_offset, n);
4332 if (result < 0)
4333 break;
4334
4335 rdata->got_bytes += result;
4336 }
4337
4338 return rdata->got_bytes > 0 && result != -ECONNABORTED ?
4339 rdata->got_bytes : result;
4340}
4341
4342static int
4343cifs_readpages_read_into_pages(struct TCP_Server_Info *server,
4344 struct cifs_readdata *rdata, unsigned int len)
4345{
4346 return readpages_fill_pages(server, rdata, NULL, len);
4347}
4348
4349static int
4350cifs_readpages_copy_into_pages(struct TCP_Server_Info *server,
4351 struct cifs_readdata *rdata,
4352 struct iov_iter *iter)
4353{
4354 return readpages_fill_pages(server, rdata, iter, iter->count);
4355}
4356
4357static int
4358readpages_get_pages(struct address_space *mapping, struct list_head *page_list,
4359 unsigned int rsize, struct list_head *tmplist,
4360 unsigned int *nr_pages, loff_t *offset, unsigned int *bytes)
4361{
4362 struct page *page, *tpage;
4363 unsigned int expected_index;
4364 int rc;
4365 gfp_t gfp = readahead_gfp_mask(mapping);
4366
4367 INIT_LIST_HEAD(tmplist);
4368
4369 page = lru_to_page(page_list);
4370
4371 /*
4372 * Lock the page and put it in the cache. Since no one else
4373 * should have access to this page, we're safe to simply set
4374 * PG_locked without checking it first.
4375 */
4376 __SetPageLocked(page);
4377 rc = add_to_page_cache_locked(page, mapping,
4378 page->index, gfp);
4379
4380 /* give up if we can't stick it in the cache */
4381 if (rc) {
4382 __ClearPageLocked(page);
4383 return rc;
4384 }
4385
4386 /* move first page to the tmplist */
4387 *offset = (loff_t)page->index << PAGE_SHIFT;
4388 *bytes = PAGE_SIZE;
4389 *nr_pages = 1;
4390 list_move_tail(&page->lru, tmplist);
4391
4392 /* now try and add more pages onto the request */
4393 expected_index = page->index + 1;
4394 list_for_each_entry_safe_reverse(page, tpage, page_list, lru) {
4395 /* discontinuity ? */
4396 if (page->index != expected_index)
4397 break;
4398
4399 /* would this page push the read over the rsize? */
4400 if (*bytes + PAGE_SIZE > rsize)
4401 break;
4402
4403 __SetPageLocked(page);
4404 rc = add_to_page_cache_locked(page, mapping, page->index, gfp);
4405 if (rc) {
4406 __ClearPageLocked(page);
4407 break;
4408 }
4409 list_move_tail(&page->lru, tmplist);
4410 (*bytes) += PAGE_SIZE;
4411 expected_index++;
4412 (*nr_pages)++;
4413 }
4414 return rc;
4415}
4416
4417static int cifs_readpages(struct file *file, struct address_space *mapping,
4418 struct list_head *page_list, unsigned num_pages)
4419{
4420 int rc;
4421 int err = 0;
4422 struct list_head tmplist;
4423 struct cifsFileInfo *open_file = file->private_data;
4424 struct cifs_sb_info *cifs_sb = CIFS_FILE_SB(file);
4425 struct TCP_Server_Info *server;
4426 pid_t pid;
4427 unsigned int xid;
4428
4429 xid = get_xid();
4430 /*
4431 * Reads as many pages as possible from fscache. Returns -ENOBUFS
4432 * immediately if the cookie is negative
4433 *
4434 * After this point, every page in the list might have PG_fscache set,
4435 * so we will need to clean that up off of every page we don't use.
