Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2012 Fusion-io  All rights reserved.
   4 * Copyright (C) 2012 Intel Corp. All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6
   7#include <linux/sched.h>
 
   8#include <linux/bio.h>
   9#include <linux/slab.h>
 
  10#include <linux/blkdev.h>
 
 
 
 
 
  11#include <linux/raid/pq.h>
  12#include <linux/hash.h>
  13#include <linux/list_sort.h>
  14#include <linux/raid/xor.h>
  15#include <linux/mm.h>
  16#include "messages.h"
  17#include "misc.h"
  18#include "ctree.h"
 
  19#include "disk-io.h"
 
 
  20#include "volumes.h"
  21#include "raid56.h"
  22#include "async-thread.h"
  23#include "file-item.h"
  24#include "btrfs_inode.h"
  25
  26/* set when additional merges to this rbio are not allowed */
  27#define RBIO_RMW_LOCKED_BIT	1
  28
  29/*
  30 * set when this rbio is sitting in the hash, but it is just a cache
  31 * of past RMW
  32 */
  33#define RBIO_CACHE_BIT		2
  34
  35/*
  36 * set when it is safe to trust the stripe_pages for caching
  37 */
  38#define RBIO_CACHE_READY_BIT	3
  39
  40#define RBIO_CACHE_SIZE 1024
  41
  42#define BTRFS_STRIPE_HASH_TABLE_BITS				11
 
 
 
 
 
  43
  44/* Used by the raid56 code to lock stripes for read/modify/write */
  45struct btrfs_stripe_hash {
 
 
 
 
 
 
 
  46	struct list_head hash_list;
  47	spinlock_t lock;
  48};
  49
  50/* Used by the raid56 code to lock stripes for read/modify/write */
  51struct btrfs_stripe_hash_table {
 
  52	struct list_head stripe_cache;
  53	spinlock_t cache_lock;
  54	int cache_size;
  55	struct btrfs_stripe_hash table[];
  56};
  57
  58/*
  59 * A bvec like structure to present a sector inside a page.
  60 *
  61 * Unlike bvec we don't need bvlen, as it's fixed to sectorsize.
  62 */
  63struct sector_ptr {
  64	struct page *page;
  65	unsigned int pgoff:24;
  66	unsigned int uptodate:8;
  67};
  68
  69static void rmw_rbio_work(struct work_struct *work);
  70static void rmw_rbio_work_locked(struct work_struct *work);
  71static void index_rbio_pages(struct btrfs_raid_bio *rbio);
  72static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
 
 
 
  73
  74static int finish_parity_scrub(struct btrfs_raid_bio *rbio, int need_check);
  75static void scrub_rbio_work_locked(struct work_struct *work);
 
 
 
 
 
  76
  77static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio)
  78{
  79	bitmap_free(rbio->error_bitmap);
  80	kfree(rbio->stripe_pages);
  81	kfree(rbio->bio_sectors);
  82	kfree(rbio->stripe_sectors);
  83	kfree(rbio->finish_pointers);
  84}
  85
  86static void free_raid_bio(struct btrfs_raid_bio *rbio)
  87{
  88	int i;
  89
  90	if (!refcount_dec_and_test(&rbio->refs))
  91		return;
  92
  93	WARN_ON(!list_empty(&rbio->stripe_cache));
  94	WARN_ON(!list_empty(&rbio->hash_list));
  95	WARN_ON(!bio_list_empty(&rbio->bio_list));
  96
  97	for (i = 0; i < rbio->nr_pages; i++) {
  98		if (rbio->stripe_pages[i]) {
  99			__free_page(rbio->stripe_pages[i]);
 100			rbio->stripe_pages[i] = NULL;
 101		}
 102	}
 
 
 103
 104	btrfs_put_bioc(rbio->bioc);
 105	free_raid_bio_pointers(rbio);
 106	kfree(rbio);
 107}
 108
 109static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func)
 110{
 111	INIT_WORK(&rbio->work, work_func);
 112	queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work);
 113}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 114
 115/*
 116 * the stripe hash table is used for locking, and to collect
 117 * bios in hopes of making a full stripe
 118 */
 119int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
 120{
 121	struct btrfs_stripe_hash_table *table;
 122	struct btrfs_stripe_hash_table *x;
 123	struct btrfs_stripe_hash *cur;
 124	struct btrfs_stripe_hash *h;
 125	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
 126	int i;
 
 127
 128	if (info->stripe_hash_table)
 129		return 0;
 130
 131	/*
 132	 * The table is large, starting with order 4 and can go as high as
 133	 * order 7 in case lock debugging is turned on.
 134	 *
 135	 * Try harder to allocate and fallback to vmalloc to lower the chance
 136	 * of a failing mount.
 137	 */
 138	table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
 139	if (!table)
 140		return -ENOMEM;
 
 
 
 
 141
 142	spin_lock_init(&table->cache_lock);
 143	INIT_LIST_HEAD(&table->stripe_cache);
 144
 145	h = table->table;
 146
 147	for (i = 0; i < num_entries; i++) {
 148		cur = h + i;
 149		INIT_LIST_HEAD(&cur->hash_list);
 150		spin_lock_init(&cur->lock);
 
 151	}
 152
 153	x = cmpxchg(&info->stripe_hash_table, NULL, table);
 154	kvfree(x);
 
 155	return 0;
 156}
 157
 158/*
 159 * caching an rbio means to copy anything from the
 160 * bio_sectors array into the stripe_pages array.  We
 161 * use the page uptodate bit in the stripe cache array
 162 * to indicate if it has valid data
 163 *
 164 * once the caching is done, we set the cache ready
 165 * bit.
 166 */
 167static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
 168{
 169	int i;
 
 
 170	int ret;
 171
 172	ret = alloc_rbio_pages(rbio);
 173	if (ret)
 174		return;
 175
 176	for (i = 0; i < rbio->nr_sectors; i++) {
 177		/* Some range not covered by bio (partial write), skip it */
 178		if (!rbio->bio_sectors[i].page) {
 179			/*
 180			 * Even if the sector is not covered by bio, if it is
 181			 * a data sector it should still be uptodate as it is
 182			 * read from disk.
 183			 */
 184			if (i < rbio->nr_data * rbio->stripe_nsectors)
 185				ASSERT(rbio->stripe_sectors[i].uptodate);
 186			continue;
 187		}
 188
 189		ASSERT(rbio->stripe_sectors[i].page);
 190		memcpy_page(rbio->stripe_sectors[i].page,
 191			    rbio->stripe_sectors[i].pgoff,
 192			    rbio->bio_sectors[i].page,
 193			    rbio->bio_sectors[i].pgoff,
 194			    rbio->bioc->fs_info->sectorsize);
 195		rbio->stripe_sectors[i].uptodate = 1;
 
 196	}
 197	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
 198}
 199
 200/*
 201 * we hash on the first logical address of the stripe
 202 */
 203static int rbio_bucket(struct btrfs_raid_bio *rbio)
 204{
 205	u64 num = rbio->bioc->raid_map[0];
 206
 207	/*
 208	 * we shift down quite a bit.  We're using byte
 209	 * addressing, and most of the lower bits are zeros.
 210	 * This tends to upset hash_64, and it consistently
 211	 * returns just one or two different values.
 212	 *
 213	 * shifting off the lower bits fixes things.
 214	 */
 215	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
 216}
 217
 218static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio,
 219				       unsigned int page_nr)
 220{
 221	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
 222	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
 223	int i;
 224
 225	ASSERT(page_nr < rbio->nr_pages);
 226
 227	for (i = sectors_per_page * page_nr;
 228	     i < sectors_per_page * page_nr + sectors_per_page;
 229	     i++) {
 230		if (!rbio->stripe_sectors[i].uptodate)
 231			return false;
 232	}
 233	return true;
 234}
 235
 236/*
 237 * Update the stripe_sectors[] array to use correct page and pgoff
 238 *
 239 * Should be called every time any page pointer in stripes_pages[] got modified.
 240 */
 241static void index_stripe_sectors(struct btrfs_raid_bio *rbio)
 242{
 243	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
 244	u32 offset;
 245	int i;
 246
 247	for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) {
 248		int page_index = offset >> PAGE_SHIFT;
 249
 250		ASSERT(page_index < rbio->nr_pages);
 251		rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index];
 252		rbio->stripe_sectors[i].pgoff = offset_in_page(offset);
 253	}
 254}
 255
 256static void steal_rbio_page(struct btrfs_raid_bio *src,
 257			    struct btrfs_raid_bio *dest, int page_nr)
 258{
 259	const u32 sectorsize = src->bioc->fs_info->sectorsize;
 260	const u32 sectors_per_page = PAGE_SIZE / sectorsize;
 261	int i;
 262
 263	if (dest->stripe_pages[page_nr])
 264		__free_page(dest->stripe_pages[page_nr]);
 265	dest->stripe_pages[page_nr] = src->stripe_pages[page_nr];
 266	src->stripe_pages[page_nr] = NULL;
 267
 268	/* Also update the sector->uptodate bits. */
 269	for (i = sectors_per_page * page_nr;
 270	     i < sectors_per_page * page_nr + sectors_per_page; i++)
 271		dest->stripe_sectors[i].uptodate = true;
 272}
 273
 274static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr)
 275{
 276	const int sector_nr = (page_nr << PAGE_SHIFT) >>
 277			      rbio->bioc->fs_info->sectorsize_bits;
 278
 279	/*
 280	 * We have ensured PAGE_SIZE is aligned with sectorsize, thus
 281	 * we won't have a page which is half data half parity.
 282	 *
 283	 * Thus if the first sector of the page belongs to data stripes, then
 284	 * the full page belongs to data stripes.
 285	 */
 286	return (sector_nr < rbio->nr_data * rbio->stripe_nsectors);
 287}
 288
 289/*
 290 * Stealing an rbio means taking all the uptodate pages from the stripe array
 291 * in the source rbio and putting them into the destination rbio.
 292 *
 293 * This will also update the involved stripe_sectors[] which are referring to
 294 * the old pages.
 295 */
 296static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
 297{
 298	int i;
 
