Linux Audio

Check our new training course

Loading...
   1/*
   2 *   fs/cifs/file.c
   3 *
   4 *   vfs operations that deal with files
   5 *
   6 *   Copyright (C) International Business Machines  Corp., 2002,2010
   7 *   Author(s): Steve French (sfrench@us.ibm.com)
   8 *              Jeremy Allison (jra@samba.org)
   9 *
  10 *   This library is free software; you can redistribute it and/or modify
  11 *   it under the terms of the GNU Lesser General Public License as published
  12 *   by the Free Software Foundation; either version 2.1 of the License, or
  13 *   (at your option) any later version.
  14 *
  15 *   This library is distributed in the hope that it will be useful,
  16 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
  17 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
  18 *   the GNU Lesser General Public License for more details.
  19 *
  20 *   You should have received a copy of the GNU Lesser General Public License
  21 *   along with this library; if not, write to the Free Software
  22 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  23 */
  24#include <linux/fs.h>
  25#include <linux/backing-dev.h>
  26#include <linux/stat.h>
  27#include <linux/fcntl.h>
  28#include <linux/pagemap.h>
  29#include <linux/pagevec.h>
  30#include <linux/writeback.h>
  31#include <linux/task_io_accounting_ops.h>
  32#include <linux/delay.h>
  33#include <linux/mount.h>
  34#include <linux/slab.h>
  35#include <linux/swap.h>
  36#include <asm/div64.h>
  37#include "cifsfs.h"
  38#include "cifspdu.h"
  39#include "cifsglob.h"
  40#include "cifsproto.h"
  41#include "cifs_unicode.h"
  42#include "cifs_debug.h"
  43#include "cifs_fs_sb.h"
  44#include "fscache.h"
  45
  46static inline int cifs_convert_flags(unsigned int flags)
  47{
  48	if ((flags & O_ACCMODE) == O_RDONLY)
  49		return GENERIC_READ;
  50	else if ((flags & O_ACCMODE) == O_WRONLY)
  51		return GENERIC_WRITE;
  52	else if ((flags & O_ACCMODE) == O_RDWR) {
  53		/* GENERIC_ALL is too much permission to request
  54		   can cause unnecessary access denied on create */
  55		/* return GENERIC_ALL; */
  56		return (GENERIC_READ | GENERIC_WRITE);
  57	}
  58
  59	return (READ_CONTROL | FILE_WRITE_ATTRIBUTES | FILE_READ_ATTRIBUTES |
  60		FILE_WRITE_EA | FILE_APPEND_DATA | FILE_WRITE_DATA |
  61		FILE_READ_DATA);
  62}
  63
  64static u32 cifs_posix_convert_flags(unsigned int flags)
  65{
  66	u32 posix_flags = 0;
  67
  68	if ((flags & O_ACCMODE) == O_RDONLY)
  69		posix_flags = SMB_O_RDONLY;
  70	else if ((flags & O_ACCMODE) == O_WRONLY)
  71		posix_flags = SMB_O_WRONLY;
  72	else if ((flags & O_ACCMODE) == O_RDWR)
  73		posix_flags = SMB_O_RDWR;
  74
  75	if (flags & O_CREAT)
  76		posix_flags |= SMB_O_CREAT;
  77	if (flags & O_EXCL)
  78		posix_flags |= SMB_O_EXCL;
  79	if (flags & O_TRUNC)
  80		posix_flags |= SMB_O_TRUNC;
  81	/* be safe and imply O_SYNC for O_DSYNC */
  82	if (flags & O_DSYNC)
  83		posix_flags |= SMB_O_SYNC;
  84	if (flags & O_DIRECTORY)
  85		posix_flags |= SMB_O_DIRECTORY;
  86	if (flags & O_NOFOLLOW)
  87		posix_flags |= SMB_O_NOFOLLOW;
  88	if (flags & O_DIRECT)
  89		posix_flags |= SMB_O_DIRECT;
  90
  91	return posix_flags;
  92}
  93
  94static inline int cifs_get_disposition(unsigned int flags)
  95{
  96	if ((flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
  97		return FILE_CREATE;
  98	else if ((flags & (O_CREAT | O_TRUNC)) == (O_CREAT | O_TRUNC))
  99		return FILE_OVERWRITE_IF;
 100	else if ((flags & O_CREAT) == O_CREAT)
 101		return FILE_OPEN_IF;
 102	else if ((flags & O_TRUNC) == O_TRUNC)
 103		return FILE_OVERWRITE;
 104	else
 105		return FILE_OPEN;
 106}
 107
 108int cifs_posix_open(char *full_path, struct inode **pinode,
 109			struct super_block *sb, int mode, unsigned int f_flags,
 110			__u32 *poplock, __u16 *pnetfid, int xid)
 111{
 112	int rc;
 113	FILE_UNIX_BASIC_INFO *presp_data;
 114	__u32 posix_flags = 0;
 115	struct cifs_sb_info *cifs_sb = CIFS_SB(sb);
 116	struct cifs_fattr fattr;
 117	struct tcon_link *tlink;
 118	struct cifs_tcon *tcon;
 119
 120	cFYI(1, "posix open %s", full_path);
 121
 122	presp_data = kzalloc(sizeof(FILE_UNIX_BASIC_INFO), GFP_KERNEL);
 123	if (presp_data == NULL)
 124		return -ENOMEM;
 125
 126	tlink = cifs_sb_tlink(cifs_sb);
 127	if (IS_ERR(tlink)) {
 128		rc = PTR_ERR(tlink);
 129		goto posix_open_ret;
 130	}
 131
 132	tcon = tlink_tcon(tlink);
 133	mode &= ~current_umask();
 134
 135	posix_flags = cifs_posix_convert_flags(f_flags);
 136	rc = CIFSPOSIXCreate(xid, tcon, posix_flags, mode, pnetfid, presp_data,
 137			     poplock, full_path, cifs_sb->local_nls,
 138			     cifs_sb->mnt_cifs_flags &
 139					CIFS_MOUNT_MAP_SPECIAL_CHR);
 140	cifs_put_tlink(tlink);
 141
 142	if (rc)
 143		goto posix_open_ret;
 144
 145	if (presp_data->Type == cpu_to_le32(-1))
 146		goto posix_open_ret; /* open ok, caller does qpathinfo */
 147
 148	if (!pinode)
 149		goto posix_open_ret; /* caller does not need info */
 150
 151	cifs_unix_basic_to_fattr(&fattr, presp_data, cifs_sb);
 152
 153	/* get new inode and set it up */
 154	if (*pinode == NULL) {
 155		cifs_fill_uniqueid(sb, &fattr);
 156		*pinode = cifs_iget(sb, &fattr);
 157		if (!*pinode) {
 158			rc = -ENOMEM;
 159			goto posix_open_ret;
 160		}
 161	} else {
 162		cifs_fattr_to_inode(*pinode, &fattr);
 163	}
 164
 165posix_open_ret:
 166	kfree(presp_data);
 167	return rc;
 168}
 169
 170static int
 171cifs_nt_open(char *full_path, struct inode *inode, struct cifs_sb_info *cifs_sb,
 172	     struct cifs_tcon *tcon, unsigned int f_flags, __u32 *poplock,
 173	     __u16 *pnetfid, int xid)
 174{
 175	int rc;
 176	int desiredAccess;
 177	int disposition;
 178	int create_options = CREATE_NOT_DIR;
 179	FILE_ALL_INFO *buf;
 180
 181	desiredAccess = cifs_convert_flags(f_flags);
 182
 183/*********************************************************************
 184 *  open flag mapping table:
 185 *
 186 *	POSIX Flag            CIFS Disposition
 187 *	----------            ----------------
 188 *	O_CREAT               FILE_OPEN_IF
 189 *	O_CREAT | O_EXCL      FILE_CREATE
 190 *	O_CREAT | O_TRUNC     FILE_OVERWRITE_IF
 191 *	O_TRUNC               FILE_OVERWRITE
 192 *	none of the above     FILE_OPEN
 193 *
 194 *	Note that there is not a direct match between disposition
 195 *	FILE_SUPERSEDE (ie create whether or not file exists although
 196 *	O_CREAT | O_TRUNC is similar but truncates the existing
 197 *	file rather than creating a new file as FILE_SUPERSEDE does
 198 *	(which uses the attributes / metadata passed in on open call)
 199 *?
 200 *?  O_SYNC is a reasonable match to CIFS writethrough flag
 201 *?  and the read write flags match reasonably.  O_LARGEFILE
 202 *?  is irrelevant because largefile support is always used
 203 *?  by this client. Flags O_APPEND, O_DIRECT, O_DIRECTORY,
 204 *	 O_FASYNC, O_NOFOLLOW, O_NONBLOCK need further investigation
 205 *********************************************************************/
 206
 207	disposition = cifs_get_disposition(f_flags);
 208
 209	/* BB pass O_SYNC flag through on file attributes .. BB */
 210
 211	buf = kmalloc(sizeof(FILE_ALL_INFO), GFP_KERNEL);
 212	if (!buf)
 213		return -ENOMEM;
 214
 215	if (backup_cred(cifs_sb))
 216		create_options |= CREATE_OPEN_BACKUP_INTENT;
 217
 218	if (tcon->ses->capabilities & CAP_NT_SMBS)
 219		rc = CIFSSMBOpen(xid, tcon, full_path, disposition,
 220			 desiredAccess, create_options, pnetfid, poplock, buf,
 221			 cifs_sb->local_nls, cifs_sb->mnt_cifs_flags
 222				 & CIFS_MOUNT_MAP_SPECIAL_CHR);
 223	else
 224		rc = SMBLegacyOpen(xid, tcon, full_path, disposition,
 225			desiredAccess, CREATE_NOT_DIR, pnetfid, poplock, buf,
 226			cifs_sb->local_nls, cifs_sb->mnt_cifs_flags
 227				& CIFS_MOUNT_MAP_SPECIAL_CHR);
 228
 229	if (rc)
 230		goto out;
 231
 232	if (tcon->unix_ext)
 233		rc = cifs_get_inode_info_unix(&inode, full_path, inode->i_sb,
 234					      xid);
 235	else
 236		rc = cifs_get_inode_info(&inode, full_path, buf, inode->i_sb,
 237					 xid, pnetfid);
 238
 239out:
 240	kfree(buf);
 241	return rc;
 242}
 243
 244struct cifsFileInfo *
 245cifs_new_fileinfo(__u16 fileHandle, struct file *file,
 246		  struct tcon_link *tlink, __u32 oplock)
 247{
 248	struct dentry *dentry = file->f_path.dentry;
 249	struct inode *inode = dentry->d_inode;
 250	struct cifsInodeInfo *pCifsInode = CIFS_I(inode);
 251	struct cifsFileInfo *pCifsFile;
 252
 253	pCifsFile = kzalloc(sizeof(struct cifsFileInfo), GFP_KERNEL);
 254	if (pCifsFile == NULL)
 255		return pCifsFile;
 256
 257	pCifsFile->count = 1;
 258	pCifsFile->netfid = fileHandle;
 259	pCifsFile->pid = current->tgid;
 260	pCifsFile->uid = current_fsuid();
 261	pCifsFile->dentry = dget(dentry);
 262	pCifsFile->f_flags = file->f_flags;
 263	pCifsFile->invalidHandle = false;
 264	pCifsFile->tlink = cifs_get_tlink(tlink);
 265	mutex_init(&pCifsFile->fh_mutex);
 266	INIT_WORK(&pCifsFile->oplock_break, cifs_oplock_break);
 267	INIT_LIST_HEAD(&pCifsFile->llist);
 268
 269	spin_lock(&cifs_file_list_lock);
 270	list_add(&pCifsFile->tlist, &(tlink_tcon(tlink)->openFileList));
 271	/* if readable file instance put first in list*/
 272	if (file->f_mode & FMODE_READ)
 273		list_add(&pCifsFile->flist, &pCifsInode->openFileList);
 274	else
 275		list_add_tail(&pCifsFile->flist, &pCifsInode->openFileList);
 276	spin_unlock(&cifs_file_list_lock);
 277
 278	cifs_set_oplock_level(pCifsInode, oplock);
 279	pCifsInode->can_cache_brlcks = pCifsInode->clientCanCacheAll;
 280
 281	file->private_data = pCifsFile;
 282	return pCifsFile;
 283}
 284
 285static void cifs_del_lock_waiters(struct cifsLockInfo *lock);
 286
 287struct cifsFileInfo *
 288cifsFileInfo_get(struct cifsFileInfo *cifs_file)
 289{
 290	spin_lock(&cifs_file_list_lock);
 291	cifsFileInfo_get_locked(cifs_file);
 292	spin_unlock(&cifs_file_list_lock);
 293	return cifs_file;
 294}
 295
 296/*
 297 * Release a reference on the file private data. This may involve closing
 298 * the filehandle out on the server. Must be called without holding
 299 * cifs_file_list_lock.
 300 */
 301void cifsFileInfo_put(struct cifsFileInfo *cifs_file)
 302{
 303	struct inode *inode = cifs_file->dentry->d_inode;
 304	struct cifs_tcon *tcon = tlink_tcon(cifs_file->tlink);
 305	struct cifsInodeInfo *cifsi = CIFS_I(inode);
 306	struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
 307	struct cifsLockInfo *li, *tmp;
 308
 309	spin_lock(&cifs_file_list_lock);
 310	if (--cifs_file->count > 0) {
 311		spin_unlock(&cifs_file_list_lock);
 312		return;
 313	}
 314
 315	/* remove it from the lists */
 316	list_del(&cifs_file->flist);
 317	list_del(&cifs_file->tlist);
 318
 319	if (list_empty(&cifsi->openFileList)) {
 320		cFYI(1, "closing last open instance for inode %p",
 321			cifs_file->dentry->d_inode);
 322
 323		/* in strict cache mode we need invalidate mapping on the last
 324		   close  because it may cause a error when we open this file
 325		   again and get at least level II oplock */
 326		if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_STRICT_IO)
 327			CIFS_I(inode)->invalid_mapping = true;
 328
 329		cifs_set_oplock_level(cifsi, 0);
 330	}
 331	spin_unlock(&cifs_file_list_lock);
 332
 333	cancel_work_sync(&cifs_file->oplock_break);
 334
 335	if (!tcon->need_reconnect && !cifs_file->invalidHandle) {
 336		int xid, rc;
 337
 338		xid = GetXid();
 339		rc = CIFSSMBClose(xid, tcon, cifs_file->netfid);
 340		FreeXid(xid);
 341	}
 342
 343	/* Delete any outstanding lock records. We'll lose them when the file
 344	 * is closed anyway.
