Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2012 Fusion-io  All rights reserved.
   4 * Copyright (C) 2012 Intel Corp. All rights reserved.
   5 */
   6
   7#include <linux/sched.h>
   8#include <linux/bio.h>
   9#include <linux/slab.h>
  10#include <linux/blkdev.h>
  11#include <linux/raid/pq.h>
  12#include <linux/hash.h>
  13#include <linux/list_sort.h>
  14#include <linux/raid/xor.h>
  15#include <linux/mm.h>
  16#include "messages.h"
  17#include "misc.h"
  18#include "ctree.h"
  19#include "disk-io.h"
  20#include "volumes.h"
  21#include "raid56.h"
  22#include "async-thread.h"
  23#include "file-item.h"
  24#include "btrfs_inode.h"
  25
  26/* set when additional merges to this rbio are not allowed */
  27#define RBIO_RMW_LOCKED_BIT	1
  28
  29/*
  30 * set when this rbio is sitting in the hash, but it is just a cache
  31 * of past RMW
  32 */
  33#define RBIO_CACHE_BIT		2
  34
  35/*
  36 * set when it is safe to trust the stripe_pages for caching
  37 */
  38#define RBIO_CACHE_READY_BIT	3
  39
  40#define RBIO_CACHE_SIZE 1024
  41
  42#define BTRFS_STRIPE_HASH_TABLE_BITS				11
  43
  44/* Used by the raid56 code to lock stripes for read/modify/write */
  45struct btrfs_stripe_hash {
  46	struct list_head hash_list;
  47	spinlock_t lock;
  48};
  49
  50/* Used by the raid56 code to lock stripes for read/modify/write */
  51struct btrfs_stripe_hash_table {
  52	struct list_head stripe_cache;
  53	spinlock_t cache_lock;
  54	int cache_size;
  55	struct btrfs_stripe_hash table[];
  56};
  57
  58/*
  59 * A bvec like structure to present a sector inside a page.
  60 *
  61 * Unlike bvec we don't need bvlen, as it's fixed to sectorsize.
  62 */
  63struct sector_ptr {
  64	struct page *page;
  65	unsigned int pgoff:24;
  66	unsigned int uptodate:8;
  67};
  68
  69static void rmw_rbio_work(struct work_struct *work);
  70static void rmw_rbio_work_locked(struct work_struct *work);
  71static void index_rbio_pages(struct btrfs_raid_bio *rbio);
  72static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
 
 
 
 
 
 
  73
  74static int finish_parity_scrub(struct btrfs_raid_bio *rbio, int need_check);
  75static void scrub_rbio_work_locked(struct work_struct *work);
 
 
  76
  77static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio)
  78{
  79	bitmap_free(rbio->error_bitmap);
  80	kfree(rbio->stripe_pages);
  81	kfree(rbio->bio_sectors);
  82	kfree(rbio->stripe_sectors);
  83	kfree(rbio->finish_pointers);
  84}
  85
  86static void free_raid_bio(struct btrfs_raid_bio *rbio)
  87{
  88	int i;
 
 
 
 
  89
  90	if (!refcount_dec_and_test(&rbio->refs))
  91		return;
 
 
 
 
 
  92
  93	WARN_ON(!list_empty(&rbio->stripe_cache));
  94	WARN_ON(!list_empty(&rbio->hash_list));
  95	WARN_ON(!bio_list_empty(&rbio->bio_list));
 
 
  96
  97	for (i = 0; i < rbio->nr_pages; i++) {
  98		if (rbio->stripe_pages[i]) {
  99			__free_page(rbio->stripe_pages[i]);
 100			rbio->stripe_pages[i] = NULL;
 101		}
 102	}
 103
 104	btrfs_put_bioc(rbio->bioc);
 105	free_raid_bio_pointers(rbio);
 106	kfree(rbio);
 107}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 108
 109static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 110{
 111	INIT_WORK(&rbio->work, work_func);
 112	queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work);
 113}
 114
 115/*
 116 * the stripe hash table is used for locking, and to collect
 117 * bios in hopes of making a full stripe
 118 */
 119int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
 120{
 121	struct btrfs_stripe_hash_table *table;
 122	struct btrfs_stripe_hash_table *x;
 123	struct btrfs_stripe_hash *cur;
 124	struct btrfs_stripe_hash *h;
 125	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
 126	int i;
 127
 128	if (info->stripe_hash_table)
 129		return 0;
 130
 131	/*
 132	 * The table is large, starting with order 4 and can go as high as
 133	 * order 7 in case lock debugging is turned on.
 134	 *
 135	 * Try harder to allocate and fallback to vmalloc to lower the chance
 136	 * of a failing mount.
 137	 */
 138	table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
 139	if (!table)
 140		return -ENOMEM;
 141
 142	spin_lock_init(&table->cache_lock);
 143	INIT_LIST_HEAD(&table->stripe_cache);
 144
 145	h = table->table;
 146
 147	for (i = 0; i < num_entries; i++) {
 148		cur = h + i;
 149		INIT_LIST_HEAD(&cur->hash_list);
 150		spin_lock_init(&cur->lock);
 151	}
 152
 153	x = cmpxchg(&info->stripe_hash_table, NULL, table);
 154	kvfree(x);
 155	return 0;
 156}
 157
 158/*
 159 * caching an rbio means to copy anything from the
 160 * bio_sectors array into the stripe_pages array.  We
 161 * use the page uptodate bit in the stripe cache array
 162 * to indicate if it has valid data
 163 *
 164 * once the caching is done, we set the cache ready
 165 * bit.
 166 */
 167static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
 168{
 169	int i;
 170	int ret;
 171
 172	ret = alloc_rbio_pages(rbio);
 173	if (ret)
 174		return;
 175
 176	for (i = 0; i < rbio->nr_sectors; i++) {
 177		/* Some range not covered by bio (partial write), skip it */
 178		if (!rbio->bio_sectors[i].page) {
 179			/*
 180			 * Even if the sector is not covered by bio, if it is
 181			 * a data sector it should still be uptodate as it is
 182			 * read from disk.
 183			 */
 184			if (i < rbio->nr_data * rbio->stripe_nsectors)
 185				ASSERT(rbio->stripe_sectors[i].uptodate);
 186			continue;
 187		}
 188
 189		ASSERT(rbio->stripe_sectors[i].page);
 190		memcpy_page(rbio->stripe_sectors[i].page,
 191			    rbio->stripe_sectors[i].pgoff,
 192			    rbio->bio_sectors[i].page,
 193			    rbio->bio_sectors[i].pgoff,
 194			    rbio->bioc->fs_info->sectorsize);
 195		rbio->stripe_sectors[i].uptodate = 1;
 196	}
 197	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
 198}
 199
 200/*
 201 * we hash on the first logical address of the stripe
 202 */
 203static int rbio_bucket(struct btrfs_raid_bio *rbio)
 204{
 205	u64 num = rbio->bioc->raid_map[0];
 206
 207	/*
 208	 * we shift down quite a bit.  We're using byte
 209	 * addressing, and most of the lower bits are zeros.
 210	 * This tends to upset hash_64, and it consistently
 211	 * returns just one or two different values.
 212	 *
 213	 * shifting off the lower bits fixes things.
 214	 */
 215	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
 216}
 217
 218static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio,
 219				       unsigned int page_nr)
 220{
 221	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
 222	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
 223	int i;
 224
 225	ASSERT(page_nr < rbio->nr_pages);
 226
 227	for (i = sectors_per_page * page_nr;
 228	     i < sectors_per_page * page_nr + sectors_per_page;
 229	     i++) {
 230		if (!rbio->stripe_sectors[i].uptodate)
 231			return false;
 232	}
 233	return true;
 234}
 235
 236/*
 237 * Update the stripe_sectors[] array to use correct page and pgoff
 238 *
 239 * Should be called every time any page pointer in stripes_pages[] got modified.
 240 */
 241static void index_stripe_sectors(struct btrfs_raid_bio *rbio)
 242{
 243	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
 244	u32 offset;
 245	int i;
 246
 247	for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) {
 248		int page_index = offset >> PAGE_SHIFT;
 249
 250		ASSERT(page_index < rbio->nr_pages);
 251		rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index];
 252		rbio->stripe_sectors[i].pgoff = offset_in_page(offset);
 253	}
 254}
 255
 256static void steal_rbio_page(struct btrfs_raid_bio *src,
 257			    struct btrfs_raid_bio *dest, int page_nr)
 258{
 259	const u32 sectorsize = src->bioc->fs_info->sectorsize;
 260	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
 261	int i;
 262
 263	if (dest->stripe_pages[page_nr])
 264		__free_page(dest->stripe_pages[page_nr]);
 265	dest->stripe_pages[page_nr] = src->stripe_pages[page_nr];
 266	src->stripe_pages[page_nr] = NULL;
 267
 268	/* Also update the sector->uptodate bits. */
 269	for (i = sectors_per_page * page_nr;
 270	     i < sectors_per_page * page_nr + sectors_per_page; i++)
 271		dest->stripe_sectors[i].uptodate = true;
 272}
 273
 274static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr)
 275{
 276	const int sector_nr = (page_nr << PAGE_SHIFT) >>
 277			      rbio->bioc->fs_info->sectorsize_bits;
 278
 279	/*
 280	 * We have ensured PAGE_SIZE is aligned with sectorsize, thus
 281	 * we won't have a page which is half data half parity.
 282	 *
 283	 * Thus if the first sector of the page belongs to data stripes, then
 284	 * the full page belongs to data stripes.
 285	 */
 286	return (sector_nr < rbio->nr_data * rbio->stripe_nsectors);
 287}
 288
 289/*
 290 * Stealing an rbio means taking all the uptodate pages from the stripe array
 291 * in the source rbio and putting them into the destination rbio.
 292 *
 293 * This will also update the involved stripe_sectors[] which are referring to
 294 * the old pages.
 295 */
 296static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
 297{
 298	int i;
 
 
 299
 300	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
 301		return;
 302
 303	for (i = 0; i < dest->nr_pages; i++) {
 304		struct page *p = src->stripe_pages[i];
 305
 306		/*
 307		 * We don't need to steal P/Q pages as they will always be
 308		 * regenerated for RMW or full write anyway.
 309		 */
 310		if (!is_data_stripe_page(src, i))
 311			continue;
 
 312
 313		/*
 314		 * If @src already has RBIO_CACHE_READY_BIT, it should have
 315		 * all data stripe pages present and uptodate.
 316		 */
 317		ASSERT(p);
 318		ASSERT(full_page_sectors_uptodate(src, i));
 319		steal_rbio_page(src, dest, i);
 320	}
 321	index_stripe_sectors(dest);
 322	index_stripe_sectors(src);
 323}
 324
 325/*
 326 * merging means we take the bio_list from the victim and
 327 * splice it into the destination.  The victim should
 328 * be discarded afterwards.
 329 *
 330 * must be called with dest->rbio_list_lock held
 331 */
 332static void merge_rbio(struct btrfs_raid_bio *dest,
 333		       struct btrfs_raid_bio *victim)
 334{
 335	bio_list_merge(&dest->bio_list, &victim->bio_list);
 336	dest->bio_list_bytes += victim->bio_list_bytes;
 337	/* Also inherit the bitmaps from @victim. */
 338	bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap,
 339		  dest->stripe_nsectors);
 340	bio_list_init(&victim->bio_list);
 341}
 342
 343/*
 344 * used to prune items that are in the cache.  The caller
 345 * must hold the hash table lock.
 346 */
 347static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 348{
 349	int bucket = rbio_bucket(rbio);
 350	struct btrfs_stripe_hash_table *table;
 351	struct btrfs_stripe_hash *h;
 352	int freeit = 0;
 353
 354	/*
 355	 * check the bit again under the hash table lock.
 356	 */
 357	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 358		return;
 359
 360	table = rbio->bioc->fs_info->stripe_hash_table;
 361	h = table->table + bucket;
 362
 363	/* hold the lock for the bucket because we may be
 364	 * removing it from the hash table
 365	 */
 366	spin_lock(&h->lock);
 367
 368	/*
 369	 * hold the lock for the bio list because we need
 370	 * to make sure the bio list is empty
 371	 */
 372	spin_lock(&rbio->bio_list_lock);
 373
 374	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 375		list_del_init(&rbio->stripe_cache);
 376		table->cache_size -= 1;
 377		freeit = 1;
 378
 379		/* if the bio list isn't empty, this rbio is
 380		 * still involved in an IO.  We take it out
 381		 * of the cache list, and drop the ref that
 382		 * was held for the list.
 383		 *
 384		 * If the bio_list was empty, we also remove
 385		 * the rbio from the hash_table, and drop
 386		 * the corresponding ref
 387		 */
 388		if (bio_list_empty(&rbio->bio_list)) {
 389			if (!list_empty(&rbio->hash_list)) {
 390				list_del_init(&rbio->hash_list);
 391				refcount_dec(&rbio->refs);
 392				BUG_ON(!list_empty(&rbio->plug_list));
 393			}
 394		}
 395	}
 396
 397	spin_unlock(&rbio->bio_list_lock);
 398	spin_unlock(&h->lock);
 399
 400	if (freeit)
 401		free_raid_bio(rbio);
 402}
 403
 404/*
 405 * prune a given rbio from the cache
 406 */
 407static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 408{
 409	struct btrfs_stripe_hash_table *table;
 410	unsigned long flags;
 411
 412	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 413		return;
 414
 415	table = rbio->bioc->fs_info->stripe_hash_table;
 416
 417	spin_lock_irqsave(&table->cache_lock, flags);
 418	__remove_rbio_from_cache(rbio);
 419	spin_unlock_irqrestore(&table->cache_lock, flags);
 420}
 421
 422/*
 423 * remove everything in the cache
 424 */
 425static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
 426{
 427	struct btrfs_stripe_hash_table *table;
 428	unsigned long flags;
 429	struct btrfs_raid_bio *rbio;
 430
 431	table = info->stripe_hash_table;
 432
 433	spin_lock_irqsave(&table->cache_lock, flags);
 434	while (!list_empty(&table->stripe_cache)) {
 435		rbio = list_entry(table->stripe_cache.next,
 436				  struct btrfs_raid_bio,
 437				  stripe_cache);
 438		__remove_rbio_from_cache(rbio);
 439	}
 440	spin_unlock_irqrestore(&table->cache_lock, flags);
 441}
 442
 443/*
 444 * remove all cached entries and free the hash table
 445 * used by unmount
 446 */
 447void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
 448{
 449	if (!info->stripe_hash_table)
 450		return;
 451	btrfs_clear_rbio_cache(info);
 452	kvfree(info->stripe_hash_table);
 453	info->stripe_hash_table = NULL;
 454}
 455
 456/*
 457 * insert an rbio into the stripe cache.  It
 458 * must have already been prepared by calling
 459 * cache_rbio_pages
 460 *
 461 * If this rbio was already cached, it gets
 462 * moved to the front of the lru.
 463 *
 464 * If the size of the rbio cache is too big, we
 465 * prune an item.
 466 */
 467static void cache_rbio(struct btrfs_raid_bio *rbio)
 468{
 469	struct btrfs_stripe_hash_table *table;
 470	unsigned long flags;
 471
 472	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
 473		return;
 474
 475	table = rbio->bioc->fs_info->stripe_hash_table;
 476
 477	spin_lock_irqsave(&table->cache_lock, flags);
 478	spin_lock(&rbio->bio_list_lock);
 479
 480	/* bump our ref if we were not in the list before */
 481	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
 482		refcount_inc(&rbio->refs);
 483
 484	if (!list_empty(&rbio->stripe_cache)){
 485		list_move(&rbio->stripe_cache, &table->stripe_cache);
 486	} else {
 487		list_add(&rbio->stripe_cache, &table->stripe_cache);
 488		table->cache_size += 1;
 489	}
 490
 491	spin_unlock(&rbio->bio_list_lock);
 492
 493	if (table->cache_size > RBIO_CACHE_SIZE) {
 494		struct btrfs_raid_bio *found;
 495
 496		found = list_entry(table->stripe_cache.prev,
 497				  struct btrfs_raid_bio,
 498				  stripe_cache);
 499
 500		if (found != rbio)
 501			__remove_rbio_from_cache(found);
 502	}
 503
 504	spin_unlock_irqrestore(&table->cache_lock, flags);
 505}
 506
 507/*
 508 * helper function to run the xor_blocks api.  It is only
 509 * able to do MAX_XOR_BLOCKS at a time, so we need to
 510 * loop through.
 511 */
 512static void run_xor(void **pages, int src_cnt, ssize_t len)
 513{
 514	int src_off = 0;
 515	int xor_src_cnt = 0;
 516	void *dest = pages[src_cnt];
 517
 518	while(src_cnt > 0) {
 519		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
 520		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
 521
 522		src_cnt -= xor_src_cnt;
 523		src_off += xor_src_cnt;
 524	}
 525}
 526
 527/*
 528 * Returns true if the bio list inside this rbio covers an entire stripe (no
 529 * rmw required).
 530 */
 531static int rbio_is_full(struct btrfs_raid_bio *rbio)
 532{
 533	unsigned long flags;
 534	unsigned long size = rbio->bio_list_bytes;
 535	int ret = 1;
 536
 537	spin_lock_irqsave(&rbio->bio_list_lock, flags);
 538	if (size != rbio->nr_data * BTRFS_STRIPE_LEN)
 539		ret = 0;
 540	BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN);
 541	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
 542
 543	return ret;
 544}
 545
 546/*
 547 * returns 1 if it is safe to merge two rbios together.
 548 * The merging is safe if the two rbios correspond to
 549 * the same stripe and if they are both going in the same
 550 * direction (read vs write), and if neither one is
 551 * locked for final IO
 552 *
 553 * The caller is responsible for locking such that
 554 * rmw_locked is safe to test
 555 */
 556static int rbio_can_merge(struct btrfs_raid_bio *last,
 557			  struct btrfs_raid_bio *cur)
 558{
 559	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
 560	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
 561		return 0;
 562
 563	/*
 564	 * we can't merge with cached rbios, since the
 565	 * idea is that when we merge the destination
 566	 * rbio is going to run our IO for us.  We can
 567	 * steal from cached rbios though, other functions
 568	 * handle that.
 569	 */
 570	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
 571	    test_bit(RBIO_CACHE_BIT, &cur->flags))
 572		return 0;
 573
 574	if (last->bioc->raid_map[0] != cur->bioc->raid_map[0])
 
 575		return 0;
 576
 577	/* we can't merge with different operations */
 578	if (last->operation != cur->operation)
 579		return 0;
 580	/*
 581	 * We've need read the full stripe from the drive.
 582	 * check and repair the parity and write the new results.
 583	 *
 584	 * We're not allowed to add any new bios to the
 585	 * bio list here, anyone else that wants to
 586	 * change this stripe needs to do their own rmw.
 587	 */
 588	if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
 589		return 0;
 590
 591	if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
 592	    last->operation == BTRFS_RBIO_READ_REBUILD)
 593		return 0;
 594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 595	return 1;
 596}
 597
 598static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio,
 599					     unsigned int stripe_nr,
 600					     unsigned int sector_nr)
 601{
 602	ASSERT(stripe_nr < rbio->real_stripes);
 603	ASSERT(sector_nr < rbio->stripe_nsectors);
 604
 605	return stripe_nr * rbio->stripe_nsectors + sector_nr;
 606}
 607
 608/* Return a sector from rbio->stripe_sectors, not from the bio list */
 609static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio,
 610					     unsigned int stripe_nr,
 611					     unsigned int sector_nr)
 
 
 612{
 613	return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr,
 614							      sector_nr)];
 615}
 616
 617/* Grab a sector inside P stripe */
 618static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio,
 619					      unsigned int sector_nr)
 
 620{
 621	return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr);
 622}
 623
 624/* Grab a sector inside Q stripe, return NULL if not RAID6 */
 625static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio,
 626					      unsigned int sector_nr)
 