 
 299
 300	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
 301		return;
 302
 303	for (i = 0; i < dest->nr_pages; i++) {
 304		struct page *p = src->stripe_pages[i];
 305
 306		/*
 307		 * We don't need to steal P/Q pages as they will always be
 308		 * regenerated for RMW or full write anyway.
 309		 */
 310		if (!is_data_stripe_page(src, i))
 311			continue;
 
 312
 313		/*
 314		 * If @src already has RBIO_CACHE_READY_BIT, it should have
 315		 * all data stripe pages present and uptodate.
 316		 */
 317		ASSERT(p);
 318		ASSERT(full_page_sectors_uptodate(src, i));
 319		steal_rbio_page(src, dest, i);
 320	}
 321	index_stripe_sectors(dest);
 322	index_stripe_sectors(src);
 323}
 324
 325/*
 326 * merging means we take the bio_list from the victim and
 327 * splice it into the destination.  The victim should
 328 * be discarded afterwards.
 329 *
 330 * must be called with dest->rbio_list_lock held
 331 */
 332static void merge_rbio(struct btrfs_raid_bio *dest,
 333		       struct btrfs_raid_bio *victim)
 334{
 335	bio_list_merge(&dest->bio_list, &victim->bio_list);
 336	dest->bio_list_bytes += victim->bio_list_bytes;
 337	/* Also inherit the bitmaps from @victim. */
 338	bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap,
 339		  dest->stripe_nsectors);
 340	bio_list_init(&victim->bio_list);
 341}
 342
 343/*
 344 * used to prune items that are in the cache.  The caller
 345 * must hold the hash table lock.
 346 */
 347static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 348{
 349	int bucket = rbio_bucket(rbio);
 350	struct btrfs_stripe_hash_table *table;
 351	struct btrfs_stripe_hash *h;
 352	int freeit = 0;
 353
 354	/*
 355	 * check the bit again under the hash table lock.
 356	 */
 357	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 358		return;
 359
 360	table = rbio->bioc->fs_info->stripe_hash_table;
 361	h = table->table + bucket;
 362
 363	/* hold the lock for the bucket because we may be
 364	 * removing it from the hash table
 365	 */
 366	spin_lock(&h->lock);
 367
 368	/*
 369	 * hold the lock for the bio list because we need
 370	 * to make sure the bio list is empty
 371	 */
 372	spin_lock(&rbio->bio_list_lock);
 373
 374	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 375		list_del_init(&rbio->stripe_cache);
 376		table->cache_size -= 1;
 377		freeit = 1;
 378
 379		/* if the bio list isn't empty, this rbio is
 380		 * still involved in an IO.  We take it out
 381		 * of the cache list, and drop the ref that
 382		 * was held for the list.
 383		 *
 384		 * If the bio_list was empty, we also remove
 385		 * the rbio from the hash_table, and drop
 386		 * the corresponding ref
 387		 */
 388		if (bio_list_empty(&rbio->bio_list)) {
 389			if (!list_empty(&rbio->hash_list)) {
 390				list_del_init(&rbio->hash_list);
 391				refcount_dec(&rbio->refs);
 392				BUG_ON(!list_empty(&rbio->plug_list));
 393			}
 394		}
 395	}
 396
 397	spin_unlock(&rbio->bio_list_lock);
 398	spin_unlock(&h->lock);
 399
 400	if (freeit)
 401		free_raid_bio(rbio);
 402}
 403
 404/*
 405 * prune a given rbio from the cache
 406 */
 407static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 408{
 409	struct btrfs_stripe_hash_table *table;
 410	unsigned long flags;
 411
 412	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 413		return;
 414
 415	table = rbio->bioc->fs_info->stripe_hash_table;
 416
 417	spin_lock_irqsave(&table->cache_lock, flags);
 418	__remove_rbio_from_cache(rbio);
 419	spin_unlock_irqrestore(&table->cache_lock, flags);
 420}
 421
 422/*
 423 * remove everything in the cache
 424 */
 425static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
 426{
 427	struct btrfs_stripe_hash_table *table;
 428	unsigned long flags;
 429	struct btrfs_raid_bio *rbio;
 430
 431	table = info->stripe_hash_table;
 432
 433	spin_lock_irqsave(&table->cache_lock, flags);
 434	while (!list_empty(&table->stripe_cache)) {
 435		rbio = list_entry(table->stripe_cache.next,
 436				  struct btrfs_raid_bio,
 437				  stripe_cache);
 438		__remove_rbio_from_cache(rbio);
 439	}
 440	spin_unlock_irqrestore(&table->cache_lock, flags);
 441}
 442
 443/*
 444 * remove all cached entries and free the hash table
 445 * used by unmount
 446 */
 447void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
 448{
 449	if (!info->stripe_hash_table)
 450		return;
 451	btrfs_clear_rbio_cache(info);
 452	kvfree(info->stripe_hash_table);
 453	info->stripe_hash_table = NULL;
 454}
 455
 456/*
 457 * insert an rbio into the stripe cache.  It
 458 * must have already been prepared by calling
 459 * cache_rbio_pages
 460 *
 461 * If this rbio was already cached, it gets
 462 * moved to the front of the lru.
 463 *
 464 * If the size of the rbio cache is too big, we
 465 * prune an item.
 466 */
 467static void cache_rbio(struct btrfs_raid_bio *rbio)
 468{
 469	struct btrfs_stripe_hash_table *table;
 470	unsigned long flags;
 471
 472	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
 473		return;
 474
 475	table = rbio->bioc->fs_info->stripe_hash_table;
 476
 477	spin_lock_irqsave(&table->cache_lock, flags);
 478	spin_lock(&rbio->bio_list_lock);
 479
 480	/* bump our ref if we were not in the list before */
 481	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
 482		refcount_inc(&rbio->refs);
 483
 484	if (!list_empty(&rbio->stripe_cache)){
 485		list_move(&rbio->stripe_cache, &table->stripe_cache);
 486	} else {
 487		list_add(&rbio->stripe_cache, &table->stripe_cache);
 488		table->cache_size += 1;
 489	}
 490
 491	spin_unlock(&rbio->bio_list_lock);
 492
 493	if (table->cache_size > RBIO_CACHE_SIZE) {
 494		struct btrfs_raid_bio *found;
 495
 496		found = list_entry(table->stripe_cache.prev,
 497				  struct btrfs_raid_bio,
 498				  stripe_cache);
 499
 500		if (found != rbio)
 501			__remove_rbio_from_cache(found);
 502	}
 503
 504	spin_unlock_irqrestore(&table->cache_lock, flags);
 505}
 506
 507/*
 508 * helper function to run the xor_blocks api.  It is only
 509 * able to do MAX_XOR_BLOCKS at a time, so we need to
 510 * loop through.
 511 */
 512static void run_xor(void **pages, int src_cnt, ssize_t len)
 513{
 514	int src_off = 0;
 515	int xor_src_cnt = 0;
 516	void *dest = pages[src_cnt];
 517
 518	while(src_cnt > 0) {
 519		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
 520		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
 521
 522		src_cnt -= xor_src_cnt;
 523		src_off += xor_src_cnt;
 524	}
 525}
 526
 527/*
 528 * Returns true if the bio list inside this rbio covers an entire stripe (no
 529 * rmw required).
 