 345	 */
 346	mutex_lock(&cifsi->lock_mutex);
 347	list_for_each_entry_safe(li, tmp, &cifs_file->llist, llist) {
 348		list_del(&li->llist);
 349		cifs_del_lock_waiters(li);
 350		kfree(li);
 351	}
 352	mutex_unlock(&cifsi->lock_mutex);
 353
 354	cifs_put_tlink(cifs_file->tlink);
 355	dput(cifs_file->dentry);
 356	kfree(cifs_file);
 357}
 358
 359int cifs_open(struct inode *inode, struct file *file)
 360{
 361	int rc = -EACCES;
 362	int xid;
 363	__u32 oplock;
 364	struct cifs_sb_info *cifs_sb;
 365	struct cifs_tcon *tcon;
 366	struct tcon_link *tlink;
 367	struct cifsFileInfo *pCifsFile = NULL;
 368	char *full_path = NULL;
 369	bool posix_open_ok = false;
 370	__u16 netfid;
 371
 372	xid = GetXid();
 373
 374	cifs_sb = CIFS_SB(inode->i_sb);
 375	tlink = cifs_sb_tlink(cifs_sb);
 376	if (IS_ERR(tlink)) {
 377		FreeXid(xid);
 378		return PTR_ERR(tlink);
 379	}
 380	tcon = tlink_tcon(tlink);
 381
 382	full_path = build_path_from_dentry(file->f_path.dentry);
 383	if (full_path == NULL) {
 384		rc = -ENOMEM;
 385		goto out;
 386	}
 387
 388	cFYI(1, "inode = 0x%p file flags are 0x%x for %s",
 389		 inode, file->f_flags, full_path);
 390
 391	if (tcon->ses->server->oplocks)
 392		oplock = REQ_OPLOCK;
 393	else
 394		oplock = 0;
 395
 396	if (!tcon->broken_posix_open && tcon->unix_ext &&
 397	    (tcon->ses->capabilities & CAP_UNIX) &&
 398	    (CIFS_UNIX_POSIX_PATH_OPS_CAP &
 399			le64_to_cpu(tcon->fsUnixInfo.Capability))) {
 400		/* can not refresh inode info since size could be stale */
 401		rc = cifs_posix_open(full_path, &inode, inode->i_sb,
 402				cifs_sb->mnt_file_mode /* ignored */,
 403				file->f_flags, &oplock, &netfid, xid);
 404		if (rc == 0) {
 405			cFYI(1, "posix open succeeded");
 406			posix_open_ok = true;
 407		} else if ((rc == -EINVAL) || (rc == -EOPNOTSUPP)) {
 408			if (tcon->ses->serverNOS)
 409				cERROR(1, "server %s of type %s returned"
 410					   " unexpected error on SMB posix open"
 411					   ", disabling posix open support."
 412					   " Check if server update available.",
 413					   tcon->ses->serverName,
 414					   tcon->ses->serverNOS);
 415			tcon->broken_posix_open = true;
 416		} else if ((rc != -EIO) && (rc != -EREMOTE) &&
 417			 (rc != -EOPNOTSUPP)) /* path not found or net err */
 418			goto out;
 419		/* else fallthrough to retry open the old way on network i/o
 420		   or DFS errors */
 421	}
 422
 423	if (!posix_open_ok) {
 424		rc = cifs_nt_open(full_path, inode, cifs_sb, tcon,
 425				  file->f_flags, &oplock, &netfid, xid);
 426		if (rc)
 427			goto out;
 428	}
 429
 430	pCifsFile = cifs_new_fileinfo(netfid, file, tlink, oplock);
 431	if (pCifsFile == NULL) {
 432		CIFSSMBClose(xid, tcon, netfid);
 433		rc = -ENOMEM;
 434		goto out;
 435	}
 436
 437	cifs_fscache_set_inode_cookie(inode, file);
 438
 439	if ((oplock & CIFS_CREATE_ACTION) && !posix_open_ok && tcon->unix_ext) {
 440		/* time to set mode which we can not set earlier due to
 441		   problems creating new read-only files */
 442		struct cifs_unix_set_info_args args = {
 443			.mode	= inode->i_mode,
 444			.uid	= NO_CHANGE_64,
 445			.gid	= NO_CHANGE_64,
 446			.ctime	= NO_CHANGE_64,
 447			.atime	= NO_CHANGE_64,
 448			.mtime	= NO_CHANGE_64,
 449			.device	= 0,
 450		};
 451		CIFSSMBUnixSetFileInfo(xid, tcon, &args, netfid,
 452					pCifsFile->pid);
 453	}
 454
 455out:
 456	kfree(full_path);
 457	FreeXid(xid);
 458	cifs_put_tlink(tlink);
 459	return rc;
 460}
 461
 462/* Try to reacquire byte range locks that were released when session */
 463/* to server was lost */
 464static int cifs_relock_file(struct cifsFileInfo *cifsFile)
 465{
 466	int rc = 0;
 467
 468/* BB list all locks open on this file and relock */
 469
 470	return rc;
 471}
 472
 473static int cifs_reopen_file(struct cifsFileInfo *pCifsFile, bool can_flush)
 474{
 475	int rc = -EACCES;
 476	int xid;
 477	__u32 oplock;
 478	struct cifs_sb_info *cifs_sb;
 479	struct cifs_tcon *tcon;
 480	struct cifsInodeInfo *pCifsInode;
 481	struct inode *inode;
 482	char *full_path = NULL;
 483	int desiredAccess;
 484	int disposition = FILE_OPEN;
 485	int create_options = CREATE_NOT_DIR;
 486	__u16 netfid;
 487
 488	xid = GetXid();
 489	mutex_lock(&pCifsFile->fh_mutex);
 490	if (!pCifsFile->invalidHandle) {
 491		mutex_unlock(&pCifsFile->fh_mutex);
 492		rc = 0;
 493		FreeXid(xid);
 494		return rc;
 495	}
 496
 497	inode = pCifsFile->dentry->d_inode;
 498	cifs_sb = CIFS_SB(inode->i_sb);
 499	tcon = tlink_tcon(pCifsFile->tlink);
 500
 501/* can not grab rename sem here because various ops, including
 502   those that already have the rename sem can end up causing writepage
 503   to get called and if the server was down that means we end up here,
 504   and we can never tell if the caller already has the rename_sem */
 505	full_path = build_path_from_dentry(pCifsFile->dentry);
 506	if (full_path == NULL) {
 507		rc = -ENOMEM;
 508		mutex_unlock(&pCifsFile->fh_mutex);
 509		FreeXid(xid);
 510		return rc;
 511	}
 512
 513	cFYI(1, "inode = 0x%p file flags 0x%x for %s",
 514		 inode, pCifsFile->f_flags, full_path);
 515
 516	if (tcon->ses->server->oplocks)
 517		oplock = REQ_OPLOCK;
 518	else
 519		oplock = 0;
 520
 521	if (tcon->unix_ext && (tcon->ses->capabilities & CAP_UNIX) &&
 522	    (CIFS_UNIX_POSIX_PATH_OPS_CAP &
 523			le64_to_cpu(tcon->fsUnixInfo.Capability))) {
 524
 525		/*
 526		 * O_CREAT, O_EXCL and O_TRUNC already had their effect on the
 527		 * original open. Must mask them off for a reopen.
 528		 */
 529		unsigned int oflags = pCifsFile->f_flags &
 530						~(O_CREAT | O_EXCL | O_TRUNC);
 531
 532		rc = cifs_posix_open(full_path, NULL, inode->i_sb,
 533				cifs_sb->mnt_file_mode /* ignored */,
 534				oflags, &oplock, &netfid, xid);
 535		if (rc == 0) {
 536			cFYI(1, "posix reopen succeeded");
 537			goto reopen_success;
 538		}
 539		/* fallthrough to retry open the old way on errors, especially
 540		   in the reconnect path it is important to retry hard */
 541	}
 542
 543	desiredAccess = cifs_convert_flags(pCifsFile->f_flags);
 544
 545	if (backup_cred(cifs_sb))
 546		create_options |= CREATE_OPEN_BACKUP_INTENT;
 547
 548	/* Can not refresh inode by passing in file_info buf to be returned
 549	   by SMBOpen and then calling get_inode_info with returned buf
 550	   since file might have write behind data that needs to be flushed
 551	   and server version of file size can be stale. If we knew for sure
 552	   that inode was not dirty locally we could do this */
 553
 554	rc = CIFSSMBOpen(xid, tcon, full_path, disposition, desiredAccess,
 555			 create_options, &netfid, &oplock, NULL,
 556			 cifs_sb->local_nls, cifs_sb->mnt_cifs_flags &
 557				CIFS_MOUNT_MAP_SPECIAL_CHR);
 558	if (rc) {
 559		mutex_unlock(&pCifsFile->fh_mutex);
 560		cFYI(1, "cifs_open returned 0x%x", rc);
 561		cFYI(1, "oplock: %d", oplock);
 562		goto reopen_error_exit;
 563	}
 564
 565reopen_success:
 566	pCifsFile->netfid = netfid;
 567	pCifsFile->invalidHandle = false;
 568	mutex_unlock(&pCifsFile->fh_mutex);
 569	pCifsInode = CIFS_I(inode);
 570
 571	if (can_flush) {
 572		rc = filemap_write_and_wait(inode->i_mapping);
 573		mapping_set_error(inode->i_mapping, rc);
 574
 575		if (tcon->unix_ext)
 576			rc = cifs_get_inode_info_unix(&inode,
 577				full_path, inode->i_sb, xid);
 578		else
 579			rc = cifs_get_inode_info(&inode,
 580				full_path, NULL, inode->i_sb,
 581				xid, NULL);
 582	} /* else we are writing out data to server already
 583	     and could deadlock if we tried to flush data, and
 584	     since we do not know if we have data that would
 585	     invalidate the current end of file on the server
 586	     we can not go to the server to get the new inod
 587	     info */
 588
 589	cifs_set_oplock_level(pCifsInode, oplock);
 590
 591	cifs_relock_file(pCifsFile);
 592
 593reopen_error_exit:
 594	kfree(full_path);
 595	FreeXid(xid);
 596	return rc;
 597}
 598
 599int cifs_close(struct inode *inode, struct file *file)
 600{
 601	if (file->private_data != NULL) {
 602		cifsFileInfo_put(file->private_data);
 603		file->private_data = NULL;
 604	}
 605
 606	/* return code from the ->release op is always ignored */
 607	return 0;
 608}
 609
 610int cifs_closedir(struct inode *inode, struct file *file)
 611{
 612	int rc = 0;
 613	int xid;
 614	struct cifsFileInfo *pCFileStruct = file->private_data;
 615	char *ptmp;
 616
 617	cFYI(1, "Closedir inode = 0x%p", inode);
 618
 619	xid = GetXid();
 620
 621	if (pCFileStruct) {
 622		struct cifs_tcon *pTcon = tlink_tcon(pCFileStruct->tlink);
 623
 624		cFYI(1, "Freeing private data in close dir");
 625		spin_lock(&cifs_file_list_lock);
 626		if (!pCFileStruct->srch_inf.endOfSearch &&
 627		    !pCFileStruct->invalidHandle) {
 628			pCFileStruct->invalidHandle = true;
 629			spin_unlock(&cifs_file_list_lock);
 630			rc = CIFSFindClose(xid, pTcon, pCFileStruct->netfid);
 631			cFYI(1, "Closing uncompleted readdir with rc %d",
 632				 rc);
 633			/* not much we can do if it fails anyway, ignore rc */
 634			rc = 0;
 635		} else
 636			spin_unlock(&cifs_file_list_lock);
 637		ptmp = pCFileStruct->srch_inf.ntwrk_buf_start;
 638		if (ptmp) {
 639			cFYI(1, "closedir free smb buf in srch struct");
 640			pCFileStruct->srch_inf.ntwrk_buf_start = NULL;
 641			if (pCFileStruct->srch_inf.smallBuf)
 642				cifs_small_buf_release(ptmp);
 643			else
 644				cifs_buf_release(ptmp);
 645		}
 646		cifs_put_tlink(pCFileStruct->tlink);
 647		kfree(file->private_data);
 648		file->private_data = NULL;
 649	}
 650	/* BB can we lock the filestruct while this is going on? */
 651	FreeXid(xid);
 652	return rc;
 653}
 654
 655static struct cifsLockInfo *
 656cifs_lock_init(__u64 offset, __u64 length, __u8 type)
 657{
 658	struct cifsLockInfo *lock =
 659		kmalloc(sizeof(struct cifsLockInfo), GFP_KERNEL);
 660	if (!lock)
 661		return lock;
 662	lock->offset = offset;
 663	lock->length = length;
 664	lock->type = type;
 665	lock->pid = current->tgid;
 666	INIT_LIST_HEAD(&lock->blist);
 667	init_waitqueue_head(&lock->block_q);
 668	return lock;
 669}
 670
 671static void
 672cifs_del_lock_waiters(struct cifsLockInfo *lock)
 673{
 674	struct cifsLockInfo *li, *tmp;
 675	list_for_each_entry_safe(li, tmp, &lock->blist, blist) {
 676		list_del_init(&li->blist);
 677		wake_up(&li->block_q);
 678	}
 679}
 680
 681static bool
 682cifs_find_fid_lock_conflict(struct cifsFileInfo *cfile, __u64 offset,
 683			    __u64 length, __u8 type, struct cifsFileInfo *cur,
 684			    struct cifsLockInfo **conf_lock)
 685{
 686	struct cifsLockInfo *li;
 687	struct TCP_Server_Info *server = tlink_tcon(cfile->tlink)->ses->server;
 688
 689	list_for_each_entry(li, &cfile->llist, llist) {
 690		if (offset + length <= li->offset ||
 691		    offset >= li->offset + li->length)
 692			continue;
 693		else if ((type & server->vals->shared_lock_type) &&
 694			 ((server->ops->compare_fids(cur, cfile) &&
 695			   current->tgid == li->pid) || type == li->type))
 696			continue;
 697		else {
 698			*conf_lock = li;
 699			return true;
 700		}
 701	}
 702	return false;
 703}
 704
 705static bool
 706cifs_find_lock_conflict(struct cifsFileInfo *cfile, __u64 offset, __u64 length,
 707			__u8 type, struct cifsLockInfo **conf_lock)
 708{
 709	bool rc = false;
 710	struct cifsFileInfo *fid, *tmp;
 711	struct cifsInodeInfo *cinode = CIFS_I(cfile->dentry->d_inode);
 712
 713	spin_lock(&cifs_file_list_lock);
 714	list_for_each_entry_safe(fid, tmp, &cinode->openFileList, flist) {
 715		rc = cifs_find_fid_lock_conflict(fid, offset, length, type,
 716						 cfile, conf_lock);
 717		if (rc)
 718			break;
 719	}
 720	spin_unlock(&cifs_file_list_lock);
 721
 722	return rc;
 723}
 724
 725/*
 726 * Check if there is another lock that prevents us to set the lock (mandatory
 727 * style). If such a lock exists, update the flock structure with its
 728 * properties. Otherwise, set the flock type to F_UNLCK if we can cache brlocks
 729 * or leave it the same if we can't. Returns 0 if we don't need to request to
 730 * the server or 1 otherwise.
 731 */
 732static int
 733cifs_lock_test(struct cifsFileInfo *cfile, __u64 offset, __u64 length,
 734	       __u8 type, struct file_lock *flock)
 735{
 736	int rc = 0;
 737	struct cifsLockInfo *conf_lock;
 738	struct cifsInodeInfo *cinode = CIFS_I(cfile->dentry->d_inode);
 739	struct TCP_Server_Info *server = tlink_tcon(cfile->tlink)->ses->server;
 740	bool exist;
 741
 742	mutex_lock(&cinode->lock_mutex);
 743
 744	exist = cifs_find_lock_conflict(cfile, offset, length, type,
 745					&conf_lock);
 746	if (exist) {
 747		flock->fl_start = conf_lock->offset;
 748		flock->fl_end = conf_lock->offset + conf_lock->length - 1;
 749		flock->fl_pid = conf_lock->pid;
 750		if (conf_lock->type & server->vals->shared_lock_type)
 751			flock->fl_type = F_RDLCK;
 752		else
 753			flock->fl_type = F_WRLCK;
 754	} else if (!cinode->can_cache_brlcks)
 755		rc = 1;
 756	else
 757		flock->fl_type = F_UNLCK;
 758
 759	mutex_unlock(&cinode->lock_mutex);
 760	return rc;
 761}
 762
 763static void
 764cifs_lock_add(struct cifsFileInfo *cfile, struct cifsLockInfo *lock)
 765{
 766	struct cifsInodeInfo *cinode = CIFS_I(cfile->dentry->d_inode);
 767	mutex_lock(&cinode->lock_mutex);
 768	list_add_tail(&lock->llist, &cfile->llist);
 769	mutex_unlock(&cinode->lock_mutex);
 770}
 771
 772/*
 773 * Set the byte-range lock (mandatory style). Returns:
 774 * 1) 0, if we set the lock and don't need to request to the server;
 775 * 2) 1, if no locks prevent us but we need to request to the server;
 776 * 3) -EACCESS, if there is a lock that prevents us and wait is false.