4436 */
4437 rc = cifs_readpages_from_fscache(mapping->host, mapping, page_list,
4438 &num_pages);
4439 if (rc == 0) {
4440 free_xid(xid);
4441 return rc;
4442 }
4443
4444 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
4445 pid = open_file->pid;
4446 else
4447 pid = current->tgid;
4448
4449 rc = 0;
4450 server = cifs_pick_channel(tlink_tcon(open_file->tlink)->ses);
4451
4452 cifs_dbg(FYI, "%s: file=%p mapping=%p num_pages=%u\n",
4453 __func__, file, mapping, num_pages);
4454
4455 /*
4456 * Start with the page at end of list and move it to private
4457 * list. Do the same with any following pages until we hit
4458 * the rsize limit, hit an index discontinuity, or run out of
4459 * pages. Issue the async read and then start the loop again
4460 * until the list is empty.
4461 *
4462 * Note that list order is important. The page_list is in
4463 * the order of declining indexes. When we put the pages in
4464 * the rdata->pages, then we want them in increasing order.
4465 */
4466 while (!list_empty(page_list) && !err) {
4467 unsigned int i, nr_pages, bytes, rsize;
4468 loff_t offset;
4469 struct page *page, *tpage;
4470 struct cifs_readdata *rdata;
4471 struct cifs_credits credits_on_stack;
4472 struct cifs_credits *credits = &credits_on_stack;
4473
4474 if (open_file->invalidHandle) {
4475 rc = cifs_reopen_file(open_file, true);
4476 if (rc == -EAGAIN)
4477 continue;
4478 else if (rc)
4479 break;
4480 }
4481
4482 rc = server->ops->wait_mtu_credits(server, cifs_sb->ctx->rsize,
4483 &rsize, credits);
4484 if (rc)
4485 break;
4486
4487 /*
4488 * Give up immediately if rsize is too small to read an entire
4489 * page. The VFS will fall back to readpage. We should never
4490 * reach this point however since we set ra_pages to 0 when the
4491 * rsize is smaller than a cache page.
4492 */
4493 if (unlikely(rsize < PAGE_SIZE)) {
4494 add_credits_and_wake_if(server, credits, 0);
4495 free_xid(xid);
4496 return 0;
4497 }
4498
4499 nr_pages = 0;
4500 err = readpages_get_pages(mapping, page_list, rsize, &tmplist,
4501 &nr_pages, &offset, &bytes);
4502 if (!nr_pages) {
4503 add_credits_and_wake_if(server, credits, 0);
4504 break;
4505 }
4506
4507 rdata = cifs_readdata_alloc(nr_pages, cifs_readv_complete);
4508 if (!rdata) {
4509 /* best to give up if we're out of mem */
4510 list_for_each_entry_safe(page, tpage, &tmplist, lru) {
4511 list_del(&page->lru);
4512 lru_cache_add(page);
4513 unlock_page(page);
4514 put_page(page);
4515 }
4516 rc = -ENOMEM;
4517 add_credits_and_wake_if(server, credits, 0);
4518 break;
4519 }
4520
4521 rdata->cfile = cifsFileInfo_get(open_file);
4522 rdata->server = server;
4523 rdata->mapping = mapping;
4524 rdata->offset = offset;
4525 rdata->bytes = bytes;
4526 rdata->pid = pid;
4527 rdata->pagesz = PAGE_SIZE;
4528 rdata->tailsz = PAGE_SIZE;
4529 rdata->read_into_pages = cifs_readpages_read_into_pages;
4530 rdata->copy_into_pages = cifs_readpages_copy_into_pages;
4531 rdata->credits = credits_on_stack;
4532
4533 list_for_each_entry_safe(page, tpage, &tmplist, lru) {
4534 list_del(&page->lru);
4535 rdata->pages[rdata->nr_pages++] = page;
4536 }
4537
4538 rc = adjust_credits(server, &rdata->credits, rdata->bytes);
4539
4540 if (!rc) {
4541 if (rdata->cfile->invalidHandle)
4542 rc = -EAGAIN;
4543 else
4544 rc = server->ops->async_readv(rdata);
4545 }
4546
4547 if (rc) {
4548 add_credits_and_wake_if(server, &rdata->credits, 0);
4549 for (i = 0; i < rdata->nr_pages; i++) {
4550 page = rdata->pages[i];
4551 lru_cache_add(page);
4552 unlock_page(page);
4553 put_page(page);
4554 }
4555 /* Fallback to the readpage in error/reconnect cases */
4556 kref_put(&rdata->refcount, cifs_readdata_release);
4557 break;
4558 }
4559
4560 kref_put(&rdata->refcount, cifs_readdata_release);
4561 }
4562
4563 /* Any pages that have been shown to fscache but didn't get added to
4564 * the pagecache must be uncached before they get returned to the
4565 * allocator.