 
 
 530 */
 531static int rbio_is_full(struct btrfs_raid_bio *rbio)
 532{
 533	unsigned long flags;
 534	unsigned long size = rbio->bio_list_bytes;
 535	int ret = 1;
 536
 537	spin_lock_irqsave(&rbio->bio_list_lock, flags);
 538	if (size != rbio->nr_data * BTRFS_STRIPE_LEN)
 539		ret = 0;
 540	BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN);
 541	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
 542
 
 
 
 
 
 
 
 
 
 
 
 
 543	return ret;
 544}
 545
 546/*
 547 * returns 1 if it is safe to merge two rbios together.
 548 * The merging is safe if the two rbios correspond to
 549 * the same stripe and if they are both going in the same
 550 * direction (read vs write), and if neither one is
 551 * locked for final IO
 552 *
 553 * The caller is responsible for locking such that
 554 * rmw_locked is safe to test
 555 */
 556static int rbio_can_merge(struct btrfs_raid_bio *last,
 557			  struct btrfs_raid_bio *cur)
 558{
 559	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
 560	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
 561		return 0;
 562
 563	/*
 564	 * we can't merge with cached rbios, since the
 565	 * idea is that when we merge the destination
 566	 * rbio is going to run our IO for us.  We can
 567	 * steal from cached rbios though, other functions
 568	 * handle that.
 569	 */
 570	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
 571	    test_bit(RBIO_CACHE_BIT, &cur->flags))
 572		return 0;
 573
 574	if (last->bioc->raid_map[0] != cur->bioc->raid_map[0])
 
 575		return 0;
 576
 577	/* we can't merge with different operations */
 578	if (last->operation != cur->operation)
 579		return 0;
 580	/*
 581	 * We've need read the full stripe from the drive.
 582	 * check and repair the parity and write the new results.
 583	 *
 584	 * We're not allowed to add any new bios to the
 585	 * bio list here, anyone else that wants to
 586	 * change this stripe needs to do their own rmw.
 587	 */
 588	if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
 
 589		return 0;
 590
 591	if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
 592	    last->operation == BTRFS_RBIO_READ_REBUILD)
 593		return 0;
 594
 595	return 1;
 596}
 597
 598static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio,
 599					     unsigned int stripe_nr,
 600					     unsigned int sector_nr)
 601{
 602	ASSERT(stripe_nr < rbio->real_stripes);
 603	ASSERT(sector_nr < rbio->stripe_nsectors);
 604
 605	return stripe_nr * rbio->stripe_nsectors + sector_nr;
 606}
 607
 608/* Return a sector from rbio->stripe_sectors, not from the bio list */
 609static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio,
 610					     unsigned int stripe_nr,
 611					     unsigned int sector_nr)
 
 
 612{
 613	return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr,
 614							      sector_nr)];
 615}
 616
 617/* Grab a sector inside P stripe */
 618static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio,
 619					      unsigned int sector_nr)
 
 620{
 621	return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr);
 622}
 623
 624/* Grab a sector inside Q stripe, return NULL if not RAID6 */
 625static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio,
 626					      unsigned int sector_nr)
 
 
 627{
 628	if (rbio->nr_data + 1 == rbio->real_stripes)
 629		return NULL;
 630	return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr);
 631}
 632
 633/*
 634 * The first stripe in the table for a logical address
 635 * has the lock.  rbios are added in one of three ways:
 636 *
 637 * 1) Nobody has the stripe locked yet.  The rbio is given
 638 * the lock and 0 is returned.  The caller must start the IO
 639 * themselves.
 640 *
 641 * 2) Someone has the stripe locked, but we're able to merge
 642 * with the lock owner.  The rbio is freed and the IO will
 643 * start automatically along with the existing rbio.  1 is returned.
 644 *
 645 * 3) Someone has the stripe locked, but we're not able to merge.
 646 * The rbio is added to the lock owner's plug list, or merged into
 647 * an rbio already on the plug list.  When the lock owner unlocks,
 648 * the next rbio on the list is run and the IO is started automatically.
 649 * 1 is returned
 650 *
 651 * If we return 0, the caller still owns the rbio and must continue with
 652 * IO submission.  If we return 1, the caller must assume the rbio has
 653 * already been freed.
 654 */
 655static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
 656{
 657	struct btrfs_stripe_hash *h;
 
 658	struct btrfs_raid_bio *cur;
 659	struct btrfs_raid_bio *pending;
 660	unsigned long flags;
 
 661	struct btrfs_raid_bio *freeit = NULL;
 662	struct btrfs_raid_bio *cache_drop = NULL;
 663	int ret = 0;
 664
 665	h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
 666
 667	spin_lock_irqsave(&h->lock, flags);
 668	list_for_each_entry(cur, &h->hash_list, hash_list) {
 669		if (cur->bioc->raid_map[0] != rbio->bioc->raid_map[0])
 670			continue;
 671
 672		spin_lock(&cur->bio_list_lock);
 673
 674		/* Can we steal this cached rbio's pages? */
 675		if (bio_list_empty(&cur->bio_list) &&
 676		    list_empty(&cur->plug_list) &&
 677		    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
 678		    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
 679			list_del_init(&cur->hash_list);
 680			refcount_dec(&cur->refs);
 681
 682			steal_rbio(cur, rbio);
 683			cache_drop = cur;
 684			spin_unlock(&cur->bio_list_lock);
 685
 686			goto lockit;
 687		}
 688
 689		/* Can we merge into the lock owner? */
 690		if (rbio_can_merge(cur, rbio)) {
 691			merge_rbio(cur, rbio);
 692			spin_unlock(&cur->bio_list_lock);
 693			freeit = rbio;
 694			ret = 1;
 695			goto out;
 696		}
 697
 
 
 698
 699		/*
 700		 * We couldn't merge with the running rbio, see if we can merge
 701		 * with the pending ones.  We don't have to check for rmw_locked
 702		 * because there is no way they are inside finish_rmw right now
 703		 */
 704		list_for_each_entry(pending, &cur->plug_list, plug_list) {
 705			if (rbio_can_merge(pending, rbio)) {
 706				merge_rbio(pending, rbio);
 707				spin_unlock(&cur->bio_list_lock);
 708				freeit = rbio;
 709				ret = 1;
 710				goto out;
 711			}
 712		}
 713
 714		/*
 715		 * No merging, put us on the tail of the plug list, our rbio
 716		 * will be started with the currently running rbio unlocks
 717		 */
 718		list_add_tail(&rbio->plug_list, &cur->plug_list);
 719		spin_unlock(&cur->bio_list_lock);
 720		ret = 1;
 721		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 722	}
 723lockit:
 724	refcount_inc(&rbio->refs);
 725	list_add(&rbio->hash_list, &h->hash_list);
 726out:
 727	spin_unlock_irqrestore(&h->lock, flags);
 728	if (cache_drop)
 729		remove_rbio_from_cache(cache_drop);
 730	if (freeit)
 731		free_raid_bio(freeit);
 732	return ret;
 733}
 734
 735static void recover_rbio_work_locked(struct work_struct *work);
 736
 737/*
 738 * called as rmw or parity rebuild is completed.  If the plug list has more
 739 * rbios waiting for this stripe, the next one on the list will be started
 740 */
 741static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
 742{
 743	int bucket;
 744	struct btrfs_stripe_hash *h;
 745	unsigned long flags;
 746	int keep_cache = 0;
 747
 748	bucket = rbio_bucket(rbio);
 749	h = rbio->bioc->fs_info->stripe_hash_table->table + bucket;
 750
 751	if (list_empty(&rbio->plug_list))
 752		cache_rbio(rbio);
 753
 754	spin_lock_irqsave(&h->lock, flags);
 755	spin_lock(&rbio->bio_list_lock);
 756
 757	if (!list_empty(&rbio->hash_list)) {
 758		/*
 759		 * if we're still cached and there is no other IO
 760		 * to perform, just leave this rbio here for others
 761		 * to steal from later
 762		 */
 763		if (list_empty(&rbio->plug_list) &&
 764		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 765			keep_cache = 1;
 766			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
 767			BUG_ON(!bio_list_empty(&rbio->bio_list));
 768			goto done;
 769		}
 770
 771		list_del_init(&rbio->hash_list);
 772		refcount_dec(&rbio->refs);
 773
 774		/*
 775		 * we use the plug list to hold all the rbios
 776		 * waiting for the chance to lock this stripe.
 777		 * hand the lock over to one of them.
 778		 */
 779		if (!list_empty(&rbio->plug_list)) {
 780			struct btrfs_raid_bio *next;
 781			struct list_head *head = rbio->plug_list.next;
 782
 783			next = list_entry(head, struct btrfs_raid_bio,
 784					  plug_list);
 785
 786			list_del_init(&rbio->plug_list);
 787
 788			list_add(&next->hash_list, &h->hash_list);
 789			refcount_inc(&next->refs);
 790			spin_unlock(&rbio->bio_list_lock);
 791			spin_unlock_irqrestore(&h->lock, flags);
 792
 793			if (next->operation == BTRFS_RBIO_READ_REBUILD)
 794				start_async_work(next, recover_rbio_work_locked);
 795			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
 796				steal_rbio(rbio, next);
 797				start_async_work(next, recover_rbio_work_locked);
 798			} else if (next->operation == BTRFS_RBIO_WRITE) {
 799				steal_rbio(rbio, next);
 800				start_async_work(next, rmw_rbio_work_locked);
 801			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
 802				steal_rbio(rbio, next);
 803				start_async_work(next, scrub_rbio_work_locked);
 804			}
 805
 806			goto done_nolock;
 