 777 */
 778static int
 779cifs_lock_add_if(struct cifsFileInfo *cfile, struct cifsLockInfo *lock,
 780		 bool wait)
 781{
 782	struct cifsLockInfo *conf_lock;
 783	struct cifsInodeInfo *cinode = CIFS_I(cfile->dentry->d_inode);
 784	bool exist;
 785	int rc = 0;
 786
 787try_again:
 788	exist = false;
 789	mutex_lock(&cinode->lock_mutex);
 790
 791	exist = cifs_find_lock_conflict(cfile, lock->offset, lock->length,
 792					lock->type, &conf_lock);
 793	if (!exist && cinode->can_cache_brlcks) {
 794		list_add_tail(&lock->llist, &cfile->llist);
 795		mutex_unlock(&cinode->lock_mutex);
 796		return rc;
 797	}
 798
 799	if (!exist)
 800		rc = 1;
 801	else if (!wait)
 802		rc = -EACCES;
 803	else {
 804		list_add_tail(&lock->blist, &conf_lock->blist);
 805		mutex_unlock(&cinode->lock_mutex);
 806		rc = wait_event_interruptible(lock->block_q,
 807					(lock->blist.prev == &lock->blist) &&
 808					(lock->blist.next == &lock->blist));
 809		if (!rc)
 810			goto try_again;
 811		mutex_lock(&cinode->lock_mutex);
 812		list_del_init(&lock->blist);
 813	}
 814
 815	mutex_unlock(&cinode->lock_mutex);
 816	return rc;
 817}
 818
 819/*
 820 * Check if there is another lock that prevents us to set the lock (posix
 821 * style). If such a lock exists, update the flock structure with its
 822 * properties. Otherwise, set the flock type to F_UNLCK if we can cache brlocks
 823 * or leave it the same if we can't. Returns 0 if we don't need to request to
 824 * the server or 1 otherwise.
 825 */
 826static int
 827cifs_posix_lock_test(struct file *file, struct file_lock *flock)
 828{
 829	int rc = 0;
 830	struct cifsInodeInfo *cinode = CIFS_I(file->f_path.dentry->d_inode);
 831	unsigned char saved_type = flock->fl_type;
 832
 833	if ((flock->fl_flags & FL_POSIX) == 0)
 834		return 1;
 835
 836	mutex_lock(&cinode->lock_mutex);
 837	posix_test_lock(file, flock);
 838
 839	if (flock->fl_type == F_UNLCK && !cinode->can_cache_brlcks) {
 840		flock->fl_type = saved_type;
 841		rc = 1;
 842	}
 843
 844	mutex_unlock(&cinode->lock_mutex);
 845	return rc;
 846}
 847
 848/*
 849 * Set the byte-range lock (posix style). Returns:
 850 * 1) 0, if we set the lock and don't need to request to the server;
 851 * 2) 1, if we need to request to the server;
 852 * 3) <0, if the error occurs while setting the lock.
 853 */
 854static int
 855cifs_posix_lock_set(struct file *file, struct file_lock *flock)
 856{
 857	struct cifsInodeInfo *cinode = CIFS_I(file->f_path.dentry->d_inode);
 858	int rc = 1;
 859
 860	if ((flock->fl_flags & FL_POSIX) == 0)
 861		return rc;
 862
 863try_again:
 864	mutex_lock(&cinode->lock_mutex);
 865	if (!cinode->can_cache_brlcks) {
 866		mutex_unlock(&cinode->lock_mutex);
 867		return rc;
 868	}
 869
 870	rc = posix_lock_file(file, flock, NULL);
 871	mutex_unlock(&cinode->lock_mutex);
 872	if (rc == FILE_LOCK_DEFERRED) {
 873		rc = wait_event_interruptible(flock->fl_wait, !flock->fl_next);
 874		if (!rc)
 875			goto try_again;
 876		locks_delete_block(flock);
 877	}
 878	return rc;
 879}
 880
 881static int
 882cifs_push_mandatory_locks(struct cifsFileInfo *cfile)
 883{
 884	int xid, rc = 0, stored_rc;
 885	struct cifsLockInfo *li, *tmp;
 886	struct cifs_tcon *tcon;
 887	struct cifsInodeInfo *cinode = CIFS_I(cfile->dentry->d_inode);
 888	unsigned int num, max_num, max_buf;
 889	LOCKING_ANDX_RANGE *buf, *cur;
 890	int types[] = {LOCKING_ANDX_LARGE_FILES,
 891		       LOCKING_ANDX_SHARED_LOCK | LOCKING_ANDX_LARGE_FILES};
 892	int i;
 893
 894	xid = GetXid();
 895	tcon = tlink_tcon(cfile->tlink);
 896
 897	mutex_lock(&cinode->lock_mutex);
 898	if (!cinode->can_cache_brlcks) {
 899		mutex_unlock(&cinode->lock_mutex);
 900		FreeXid(xid);
 901		return rc;
 902	}
 903
 904	/*
 905	 * Accessing maxBuf is racy with cifs_reconnect - need to store value
 906	 * and check it for zero before using.
 907	 */
 908	max_buf = tcon->ses->server->maxBuf;
 909	if (!max_buf) {
 910		mutex_unlock(&cinode->lock_mutex);
 911		FreeXid(xid);
 912		return -EINVAL;
 913	}
 914
 915	max_num = (max_buf - sizeof(struct smb_hdr)) /
 916						sizeof(LOCKING_ANDX_RANGE);
 917	buf = kzalloc(max_num * sizeof(LOCKING_ANDX_RANGE), GFP_KERNEL);
 918	if (!buf) {
 919		mutex_unlock(&cinode->lock_mutex);
 920		FreeXid(xid);
 921		return rc;
 922	}
 923
 924	for (i = 0; i < 2; i++) {
 925		cur = buf;
 926		num = 0;
 927		list_for_each_entry_safe(li, tmp, &cfile->llist, llist) {
 928			if (li->type != types[i])
 929				continue;
 930			cur->Pid = cpu_to_le16(li->pid);
 931			cur->LengthLow = cpu_to_le32((u32)li->length);
 932			cur->LengthHigh = cpu_to_le32((u32)(li->length>>32));
 933			cur->OffsetLow = cpu_to_le32((u32)li->offset);
 934			cur->OffsetHigh = cpu_to_le32((u32)(li->offset>>32));
 935			if (++num == max_num) {
 936				stored_rc = cifs_lockv(xid, tcon, cfile->netfid,
 937						       (__u8)li->type, 0, num,
 938						       buf);
 939				if (stored_rc)
 940					rc = stored_rc;
 941				cur = buf;
 942				num = 0;
 943			} else
 944				cur++;
 945		}
 946
 947		if (num) {
 948			stored_rc = cifs_lockv(xid, tcon, cfile->netfid,
 949					       (__u8)types[i], 0, num, buf);
 950			if (stored_rc)
 951				rc = stored_rc;
 952		}
 953	}
 954
 955	cinode->can_cache_brlcks = false;
 956	mutex_unlock(&cinode->lock_mutex);
 957
 958	kfree(buf);
 959	FreeXid(xid);
 960	return rc;
 961}
 962
 963/* copied from fs/locks.c with a name change */
 964#define cifs_for_each_lock(inode, lockp) \
 965	for (lockp = &inode->i_flock; *lockp != NULL; \
 966	     lockp = &(*lockp)->fl_next)
 967
 968struct lock_to_push {
 969	struct list_head llist;
 970	__u64 offset;
 971	__u64 length;
 972	__u32 pid;
 973	__u16 netfid;
 974	__u8 type;
 975};
 976
 977static int
 978cifs_push_posix_locks(struct cifsFileInfo *cfile)
 979{
 980	struct cifsInodeInfo *cinode = CIFS_I(cfile->dentry->d_inode);
 981	struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
 982	struct file_lock *flock, **before;
 983	unsigned int count = 0, i = 0;
 984	int rc = 0, xid, type;
 985	struct list_head locks_to_send, *el;
 986	struct lock_to_push *lck, *tmp;
 987	__u64 length;
 988
 989	xid = GetXid();
 990
 991	mutex_lock(&cinode->lock_mutex);
 992	if (!cinode->can_cache_brlcks) {
 993		mutex_unlock(&cinode->lock_mutex);
 994		FreeXid(xid);
 995		return rc;
 996	}
 997
 998	lock_flocks();
 999	cifs_for_each_lock(cfile->dentry->d_inode, before) {
1000		if ((*before)->fl_flags & FL_POSIX)
1001			count++;
1002	}
1003	unlock_flocks();
1004
1005	INIT_LIST_HEAD(&locks_to_send);
1006
1007	/*
1008	 * Allocating count locks is enough because no FL_POSIX locks can be
1009	 * added to the list while we are holding cinode->lock_mutex that
1010	 * protects locking operations of this inode.
1011	 */
1012	for (; i < count; i++) {
1013		lck = kmalloc(sizeof(struct lock_to_push), GFP_KERNEL);
1014		if (!lck) {
1015			rc = -ENOMEM;
1016			goto err_out;
1017		}
1018		list_add_tail(&lck->llist, &locks_to_send);
1019	}
1020
1021	el = locks_to_send.next;
1022	lock_flocks();
1023	cifs_for_each_lock(cfile->dentry->d_inode, before) {
1024		flock = *before;
1025		if ((flock->fl_flags & FL_POSIX) == 0)
1026			continue;
1027		if (el == &locks_to_send) {
1028			/*
1029			 * The list ended. We don't have enough allocated
1030			 * structures - something is really wrong.
1031			 */
1032			cERROR(1, "Can't push all brlocks!");
1033			break;
1034		}
1035		length = 1 + flock->fl_end - flock->fl_start;
1036		if (flock->fl_type == F_RDLCK || flock->fl_type == F_SHLCK)
1037			type = CIFS_RDLCK;
1038		else
1039			type = CIFS_WRLCK;
1040		lck = list_entry(el, struct lock_to_push, llist);
1041		lck->pid = flock->fl_pid;
1042		lck->netfid = cfile->netfid;
1043		lck->length = length;
1044		lck->type = type;
1045		lck->offset = flock->fl_start;
1046		el = el->next;
1047	}
1048	unlock_flocks();
1049
1050	list_for_each_entry_safe(lck, tmp, &locks_to_send, llist) {
1051		struct file_lock tmp_lock;
1052		int stored_rc;
1053
1054		tmp_lock.fl_start = lck->offset;
1055		stored_rc = CIFSSMBPosixLock(xid, tcon, lck->netfid, lck->pid,
1056					     0, lck->length, &tmp_lock,
1057					     lck->type, 0);
1058		if (stored_rc)
1059			rc = stored_rc;
1060		list_del(&lck->llist);
1061		kfree(lck);
1062	}
1063
1064out:
1065	cinode->can_cache_brlcks = false;
1066	mutex_unlock(&cinode->lock_mutex);
1067
1068	FreeXid(xid);
1069	return rc;
1070err_out:
1071	list_for_each_entry_safe(lck, tmp, &locks_to_send, llist) {
1072		list_del(&lck->llist);
1073		kfree(lck);
1074	}
1075	goto out;
1076}
1077
1078static int
1079cifs_push_locks(struct cifsFileInfo *cfile)
1080{
1081	struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb);
1082	struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1083
1084	if ((tcon->ses->capabilities & CAP_UNIX) &&
1085	    (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
1086	    ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
1087		return cifs_push_posix_locks(cfile);
1088
1089	return cifs_push_mandatory_locks(cfile);
1090}
1091
1092static void
1093cifs_read_flock(struct file_lock *flock, __u32 *type, int *lock, int *unlock,
1094		bool *wait_flag, struct TCP_Server_Info *server)
1095{
1096	if (flock->fl_flags & FL_POSIX)
1097		cFYI(1, "Posix");
1098	if (flock->fl_flags & FL_FLOCK)
1099		cFYI(1, "Flock");
1100	if (flock->fl_flags & FL_SLEEP) {
1101		cFYI(1, "Blocking lock");
1102		*wait_flag = true;
1103	}
1104	if (flock->fl_flags & FL_ACCESS)
1105		cFYI(1, "Process suspended by mandatory locking - "
1106			"not implemented yet");
1107	if (flock->fl_flags & FL_LEASE)
1108		cFYI(1, "Lease on file - not implemented yet");
1109	if (flock->fl_flags &
1110	    (~(FL_POSIX | FL_FLOCK | FL_SLEEP | FL_ACCESS | FL_LEASE)))
1111		cFYI(1, "Unknown lock flags 0x%x", flock->fl_flags);
1112
1113	*type = server->vals->large_lock_type;
1114	if (flock->fl_type == F_WRLCK) {
1115		cFYI(1, "F_WRLCK ");
1116		*type |= server->vals->exclusive_lock_type;
1117		*lock = 1;
1118	} else if (flock->fl_type == F_UNLCK) {
1119		cFYI(1, "F_UNLCK");
1120		*type |= server->vals->unlock_lock_type;
1121		*unlock = 1;
1122		/* Check if unlock includes more than one lock range */
1123	} else if (flock->fl_type == F_RDLCK) {
1124		cFYI(1, "F_RDLCK");
1125		*type |= server->vals->shared_lock_type;
1126		*lock = 1;
1127	} else if (flock->fl_type == F_EXLCK) {
1128		cFYI(1, "F_EXLCK");
1129		*type |= server->vals->exclusive_lock_type;
1130		*lock = 1;
1131	} else if (flock->fl_type == F_SHLCK) {
1132		cFYI(1, "F_SHLCK");
1133		*type |= server->vals->shared_lock_type;
1134		*lock = 1;
1135	} else
1136		cFYI(1, "Unknown type of lock");
1137}
1138
1139static int
1140cifs_mandatory_lock(int xid, struct cifsFileInfo *cfile, __u64 offset,
1141		    __u64 length, __u32 type, int lock, int unlock, bool wait)
1142{
1143	return CIFSSMBLock(xid, tlink_tcon(cfile->tlink), cfile->netfid,
1144			   current->tgid, length, offset, unlock, lock,
1145			   (__u8)type, wait, 0);
1146}
1147
1148static int
1149cifs_getlk(struct file *file, struct file_lock *flock, __u32 type,
1150	   bool wait_flag, bool posix_lck, int xid)
1151{
1152	int rc = 0;
1153	__u64 length = 1 + flock->fl_end - flock->fl_start;
1154	struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data;
1155	struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1156	struct TCP_Server_Info *server = tcon->ses->server;
1157	__u16 netfid = cfile->netfid;
1158
1159	if (posix_lck) {
1160		int posix_lock_type;
1161
1162		rc = cifs_posix_lock_test(file, flock);
1163		if (!rc)
1164			return rc;
1165
1166		if (type & server->vals->shared_lock_type)
1167			posix_lock_type = CIFS_RDLCK;
1168		else
1169			posix_lock_type = CIFS_WRLCK;
1170		rc = CIFSSMBPosixLock(xid, tcon, netfid, current->tgid,
1171				      1 /* get */, length, flock,
1172				      posix_lock_type, wait_flag);
1173		return rc;
1174	}
1175
1176	rc = cifs_lock_test(cfile, flock->fl_start, length, type, flock);
1177	if (!rc)
1178		return rc;
1179
1180	/* BB we could chain these into one lock request BB */
1181	rc = cifs_mandatory_lock(xid, cfile, flock->fl_start, length, type,
1182				 1, 0, false);
1183	if (rc == 0) {
1184		rc = cifs_mandatory_lock(xid, cfile, flock->fl_start, length,
1185					 type, 0, 1, false);
1186		flock->fl_type = F_UNLCK;
1187		if (rc != 0)
1188			cERROR(1, "Error unlocking previously locked "
1189				  "range %d during test of lock", rc);
1190		return 0;
1191	}
1192
1193	if (type & server->vals->shared_lock_type) {
1194		flock->fl_type = F_WRLCK;
1195		return 0;
1196	}
1197
1198	rc = cifs_mandatory_lock(xid, cfile, flock->fl_start, length,
1199				 type | server->vals->shared_lock_type, 1, 0,
1200				 false);
1201	if (rc == 0) {
1202		rc = cifs_mandatory_lock(xid, cfile, flock->fl_start, length,
1203					 type | server->vals->shared_lock_type,
1204					 0, 1, false);
1205		flock->fl_type = F_RDLCK;
1206		if (rc != 0)
1207			cERROR(1, "Error unlocking previously locked "
1208				  "range %d during test of lock", rc);
1209	} else
1210		flock->fl_type = F_WRLCK;
1211
1212	return 0;
1213}
1214
1215static void
1216cifs_move_llist(struct list_head *source, struct list_head *dest)
1217{
1218	struct list_head *li, *tmp;
1219	list_for_each_safe(li, tmp, source)
1220		list_move(li, dest);
1221}
1222
1223static void
1224cifs_free_llist(struct list_head *llist)
1225{
1226	struct cifsLockInfo *li, *tmp;
1227	list_for_each_entry_safe(li, tmp, llist, llist) {
1228		cifs_del_lock_waiters(li);
1229		list_del(&li->llist);
1230		kfree(li);
1231	}
1232}
1233
1234static int
1235cifs_unlock_range(struct cifsFileInfo *cfile, struct file_lock *flock, int xid)
1236{
1237	int rc = 0, stored_rc;
1238	int types[] = {LOCKING_ANDX_LARGE_FILES,
1239		       LOCKING_ANDX_SHARED_LOCK | LOCKING_ANDX_LARGE_FILES};
1240	unsigned int i;
1241	unsigned int max_num, num, max_buf;
1242	LOCKING_ANDX_RANGE *buf, *cur;
1243	struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1244	struct cifsInodeInfo *cinode = CIFS_I(cfile->dentry->d_inode);
1245	struct cifsLockInfo *li, *tmp;
1246	__u64 length = 1 + flock->fl_end - flock->fl_start;
1247	struct list_head tmp_llist;
1248
1249	INIT_LIST_HEAD(&tmp_llist);
1250
1251	/*
1252	 * Accessing maxBuf is racy with cifs_reconnect - need to store value
1253	 * and check it for zero before using.