4566 */
4567 cifs_fscache_readpages_cancel(mapping->host, page_list);
4568 free_xid(xid);
4569 return rc;
4570}
4571
4572/*
4573 * cifs_readpage_worker must be called with the page pinned
4574 */
4575static int cifs_readpage_worker(struct file *file, struct page *page,
4576 loff_t *poffset)
4577{
4578 char *read_data;
4579 int rc;
4580
4581 /* Is the page cached? */
4582 rc = cifs_readpage_from_fscache(file_inode(file), page);
4583 if (rc == 0)
4584 goto read_complete;
4585
4586 read_data = kmap(page);
4587 /* for reads over a certain size could initiate async read ahead */
4588
4589 rc = cifs_read(file, read_data, PAGE_SIZE, poffset);
4590
4591 if (rc < 0)
4592 goto io_error;
4593 else
4594 cifs_dbg(FYI, "Bytes read %d\n", rc);
4595
4596 /* we do not want atime to be less than mtime, it broke some apps */
4597 file_inode(file)->i_atime = current_time(file_inode(file));
4598 if (timespec64_compare(&(file_inode(file)->i_atime), &(file_inode(file)->i_mtime)))
4599 file_inode(file)->i_atime = file_inode(file)->i_mtime;
4600 else
4601 file_inode(file)->i_atime = current_time(file_inode(file));
4602
4603 if (PAGE_SIZE > rc)
4604 memset(read_data + rc, 0, PAGE_SIZE - rc);
4605
4606 flush_dcache_page(page);
4607 SetPageUptodate(page);
4608
4609 /* send this page to the cache */
4610 cifs_readpage_to_fscache(file_inode(file), page);
4611
4612 rc = 0;
4613
4614io_error:
4615 kunmap(page);
4616 unlock_page(page);
4617
4618read_complete:
4619 return rc;
4620}
4621
4622static int cifs_readpage(struct file *file, struct page *page)
4623{
4624 loff_t offset = page_file_offset(page);
4625 int rc = -EACCES;
4626 unsigned int xid;
4627
4628 xid = get_xid();
4629
4630 if (file->private_data == NULL) {
4631 rc = -EBADF;
4632 free_xid(xid);
4633 return rc;
4634 }
4635
4636 cifs_dbg(FYI, "readpage %p at offset %d 0x%x\n",
4637 page, (int)offset, (int)offset);
4638
4639 rc = cifs_readpage_worker(file, page, &offset);
4640
4641 free_xid(xid);
4642 return rc;
4643}
4644
4645static int is_inode_writable(struct cifsInodeInfo *cifs_inode)
4646{
4647 struct cifsFileInfo *open_file;
4648
4649 spin_lock(&cifs_inode->open_file_lock);
4650 list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
4651 if (OPEN_FMODE(open_file->f_flags) & FMODE_WRITE) {
4652 spin_unlock(&cifs_inode->open_file_lock);
4653 return 1;
4654 }
4655 }
4656 spin_unlock(&cifs_inode->open_file_lock);
4657 return 0;
4658}
4659
4660/* We do not want to update the file size from server for inodes
4661 open for write - to avoid races with writepage extending
4662 the file - in the future we could consider allowing
4663 refreshing the inode only on increases in the file size
4664 but this is tricky to do without racing with writebehind
4665 page caching in the current Linux kernel design */
4666bool is_size_safe_to_change(struct cifsInodeInfo *cifsInode, __u64 end_of_file)
4667{
4668 if (!cifsInode)
4669 return true;
4670
4671 if (is_inode_writable(cifsInode)) {
4672 /* This inode is open for write at least once */
4673 struct cifs_sb_info *cifs_sb;
4674
4675 cifs_sb = CIFS_SB(cifsInode->vfs_inode.i_sb);
4676 if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_DIRECT_IO) {
4677 /* since no page cache to corrupt on directio
4678 we can change size safely */
4679 return true;