 
 627{
 628	if (rbio->nr_data + 1 == rbio->real_stripes)
 629		return NULL;
 630	return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr);
 631}
 632
 633/*
 634 * The first stripe in the table for a logical address
 635 * has the lock.  rbios are added in one of three ways:
 636 *
 637 * 1) Nobody has the stripe locked yet.  The rbio is given
 638 * the lock and 0 is returned.  The caller must start the IO
 639 * themselves.
 640 *
 641 * 2) Someone has the stripe locked, but we're able to merge
 642 * with the lock owner.  The rbio is freed and the IO will
 643 * start automatically along with the existing rbio.  1 is returned.
 644 *
 645 * 3) Someone has the stripe locked, but we're not able to merge.
 646 * The rbio is added to the lock owner's plug list, or merged into
 647 * an rbio already on the plug list.  When the lock owner unlocks,
 648 * the next rbio on the list is run and the IO is started automatically.
 649 * 1 is returned
 650 *
 651 * If we return 0, the caller still owns the rbio and must continue with
 652 * IO submission.  If we return 1, the caller must assume the rbio has
 653 * already been freed.
 654 */
 655static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
 656{
 657	struct btrfs_stripe_hash *h;
 658	struct btrfs_raid_bio *cur;
 659	struct btrfs_raid_bio *pending;
 660	unsigned long flags;
 661	struct btrfs_raid_bio *freeit = NULL;
 662	struct btrfs_raid_bio *cache_drop = NULL;
 663	int ret = 0;
 664
 665	h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
 666
 667	spin_lock_irqsave(&h->lock, flags);
 668	list_for_each_entry(cur, &h->hash_list, hash_list) {
 669		if (cur->bioc->raid_map[0] != rbio->bioc->raid_map[0])
 670			continue;
 671
 672		spin_lock(&cur->bio_list_lock);
 673
 674		/* Can we steal this cached rbio's pages? */
 675		if (bio_list_empty(&cur->bio_list) &&
 676		    list_empty(&cur->plug_list) &&
 677		    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
 678		    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
 679			list_del_init(&cur->hash_list);
 680			refcount_dec(&cur->refs);
 681
 682			steal_rbio(cur, rbio);
 683			cache_drop = cur;
 684			spin_unlock(&cur->bio_list_lock);
 685
 686			goto lockit;
 687		}
 688
 689		/* Can we merge into the lock owner? */
 690		if (rbio_can_merge(cur, rbio)) {
 691			merge_rbio(cur, rbio);
 692			spin_unlock(&cur->bio_list_lock);
 693			freeit = rbio;
 694			ret = 1;
 695			goto out;
 696		}
 697
 698
 699		/*
 700		 * We couldn't merge with the running rbio, see if we can merge
 701		 * with the pending ones.  We don't have to check for rmw_locked
 702		 * because there is no way they are inside finish_rmw right now
 703		 */
 704		list_for_each_entry(pending, &cur->plug_list, plug_list) {
 705			if (rbio_can_merge(pending, rbio)) {
 706				merge_rbio(pending, rbio);
 707				spin_unlock(&cur->bio_list_lock);
 708				freeit = rbio;
 709				ret = 1;
 710				goto out;
 711			}
 712		}
 713
 714		/*
 715		 * No merging, put us on the tail of the plug list, our rbio
 716		 * will be started with the currently running rbio unlocks
 717		 */
 718		list_add_tail(&rbio->plug_list, &cur->plug_list);
 719		spin_unlock(&cur->bio_list_lock);
 720		ret = 1;
 721		goto out;
 722	}
 723lockit:
 724	refcount_inc(&rbio->refs);
 725	list_add(&rbio->hash_list, &h->hash_list);
 726out:
 727	spin_unlock_irqrestore(&h->lock, flags);
 728	if (cache_drop)
 729		remove_rbio_from_cache(cache_drop);
 730	if (freeit)
 731		free_raid_bio(freeit);
 732	return ret;
 733}
 734
 735static void recover_rbio_work_locked(struct work_struct *work);
 736
 737/*
 738 * called as rmw or parity rebuild is completed.  If the plug list has more
 739 * rbios waiting for this stripe, the next one on the list will be started
 740 */
 741static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
 742{
 743	int bucket;
 744	struct btrfs_stripe_hash *h;
 745	unsigned long flags;
 746	int keep_cache = 0;
 747
 748	bucket = rbio_bucket(rbio);
 749	h = rbio->bioc->fs_info->stripe_hash_table->table + bucket;
 750
 751	if (list_empty(&rbio->plug_list))
 752		cache_rbio(rbio);
 753
 754	spin_lock_irqsave(&h->lock, flags);
 755	spin_lock(&rbio->bio_list_lock);
 756
 757	if (!list_empty(&rbio->hash_list)) {
 758		/*
 759		 * if we're still cached and there is no other IO
 760		 * to perform, just leave this rbio here for others
 761		 * to steal from later
 762		 */
 763		if (list_empty(&rbio->plug_list) &&
 764		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 765			keep_cache = 1;
 766			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
 767			BUG_ON(!bio_list_empty(&rbio->bio_list));
 768			goto done;
 769		}
 770
 771		list_del_init(&rbio->hash_list);
 772		refcount_dec(&rbio->refs);
 773
 774		/*
 775		 * we use the plug list to hold all the rbios
 776		 * waiting for the chance to lock this stripe.
 777		 * hand the lock over to one of them.
 778		 */
 779		if (!list_empty(&rbio->plug_list)) {
 780			struct btrfs_raid_bio *next;
 781			struct list_head *head = rbio->plug_list.next;
 782
 783			next = list_entry(head, struct btrfs_raid_bio,
 784					  plug_list);
 785
 786			list_del_init(&rbio->plug_list);
 787
 788			list_add(&next->hash_list, &h->hash_list);
 789			refcount_inc(&next->refs);
 790			spin_unlock(&rbio->bio_list_lock);
 791			spin_unlock_irqrestore(&h->lock, flags);
 792
 793			if (next->operation == BTRFS_RBIO_READ_REBUILD)
 794				start_async_work(next, recover_rbio_work_locked);
 795			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
 796				steal_rbio(rbio, next);
 797				start_async_work(next, recover_rbio_work_locked);
 798			} else if (next->operation == BTRFS_RBIO_WRITE) {
 799				steal_rbio(rbio, next);
 800				start_async_work(next, rmw_rbio_work_locked);
 801			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
 802				steal_rbio(rbio, next);
 803				start_async_work(next, scrub_rbio_work_locked);
 804			}
 805
 806			goto done_nolock;
 807		}
 808	}
 809done:
 810	spin_unlock(&rbio->bio_list_lock);
 811	spin_unlock_irqrestore(&h->lock, flags);
 812
 813done_nolock:
 814	if (!keep_cache)
 815		remove_rbio_from_cache(rbio);
 816}
 817
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 818static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
 819{
 820	struct bio *next;
 821
 822	while (cur) {
 823		next = cur->bi_next;
 824		cur->bi_next = NULL;
 825		cur->bi_status = err;
 826		bio_endio(cur);
 827		cur = next;
 828	}
 829}
 830
 831/*
 832 * this frees the rbio and runs through all the bios in the
 833 * bio_list and calls end_io on them
 834 */
 835static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
 836{
 837	struct bio *cur = bio_list_get(&rbio->bio_list);
 838	struct bio *extra;
 839
 840	kfree(rbio->csum_buf);
 841	bitmap_free(rbio->csum_bitmap);
 842	rbio->csum_buf = NULL;
 843	rbio->csum_bitmap = NULL;
 844
 845	/*
 846	 * Clear the data bitmap, as the rbio may be cached for later usage.
 847	 * do this before before unlock_stripe() so there will be no new bio
 848	 * for this bio.
 849	 */
 850	bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors);
 851
 852	/*
 853	 * At this moment, rbio->bio_list is empty, however since rbio does not
 854	 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
 855	 * hash list, rbio may be merged with others so that rbio->bio_list
 856	 * becomes non-empty.
 857	 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
 858	 * more and we can call bio_endio() on all queued bios.
 859	 */
 860	unlock_stripe(rbio);
 861	extra = bio_list_get(&rbio->bio_list);
 862	free_raid_bio(rbio);
 863
 864	rbio_endio_bio_list(cur, err);
 865	if (extra)
 866		rbio_endio_bio_list(extra, err);
 867}
 868
 869/*
 870 * Get a sector pointer specified by its @stripe_nr and @sector_nr.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 871 *
 872 * @rbio:               The raid bio
 873 * @stripe_nr:          Stripe number, valid range [0, real_stripe)
 874 * @sector_nr:		Sector number inside the stripe,
 875 *			valid range [0, stripe_nsectors)
 876 * @bio_list_only:      Whether to use sectors inside the bio list only.
 877 *
 878 * The read/modify/write code wants to reuse the original bio page as much
 879 * as possible, and only use stripe_sectors as fallback.
 
 
 
 880 */
 881static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio,
 882					 int stripe_nr, int sector_nr,
 883					 bool bio_list_only)
 884{
 885	struct sector_ptr *sector;
 886	int index;
 887
 888	ASSERT(stripe_nr >= 0 && stripe_nr < rbio->real_stripes);
 889	ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
 890
 891	index = stripe_nr * rbio->stripe_nsectors + sector_nr;
 892	ASSERT(index >= 0 && index < rbio->nr_sectors);
 893
 894	spin_lock_irq(&rbio->bio_list_lock);
 895	sector = &rbio->bio_sectors[index];
 896	if (sector->page || bio_list_only) {
 897		/* Don't return sector without a valid page pointer */
 898		if (!sector->page)
 899			sector = NULL;
 900		spin_unlock_irq(&rbio->bio_list_lock);
 901		return sector;
 902	}
 903	spin_unlock_irq(&rbio->bio_list_lock);
 904
 905	return &rbio->stripe_sectors[index];
 
 
 
 
 
 
 
 
 
 
 
 
 906}
 907
 908/*
 909 * allocation and initial setup for the btrfs_raid_bio.  Not
 910 * this does not allocate any pages for rbio->pages.
 911 */
 912static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
 913					 struct btrfs_io_context *bioc)
 
 914{
 915	const unsigned int real_stripes = bioc->num_stripes - bioc->num_tgtdevs;
 916	const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT;
 917	const unsigned int num_pages = stripe_npages * real_stripes;
 918	const unsigned int stripe_nsectors =
 919		BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
 920	const unsigned int num_sectors = stripe_nsectors * real_stripes;
 921	struct btrfs_raid_bio *rbio;
 922
 923	/* PAGE_SIZE must also be aligned to sectorsize for subpage support */
 924	ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize));
 925	/*
 926	 * Our current stripe len should be fixed to 64k thus stripe_nsectors
 927	 * (at most 16) should be no larger than BITS_PER_LONG.
 928	 */
 929	ASSERT(stripe_nsectors <= BITS_PER_LONG);
 930
 931	rbio = kzalloc(sizeof(*rbio), GFP_NOFS);
 
 
 
 
 932	if (!rbio)
 933		return ERR_PTR(-ENOMEM);
 934	rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *),
 935				     GFP_NOFS);
 936	rbio->bio_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
 937				    GFP_NOFS);
 938	rbio->stripe_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
 939				       GFP_NOFS);
 940	rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS);
 941	rbio->error_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS);
 942
 943	if (!rbio->stripe_pages || !rbio->bio_sectors || !rbio->stripe_sectors ||
 944	    !rbio->finish_pointers || !rbio->error_bitmap) {
 945		free_raid_bio_pointers(rbio);
 946		kfree(rbio);
 947		return ERR_PTR(-ENOMEM);
 948	}
 949
 950	bio_list_init(&rbio->bio_list);
 951	init_waitqueue_head(&rbio->io_wait);
 952	INIT_LIST_HEAD(&rbio->plug_list);
 953	spin_lock_init(&rbio->bio_list_lock);
 954	INIT_LIST_HEAD(&rbio->stripe_cache);
 955	INIT_LIST_HEAD(&rbio->hash_list);
 956	btrfs_get_bioc(bioc);
 957	rbio->bioc = bioc;
 
 958	rbio->nr_pages = num_pages;
 959	rbio->nr_sectors = num_sectors;
 960	rbio->real_stripes = real_stripes;
 961	rbio->stripe_npages = stripe_npages;
 962	rbio->stripe_nsectors = stripe_nsectors;
 
 963	refcount_set(&rbio->refs, 1);
 
 964	atomic_set(&rbio->stripes_pending, 0);
 965
 966	ASSERT(btrfs_nr_parity_stripes(bioc->map_type));
 967	rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 968
 
 969	return rbio;
 970}
 971
 972/* allocate pages for all the stripes in the bio, including parity */
 973static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
 974{
 975	int ret;
 
 976
 977	ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages);
 978	if (ret < 0)
 979		return ret;
 980	/* Mapping all sectors */
 981	index_stripe_sectors(rbio);
 
 
 
 982	return 0;
 983}
 984
 985/* only allocate pages for p/q stripes */
 986static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
 987{
 988	const int data_pages = rbio->nr_data * rbio->stripe_npages;
 989	int ret;
 990
 991	ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages,
 992				     rbio->stripe_pages + data_pages);
 993	if (ret < 0)
 994		return ret;
 995
 996	index_stripe_sectors(rbio);
 997	return 0;
 998}
 999
1000/*
1001 * Return the total numer of errors found in the vertical stripe of @sector_nr.
1002 *
1003 * @faila and @failb will also be updated to the first and second stripe
1004 * number of the errors.
1005 */
1006static int get_rbio_veritical_errors(struct btrfs_raid_bio *rbio, int sector_nr,
1007				     int *faila, int *failb)
1008{
1009	int stripe_nr;
1010	int found_errors = 0;
1011
1012	if (faila || failb) {
1013		/*
1014		 * Both @faila and @failb should be valid pointers if any of
1015		 * them is specified.
1016		 */
1017		ASSERT(faila && failb);
1018		*faila = -1;
1019		*failb = -1;
1020	}
1021
1022	for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1023		int total_sector_nr = stripe_nr * rbio->stripe_nsectors + sector_nr;
1024
1025		if (test_bit(total_sector_nr, rbio->error_bitmap)) {
1026			found_errors++;
1027			if (faila) {
1028				/* Update faila and failb. */
1029				if (*faila < 0)
1030					*faila = stripe_nr;
1031				else if (*failb < 0)
1032					*failb = stripe_nr;
1033			}
1034		}
1035	}
1036	return found_errors;
1037}
1038
1039/*
1040 * Add a single sector @sector into our list of bios for IO.
1041 *
1042 * Return 0 if everything went well.
1043 * Return <0 for error.
1044 */
1045static int rbio_add_io_sector(struct btrfs_raid_bio *rbio,
1046			      struct bio_list *bio_list,
1047			      struct sector_ptr *sector,
1048			      unsigned int stripe_nr,
1049			      unsigned int sector_nr,
1050			      enum req_op op)
1051{
1052	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1053	struct bio *last = bio_list->tail;
1054	int ret;
1055	struct bio *bio;
1056	struct btrfs_io_stripe *stripe;
1057	u64 disk_start;
1058
1059	/*
1060	 * Note: here stripe_nr has taken device replace into consideration,
1061	 * thus it can be larger than rbio->real_stripe.
1062	 * So here we check against bioc->num_stripes, not rbio->real_stripes.
1063	 */
1064	ASSERT(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes);
1065	ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
1066	ASSERT(sector->page);
1067
1068	stripe = &rbio->bioc->stripes[stripe_nr];
1069	disk_start = stripe->physical + sector_nr * sectorsize;
1070
1071	/* if the device is missing, just fail this stripe */
1072	if (!stripe->dev->bdev) {
1073		int found_errors;
1074
1075		set_bit(stripe_nr * rbio->stripe_nsectors + sector_nr,
1076			rbio->error_bitmap);
1077
1078		/* Check if we have reached tolerance early. */
1079		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
1080							 NULL, NULL);
1081		if (found_errors > rbio->bioc->max_errors)
1082			return -EIO;
1083		return 0;
1084	}
1085
1086	/* see if we can add this page onto our existing bio */
1087	if (last) {
1088		u64 last_end = last->bi_iter.bi_sector << 9;
1089		last_end += last->bi_iter.bi_size;
1090
1091		/*
1092		 * we can't merge these if they are from different
1093		 * devices or if they are not contiguous
1094		 */
1095		if (last_end == disk_start && !last->bi_status &&
1096		    last->bi_bdev == stripe->dev->bdev) {
1097			ret = bio_add_page(last, sector->page, sectorsize,
1098					   sector->pgoff);
1099			if (ret == sectorsize)
1100				return 0;
1101		}
1102	}
1103
1104	/* put a new bio on the list */
1105	bio = bio_alloc(stripe->dev->bdev,
1106			max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1),
1107			op, GFP_NOFS);
 
1108	bio->bi_iter.bi_sector = disk_start >> 9;
1109	bio->bi_private = rbio;
1110
1111	bio_add_page(bio, sector->page, sectorsize, sector->pgoff);
1112	bio_list_add(bio_list, bio);
1113	return 0;
1114}
1115
1116static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio)
1117{
1118	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1119	struct bio_vec bvec;
1120	struct bvec_iter iter;
1121	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1122		     rbio->bioc->raid_map[0];
1123
1124	bio_for_each_segment(bvec, bio, iter) {
1125		u32 bvec_offset;
1126
1127		for (bvec_offset = 0; bvec_offset < bvec.bv_len;
1128		     bvec_offset += sectorsize, offset += sectorsize) {
1129			int index = offset / sectorsize;
1130			struct sector_ptr *sector = &rbio->bio_sectors[index];
1131
1132			sector->page = bvec.bv_page;
1133			sector->pgoff = bvec.bv_offset + bvec_offset;
1134			ASSERT(sector->pgoff < PAGE_SIZE);
1135		}
1136	}
1137}
1138
1139/*
1140 * helper function to walk our bio list and populate the bio_pages array with
1141 * the result.  This seems expensive, but it is faster than constantly
1142 * searching through the bio list as we setup the IO in finish_rmw or stripe
1143 * reconstruction.
1144 *
1145 * This must be called before you trust the answers from page_in_rbio
1146 */
1147static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1148{
1149	struct bio *bio;
 
 
 
1150
1151	spin_lock_irq(&rbio->bio_list_lock);
1152	bio_list_for_each(bio, &rbio->bio_list)
1153		index_one_bio(rbio, bio);
1154
1155	spin_unlock_irq(&rbio->bio_list_lock);
1156}
1157
1158static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio,
1159			       struct raid56_bio_trace_info *trace_info)
1160{
1161	const struct btrfs_io_context *bioc = rbio->bioc;
1162	int i;
1163
1164	ASSERT(bioc);
1165
1166	/* We rely on bio->bi_bdev to find the stripe number. */
1167	if (!bio->bi_bdev)
1168		goto not_found;
1169
1170	for (i = 0; i < bioc->num_stripes; i++) {
1171		if (bio->bi_bdev != bioc->stripes[i].dev->bdev)
1172			continue;
1173		trace_info->stripe_nr = i;
1174		trace_info->devid = bioc->stripes[i].dev->devid;
1175		trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1176				     bioc->stripes[i].physical;
1177		return;
1178	}
1179
1180not_found:
1181	trace_info->devid = -1;
1182	trace_info->offset = -1;
1183	trace_info->stripe_nr = -1;
1184}
1185
1186/* Generate PQ for one veritical stripe. */
1187static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr)
 
 
 
 
 
 
 
1188{
 
1189	void **pointers = rbio->finish_pointers;
1190	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1191	struct sector_ptr *sector;
1192	int stripe;
1193	const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6;
1194
1195	/* First collect one sector from each data stripe */
1196	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1197		sector = sector_in_rbio(rbio, stripe, sectornr, 0);
1198		pointers[stripe] = kmap_local_page(sector->page) +
1199				   sector->pgoff;
1200	}
1201
1202	/* Then add the parity stripe */
1203	sector = rbio_pstripe_sector(rbio, sectornr);
1204	sector->uptodate = 1;
1205	pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff;
1206
1207	if (has_qstripe) {
1208		/*
1209		 * RAID6, add the qstripe and call the library function
1210		 * to fill in our p/q
1211		 */
1212		sector = rbio_qstripe_sector(rbio, sectornr);
1213		sector->uptodate = 1;
1214		pointers[stripe++] = kmap_local_page(sector->page) +
1215				     sector->pgoff;
1216
1217		raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
1218					pointers);
1219	} else {
1220		/* raid5 */
1221		memcpy(pointers[rbio->nr_data], pointers[0], sectorsize);
1222		run_xor(pointers + 1, rbio->nr_data - 1, sectorsize);
1223	}
1224	for (stripe = stripe - 1; stripe >= 0; stripe--)
1225		kunmap_local(pointers[stripe]);
1226}
1227
1228static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio,
1229				   struct bio_list *bio_list)
1230{
1231	struct bio *bio;
1232	/* The total sector number inside the full stripe. */
1233	int total_sector_nr;
1234	int sectornr;
1235	int stripe;
1236	int ret;
1237
1238	ASSERT(bio_list_size(bio_list) == 0);
1239
1240	/* We should have at least one data sector. */
1241	ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors));
 
 
 
 
1242
1243	/*
1244	 * Reset errors, as we may have errors inherited from from degraded
1245	 * write.
 
 
 
 
1246	 */
1247	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
 
 
 
 
1248
1249	/*
1250	 * Start assembly.  Make bios for everything from the higher layers (the
1251	 * bio_list in our rbio) and our P/Q.  Ignore everything else.
 
 
 
 
 
1252	 */
1253	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1254	     total_sector_nr++) {
1255		struct sector_ptr *sector;
 
 
1256
1257		stripe = total_sector_nr / rbio->stripe_nsectors;
1258		sectornr = total_sector_nr % rbio->stripe_nsectors;
 
 
 
 
 
1259
1260		/* This vertical stripe has no data, skip it. */
1261		if (!test_bit(sectornr, &rbio->dbitmap))
1262			continue;
 
1263
1264		if (stripe < rbio->nr_data) {
1265			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1266			if (!sector)
1267				continue;
 
 
 
 
 
 
 
 
1268		} else {
1269			sector = rbio_stripe_sector(rbio, stripe, sectornr);
 
 
1270		}
1271
1272		ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
1273					 sectornr, REQ_OP_WRITE);
1274		if (ret)
1275			goto error;
1276	}
1277
1278	if (likely(!rbio->bioc->num_tgtdevs))
1279		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1280
1281	/* Make a copy for the replace target device. */
1282	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1283	     total_sector_nr++) {
1284		struct sector_ptr *sector;
 
 
1285
1286		stripe = total_sector_nr / rbio->stripe_nsectors;
1287		sectornr = total_sector_nr % rbio->stripe_nsectors;
1288
1289		if (!rbio->bioc->tgtdev_map[stripe]) {
1290			/*
1291			 * We can skip the whole stripe completely, note
1292			 * total_sector_nr will be increased by one anyway.
1293			 */
1294			ASSERT(sectornr == 0);
1295			total_sector_nr += rbio->stripe_nsectors - 1;
1296			continue;
1297		}
1298
1299		/* This vertical stripe has no data, skip it. */
1300		if (!test_bit(sectornr, &rbio->dbitmap))
1301			continue;
 
 
 
 
 
 
1302
1303		if (stripe < rbio->nr_data) {
1304			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1305			if (!sector)
1306				continue;
1307		} else {
1308			sector = rbio_stripe_sector(rbio, stripe, sectornr);
1309		}
 
1310
1311		ret = rbio_add_io_sector(rbio, bio_list, sector,
1312					 rbio->bioc->tgtdev_map[stripe],
1313					 sectornr, REQ_OP_WRITE);
1314		if (ret)
1315			goto error;
 
 
 
 
 
1316	}
 
1317
1318	return 0;
1319error:
1320	while ((bio = bio_list_pop(bio_list)))
 
1321		bio_put(bio);
1322	return -EIO;
1323}
1324
1325static void set_rbio_range_error(struct btrfs_raid_bio *rbio, struct bio *bio)
 
 
 
 
 
 
1326{
1327	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1328	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1329		     rbio->bioc->raid_map[0];
1330	int total_nr_sector = offset >> fs_info->sectorsize_bits;
1331
1332	ASSERT(total_nr_sector < rbio->nr_data * rbio->stripe_nsectors);
1333
1334	bitmap_set(rbio->error_bitmap, total_nr_sector,
1335		   bio->bi_iter.bi_size >> fs_info->sectorsize_bits);
1336
1337	/*
1338	 * Special handling for raid56_alloc_missing_rbio() used by
1339	 * scrub/replace.  Unlike call path in raid56_parity_recover(), they
1340	 * pass an empty bio here.  Thus we have to find out the missing device
1341	 * and mark the stripe error instead.
1342	 */
1343	if (bio->bi_iter.bi_size == 0) {
1344		bool found_missing = false;
1345		int stripe_nr;
1346
1347		for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1348			if (!rbio->bioc->stripes[stripe_nr].dev->bdev) {
1349				found_missing = true;
1350				bitmap_set(rbio->error_bitmap,
1351					   stripe_nr * rbio->stripe_nsectors,
1352					   rbio->stripe_nsectors);
1353			}
1354		}
1355		ASSERT(found_missing);
1356	}
 
1357}
1358
1359/*
1360 * For subpage case, we can no longer set page Uptodate directly for
1361 * stripe_pages[], thus we need to locate the sector.
 