1254	 */
1255	max_buf = tcon->ses->server->maxBuf;
1256	if (!max_buf)
1257		return -EINVAL;
1258
1259	max_num = (max_buf - sizeof(struct smb_hdr)) /
1260						sizeof(LOCKING_ANDX_RANGE);
1261	buf = kzalloc(max_num * sizeof(LOCKING_ANDX_RANGE), GFP_KERNEL);
1262	if (!buf)
1263		return -ENOMEM;
1264
1265	mutex_lock(&cinode->lock_mutex);
1266	for (i = 0; i < 2; i++) {
1267		cur = buf;
1268		num = 0;
1269		list_for_each_entry_safe(li, tmp, &cfile->llist, llist) {
1270			if (flock->fl_start > li->offset ||
1271			    (flock->fl_start + length) <
1272			    (li->offset + li->length))
1273				continue;
1274			if (current->tgid != li->pid)
1275				continue;
1276			if (types[i] != li->type)
1277				continue;
1278			if (cinode->can_cache_brlcks) {
1279				/*
1280				 * We can cache brlock requests - simply remove
1281				 * a lock from the file's list.
1282				 */
1283				list_del(&li->llist);
1284				cifs_del_lock_waiters(li);
1285				kfree(li);
1286				continue;
1287			}
1288			cur->Pid = cpu_to_le16(li->pid);
1289			cur->LengthLow = cpu_to_le32((u32)li->length);
1290			cur->LengthHigh = cpu_to_le32((u32)(li->length>>32));
1291			cur->OffsetLow = cpu_to_le32((u32)li->offset);
1292			cur->OffsetHigh = cpu_to_le32((u32)(li->offset>>32));
1293			/*
1294			 * We need to save a lock here to let us add it again to
1295			 * the file's list if the unlock range request fails on
1296			 * the server.
1297			 */
1298			list_move(&li->llist, &tmp_llist);
1299			if (++num == max_num) {
1300				stored_rc = cifs_lockv(xid, tcon, cfile->netfid,
1301						       li->type, num, 0, buf);
1302				if (stored_rc) {
1303					/*
1304					 * We failed on the unlock range
1305					 * request - add all locks from the tmp
1306					 * list to the head of the file's list.
1307					 */
1308					cifs_move_llist(&tmp_llist,
1309							&cfile->llist);
1310					rc = stored_rc;
1311				} else
1312					/*
1313					 * The unlock range request succeed -
1314					 * free the tmp list.
1315					 */
1316					cifs_free_llist(&tmp_llist);
1317				cur = buf;
1318				num = 0;
1319			} else
1320				cur++;
1321		}
1322		if (num) {
1323			stored_rc = cifs_lockv(xid, tcon, cfile->netfid,
1324					       types[i], num, 0, buf);
1325			if (stored_rc) {
1326				cifs_move_llist(&tmp_llist, &cfile->llist);
1327				rc = stored_rc;
1328			} else
1329				cifs_free_llist(&tmp_llist);
1330		}
1331	}
1332
1333	mutex_unlock(&cinode->lock_mutex);
1334	kfree(buf);
1335	return rc;
1336}
1337
1338static int
1339cifs_setlk(struct file *file,  struct file_lock *flock, __u32 type,
1340	   bool wait_flag, bool posix_lck, int lock, int unlock, int xid)
1341{
1342	int rc = 0;
1343	__u64 length = 1 + flock->fl_end - flock->fl_start;
1344	struct cifsFileInfo *cfile = (struct cifsFileInfo *)file->private_data;
1345	struct cifs_tcon *tcon = tlink_tcon(cfile->tlink);
1346	struct TCP_Server_Info *server = tcon->ses->server;
1347	__u16 netfid = cfile->netfid;
1348
1349	if (posix_lck) {
1350		int posix_lock_type;
1351
1352		rc = cifs_posix_lock_set(file, flock);
1353		if (!rc || rc < 0)
1354			return rc;
1355
1356		if (type & server->vals->shared_lock_type)
1357			posix_lock_type = CIFS_RDLCK;
1358		else
1359			posix_lock_type = CIFS_WRLCK;
1360
1361		if (unlock == 1)
1362			posix_lock_type = CIFS_UNLCK;
1363
1364		rc = CIFSSMBPosixLock(xid, tcon, netfid, current->tgid,
1365				      0 /* set */, length, flock,
1366				      posix_lock_type, wait_flag);
1367		goto out;
1368	}
1369
1370	if (lock) {
1371		struct cifsLockInfo *lock;
1372
1373		lock = cifs_lock_init(flock->fl_start, length, type);
1374		if (!lock)
1375			return -ENOMEM;
1376
1377		rc = cifs_lock_add_if(cfile, lock, wait_flag);
1378		if (rc < 0)
1379			kfree(lock);
1380		if (rc <= 0)
1381			goto out;
1382
1383		rc = cifs_mandatory_lock(xid, cfile, flock->fl_start, length,
1384					 type, 1, 0, wait_flag);
1385		if (rc) {
1386			kfree(lock);
1387			goto out;
1388		}
1389
1390		cifs_lock_add(cfile, lock);
1391	} else if (unlock)
1392		rc = cifs_unlock_range(cfile, flock, xid);
1393
1394out:
1395	if (flock->fl_flags & FL_POSIX)
1396		posix_lock_file_wait(file, flock);
1397	return rc;
1398}
1399
1400int cifs_lock(struct file *file, int cmd, struct file_lock *flock)
1401{
1402	int rc, xid;
1403	int lock = 0, unlock = 0;
1404	bool wait_flag = false;
1405	bool posix_lck = false;
1406	struct cifs_sb_info *cifs_sb;
1407	struct cifs_tcon *tcon;
1408	struct cifsInodeInfo *cinode;
1409	struct cifsFileInfo *cfile;
1410	__u16 netfid;
1411	__u32 type;
1412
1413	rc = -EACCES;
1414	xid = GetXid();
1415
1416	cFYI(1, "Lock parm: 0x%x flockflags: 0x%x flocktype: 0x%x start: %lld "
1417		"end: %lld", cmd, flock->fl_flags, flock->fl_type,
1418		flock->fl_start, flock->fl_end);
1419
1420	cfile = (struct cifsFileInfo *)file->private_data;
1421	tcon = tlink_tcon(cfile->tlink);
1422
1423	cifs_read_flock(flock, &type, &lock, &unlock, &wait_flag,
1424			tcon->ses->server);
1425
1426	cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
1427	netfid = cfile->netfid;
1428	cinode = CIFS_I(file->f_path.dentry->d_inode);
1429
1430	if ((tcon->ses->capabilities & CAP_UNIX) &&
1431	    (CIFS_UNIX_FCNTL_CAP & le64_to_cpu(tcon->fsUnixInfo.Capability)) &&
1432	    ((cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOPOSIXBRL) == 0))
1433		posix_lck = true;
1434	/*
1435	 * BB add code here to normalize offset and length to account for
1436	 * negative length which we can not accept over the wire.
1437	 */
1438	if (IS_GETLK(cmd)) {
1439		rc = cifs_getlk(file, flock, type, wait_flag, posix_lck, xid);
1440		FreeXid(xid);
1441		return rc;
1442	}
1443
1444	if (!lock && !unlock) {
1445		/*
1446		 * if no lock or unlock then nothing to do since we do not
1447		 * know what it is
1448		 */
1449		FreeXid(xid);
1450		return -EOPNOTSUPP;
1451	}
1452
1453	rc = cifs_setlk(file, flock, type, wait_flag, posix_lck, lock, unlock,
1454			xid);
1455	FreeXid(xid);
1456	return rc;
1457}
1458
1459/*
1460 * update the file size (if needed) after a write. Should be called with
1461 * the inode->i_lock held
1462 */
1463void
1464cifs_update_eof(struct cifsInodeInfo *cifsi, loff_t offset,
1465		      unsigned int bytes_written)
1466{
1467	loff_t end_of_write = offset + bytes_written;
1468
1469	if (end_of_write > cifsi->server_eof)
1470		cifsi->server_eof = end_of_write;
1471}
1472
1473static ssize_t cifs_write(struct cifsFileInfo *open_file, __u32 pid,
1474			  const char *write_data, size_t write_size,
1475			  loff_t *poffset)
1476{
1477	int rc = 0;
1478	unsigned int bytes_written = 0;
1479	unsigned int total_written;
1480	struct cifs_sb_info *cifs_sb;
1481	struct cifs_tcon *pTcon;
1482	int xid;
1483	struct dentry *dentry = open_file->dentry;
1484	struct cifsInodeInfo *cifsi = CIFS_I(dentry->d_inode);
1485	struct cifs_io_parms io_parms;
1486
1487	cifs_sb = CIFS_SB(dentry->d_sb);
1488
1489	cFYI(1, "write %zd bytes to offset %lld of %s", write_size,
1490	   *poffset, dentry->d_name.name);
1491
1492	pTcon = tlink_tcon(open_file->tlink);
1493
1494	xid = GetXid();
1495
1496	for (total_written = 0; write_size > total_written;
1497	     total_written += bytes_written) {
1498		rc = -EAGAIN;
1499		while (rc == -EAGAIN) {
1500			struct kvec iov[2];
1501			unsigned int len;
1502
1503			if (open_file->invalidHandle) {
1504				/* we could deadlock if we called
1505				   filemap_fdatawait from here so tell
1506				   reopen_file not to flush data to
1507				   server now */
1508				rc = cifs_reopen_file(open_file, false);
1509				if (rc != 0)
1510					break;
1511			}
1512
1513			len = min((size_t)cifs_sb->wsize,
1514				  write_size - total_written);
1515			/* iov[0] is reserved for smb header */
1516			iov[1].iov_base = (char *)write_data + total_written;
1517			iov[1].iov_len = len;
1518			io_parms.netfid = open_file->netfid;
1519			io_parms.pid = pid;
1520			io_parms.tcon = pTcon;
1521			io_parms.offset = *poffset;
1522			io_parms.length = len;
1523			rc = CIFSSMBWrite2(xid, &io_parms, &bytes_written, iov,
1524					   1, 0);
1525		}
1526		if (rc || (bytes_written == 0)) {
1527			if (total_written)
1528				break;
1529			else {
1530				FreeXid(xid);
1531				return rc;
1532			}
1533		} else {
1534			spin_lock(&dentry->d_inode->i_lock);
1535			cifs_update_eof(cifsi, *poffset, bytes_written);
1536			spin_unlock(&dentry->d_inode->i_lock);
1537			*poffset += bytes_written;
1538		}
1539	}
1540
1541	cifs_stats_bytes_written(pTcon, total_written);
1542
1543	if (total_written > 0) {
1544		spin_lock(&dentry->d_inode->i_lock);
1545		if (*poffset > dentry->d_inode->i_size)
1546			i_size_write(dentry->d_inode, *poffset);
1547		spin_unlock(&dentry->d_inode->i_lock);
1548	}
1549	mark_inode_dirty_sync(dentry->d_inode);
1550	FreeXid(xid);
1551	return total_written;
1552}
1553
1554struct cifsFileInfo *find_readable_file(struct cifsInodeInfo *cifs_inode,
1555					bool fsuid_only)
1556{
1557	struct cifsFileInfo *open_file = NULL;
1558	struct cifs_sb_info *cifs_sb = CIFS_SB(cifs_inode->vfs_inode.i_sb);
1559
1560	/* only filter by fsuid on multiuser mounts */
1561	if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MULTIUSER))
1562		fsuid_only = false;
1563
1564	spin_lock(&cifs_file_list_lock);
1565	/* we could simply get the first_list_entry since write-only entries
1566	   are always at the end of the list but since the first entry might
1567	   have a close pending, we go through the whole list */
1568	list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1569		if (fsuid_only && open_file->uid != current_fsuid())
1570			continue;
1571		if (OPEN_FMODE(open_file->f_flags) & FMODE_READ) {
1572			if (!open_file->invalidHandle) {
1573				/* found a good file */
1574				/* lock it so it will not be closed on us */
1575				cifsFileInfo_get_locked(open_file);
1576				spin_unlock(&cifs_file_list_lock);
1577				return open_file;
1578			} /* else might as well continue, and look for
1579			     another, or simply have the caller reopen it
1580			     again rather than trying to fix this handle */
1581		} else /* write only file */
1582			break; /* write only files are last so must be done */
1583	}
1584	spin_unlock(&cifs_file_list_lock);
1585	return NULL;
1586}
1587
1588struct cifsFileInfo *find_writable_file(struct cifsInodeInfo *cifs_inode,
1589					bool fsuid_only)
1590{
1591	struct cifsFileInfo *open_file, *inv_file = NULL;
1592	struct cifs_sb_info *cifs_sb;
1593	bool any_available = false;
1594	int rc;
1595	unsigned int refind = 0;
1596
1597	/* Having a null inode here (because mapping->host was set to zero by
1598	the VFS or MM) should not happen but we had reports of on oops (due to
1599	it being zero) during stress testcases so we need to check for it */
1600
1601	if (cifs_inode == NULL) {
1602		cERROR(1, "Null inode passed to cifs_writeable_file");
1603		dump_stack();
1604		return NULL;
1605	}
1606
1607	cifs_sb = CIFS_SB(cifs_inode->vfs_inode.i_sb);
1608
1609	/* only filter by fsuid on multiuser mounts */
1610	if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_MULTIUSER))
1611		fsuid_only = false;
1612
1613	spin_lock(&cifs_file_list_lock);
1614refind_writable:
1615	if (refind > MAX_REOPEN_ATT) {
1616		spin_unlock(&cifs_file_list_lock);
1617		return NULL;
1618	}
1619	list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
1620		if (!any_available && open_file->pid != current->tgid)
1621			continue;
1622		if (fsuid_only && open_file->uid != current_fsuid())
1623			continue;
1624		if (OPEN_FMODE(open_file->f_flags) & FMODE_WRITE) {
1625			if (!open_file->invalidHandle) {
1626				/* found a good writable file */
1627				cifsFileInfo_get_locked(open_file);
1628				spin_unlock(&cifs_file_list_lock);
1629				return open_file;
1630			} else {
1631				if (!inv_file)
1632					inv_file = open_file;
1633			}
1634		}
1635	}
1636	/* couldn't find useable FH with same pid, try any available */
1637	if (!any_available) {
1638		any_available = true;
1639		goto refind_writable;
1640	}
1641
1642	if (inv_file) {
1643		any_available = false;
1644		cifsFileInfo_get_locked(inv_file);
1645	}
1646
1647	spin_unlock(&cifs_file_list_lock);
1648
1649	if (inv_file) {
1650		rc = cifs_reopen_file(inv_file, false);
1651		if (!rc)
1652			return inv_file;
1653		else {
1654			spin_lock(&cifs_file_list_lock);
1655			list_move_tail(&inv_file->flist,
1656					&cifs_inode->openFileList);
1657			spin_unlock(&cifs_file_list_lock);
1658			cifsFileInfo_put(inv_file);
1659			spin_lock(&cifs_file_list_lock);
1660			++refind;
1661			goto refind_writable;
1662		}
1663	}
1664
1665	return NULL;
1666}
1667
1668static int cifs_partialpagewrite(struct page *page, unsigned from, unsigned to)
1669{
1670	struct address_space *mapping = page->mapping;
1671	loff_t offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
1672	char *write_data;
1673	int rc = -EFAULT;
1674	int bytes_written = 0;
1675	struct inode *inode;
1676	struct cifsFileInfo *open_file;
1677
1678	if (!mapping || !mapping->host)
1679		return -EFAULT;
1680
1681	inode = page->mapping->host;
1682
1683	offset += (loff_t)from;
1684	write_data = kmap(page);
1685	write_data += from;
1686
1687	if ((to > PAGE_CACHE_SIZE) || (from > to)) {
1688		kunmap(page);
1689		return -EIO;
1690	}
1691
1692	/* racing with truncate? */
1693	if (offset > mapping->host->i_size) {
1694		kunmap(page);
1695		return 0; /* don't care */
1696	}
1697
1698	/* check to make sure that we are not extending the file */
1699	if (mapping->host->i_size - offset < (loff_t)to)
1700		to = (unsigned)(mapping->host->i_size - offset);
1701
1702	open_file = find_writable_file(CIFS_I(mapping->host), false);
1703	if (open_file) {
1704		bytes_written = cifs_write(open_file, open_file->pid,
1705					   write_data, to - from, &offset);
1706		cifsFileInfo_put(open_file);
1707		/* Does mm or vfs already set times? */
1708		inode->i_atime = inode->i_mtime = current_fs_time(inode->i_sb);
1709		if ((bytes_written > 0) && (offset))
1710			rc = 0;
1711		else if (bytes_written < 0)
1712			rc = bytes_written;
1713	} else {
1714		cFYI(1, "No writeable filehandles for inode");
1715		rc = -EIO;
1716	}
1717
1718	kunmap(page);
1719	return rc;
1720}
1721
1722/*
1723 * Marshal up the iov array, reserving the first one for the header. Also,
1724 * set wdata->bytes.