4680 }
4681
4682 if (i_size_read(&cifsInode->vfs_inode) < end_of_file)
4683 return true;
4684
4685 return false;
4686 } else
4687 return true;
4688}
4689
4690static int cifs_write_begin(struct file *file, struct address_space *mapping,
4691 loff_t pos, unsigned len, unsigned flags,
4692 struct page **pagep, void **fsdata)
4693{
4694 int oncethru = 0;
4695 pgoff_t index = pos >> PAGE_SHIFT;
4696 loff_t offset = pos & (PAGE_SIZE - 1);
4697 loff_t page_start = pos & PAGE_MASK;
4698 loff_t i_size;
4699 struct page *page;
4700 int rc = 0;
4701
4702 cifs_dbg(FYI, "write_begin from %lld len %d\n", (long long)pos, len);
4703
4704start:
4705 page = grab_cache_page_write_begin(mapping, index, flags);
4706 if (!page) {
4707 rc = -ENOMEM;
4708 goto out;
4709 }
4710
4711 if (PageUptodate(page))
4712 goto out;
4713
4714 /*
4715 * If we write a full page it will be up to date, no need to read from
4716 * the server. If the write is short, we'll end up doing a sync write
4717 * instead.
4718 */
4719 if (len == PAGE_SIZE)
4720 goto out;
4721
4722 /*
4723 * optimize away the read when we have an oplock, and we're not
4724 * expecting to use any of the data we'd be reading in. That
4725 * is, when the page lies beyond the EOF, or straddles the EOF
4726 * and the write will cover all of the existing data.
4727 */
4728 if (CIFS_CACHE_READ(CIFS_I(mapping->host))) {
4729 i_size = i_size_read(mapping->host);
4730 if (page_start >= i_size ||
4731 (offset == 0 && (pos + len) >= i_size)) {
4732 zero_user_segments(page, 0, offset,
4733 offset + len,
4734 PAGE_SIZE);
4735 /*
4736 * PageChecked means that the parts of the page
4737 * to which we're not writing are considered up
4738 * to date. Once the data is copied to the
4739 * page, it can be set uptodate.
4740 */
4741 SetPageChecked(page);
4742 goto out;
4743 }
4744 }
4745
4746 if ((file->f_flags & O_ACCMODE) != O_WRONLY && !oncethru) {
4747 /*
4748 * might as well read a page, it is fast enough. If we get
4749 * an error, we don't need to return it. cifs_write_end will
4750 * do a sync write instead since PG_uptodate isn't set.
4751 */
4752 cifs_readpage_worker(file, page, &page_start);
4753 put_page(page);
4754 oncethru = 1;
4755 goto start;
4756 } else {
4757 /* we could try using another file handle if there is one -
4758 but how would we lock it to prevent close of that handle
4759 racing with this read? In any case
4760 this will be written out by write_end so is fine */
4761 }
4762out:
4763 *pagep = page;
4764 return rc;
4765}
4766
4767static int cifs_release_page(struct page *page, gfp_t gfp)
4768{
4769 if (PagePrivate(page))
4770 return 0;
4771
4772 return cifs_fscache_release_page(page, gfp);
4773}
4774
4775static void cifs_invalidate_page(struct page *page, unsigned int offset,
4776 unsigned int length)
4777{
4778 struct cifsInodeInfo *cifsi = CIFS_I(page->mapping->host);
4779
4780 if (offset == 0 && length == PAGE_SIZE)
4781 cifs_fscache_invalidate_page(page, &cifsi->vfs_inode);
4782}
4783
4784static int cifs_launder_page(struct page *page)
4785{
4786 int rc = 0;
4787 loff_t range_start = page_offset(page);
4788 loff_t range_end = range_start + (loff_t)(PAGE_SIZE - 1);
4789 struct writeback_control wbc = {
4790 .sync_mode = WB_SYNC_ALL,
4791 .nr_to_write = 0,