1362 */
1363static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio,
1364					     struct page *page,
1365					     unsigned int pgoff)
1366{
 
1367	int i;
1368
1369	for (i = 0; i < rbio->nr_sectors; i++) {
1370		struct sector_ptr *sector = &rbio->stripe_sectors[i];
1371
1372		if (sector->page == page && sector->pgoff == pgoff)
1373			return sector;
1374	}
1375	return NULL;
1376}
1377
1378/*
1379 * this sets each page in the bio uptodate.  It should only be used on private
1380 * rbio pages, nothing that comes in from the higher layers
1381 */
1382static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio)
1383{
1384	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1385	struct bio_vec *bvec;
1386	struct bvec_iter_all iter_all;
1387
1388	ASSERT(!bio_flagged(bio, BIO_CLONED));
1389
1390	bio_for_each_segment_all(bvec, bio, iter_all) {
1391		struct sector_ptr *sector;
1392		int pgoff;
1393
1394		for (pgoff = bvec->bv_offset; pgoff - bvec->bv_offset < bvec->bv_len;
1395		     pgoff += sectorsize) {
1396			sector = find_stripe_sector(rbio, bvec->bv_page, pgoff);
1397			ASSERT(sector);
1398			if (sector)
1399				sector->uptodate = 1;
1400		}
 
 
 
1401	}
 
 
 
 
1402}
1403
1404static int get_bio_sector_nr(struct btrfs_raid_bio *rbio, struct bio *bio)
 
 
 
 
 
1405{
1406	struct bio_vec *bv = bio_first_bvec_all(bio);
1407	int i;
1408
1409	for (i = 0; i < rbio->nr_sectors; i++) {
1410		struct sector_ptr *sector;
1411
1412		sector = &rbio->stripe_sectors[i];
1413		if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1414			break;
1415		sector = &rbio->bio_sectors[i];
1416		if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1417			break;
1418	}
1419	ASSERT(i < rbio->nr_sectors);
1420	return i;
1421}
1422
1423static void rbio_update_error_bitmap(struct btrfs_raid_bio *rbio, struct bio *bio)
 
 
 
 
1424{
1425	int total_sector_nr = get_bio_sector_nr(rbio, bio);
1426	u32 bio_size = 0;
1427	struct bio_vec *bvec;
1428	struct bvec_iter_all iter_all;
1429	int i;
1430
1431	bio_for_each_segment_all(bvec, bio, iter_all)
1432		bio_size += bvec->bv_len;
1433
1434	/*
1435	 * Since we can have multiple bios touching the error_bitmap, we cannot
1436	 * call bitmap_set() without protection.
1437	 *
1438	 * Instead use set_bit() for each bit, as set_bit() itself is atomic.
1439	 */
1440	for (i = total_sector_nr; i < total_sector_nr +
1441	     (bio_size >> rbio->bioc->fs_info->sectorsize_bits); i++)
1442		set_bit(i, rbio->error_bitmap);
1443}
1444
1445/* Verify the data sectors at read time. */
1446static void verify_bio_data_sectors(struct btrfs_raid_bio *rbio,
1447				    struct bio *bio)
 
 
 
 
 
 
1448{
1449	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1450	int total_sector_nr = get_bio_sector_nr(rbio, bio);
1451	struct bio_vec *bvec;
1452	struct bvec_iter_all iter_all;
1453
1454	/* No data csum for the whole stripe, no need to verify. */
1455	if (!rbio->csum_bitmap || !rbio->csum_buf)
1456		return;
 
1457
1458	/* P/Q stripes, they have no data csum to verify against. */
1459	if (total_sector_nr >= rbio->nr_data * rbio->stripe_nsectors)
 
1460		return;
1461
1462	bio_for_each_segment_all(bvec, bio, iter_all) {
1463		int bv_offset;
1464
1465		for (bv_offset = bvec->bv_offset;
1466		     bv_offset < bvec->bv_offset + bvec->bv_len;
1467		     bv_offset += fs_info->sectorsize, total_sector_nr++) {
1468			u8 csum_buf[BTRFS_CSUM_SIZE];
1469			u8 *expected_csum = rbio->csum_buf +
1470					    total_sector_nr * fs_info->csum_size;
1471			int ret;
1472
1473			/* No csum for this sector, skip to the next sector. */
1474			if (!test_bit(total_sector_nr, rbio->csum_bitmap))
1475				continue;
1476
1477			ret = btrfs_check_sector_csum(fs_info, bvec->bv_page,
1478				bv_offset, csum_buf, expected_csum);
1479			if (ret < 0)
1480				set_bit(total_sector_nr, rbio->error_bitmap);
1481		}
1482	}
1483}
1484
1485static void raid_wait_read_end_io(struct bio *bio)
 
 
 
 
1486{
1487	struct btrfs_raid_bio *rbio = bio->bi_private;
 
 
 
 
 
1488
1489	if (bio->bi_status) {
1490		rbio_update_error_bitmap(rbio, bio);
1491	} else {
1492		set_bio_pages_uptodate(rbio, bio);
1493		verify_bio_data_sectors(rbio, bio);
1494	}
1495
1496	bio_put(bio);
1497	if (atomic_dec_and_test(&rbio->stripes_pending))
1498		wake_up(&rbio->io_wait);
1499}
1500
1501static void submit_read_bios(struct btrfs_raid_bio *rbio,
1502			     struct bio_list *bio_list)
1503{
1504	struct bio *bio;
1505
1506	atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
1507	while ((bio = bio_list_pop(bio_list))) {
1508		bio->bi_end_io = raid_wait_read_end_io;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1509
1510		if (trace_raid56_scrub_read_recover_enabled()) {
1511			struct raid56_bio_trace_info trace_info = { 0 };
 
 
 
 
 
1512
1513			bio_get_trace_info(rbio, bio, &trace_info);
1514			trace_raid56_scrub_read_recover(rbio, bio, &trace_info);
 
 
1515		}
1516		submit_bio(bio);
1517	}
1518}
1519
1520static int rmw_assemble_read_bios(struct btrfs_raid_bio *rbio,
1521				  struct bio_list *bio_list)
1522{
1523	struct bio *bio;
1524	int total_sector_nr;
1525	int ret = 0;
1526
1527	ASSERT(bio_list_size(bio_list) == 0);
 
 
1528
1529	/*
1530	 * Build a list of bios to read all sectors (including data and P/Q).
1531	 *
1532	 * This behaviro is to compensate the later csum verification and
1533	 * recovery.
1534	 */
1535	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1536	     total_sector_nr++) {
1537		struct sector_ptr *sector;
1538		int stripe = total_sector_nr / rbio->stripe_nsectors;
1539		int sectornr = total_sector_nr % rbio->stripe_nsectors;
1540
1541		sector = rbio_stripe_sector(rbio, stripe, sectornr);
1542		ret = rbio_add_io_sector(rbio, bio_list, sector,
1543			       stripe, sectornr, REQ_OP_READ);
1544		if (ret)
1545			goto cleanup;
1546	}
 
1547	return 0;
1548
1549cleanup:
1550	while ((bio = bio_list_pop(bio_list)))
 
 
1551		bio_put(bio);
1552	return ret;
 
 
 
 
 
1553}
1554
1555static int alloc_rbio_data_pages(struct btrfs_raid_bio *rbio)
 
 
 
 
1556{
1557	const int data_pages = rbio->nr_data * rbio->stripe_npages;
1558	int ret;
1559
1560	ret = btrfs_alloc_page_array(data_pages, rbio->stripe_pages);
1561	if (ret < 0)
 
1562		return ret;
 
1563
1564	index_stripe_sectors(rbio);
 
 
1565	return 0;
1566}
1567
1568/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1569 * We use plugging call backs to collect full stripes.
1570 * Any time we get a partial stripe write while plugged
1571 * we collect it into a list.  When the unplug comes down,
1572 * we sort the list by logical block number and merge
1573 * everything we can into the same rbios
1574 */
1575struct btrfs_plug_cb {
1576	struct blk_plug_cb cb;
1577	struct btrfs_fs_info *info;
1578	struct list_head rbio_list;
1579	struct work_struct work;
1580};
1581
1582/*
1583 * rbios on the plug list are sorted for easier merging.
1584 */
1585static int plug_cmp(void *priv, const struct list_head *a,
1586		    const struct list_head *b)
1587{
1588	const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1589						       plug_list);
1590	const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1591						       plug_list);
1592	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1593	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1594
1595	if (a_sector < b_sector)
1596		return -1;
1597	if (a_sector > b_sector)
1598		return 1;
1599	return 0;
1600}
1601
1602static void raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1603{
1604	struct btrfs_plug_cb *plug = container_of(cb, struct btrfs_plug_cb, cb);
1605	struct btrfs_raid_bio *cur;
1606	struct btrfs_raid_bio *last = NULL;
1607
 
 
 
 
 
1608	list_sort(NULL, &plug->rbio_list, plug_cmp);
1609
1610	while (!list_empty(&plug->rbio_list)) {
1611		cur = list_entry(plug->rbio_list.next,
1612				 struct btrfs_raid_bio, plug_list);
1613		list_del_init(&cur->plug_list);
1614
1615		if (rbio_is_full(cur)) {
1616			/* We have a full stripe, queue it down. */
1617			start_async_work(cur, rmw_rbio_work);
 
 
 
1618			continue;
1619		}
1620		if (last) {
1621			if (rbio_can_merge(last, cur)) {
1622				merge_rbio(last, cur);
1623				free_raid_bio(cur);
1624				continue;
 
1625			}
1626			start_async_work(last, rmw_rbio_work);
1627		}
1628		last = cur;
1629	}
1630	if (last)
1631		start_async_work(last, rmw_rbio_work);
 
1632	kfree(plug);
1633}
1634
1635/* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */
1636static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio)
 
 
 
1637{
1638	const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1639	const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT;
1640	const u64 full_stripe_start = rbio->bioc->raid_map[0];
1641	const u32 orig_len = orig_bio->bi_iter.bi_size;
1642	const u32 sectorsize = fs_info->sectorsize;
1643	u64 cur_logical;
1644
1645	ASSERT(orig_logical >= full_stripe_start &&
1646	       orig_logical + orig_len <= full_stripe_start +
1647	       rbio->nr_data * BTRFS_STRIPE_LEN);
1648
1649	bio_list_add(&rbio->bio_list, orig_bio);
1650	rbio->bio_list_bytes += orig_bio->bi_iter.bi_size;
1651
1652	/* Update the dbitmap. */
1653	for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len;
1654	     cur_logical += sectorsize) {
1655		int bit = ((u32)(cur_logical - full_stripe_start) >>
1656			   fs_info->sectorsize_bits) % rbio->stripe_nsectors;
1657
1658		set_bit(bit, &rbio->dbitmap);
 
 
 
 
 
 
 
 
 
1659	}
 
1660}
1661
1662/*
1663 * our main entry point for writes from the rest of the FS.
1664 */
1665void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc)
 
1666{
1667	struct btrfs_fs_info *fs_info = bioc->fs_info;
1668	struct btrfs_raid_bio *rbio;
1669	struct btrfs_plug_cb *plug = NULL;
1670	struct blk_plug_cb *cb;
1671	int ret = 0;
1672
1673	rbio = alloc_rbio(fs_info, bioc);
1674	if (IS_ERR(rbio)) {
1675		ret = PTR_ERR(rbio);
1676		goto fail;
1677	}
 
 
1678	rbio->operation = BTRFS_RBIO_WRITE;
1679	rbio_add_bio(rbio, bio);
 
 
1680
1681	/*
1682	 * Don't plug on full rbios, just get them out the door
1683	 * as quickly as we can
1684	 */
1685	if (rbio_is_full(rbio))
1686		goto queue_rbio;
 
 
 
 
1687
1688	cb = blk_check_plugged(raid_unplug, fs_info, sizeof(*plug));
1689	if (cb) {
1690		plug = container_of(cb, struct btrfs_plug_cb, cb);
1691		if (!plug->info) {
1692			plug->info = fs_info;
1693			INIT_LIST_HEAD(&plug->rbio_list);
1694		}
1695		list_add_tail(&rbio->plug_list, &plug->rbio_list);
1696		return;
1697	}
1698queue_rbio:
1699	/*
1700	 * Either we don't have any existing plug, or we're doing a full stripe,
1701	 * can queue the rmw work now.
1702	 */
1703	start_async_work(rbio, rmw_rbio_work);
1704
1705	return;
1706
1707fail:
1708	bio->bi_status = errno_to_blk_status(ret);
1709	bio_endio(bio);
1710}
1711
1712static int verify_one_sector(struct btrfs_raid_bio *rbio,
1713			     int stripe_nr, int sector_nr)
1714{
1715	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1716	struct sector_ptr *sector;
1717	u8 csum_buf[BTRFS_CSUM_SIZE];
1718	u8 *csum_expected;
1719	int ret;
1720
1721	if (!rbio->csum_bitmap || !rbio->csum_buf)
1722		return 0;
1723
1724	/* No way to verify P/Q as they are not covered by data csum. */
1725	if (stripe_nr >= rbio->nr_data)
1726		return 0;
1727	/*
1728	 * If we're rebuilding a read, we have to use pages from the
1729	 * bio list if possible.
1730	 */
1731	if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1732	     rbio->operation == BTRFS_RBIO_REBUILD_MISSING)) {
1733		sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1734	} else {
1735		sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
 
 
1736	}
1737
1738	ASSERT(sector->page);
1739
1740	csum_expected = rbio->csum_buf +
1741			(stripe_nr * rbio->stripe_nsectors + sector_nr) *
1742			fs_info->csum_size;
1743	ret = btrfs_check_sector_csum(fs_info, sector->page, sector->pgoff,
1744				      csum_buf, csum_expected);
1745	return ret;
1746}
1747
1748/*
1749 * Recover a vertical stripe specified by @sector_nr.
1750 * @*pointers are the pre-allocated pointers by the caller, so we don't
1751 * need to allocate/free the pointers again and again.
1752 */
1753static int recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr,
1754			    void **pointers, void **unmap_array)
1755{
1756	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1757	struct sector_ptr *sector;
1758	const u32 sectorsize = fs_info->sectorsize;
1759	int found_errors;
1760	int faila;
1761	int failb;
1762	int stripe_nr;
1763	int ret = 0;
1764
1765	/*
1766	 * Now we just use bitmap to mark the horizontal stripes in
1767	 * which we have data when doing parity scrub.
1768	 */
1769	if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1770	    !test_bit(sector_nr, &rbio->dbitmap))
1771		return 0;
1772
1773	found_errors = get_rbio_veritical_errors(rbio, sector_nr, &faila,
1774						 &failb);
1775	/*
1776	 * No errors in the veritical stripe, skip it.  Can happen for recovery
1777	 * which only part of a stripe failed csum check.
1778	 */
1779	if (!found_errors)
1780		return 0;
 
 
 
1781
1782	if (found_errors > rbio->bioc->max_errors)
1783		return -EIO;
1784
1785	/*
1786	 * Setup our array of pointers with sectors from each stripe
1787	 *
1788	 * NOTE: store a duplicate array of pointers to preserve the
1789	 * pointer order.
1790	 */
1791	for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
 
 
 
1792		/*
1793		 * If we're rebuilding a read, we have to use pages from the
1794		 * bio list if possible.
1795		 */
1796		if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1797		     rbio->operation == BTRFS_RBIO_REBUILD_MISSING)) {
1798			sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1799		} else {
1800			sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
1801		}
1802		ASSERT(sector->page);
1803		pointers[stripe_nr] = kmap_local_page(sector->page) +
1804				   sector->pgoff;
1805		unmap_array[stripe_nr] = pointers[stripe_nr];
1806	}
1807
1808	/* All raid6 handling here */
1809	if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1810		/* Single failure, rebuild from parity raid5 style */
1811		if (failb < 0) {
1812			if (faila == rbio->nr_data)
1813				/*
1814				 * Just the P stripe has failed, without
1815				 * a bad data or Q stripe.
1816				 * We have nothing to do, just skip the
1817				 * recovery for this stripe.
1818				 */
1819				goto cleanup;
1820			/*
1821			 * a single failure in raid6 is rebuilt
1822			 * in the pstripe code below
1823			 */
1824			goto pstripe;
 
 
 
 
 
 
 
 
1825		}
1826
1827		/*
1828		 * If the q stripe is failed, do a pstripe reconstruction from
1829		 * the xors.
1830		 * If both the q stripe and the P stripe are failed, we're
1831		 * here due to a crc mismatch and we can't give them the
1832		 * data they want.
1833		 */
1834		if (rbio->bioc->raid_map[failb] == RAID6_Q_STRIPE) {
1835			if (rbio->bioc->raid_map[faila] ==
1836			    RAID5_P_STRIPE)
 
 
 
 
 
 
1837				/*
1838				 * Only P and Q are corrupted.
1839				 * We only care about data stripes recovery,
1840				 * can skip this vertical stripe.
1841				 */
1842				goto cleanup;
1843			/*
1844			 * Otherwise we have one bad data stripe and
1845			 * a good P stripe.  raid5!
 
 
 
 
 
 
 
 
1846			 */
1847			goto pstripe;
1848		}
 
 
 
 
 
 
 
 
 
 
1849
1850		if (rbio->bioc->raid_map[failb] == RAID5_P_STRIPE) {
1851			raid6_datap_recov(rbio->real_stripes, sectorsize,
1852					  faila, pointers);
 
 
 
 
 
1853		} else {
1854			raid6_2data_recov(rbio->real_stripes, sectorsize,
1855					  faila, failb, pointers);
1856		}
1857	} else {
1858		void *p;
1859
1860		/* Rebuild from P stripe here (raid5 or raid6). */
1861		ASSERT(failb == -1);
1862pstripe:
1863		/* Copy parity block into failed block to start with */
1864		memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize);
1865
1866		/* Rearrange the pointer array */
1867		p = pointers[faila];
1868		for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1;
1869		     stripe_nr++)
1870			pointers[stripe_nr] = pointers[stripe_nr + 1];
1871		pointers[rbio->nr_data - 1] = p;
1872
1873		/* Xor in the rest */
1874		run_xor(pointers, rbio->nr_data - 1, sectorsize);
1875
1876	}
1877
1878	/*
1879	 * No matter if this is a RMW or recovery, we should have all
1880	 * failed sectors repaired in the vertical stripe, thus they are now
1881	 * uptodate.
1882	 * Especially if we determine to cache the rbio, we need to
1883	 * have at least all data sectors uptodate.
1884	 *
1885	 * If possible, also check if the repaired sector matches its data
1886	 * checksum.
1887	 */
1888	if (faila >= 0) {
1889		ret = verify_one_sector(rbio, faila, sector_nr);
1890		if (ret < 0)
1891			goto cleanup;
1892
1893		sector = rbio_stripe_sector(rbio, faila, sector_nr);
1894		sector->uptodate = 1;
1895	}
1896	if (failb >= 0) {
1897		ret = verify_one_sector(rbio, failb, sector_nr);
1898		if (ret < 0)
1899			goto cleanup;
1900
1901		sector = rbio_stripe_sector(rbio, failb, sector_nr);
1902		sector->uptodate = 1;
 
 
 
 
1903	}
1904
 
1905cleanup:
1906	for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--)
1907		kunmap_local(unmap_array[stripe_nr]);
1908	return ret;
1909}
1910
1911static int recover_sectors(struct btrfs_raid_bio *rbio)
1912{
1913	void **pointers = NULL;
1914	void **unmap_array = NULL;
1915	int sectornr;
1916	int ret = 0;
1917
 
1918	/*
1919	 * @pointers array stores the pointer for each sector.
1920	 *
1921	 * @unmap_array stores copy of pointers that does not get reordered
1922	 * during reconstruction so that kunmap_local works.
1923	 */
1924	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1925	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1926	if (!pointers || !unmap_array) {
1927		ret = -ENOMEM;
1928		goto out;
1929	}
1930
1931	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1932	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1933		spin_lock_irq(&rbio->bio_list_lock);
1934		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1935		spin_unlock_irq(&rbio->bio_list_lock);
1936	}
1937
1938	index_rbio_pages(rbio);
 
 
 
 
 
 
 
 
 
 
 
 
 
1939
1940	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
1941		ret = recover_vertical(rbio, sectornr, pointers, unmap_array);
1942		if (ret < 0)
1943			break;
 
 
 
 
 
 
 
 
 
1944	}
1945
1946out:
1947	kfree(pointers);
1948	kfree(unmap_array);
1949	return ret;
1950}
1951
1952static int recover_assemble_read_bios(struct btrfs_raid_bio *rbio,
1953				      struct bio_list *bio_list)
 
 
 
1954{
1955	struct bio *bio;
1956	int total_sector_nr;
1957	int ret = 0;
1958
1959	ASSERT(bio_list_size(bio_list) == 0);
1960	/*
1961	 * Read everything that hasn't failed. However this time we will
1962	 * not trust any cached sector.
1963	 * As we may read out some stale data but higher layer is not reading
1964	 * that stale part.
1965	 *
1966	 * So here we always re-read everything in recovery path.
1967	 */
1968	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1969	     total_sector_nr++) {
1970		int stripe = total_sector_nr / rbio->stripe_nsectors;
1971		int sectornr = total_sector_nr % rbio->stripe_nsectors;
1972		struct sector_ptr *sector;
1973
1974		/*
1975		 * Skip the range which has error.  It can be a range which is
1976		 * marked error (for csum mismatch), or it can be a missing
1977		 * device.
1978		 */
1979		if (!rbio->bioc->stripes[stripe].dev->bdev ||
1980		    test_bit(total_sector_nr, rbio->error_bitmap)) {
1981			/*
1982			 * Also set the error bit for missing device, which
1983			 * may not yet have its error bit set.
1984			 */
1985			set_bit(total_sector_nr, rbio->error_bitmap);
1986			continue;
1987		}
1988
1989		sector = rbio_stripe_sector(rbio, stripe, sectornr);
1990		ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
1991					 sectornr, REQ_OP_READ);
1992		if (ret < 0)
1993			goto error;
1994	}
1995	return 0;
1996error:
1997	while ((bio = bio_list_pop(bio_list)))
1998		bio_put(bio);
1999
2000	return -EIO;
 
 
 
2001}
2002
2003static int recover_rbio(struct btrfs_raid_bio *rbio)
 
 
 
 
 
 
 
 
2004{
 
2005	struct bio_list bio_list;
2006	struct bio *bio;
2007	int ret;
 
 
 
2008
2009	/*
2010	 * Either we're doing recover for a read failure or degraded write,
2011	 * caller should have set error bitmap correctly.
2012	 */
2013	ASSERT(bitmap_weight(rbio->error_bitmap, rbio->nr_sectors));
2014	bio_list_init(&bio_list);
2015
2016	/* For recovery, we need to read all sectors including P/Q. */
2017	ret = alloc_rbio_pages(rbio);
2018	if (ret < 0)
2019		goto out;
2020
2021	index_rbio_pages(rbio);
2022
2023	ret = recover_assemble_read_bios(rbio, &bio_list);
2024	if (ret < 0)
2025		goto out;
2026
2027	submit_read_bios(rbio, &bio_list);
2028	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2029
2030	ret = recover_sectors(rbio);
2031
2032out:
2033	while ((bio = bio_list_pop(&bio_list)))
2034		bio_put(bio);
2035
2036	return ret;
2037}
 