1725 */
1726static void
1727cifs_writepages_marshal_iov(struct kvec *iov, struct cifs_writedata *wdata)
1728{
1729	int i;
1730	struct inode *inode = wdata->cfile->dentry->d_inode;
1731	loff_t size = i_size_read(inode);
1732
1733	/* marshal up the pages into iov array */
1734	wdata->bytes = 0;
1735	for (i = 0; i < wdata->nr_pages; i++) {
1736		iov[i + 1].iov_len = min(size - page_offset(wdata->pages[i]),
1737					(loff_t)PAGE_CACHE_SIZE);
1738		iov[i + 1].iov_base = kmap(wdata->pages[i]);
1739		wdata->bytes += iov[i + 1].iov_len;
1740	}
1741}
1742
1743static int cifs_writepages(struct address_space *mapping,
1744			   struct writeback_control *wbc)
1745{
1746	struct cifs_sb_info *cifs_sb = CIFS_SB(mapping->host->i_sb);
1747	bool done = false, scanned = false, range_whole = false;
1748	pgoff_t end, index;
1749	struct cifs_writedata *wdata;
1750	struct page *page;
1751	int rc = 0;
1752
1753	/*
1754	 * If wsize is smaller than the page cache size, default to writing
1755	 * one page at a time via cifs_writepage
1756	 */
1757	if (cifs_sb->wsize < PAGE_CACHE_SIZE)
1758		return generic_writepages(mapping, wbc);
1759
1760	if (wbc->range_cyclic) {
1761		index = mapping->writeback_index; /* Start from prev offset */
1762		end = -1;
1763	} else {
1764		index = wbc->range_start >> PAGE_CACHE_SHIFT;
1765		end = wbc->range_end >> PAGE_CACHE_SHIFT;
1766		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1767			range_whole = true;
1768		scanned = true;
1769	}
1770retry:
1771	while (!done && index <= end) {
1772		unsigned int i, nr_pages, found_pages;
1773		pgoff_t next = 0, tofind;
1774		struct page **pages;
1775
1776		tofind = min((cifs_sb->wsize / PAGE_CACHE_SIZE) - 1,
1777				end - index) + 1;
1778
1779		wdata = cifs_writedata_alloc((unsigned int)tofind,
1780					     cifs_writev_complete);
1781		if (!wdata) {
1782			rc = -ENOMEM;
1783			break;
1784		}
1785
1786		/*
1787		 * find_get_pages_tag seems to return a max of 256 on each
1788		 * iteration, so we must call it several times in order to
1789		 * fill the array or the wsize is effectively limited to
1790		 * 256 * PAGE_CACHE_SIZE.
1791		 */
1792		found_pages = 0;
1793		pages = wdata->pages;
1794		do {
1795			nr_pages = find_get_pages_tag(mapping, &index,
1796							PAGECACHE_TAG_DIRTY,
1797							tofind, pages);
1798			found_pages += nr_pages;
1799			tofind -= nr_pages;
1800			pages += nr_pages;
1801		} while (nr_pages && tofind && index <= end);
1802
1803		if (found_pages == 0) {
1804			kref_put(&wdata->refcount, cifs_writedata_release);
1805			break;
1806		}
1807
1808		nr_pages = 0;
1809		for (i = 0; i < found_pages; i++) {
1810			page = wdata->pages[i];
1811			/*
1812			 * At this point we hold neither mapping->tree_lock nor
1813			 * lock on the page itself: the page may be truncated or
1814			 * invalidated (changing page->mapping to NULL), or even
1815			 * swizzled back from swapper_space to tmpfs file
1816			 * mapping
1817			 */
1818
1819			if (nr_pages == 0)
1820				lock_page(page);
1821			else if (!trylock_page(page))
1822				break;
1823
1824			if (unlikely(page->mapping != mapping)) {
1825				unlock_page(page);
1826				break;
1827			}
1828
1829			if (!wbc->range_cyclic && page->index > end) {
1830				done = true;
1831				unlock_page(page);
1832				break;
1833			}
1834
1835			if (next && (page->index != next)) {
1836				/* Not next consecutive page */
1837				unlock_page(page);
1838				break;
1839			}
1840
1841			if (wbc->sync_mode != WB_SYNC_NONE)
1842				wait_on_page_writeback(page);
1843
1844			if (PageWriteback(page) ||
1845					!clear_page_dirty_for_io(page)) {
1846				unlock_page(page);
1847				break;
1848			}
1849
1850			/*
1851			 * This actually clears the dirty bit in the radix tree.
1852			 * See cifs_writepage() for more commentary.
1853			 */
1854			set_page_writeback(page);
1855
1856			if (page_offset(page) >= mapping->host->i_size) {
1857				done = true;
1858				unlock_page(page);
1859				end_page_writeback(page);
1860				break;
1861			}
1862
1863			wdata->pages[i] = page;
1864			next = page->index + 1;
1865			++nr_pages;
1866		}
1867
1868		/* reset index to refind any pages skipped */
1869		if (nr_pages == 0)
1870			index = wdata->pages[0]->index + 1;
1871
1872		/* put any pages we aren't going to use */
1873		for (i = nr_pages; i < found_pages; i++) {
1874			page_cache_release(wdata->pages[i]);
1875			wdata->pages[i] = NULL;
1876		}
1877
1878		/* nothing to write? */
1879		if (nr_pages == 0) {
1880			kref_put(&wdata->refcount, cifs_writedata_release);
1881			continue;
1882		}
1883
1884		wdata->sync_mode = wbc->sync_mode;
1885		wdata->nr_pages = nr_pages;
1886		wdata->offset = page_offset(wdata->pages[0]);
1887		wdata->marshal_iov = cifs_writepages_marshal_iov;
1888
1889		do {
1890			if (wdata->cfile != NULL)
1891				cifsFileInfo_put(wdata->cfile);
1892			wdata->cfile = find_writable_file(CIFS_I(mapping->host),
1893							  false);
1894			if (!wdata->cfile) {
1895				cERROR(1, "No writable handles for inode");
1896				rc = -EBADF;
1897				break;
1898			}
1899			wdata->pid = wdata->cfile->pid;
1900			rc = cifs_async_writev(wdata);
1901		} while (wbc->sync_mode == WB_SYNC_ALL && rc == -EAGAIN);
1902
1903		for (i = 0; i < nr_pages; ++i)
1904			unlock_page(wdata->pages[i]);
1905
1906		/* send failure -- clean up the mess */
1907		if (rc != 0) {
1908			for (i = 0; i < nr_pages; ++i) {
1909				if (rc == -EAGAIN)
1910					redirty_page_for_writepage(wbc,
1911							   wdata->pages[i]);
1912				else
1913					SetPageError(wdata->pages[i]);
1914				end_page_writeback(wdata->pages[i]);
1915				page_cache_release(wdata->pages[i]);
1916			}
1917			if (rc != -EAGAIN)
1918				mapping_set_error(mapping, rc);
1919		}
1920		kref_put(&wdata->refcount, cifs_writedata_release);
1921
1922		wbc->nr_to_write -= nr_pages;
1923		if (wbc->nr_to_write <= 0)
1924			done = true;
1925
1926		index = next;
1927	}
1928
1929	if (!scanned && !done) {
1930		/*
1931		 * We hit the last page and there is more work to be done: wrap
1932		 * back to the start of the file
1933		 */
1934		scanned = true;
1935		index = 0;
1936		goto retry;
1937	}
1938
1939	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1940		mapping->writeback_index = index;
1941
1942	return rc;
1943}
1944
1945static int
1946cifs_writepage_locked(struct page *page, struct writeback_control *wbc)
1947{
1948	int rc;
1949	int xid;
1950
1951	xid = GetXid();
1952/* BB add check for wbc flags */
1953	page_cache_get(page);
1954	if (!PageUptodate(page))
1955		cFYI(1, "ppw - page not up to date");
1956
1957	/*
1958	 * Set the "writeback" flag, and clear "dirty" in the radix tree.
1959	 *
1960	 * A writepage() implementation always needs to do either this,
1961	 * or re-dirty the page with "redirty_page_for_writepage()" in
1962	 * the case of a failure.
1963	 *
1964	 * Just unlocking the page will cause the radix tree tag-bits
1965	 * to fail to update with the state of the page correctly.
1966	 */
1967	set_page_writeback(page);
1968retry_write:
1969	rc = cifs_partialpagewrite(page, 0, PAGE_CACHE_SIZE);
1970	if (rc == -EAGAIN && wbc->sync_mode == WB_SYNC_ALL)
1971		goto retry_write;
1972	else if (rc == -EAGAIN)
1973		redirty_page_for_writepage(wbc, page);
1974	else if (rc != 0)
1975		SetPageError(page);
1976	else
1977		SetPageUptodate(page);
1978	end_page_writeback(page);
1979	page_cache_release(page);
1980	FreeXid(xid);
1981	return rc;
1982}
1983
1984static int cifs_writepage(struct page *page, struct writeback_control *wbc)
1985{
1986	int rc = cifs_writepage_locked(page, wbc);
1987	unlock_page(page);
1988	return rc;
1989}
1990
1991static int cifs_write_end(struct file *file, struct address_space *mapping,
1992			loff_t pos, unsigned len, unsigned copied,
1993			struct page *page, void *fsdata)
1994{
1995	int rc;
1996	struct inode *inode = mapping->host;
1997	struct cifsFileInfo *cfile = file->private_data;
1998	struct cifs_sb_info *cifs_sb = CIFS_SB(cfile->dentry->d_sb);
1999	__u32 pid;
2000
2001	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2002		pid = cfile->pid;
2003	else
2004		pid = current->tgid;
2005
2006	cFYI(1, "write_end for page %p from pos %lld with %d bytes",
2007		 page, pos, copied);
2008
2009	if (PageChecked(page)) {
2010		if (copied == len)
2011			SetPageUptodate(page);
2012		ClearPageChecked(page);
2013	} else if (!PageUptodate(page) && copied == PAGE_CACHE_SIZE)
2014		SetPageUptodate(page);
2015
2016	if (!PageUptodate(page)) {
2017		char *page_data;
2018		unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
2019		int xid;
2020
2021		xid = GetXid();
2022		/* this is probably better than directly calling
2023		   partialpage_write since in this function the file handle is
2024		   known which we might as well	leverage */
2025		/* BB check if anything else missing out of ppw
2026		   such as updating last write time */
2027		page_data = kmap(page);
2028		rc = cifs_write(cfile, pid, page_data + offset, copied, &pos);
2029		/* if (rc < 0) should we set writebehind rc? */
2030		kunmap(page);
2031
2032		FreeXid(xid);
2033	} else {
2034		rc = copied;
2035		pos += copied;
2036		set_page_dirty(page);
2037	}
2038
2039	if (rc > 0) {
2040		spin_lock(&inode->i_lock);
2041		if (pos > inode->i_size)
2042			i_size_write(inode, pos);
2043		spin_unlock(&inode->i_lock);
2044	}
2045
2046	unlock_page(page);
2047	page_cache_release(page);
2048
2049	return rc;
2050}
2051
2052int cifs_strict_fsync(struct file *file, loff_t start, loff_t end,
2053		      int datasync)
2054{
2055	int xid;
2056	int rc = 0;
2057	struct cifs_tcon *tcon;
2058	struct cifsFileInfo *smbfile = file->private_data;
2059	struct inode *inode = file->f_path.dentry->d_inode;
2060	struct cifs_sb_info *cifs_sb = CIFS_SB(inode->i_sb);
2061
2062	rc = filemap_write_and_wait_range(inode->i_mapping, start, end);
2063	if (rc)
2064		return rc;
2065	mutex_lock(&inode->i_mutex);
2066
2067	xid = GetXid();
2068
2069	cFYI(1, "Sync file - name: %s datasync: 0x%x",
2070		file->f_path.dentry->d_name.name, datasync);
2071
2072	if (!CIFS_I(inode)->clientCanCacheRead) {
2073		rc = cifs_invalidate_mapping(inode);
2074		if (rc) {
2075			cFYI(1, "rc: %d during invalidate phase", rc);
2076			rc = 0; /* don't care about it in fsync */
2077		}
2078	}
2079
2080	tcon = tlink_tcon(smbfile->tlink);
2081	if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOSSYNC))
2082		rc = CIFSSMBFlush(xid, tcon, smbfile->netfid);
2083
2084	FreeXid(xid);
2085	mutex_unlock(&inode->i_mutex);
2086	return rc;
2087}
2088
2089int cifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
2090{
2091	int xid;
2092	int rc = 0;
2093	struct cifs_tcon *tcon;
2094	struct cifsFileInfo *smbfile = file->private_data;
2095	struct cifs_sb_info *cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
2096	struct inode *inode = file->f_mapping->host;
2097
2098	rc = filemap_write_and_wait_range(inode->i_mapping, start, end);
2099	if (rc)
2100		return rc;
2101	mutex_lock(&inode->i_mutex);
2102
2103	xid = GetXid();
2104
2105	cFYI(1, "Sync file - name: %s datasync: 0x%x",
2106		file->f_path.dentry->d_name.name, datasync);
2107
2108	tcon = tlink_tcon(smbfile->tlink);
2109	if (!(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NOSSYNC))
2110		rc = CIFSSMBFlush(xid, tcon, smbfile->netfid);
2111
2112	FreeXid(xid);
2113	mutex_unlock(&inode->i_mutex);
2114	return rc;
2115}
2116
2117/*
2118 * As file closes, flush all cached write data for this inode checking
2119 * for write behind errors.