4792 .range_start = range_start,
4793 .range_end = range_end,
4794 };
4795
4796 cifs_dbg(FYI, "Launder page: %p\n", page);
4797
4798 if (clear_page_dirty_for_io(page))
4799 rc = cifs_writepage_locked(page, &wbc);
4800
4801 cifs_fscache_invalidate_page(page, page->mapping->host);
4802 return rc;
4803}
4804
4805void cifs_oplock_break(struct work_struct *work)
4806{
4807 struct cifsFileInfo *cfile = container_of(work, struct cifsFileInfo,
4808 oplock_break);
4809 struct inode *inode = d_inode(cfile->dentry);
4810 struct cifsInodeInfo *cinode = CIFS_I(inode);
4811 struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
4812 struct TCP_Server_Info *server = tcon->ses->server;
4813 int rc = 0;
4814 bool purge_cache = false;
4815 bool is_deferred = false;
4816 struct cifs_deferred_close *dclose;
4817
4818 wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS,
4819 TASK_UNINTERRUPTIBLE);
4820
4821 server->ops->downgrade_oplock(server, cinode, cfile->oplock_level,
4822 cfile->oplock_epoch, &purge_cache);
4823
4824 if (!CIFS_CACHE_WRITE(cinode) && CIFS_CACHE_READ(cinode) &&
4825 cifs_has_mand_locks(cinode)) {
4826 cifs_dbg(FYI, "Reset oplock to None for inode=%p due to mand locks\n",
4827 inode);
4828 cinode->oplock = 0;
4829 }
4830
4831 if (inode && S_ISREG(inode->i_mode)) {
4832 if (CIFS_CACHE_READ(cinode))
4833 break_lease(inode, O_RDONLY);
4834 else
4835 break_lease(inode, O_WRONLY);
4836 rc = filemap_fdatawrite(inode->i_mapping);
4837 if (!CIFS_CACHE_READ(cinode) || purge_cache) {
4838 rc = filemap_fdatawait(inode->i_mapping);
4839 mapping_set_error(inode->i_mapping, rc);
4840 cifs_zap_mapping(inode);
4841 }
4842 cifs_dbg(FYI, "Oplock flush inode %p rc %d\n", inode, rc);
4843 if (CIFS_CACHE_WRITE(cinode))
4844 goto oplock_break_ack;
4845 }
4846
4847 rc = cifs_push_locks(cfile);
4848 if (rc)
4849 cifs_dbg(VFS, "Push locks rc = %d\n", rc);
4850
4851oplock_break_ack:
4852 /*
4853 * When oplock break is received and there are no active
4854 * file handles but cached, then schedule deferred close immediately.
4855 * So, new open will not use cached handle.
4856 */
4857 spin_lock(&CIFS_I(inode)->deferred_lock);
4858 is_deferred = cifs_is_deferred_close(cfile, &dclose);
4859 spin_unlock(&CIFS_I(inode)->deferred_lock);
4860 if (is_deferred &&
4861 cfile->deferred_close_scheduled &&
4862 delayed_work_pending(&cfile->deferred)) {
4863 if (cancel_delayed_work(&cfile->deferred)) {
4864 _cifsFileInfo_put(cfile, false, false);
4865 goto oplock_break_done;
4866 }
4867 }
4868 /*
4869 * releasing stale oplock after recent reconnect of smb session using
4870 * a now incorrect file handle is not a data integrity issue but do
4871 * not bother sending an oplock release if session to server still is
4872 * disconnected since oplock already released by the server
4873 */
4874 if (!cfile->oplock_break_cancelled) {
4875 rc = tcon->ses->server->ops->oplock_response(tcon, &cfile->fid,
4876 cinode);
4877 cifs_dbg(FYI, "Oplock release rc = %d\n", rc);
4878 }
4879oplock_break_done:
4880 _cifsFileInfo_put(cfile, false /* do not wait for ourself */, false);
4881 cifs_done_oplock_break(cinode);
4882}
4883
4884/*
4885 * The presence of cifs_direct_io() in the address space ops vector
4886 * allowes open() O_DIRECT flags which would have failed otherwise.