 
 
 
 
 
 
 
 
 807		}
 808	}
 809done:
 810	spin_unlock(&rbio->bio_list_lock);
 811	spin_unlock_irqrestore(&h->lock, flags);
 812
 813done_nolock:
 814	if (!keep_cache)
 815		remove_rbio_from_cache(rbio);
 816}
 817
 818static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
 819{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 820	struct bio *next;
 821
 
 
 
 
 
 822	while (cur) {
 823		next = cur->bi_next;
 824		cur->bi_next = NULL;
 825		cur->bi_status = err;
 826		bio_endio(cur);
 827		cur = next;
 828	}
 829}
 830
 831/*
 832 * this frees the rbio and runs through all the bios in the
 833 * bio_list and calls end_io on them
 834 */
 835static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
 836{
 837	struct bio *cur = bio_list_get(&rbio->bio_list);
 838	struct bio *extra;
 
 839
 840	kfree(rbio->csum_buf);
 841	bitmap_free(rbio->csum_bitmap);
 842	rbio->csum_buf = NULL;
 843	rbio->csum_bitmap = NULL;
 844
 845	/*
 846	 * Clear the data bitmap, as the rbio may be cached for later usage.
 847	 * do this before before unlock_stripe() so there will be no new bio
 848	 * for this bio.
 849	 */
 850	bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors);
 851
 852	/*
 853	 * At this moment, rbio->bio_list is empty, however since rbio does not
 854	 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
 855	 * hash list, rbio may be merged with others so that rbio->bio_list
 856	 * becomes non-empty.
 857	 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
 858	 * more and we can call bio_endio() on all queued bios.
 859	 */
 860	unlock_stripe(rbio);
 861	extra = bio_list_get(&rbio->bio_list);
 862	free_raid_bio(rbio);
 863
 864	rbio_endio_bio_list(cur, err);
 865	if (extra)
 866		rbio_endio_bio_list(extra, err);
 867}
 868
 869/*
 870 * Get a sector pointer specified by its @stripe_nr and @sector_nr.
 
 
 
 
 871 *
 872 * @rbio:               The raid bio
 873 * @stripe_nr:          Stripe number, valid range [0, real_stripe)
 874 * @sector_nr:		Sector number inside the stripe,
 875 *			valid range [0, stripe_nsectors)
 876 * @bio_list_only:      Whether to use sectors inside the bio list only.
 877 *
 878 * The read/modify/write code wants to reuse the original bio page as much
 879 * as possible, and only use stripe_sectors as fallback.
 
 
 
 880 */
 881static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio,
 882					 int stripe_nr, int sector_nr,
 883					 bool bio_list_only)
 884{
 885	struct sector_ptr *sector;
 886	int index;
 887
 888	ASSERT(stripe_nr >= 0 && stripe_nr < rbio->real_stripes);
 889	ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
 890
 891	index = stripe_nr * rbio->stripe_nsectors + sector_nr;
 892	ASSERT(index >= 0 && index < rbio->nr_sectors);
 893
 894	spin_lock_irq(&rbio->bio_list_lock);
 895	sector = &rbio->bio_sectors[index];
 896	if (sector->page || bio_list_only) {
 897		/* Don't return sector without a valid page pointer */
 898		if (!sector->page)
 899			sector = NULL;
 900		spin_unlock_irq(&rbio->bio_list_lock);
 901		return sector;
 902	}
 903	spin_unlock_irq(&rbio->bio_list_lock);
 904
 905	return &rbio->stripe_sectors[index];
 
 
 
 
 
 
 
 
 
 
 
 
 906}
 907
 908/*
 909 * allocation and initial setup for the btrfs_raid_bio.  Not
 910 * this does not allocate any pages for rbio->pages.
 911 */
 912static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
 913					 struct btrfs_io_context *bioc)
 914{
 915	const unsigned int real_stripes = bioc->num_stripes - bioc->num_tgtdevs;
 916	const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT;
 917	const unsigned int num_pages = stripe_npages * real_stripes;
 918	const unsigned int stripe_nsectors =
 919		BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
 920	const unsigned int num_sectors = stripe_nsectors * real_stripes;
 921	struct btrfs_raid_bio *rbio;
 922
 923	/* PAGE_SIZE must also be aligned to sectorsize for subpage support */
 924	ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize));
 925	/*
 926	 * Our current stripe len should be fixed to 64k thus stripe_nsectors
 927	 * (at most 16) should be no larger than BITS_PER_LONG.
 928	 */
 929	ASSERT(stripe_nsectors <= BITS_PER_LONG);
 930
 931	rbio = kzalloc(sizeof(*rbio), GFP_NOFS);
 932	if (!rbio)
 933		return ERR_PTR(-ENOMEM);
 934	rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *),
 935				     GFP_NOFS);
 936	rbio->bio_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
 937				    GFP_NOFS);
 938	rbio->stripe_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
 939				       GFP_NOFS);
 940	rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS);
 941	rbio->error_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS);
 942
 943	if (!rbio->stripe_pages || !rbio->bio_sectors || !rbio->stripe_sectors ||
 944	    !rbio->finish_pointers || !rbio->error_bitmap) {
 945		free_raid_bio_pointers(rbio);
 946		kfree(rbio);
 947		return ERR_PTR(-ENOMEM);
 948	}
 949
 950	bio_list_init(&rbio->bio_list);
 951	init_waitqueue_head(&rbio->io_wait);
 952	INIT_LIST_HEAD(&rbio->plug_list);
 953	spin_lock_init(&rbio->bio_list_lock);
 954	INIT_LIST_HEAD(&rbio->stripe_cache);
 955	INIT_LIST_HEAD(&rbio->hash_list);
 956	btrfs_get_bioc(bioc);
 957	rbio->bioc = bioc;
 
 958	rbio->nr_pages = num_pages;
 959	rbio->nr_sectors = num_sectors;
 960	rbio->real_stripes = real_stripes;
 961	rbio->stripe_npages = stripe_npages;
 962	rbio->stripe_nsectors = stripe_nsectors;
 963	refcount_set(&rbio->refs, 1);
 
 
 964	atomic_set(&rbio->stripes_pending, 0);
 965
 966	ASSERT(btrfs_nr_parity_stripes(bioc->map_type));
 967	rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 968
 
 969	return rbio;
 970}
 971
 972/* allocate pages for all the stripes in the bio, including parity */
 973static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
 974{
 975	int ret;
 
 976
 977	ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages);
 978	if (ret < 0)
 979		return ret;
 980	/* Mapping all sectors */
 981	index_stripe_sectors(rbio);
 
 
 
 982	return 0;
 983}
 984
 985/* only allocate pages for p/q stripes */
 986static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
 987{
 988	const int data_pages = rbio->nr_data * rbio->stripe_npages;
 989	int ret;
 990
 991	ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages,
 992				     rbio->stripe_pages + data_pages);
 993	if (ret < 0)
 994		return ret;
 995
 996	index_stripe_sectors(rbio);
 997	return 0;
 998}
 999
1000/*
1001 * Return the total numer of errors found in the vertical stripe of @sector_nr.
1002 *
1003 * @faila and @failb will also be updated to the first and second stripe
1004 * number of the errors.
1005 */
1006static int get_rbio_veritical_errors(struct btrfs_raid_bio *rbio, int sector_nr,
1007				     int *faila, int *failb)
1008{
1009	int stripe_nr;
1010	int found_errors = 0;
1011
1012	if (faila || failb) {
1013		/*
1014		 * Both @faila and @failb should be valid pointers if any of
1015		 * them is specified.
1016		 */
1017		ASSERT(faila && failb);
1018		*faila = -1;
1019		*failb = -1;
1020	}
1021
1022	for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1023		int total_sector_nr = stripe_nr * rbio->stripe_nsectors + sector_nr;
1024
1025		if (test_bit(total_sector_nr, rbio->error_bitmap)) {
1026			found_errors++;
1027			if (faila) {
1028				/* Update faila and failb. */
1029				if (*faila < 0)
1030					*faila = stripe_nr;
1031				else if (*failb < 0)
1032					*failb = stripe_nr;
1033			}
1034		}
1035	}
1036	return found_errors;
1037}
1038
1039/*
1040 * Add a single sector @sector into our list of bios for IO.
1041 *
1042 * Return 0 if everything went well.
1043 * Return <0 for error.
1044 */
1045static int rbio_add_io_sector(struct btrfs_raid_bio *rbio,
1046			      struct bio_list *bio_list,
1047			      struct sector_ptr *sector,
1048			      unsigned int stripe_nr,
1049			      unsigned int sector_nr,
1050			      enum req_op op)
1051{
1052	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1053	struct bio *last = bio_list->tail;
 