 
 
 
 
 
 
 
2038
2039static void recover_rbio_work(struct work_struct *work)
2040{
2041	struct btrfs_raid_bio *rbio;
2042	int ret;
2043
2044	rbio = container_of(work, struct btrfs_raid_bio, work);
 
 
 
 
 
 
2045
2046	ret = lock_stripe_add(rbio);
2047	if (ret == 0) {
2048		ret = recover_rbio(rbio);
2049		rbio_orig_end_io(rbio, errno_to_blk_status(ret));
 
 
2050	}
2051}
2052
2053static void recover_rbio_work_locked(struct work_struct *work)
2054{
2055	struct btrfs_raid_bio *rbio;
2056	int ret;
2057
2058	rbio = container_of(work, struct btrfs_raid_bio, work);
2059
2060	ret = recover_rbio(rbio);
2061	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2062}
2063
2064static void set_rbio_raid6_extra_error(struct btrfs_raid_bio *rbio, int mirror_num)
2065{
2066	bool found = false;
2067	int sector_nr;
 
 
 
 
 
 
 
 
 
 
2068
2069	/*
2070	 * This is for RAID6 extra recovery tries, thus mirror number should
2071	 * be large than 2.
2072	 * Mirror 1 means read from data stripes. Mirror 2 means rebuild using
2073	 * RAID5 methods.
2074	 */
2075	ASSERT(mirror_num > 2);
2076	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2077		int found_errors;
2078		int faila;
2079		int failb;
2080
2081		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2082							 &faila, &failb);
2083		/* This vertical stripe doesn't have errors. */
2084		if (!found_errors)
2085			continue;
2086
2087		/*
2088		 * If we found errors, there should be only one error marked
2089		 * by previous set_rbio_range_error().
2090		 */
2091		ASSERT(found_errors == 1);
2092		found = true;
2093
2094		/* Now select another stripe to mark as error. */
2095		failb = rbio->real_stripes - (mirror_num - 1);
2096		if (failb <= faila)
2097			failb--;
2098
2099		/* Set the extra bit in error bitmap. */
2100		if (failb >= 0)
2101			set_bit(failb * rbio->stripe_nsectors + sector_nr,
2102				rbio->error_bitmap);
2103	}
2104
2105	/* We should found at least one vertical stripe with error.*/
2106	ASSERT(found);
 
 
 
 
 
 
 
 
 
2107}
2108
2109/*
2110 * the main entry point for reads from the higher layers.  This
2111 * is really only called when the normal read path had a failure,
2112 * so we assume the bio they send down corresponds to a failed part
2113 * of the drive.
2114 */
2115void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc,
2116			   int mirror_num)
 
2117{
2118	struct btrfs_fs_info *fs_info = bioc->fs_info;
2119	struct btrfs_raid_bio *rbio;
 
2120
2121	rbio = alloc_rbio(fs_info, bioc);
 
 
 
 
 
2122	if (IS_ERR(rbio)) {
2123		bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
2124		bio_endio(bio);
2125		return;
2126	}
2127
2128	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2129	rbio_add_bio(rbio, bio);
 
2130
2131	set_rbio_range_error(rbio, bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2132
2133	/*
2134	 * Loop retry:
2135	 * for 'mirror == 2', reconstruct from all other stripes.
2136	 * for 'mirror_num > 2', select a stripe to fail on every retry.
2137	 */
2138	if (mirror_num > 2)
2139		set_rbio_raid6_extra_error(rbio, mirror_num);
2140
2141	start_async_work(rbio, recover_rbio_work);
2142}
2143
2144static void fill_data_csums(struct btrfs_raid_bio *rbio)
2145{
2146	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
2147	struct btrfs_root *csum_root = btrfs_csum_root(fs_info,
2148						       rbio->bioc->raid_map[0]);
2149	const u64 start = rbio->bioc->raid_map[0];
2150	const u32 len = (rbio->nr_data * rbio->stripe_nsectors) <<
2151			fs_info->sectorsize_bits;
2152	int ret;
2153
2154	/* The rbio should not have its csum buffer initialized. */
2155	ASSERT(!rbio->csum_buf && !rbio->csum_bitmap);
2156
2157	/*
2158	 * Skip the csum search if:
2159	 *
2160	 * - The rbio doesn't belong to data block groups
2161	 *   Then we are doing IO for tree blocks, no need to search csums.
2162	 *
2163	 * - The rbio belongs to mixed block groups
2164	 *   This is to avoid deadlock, as we're already holding the full
2165	 *   stripe lock, if we trigger a metadata read, and it needs to do
2166	 *   raid56 recovery, we will deadlock.
2167	 */
2168	if (!(rbio->bioc->map_type & BTRFS_BLOCK_GROUP_DATA) ||
2169	    rbio->bioc->map_type & BTRFS_BLOCK_GROUP_METADATA)
2170		return;
2171
2172	rbio->csum_buf = kzalloc(rbio->nr_data * rbio->stripe_nsectors *
2173				 fs_info->csum_size, GFP_NOFS);
2174	rbio->csum_bitmap = bitmap_zalloc(rbio->nr_data * rbio->stripe_nsectors,
2175					  GFP_NOFS);
2176	if (!rbio->csum_buf || !rbio->csum_bitmap) {
2177		ret = -ENOMEM;
2178		goto error;
2179	}
2180
2181	ret = btrfs_lookup_csums_bitmap(csum_root, start, start + len - 1,
2182					rbio->csum_buf, rbio->csum_bitmap);
2183	if (ret < 0)
2184		goto error;
2185	if (bitmap_empty(rbio->csum_bitmap, len >> fs_info->sectorsize_bits))
2186		goto no_csum;
2187	return;
2188
2189error:
2190	/*
2191	 * We failed to allocate memory or grab the csum, but it's not fatal,
2192	 * we can still continue.  But better to warn users that RMW is no
2193	 * longer safe for this particular sub-stripe write.
2194	 */
2195	btrfs_warn_rl(fs_info,
2196"sub-stripe write for full stripe %llu is not safe, failed to get csum: %d",
2197			rbio->bioc->raid_map[0], ret);
2198no_csum:
2199	kfree(rbio->csum_buf);
2200	bitmap_free(rbio->csum_bitmap);
2201	rbio->csum_buf = NULL;
2202	rbio->csum_bitmap = NULL;
2203}
2204
2205static int rmw_read_wait_recover(struct btrfs_raid_bio *rbio)
2206{
2207	struct bio_list bio_list;
2208	struct bio *bio;
2209	int ret;
2210
2211	bio_list_init(&bio_list);
2212
2213	/*
2214	 * Fill the data csums we need for data verification.  We need to fill
2215	 * the csum_bitmap/csum_buf first, as our endio function will try to
2216	 * verify the data sectors.
2217	 */
2218	fill_data_csums(rbio);
2219
2220	ret = rmw_assemble_read_bios(rbio, &bio_list);
2221	if (ret < 0)
2222		goto out;
2223
2224	submit_read_bios(rbio, &bio_list);
2225	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2226
2227	/*
2228	 * We may or may not have any corrupted sectors (including missing dev
2229	 * and csum mismatch), just let recover_sectors() to handle them all.
2230	 */
2231	ret = recover_sectors(rbio);
2232	return ret;
2233out:
2234	while ((bio = bio_list_pop(&bio_list)))
2235		bio_put(bio);
2236
2237	return ret;
2238}
2239
2240static void raid_wait_write_end_io(struct bio *bio)
2241{
2242	struct btrfs_raid_bio *rbio = bio->bi_private;
2243	blk_status_t err = bio->bi_status;
2244
2245	if (err)
2246		rbio_update_error_bitmap(rbio, bio);
2247	bio_put(bio);
2248	if (atomic_dec_and_test(&rbio->stripes_pending))
2249		wake_up(&rbio->io_wait);
2250}
2251
2252static void submit_write_bios(struct btrfs_raid_bio *rbio,
2253			      struct bio_list *bio_list)
2254{
2255	struct bio *bio;
2256
2257	atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
2258	while ((bio = bio_list_pop(bio_list))) {
2259		bio->bi_end_io = raid_wait_write_end_io;
2260
2261		if (trace_raid56_write_stripe_enabled()) {
2262			struct raid56_bio_trace_info trace_info = { 0 };
2263
2264			bio_get_trace_info(rbio, bio, &trace_info);
2265			trace_raid56_write_stripe(rbio, bio, &trace_info);
2266		}
2267		submit_bio(bio);
2268	}
2269}
2270
2271/*
2272 * To determine if we need to read any sector from the disk.
2273 * Should only be utilized in RMW path, to skip cached rbio.
2274 */
2275static bool need_read_stripe_sectors(struct btrfs_raid_bio *rbio)
2276{
2277	int i;
2278
2279	for (i = 0; i < rbio->nr_data * rbio->stripe_nsectors; i++) {
2280		struct sector_ptr *sector = &rbio->stripe_sectors[i];
2281
2282		/*
2283		 * We have a sector which doesn't have page nor uptodate,
2284		 * thus this rbio can not be cached one, as cached one must
2285		 * have all its data sectors present and uptodate.
2286		 */
2287		if (!sector->page || !sector->uptodate)
2288			return true;
 
 
2289	}
2290	return false;
2291}
2292
2293static int rmw_rbio(struct btrfs_raid_bio *rbio)
2294{
2295	struct bio_list bio_list;
2296	int sectornr;
2297	int ret = 0;
2298
2299	/*
2300	 * Allocate the pages for parity first, as P/Q pages will always be
2301	 * needed for both full-stripe and sub-stripe writes.
2302	 */
2303	ret = alloc_rbio_parity_pages(rbio);
2304	if (ret < 0)
2305		return ret;
2306
2307	/*
2308	 * Either full stripe write, or we have every data sector already
2309	 * cached, can go to write path immediately.
2310	 */
2311	if (rbio_is_full(rbio) || !need_read_stripe_sectors(rbio))
2312		goto write;
2313
2314	/*
2315	 * Now we're doing sub-stripe write, also need all data stripes to do
2316	 * the full RMW.
2317	 */
2318	ret = alloc_rbio_data_pages(rbio);
2319	if (ret < 0)
2320		return ret;
2321
2322	index_rbio_pages(rbio);
2323
2324	ret = rmw_read_wait_recover(rbio);
2325	if (ret < 0)
2326		return ret;
2327
2328write:
2329	/*
2330	 * At this stage we're not allowed to add any new bios to the
2331	 * bio list any more, anyone else that wants to change this stripe
2332	 * needs to do their own rmw.
2333	 */
2334	spin_lock_irq(&rbio->bio_list_lock);
2335	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
2336	spin_unlock_irq(&rbio->bio_list_lock);
2337
2338	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2339
2340	index_rbio_pages(rbio);
2341
2342	/*
2343	 * We don't cache full rbios because we're assuming
2344	 * the higher layers are unlikely to use this area of
2345	 * the disk again soon.  If they do use it again,
2346	 * hopefully they will send another full bio.
 
 
 
 
 
 
 
 
2347	 */
2348	if (!rbio_is_full(rbio))
2349		cache_rbio_pages(rbio);
2350	else
2351		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2352
2353	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++)
2354		generate_pq_vertical(rbio, sectornr);
2355
2356	bio_list_init(&bio_list);
2357	ret = rmw_assemble_write_bios(rbio, &bio_list);
2358	if (ret < 0)
2359		return ret;
2360
2361	/* We should have at least one bio assembled. */
2362	ASSERT(bio_list_size(&bio_list));
2363	submit_write_bios(rbio, &bio_list);
2364	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2365
2366	/* We may have more errors than our tolerance during the read. */
2367	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
2368		int found_errors;
2369
2370		found_errors = get_rbio_veritical_errors(rbio, sectornr, NULL, NULL);
2371		if (found_errors > rbio->bioc->max_errors) {
2372			ret = -EIO;
2373			break;
2374		}
2375	}
2376	return ret;
2377}
2378
2379static void rmw_rbio_work(struct work_struct *work)
2380{
2381	struct btrfs_raid_bio *rbio;
2382	int ret;
2383
2384	rbio = container_of(work, struct btrfs_raid_bio, work);
2385
2386	ret = lock_stripe_add(rbio);
2387	if (ret == 0) {
2388		ret = rmw_rbio(rbio);
2389		rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2390	}
2391}
2392
2393static void rmw_rbio_work_locked(struct work_struct *work)
2394{
2395	struct btrfs_raid_bio *rbio;
2396	int ret;
2397
2398	rbio = container_of(work, struct btrfs_raid_bio, work);
2399
2400	ret = rmw_rbio(rbio);
2401	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2402}
2403
2404/*
2405 * The following code is used to scrub/replace the parity stripe
2406 *
2407 * Caller must have already increased bio_counter for getting @bioc.
2408 *
2409 * Note: We need make sure all the pages that add into the scrub/replace
2410 * raid bio are correct and not be changed during the scrub/replace. That
2411 * is those pages just hold metadata or file data with checksum.
2412 */
2413
2414struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio,
2415				struct btrfs_io_context *bioc,
2416				struct btrfs_device *scrub_dev,
2417				unsigned long *dbitmap, int stripe_nsectors)
 
2418{
2419	struct btrfs_fs_info *fs_info = bioc->fs_info;
2420	struct btrfs_raid_bio *rbio;
2421	int i;
2422
2423	rbio = alloc_rbio(fs_info, bioc);
2424	if (IS_ERR(rbio))
2425		return NULL;
2426	bio_list_add(&rbio->bio_list, bio);
2427	/*
2428	 * This is a special bio which is used to hold the completion handler
2429	 * and make the scrub rbio is similar to the other types
2430	 */
2431	ASSERT(!bio->bi_iter.bi_size);
2432	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2433
2434	/*
2435	 * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted
2436	 * to the end position, so this search can start from the first parity
2437	 * stripe.
2438	 */
2439	for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2440		if (bioc->stripes[i].dev == scrub_dev) {
2441			rbio->scrubp = i;
2442			break;
2443		}
2444	}
2445	ASSERT(i < rbio->real_stripes);
2446
2447	bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors);
 
 
 
 
 
 
 
 
 
 
2448	return rbio;
2449}
2450
2451/* Used for both parity scrub and missing. */
2452void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2453			    unsigned int pgoff, u64 logical)
2454{
2455	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2456	int stripe_offset;
2457	int index;
2458
2459	ASSERT(logical >= rbio->bioc->raid_map[0]);
2460	ASSERT(logical + sectorsize <= rbio->bioc->raid_map[0] +
2461				       BTRFS_STRIPE_LEN * rbio->nr_data);
2462	stripe_offset = (int)(logical - rbio->bioc->raid_map[0]);
2463	index = stripe_offset / sectorsize;
2464	rbio->bio_sectors[index].page = page;
2465	rbio->bio_sectors[index].pgoff = pgoff;
2466}
2467
2468/*
2469 * We just scrub the parity that we have correct data on the same horizontal,
2470 * so we needn't allocate all pages for all the stripes.
2471 */
2472static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2473{
2474	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2475	int total_sector_nr;
 
 
2476
2477	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2478	     total_sector_nr++) {
2479		struct page *page;
2480		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2481		int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT;
2482
2483		if (!test_bit(sectornr, &rbio->dbitmap))
2484			continue;
2485		if (rbio->stripe_pages[index])
2486			continue;
2487		page = alloc_page(GFP_NOFS);
2488		if (!page)
2489			return -ENOMEM;
2490		rbio->stripe_pages[index] = page;
2491	}
2492	index_stripe_sectors(rbio);
2493	return 0;
2494}
2495
2496static int finish_parity_scrub(struct btrfs_raid_bio *rbio, int need_check)
 
2497{
2498	struct btrfs_io_context *bioc = rbio->bioc;
2499	const u32 sectorsize = bioc->fs_info->sectorsize;
2500	void **pointers = rbio->finish_pointers;
2501	unsigned long *pbitmap = &rbio->finish_pbitmap;
2502	int nr_data = rbio->nr_data;
2503	int stripe;
2504	int sectornr;
2505	bool has_qstripe;
2506	struct sector_ptr p_sector = { 0 };
2507	struct sector_ptr q_sector = { 0 };
2508	struct bio_list bio_list;
2509	struct bio *bio;
2510	int is_replace = 0;
2511	int ret;
2512
2513	bio_list_init(&bio_list);
2514
2515	if (rbio->real_stripes - rbio->nr_data == 1)
2516		has_qstripe = false;
2517	else if (rbio->real_stripes - rbio->nr_data == 2)
2518		has_qstripe = true;
2519	else
2520		BUG();
2521
2522	if (bioc->num_tgtdevs && bioc->tgtdev_map[rbio->scrubp]) {
2523		is_replace = 1;
2524		bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors);
2525	}
2526
2527	/*
2528	 * Because the higher layers(scrubber) are unlikely to
2529	 * use this area of the disk again soon, so don't cache
2530	 * it.
2531	 */
2532	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2533
2534	if (!need_check)
2535		goto writeback;
2536
2537	p_sector.page = alloc_page(GFP_NOFS);
2538	if (!p_sector.page)
2539		return -ENOMEM;
2540	p_sector.pgoff = 0;
2541	p_sector.uptodate = 1;
2542
2543	if (has_qstripe) {
2544		/* RAID6, allocate and map temp space for the Q stripe */
2545		q_sector.page = alloc_page(GFP_NOFS);
2546		if (!q_sector.page) {
2547			__free_page(p_sector.page);
2548			p_sector.page = NULL;
2549			return -ENOMEM;
2550		}
2551		q_sector.pgoff = 0;
2552		q_sector.uptodate = 1;
2553		pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page);
2554	}
2555
2556	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2557
2558	/* Map the parity stripe just once */
2559	pointers[nr_data] = kmap_local_page(p_sector.page);
2560
2561	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2562		struct sector_ptr *sector;
2563		void *parity;
2564
2565		/* first collect one page from each data stripe */
2566		for (stripe = 0; stripe < nr_data; stripe++) {
2567			sector = sector_in_rbio(rbio, stripe, sectornr, 0);
2568			pointers[stripe] = kmap_local_page(sector->page) +
2569					   sector->pgoff;
2570		}
2571
2572		if (has_qstripe) {
2573			/* RAID6, call the library function to fill in our P/Q */
2574			raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
2575						pointers);
2576		} else {
2577			/* raid5 */
2578			memcpy(pointers[nr_data], pointers[0], sectorsize);
2579			run_xor(pointers + 1, nr_data - 1, sectorsize);
2580		}
2581
2582		/* Check scrubbing parity and repair it */
2583		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2584		parity = kmap_local_page(sector->page) + sector->pgoff;
2585		if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0)
2586			memcpy(parity, pointers[rbio->scrubp], sectorsize);
2587		else
2588			/* Parity is right, needn't writeback */
2589			bitmap_clear(&rbio->dbitmap, sectornr, 1);
2590		kunmap_local(parity);
2591
2592		for (stripe = nr_data - 1; stripe >= 0; stripe--)
2593			kunmap_local(pointers[stripe]);
2594	}
2595
2596	kunmap_local(pointers[nr_data]);
2597	__free_page(p_sector.page);
2598	p_sector.page = NULL;
2599	if (q_sector.page) {
2600		kunmap_local(pointers[rbio->real_stripes - 1]);
2601		__free_page(q_sector.page);
2602		q_sector.page = NULL;
2603	}
2604
2605writeback:
2606	/*
2607	 * time to start writing.  Make bios for everything from the
2608	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2609	 * everything else.
2610	 */
2611	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2612		struct sector_ptr *sector;
2613
2614		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2615		ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp,
2616					 sectornr, REQ_OP_WRITE);
2617		if (ret)
2618			goto cleanup;
2619	}
2620
2621	if (!is_replace)
2622		goto submit_write;
2623
2624	for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) {
2625		struct sector_ptr *sector;
2626
2627		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2628		ret = rbio_add_io_sector(rbio, &bio_list, sector,
2629				       bioc->tgtdev_map[rbio->scrubp],
2630				       sectornr, REQ_OP_WRITE);
2631		if (ret)
2632			goto cleanup;
2633	}
2634
2635submit_write:
2636	submit_write_bios(rbio, &bio_list);
2637	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2638
2639cleanup:
 
 
2640	while ((bio = bio_list_pop(&bio_list)))
2641		bio_put(bio);
2642	return ret;
2643}
2644
2645static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2646{
2647	if (stripe >= 0 && stripe < rbio->nr_data)
2648		return 1;
2649	return 0;
2650}
2651
2652static int recover_scrub_rbio(struct btrfs_raid_bio *rbio)
 
 
 
 
 
 
 
2653{
2654	void **pointers = NULL;
2655	void **unmap_array = NULL;
2656	int sector_nr;
2657	int ret = 0;
2658
2659	/*
2660	 * @pointers array stores the pointer for each sector.
2661	 *
2662	 * @unmap_array stores copy of pointers that does not get reordered
2663	 * during reconstruction so that kunmap_local works.
2664	 */
2665	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2666	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2667	if (!pointers || !unmap_array) {
2668		ret = -ENOMEM;
2669		goto out;
2670	}
2671
2672	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2673		int dfail = 0, failp = -1;
2674		int faila;
2675		int failb;
2676		int found_errors;
2677
2678		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2679							 &faila, &failb);
2680		if (found_errors > rbio->bioc->max_errors) {
2681			ret = -EIO;
2682			goto out;
2683		}
2684		if (found_errors == 0)
2685			continue;
2686
2687		/* We should have at least one error here. */
2688		ASSERT(faila >= 0 || failb >= 0);
2689
2690		if (is_data_stripe(rbio, faila))
2691			dfail++;
2692		else if (is_parity_stripe(faila))
2693			failp = faila;
2694
2695		if (is_data_stripe(rbio, failb))
2696			dfail++;
2697		else if (is_parity_stripe(failb))
2698			failp = failb;
 
2699		/*
2700		 * Because we can not use a scrubbing parity to repair the
2701		 * data, so the capability of the repair is declined.  (In the
2702		 * case of RAID5, we can not repair anything.)
2703		 */
2704		if (dfail > rbio->bioc->max_errors - 1) {
2705			ret = -EIO;
2706			goto out;
2707		}
2708		/*
2709		 * If all data is good, only parity is correctly, just repair
2710		 * the parity, no need to recover data stripes.
2711		 */
2712		if (dfail == 0)
2713			continue;
 