4887 *
4888 * In the non-cached mode (mount with cache=none), we shunt off direct read and write requests
4889 * so this method should never be called.
4890 *
4891 * Direct IO is not yet supported in the cached mode.
4892 */
4893static ssize_t
4894cifs_direct_io(struct kiocb *iocb, struct iov_iter *iter)
4895{
4896 /*
4897 * FIXME
4898 * Eventually need to support direct IO for non forcedirectio mounts
4899 */
4900 return -EINVAL;
4901}
4902
4903static int cifs_swap_activate(struct swap_info_struct *sis,
4904 struct file *swap_file, sector_t *span)
4905{
4906 struct cifsFileInfo *cfile = swap_file->private_data;
4907 struct inode *inode = swap_file->f_mapping->host;
4908 unsigned long blocks;
4909 long long isize;
4910
4911 cifs_dbg(FYI, "swap activate\n");
4912
4913 spin_lock(&inode->i_lock);
4914 blocks = inode->i_blocks;
4915 isize = inode->i_size;
4916 spin_unlock(&inode->i_lock);
4917 if (blocks*512 < isize) {
4918 pr_warn("swap activate: swapfile has holes\n");
4919 return -EINVAL;
4920 }
4921 *span = sis->pages;
4922
4923 pr_warn_once("Swap support over SMB3 is experimental\n");
4924
4925 /*
4926 * TODO: consider adding ACL (or documenting how) to prevent other
4927 * users (on this or other systems) from reading it
4928 */
4929
4930
4931 /* TODO: add sk_set_memalloc(inet) or similar */
4932
4933 if (cfile)
4934 cfile->swapfile = true;
4935 /*
4936 * TODO: Since file already open, we can't open with DENY_ALL here
4937 * but we could add call to grab a byte range lock to prevent others
4938 * from reading or writing the file
4939 */
4940
4941 return 0;
4942}
4943
4944static void cifs_swap_deactivate(struct file *file)
4945{
4946 struct cifsFileInfo *cfile = file->private_data;
4947
4948 cifs_dbg(FYI, "swap deactivate\n");
4949
4950 /* TODO: undo sk_set_memalloc(inet) will eventually be needed */
4951
4952 if (cfile)
4953 cfile->swapfile = false;
4954
4955 /* do we need to unpin (or unlock) the file */
4956}
4957
4958const struct address_space_operations cifs_addr_ops = {
4959 .readpage = cifs_readpage,
4960 .readpages = cifs_readpages,
4961 .writepage = cifs_writepage,
4962 .writepages = cifs_writepages,
4963 .write_begin = cifs_write_begin,
4964 .write_end = cifs_write_end,
4965 .set_page_dirty = __set_page_dirty_nobuffers,
4966 .releasepage = cifs_release_page,
4967 .direct_IO = cifs_direct_io,
4968 .invalidatepage = cifs_invalidate_page,
4969 .launder_page = cifs_launder_page,
4970 /*
4971 * TODO: investigate and if useful we could add an cifs_migratePage
4972 * helper (under an CONFIG_MIGRATION) in the future, and also
4973 * investigate and add an is_dirty_writeback helper if needed
4974 */
4975 .swap_activate = cifs_swap_activate,
4976 .swap_deactivate = cifs_swap_deactivate,
4977};
4978
4979/*
4980 * cifs_readpages requires the server to support a buffer large enough to
4981 * contain the header plus one complete page of data. Otherwise, we need
4982 * to leave cifs_readpages out of the address space operations.
4983 */
4984const struct address_space_operations cifs_addr_ops_smallbuf = {
4985 .readpage = cifs_readpage,
4986 .writepage = cifs_writepage,
4987 .writepages = cifs_writepages,
4988 .write_begin = cifs_write_begin,
4989 .write_end = cifs_write_end,
4990 .set_page_dirty = __set_page_dirty_nobuffers,
4991 .releasepage = cifs_release_page,
4992 .invalidatepage = cifs_invalidate_page,
4993 .launder_page = cifs_launder_page,
4994};