1054	int ret;
1055	struct bio *bio;
1056	struct btrfs_io_stripe *stripe;
1057	u64 disk_start;
1058
1059	/*
1060	 * Note: here stripe_nr has taken device replace into consideration,
1061	 * thus it can be larger than rbio->real_stripe.
1062	 * So here we check against bioc->num_stripes, not rbio->real_stripes.
1063	 */
1064	ASSERT(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes);
1065	ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
1066	ASSERT(sector->page);
1067
1068	stripe = &rbio->bioc->stripes[stripe_nr];
1069	disk_start = stripe->physical + sector_nr * sectorsize;
1070
1071	/* if the device is missing, just fail this stripe */
1072	if (!stripe->dev->bdev) {
1073		int found_errors;
1074
1075		set_bit(stripe_nr * rbio->stripe_nsectors + sector_nr,
1076			rbio->error_bitmap);
1077
1078		/* Check if we have reached tolerance early. */
1079		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
1080							 NULL, NULL);
1081		if (found_errors > rbio->bioc->max_errors)
1082			return -EIO;
1083		return 0;
1084	}
1085
1086	/* see if we can add this page onto our existing bio */
1087	if (last) {
1088		u64 last_end = last->bi_iter.bi_sector << 9;
1089		last_end += last->bi_iter.bi_size;
1090
1091		/*
1092		 * we can't merge these if they are from different
1093		 * devices or if they are not contiguous
1094		 */
1095		if (last_end == disk_start && !last->bi_status &&
 
1096		    last->bi_bdev == stripe->dev->bdev) {
1097			ret = bio_add_page(last, sector->page, sectorsize,
1098					   sector->pgoff);
1099			if (ret == sectorsize)
1100				return 0;
1101		}
1102	}
1103
1104	/* put a new bio on the list */
1105	bio = bio_alloc(stripe->dev->bdev,
1106			max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1),
1107			op, GFP_NOFS);
 
 
 
1108	bio->bi_iter.bi_sector = disk_start >> 9;
1109	bio->bi_private = rbio;
1110
1111	bio_add_page(bio, sector->page, sectorsize, sector->pgoff);
1112	bio_list_add(bio_list, bio);
1113	return 0;
1114}
1115
1116static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio)
1117{
1118	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1119	struct bio_vec bvec;
1120	struct bvec_iter iter;
1121	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1122		     rbio->bioc->raid_map[0];
1123
1124	bio_for_each_segment(bvec, bio, iter) {
1125		u32 bvec_offset;
1126
1127		for (bvec_offset = 0; bvec_offset < bvec.bv_len;
1128		     bvec_offset += sectorsize, offset += sectorsize) {
1129			int index = offset / sectorsize;
1130			struct sector_ptr *sector = &rbio->bio_sectors[index];
1131
1132			sector->page = bvec.bv_page;
1133			sector->pgoff = bvec.bv_offset + bvec_offset;
1134			ASSERT(sector->pgoff < PAGE_SIZE);
1135		}
1136	}
1137}
1138
1139/*
1140 * helper function to walk our bio list and populate the bio_pages array with
1141 * the result.  This seems expensive, but it is faster than constantly
1142 * searching through the bio list as we setup the IO in finish_rmw or stripe
1143 * reconstruction.
1144 *
1145 * This must be called before you trust the answers from page_in_rbio
1146 */
1147static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1148{
1149	struct bio *bio;
 
 
 
 
 
1150
1151	spin_lock_irq(&rbio->bio_list_lock);
1152	bio_list_for_each(bio, &rbio->bio_list)
1153		index_one_bio(rbio, bio);
1154
 
 
 
 
 
 
 
1155	spin_unlock_irq(&rbio->bio_list_lock);
1156}
1157
1158static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio,
1159			       struct raid56_bio_trace_info *trace_info)
 
 
 
 
 
 
 
1160{
1161	const struct btrfs_io_context *bioc = rbio->bioc;
1162	int i;
1163
1164	ASSERT(bioc);
1165
1166	/* We rely on bio->bi_bdev to find the stripe number. */
1167	if (!bio->bi_bdev)
1168		goto not_found;
1169
1170	for (i = 0; i < bioc->num_stripes; i++) {
1171		if (bio->bi_bdev != bioc->stripes[i].dev->bdev)
1172			continue;
1173		trace_info->stripe_nr = i;
1174		trace_info->devid = bioc->stripes[i].dev->devid;
1175		trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1176				     bioc->stripes[i].physical;
1177		return;
1178	}
1179
1180not_found:
1181	trace_info->devid = -1;
1182	trace_info->offset = -1;
1183	trace_info->stripe_nr = -1;
1184}
1185
1186/* Generate PQ for one veritical stripe. */
1187static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr)
1188{
1189	void **pointers = rbio->finish_pointers;
1190	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1191	struct sector_ptr *sector;
1192	int stripe;
1193	const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6;
1194
1195	/* First collect one sector from each data stripe */
1196	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1197		sector = sector_in_rbio(rbio, stripe, sectornr, 0);
1198		pointers[stripe] = kmap_local_page(sector->page) +
1199				   sector->pgoff;
1200	}
1201
1202	/* Then add the parity stripe */
1203	sector = rbio_pstripe_sector(rbio, sectornr);
1204	sector->uptodate = 1;
1205	pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff;
1206
1207	if (has_qstripe) {
1208		/*
1209		 * RAID6, add the qstripe and call the library function
1210		 * to fill in our p/q
1211		 */
1212		sector = rbio_qstripe_sector(rbio, sectornr);
1213		sector->uptodate = 1;
1214		pointers[stripe++] = kmap_local_page(sector->page) +
1215				     sector->pgoff;
1216
1217		raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
1218					pointers);
 
 
 
1219	} else {
1220		/* raid5 */
1221		memcpy(pointers[rbio->nr_data], pointers[0], sectorsize);
1222		run_xor(pointers + 1, rbio->nr_data - 1, sectorsize);
1223	}
1224	for (stripe = stripe - 1; stripe >= 0; stripe--)
1225		kunmap_local(pointers[stripe]);
1226}
1227
1228static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio,
1229				   struct bio_list *bio_list)
1230{
1231	struct bio *bio;
1232	/* The total sector number inside the full stripe. */
1233	int total_sector_nr;
1234	int sectornr;
1235	int stripe;
1236	int ret;
1237
1238	ASSERT(bio_list_size(bio_list) == 0);
 
 
 
 
 
 
 
 
 
 
1239
1240	/* We should have at least one data sector. */
1241	ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors));
1242
1243	/*
1244	 * Reset errors, as we may have errors inherited from from degraded
1245	 * write.
 