2120 */
2121int cifs_flush(struct file *file, fl_owner_t id)
2122{
2123	struct inode *inode = file->f_path.dentry->d_inode;
2124	int rc = 0;
2125
2126	if (file->f_mode & FMODE_WRITE)
2127		rc = filemap_write_and_wait(inode->i_mapping);
2128
2129	cFYI(1, "Flush inode %p file %p rc %d", inode, file, rc);
2130
2131	return rc;
2132}
2133
2134static int
2135cifs_write_allocate_pages(struct page **pages, unsigned long num_pages)
2136{
2137	int rc = 0;
2138	unsigned long i;
2139
2140	for (i = 0; i < num_pages; i++) {
2141		pages[i] = alloc_page(GFP_KERNEL|__GFP_HIGHMEM);
2142		if (!pages[i]) {
2143			/*
2144			 * save number of pages we have already allocated and
2145			 * return with ENOMEM error
2146			 */
2147			num_pages = i;
2148			rc = -ENOMEM;
2149			break;
2150		}
2151	}
2152
2153	if (rc) {
2154		for (i = 0; i < num_pages; i++)
2155			put_page(pages[i]);
2156	}
2157	return rc;
2158}
2159
2160static inline
2161size_t get_numpages(const size_t wsize, const size_t len, size_t *cur_len)
2162{
2163	size_t num_pages;
2164	size_t clen;
2165
2166	clen = min_t(const size_t, len, wsize);
2167	num_pages = DIV_ROUND_UP(clen, PAGE_SIZE);
2168
2169	if (cur_len)
2170		*cur_len = clen;
2171
2172	return num_pages;
2173}
2174
2175static void
2176cifs_uncached_marshal_iov(struct kvec *iov, struct cifs_writedata *wdata)
2177{
2178	int i;
2179	size_t bytes = wdata->bytes;
2180
2181	/* marshal up the pages into iov array */
2182	for (i = 0; i < wdata->nr_pages; i++) {
2183		iov[i + 1].iov_len = min_t(size_t, bytes, PAGE_SIZE);
2184		iov[i + 1].iov_base = kmap(wdata->pages[i]);
2185		bytes -= iov[i + 1].iov_len;
2186	}
2187}
2188
2189static void
2190cifs_uncached_writev_complete(struct work_struct *work)
2191{
2192	int i;
2193	struct cifs_writedata *wdata = container_of(work,
2194					struct cifs_writedata, work);
2195	struct inode *inode = wdata->cfile->dentry->d_inode;
2196	struct cifsInodeInfo *cifsi = CIFS_I(inode);
2197
2198	spin_lock(&inode->i_lock);
2199	cifs_update_eof(cifsi, wdata->offset, wdata->bytes);
2200	if (cifsi->server_eof > inode->i_size)
2201		i_size_write(inode, cifsi->server_eof);
2202	spin_unlock(&inode->i_lock);
2203
2204	complete(&wdata->done);
2205
2206	if (wdata->result != -EAGAIN) {
2207		for (i = 0; i < wdata->nr_pages; i++)
2208			put_page(wdata->pages[i]);
2209	}
2210
2211	kref_put(&wdata->refcount, cifs_writedata_release);
2212}
2213
2214/* attempt to send write to server, retry on any -EAGAIN errors */
2215static int
2216cifs_uncached_retry_writev(struct cifs_writedata *wdata)
2217{
2218	int rc;
2219
2220	do {
2221		if (wdata->cfile->invalidHandle) {
2222			rc = cifs_reopen_file(wdata->cfile, false);
2223			if (rc != 0)
2224				continue;
2225		}
2226		rc = cifs_async_writev(wdata);
2227	} while (rc == -EAGAIN);
2228
2229	return rc;
2230}
2231
2232static ssize_t
2233cifs_iovec_write(struct file *file, const struct iovec *iov,
2234		 unsigned long nr_segs, loff_t *poffset)
2235{
2236	unsigned long nr_pages, i;
2237	size_t copied, len, cur_len;
2238	ssize_t total_written = 0;
2239	loff_t offset;
2240	struct iov_iter it;
2241	struct cifsFileInfo *open_file;
2242	struct cifs_tcon *tcon;
2243	struct cifs_sb_info *cifs_sb;
2244	struct cifs_writedata *wdata, *tmp;
2245	struct list_head wdata_list;
2246	int rc;
2247	pid_t pid;
2248
2249	len = iov_length(iov, nr_segs);
2250	if (!len)
2251		return 0;
2252
2253	rc = generic_write_checks(file, poffset, &len, 0);
2254	if (rc)
2255		return rc;
2256
2257	INIT_LIST_HEAD(&wdata_list);
2258	cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
2259	open_file = file->private_data;
2260	tcon = tlink_tcon(open_file->tlink);
2261	offset = *poffset;
2262
2263	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2264		pid = open_file->pid;
2265	else
2266		pid = current->tgid;
2267
2268	iov_iter_init(&it, iov, nr_segs, len, 0);
2269	do {
2270		size_t save_len;
2271
2272		nr_pages = get_numpages(cifs_sb->wsize, len, &cur_len);
2273		wdata = cifs_writedata_alloc(nr_pages,
2274					     cifs_uncached_writev_complete);
2275		if (!wdata) {
2276			rc = -ENOMEM;
2277			break;
2278		}
2279
2280		rc = cifs_write_allocate_pages(wdata->pages, nr_pages);
2281		if (rc) {
2282			kfree(wdata);
2283			break;
2284		}
2285
2286		save_len = cur_len;
2287		for (i = 0; i < nr_pages; i++) {
2288			copied = min_t(const size_t, cur_len, PAGE_SIZE);
2289			copied = iov_iter_copy_from_user(wdata->pages[i], &it,
2290							 0, copied);
2291			cur_len -= copied;
2292			iov_iter_advance(&it, copied);
2293		}
2294		cur_len = save_len - cur_len;
2295
2296		wdata->sync_mode = WB_SYNC_ALL;
2297		wdata->nr_pages = nr_pages;
2298		wdata->offset = (__u64)offset;
2299		wdata->cfile = cifsFileInfo_get(open_file);
2300		wdata->pid = pid;
2301		wdata->bytes = cur_len;
2302		wdata->marshal_iov = cifs_uncached_marshal_iov;
2303		rc = cifs_uncached_retry_writev(wdata);
2304		if (rc) {
2305			kref_put(&wdata->refcount, cifs_writedata_release);
2306			break;
2307		}
2308
2309		list_add_tail(&wdata->list, &wdata_list);
2310		offset += cur_len;
2311		len -= cur_len;
2312	} while (len > 0);
2313
2314	/*
2315	 * If at least one write was successfully sent, then discard any rc
2316	 * value from the later writes. If the other write succeeds, then
2317	 * we'll end up returning whatever was written. If it fails, then
2318	 * we'll get a new rc value from that.
2319	 */
2320	if (!list_empty(&wdata_list))
2321		rc = 0;
2322
2323	/*
2324	 * Wait for and collect replies for any successful sends in order of
2325	 * increasing offset. Once an error is hit or we get a fatal signal
2326	 * while waiting, then return without waiting for any more replies.
2327	 */
2328restart_loop:
2329	list_for_each_entry_safe(wdata, tmp, &wdata_list, list) {
2330		if (!rc) {
2331			/* FIXME: freezable too? */
2332			rc = wait_for_completion_killable(&wdata->done);
2333			if (rc)
2334				rc = -EINTR;
2335			else if (wdata->result)
2336				rc = wdata->result;
2337			else
2338				total_written += wdata->bytes;
2339
2340			/* resend call if it's a retryable error */
2341			if (rc == -EAGAIN) {
2342				rc = cifs_uncached_retry_writev(wdata);
2343				goto restart_loop;
2344			}
2345		}
2346		list_del_init(&wdata->list);
2347		kref_put(&wdata->refcount, cifs_writedata_release);
2348	}
2349
2350	if (total_written > 0)
2351		*poffset += total_written;
2352
2353	cifs_stats_bytes_written(tcon, total_written);
2354	return total_written ? total_written : (ssize_t)rc;
2355}
2356
2357ssize_t cifs_user_writev(struct kiocb *iocb, const struct iovec *iov,
2358				unsigned long nr_segs, loff_t pos)
2359{
2360	ssize_t written;
2361	struct inode *inode;
2362
2363	inode = iocb->ki_filp->f_path.dentry->d_inode;
2364
2365	/*
2366	 * BB - optimize the way when signing is disabled. We can drop this
2367	 * extra memory-to-memory copying and use iovec buffers for constructing
2368	 * write request.
2369	 */
2370
2371	written = cifs_iovec_write(iocb->ki_filp, iov, nr_segs, &pos);
2372	if (written > 0) {
2373		CIFS_I(inode)->invalid_mapping = true;
2374		iocb->ki_pos = pos;
2375	}
2376
2377	return written;
2378}
2379
2380ssize_t cifs_strict_writev(struct kiocb *iocb, const struct iovec *iov,
2381			   unsigned long nr_segs, loff_t pos)
2382{
2383	struct inode *inode;
2384
2385	inode = iocb->ki_filp->f_path.dentry->d_inode;
2386
2387	if (CIFS_I(inode)->clientCanCacheAll)
2388		return generic_file_aio_write(iocb, iov, nr_segs, pos);
2389
2390	/*
2391	 * In strict cache mode we need to write the data to the server exactly
2392	 * from the pos to pos+len-1 rather than flush all affected pages
2393	 * because it may cause a error with mandatory locks on these pages but
2394	 * not on the region from pos to ppos+len-1.
2395	 */
2396
2397	return cifs_user_writev(iocb, iov, nr_segs, pos);
2398}
2399
2400static struct cifs_readdata *
2401cifs_readdata_alloc(unsigned int nr_vecs, work_func_t complete)
2402{
2403	struct cifs_readdata *rdata;
2404
2405	rdata = kzalloc(sizeof(*rdata) +
2406			sizeof(struct kvec) * nr_vecs, GFP_KERNEL);
2407	if (rdata != NULL) {
2408		kref_init(&rdata->refcount);
2409		INIT_LIST_HEAD(&rdata->list);
2410		init_completion(&rdata->done);
2411		INIT_WORK(&rdata->work, complete);
2412		INIT_LIST_HEAD(&rdata->pages);
2413	}
2414	return rdata;
2415}
2416
2417void
2418cifs_readdata_release(struct kref *refcount)
2419{
2420	struct cifs_readdata *rdata = container_of(refcount,
2421					struct cifs_readdata, refcount);
2422
2423	if (rdata->cfile)
2424		cifsFileInfo_put(rdata->cfile);
2425
2426	kfree(rdata);
2427}
2428
2429static int
2430cifs_read_allocate_pages(struct list_head *list, unsigned int npages)
2431{
2432	int rc = 0;
2433	struct page *page, *tpage;
2434	unsigned int i;
2435
2436	for (i = 0; i < npages; i++) {
2437		page = alloc_page(GFP_KERNEL|__GFP_HIGHMEM);
2438		if (!page) {
2439			rc = -ENOMEM;
2440			break;
2441		}
2442		list_add(&page->lru, list);
2443	}
2444
2445	if (rc) {
2446		list_for_each_entry_safe(page, tpage, list, lru) {
2447			list_del(&page->lru);
2448			put_page(page);
2449		}
2450	}
2451	return rc;
2452}
2453
2454static void
2455cifs_uncached_readdata_release(struct kref *refcount)
2456{
2457	struct page *page, *tpage;
2458	struct cifs_readdata *rdata = container_of(refcount,
2459					struct cifs_readdata, refcount);
2460
2461	list_for_each_entry_safe(page, tpage, &rdata->pages, lru) {
2462		list_del(&page->lru);
2463		put_page(page);
2464	}
2465	cifs_readdata_release(refcount);
2466}
2467
2468static int
2469cifs_retry_async_readv(struct cifs_readdata *rdata)
2470{
2471	int rc;
2472
2473	do {
2474		if (rdata->cfile->invalidHandle) {
2475			rc = cifs_reopen_file(rdata->cfile, true);
2476			if (rc != 0)
2477				continue;
2478		}
2479		rc = cifs_async_readv(rdata);
2480	} while (rc == -EAGAIN);
2481
2482	return rc;
2483}
2484
2485/**
2486 * cifs_readdata_to_iov - copy data from pages in response to an iovec
2487 * @rdata:	the readdata response with list of pages holding data
2488 * @iov:	vector in which we should copy the data
2489 * @nr_segs:	number of segments in vector
2490 * @offset:	offset into file of the first iovec
2491 * @copied:	used to return the amount of data copied to the iov
2492 *
2493 * This function copies data from a list of pages in a readdata response into
2494 * an array of iovecs. It will first calculate where the data should go
2495 * based on the info in the readdata and then copy the data into that spot.