 
2714
2715		/*
2716		 * Here means we got one corrupted data stripe and one
2717		 * corrupted parity on RAID6, if the corrupted parity is
2718		 * scrubbing parity, luckily, use the other one to repair the
2719		 * data, or we can not repair the data stripe.
2720		 */
2721		if (failp != rbio->scrubp) {
2722			ret = -EIO;
2723			goto out;
2724		}
2725
2726		ret = recover_vertical(rbio, sector_nr, pointers, unmap_array);
2727		if (ret < 0)
2728			goto out;
2729	}
2730out:
2731	kfree(pointers);
2732	kfree(unmap_array);
2733	return ret;
2734}
2735
2736static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio,
2737				    struct bio_list *bio_list)
 
 
 
 
 
 
 
2738{
2739	struct bio *bio;
2740	int total_sector_nr;
2741	int ret = 0;
2742
2743	ASSERT(bio_list_size(bio_list) == 0);
2744
2745	/* Build a list of bios to read all the missing parts. */
2746	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2747	     total_sector_nr++) {
2748		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2749		int stripe = total_sector_nr / rbio->stripe_nsectors;
2750		struct sector_ptr *sector;
2751
2752		/* No data in the vertical stripe, no need to read. */
2753		if (!test_bit(sectornr, &rbio->dbitmap))
2754			continue;
 
2755
2756		/*
2757		 * We want to find all the sectors missing from the rbio and
2758		 * read them from the disk. If sector_in_rbio() finds a sector
2759		 * in the bio list we don't need to read it off the stripe.
2760		 */
2761		sector = sector_in_rbio(rbio, stripe, sectornr, 1);
2762		if (sector)
2763			continue;
2764
2765		sector = rbio_stripe_sector(rbio, stripe, sectornr);
2766		/*
2767		 * The bio cache may have handed us an uptodate sector.  If so,
2768		 * use it.
2769		 */
2770		if (sector->uptodate)
2771			continue;
2772
2773		ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
2774					 sectornr, REQ_OP_READ);
2775		if (ret)
2776			goto error;
2777	}
2778	return 0;
2779error:
2780	while ((bio = bio_list_pop(bio_list)))
2781		bio_put(bio);
2782	return ret;
2783}
2784
2785static int scrub_rbio(struct btrfs_raid_bio *rbio)
2786{
2787	bool need_check = false;
2788	struct bio_list bio_list;
2789	int sector_nr;
2790	int ret;
 
 
2791	struct bio *bio;
2792
2793	bio_list_init(&bio_list);
2794
2795	ret = alloc_rbio_essential_pages(rbio);
2796	if (ret)
2797		goto cleanup;
2798
2799	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2800
2801	ret = scrub_assemble_read_bios(rbio, &bio_list);
2802	if (ret < 0)
2803		goto cleanup;
 
 
 
 
2804
2805	submit_read_bios(rbio, &bio_list);
2806	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
 
 
 
 
2807
2808	/* We may have some failures, recover the failed sectors first. */
2809	ret = recover_scrub_rbio(rbio);
2810	if (ret < 0)
2811		goto cleanup;
 
 
 
 
 
 
2812
2813	/*
2814	 * We have every sector properly prepared. Can finish the scrub
2815	 * and writeback the good content.
2816	 */
2817	ret = finish_parity_scrub(rbio, need_check);
2818	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2819	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2820		int found_errors;
2821
2822		found_errors = get_rbio_veritical_errors(rbio, sector_nr, NULL, NULL);
2823		if (found_errors > rbio->bioc->max_errors) {
2824			ret = -EIO;
2825			break;
2826		}
2827	}
2828	return ret;
 
2829
2830cleanup:
 
 
2831	while ((bio = bio_list_pop(&bio_list)))
2832		bio_put(bio);
2833
2834	return ret;
 
 
 
2835}
2836
2837static void scrub_rbio_work_locked(struct work_struct *work)
2838{
2839	struct btrfs_raid_bio *rbio;
2840	int ret;
2841
2842	rbio = container_of(work, struct btrfs_raid_bio, work);
2843	ret = scrub_rbio(rbio);
2844	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2845}
2846
2847void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2848{
2849	if (!lock_stripe_add(rbio))
2850		start_async_work(rbio, scrub_rbio_work_locked);
2851}
2852
2853/* The following code is used for dev replace of a missing RAID 5/6 device. */
2854
2855struct btrfs_raid_bio *
2856raid56_alloc_missing_rbio(struct bio *bio, struct btrfs_io_context *bioc)
 
2857{
2858	struct btrfs_fs_info *fs_info = bioc->fs_info;
2859	struct btrfs_raid_bio *rbio;
2860
2861	rbio = alloc_rbio(fs_info, bioc);
2862	if (IS_ERR(rbio))
2863		return NULL;
2864
2865	rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2866	bio_list_add(&rbio->bio_list, bio);
2867	/*
2868	 * This is a special bio which is used to hold the completion handler
2869	 * and make the scrub rbio is similar to the other types
2870	 */
2871	ASSERT(!bio->bi_iter.bi_size);
2872
2873	set_rbio_range_error(rbio, bio);
 
 
 
 
 
 
 
 
 
 
 
2874
2875	return rbio;
2876}
2877
2878void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2879{
2880	start_async_work(rbio, recover_rbio_work);
 
2881}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2012 Fusion-io  All rights reserved.
   4 * Copyright (C) 2012 Intel Corp. All rights reserved.
   5 */
   6
   7#include <linux/sched.h>
   8#include <linux/bio.h>
   9#include <linux/slab.h>
  10#include <linux/blkdev.h>
  11#include <linux/raid/pq.h>
  12#include <linux/hash.h>
  13#include <linux/list_sort.h>
  14#include <linux/raid/xor.h>
  15#include <linux/mm.h>
 
  16#include "misc.h"
  17#include "ctree.h"
  18#include "disk-io.h"
  19#include "volumes.h"
  20#include "raid56.h"
  21#include "async-thread.h"
 
 
  22
  23/* set when additional merges to this rbio are not allowed */
  24#define RBIO_RMW_LOCKED_BIT	1
  25
  26/*
  27 * set when this rbio is sitting in the hash, but it is just a cache
  28 * of past RMW
  29 */
  30#define RBIO_CACHE_BIT		2
  31
  32/*
  33 * set when it is safe to trust the stripe_pages for caching
  34 */
  35#define RBIO_CACHE_READY_BIT	3
  36
  37#define RBIO_CACHE_SIZE 1024
  38
  39#define BTRFS_STRIPE_HASH_TABLE_BITS				11
  40
  41/* Used by the raid56 code to lock stripes for read/modify/write */
  42struct btrfs_stripe_hash {
  43	struct list_head hash_list;
  44	spinlock_t lock;
  45};
  46
  47/* Used by the raid56 code to lock stripes for read/modify/write */
  48struct btrfs_stripe_hash_table {
  49	struct list_head stripe_cache;
  50	spinlock_t cache_lock;
  51	int cache_size;
  52	struct btrfs_stripe_hash table[];
  53};
  54
  55enum btrfs_rbio_ops {
  56	BTRFS_RBIO_WRITE,
  57	BTRFS_RBIO_READ_REBUILD,
  58	BTRFS_RBIO_PARITY_SCRUB,
  59	BTRFS_RBIO_REBUILD_MISSING,
 
 
 
 
  60};
  61
  62struct btrfs_raid_bio {
  63	struct btrfs_fs_info *fs_info;
  64	struct btrfs_bio *bbio;
  65
  66	/* while we're doing rmw on a stripe
  67	 * we put it into a hash table so we can
  68	 * lock the stripe and merge more rbios
  69	 * into it.
  70	 */
  71	struct list_head hash_list;
  72
  73	/*
  74	 * LRU list for the stripe cache
  75	 */
  76	struct list_head stripe_cache;
  77
  78	/*
  79	 * for scheduling work in the helper threads
  80	 */
  81	struct btrfs_work work;
 
 
 
 
  82
  83	/*
  84	 * bio list and bio_list_lock are used
  85	 * to add more bios into the stripe
  86	 * in hopes of avoiding the full rmw
  87	 */
  88	struct bio_list bio_list;
  89	spinlock_t bio_list_lock;
  90
  91	/* also protected by the bio_list_lock, the
  92	 * plug list is used by the plugging code
  93	 * to collect partial bios while plugged.  The
  94	 * stripe locking code also uses it to hand off
  95	 * the stripe lock to the next pending IO
  96	 */
  97	struct list_head plug_list;
  98
  99	/*
 100	 * flags that tell us if it is safe to
 101	 * merge with this bio
 102	 */
 103	unsigned long flags;
 104
 105	/* size of each individual stripe on disk */
 106	int stripe_len;
 
 
 
 
 107
 108	/* number of data stripes (no p/q) */
 109	int nr_data;
 110
 111	int real_stripes;
 112
 113	int stripe_npages;
 114	/*
 115	 * set if we're doing a parity rebuild
 116	 * for a read from higher up, which is handled
 117	 * differently from a parity rebuild as part of
 118	 * rmw
 119	 */
 120	enum btrfs_rbio_ops operation;
 121
 122	/* first bad stripe */
 123	int faila;
 124
 125	/* second bad stripe (for raid6 use) */
 126	int failb;
 127
 128	int scrubp;
 129	/*
 130	 * number of pages needed to represent the full
 131	 * stripe
 132	 */
 133	int nr_pages;
 134
 135	/*
 136	 * size of all the bios in the bio_list.  This
 137	 * helps us decide if the rbio maps to a full
 138	 * stripe or not
 139	 */
 140	int bio_list_bytes;
 141
 142	int generic_bio_cnt;
 143
 144	refcount_t refs;
 145
 146	atomic_t stripes_pending;
 147
 148	atomic_t error;
 149	/*
 150	 * these are two arrays of pointers.  We allocate the
 151	 * rbio big enough to hold them both and setup their
 152	 * locations when the rbio is allocated
 153	 */
 154
 155	/* pointers to pages that we allocated for
 156	 * reading/writing stripes directly from the disk (including P/Q)
 157	 */
 158	struct page **stripe_pages;
 159
 160	/*
 161	 * pointers to the pages in the bio_list.  Stored
 162	 * here for faster lookup
 163	 */
 164	struct page **bio_pages;
 165
 166	/*
 167	 * bitmap to record which horizontal stripe has data
 168	 */
 169	unsigned long *dbitmap;
 170
 171	/* allocated with real_stripes-many pointers for finish_*() calls */
 172	void **finish_pointers;
 173
 174	/* allocated with stripe_npages-many bits for finish_*() calls */
 175	unsigned long *finish_pbitmap;
 176};
 177
 178static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
 179static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
 180static void rmw_work(struct btrfs_work *work);
 181static void read_rebuild_work(struct btrfs_work *work);
 182static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
 183static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
 184static void __free_raid_bio(struct btrfs_raid_bio *rbio);
 185static void index_rbio_pages(struct btrfs_raid_bio *rbio);
 186static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
 187
 188static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
 189					 int need_check);
 190static void scrub_parity_work(struct btrfs_work *work);
 191
 192static void start_async_work(struct btrfs_raid_bio *rbio, btrfs_func_t work_func)
 193{
 194	btrfs_init_work(&rbio->work, work_func, NULL, NULL);
 195	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
 196}
 197
 198/*
 199 * the stripe hash table is used for locking, and to collect
 200 * bios in hopes of making a full stripe
 201 */
 202int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
 203{
 204	struct btrfs_stripe_hash_table *table;
 205	struct btrfs_stripe_hash_table *x;
 206	struct btrfs_stripe_hash *cur;
 207	struct btrfs_stripe_hash *h;
 208	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
 209	int i;
 210
 211	if (info->stripe_hash_table)
 212		return 0;
 213
 214	/*
 215	 * The table is large, starting with order 4 and can go as high as
 216	 * order 7 in case lock debugging is turned on.
 217	 *
 218	 * Try harder to allocate and fallback to vmalloc to lower the chance
 219	 * of a failing mount.
 220	 */
 221	table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
 222	if (!table)
 223		return -ENOMEM;
 224
 225	spin_lock_init(&table->cache_lock);
 226	INIT_LIST_HEAD(&table->stripe_cache);
 227
 228	h = table->table;
 229
 230	for (i = 0; i < num_entries; i++) {
 231		cur = h + i;
 232		INIT_LIST_HEAD(&cur->hash_list);
 233		spin_lock_init(&cur->lock);
 234	}
 235
 236	x = cmpxchg(&info->stripe_hash_table, NULL, table);
 237	kvfree(x);
 238	return 0;
 239}
 240
 241/*
 242 * caching an rbio means to copy anything from the
 243 * bio_pages array into the stripe_pages array.  We
 244 * use the page uptodate bit in the stripe cache array
 245 * to indicate if it has valid data
 246 *
 247 * once the caching is done, we set the cache ready
 248 * bit.
 249 */
 250static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
 251{
 252	int i;
 253	int ret;
 254
 255	ret = alloc_rbio_pages(rbio);
 256	if (ret)
 257		return;
 258
 259	for (i = 0; i < rbio->nr_pages; i++) {
 260		if (!rbio->bio_pages[i])
 
 
 
 
 
 
 
 
 261			continue;
 
 262
 263		copy_highpage(rbio->stripe_pages[i], rbio->bio_pages[i]);
 264		SetPageUptodate(rbio->stripe_pages[i]);
 
 
 
 
 
 265	}
 266	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
 267}
 268
 269/*
 270 * we hash on the first logical address of the stripe
 271 */
 272static int rbio_bucket(struct btrfs_raid_bio *rbio)
 273{
 274	u64 num = rbio->bbio->raid_map[0];
 275
 276	/*
 277	 * we shift down quite a bit.  We're using byte
 278	 * addressing, and most of the lower bits are zeros.
 279	 * This tends to upset hash_64, and it consistently
 280	 * returns just one or two different values.
 281	 *
 282	 * shifting off the lower bits fixes things.
 283	 */
 284	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
 285}
 286
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 287/*
 288 * stealing an rbio means taking all the uptodate pages from the stripe
 289 * array in the source rbio and putting them into the destination rbio
 
 
 
 290 */
 291static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
 292{
 293	int i;
 294	struct page *s;
 295	struct page *d;
 296
 297	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
 298		return;
 299
 300	for (i = 0; i < dest->nr_pages; i++) {
 301		s = src->stripe_pages[i];
 302		if (!s || !PageUptodate(s)) {
 
 
 
 
 
 303			continue;
 304		}
 305
 306		d = dest->stripe_pages[i];
 307		if (d)
 308			__free_page(d);
 309
 310		dest->stripe_pages[i] = s;
 311		src->stripe_pages[i] = NULL;
 
 312	}
 
 
 313}
 314
 315/*
 316 * merging means we take the bio_list from the victim and
 317 * splice it into the destination.  The victim should
 318 * be discarded afterwards.
 319 *
 320 * must be called with dest->rbio_list_lock held
 321 */
 322static void merge_rbio(struct btrfs_raid_bio *dest,
 323		       struct btrfs_raid_bio *victim)
 324{
 325	bio_list_merge(&dest->bio_list, &victim->bio_list);
 326	dest->bio_list_bytes += victim->bio_list_bytes;
 327	dest->generic_bio_cnt += victim->generic_bio_cnt;
 
 
 328	bio_list_init(&victim->bio_list);
 329}
 330
 331/*
 332 * used to prune items that are in the cache.  The caller
 333 * must hold the hash table lock.
 334 */
 335static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 336{
 337	int bucket = rbio_bucket(rbio);
 338	struct btrfs_stripe_hash_table *table;
 339	struct btrfs_stripe_hash *h;
 340	int freeit = 0;
 341
 342	/*
 343	 * check the bit again under the hash table lock.
 344	 */
 345	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 346		return;
 347
 348	table = rbio->fs_info->stripe_hash_table;
 349	h = table->table + bucket;
 350
 351	/* hold the lock for the bucket because we may be
 352	 * removing it from the hash table
 353	 */
 354	spin_lock(&h->lock);
 355
 356	/*
 357	 * hold the lock for the bio list because we need
 358	 * to make sure the bio list is empty
 359	 */
 360	spin_lock(&rbio->bio_list_lock);
 361
 362	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 363		list_del_init(&rbio->stripe_cache);
 364		table->cache_size -= 1;
 365		freeit = 1;
 366
 367		/* if the bio list isn't empty, this rbio is
 368		 * still involved in an IO.  We take it out
 369		 * of the cache list, and drop the ref that
 370		 * was held for the list.
 371		 *
 372		 * If the bio_list was empty, we also remove
 373		 * the rbio from the hash_table, and drop
 374		 * the corresponding ref
 375		 */
 376		if (bio_list_empty(&rbio->bio_list)) {
 377			if (!list_empty(&rbio->hash_list)) {
 378				list_del_init(&rbio->hash_list);
 379				refcount_dec(&rbio->refs);
 380				BUG_ON(!list_empty(&rbio->plug_list));
 381			}
 382		}
 383	}
 384
 385	spin_unlock(&rbio->bio_list_lock);
 386	spin_unlock(&h->lock);
 387
 388	if (freeit)
 389		__free_raid_bio(rbio);
 390}
 391
 392/*
 393 * prune a given rbio from the cache
 394 */
 395static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 396{
 397	struct btrfs_stripe_hash_table *table;
 398	unsigned long flags;
 399
 400	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 401		return;
 402
 403	table = rbio->fs_info->stripe_hash_table;
 404
 405	spin_lock_irqsave(&table->cache_lock, flags);
 406	__remove_rbio_from_cache(rbio);
 407	spin_unlock_irqrestore(&table->cache_lock, flags);
 408}
 409
 410/*
 411 * remove everything in the cache
 412 */
 413static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
 414{
 415	struct btrfs_stripe_hash_table *table;
 416	unsigned long flags;
 417	struct btrfs_raid_bio *rbio;
 418
 419	table = info->stripe_hash_table;
 420
 421	spin_lock_irqsave(&table->cache_lock, flags);
 422	while (!list_empty(&table->stripe_cache)) {
 423		rbio = list_entry(table->stripe_cache.next,
 424				  struct btrfs_raid_bio,
 425				  stripe_cache);
 426		__remove_rbio_from_cache(rbio);
 427	}
 428	spin_unlock_irqrestore(&table->cache_lock, flags);
 429}
 430
 431/*
 432 * remove all cached entries and free the hash table
 433 * used by unmount
 434 */
 435void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
 436{
 437	if (!info->stripe_hash_table)
 438		return;
 439	btrfs_clear_rbio_cache(info);
 440	kvfree(info->stripe_hash_table);
 441	info->stripe_hash_table = NULL;
 442}
 443
 444/*
 445 * insert an rbio into the stripe cache.  It
 446 * must have already been prepared by calling
 447 * cache_rbio_pages
 448 *
 449 * If this rbio was already cached, it gets
 450 * moved to the front of the lru.
 451 *
 452 * If the size of the rbio cache is too big, we
 453 * prune an item.
 454 */
 455static void cache_rbio(struct btrfs_raid_bio *rbio)
 456{
 457	struct btrfs_stripe_hash_table *table;
 458	unsigned long flags;
 459
 460	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
 461		return;
 462
 463	table = rbio->fs_info->stripe_hash_table;
 464
 465	spin_lock_irqsave(&table->cache_lock, flags);
 466	spin_lock(&rbio->bio_list_lock);
 467
 468	/* bump our ref if we were not in the list before */
 469	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
 470		refcount_inc(&rbio->refs);
 471
 472	if (!list_empty(&rbio->stripe_cache)){
 473		list_move(&rbio->stripe_cache, &table->stripe_cache);
 474	} else {
 475		list_add(&rbio->stripe_cache, &table->stripe_cache);
 476		table->cache_size += 1;
 477	}
 478
 479	spin_unlock(&rbio->bio_list_lock);
 480
 481	if (table->cache_size > RBIO_CACHE_SIZE) {
 482		struct btrfs_raid_bio *found;
 483
 484		found = list_entry(table->stripe_cache.prev,
 485				  struct btrfs_raid_bio,
 486				  stripe_cache);
 487
 488		if (found != rbio)
 489			__remove_rbio_from_cache(found);
 490	}
 491
 492	spin_unlock_irqrestore(&table->cache_lock, flags);
 493}
 494
 495/*
 496 * helper function to run the xor_blocks api.  It is only
 497 * able to do MAX_XOR_BLOCKS at a time, so we need to
 498 * loop through.
 499 */
 500static void run_xor(void **pages, int src_cnt, ssize_t len)
 501{
 502	int src_off = 0;
 503	int xor_src_cnt = 0;
 504	void *dest = pages[src_cnt];
 505
 506	while(src_cnt > 0) {
 507		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
 508		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
 509
 510		src_cnt -= xor_src_cnt;
 511		src_off += xor_src_cnt;
 512	}
 513}
 514
 515/*
 516 * Returns true if the bio list inside this rbio covers an entire stripe (no
 517 * rmw required).
 518 */
 519static int rbio_is_full(struct btrfs_raid_bio *rbio)
 520{
 521	unsigned long flags;
 522	unsigned long size = rbio->bio_list_bytes;
 523	int ret = 1;
 524
 525	spin_lock_irqsave(&rbio->bio_list_lock, flags);
 526	if (size != rbio->nr_data * rbio->stripe_len)
 527		ret = 0;
 528	BUG_ON(size > rbio->nr_data * rbio->stripe_len);
 529	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
 530
 531	return ret;
 532}
 533
 534/*
 535 * returns 1 if it is safe to merge two rbios together.
 536 * The merging is safe if the two rbios correspond to
 537 * the same stripe and if they are both going in the same
 538 * direction (read vs write), and if neither one is
 539 * locked for final IO
 540 *
 541 * The caller is responsible for locking such that
 542 * rmw_locked is safe to test
 543 */
 544static int rbio_can_merge(struct btrfs_raid_bio *last,
 545			  struct btrfs_raid_bio *cur)
 546{
 547	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
 548	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
 549		return 0;
 550
 551	/*
 552	 * we can't merge with cached rbios, since the
 553	 * idea is that when we merge the destination
 554	 * rbio is going to run our IO for us.  We can
 555	 * steal from cached rbios though, other functions
 556	 * handle that.
 557	 */
 558	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
 559	    test_bit(RBIO_CACHE_BIT, &cur->flags))
 560		return 0;
 561
 562	if (last->bbio->raid_map[0] !=
 563	    cur->bbio->raid_map[0])
 564		return 0;
 565
 566	/* we can't merge with different operations */
 567	if (last->operation != cur->operation)
 568		return 0;
 569	/*
 570	 * We've need read the full stripe from the drive.
 571	 * check and repair the parity and write the new results.
 572	 *
 573	 * We're not allowed to add any new bios to the
 574	 * bio list here, anyone else that wants to
 575	 * change this stripe needs to do their own rmw.
 576	 */
 577	if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
 578		return 0;
 579
 580	if (last->operation == BTRFS_RBIO_REBUILD_MISSING)
 