 
 
 
 
1246	 */
1247	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
 
 
 
 
1248
1249	/*
1250	 * Start assembly.  Make bios for everything from the higher layers (the
1251	 * bio_list in our rbio) and our P/Q.  Ignore everything else.
1252	 */
1253	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1254	     total_sector_nr++) {
1255		struct sector_ptr *sector;
1256
1257		stripe = total_sector_nr / rbio->stripe_nsectors;
1258		sectornr = total_sector_nr % rbio->stripe_nsectors;
 
 
1259
1260		/* This vertical stripe has no data, skip it. */
1261		if (!test_bit(sectornr, &rbio->dbitmap))
1262			continue;
1263
1264		if (stripe < rbio->nr_data) {
1265			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1266			if (!sector)
1267				continue;
 
 
 
 
 
 
1268		} else {
1269			sector = rbio_stripe_sector(rbio, stripe, sectornr);
 
 
1270		}
1271
1272		ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
1273					 sectornr, REQ_OP_WRITE);
1274		if (ret)
1275			goto error;
1276	}
1277
1278	if (likely(!rbio->bioc->num_tgtdevs))
1279		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1280
1281	/* Make a copy for the replace target device. */
1282	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1283	     total_sector_nr++) {
1284		struct sector_ptr *sector;
 
 
1285
1286		stripe = total_sector_nr / rbio->stripe_nsectors;
1287		sectornr = total_sector_nr % rbio->stripe_nsectors;
1288
1289		if (!rbio->bioc->tgtdev_map[stripe]) {
1290			/*
1291			 * We can skip the whole stripe completely, note
1292			 * total_sector_nr will be increased by one anyway.
1293			 */
1294			ASSERT(sectornr == 0);
1295			total_sector_nr += rbio->stripe_nsectors - 1;
1296			continue;
1297		}
1298
1299		/* This vertical stripe has no data, skip it. */
1300		if (!test_bit(sectornr, &rbio->dbitmap))
1301			continue;
 
 
 
 
 
 
1302
1303		if (stripe < rbio->nr_data) {
1304			sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1305			if (!sector)
1306				continue;
1307		} else {
1308			sector = rbio_stripe_sector(rbio, stripe, sectornr);
1309		}
 
1310
1311		ret = rbio_add_io_sector(rbio, bio_list, sector,
1312					 rbio->bioc->tgtdev_map[stripe],
1313					 sectornr, REQ_OP_WRITE);
1314		if (ret)
1315			goto error;
 
 
 
 
 
 
 
1316	}
 
1317
1318	return 0;
1319error:
1320	while ((bio = bio_list_pop(bio_list)))
1321		bio_put(bio);
1322	return -EIO;
1323}
1324
1325static void set_rbio_range_error(struct btrfs_raid_bio *rbio, struct bio *bio)
 
 
 
 
 
 
1326{
1327	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1328	u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1329		     rbio->bioc->raid_map[0];
1330	int total_nr_sector = offset >> fs_info->sectorsize_bits;
1331
1332	ASSERT(total_nr_sector < rbio->nr_data * rbio->stripe_nsectors);
1333
1334	bitmap_set(rbio->error_bitmap, total_nr_sector,
1335		   bio->bi_iter.bi_size >> fs_info->sectorsize_bits);
1336
1337	/*
1338	 * Special handling for raid56_alloc_missing_rbio() used by
1339	 * scrub/replace.  Unlike call path in raid56_parity_recover(), they
1340	 * pass an empty bio here.  Thus we have to find out the missing device
1341	 * and mark the stripe error instead.
1342	 */
1343	if (bio->bi_iter.bi_size == 0) {
1344		bool found_missing = false;
1345		int stripe_nr;
1346
1347		for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1348			if (!rbio->bioc->stripes[stripe_nr].dev->bdev) {
1349				found_missing = true;
1350				bitmap_set(rbio->error_bitmap,
1351					   stripe_nr * rbio->stripe_nsectors,
1352					   rbio->stripe_nsectors);
1353			}
1354		}
1355		ASSERT(found_missing);
1356	}
 
1357}
1358
1359/*
1360 * For subpage case, we can no longer set page Uptodate directly for
1361 * stripe_pages[], thus we need to locate the sector.
 
1362 */
1363static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio,
1364					     struct page *page,
1365					     unsigned int pgoff)
1366{
 
 
1367	int i;
1368
1369	for (i = 0; i < rbio->nr_sectors; i++) {
1370		struct sector_ptr *sector = &rbio->stripe_sectors[i];
1371
1372		if (sector->page == page && sector->pgoff == pgoff)
1373			return sector;
 
 
 
 
1374	}
1375	return NULL;
1376}
1377
1378/*
1379 * this sets each page in the bio uptodate.  It should only be used on private
1380 * rbio pages, nothing that comes in from the higher layers
1381 */
1382static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio)
1383{
1384	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1385	struct bio_vec *bvec;
1386	struct bvec_iter_all iter_all;
1387
1388	ASSERT(!bio_flagged(bio, BIO_CLONED));
1389
1390	bio_for_each_segment_all(bvec, bio, iter_all) {
1391		struct sector_ptr *sector;
1392		int pgoff;
1393
1394		for (pgoff = bvec->bv_offset; pgoff - bvec->bv_offset < bvec->bv_len;
1395		     pgoff += sectorsize) {
1396			sector = find_stripe_sector(rbio, bvec->bv_page, pgoff);
1397			ASSERT(sector);
1398			if (sector)
1399				sector->uptodate = 1;
1400		}
 
 
 
1401	}
 
 
 
 
1402}
1403
1404static int get_bio_sector_nr(struct btrfs_raid_bio *rbio, struct bio *bio)
 
 
 
 
 
1405{
1406	struct bio_vec *bv = bio_first_bvec_all(bio);
1407	int i;
1408
1409	for (i = 0; i < rbio->nr_sectors; i++) {
1410		struct sector_ptr *sector;
1411
1412		sector = &rbio->stripe_sectors[i];
1413		if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1414			break;
1415		sector = &rbio->bio_sectors[i];
1416		if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1417			break;
1418	}
1419	ASSERT(i < rbio->nr_sectors);
1420	return i;
1421}
1422
1423static void rbio_update_error_bitmap(struct btrfs_raid_bio *rbio, struct bio *bio)
 
 
 
 
1424{
1425	int total_sector_nr = get_bio_sector_nr(rbio, bio);
1426	u32 bio_size = 0;
1427	struct bio_vec *bvec;
1428	struct bvec_iter_all iter_all;
1429	int i;
 
1430
1431	bio_for_each_segment_all(bvec, bio, iter_all)
1432		bio_size += bvec->bv_len;
1433
1434	/*
1435	 * Since we can have multiple bios touching the error_bitmap, we cannot
1436	 * call bitmap_set() without protection.
1437	 *
1438	 * Instead use set_bit() for each bit, as set_bit() itself is atomic.
1439	 */
1440	for (i = total_sector_nr; i < total_sector_nr +
1441	     (bio_size >> rbio->bioc->fs_info->sectorsize_bits); i++)
1442		set_bit(i, rbio->error_bitmap);
1443}
1444
1445/* Verify the data sectors at read time. */
1446static void verify_bio_data_sectors(struct btrfs_raid_bio *rbio,
1447				    struct bio *bio)
 
 
 
 
 
 
1448{
1449	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1450	int total_sector_nr = get_bio_sector_nr(rbio, bio);
1451	struct bio_vec *bvec;
1452	struct bvec_iter_all iter_all;
1453
1454	/* No data csum for the whole stripe, no need to verify. */
1455	if (!rbio->csum_bitmap || !rbio->csum_buf)
1456		return;
 
1457
1458	/* P/Q stripes, they have no data csum to verify against. */
1459	if (total_sector_nr >= rbio->nr_data * rbio->stripe_nsectors)
 
1460		return;
1461
1462	bio_for_each_segment_all(bvec, bio, iter_all) {
1463		int bv_offset;
1464
1465		for (bv_offset = bvec->bv_offset;
1466		     bv_offset < bvec->bv_offset + bvec->bv_len;
1467		     bv_offset += fs_info->sectorsize, total_sector_nr++) {
1468			u8 csum_buf[BTRFS_CSUM_SIZE];
1469			u8 *expected_csum = rbio->csum_buf +
1470					    total_sector_nr * fs_info->csum_size;
1471			int ret;
1472
1473			/* No csum for this sector, skip to the next sector. */
1474			if (!test_bit(total_sector_nr, rbio->csum_bitmap))
1475				continue;
1476
1477			ret = btrfs_check_sector_csum(fs_info, bvec->bv_page,
1478				bv_offset, csum_buf, expected_csum);
1479			if (ret < 0)
1480				set_bit(total_sector_nr, rbio->error_bitmap);
1481		}
1482	}
1483}
1484
1485static void raid_wait_read_end_io(struct bio *bio)
1486{
1487	struct btrfs_raid_bio *rbio = bio->bi_private;
 
1488
1489	if (bio->bi_status) {
1490		rbio_update_error_bitmap(rbio, bio);
1491	} else {
1492		set_bio_pages_uptodate(rbio, bio);
1493		verify_bio_data_sectors(rbio, bio);
1494	}
1495
1496	bio_put(bio);
1497	if (atomic_dec_and_test(&rbio->stripes_pending))
1498		wake_up(&rbio->io_wait);
 
 
 
 
1499}
1500
1501static void submit_read_bios(struct btrfs_raid_bio *rbio,
1502			     struct bio_list *bio_list)
 
 
 
1503{
 
 
 
 
 
1504	struct bio *bio;
1505
1506	atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
1507	while ((bio = bio_list_pop(bio_list))) {
1508		bio->bi_end_io = raid_wait_read_end_io;
1509
1510		if (trace_raid56_scrub_read_recover_enabled()) {
1511			struct raid56_bio_trace_info trace_info = { 0 };
 