2496 */
2497static ssize_t
2498cifs_readdata_to_iov(struct cifs_readdata *rdata, const struct iovec *iov,
2499			unsigned long nr_segs, loff_t offset, ssize_t *copied)
2500{
2501	int rc = 0;
2502	struct iov_iter ii;
2503	size_t pos = rdata->offset - offset;
2504	struct page *page, *tpage;
2505	ssize_t remaining = rdata->bytes;
2506	unsigned char *pdata;
2507
2508	/* set up iov_iter and advance to the correct offset */
2509	iov_iter_init(&ii, iov, nr_segs, iov_length(iov, nr_segs), 0);
2510	iov_iter_advance(&ii, pos);
2511
2512	*copied = 0;
2513	list_for_each_entry_safe(page, tpage, &rdata->pages, lru) {
2514		ssize_t copy;
2515
2516		/* copy a whole page or whatever's left */
2517		copy = min_t(ssize_t, remaining, PAGE_SIZE);
2518
2519		/* ...but limit it to whatever space is left in the iov */
2520		copy = min_t(ssize_t, copy, iov_iter_count(&ii));
2521
2522		/* go while there's data to be copied and no errors */
2523		if (copy && !rc) {
2524			pdata = kmap(page);
2525			rc = memcpy_toiovecend(ii.iov, pdata, ii.iov_offset,
2526						(int)copy);
2527			kunmap(page);
2528			if (!rc) {
2529				*copied += copy;
2530				remaining -= copy;
2531				iov_iter_advance(&ii, copy);
2532			}
2533		}
2534
2535		list_del(&page->lru);
2536		put_page(page);
2537	}
2538
2539	return rc;
2540}
2541
2542static void
2543cifs_uncached_readv_complete(struct work_struct *work)
2544{
2545	struct cifs_readdata *rdata = container_of(work,
2546						struct cifs_readdata, work);
2547
2548	/* if the result is non-zero then the pages weren't kmapped */
2549	if (rdata->result == 0) {
2550		struct page *page;
2551
2552		list_for_each_entry(page, &rdata->pages, lru)
2553			kunmap(page);
2554	}
2555
2556	complete(&rdata->done);
2557	kref_put(&rdata->refcount, cifs_uncached_readdata_release);
2558}
2559
2560static int
2561cifs_uncached_read_marshal_iov(struct cifs_readdata *rdata,
2562				unsigned int remaining)
2563{
2564	int len = 0;
2565	struct page *page, *tpage;
2566
2567	rdata->nr_iov = 1;
2568	list_for_each_entry_safe(page, tpage, &rdata->pages, lru) {
2569		if (remaining >= PAGE_SIZE) {
2570			/* enough data to fill the page */
2571			rdata->iov[rdata->nr_iov].iov_base = kmap(page);
2572			rdata->iov[rdata->nr_iov].iov_len = PAGE_SIZE;
2573			cFYI(1, "%u: idx=%lu iov_base=%p iov_len=%zu",
2574				rdata->nr_iov, page->index,
2575				rdata->iov[rdata->nr_iov].iov_base,
2576				rdata->iov[rdata->nr_iov].iov_len);
2577			++rdata->nr_iov;
2578			len += PAGE_SIZE;
2579			remaining -= PAGE_SIZE;
2580		} else if (remaining > 0) {
2581			/* enough for partial page, fill and zero the rest */
2582			rdata->iov[rdata->nr_iov].iov_base = kmap(page);
2583			rdata->iov[rdata->nr_iov].iov_len = remaining;
2584			cFYI(1, "%u: idx=%lu iov_base=%p iov_len=%zu",
2585				rdata->nr_iov, page->index,
2586				rdata->iov[rdata->nr_iov].iov_base,
2587				rdata->iov[rdata->nr_iov].iov_len);
2588			memset(rdata->iov[rdata->nr_iov].iov_base + remaining,
2589				'\0', PAGE_SIZE - remaining);
2590			++rdata->nr_iov;
2591			len += remaining;
2592			remaining = 0;
2593		} else {
2594			/* no need to hold page hostage */
2595			list_del(&page->lru);
2596			put_page(page);
2597		}
2598	}
2599
2600	return len;
2601}
2602
2603static ssize_t
2604cifs_iovec_read(struct file *file, const struct iovec *iov,
2605		 unsigned long nr_segs, loff_t *poffset)
2606{
2607	ssize_t rc;
2608	size_t len, cur_len;
2609	ssize_t total_read = 0;
2610	loff_t offset = *poffset;
2611	unsigned int npages;
2612	struct cifs_sb_info *cifs_sb;
2613	struct cifs_tcon *tcon;
2614	struct cifsFileInfo *open_file;
2615	struct cifs_readdata *rdata, *tmp;
2616	struct list_head rdata_list;
2617	pid_t pid;
2618
2619	if (!nr_segs)
2620		return 0;
2621
2622	len = iov_length(iov, nr_segs);
2623	if (!len)
2624		return 0;
2625
2626	INIT_LIST_HEAD(&rdata_list);
2627	cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
2628	open_file = file->private_data;
2629	tcon = tlink_tcon(open_file->tlink);
2630
2631	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2632		pid = open_file->pid;
2633	else
2634		pid = current->tgid;
2635
2636	if ((file->f_flags & O_ACCMODE) == O_WRONLY)
2637		cFYI(1, "attempting read on write only file instance");
2638
2639	do {
2640		cur_len = min_t(const size_t, len - total_read, cifs_sb->rsize);
2641		npages = DIV_ROUND_UP(cur_len, PAGE_SIZE);
2642
2643		/* allocate a readdata struct */
2644		rdata = cifs_readdata_alloc(npages,
2645					    cifs_uncached_readv_complete);
2646		if (!rdata) {
2647			rc = -ENOMEM;
2648			goto error;
2649		}
2650
2651		rc = cifs_read_allocate_pages(&rdata->pages, npages);
2652		if (rc)
2653			goto error;
2654
2655		rdata->cfile = cifsFileInfo_get(open_file);
2656		rdata->offset = offset;
2657		rdata->bytes = cur_len;
2658		rdata->pid = pid;
2659		rdata->marshal_iov = cifs_uncached_read_marshal_iov;
2660
2661		rc = cifs_retry_async_readv(rdata);
2662error:
2663		if (rc) {
2664			kref_put(&rdata->refcount,
2665				 cifs_uncached_readdata_release);
2666			break;
2667		}
2668
2669		list_add_tail(&rdata->list, &rdata_list);
2670		offset += cur_len;
2671		len -= cur_len;
2672	} while (len > 0);
2673
2674	/* if at least one read request send succeeded, then reset rc */
2675	if (!list_empty(&rdata_list))
2676		rc = 0;
2677
2678	/* the loop below should proceed in the order of increasing offsets */
2679restart_loop:
2680	list_for_each_entry_safe(rdata, tmp, &rdata_list, list) {
2681		if (!rc) {
2682			ssize_t copied;
2683
2684			/* FIXME: freezable sleep too? */
2685			rc = wait_for_completion_killable(&rdata->done);
2686			if (rc)
2687				rc = -EINTR;
2688			else if (rdata->result)
2689				rc = rdata->result;
2690			else {
2691				rc = cifs_readdata_to_iov(rdata, iov,
2692							nr_segs, *poffset,
2693							&copied);
2694				total_read += copied;
2695			}
2696
2697			/* resend call if it's a retryable error */
2698			if (rc == -EAGAIN) {
2699				rc = cifs_retry_async_readv(rdata);
2700				goto restart_loop;
2701			}
2702		}
2703		list_del_init(&rdata->list);
2704		kref_put(&rdata->refcount, cifs_uncached_readdata_release);
2705	}
2706
2707	cifs_stats_bytes_read(tcon, total_read);
2708	*poffset += total_read;
2709
2710	return total_read ? total_read : rc;
2711}
2712
2713ssize_t cifs_user_readv(struct kiocb *iocb, const struct iovec *iov,
2714			       unsigned long nr_segs, loff_t pos)
2715{
2716	ssize_t read;
2717
2718	read = cifs_iovec_read(iocb->ki_filp, iov, nr_segs, &pos);
2719	if (read > 0)
2720		iocb->ki_pos = pos;
2721
2722	return read;
2723}
2724
2725ssize_t cifs_strict_readv(struct kiocb *iocb, const struct iovec *iov,
2726			  unsigned long nr_segs, loff_t pos)
2727{
2728	struct inode *inode;
2729
2730	inode = iocb->ki_filp->f_path.dentry->d_inode;
2731
2732	if (CIFS_I(inode)->clientCanCacheRead)
2733		return generic_file_aio_read(iocb, iov, nr_segs, pos);
2734
2735	/*
2736	 * In strict cache mode we need to read from the server all the time
2737	 * if we don't have level II oplock because the server can delay mtime
2738	 * change - so we can't make a decision about inode invalidating.
2739	 * And we can also fail with pagereading if there are mandatory locks
2740	 * on pages affected by this read but not on the region from pos to
2741	 * pos+len-1.
2742	 */
2743
2744	return cifs_user_readv(iocb, iov, nr_segs, pos);
2745}
2746
2747static ssize_t cifs_read(struct file *file, char *read_data, size_t read_size,
2748			 loff_t *poffset)
2749{
2750	int rc = -EACCES;
2751	unsigned int bytes_read = 0;
2752	unsigned int total_read;
2753	unsigned int current_read_size;
2754	unsigned int rsize;
2755	struct cifs_sb_info *cifs_sb;
2756	struct cifs_tcon *pTcon;
2757	int xid;
2758	char *current_offset;
2759	struct cifsFileInfo *open_file;
2760	struct cifs_io_parms io_parms;
2761	int buf_type = CIFS_NO_BUFFER;
2762	__u32 pid;
2763
2764	xid = GetXid();
2765	cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
2766
2767	/* FIXME: set up handlers for larger reads and/or convert to async */
2768	rsize = min_t(unsigned int, cifs_sb->rsize, CIFSMaxBufSize);
2769
2770	if (file->private_data == NULL) {
2771		rc = -EBADF;
2772		FreeXid(xid);
2773		return rc;
2774	}
2775	open_file = file->private_data;
2776	pTcon = tlink_tcon(open_file->tlink);
2777
2778	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
2779		pid = open_file->pid;
2780	else
2781		pid = current->tgid;
2782
2783	if ((file->f_flags & O_ACCMODE) == O_WRONLY)
2784		cFYI(1, "attempting read on write only file instance");
2785
2786	for (total_read = 0, current_offset = read_data;
2787	     read_size > total_read;
2788	     total_read += bytes_read, current_offset += bytes_read) {
2789		current_read_size = min_t(uint, read_size - total_read, rsize);
2790
2791		/* For windows me and 9x we do not want to request more
2792		than it negotiated since it will refuse the read then */
2793		if ((pTcon->ses) &&
2794			!(pTcon->ses->capabilities & CAP_LARGE_FILES)) {
2795			current_read_size = min_t(uint, current_read_size,
2796					CIFSMaxBufSize);
2797		}
2798		rc = -EAGAIN;
2799		while (rc == -EAGAIN) {
2800			if (open_file->invalidHandle) {
2801				rc = cifs_reopen_file(open_file, true);
2802				if (rc != 0)
2803					break;
2804			}
2805			io_parms.netfid = open_file->netfid;
2806			io_parms.pid = pid;
2807			io_parms.tcon = pTcon;
2808			io_parms.offset = *poffset;
2809			io_parms.length = current_read_size;
2810			rc = CIFSSMBRead(xid, &io_parms, &bytes_read,
2811					 &current_offset, &buf_type);
2812		}
2813		if (rc || (bytes_read == 0)) {
2814			if (total_read) {
2815				break;
2816			} else {
2817				FreeXid(xid);
2818				return rc;
2819			}
2820		} else {
2821			cifs_stats_bytes_read(pTcon, total_read);
2822			*poffset += bytes_read;
2823		}
2824	}
2825	FreeXid(xid);
2826	return total_read;
2827}
2828
2829/*
2830 * If the page is mmap'ed into a process' page tables, then we need to make
2831 * sure that it doesn't change while being written back.
2832 */
2833static int
2834cifs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2835{
2836	struct page *page = vmf->page;
2837
2838	lock_page(page);
2839	return VM_FAULT_LOCKED;
2840}
2841
2842static struct vm_operations_struct cifs_file_vm_ops = {
2843	.fault = filemap_fault,
2844	.page_mkwrite = cifs_page_mkwrite,
2845};
2846
2847int cifs_file_strict_mmap(struct file *file, struct vm_area_struct *vma)
2848{
2849	int rc, xid;
2850	struct inode *inode = file->f_path.dentry->d_inode;
2851
2852	xid = GetXid();
2853
2854	if (!CIFS_I(inode)->clientCanCacheRead) {
2855		rc = cifs_invalidate_mapping(inode);
2856		if (rc)
2857			return rc;
2858	}
2859
2860	rc = generic_file_mmap(file, vma);
2861	if (rc == 0)
2862		vma->vm_ops = &cifs_file_vm_ops;
2863	FreeXid(xid);
2864	return rc;
2865}
2866
2867int cifs_file_mmap(struct file *file, struct vm_area_struct *vma)
2868{
2869	int rc, xid;
2870
2871	xid = GetXid();
2872	rc = cifs_revalidate_file(file);
2873	if (rc) {
2874		cFYI(1, "Validation prior to mmap failed, error=%d", rc);
2875		FreeXid(xid);
2876		return rc;
2877	}
2878	rc = generic_file_mmap(file, vma);
2879	if (rc == 0)
2880		vma->vm_ops = &cifs_file_vm_ops;
2881	FreeXid(xid);
2882	return rc;
2883}
2884
2885static void
2886cifs_readv_complete(struct work_struct *work)
2887{
2888	struct cifs_readdata *rdata = container_of(work,
2889						struct cifs_readdata, work);
2890	struct page *page, *tpage;
2891
2892	list_for_each_entry_safe(page, tpage, &rdata->pages, lru) {
2893		list_del(&page->lru);
2894		lru_cache_add_file(page);
2895
2896		if (rdata->result == 0) {
2897			kunmap(page);
2898			flush_dcache_page(page);
2899			SetPageUptodate(page);
2900		}
2901
2902		unlock_page(page);
2903
2904		if (rdata->result == 0)
2905			cifs_readpage_to_fscache(rdata->mapping->host, page);
2906
2907		page_cache_release(page);
2908	}
2909	kref_put(&rdata->refcount, cifs_readdata_release);
2910}
2911
2912static int
2913cifs_readpages_marshal_iov(struct cifs_readdata *rdata, unsigned int remaining)
2914{
2915	int len = 0;
2916	struct page *page, *tpage;
2917	u64 eof;
2918	pgoff_t eof_index;
2919
2920	/* determine the eof that the server (probably) has */
2921	eof = CIFS_I(rdata->mapping->host)->server_eof;
2922	eof_index = eof ? (eof - 1) >> PAGE_CACHE_SHIFT : 0;
2923	cFYI(1, "eof=%llu eof_index=%lu", eof, eof_index);
2924
2925	rdata->nr_iov = 1;
2926	list_for_each_entry_safe(page, tpage, &rdata->pages, lru) {
2927		if (remaining >= PAGE_CACHE_SIZE) {
2928			/* enough data to fill the page */
2929			rdata->iov[rdata->nr_iov].iov_base = kmap(page);
2930			rdata->iov[rdata->nr_iov].iov_len = PAGE_CACHE_SIZE;
2931			cFYI(1, "%u: idx=%lu iov_base=%p iov_len=%zu",
2932				rdata->nr_iov, page->index,
2933				rdata->iov[rdata->nr_iov].iov_base,
2934				rdata->iov[rdata->nr_iov].iov_len);
2935			++rdata->nr_iov;
2936			len += PAGE_CACHE_SIZE;
2937			remaining -= PAGE_CACHE_SIZE;
2938		} else if (remaining > 0) {
2939			/* enough for partial page, fill and zero the rest */
2940			rdata->iov[rdata->nr_iov].iov_base = kmap(page);
2941			rdata->iov[rdata->nr_iov].iov_len = remaining;
2942			cFYI(1, "%u: idx=%lu iov_base=%p iov_len=%zu",
2943				rdata->nr_iov, page->index,
2944				rdata->iov[rdata->nr_iov].iov_base,
2945				rdata->iov[rdata->nr_iov].iov_len);
2946			memset(rdata->iov[rdata->nr_iov].iov_base + remaining,
2947				'\0', PAGE_CACHE_SIZE - remaining);
2948			++rdata->nr_iov;
2949			len += remaining;
2950			remaining = 0;
2951		} else if (page->index > eof_index) {
2952			/*
2953			 * The VFS will not try to do readahead past the
2954			 * i_size, but it's possible that we have outstanding
2955			 * writes with gaps in the middle and the i_size hasn't
2956			 * caught up yet. Populate those with zeroed out pages
2957			 * to prevent the VFS from repeatedly attempting to
2958			 * fill them until the writes are flushed.