 581		return 0;
 582
 583	if (last->operation == BTRFS_RBIO_READ_REBUILD) {
 584		int fa = last->faila;
 585		int fb = last->failb;
 586		int cur_fa = cur->faila;
 587		int cur_fb = cur->failb;
 588
 589		if (last->faila >= last->failb) {
 590			fa = last->failb;
 591			fb = last->faila;
 592		}
 593
 594		if (cur->faila >= cur->failb) {
 595			cur_fa = cur->failb;
 596			cur_fb = cur->faila;
 597		}
 598
 599		if (fa != cur_fa || fb != cur_fb)
 600			return 0;
 601	}
 602	return 1;
 603}
 604
 605static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
 606				  int index)
 
 607{
 608	return stripe * rbio->stripe_npages + index;
 
 
 
 609}
 610
 611/*
 612 * these are just the pages from the rbio array, not from anything
 613 * the FS sent down to us
 614 */
 615static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
 616				     int index)
 617{
 618	return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
 
 619}
 620
 621/*
 622 * helper to index into the pstripe
 623 */
 624static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
 625{
 626	return rbio_stripe_page(rbio, rbio->nr_data, index);
 627}
 628
 629/*
 630 * helper to index into the qstripe, returns null
 631 * if there is no qstripe
 632 */
 633static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
 634{
 635	if (rbio->nr_data + 1 == rbio->real_stripes)
 636		return NULL;
 637	return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
 638}
 639
 640/*
 641 * The first stripe in the table for a logical address
 642 * has the lock.  rbios are added in one of three ways:
 643 *
 644 * 1) Nobody has the stripe locked yet.  The rbio is given
 645 * the lock and 0 is returned.  The caller must start the IO
 646 * themselves.
 647 *
 648 * 2) Someone has the stripe locked, but we're able to merge
 649 * with the lock owner.  The rbio is freed and the IO will
 650 * start automatically along with the existing rbio.  1 is returned.
 651 *
 652 * 3) Someone has the stripe locked, but we're not able to merge.
 653 * The rbio is added to the lock owner's plug list, or merged into
 654 * an rbio already on the plug list.  When the lock owner unlocks,
 655 * the next rbio on the list is run and the IO is started automatically.
 656 * 1 is returned
 657 *
 658 * If we return 0, the caller still owns the rbio and must continue with
 659 * IO submission.  If we return 1, the caller must assume the rbio has
 660 * already been freed.
 661 */
 662static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
 663{
 664	struct btrfs_stripe_hash *h;
 665	struct btrfs_raid_bio *cur;
 666	struct btrfs_raid_bio *pending;
 667	unsigned long flags;
 668	struct btrfs_raid_bio *freeit = NULL;
 669	struct btrfs_raid_bio *cache_drop = NULL;
 670	int ret = 0;
 671
 672	h = rbio->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
 673
 674	spin_lock_irqsave(&h->lock, flags);
 675	list_for_each_entry(cur, &h->hash_list, hash_list) {
 676		if (cur->bbio->raid_map[0] != rbio->bbio->raid_map[0])
 677			continue;
 678
 679		spin_lock(&cur->bio_list_lock);
 680
 681		/* Can we steal this cached rbio's pages? */
 682		if (bio_list_empty(&cur->bio_list) &&
 683		    list_empty(&cur->plug_list) &&
 684		    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
 685		    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
 686			list_del_init(&cur->hash_list);
 687			refcount_dec(&cur->refs);
 688
 689			steal_rbio(cur, rbio);
 690			cache_drop = cur;
 691			spin_unlock(&cur->bio_list_lock);
 692
 693			goto lockit;
 694		}
 695
 696		/* Can we merge into the lock owner? */
 697		if (rbio_can_merge(cur, rbio)) {
 698			merge_rbio(cur, rbio);
 699			spin_unlock(&cur->bio_list_lock);
 700			freeit = rbio;
 701			ret = 1;
 702			goto out;
 703		}
 704
 705
 706		/*
 707		 * We couldn't merge with the running rbio, see if we can merge
 708		 * with the pending ones.  We don't have to check for rmw_locked
 709		 * because there is no way they are inside finish_rmw right now
 710		 */
 711		list_for_each_entry(pending, &cur->plug_list, plug_list) {
 712			if (rbio_can_merge(pending, rbio)) {
 713				merge_rbio(pending, rbio);
 714				spin_unlock(&cur->bio_list_lock);
 715				freeit = rbio;
 716				ret = 1;
 717				goto out;
 718			}
 719		}
 720
 721		/*
 722		 * No merging, put us on the tail of the plug list, our rbio
 723		 * will be started with the currently running rbio unlocks
 724		 */
 725		list_add_tail(&rbio->plug_list, &cur->plug_list);
 726		spin_unlock(&cur->bio_list_lock);
 727		ret = 1;
 728		goto out;
 729	}
 730lockit:
 731	refcount_inc(&rbio->refs);
 732	list_add(&rbio->hash_list, &h->hash_list);
 733out:
 734	spin_unlock_irqrestore(&h->lock, flags);
 735	if (cache_drop)
 736		remove_rbio_from_cache(cache_drop);
 737	if (freeit)
 738		__free_raid_bio(freeit);
 739	return ret;
 740}
 741
 
 
 742/*
 743 * called as rmw or parity rebuild is completed.  If the plug list has more
 744 * rbios waiting for this stripe, the next one on the list will be started
 745 */
 746static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
 747{
 748	int bucket;
 749	struct btrfs_stripe_hash *h;
 750	unsigned long flags;
 751	int keep_cache = 0;
 752
 753	bucket = rbio_bucket(rbio);
 754	h = rbio->fs_info->stripe_hash_table->table + bucket;
 755
 756	if (list_empty(&rbio->plug_list))
 757		cache_rbio(rbio);
 758
 759	spin_lock_irqsave(&h->lock, flags);
 760	spin_lock(&rbio->bio_list_lock);
 761
 762	if (!list_empty(&rbio->hash_list)) {
 763		/*
 764		 * if we're still cached and there is no other IO
 765		 * to perform, just leave this rbio here for others
 766		 * to steal from later
 767		 */
 768		if (list_empty(&rbio->plug_list) &&
 769		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 770			keep_cache = 1;
 771			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
 772			BUG_ON(!bio_list_empty(&rbio->bio_list));
 773			goto done;
 774		}
 775
 776		list_del_init(&rbio->hash_list);
 777		refcount_dec(&rbio->refs);
 778
 779		/*
 780		 * we use the plug list to hold all the rbios
 781		 * waiting for the chance to lock this stripe.
 782		 * hand the lock over to one of them.
 783		 */
 784		if (!list_empty(&rbio->plug_list)) {
 785			struct btrfs_raid_bio *next;
 786			struct list_head *head = rbio->plug_list.next;
 787
 788			next = list_entry(head, struct btrfs_raid_bio,
 789					  plug_list);
 790
 791			list_del_init(&rbio->plug_list);
 792
 793			list_add(&next->hash_list, &h->hash_list);
 794			refcount_inc(&next->refs);
 795			spin_unlock(&rbio->bio_list_lock);
 796			spin_unlock_irqrestore(&h->lock, flags);
 797
 798			if (next->operation == BTRFS_RBIO_READ_REBUILD)
 799				start_async_work(next, read_rebuild_work);
 800			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
 801				steal_rbio(rbio, next);
 802				start_async_work(next, read_rebuild_work);
 803			} else if (next->operation == BTRFS_RBIO_WRITE) {
 804				steal_rbio(rbio, next);
 805				start_async_work(next, rmw_work);
 806			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
 807				steal_rbio(rbio, next);
 808				start_async_work(next, scrub_parity_work);
 809			}
 810
 811			goto done_nolock;
 812		}
 813	}
 814done:
 815	spin_unlock(&rbio->bio_list_lock);
 816	spin_unlock_irqrestore(&h->lock, flags);
 817
 818done_nolock:
 819	if (!keep_cache)
 820		remove_rbio_from_cache(rbio);
 821}
 822
 823static void __free_raid_bio(struct btrfs_raid_bio *rbio)
 824{
 825	int i;
 826
 827	if (!refcount_dec_and_test(&rbio->refs))
 828		return;
 829
 830	WARN_ON(!list_empty(&rbio->stripe_cache));
 831	WARN_ON(!list_empty(&rbio->hash_list));
 832	WARN_ON(!bio_list_empty(&rbio->bio_list));
 833
 834	for (i = 0; i < rbio->nr_pages; i++) {
 835		if (rbio->stripe_pages[i]) {
 836			__free_page(rbio->stripe_pages[i]);
 837			rbio->stripe_pages[i] = NULL;
 838		}
 839	}
 840
 841	btrfs_put_bbio(rbio->bbio);
 842	kfree(rbio);
 843}
 844
 845static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
 846{
 847	struct bio *next;
 848
 849	while (cur) {
 850		next = cur->bi_next;
 851		cur->bi_next = NULL;
 852		cur->bi_status = err;
 853		bio_endio(cur);
 854		cur = next;
 855	}
 856}
 857
 858/*
 859 * this frees the rbio and runs through all the bios in the
 860 * bio_list and calls end_io on them
 861 */
 862static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
 863{
 864	struct bio *cur = bio_list_get(&rbio->bio_list);
 865	struct bio *extra;
 866
 867	if (rbio->generic_bio_cnt)
 868		btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
 
 
 
 
 
 
 
 
 
 869
 870	/*
 871	 * At this moment, rbio->bio_list is empty, however since rbio does not
 872	 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
 873	 * hash list, rbio may be merged with others so that rbio->bio_list
 874	 * becomes non-empty.
 875	 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
 876	 * more and we can call bio_endio() on all queued bios.
 877	 */
 878	unlock_stripe(rbio);
 879	extra = bio_list_get(&rbio->bio_list);
 880	__free_raid_bio(rbio);
 881
 882	rbio_endio_bio_list(cur, err);
 883	if (extra)
 884		rbio_endio_bio_list(extra, err);
 885}
 886
 887/*
 888 * end io function used by finish_rmw.  When we finally
 889 * get here, we've written a full stripe
 890 */
 891static void raid_write_end_io(struct bio *bio)
 892{
 893	struct btrfs_raid_bio *rbio = bio->bi_private;
 894	blk_status_t err = bio->bi_status;
 895	int max_errors;
 896
 897	if (err)
 898		fail_bio_stripe(rbio, bio);
 899
 900	bio_put(bio);
 901
 902	if (!atomic_dec_and_test(&rbio->stripes_pending))
 903		return;
 904
 905	err = BLK_STS_OK;
 906
 907	/* OK, we have read all the stripes we need to. */
 908	max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
 909		     0 : rbio->bbio->max_errors;
 910	if (atomic_read(&rbio->error) > max_errors)
 911		err = BLK_STS_IOERR;
 912
 913	rbio_orig_end_io(rbio, err);
 914}
 915
 916/*
 917 * the read/modify/write code wants to use the original bio for
 918 * any pages it included, and then use the rbio for everything
 919 * else.  This function decides if a given index (stripe number)
 920 * and page number in that stripe fall inside the original bio
 921 * or the rbio.
 922 *
 923 * if you set bio_list_only, you'll get a NULL back for any ranges
 924 * that are outside the bio_list
 
 
 
 925 *
 926 * This doesn't take any refs on anything, you get a bare page pointer
 927 * and the caller must bump refs as required.
 928 *
 929 * You must call index_rbio_pages once before you can trust
 930 * the answers from this function.
 931 */
 932static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
 933				 int index, int pagenr, int bio_list_only)
 
 934{
 935	int chunk_page;
 936	struct page *p = NULL;
 937
 938	chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
 
 
 
 
 939
 940	spin_lock_irq(&rbio->bio_list_lock);
 941	p = rbio->bio_pages[chunk_page];
 
 
 
 
 
 
 
 942	spin_unlock_irq(&rbio->bio_list_lock);
 943
 944	if (p || bio_list_only)
 945		return p;
 946
 947	return rbio->stripe_pages[chunk_page];
 948}
 949
 950/*
 951 * number of pages we need for the entire stripe across all the
 952 * drives
 953 */
 954static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
 955{
 956	return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
 957}
 958
 959/*
 960 * allocation and initial setup for the btrfs_raid_bio.  Not
 961 * this does not allocate any pages for rbio->pages.
 962 */
 963static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
 964					 struct btrfs_bio *bbio,
 965					 u64 stripe_len)
 966{
 
 
 
 
 
 
 967	struct btrfs_raid_bio *rbio;
 968	int nr_data = 0;
 969	int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
 970	int num_pages = rbio_nr_pages(stripe_len, real_stripes);
 971	int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
 972	void *p;
 973
 974	rbio = kzalloc(sizeof(*rbio) +
 975		       sizeof(*rbio->stripe_pages) * num_pages +
 976		       sizeof(*rbio->bio_pages) * num_pages +
 977		       sizeof(*rbio->finish_pointers) * real_stripes +
 978		       sizeof(*rbio->dbitmap) * BITS_TO_LONGS(stripe_npages) +
 979		       sizeof(*rbio->finish_pbitmap) *
 980				BITS_TO_LONGS(stripe_npages),
 981		       GFP_NOFS);
 982	if (!rbio)
 983		return ERR_PTR(-ENOMEM);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 984
 985	bio_list_init(&rbio->bio_list);
 
 986	INIT_LIST_HEAD(&rbio->plug_list);
 987	spin_lock_init(&rbio->bio_list_lock);
 988	INIT_LIST_HEAD(&rbio->stripe_cache);
 989	INIT_LIST_HEAD(&rbio->hash_list);
 990	rbio->bbio = bbio;
 991	rbio->fs_info = fs_info;
 992	rbio->stripe_len = stripe_len;
 993	rbio->nr_pages = num_pages;
 
 994	rbio->real_stripes = real_stripes;
 995	rbio->stripe_npages = stripe_npages;
 996	rbio->faila = -1;
 997	rbio->failb = -1;
 998	refcount_set(&rbio->refs, 1);
 999	atomic_set(&rbio->error, 0);
1000	atomic_set(&rbio->stripes_pending, 0);
1001
1002	/*
1003	 * the stripe_pages, bio_pages, etc arrays point to the extra
1004	 * memory we allocated past the end of the rbio
1005	 */
1006	p = rbio + 1;
1007#define CONSUME_ALLOC(ptr, count)	do {				\
1008		ptr = p;						\
1009		p = (unsigned char *)p + sizeof(*(ptr)) * (count);	\
1010	} while (0)
1011	CONSUME_ALLOC(rbio->stripe_pages, num_pages);
1012	CONSUME_ALLOC(rbio->bio_pages, num_pages);
1013	CONSUME_ALLOC(rbio->finish_pointers, real_stripes);
1014	CONSUME_ALLOC(rbio->dbitmap, BITS_TO_LONGS(stripe_npages));
1015	CONSUME_ALLOC(rbio->finish_pbitmap, BITS_TO_LONGS(stripe_npages));
1016#undef  CONSUME_ALLOC
1017
1018	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1019		nr_data = real_stripes - 1;
1020	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1021		nr_data = real_stripes - 2;
1022	else
1023		BUG();
1024
1025	rbio->nr_data = nr_data;
1026	return rbio;
1027}
1028
1029/* allocate pages for all the stripes in the bio, including parity */
1030static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1031{
1032	int i;
1033	struct page *page;
1034
1035	for (i = 0; i < rbio->nr_pages; i++) {
1036		if (rbio->stripe_pages[i])
1037			continue;
1038		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1039		if (!page)
1040			return -ENOMEM;
1041		rbio->stripe_pages[i] = page;
1042	}
1043	return 0;
1044}
1045
1046/* only allocate pages for p/q stripes */
1047static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1048{
1049	int i;
1050	struct page *page;
 
 
 
 
 
 
 
 
 
1051
1052	i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
 
 
 
 
 
 
 
 
 
 
1053
1054	for (; i < rbio->nr_pages; i++) {
1055		if (rbio->stripe_pages[i])
1056			continue;
1057		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1058		if (!page)
1059			return -ENOMEM;
1060		rbio->stripe_pages[i] = page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1061	}
1062	return 0;
1063}
1064
1065/*
1066 * add a single page from a specific stripe into our list of bios for IO
1067 * this will try to merge into existing bios if possible, and returns
1068 * zero if all went well.
1069 */
1070static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1071			    struct bio_list *bio_list,
1072			    struct page *page,
1073			    int stripe_nr,
1074			    unsigned long page_index,
1075			    unsigned long bio_max_len)
 
1076{
 
1077	struct bio *last = bio_list->tail;
1078	int ret;
1079	struct bio *bio;
1080	struct btrfs_bio_stripe *stripe;
1081	u64 disk_start;
1082
1083	stripe = &rbio->bbio->stripes[stripe_nr];
1084	disk_start = stripe->physical + (page_index << PAGE_SHIFT);
 
 
 
 
 
 
 
 
 
1085
1086	/* if the device is missing, just fail this stripe */
1087	if (!stripe->dev->bdev)
1088		return fail_rbio_index(rbio, stripe_nr);
 
 
 
 
 
 
 
 
 
 
 
1089
1090	/* see if we can add this page onto our existing bio */
1091	if (last) {
1092		u64 last_end = last->bi_iter.bi_sector << 9;
1093		last_end += last->bi_iter.bi_size;
1094
1095		/*
1096		 * we can't merge these if they are from different
1097		 * devices or if they are not contiguous
1098		 */
1099		if (last_end == disk_start && !last->bi_status &&
1100		    last->bi_bdev == stripe->dev->bdev) {
1101			ret = bio_add_page(last, page, PAGE_SIZE, 0);
1102			if (ret == PAGE_SIZE)
 
1103				return 0;
1104		}
1105	}
1106
1107	/* put a new bio on the list */
1108	bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1);
1109	btrfs_io_bio(bio)->device = stripe->dev;
1110	bio->bi_iter.bi_size = 0;
1111	bio_set_dev(bio, stripe->dev->bdev);
1112	bio->bi_iter.bi_sector = disk_start >> 9;
 
1113
1114	bio_add_page(bio, page, PAGE_SIZE, 0);
1115	bio_list_add(bio_list, bio);
1116	return 0;
1117}
1118
1119/*
1120 * while we're doing the read/modify/write cycle, we could
1121 * have errors in reading pages off the disk.  This checks
1122 * for errors and if we're not able to read the page it'll
1123 * trigger parity reconstruction.  The rmw will be finished
1124 * after we've reconstructed the failed stripes
1125 */
1126static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1127{
1128	if (rbio->faila >= 0 || rbio->failb >= 0) {
1129		BUG_ON(rbio->faila == rbio->real_stripes - 1);
1130		__raid56_parity_recover(rbio);
1131	} else {
1132		finish_rmw(rbio);
 
 
 
 
 
 
1133	}
1134}
1135
1136/*
1137 * helper function to walk our bio list and populate the bio_pages array with
1138 * the result.  This seems expensive, but it is faster than constantly
1139 * searching through the bio list as we setup the IO in finish_rmw or stripe
1140 * reconstruction.
1141 *
1142 * This must be called before you trust the answers from page_in_rbio
1143 */
1144static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1145{
1146	struct bio *bio;
1147	u64 start;
1148	unsigned long stripe_offset;
1149	unsigned long page_index;
1150
1151	spin_lock_irq(&rbio->bio_list_lock);
1152	bio_list_for_each(bio, &rbio->bio_list) {
1153		struct bio_vec bvec;
1154		struct bvec_iter iter;
1155		int i = 0;
1156
1157		start = bio->bi_iter.bi_sector << 9;
1158		stripe_offset = start - rbio->bbio->raid_map[0];
1159		page_index = stripe_offset >> PAGE_SHIFT;
1160
1161		if (bio_flagged(bio, BIO_CLONED))
1162			bio->bi_iter = btrfs_io_bio(bio)->iter;
1163
1164		bio_for_each_segment(bvec, bio, iter) {
1165			rbio->bio_pages[page_index + i] = bvec.bv_page;
1166			i++;
1167		}
 
 
 
 
 
 
 
 
 
 
1168	}
1169	spin_unlock_irq(&rbio->bio_list_lock);
 
 
 
 
1170}
1171
1172/*
1173 * this is called from one of two situations.  We either
1174 * have a full stripe from the higher layers, or we've read all
1175 * the missing bits off disk.
1176 *
1177 * This will calculate the parity and then send down any
1178 * changed blocks.
1179 */
1180static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1181{
1182	struct btrfs_bio *bbio = rbio->bbio;
1183	void **pointers = rbio->finish_pointers;
1184	int nr_data = rbio->nr_data;
 
1185	int stripe;
1186	int pagenr;
1187	bool has_qstripe;
1188	struct bio_list bio_list;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1189	struct bio *bio;
 
 
 
 
1190	int ret;
1191
1192	bio_list_init(&bio_list);
1193
1194	if (rbio->real_stripes - rbio->nr_data == 1)
1195		has_qstripe = false;
1196	else if (rbio->real_stripes - rbio->nr_data == 2)
1197		has_qstripe = true;
1198	else
1199		BUG();
1200
1201	/* at this point we either have a full stripe,
1202	 * or we've read the full stripe from the drive.
1203	 * recalculate the parity and write the new results.
1204	 *
1205	 * We're not allowed to add any new bios to the
1206	 * bio list here, anyone else that wants to
1207	 * change this stripe needs to do their own rmw.
1208	 */
1209	spin_lock_irq(&rbio->bio_list_lock);
1210	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1211	spin_unlock_irq(&rbio->bio_list_lock);
1212
1213	atomic_set(&rbio->error, 0);
1214
1215	/*
1216	 * now that we've set rmw_locked, run through the
1217	 * bio list one last time and map the page pointers
1218	 *
1219	 * We don't cache full rbios because we're assuming
1220	 * the higher layers are unlikely to use this area of
1221	 * the disk again soon.  If they do use it again,
1222	 * hopefully they will send another full bio.
1223	 */
1224	index_rbio_pages(rbio);
1225	if (!rbio_is_full(rbio))
1226		cache_rbio_pages(rbio);
1227	else
1228		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1229
1230	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1231		struct page *p;
1232		/* first collect one page from each data stripe */
1233		for (stripe = 0; stripe < nr_data; stripe++) {
1234			p = page_in_rbio(rbio, stripe, pagenr, 0);
1235			pointers[stripe] = kmap_local_page(p);
1236		}
1237
1238		/* then add the parity stripe */
1239		p = rbio_pstripe_page(rbio, pagenr);
1240		SetPageUptodate(p);
1241		pointers[stripe++] = kmap_local_page(p);
1242
1243		if (has_qstripe) {
1244
1245			/*
1246			 * raid6, add the qstripe and call the
1247			 * library function to fill in our p/q
1248			 */
1249			p = rbio_qstripe_page(rbio, pagenr);
1250			SetPageUptodate(p);
1251			pointers[stripe++] = kmap_local_page(p);
1252
1253			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1254						pointers);
1255		} else {
1256			/* raid5 */
1257			copy_page(pointers[nr_data], pointers[0]);
1258			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1259		}
1260		for (stripe = stripe - 1; stripe >= 0; stripe--)
1261			kunmap_local(pointers[stripe]);
 