1512
1513			bio_get_trace_info(rbio, bio, &trace_info);
1514			trace_raid56_scrub_read_recover(rbio, bio, &trace_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1515		}
1516		submit_bio(bio);
1517	}
1518}
1519
1520static int rmw_assemble_read_bios(struct btrfs_raid_bio *rbio,
1521				  struct bio_list *bio_list)
1522{
1523	struct bio *bio;
1524	int total_sector_nr;
1525	int ret = 0;
1526
1527	ASSERT(bio_list_size(bio_list) == 0);
 
 
1528
1529	/*
1530	 * Build a list of bios to read all sectors (including data and P/Q).
1531	 *
1532	 * This behaviro is to compensate the later csum verification and
1533	 * recovery.
1534	 */
1535	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1536	     total_sector_nr++) {
1537		struct sector_ptr *sector;
1538		int stripe = total_sector_nr / rbio->stripe_nsectors;
1539		int sectornr = total_sector_nr % rbio->stripe_nsectors;
1540
1541		sector = rbio_stripe_sector(rbio, stripe, sectornr);
1542		ret = rbio_add_io_sector(rbio, bio_list, sector,
1543			       stripe, sectornr, REQ_OP_READ);
1544		if (ret)
1545			goto cleanup;
 
 
1546	}
 
1547	return 0;
1548
1549cleanup:
1550	while ((bio = bio_list_pop(bio_list)))
1551		bio_put(bio);
1552	return ret;
 
 
 
1553}
1554
1555static int alloc_rbio_data_pages(struct btrfs_raid_bio *rbio)
 
 
 
 
1556{
1557	const int data_pages = rbio->nr_data * rbio->stripe_npages;
1558	int ret;
1559
1560	ret = btrfs_alloc_page_array(data_pages, rbio->stripe_pages);
1561	if (ret < 0)
 
1562		return ret;
 
1563
1564	index_stripe_sectors(rbio);
 
 
1565	return 0;
1566}
1567
1568/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1569 * We use plugging call backs to collect full stripes.
1570 * Any time we get a partial stripe write while plugged
1571 * we collect it into a list.  When the unplug comes down,
1572 * we sort the list by logical block number and merge
1573 * everything we can into the same rbios
1574 */
1575struct btrfs_plug_cb {
1576	struct blk_plug_cb cb;
1577	struct btrfs_fs_info *info;
1578	struct list_head rbio_list;
1579	struct work_struct work;
1580};
1581
1582/*
1583 * rbios on the plug list are sorted for easier merging.
1584 */
1585static int plug_cmp(void *priv, const struct list_head *a,
1586		    const struct list_head *b)
1587{
1588	const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1589						       plug_list);
1590	const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1591						       plug_list);
1592	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1593	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1594
1595	if (a_sector < b_sector)
1596		return -1;
1597	if (a_sector > b_sector)
1598		return 1;
1599	return 0;
1600}
1601
1602static void raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1603{
1604	struct btrfs_plug_cb *plug = container_of(cb, struct btrfs_plug_cb, cb);
1605	struct btrfs_raid_bio *cur;
1606	struct btrfs_raid_bio *last = NULL;
1607
 
 
 
 
 
1608	list_sort(NULL, &plug->rbio_list, plug_cmp);
1609
1610	while (!list_empty(&plug->rbio_list)) {
1611		cur = list_entry(plug->rbio_list.next,
1612				 struct btrfs_raid_bio, plug_list);
1613		list_del_init(&cur->plug_list);
1614
1615		if (rbio_is_full(cur)) {
1616			/* We have a full stripe, queue it down. */
1617			start_async_work(cur, rmw_rbio_work);
1618			continue;
1619		}
1620		if (last) {
1621			if (rbio_can_merge(last, cur)) {
1622				merge_rbio(last, cur);
1623				free_raid_bio(cur);
1624				continue;
 
1625			}
1626			start_async_work(last, rmw_rbio_work);
1627		}
1628		last = cur;
1629	}
1630	if (last)
1631		start_async_work(last, rmw_rbio_work);
 
1632	kfree(plug);
1633}
1634
1635/* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */
1636static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio)
 
 
 
 
 
 
 
 
 
 
1637{
1638	const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1639	const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT;
1640	const u64 full_stripe_start = rbio->bioc->raid_map[0];
1641	const u32 orig_len = orig_bio->bi_iter.bi_size;
1642	const u32 sectorsize = fs_info->sectorsize;
1643	u64 cur_logical;
1644
1645	ASSERT(orig_logical >= full_stripe_start &&
1646	       orig_logical + orig_len <= full_stripe_start +
1647	       rbio->nr_data * BTRFS_STRIPE_LEN);
1648
1649	bio_list_add(&rbio->bio_list, orig_bio);
1650	rbio->bio_list_bytes += orig_bio->bi_iter.bi_size;
1651
1652	/* Update the dbitmap. */
1653	for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len;
1654	     cur_logical += sectorsize) {
1655		int bit = ((u32)(cur_logical - full_stripe_start) >>
1656			   fs_info->sectorsize_bits) % rbio->stripe_nsectors;
1657
1658		set_bit(bit, &rbio->dbitmap);
 
 
 
 
 
1659	}
 
1660}
1661
1662/*
1663 * our main entry point for writes from the rest of the FS.
1664 */
1665void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc)
 
1666{
1667	struct btrfs_fs_info *fs_info = bioc->fs_info;
1668	struct btrfs_raid_bio *rbio;
1669	struct btrfs_plug_cb *plug = NULL;
1670	struct blk_plug_cb *cb;
1671	int ret = 0;
1672
1673	rbio = alloc_rbio(fs_info, bioc);
1674	if (IS_ERR(rbio)) {
1675		ret = PTR_ERR(rbio);
1676		goto fail;
1677	}
 
 
1678	rbio->operation = BTRFS_RBIO_WRITE;
1679	rbio_add_bio(rbio, bio);
 
 
1680
1681	/*
1682	 * Don't plug on full rbios, just get them out the door
1683	 * as quickly as we can
1684	 */
1685	if (rbio_is_full(rbio))
1686		goto queue_rbio;
 
 
 
 
1687
1688	cb = blk_check_plugged(raid_unplug, fs_info, sizeof(*plug));
 
1689	if (cb) {
1690		plug = container_of(cb, struct btrfs_plug_cb, cb);
1691		if (!plug->info) {
1692			plug->info = fs_info;
1693			INIT_LIST_HEAD(&plug->rbio_list);
1694		}
1695		list_add_tail(&rbio->plug_list, &plug->rbio_list);
1696		return;
1697	}
1698queue_rbio:
1699	/*
1700	 * Either we don't have any existing plug, or we're doing a full stripe,
1701	 * can queue the rmw work now.
1702	 */
1703	start_async_work(rbio, rmw_rbio_work);
1704
1705	return;
1706
1707fail:
1708	bio->bi_status = errno_to_blk_status(ret);
1709	bio_endio(bio);
1710}
1711
1712static int verify_one_sector(struct btrfs_raid_bio *rbio,
1713			     int stripe_nr, int sector_nr)
1714{
1715	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1716	struct sector_ptr *sector;
1717	u8 csum_buf[BTRFS_CSUM_SIZE];
1718	u8 *csum_expected;
1719	int ret;
1720
1721	if (!rbio->csum_bitmap || !rbio->csum_buf)
1722		return 0;
1723
1724	/* No way to verify P/Q as they are not covered by data csum. */
1725	if (stripe_nr >= rbio->nr_data)
1726		return 0;
1727	/*
1728	 * If we're rebuilding a read, we have to use pages from the
1729	 * bio list if possible.
1730	 */
1731	if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1732	     rbio->operation == BTRFS_RBIO_REBUILD_MISSING)) {
1733		sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1734	} else {
1735		sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
 
 
1736	}
1737
1738	ASSERT(sector->page);
1739
1740	csum_expected = rbio->csum_buf +
1741			(stripe_nr * rbio->stripe_nsectors + sector_nr) *
1742			fs_info->csum_size;
1743	ret = btrfs_check_sector_csum(fs_info, sector->page, sector->pgoff,
1744				      csum_buf, csum_expected);
1745	return ret;
1746}
1747
1748/*
1749 * Recover a vertical stripe specified by @sector_nr.
1750 * @*pointers are the pre-allocated pointers by the caller, so we don't
1751 * need to allocate/free the pointers again and again.
1752 */
1753static int recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr,
1754			    void **pointers, void **unmap_array)
1755{
1756	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1757	struct sector_ptr *sector;
1758	const u32 sectorsize = fs_info->sectorsize;
1759	int found_errors;
1760	int faila;
1761	int failb;
1762	int stripe_nr;
1763	int ret = 0;
1764
1765	/*
1766	 * Now we just use bitmap to mark the horizontal stripes in
1767	 * which we have data when doing parity scrub.
1768	 */
1769	if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1770	    !test_bit(sector_nr, &rbio->dbitmap))
1771		return 0;
1772
1773	found_errors = get_rbio_veritical_errors(rbio, sector_nr, &faila,
1774						 &failb);
1775	/*
1776	 * No errors in the veritical stripe, skip it.  Can happen for recovery
1777	 * which only part of a stripe failed csum check.
1778	 */
1779	if (!found_errors)
1780		return 0;
1781
1782	if (found_errors > rbio->bioc->max_errors)
1783		return -EIO;
 