2959			 */
2960			zero_user(page, 0, PAGE_CACHE_SIZE);
2961			list_del(&page->lru);
2962			lru_cache_add_file(page);
2963			flush_dcache_page(page);
2964			SetPageUptodate(page);
2965			unlock_page(page);
2966			page_cache_release(page);
2967		} else {
2968			/* no need to hold page hostage */
2969			list_del(&page->lru);
2970			lru_cache_add_file(page);
2971			unlock_page(page);
2972			page_cache_release(page);
2973		}
2974	}
2975
2976	return len;
2977}
2978
2979static int cifs_readpages(struct file *file, struct address_space *mapping,
2980	struct list_head *page_list, unsigned num_pages)
2981{
2982	int rc;
2983	struct list_head tmplist;
2984	struct cifsFileInfo *open_file = file->private_data;
2985	struct cifs_sb_info *cifs_sb = CIFS_SB(file->f_path.dentry->d_sb);
2986	unsigned int rsize = cifs_sb->rsize;
2987	pid_t pid;
2988
2989	/*
2990	 * Give up immediately if rsize is too small to read an entire page.
2991	 * The VFS will fall back to readpage. We should never reach this
2992	 * point however since we set ra_pages to 0 when the rsize is smaller
2993	 * than a cache page.
2994	 */
2995	if (unlikely(rsize < PAGE_CACHE_SIZE))
2996		return 0;
2997
2998	/*
2999	 * Reads as many pages as possible from fscache. Returns -ENOBUFS
3000	 * immediately if the cookie is negative
3001	 */
3002	rc = cifs_readpages_from_fscache(mapping->host, mapping, page_list,
3003					 &num_pages);
3004	if (rc == 0)
3005		return rc;
3006
3007	if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_RWPIDFORWARD)
3008		pid = open_file->pid;
3009	else
3010		pid = current->tgid;
3011
3012	rc = 0;
3013	INIT_LIST_HEAD(&tmplist);
3014
3015	cFYI(1, "%s: file=%p mapping=%p num_pages=%u", __func__, file,
3016		mapping, num_pages);
3017
3018	/*
3019	 * Start with the page at end of list and move it to private
3020	 * list. Do the same with any following pages until we hit
3021	 * the rsize limit, hit an index discontinuity, or run out of
3022	 * pages. Issue the async read and then start the loop again
3023	 * until the list is empty.
3024	 *
3025	 * Note that list order is important. The page_list is in
3026	 * the order of declining indexes. When we put the pages in
3027	 * the rdata->pages, then we want them in increasing order.
3028	 */
3029	while (!list_empty(page_list)) {
3030		unsigned int bytes = PAGE_CACHE_SIZE;
3031		unsigned int expected_index;
3032		unsigned int nr_pages = 1;
3033		loff_t offset;
3034		struct page *page, *tpage;
3035		struct cifs_readdata *rdata;
3036
3037		page = list_entry(page_list->prev, struct page, lru);
3038
3039		/*
3040		 * Lock the page and put it in the cache. Since no one else
3041		 * should have access to this page, we're safe to simply set
3042		 * PG_locked without checking it first.
3043		 */
3044		__set_page_locked(page);
3045		rc = add_to_page_cache_locked(page, mapping,
3046					      page->index, GFP_KERNEL);
3047
3048		/* give up if we can't stick it in the cache */
3049		if (rc) {
3050			__clear_page_locked(page);
3051			break;
3052		}
3053
3054		/* move first page to the tmplist */
3055		offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
3056		list_move_tail(&page->lru, &tmplist);
3057
3058		/* now try and add more pages onto the request */
3059		expected_index = page->index + 1;
3060		list_for_each_entry_safe_reverse(page, tpage, page_list, lru) {
3061			/* discontinuity ? */
3062			if (page->index != expected_index)
3063				break;
3064
3065			/* would this page push the read over the rsize? */
3066			if (bytes + PAGE_CACHE_SIZE > rsize)
3067				break;
3068
3069			__set_page_locked(page);
3070			if (add_to_page_cache_locked(page, mapping,
3071						page->index, GFP_KERNEL)) {
3072				__clear_page_locked(page);
3073				break;
3074			}
3075			list_move_tail(&page->lru, &tmplist);
3076			bytes += PAGE_CACHE_SIZE;
3077			expected_index++;
3078			nr_pages++;
3079		}
3080
3081		rdata = cifs_readdata_alloc(nr_pages, cifs_readv_complete);
3082		if (!rdata) {
3083			/* best to give up if we're out of mem */
3084			list_for_each_entry_safe(page, tpage, &tmplist, lru) {
3085				list_del(&page->lru);
3086				lru_cache_add_file(page);
3087				unlock_page(page);
3088				page_cache_release(page);
3089			}
3090			rc = -ENOMEM;
3091			break;
3092		}
3093
3094		rdata->cfile = cifsFileInfo_get(open_file);
3095		rdata->mapping = mapping;
3096		rdata->offset = offset;
3097		rdata->bytes = bytes;
3098		rdata->pid = pid;
3099		rdata->marshal_iov = cifs_readpages_marshal_iov;
3100		list_splice_init(&tmplist, &rdata->pages);
3101
3102		rc = cifs_retry_async_readv(rdata);
3103		if (rc != 0) {
3104			list_for_each_entry_safe(page, tpage, &rdata->pages,
3105						 lru) {
3106				list_del(&page->lru);
3107				lru_cache_add_file(page);
3108				unlock_page(page);
3109				page_cache_release(page);
3110			}
3111			kref_put(&rdata->refcount, cifs_readdata_release);
3112			break;
3113		}
3114
3115		kref_put(&rdata->refcount, cifs_readdata_release);
3116	}
3117
3118	return rc;
3119}
3120
3121static int cifs_readpage_worker(struct file *file, struct page *page,
3122	loff_t *poffset)
3123{
3124	char *read_data;
3125	int rc;
3126
3127	/* Is the page cached? */
3128	rc = cifs_readpage_from_fscache(file->f_path.dentry->d_inode, page);
3129	if (rc == 0)
3130		goto read_complete;
3131
3132	page_cache_get(page);
3133	read_data = kmap(page);
3134	/* for reads over a certain size could initiate async read ahead */
3135
3136	rc = cifs_read(file, read_data, PAGE_CACHE_SIZE, poffset);
3137
3138	if (rc < 0)
3139		goto io_error;
3140	else
3141		cFYI(1, "Bytes read %d", rc);
3142
3143	file->f_path.dentry->d_inode->i_atime =
3144		current_fs_time(file->f_path.dentry->d_inode->i_sb);
3145
3146	if (PAGE_CACHE_SIZE > rc)
3147		memset(read_data + rc, 0, PAGE_CACHE_SIZE - rc);
3148
3149	flush_dcache_page(page);
3150	SetPageUptodate(page);
3151
3152	/* send this page to the cache */
3153	cifs_readpage_to_fscache(file->f_path.dentry->d_inode, page);
3154
3155	rc = 0;
3156
3157io_error:
3158	kunmap(page);
3159	page_cache_release(page);
3160
3161read_complete:
3162	return rc;
3163}
3164
3165static int cifs_readpage(struct file *file, struct page *page)
3166{
3167	loff_t offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
3168	int rc = -EACCES;
3169	int xid;
3170
3171	xid = GetXid();
3172
3173	if (file->private_data == NULL) {
3174		rc = -EBADF;
3175		FreeXid(xid);
3176		return rc;
3177	}
3178
3179	cFYI(1, "readpage %p at offset %d 0x%x\n",
3180		 page, (int)offset, (int)offset);
3181
3182	rc = cifs_readpage_worker(file, page, &offset);
3183
3184	unlock_page(page);
3185
3186	FreeXid(xid);
3187	return rc;
3188}
3189
3190static int is_inode_writable(struct cifsInodeInfo *cifs_inode)
3191{
3192	struct cifsFileInfo *open_file;
3193
3194	spin_lock(&cifs_file_list_lock);
3195	list_for_each_entry(open_file, &cifs_inode->openFileList, flist) {
3196		if (OPEN_FMODE(open_file->f_flags) & FMODE_WRITE) {
3197			spin_unlock(&cifs_file_list_lock);
3198			return 1;
3199		}
3200	}
3201	spin_unlock(&cifs_file_list_lock);
3202	return 0;
3203}
3204
3205/* We do not want to update the file size from server for inodes
3206   open for write - to avoid races with writepage extending
3207   the file - in the future we could consider allowing
3208   refreshing the inode only on increases in the file size
3209   but this is tricky to do without racing with writebehind
3210   page caching in the current Linux kernel design */
3211bool is_size_safe_to_change(struct cifsInodeInfo *cifsInode, __u64 end_of_file)
3212{
3213	if (!cifsInode)
3214		return true;
3215
3216	if (is_inode_writable(cifsInode)) {
3217		/* This inode is open for write at least once */
3218		struct cifs_sb_info *cifs_sb;
3219
3220		cifs_sb = CIFS_SB(cifsInode->vfs_inode.i_sb);
3221		if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_DIRECT_IO) {
3222			/* since no page cache to corrupt on directio
3223			we can change size safely */
3224			return true;
3225		}
3226
3227		if (i_size_read(&cifsInode->vfs_inode) < end_of_file)
3228			return true;
3229
3230		return false;
3231	} else
3232		return true;
3233}
3234
3235static int cifs_write_begin(struct file *file, struct address_space *mapping,
3236			loff_t pos, unsigned len, unsigned flags,
3237			struct page **pagep, void **fsdata)
3238{
3239	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
3240	loff_t offset = pos & (PAGE_CACHE_SIZE - 1);
3241	loff_t page_start = pos & PAGE_MASK;
3242	loff_t i_size;
3243	struct page *page;
3244	int rc = 0;
3245
3246	cFYI(1, "write_begin from %lld len %d", (long long)pos, len);
3247
3248	page = grab_cache_page_write_begin(mapping, index, flags);
3249	if (!page) {
3250		rc = -ENOMEM;
3251		goto out;
3252	}
3253
3254	if (PageUptodate(page))
3255		goto out;
3256
3257	/*
3258	 * If we write a full page it will be up to date, no need to read from
3259	 * the server. If the write is short, we'll end up doing a sync write
3260	 * instead.
3261	 */
3262	if (len == PAGE_CACHE_SIZE)
3263		goto out;
3264
3265	/*
3266	 * optimize away the read when we have an oplock, and we're not
3267	 * expecting to use any of the data we'd be reading in. That
3268	 * is, when the page lies beyond the EOF, or straddles the EOF
3269	 * and the write will cover all of the existing data.
3270	 */
3271	if (CIFS_I(mapping->host)->clientCanCacheRead) {
3272		i_size = i_size_read(mapping->host);
3273		if (page_start >= i_size ||
3274		    (offset == 0 && (pos + len) >= i_size)) {
3275			zero_user_segments(page, 0, offset,
3276					   offset + len,
3277					   PAGE_CACHE_SIZE);
3278			/*
3279			 * PageChecked means that the parts of the page
3280			 * to which we're not writing are considered up
3281			 * to date. Once the data is copied to the
3282			 * page, it can be set uptodate.
3283			 */
3284			SetPageChecked(page);
3285			goto out;
3286		}
3287	}
3288
3289	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
3290		/*
3291		 * might as well read a page, it is fast enough. If we get
3292		 * an error, we don't need to return it. cifs_write_end will
3293		 * do a sync write instead since PG_uptodate isn't set.
3294		 */
3295		cifs_readpage_worker(file, page, &page_start);
3296	} else {
3297		/* we could try using another file handle if there is one -
3298		   but how would we lock it to prevent close of that handle
3299		   racing with this read? In any case
3300		   this will be written out by write_end so is fine */
3301	}
3302out:
3303	*pagep = page;
3304	return rc;
3305}
3306
3307static int cifs_release_page(struct page *page, gfp_t gfp)
3308{
3309	if (PagePrivate(page))
3310		return 0;
3311
3312	return cifs_fscache_release_page(page, gfp);
3313}
3314
3315static void cifs_invalidate_page(struct page *page, unsigned long offset)
3316{
3317	struct cifsInodeInfo *cifsi = CIFS_I(page->mapping->host);
3318
3319	if (offset == 0)
3320		cifs_fscache_invalidate_page(page, &cifsi->vfs_inode);
3321}
3322
3323static int cifs_launder_page(struct page *page)
3324{
3325	int rc = 0;
3326	loff_t range_start = page_offset(page);
3327	loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
3328	struct writeback_control wbc = {
3329		.sync_mode = WB_SYNC_ALL,
3330		.nr_to_write = 0,
3331		.range_start = range_start,
3332		.range_end = range_end,
3333	};
3334
3335	cFYI(1, "Launder page: %p", page);
3336
3337	if (clear_page_dirty_for_io(page))
3338		rc = cifs_writepage_locked(page, &wbc);
3339
3340	cifs_fscache_invalidate_page(page, page->mapping->host);
3341	return rc;
3342}
3343
3344void cifs_oplock_break(struct work_struct *work)
3345{
3346	struct cifsFileInfo *cfile = container_of(work, struct cifsFileInfo,
3347						  oplock_break);
3348	struct inode *inode = cfile->dentry->d_inode;
3349	struct cifsInodeInfo *cinode = CIFS_I(inode);
3350	int rc = 0;
3351
3352	if (inode && S_ISREG(inode->i_mode)) {
3353		if (cinode->clientCanCacheRead)
3354			break_lease(inode, O_RDONLY);
3355		else
3356			break_lease(inode, O_WRONLY);
3357		rc = filemap_fdatawrite(inode->i_mapping);
3358		if (cinode->clientCanCacheRead == 0) {
3359			rc = filemap_fdatawait(inode->i_mapping);
3360			mapping_set_error(inode->i_mapping, rc);
3361			invalidate_remote_inode(inode);
3362		}
3363		cFYI(1, "Oplock flush inode %p rc %d", inode, rc);
3364	}
3365
3366	rc = cifs_push_locks(cfile);
3367	if (rc)
3368		cERROR(1, "Push locks rc = %d", rc);
3369
3370	/*
3371	 * releasing stale oplock after recent reconnect of smb session using
3372	 * a now incorrect file handle is not a data integrity issue but do
3373	 * not bother sending an oplock release if session to server still is
3374	 * disconnected since oplock already released by the server
3375	 */
3376	if (!cfile->oplock_break_cancelled) {
3377		rc = CIFSSMBLock(0, tlink_tcon(cfile->tlink), cfile->netfid,
3378				 current->tgid, 0, 0, 0, 0,
3379				 LOCKING_ANDX_OPLOCK_RELEASE, false,
3380				 cinode->clientCanCacheRead ? 1 : 0);
3381		cFYI(1, "Oplock release rc = %d", rc);
3382	}
3383}
3384
3385const struct address_space_operations cifs_addr_ops = {
3386	.readpage = cifs_readpage,
3387	.readpages = cifs_readpages,
3388	.writepage = cifs_writepage,
3389	.writepages = cifs_writepages,
3390	.write_begin = cifs_write_begin,
3391	.write_end = cifs_write_end,
3392	.set_page_dirty = __set_page_dirty_nobuffers,
3393	.releasepage = cifs_release_page,
3394	.invalidatepage = cifs_invalidate_page,
3395	.launder_page = cifs_launder_page,
3396};
3397
3398/*
3399 * cifs_readpages requires the server to support a buffer large enough to
3400 * contain the header plus one complete page of data.  Otherwise, we need
3401 * to leave cifs_readpages out of the address space operations.
3402 */
3403const struct address_space_operations cifs_addr_ops_smallbuf = {
3404	.readpage = cifs_readpage,
3405	.writepage = cifs_writepage,
3406	.writepages = cifs_writepages,
3407	.write_begin = cifs_write_begin,
3408	.write_end = cifs_write_end,
3409	.set_page_dirty = __set_page_dirty_nobuffers,
3410	.releasepage = cifs_release_page,
3411	.invalidatepage = cifs_invalidate_page,
3412	.launder_page = cifs_launder_page,
3413};