 
 
1262	}
1263
1264	/*
1265	 * time to start writing.  Make bios for everything from the
1266	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
1267	 * everything else.
1268	 */
1269	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1270		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1271			struct page *page;
1272			if (stripe < rbio->nr_data) {
1273				page = page_in_rbio(rbio, stripe, pagenr, 1);
1274				if (!page)
1275					continue;
1276			} else {
1277			       page = rbio_stripe_page(rbio, stripe, pagenr);
1278			}
1279
1280			ret = rbio_add_io_page(rbio, &bio_list,
1281				       page, stripe, pagenr, rbio->stripe_len);
1282			if (ret)
1283				goto cleanup;
1284		}
1285	}
1286
1287	if (likely(!bbio->num_tgtdevs))
1288		goto write_data;
1289
1290	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1291		if (!bbio->tgtdev_map[stripe])
 
 
 
 
 
1292			continue;
 
1293
1294		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1295			struct page *page;
1296			if (stripe < rbio->nr_data) {
1297				page = page_in_rbio(rbio, stripe, pagenr, 1);
1298				if (!page)
1299					continue;
1300			} else {
1301			       page = rbio_stripe_page(rbio, stripe, pagenr);
1302			}
1303
1304			ret = rbio_add_io_page(rbio, &bio_list, page,
1305					       rbio->bbio->tgtdev_map[stripe],
1306					       pagenr, rbio->stripe_len);
1307			if (ret)
1308				goto cleanup;
 
1309		}
1310	}
1311
1312write_data:
1313	atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1314	BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1315
1316	while ((bio = bio_list_pop(&bio_list))) {
1317		bio->bi_private = rbio;
1318		bio->bi_end_io = raid_write_end_io;
1319		bio->bi_opf = REQ_OP_WRITE;
1320
1321		submit_bio(bio);
1322	}
1323	return;
1324
1325cleanup:
1326	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1327
1328	while ((bio = bio_list_pop(&bio_list)))
1329		bio_put(bio);
 
1330}
1331
1332/*
1333 * helper to find the stripe number for a given bio.  Used to figure out which
1334 * stripe has failed.  This expects the bio to correspond to a physical disk,
1335 * so it looks up based on physical sector numbers.
1336 */
1337static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1338			   struct bio *bio)
1339{
1340	u64 physical = bio->bi_iter.bi_sector;
1341	int i;
1342	struct btrfs_bio_stripe *stripe;
1343
1344	physical <<= 9;
1345
1346	for (i = 0; i < rbio->bbio->num_stripes; i++) {
1347		stripe = &rbio->bbio->stripes[i];
1348		if (in_range(physical, stripe->physical, rbio->stripe_len) &&
1349		    stripe->dev->bdev && bio->bi_bdev == stripe->dev->bdev) {
1350			return i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1351		}
 
1352	}
1353	return -1;
1354}
1355
1356/*
1357 * helper to find the stripe number for a given
1358 * bio (before mapping).  Used to figure out which stripe has
1359 * failed.  This looks up based on logical block numbers.
1360 */
1361static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1362				   struct bio *bio)
 
1363{
1364	u64 logical = bio->bi_iter.bi_sector << 9;
1365	int i;
1366
1367	for (i = 0; i < rbio->nr_data; i++) {
1368		u64 stripe_start = rbio->bbio->raid_map[i];
1369
1370		if (in_range(logical, stripe_start, rbio->stripe_len))
1371			return i;
1372	}
1373	return -1;
1374}
1375
1376/*
1377 * returns -EIO if we had too many failures
 
1378 */
1379static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1380{
1381	unsigned long flags;
1382	int ret = 0;
 
1383
1384	spin_lock_irqsave(&rbio->bio_list_lock, flags);
1385
1386	/* we already know this stripe is bad, move on */
1387	if (rbio->faila == failed || rbio->failb == failed)
1388		goto out;
1389
1390	if (rbio->faila == -1) {
1391		/* first failure on this rbio */
1392		rbio->faila = failed;
1393		atomic_inc(&rbio->error);
1394	} else if (rbio->failb == -1) {
1395		/* second failure on this rbio */
1396		rbio->failb = failed;
1397		atomic_inc(&rbio->error);
1398	} else {
1399		ret = -EIO;
1400	}
1401out:
1402	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1403
1404	return ret;
1405}
1406
1407/*
1408 * helper to fail a stripe based on a physical disk
1409 * bio.
1410 */
1411static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1412			   struct bio *bio)
1413{
1414	int failed = find_bio_stripe(rbio, bio);
 
1415
1416	if (failed < 0)
1417		return -EIO;
1418
1419	return fail_rbio_index(rbio, failed);
 
 
 
 
 
 
 
 
1420}
1421
1422/*
1423 * this sets each page in the bio uptodate.  It should only be used on private
1424 * rbio pages, nothing that comes in from the higher layers
1425 */
1426static void set_bio_pages_uptodate(struct bio *bio)
1427{
 
 
1428	struct bio_vec *bvec;
1429	struct bvec_iter_all iter_all;
 
1430
1431	ASSERT(!bio_flagged(bio, BIO_CLONED));
 
1432
1433	bio_for_each_segment_all(bvec, bio, iter_all)
1434		SetPageUptodate(bvec->bv_page);
 
 
 
 
 
 
 
1435}
1436
1437/*
1438 * end io for the read phase of the rmw cycle.  All the bios here are physical
1439 * stripe bios we've read from the disk so we can recalculate the parity of the
1440 * stripe.
1441 *
1442 * This will usually kick off finish_rmw once all the bios are read in, but it
1443 * may trigger parity reconstruction if we had any errors along the way
1444 */
1445static void raid_rmw_end_io(struct bio *bio)
1446{
1447	struct btrfs_raid_bio *rbio = bio->bi_private;
 
 
 
1448
1449	if (bio->bi_status)
1450		fail_bio_stripe(rbio, bio);
1451	else
1452		set_bio_pages_uptodate(bio);
1453
1454	bio_put(bio);
1455
1456	if (!atomic_dec_and_test(&rbio->stripes_pending))
1457		return;
1458
1459	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1460		goto cleanup;
1461
1462	/*
1463	 * this will normally call finish_rmw to start our write
1464	 * but if there are any failed stripes we'll reconstruct
1465	 * from parity first
1466	 */
1467	validate_rbio_for_rmw(rbio);
1468	return;
1469
1470cleanup:
 
 
1471
1472	rbio_orig_end_io(rbio, BLK_STS_IOERR);
 
 
 
 
 
1473}
1474
1475/*
1476 * the stripe must be locked by the caller.  It will
1477 * unlock after all the writes are done
1478 */
1479static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1480{
1481	int bios_to_read = 0;
1482	struct bio_list bio_list;
1483	int ret;
1484	int pagenr;
1485	int stripe;
1486	struct bio *bio;
1487
1488	bio_list_init(&bio_list);
 
 
 
 
 
1489
1490	ret = alloc_rbio_pages(rbio);
1491	if (ret)
1492		goto cleanup;
 
1493
1494	index_rbio_pages(rbio);
 
 
 
1495
1496	atomic_set(&rbio->error, 0);
1497	/*
1498	 * build a list of bios to read all the missing parts of this
1499	 * stripe
1500	 */
1501	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1502		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1503			struct page *page;
1504			/*
1505			 * we want to find all the pages missing from
1506			 * the rbio and read them from the disk.  If
1507			 * page_in_rbio finds a page in the bio list
1508			 * we don't need to read it off the stripe.
1509			 */
1510			page = page_in_rbio(rbio, stripe, pagenr, 1);
1511			if (page)
1512				continue;
1513
1514			page = rbio_stripe_page(rbio, stripe, pagenr);
1515			/*
1516			 * the bio cache may have handed us an uptodate
1517			 * page.  If so, be happy and use it
1518			 */
1519			if (PageUptodate(page))
1520				continue;
1521
1522			ret = rbio_add_io_page(rbio, &bio_list, page,
1523				       stripe, pagenr, rbio->stripe_len);
1524			if (ret)
1525				goto cleanup;
1526		}
 
1527	}
 
1528
1529	bios_to_read = bio_list_size(&bio_list);
1530	if (!bios_to_read) {
1531		/*
1532		 * this can happen if others have merged with
1533		 * us, it means there is nothing left to read.
1534		 * But if there are missing devices it may not be
1535		 * safe to do the full stripe write yet.
1536		 */
1537		goto finish;
1538	}
1539
1540	/*
1541	 * the bbio may be freed once we submit the last bio.  Make sure
1542	 * not to touch it after that
 
 
1543	 */
1544	atomic_set(&rbio->stripes_pending, bios_to_read);
1545	while ((bio = bio_list_pop(&bio_list))) {
1546		bio->bi_private = rbio;
1547		bio->bi_end_io = raid_rmw_end_io;
1548		bio->bi_opf = REQ_OP_READ;
1549
1550		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
1551
1552		submit_bio(bio);
 
 
1553	}
1554	/* the actual write will happen once the reads are done */
1555	return 0;
1556
1557cleanup:
1558	rbio_orig_end_io(rbio, BLK_STS_IOERR);
1559
1560	while ((bio = bio_list_pop(&bio_list)))
1561		bio_put(bio);
1562
1563	return -EIO;
1564
1565finish:
1566	validate_rbio_for_rmw(rbio);
1567	return 0;
1568}
1569
1570/*
1571 * if the upper layers pass in a full stripe, we thank them by only allocating
1572 * enough pages to hold the parity, and sending it all down quickly.
1573 */
1574static int full_stripe_write(struct btrfs_raid_bio *rbio)
1575{
 
1576	int ret;
1577
1578	ret = alloc_rbio_parity_pages(rbio);
1579	if (ret) {
1580		__free_raid_bio(rbio);
1581		return ret;
1582	}
1583
1584	ret = lock_stripe_add(rbio);
1585	if (ret == 0)
1586		finish_rmw(rbio);
1587	return 0;
1588}
1589
1590/*
1591 * partial stripe writes get handed over to async helpers.
1592 * We're really hoping to merge a few more writes into this
1593 * rbio before calculating new parity
1594 */
1595static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1596{
1597	int ret;
1598
1599	ret = lock_stripe_add(rbio);
1600	if (ret == 0)
1601		start_async_work(rbio, rmw_work);
1602	return 0;
1603}
1604
1605/*
1606 * sometimes while we were reading from the drive to
1607 * recalculate parity, enough new bios come into create
1608 * a full stripe.  So we do a check here to see if we can
1609 * go directly to finish_rmw
1610 */
1611static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1612{
1613	/* head off into rmw land if we don't have a full stripe */
1614	if (!rbio_is_full(rbio))
1615		return partial_stripe_write(rbio);
1616	return full_stripe_write(rbio);
1617}
1618
1619/*
1620 * We use plugging call backs to collect full stripes.
1621 * Any time we get a partial stripe write while plugged
1622 * we collect it into a list.  When the unplug comes down,
1623 * we sort the list by logical block number and merge
1624 * everything we can into the same rbios
1625 */
1626struct btrfs_plug_cb {
1627	struct blk_plug_cb cb;
1628	struct btrfs_fs_info *info;
1629	struct list_head rbio_list;
1630	struct btrfs_work work;
1631};
1632
1633/*
1634 * rbios on the plug list are sorted for easier merging.
1635 */
1636static int plug_cmp(void *priv, const struct list_head *a,
1637		    const struct list_head *b)
1638{
1639	struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1640						 plug_list);
1641	struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1642						 plug_list);
1643	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1644	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1645
1646	if (a_sector < b_sector)
1647		return -1;
1648	if (a_sector > b_sector)
1649		return 1;
1650	return 0;
1651}
1652
1653static void run_plug(struct btrfs_plug_cb *plug)
1654{
 
1655	struct btrfs_raid_bio *cur;
1656	struct btrfs_raid_bio *last = NULL;
1657
1658	/*
1659	 * sort our plug list then try to merge
1660	 * everything we can in hopes of creating full
1661	 * stripes.
1662	 */
1663	list_sort(NULL, &plug->rbio_list, plug_cmp);
 
1664	while (!list_empty(&plug->rbio_list)) {
1665		cur = list_entry(plug->rbio_list.next,
1666				 struct btrfs_raid_bio, plug_list);
1667		list_del_init(&cur->plug_list);
1668
1669		if (rbio_is_full(cur)) {
1670			int ret;
1671
1672			/* we have a full stripe, send it down */
1673			ret = full_stripe_write(cur);
1674			BUG_ON(ret);
1675			continue;
1676		}
1677		if (last) {
1678			if (rbio_can_merge(last, cur)) {
1679				merge_rbio(last, cur);
1680				__free_raid_bio(cur);
1681				continue;
1682
1683			}
1684			__raid56_parity_write(last);
1685		}
1686		last = cur;
1687	}
1688	if (last) {
1689		__raid56_parity_write(last);
1690	}
1691	kfree(plug);
1692}
1693
1694/*
1695 * if the unplug comes from schedule, we have to push the
1696 * work off to a helper thread
1697 */
1698static void unplug_work(struct btrfs_work *work)
1699{
1700	struct btrfs_plug_cb *plug;
1701	plug = container_of(work, struct btrfs_plug_cb, work);
1702	run_plug(plug);
1703}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1704
1705static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1706{
1707	struct btrfs_plug_cb *plug;
1708	plug = container_of(cb, struct btrfs_plug_cb, cb);
1709
1710	if (from_schedule) {
1711		btrfs_init_work(&plug->work, unplug_work, NULL, NULL);
1712		btrfs_queue_work(plug->info->rmw_workers,
1713				 &plug->work);
1714		return;
1715	}
1716	run_plug(plug);
1717}
1718
1719/*
1720 * our main entry point for writes from the rest of the FS.
1721 */
1722int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
1723			struct btrfs_bio *bbio, u64 stripe_len)
1724{
 
1725	struct btrfs_raid_bio *rbio;
1726	struct btrfs_plug_cb *plug = NULL;
1727	struct blk_plug_cb *cb;
1728	int ret;
1729
1730	rbio = alloc_rbio(fs_info, bbio, stripe_len);
1731	if (IS_ERR(rbio)) {
1732		btrfs_put_bbio(bbio);
1733		return PTR_ERR(rbio);
1734	}
1735	bio_list_add(&rbio->bio_list, bio);
1736	rbio->bio_list_bytes = bio->bi_iter.bi_size;
1737	rbio->operation = BTRFS_RBIO_WRITE;
1738
1739	btrfs_bio_counter_inc_noblocked(fs_info);
1740	rbio->generic_bio_cnt = 1;
1741
1742	/*
1743	 * don't plug on full rbios, just get them out the door
1744	 * as quickly as we can
1745	 */
1746	if (rbio_is_full(rbio)) {
1747		ret = full_stripe_write(rbio);
1748		if (ret)
1749			btrfs_bio_counter_dec(fs_info);
1750		return ret;
1751	}
1752
1753	cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
1754	if (cb) {
1755		plug = container_of(cb, struct btrfs_plug_cb, cb);
1756		if (!plug->info) {
1757			plug->info = fs_info;
1758			INIT_LIST_HEAD(&plug->rbio_list);
1759		}
1760		list_add_tail(&rbio->plug_list, &plug->rbio_list);
1761		ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1762	} else {
1763		ret = __raid56_parity_write(rbio);
1764		if (ret)
1765			btrfs_bio_counter_dec(fs_info);
1766	}
 
 
 
 
 
 
 
 
1767	return ret;
1768}
1769
1770/*
1771 * all parity reconstruction happens here.  We've read in everything
1772 * we can find from the drives and this does the heavy lifting of
1773 * sorting the good from the bad.
1774 */
1775static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1776{
1777	int pagenr, stripe;
1778	void **pointers;
1779	void **unmap_array;
1780	int faila = -1, failb = -1;
1781	struct page *page;
1782	blk_status_t err;
1783	int i;
 
 
1784
1785	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1786	if (!pointers) {
1787		err = BLK_STS_RESOURCE;
1788		goto cleanup_io;
1789	}
 
 
1790
 
 
1791	/*
1792	 * Store copy of pointers that does not get reordered during
1793	 * reconstruction so that kunmap_local works.
1794	 */
1795	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1796	if (!unmap_array) {
1797		err = BLK_STS_RESOURCE;
1798		goto cleanup_pointers;
1799	}
1800
1801	faila = rbio->faila;
1802	failb = rbio->failb;
1803
1804	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1805	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1806		spin_lock_irq(&rbio->bio_list_lock);
1807		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1808		spin_unlock_irq(&rbio->bio_list_lock);
1809	}
1810
1811	index_rbio_pages(rbio);
1812
1813	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1814		/*
1815		 * Now we just use bitmap to mark the horizontal stripes in
1816		 * which we have data when doing parity scrub.
1817		 */
1818		if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1819		    !test_bit(pagenr, rbio->dbitmap))
1820			continue;
 
 
 
 
 
 
 
 
1821
1822		/*
1823		 * Setup our array of pointers with pages from each stripe
1824		 *
1825		 * NOTE: store a duplicate array of pointers to preserve the
1826		 * pointer order
1827		 */
1828		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
 
 
 
 
 
1829			/*
1830			 * if we're rebuilding a read, we have to use
1831			 * pages from the bio list
1832			 */
1833			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1834			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1835			    (stripe == faila || stripe == failb)) {
1836				page = page_in_rbio(rbio, stripe, pagenr, 0);
1837			} else {
1838				page = rbio_stripe_page(rbio, stripe, pagenr);
1839			}
1840			pointers[stripe] = kmap_local_page(page);
1841			unmap_array[stripe] = pointers[stripe];
1842		}
1843
1844		/* all raid6 handling here */
1845		if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1846			/*
1847			 * single failure, rebuild from parity raid5
1848			 * style
1849			 */
1850			if (failb < 0) {
1851				if (faila == rbio->nr_data) {
1852					/*
1853					 * Just the P stripe has failed, without
1854					 * a bad data or Q stripe.
1855					 * TODO, we should redo the xor here.
1856					 */
1857					err = BLK_STS_IOERR;
1858					goto cleanup;
1859				}
1860				/*
1861				 * a single failure in raid6 is rebuilt
1862				 * in the pstripe code below
 
1863				 */
1864				goto pstripe;
1865			}
1866
1867			/* make sure our ps and qs are in order */
1868			if (faila > failb)
1869				swap(faila, failb);
1870
1871			/* if the q stripe is failed, do a pstripe reconstruction
1872			 * from the xors.
1873			 * If both the q stripe and the P stripe are failed, we're
1874			 * here due to a crc mismatch and we can't give them the
1875			 * data they want
1876			 */
1877			if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1878				if (rbio->bbio->raid_map[faila] ==
1879				    RAID5_P_STRIPE) {
1880					err = BLK_STS_IOERR;
1881					goto cleanup;
1882				}
1883				/*
1884				 * otherwise we have one bad data stripe and
1885				 * a good P stripe.  raid5!
1886				 */
1887				goto pstripe;
1888			}
1889
1890			if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1891				raid6_datap_recov(rbio->real_stripes,
1892						  PAGE_SIZE, faila, pointers);
1893			} else {
1894				raid6_2data_recov(rbio->real_stripes,
1895						  PAGE_SIZE, faila, failb,
1896						  pointers);
1897			}
1898		} else {
1899			void *p;
 
 
 
 
1900
1901			/* rebuild from P stripe here (raid5 or raid6) */
1902			BUG_ON(failb != -1);
1903pstripe:
1904			/* Copy parity block into failed block to start with */
1905			copy_page(pointers[faila], pointers[rbio->nr_data]);
 
 
 
 
 
 
 
 
 
 
 
 
1906
1907			/* rearrange the pointer array */
1908			p = pointers[faila];
1909			for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1910				pointers[stripe] = pointers[stripe + 1];
1911			pointers[rbio->nr_data - 1] = p;
1912
1913			/* xor in the rest */
1914			run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1915		}
1916		/* if we're doing this rebuild as part of an rmw, go through
1917		 * and set all of our private rbio pages in the
1918		 * failed stripes as uptodate.  This way finish_rmw will
1919		 * know they can be trusted.  If this was a read reconstruction,
1920		 * other endio functions will fiddle the uptodate bits
1921		 */
1922		if (rbio->operation == BTRFS_RBIO_WRITE) {
1923			for (i = 0;  i < rbio->stripe_npages; i++) {
1924				if (faila != -1) {
1925					page = rbio_stripe_page(rbio, faila, i);
1926					SetPageUptodate(page);
1927				}
1928				if (failb != -1) {
1929					page = rbio_stripe_page(rbio, failb, i);
1930					SetPageUptodate(page);
1931				}
1932			}
1933		}
1934		for (stripe = rbio->real_stripes - 1; stripe >= 0; stripe--)
1935			kunmap_local(unmap_array[stripe]);
1936	}
1937
1938	err = BLK_STS_OK;
1939cleanup:
1940	kfree(unmap_array);
1941cleanup_pointers:
1942	kfree(pointers);
 
 
 
 
 
 
 
 
1943
1944cleanup_io:
1945	/*
1946	 * Similar to READ_REBUILD, REBUILD_MISSING at this point also has a
1947	 * valid rbio which is consistent with ondisk content, thus such a
1948	 * valid rbio can be cached to avoid further disk reads.
 
1949	 */
 
 
 
 
 
 
 
1950	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1951	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1952		/*
1953		 * - In case of two failures, where rbio->failb != -1:
1954		 *
1955		 *   Do not cache this rbio since the above read reconstruction
1956		 *   (raid6_datap_recov() or raid6_2data_recov()) may have
1957		 *   changed some content of stripes which are not identical to
1958		 *   on-disk content any more, otherwise, a later write/recover
1959		 *   may steal stripe_pages from this rbio and end up with
1960		 *   corruptions or rebuild failures.
1961		 *
1962		 * - In case of single failure, where rbio->failb == -1:
1963		 *
1964		 *   Cache this rbio iff the above read reconstruction is
1965		 *   executed without problems.
1966		 */
1967		if (err == BLK_STS_OK && rbio->failb < 0)
1968			cache_rbio_pages(rbio);
1969		else
1970			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1971
1972		rbio_orig_end_io(rbio, err);
1973	} else if (err == BLK_STS_OK) {
1974		rbio->faila = -1;
1975		rbio->failb = -1;
1976
1977		if (rbio->operation == BTRFS_RBIO_WRITE)
1978			finish_rmw(rbio);
1979		else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
1980			finish_parity_scrub(rbio, 0);
1981		else
1982			BUG();
1983	} else {
1984		rbio_orig_end_io(rbio, err);
1985	}
 
 
 
 
 
1986}
1987
1988/*
1989 * This is called only for stripes we've read from disk to
1990 * reconstruct the parity.
1991 */
1992static void raid_recover_end_io(struct bio *bio)
1993{
1994	struct btrfs_raid_bio *rbio = bio->bi_private;
 
 
1995
 
1996	/*
1997	 * we only read stripe pages off the disk, set them
1998	 * up to date if there were no errors
 
 
 
 
1999	 */
2000	if (bio->bi_status)
2001		fail_bio_stripe(rbio, bio);
2002	else
2003		set_bio_pages_uptodate(bio);
2004	bio_put(bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2005
2006	if (!atomic_dec_and_test(&rbio->stripes_pending))
2007		return;
 
 
 
 
 
 
 
 
2008
2009	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2010		rbio_orig_end_io(rbio, BLK_STS_IOERR);
2011	else
2012		__raid_recover_end_io(rbio);
2013}
2014
2015/*
2016 * reads everything we need off the disk to reconstruct
2017 * the parity. endio handlers trigger final reconstruction
2018 * when the IO is done.
2019 *
2020 * This is used both for reads from the higher layers and for
2021 * parity construction required to finish a rmw cycle.
2022 */
2023static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2024{
2025	int bios_to_read = 0;
2026	struct bio_list bio_list;
 
2027	int ret;
2028	int pagenr;
2029	int stripe;
2030	struct bio *bio;
2031
 
 
 
 
 
2032	bio_list_init(&bio_list);
2033
 
2034	ret = alloc_rbio_pages(rbio);
2035	if (ret)
2036		goto cleanup;
 
 
 
 
 
 
 
 
 
 
 
2037
2038	atomic_set(&rbio->error, 0);
 
 
2039
2040	/*
2041	 * read everything that hasn't failed.  Thanks to the
2042	 * stripe cache, it is possible that some or all of these
2043	 * pages are going to be uptodate.
2044	 */
2045	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2046		if (rbio->faila == stripe || rbio->failb == stripe) {
2047			atomic_inc(&rbio->error);
2048			continue;
2049		}
2050
2051		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2052			struct page *p;
 
 
2053
2054			/*
2055			 * the rmw code may have already read this
2056			 * page in
2057			 */
2058			p = rbio_stripe_page(rbio, stripe, pagenr);
2059			if (PageUptodate(p))
2060				continue;
2061
2062			ret = rbio_add_io_page(rbio, &bio_list,
2063				       rbio_stripe_page(rbio, stripe, pagenr),
2064				       stripe, pagenr, rbio->stripe_len);
2065			if (ret < 0)
2066				goto cleanup;
2067		}
2068	}
 
 
 
 
 
 
 
 
 
 
 
 
2069
2070	bios_to_read = bio_list_size(&bio_list);
2071	if (!bios_to_read) {
2072		/*
2073		 * we might have no bios to read just because the pages
2074		 * were up to date, or we might have no bios to read because
2075		 * the devices were gone.
2076		 */
2077		if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2078			__raid_recover_end_io(rbio);
2079			return 0;
2080		} else {
2081			goto cleanup;
2082		}
2083	}
2084
2085	/*
2086	 * the bbio may be freed once we submit the last bio.  Make sure
2087	 * not to touch it after that
 
 
2088	 */
2089	atomic_set(&rbio->stripes_pending, bios_to_read);
2090	while ((bio = bio_list_pop(&bio_list))) {
2091		bio->bi_private = rbio;
2092		bio->bi_end_io = raid_recover_end_io;
2093		bio->bi_opf = REQ_OP_READ;
2094
2095		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
 
 
 
 
2096
2097		submit_bio(bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2098	}
2099
2100	return 0;
2101
2102cleanup:
2103	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2104	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2105		rbio_orig_end_io(rbio, BLK_STS_IOERR);
2106
2107	while ((bio = bio_list_pop(&bio_list)))
2108		bio_put(bio);
2109
2110	return -EIO;
2111}
2112
2113/*
2114 * the main entry point for reads from the higher layers.  This
2115 * is really only called when the normal read path had a failure,
2116 * so we assume the bio they send down corresponds to a failed part
2117 * of the drive.
2118 */
2119int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
2120			  struct btrfs_bio *bbio, u64 stripe_len,
2121			  int mirror_num, int generic_io)
2122{
 
2123	struct btrfs_raid_bio *rbio;
2124	int ret;
2125
2126	if (generic_io) {
2127		ASSERT(bbio->mirror_num == mirror_num);
2128		btrfs_io_bio(bio)->mirror_num = mirror_num;
2129	}
2130
2131	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2132	if (IS_ERR(rbio)) {
2133		if (generic_io)
2134			btrfs_put_bbio(bbio);
2135		return PTR_ERR(rbio);
2136	}
2137
2138	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2139	bio_list_add(&rbio->bio_list, bio);
2140	rbio->bio_list_bytes = bio->bi_iter.bi_size;
2141
2142	rbio->faila = find_logical_bio_stripe(rbio, bio);
2143	if (rbio->faila == -1) {
2144		btrfs_warn(fs_info,
2145	"%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2146			   __func__, bio->bi_iter.bi_sector << 9,
2147			   (u64)bio->bi_iter.bi_size, bbio->map_type);
2148		if (generic_io)
2149			btrfs_put_bbio(bbio);
2150		kfree(rbio);
2151		return -EIO;
2152	}
2153
2154	if (generic_io) {
2155		btrfs_bio_counter_inc_noblocked(fs_info);
2156		rbio->generic_bio_cnt = 1;
2157	} else {
2158		btrfs_get_bbio(bbio);
2159	}
2160
2161	/*
2162	 * Loop retry:
2163	 * for 'mirror == 2', reconstruct from all other stripes.
2164	 * for 'mirror_num > 2', select a stripe to fail on every retry.
2165	 */
2166	if (mirror_num > 2) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2167		/*
2168		 * 'mirror == 3' is to fail the p stripe and
2169		 * reconstruct from the q stripe.  'mirror > 3' is to
2170		 * fail a data stripe and reconstruct from p+q stripe.
2171		 */
2172		rbio->failb = rbio->real_stripes - (mirror_num - 1);
2173		ASSERT(rbio->failb > 0);
2174		if (rbio->failb <= rbio->faila)
2175			rbio->failb--;
2176	}
 
 
 
 
 
 
 
 
2177
2178	ret = lock_stripe_add(rbio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2179
2180	/*
2181	 * __raid56_parity_recover will end the bio with
2182	 * any errors it hits.  We don't want to return
2183	 * its error value up the stack because our caller
2184	 * will end up calling bio_endio with any nonzero
2185	 * return
2186	 */
2187	if (ret == 0)
2188		__raid56_parity_recover(rbio);
2189	/*
2190	 * our rbio has been added to the list of
2191	 * rbios that will be handled after the
2192	 * currently lock owner is done
2193	 */
2194	return 0;
 
 
 
 
 
 
 
 
 
 
 
2195
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2196}
2197
2198static void rmw_work(struct btrfs_work *work)
2199{
2200	struct btrfs_raid_bio *rbio;
 
2201
2202	rbio = container_of(work, struct btrfs_raid_bio, work);
2203	raid56_rmw_stripe(rbio);
 
 
 
 
 
2204}
2205
2206static void read_rebuild_work(struct btrfs_work *work)
2207{
2208	struct btrfs_raid_bio *rbio;
 
2209
2210	rbio = container_of(work, struct btrfs_raid_bio, work);
2211	__raid56_parity_recover(rbio);
 
 
2212}
2213
2214/*
2215 * The following code is used to scrub/replace the parity stripe
2216 *
2217 * Caller must have already increased bio_counter for getting @bbio.
2218 *
2219 * Note: We need make sure all the pages that add into the scrub/replace
2220 * raid bio are correct and not be changed during the scrub/replace. That
2221 * is those pages just hold metadata or file data with checksum.
2222 */
2223
2224struct btrfs_raid_bio *
2225raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2226			       struct btrfs_bio *bbio, u64 stripe_len,
2227			       struct btrfs_device *scrub_dev,
2228			       unsigned long *dbitmap, int stripe_nsectors)
2229{
 
2230	struct btrfs_raid_bio *rbio;
2231	int i;
2232
2233	rbio = alloc_rbio(fs_info, bbio, stripe_len);
2234	if (IS_ERR(rbio))
2235		return NULL;
2236	bio_list_add(&rbio->bio_list, bio);
2237	/*
2238	 * This is a special bio which is used to hold the completion handler
2239	 * and make the scrub rbio is similar to the other types
2240	 */
2241	ASSERT(!bio->bi_iter.bi_size);
2242	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2243
2244	/*
2245	 * After mapping bbio with BTRFS_MAP_WRITE, parities have been sorted
2246	 * to the end position, so this search can start from the first parity
2247	 * stripe.
2248	 */
2249	for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2250		if (bbio->stripes[i].dev == scrub_dev) {
2251			rbio->scrubp = i;
2252			break;
2253		}
2254	}
2255	ASSERT(i < rbio->real_stripes);
2256
2257	/* Now we just support the sectorsize equals to page size */
2258	ASSERT(fs_info->sectorsize == PAGE_SIZE);
2259	ASSERT(rbio->stripe_npages == stripe_nsectors);
2260	bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2261
2262	/*
2263	 * We have already increased bio_counter when getting bbio, record it
2264	 * so we can free it at rbio_orig_end_io().
2265	 */
2266	rbio->generic_bio_cnt = 1;
2267
2268	return rbio;
2269}
2270
2271/* Used for both parity scrub and missing. */
2272void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2273			    u64 logical)
2274{
 
2275	int stripe_offset;
2276	int index;
2277
2278	ASSERT(logical >= rbio->bbio->raid_map[0]);
2279	ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2280				rbio->stripe_len * rbio->nr_data);
2281	stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2282	index = stripe_offset >> PAGE_SHIFT;
2283	rbio->bio_pages[index] = page;
 
2284}
2285
2286/*
2287 * We just scrub the parity that we have correct data on the same horizontal,
2288 * so we needn't allocate all pages for all the stripes.
2289 */
2290static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2291{
2292	int i;
2293	int bit;
2294	int index;
2295	struct page *page;
2296
2297	for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2298		for (i = 0; i < rbio->real_stripes; i++) {
2299			index = i * rbio->stripe_npages + bit;
2300			if (rbio->stripe_pages[index])
2301				continue;
2302
2303			page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2304			if (!page)
2305				return -ENOMEM;
2306			rbio->stripe_pages[index] = page;
2307		}
 
 
 
2308	}
 
2309	return 0;
2310}
2311
2312static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2313					 int need_check)
2314{
2315	struct btrfs_bio *bbio = rbio->bbio;
 
2316	void **pointers = rbio->finish_pointers;
2317	unsigned long *pbitmap = rbio->finish_pbitmap;
2318	int nr_data = rbio->nr_data;
2319	int stripe;
2320	int pagenr;
2321	bool has_qstripe;
2322	struct page *p_page = NULL;
2323	struct page *q_page = NULL;
2324	struct bio_list bio_list;
2325	struct bio *bio;
2326	int is_replace = 0;
2327	int ret;
2328
2329	bio_list_init(&bio_list);
2330
2331	if (rbio->real_stripes - rbio->nr_data == 1)
2332		has_qstripe = false;
2333	else if (rbio->real_stripes - rbio->nr_data == 2)
2334		has_qstripe = true;
2335	else
2336		BUG();
2337
2338	if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2339		is_replace = 1;
2340		bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2341	}
2342
2343	/*
2344	 * Because the higher layers(scrubber) are unlikely to
2345	 * use this area of the disk again soon, so don't cache
2346	 * it.
2347	 */
2348	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2349
2350	if (!need_check)
2351		goto writeback;
2352
2353	p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2354	if (!p_page)
2355		goto cleanup;
2356	SetPageUptodate(p_page);
 
2357
2358	if (has_qstripe) {
2359		/* RAID6, allocate and map temp space for the Q stripe */
2360		q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2361		if (!q_page) {
2362			__free_page(p_page);
2363			goto cleanup;
 
2364		}
2365		SetPageUptodate(q_page);
2366		pointers[rbio->real_stripes - 1] = kmap_local_page(q_page);
 
2367	}
2368
2369	atomic_set(&rbio->error, 0);
2370
2371	/* Map the parity stripe just once */
2372	pointers[nr_data] = kmap_local_page(p_page);
2373
2374	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2375		struct page *p;
2376		void *parity;
 
2377		/* first collect one page from each data stripe */
2378		for (stripe = 0; stripe < nr_data; stripe++) {
2379			p = page_in_rbio(rbio, stripe, pagenr, 0);
2380			pointers[stripe] = kmap_local_page(p);
 
2381		}
2382
2383		if (has_qstripe) {
2384			/* RAID6, call the library function to fill in our P/Q */
2385			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2386						pointers);
2387		} else {
2388			/* raid5 */
2389			copy_page(pointers[nr_data], pointers[0]);
2390			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2391		}
2392
2393		/* Check scrubbing parity and repair it */
2394		p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2395		parity = kmap_local_page(p);
2396		if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2397			copy_page(parity, pointers[rbio->scrubp]);
2398		else
2399			/* Parity is right, needn't writeback */
2400			bitmap_clear(rbio->dbitmap, pagenr, 1);
2401		kunmap_local(parity);
2402
2403		for (stripe = nr_data - 1; stripe >= 0; stripe--)
2404			kunmap_local(pointers[stripe]);
2405	}
2406
2407	kunmap_local(pointers[nr_data]);
2408	__free_page(p_page);
2409	if (q_page) {
 
2410		kunmap_local(pointers[rbio->real_stripes - 1]);
2411		__free_page(q_page);
 
2412	}
2413
2414writeback:
2415	/*
2416	 * time to start writing.  Make bios for everything from the
2417	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2418	 * everything else.
2419	 */
2420	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2421		struct page *page;
2422
2423		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2424		ret = rbio_add_io_page(rbio, &bio_list,
2425			       page, rbio->scrubp, pagenr, rbio->stripe_len);
2426		if (ret)
2427			goto cleanup;
2428	}
2429
2430	if (!is_replace)
2431		goto submit_write;
2432
2433	for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2434		struct page *page;
2435
2436		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2437		ret = rbio_add_io_page(rbio, &bio_list, page,
2438				       bbio->tgtdev_map[rbio->scrubp],
2439				       pagenr, rbio->stripe_len);
2440		if (ret)
2441			goto cleanup;
2442	}
2443
2444submit_write:
2445	nr_data = bio_list_size(&bio_list);
2446	if (!nr_data) {
2447		/* Every parity is right */
2448		rbio_orig_end_io(rbio, BLK_STS_OK);
2449		return;
2450	}
2451
2452	atomic_set(&rbio->stripes_pending, nr_data);
2453
2454	while ((bio = bio_list_pop(&bio_list))) {
2455		bio->bi_private = rbio;
2456		bio->bi_end_io = raid_write_end_io;
2457		bio->bi_opf = REQ_OP_WRITE;
2458
2459		submit_bio(bio);
2460	}
2461	return;
2462
2463cleanup:
2464	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2465
2466	while ((bio = bio_list_pop(&bio_list)))
2467		bio_put(bio);
 
2468}
2469
2470static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2471{
2472	if (stripe >= 0 && stripe < rbio->nr_data)
2473		return 1;
2474	return 0;
2475}
2476
2477/*
2478 * While we're doing the parity check and repair, we could have errors
2479 * in reading pages off the disk.  This checks for errors and if we're
2480 * not able to read the page it'll trigger parity reconstruction.  The
2481 * parity scrub will be finished after we've reconstructed the failed
2482 * stripes
2483 */
2484static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2485{
2486	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2487		goto cleanup;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2488
2489	if (rbio->faila >= 0 || rbio->failb >= 0) {
2490		int dfail = 0, failp = -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2491
2492		if (is_data_stripe(rbio, rbio->faila))
2493			dfail++;
2494		else if (is_parity_stripe(rbio->faila))
2495			failp = rbio->faila;
2496
2497		if (is_data_stripe(rbio, rbio->failb))
2498			dfail++;
2499		else if (is_parity_stripe(rbio->failb))
2500			failp = rbio->failb;
2501
2502		/*
2503		 * Because we can not use a scrubbing parity to repair
2504		 * the data, so the capability of the repair is declined.
2505		 * (In the case of RAID5, we can not repair anything)
2506		 */
2507		if (dfail > rbio->bbio->max_errors - 1)
2508			goto cleanup;
2509
 
2510		/*
2511		 * If all data is good, only parity is correctly, just
2512		 * repair the parity.
2513		 */
2514		if (dfail == 0) {
2515			finish_parity_scrub(rbio, 0);
2516			return;
2517		}
2518
2519		/*
2520		 * Here means we got one corrupted data stripe and one
2521		 * corrupted parity on RAID6, if the corrupted parity
2522		 * is scrubbing parity, luckily, use the other one to repair
2523		 * the data, or we can not repair the data stripe.
2524		 */
2525		if (failp != rbio->scrubp)
2526			goto cleanup;
 
 
2527
2528		__raid_recover_end_io(rbio);
2529	} else {
2530		finish_parity_scrub(rbio, 1);
2531	}
2532	return;
2533
2534cleanup:
2535	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2536}
2537
2538/*
2539 * end io for the read phase of the rmw cycle.  All the bios here are physical
2540 * stripe bios we've read from the disk so we can recalculate the parity of the
2541 * stripe.
2542 *
2543 * This will usually kick off finish_rmw once all the bios are read in, but it
2544 * may trigger parity reconstruction if we had any errors along the way
2545 */
2546static void raid56_parity_scrub_end_io(struct bio *bio)
2547{
2548	struct btrfs_raid_bio *rbio = bio->bi_private;
 
 
 
 
 
 
 
 
 
 
 
2549
2550	if (bio->bi_status)
2551		fail_bio_stripe(rbio, bio);
2552	else
2553		set_bio_pages_uptodate(bio);
2554
2555	bio_put(bio);
 
 
 
 
 
 
 
2556
2557	if (!atomic_dec_and_test(&rbio->stripes_pending))
2558		return;
 
 
 
 
 
2559
2560	/*
2561	 * this will normally call finish_rmw to start our write
2562	 * but if there are any failed stripes we'll reconstruct
2563	 * from parity first
2564	 */
2565	validate_rbio_for_parity_scrub(rbio);
 
 
 
 
2566}
2567
2568static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2569{
2570	int bios_to_read = 0;
2571	struct bio_list bio_list;
 
2572	int ret;
2573	int pagenr;
2574	int stripe;
2575	struct bio *bio;
2576
2577	bio_list_init(&bio_list);
2578
2579	ret = alloc_rbio_essential_pages(rbio);
2580	if (ret)
2581		goto cleanup;
2582
2583	atomic_set(&rbio->error, 0);
2584	/*
2585	 * build a list of bios to read all the missing parts of this
2586	 * stripe
2587	 */
2588	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2589		for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2590			struct page *page;
2591			/*
2592			 * we want to find all the pages missing from
2593			 * the rbio and read them from the disk.  If
2594			 * page_in_rbio finds a page in the bio list
2595			 * we don't need to read it off the stripe.
2596			 */
2597			page = page_in_rbio(rbio, stripe, pagenr, 1);
2598			if (page)
2599				continue;
2600
2601			page = rbio_stripe_page(rbio, stripe, pagenr);
2602			/*
2603			 * the bio cache may have handed us an uptodate
2604			 * page.  If so, be happy and use it
2605			 */
2606			if (PageUptodate(page))
2607				continue;
2608
2609			ret = rbio_add_io_page(rbio, &bio_list, page,
2610				       stripe, pagenr, rbio->stripe_len);
2611			if (ret)
2612				goto cleanup;
2613		}
2614	}
2615
2616	bios_to_read = bio_list_size(&bio_list);
2617	if (!bios_to_read) {
2618		/*
2619		 * this can happen if others have merged with
2620		 * us, it means there is nothing left to read.
2621		 * But if there are missing devices it may not be
2622		 * safe to do the full stripe write yet.
2623		 */
2624		goto finish;
2625	}
2626
2627	/*
2628	 * the bbio may be freed once we submit the last bio.  Make sure
2629	 * not to touch it after that
2630	 */
2631	atomic_set(&rbio->stripes_pending, bios_to_read);
2632	while ((bio = bio_list_pop(&bio_list))) {
2633		bio->bi_private = rbio;
2634		bio->bi_end_io = raid56_parity_scrub_end_io;
2635		bio->bi_opf = REQ_OP_READ;
2636
2637		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
2638
2639		submit_bio(bio);
 
2640	}
2641	/* the actual write will happen once the reads are done */
2642	return;
2643
2644cleanup:
2645	rbio_orig_end_io(rbio, BLK_STS_IOERR);
2646
2647	while ((bio = bio_list_pop(&bio_list)))
2648		bio_put(bio);
2649
2650	return;
2651
2652finish:
2653	validate_rbio_for_parity_scrub(rbio);
2654}
2655
2656static void scrub_parity_work(struct btrfs_work *work)
2657{
2658	struct btrfs_raid_bio *rbio;
 
2659
2660	rbio = container_of(work, struct btrfs_raid_bio, work);
2661	raid56_parity_scrub_stripe(rbio);
 
2662}
2663
2664void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2665{
2666	if (!lock_stripe_add(rbio))
2667		start_async_work(rbio, scrub_parity_work);
2668}
2669
2670/* The following code is used for dev replace of a missing RAID 5/6 device. */
2671
2672struct btrfs_raid_bio *
2673raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
2674			  struct btrfs_bio *bbio, u64 length)
2675{
 
2676	struct btrfs_raid_bio *rbio;
2677
2678	rbio = alloc_rbio(fs_info, bbio, length);
2679	if (IS_ERR(rbio))
2680		return NULL;
2681
2682	rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2683	bio_list_add(&rbio->bio_list, bio);
2684	/*
2685	 * This is a special bio which is used to hold the completion handler
2686	 * and make the scrub rbio is similar to the other types
2687	 */
2688	ASSERT(!bio->bi_iter.bi_size);
2689
2690	rbio->faila = find_logical_bio_stripe(rbio, bio);
2691	if (rbio->faila == -1) {
2692		BUG();
2693		kfree(rbio);
2694		return NULL;
2695	}
2696
2697	/*
2698	 * When we get bbio, we have already increased bio_counter, record it
2699	 * so we can free it at rbio_orig_end_io()
2700	 */
2701	rbio->generic_bio_cnt = 1;
2702
2703	return rbio;
2704}
2705
2706void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2707{
2708	if (!lock_stripe_add(rbio))
2709		start_async_work(rbio, read_rebuild_work);
2710}