 
 
 
1784
1785	/*
1786	 * Setup our array of pointers with sectors from each stripe
1787	 *
1788	 * NOTE: store a duplicate array of pointers to preserve the
1789	 * pointer order.
1790	 */
1791	for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1792		/*
1793		 * If we're rebuilding a read, we have to use pages from the
1794		 * bio list if possible.
1795		 */
1796		if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1797		     rbio->operation == BTRFS_RBIO_REBUILD_MISSING)) {
1798			sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1799		} else {
1800			sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
1801		}
1802		ASSERT(sector->page);
1803		pointers[stripe_nr] = kmap_local_page(sector->page) +
1804				   sector->pgoff;
1805		unmap_array[stripe_nr] = pointers[stripe_nr];
1806	}
1807
1808	/* All raid6 handling here */
1809	if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1810		/* Single failure, rebuild from parity raid5 style */
1811		if (failb < 0) {
1812			if (faila == rbio->nr_data)
1813				/*
1814				 * Just the P stripe has failed, without
1815				 * a bad data or Q stripe.
1816				 * We have nothing to do, just skip the
1817				 * recovery for this stripe.
1818				 */
1819				goto cleanup;
1820			/*
1821			 * a single failure in raid6 is rebuilt
1822			 * in the pstripe code below
1823			 */
1824			goto pstripe;
 
 
 
 
 
 
 
1825		}
1826
1827		/*
1828		 * If the q stripe is failed, do a pstripe reconstruction from
1829		 * the xors.
1830		 * If both the q stripe and the P stripe are failed, we're
1831		 * here due to a crc mismatch and we can't give them the
1832		 * data they want.
1833		 */
1834		if (rbio->bioc->raid_map[failb] == RAID6_Q_STRIPE) {
1835			if (rbio->bioc->raid_map[faila] ==
1836			    RAID5_P_STRIPE)
 
 
 
 
 
 
1837				/*
1838				 * Only P and Q are corrupted.
1839				 * We only care about data stripes recovery,
1840				 * can skip this vertical stripe.
1841				 */
1842				goto cleanup;
1843			/*
1844			 * Otherwise we have one bad data stripe and
1845			 * a good P stripe.  raid5!
 
 
 
 
 
 
 
 
 
 
 
1846			 */
1847			goto pstripe;
1848		}
 
 
 
 
 
 
 
 
 
 
1849
1850		if (rbio->bioc->raid_map[failb] == RAID5_P_STRIPE) {
1851			raid6_datap_recov(rbio->real_stripes, sectorsize,
1852					  faila, pointers);
 
 
 
 
 
1853		} else {
1854			raid6_2data_recov(rbio->real_stripes, sectorsize,
1855					  faila, failb, pointers);
1856		}
1857	} else {
1858		void *p;
1859
1860		/* Rebuild from P stripe here (raid5 or raid6). */
1861		ASSERT(failb == -1);
1862pstripe:
1863		/* Copy parity block into failed block to start with */
1864		memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize);
1865
1866		/* Rearrange the pointer array */
1867		p = pointers[faila];
1868		for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1;
1869		     stripe_nr++)
1870			pointers[stripe_nr] = pointers[stripe_nr + 1];
1871		pointers[rbio->nr_data - 1] = p;
1872
1873		/* Xor in the rest */
1874		run_xor(pointers, rbio->nr_data - 1, sectorsize);
1875
1876	}
1877
1878	/*
1879	 * No matter if this is a RMW or recovery, we should have all
1880	 * failed sectors repaired in the vertical stripe, thus they are now
1881	 * uptodate.
1882	 * Especially if we determine to cache the rbio, we need to
1883	 * have at least all data sectors uptodate.
1884	 *
1885	 * If possible, also check if the repaired sector matches its data
1886	 * checksum.
1887	 */
1888	if (faila >= 0) {
1889		ret = verify_one_sector(rbio, faila, sector_nr);
1890		if (ret < 0)
1891			goto cleanup;
1892
1893		sector = rbio_stripe_sector(rbio, faila, sector_nr);
1894		sector->uptodate = 1;
1895	}
1896	if (failb >= 0) {
1897		ret = verify_one_sector(rbio, failb, sector_nr);
1898		if (ret < 0)
1899			goto cleanup;
1900
1901		sector = rbio_stripe_sector(rbio, failb, sector_nr);
1902		sector->uptodate = 1;
 
 
 
 
 
 
1903	}
1904
 
1905cleanup:
1906	for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--)
1907		kunmap_local(unmap_array[stripe_nr]);
1908	return ret;
1909}
1910
1911static int recover_sectors(struct btrfs_raid_bio *rbio)
1912{
1913	void **pointers = NULL;
1914	void **unmap_array = NULL;
1915	int sectornr;
1916	int ret = 0;
1917
1918	/*
1919	 * @pointers array stores the pointer for each sector.
1920	 *
1921	 * @unmap_array stores copy of pointers that does not get reordered
1922	 * during reconstruction so that kunmap_local works.
1923	 */
1924	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1925	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1926	if (!pointers || !unmap_array) {
1927		ret = -ENOMEM;
1928		goto out;
1929	}
1930
1931	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1932	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1933		spin_lock_irq(&rbio->bio_list_lock);
1934		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1935		spin_unlock_irq(&rbio->bio_list_lock);
1936	}
1937
1938	index_rbio_pages(rbio);
 
 
 
 
 
1939
1940	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
1941		ret = recover_vertical(rbio, sectornr, pointers, unmap_array);
1942		if (ret < 0)
1943			break;
 
 
 
 
 
 
 
 
 
 
 
1944	}
1945
1946out:
1947	kfree(pointers);
1948	kfree(unmap_array);
1949	return ret;
1950}
1951
1952static int recover_assemble_read_bios(struct btrfs_raid_bio *rbio,
1953				      struct bio_list *bio_list)
 
 
 
1954{
1955	struct bio *bio;
1956	int total_sector_nr;
1957	int ret = 0;
1958
1959	ASSERT(bio_list_size(bio_list) == 0);
1960	/*
1961	 * Read everything that hasn't failed. However this time we will
1962	 * not trust any cached sector.
1963	 * As we may read out some stale data but higher layer is not reading
1964	 * that stale part.
1965	 *
1966	 * So here we always re-read everything in recovery path.
1967	 */
1968	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1969	     total_sector_nr++) {
1970		int stripe = total_sector_nr / rbio->stripe_nsectors;
1971		int sectornr = total_sector_nr % rbio->stripe_nsectors;
1972		struct sector_ptr *sector;
1973
1974		/*
1975		 * Skip the range which has error.  It can be a range which is
1976		 * marked error (for csum mismatch), or it can be a missing
1977		 * device.
1978		 */
1979		if (!rbio->bioc->stripes[stripe].dev->bdev ||
1980		    test_bit(total_sector_nr, rbio->error_bitmap)) {
1981			/*
1982			 * Also set the error bit for missing device, which
1983			 * may not yet have its error bit set.
1984			 */
1985			set_bit(total_sector_nr, rbio->error_bitmap);
1986			continue;
1987		}
1988
1989		sector = rbio_stripe_sector(rbio, stripe, sectornr);
1990		ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
1991					 sectornr, REQ_OP_READ);
1992		if (ret < 0)
1993			goto error;
1994	}
1995	return 0;
1996error:
1997	while ((bio = bio_list_pop(bio_list)))
1998		bio_put(bio);
1999
2000	return -EIO;
 
 
 
2001}
2002
2003static int recover_rbio(struct btrfs_raid_bio *rbio)
 
 
 
 
 
 
 
 
2004{
 
2005	struct bio_list bio_list;
2006	struct bio *bio;
2007	int ret;
 
 
 
2008
2009	/*
2010	 * Either we're doing recover for a read failure or degraded write,
2011	 * caller should have set error bitmap correctly.
2012	 */
2013	ASSERT(bitmap_weight(rbio->error_bitmap, rbio->nr_sectors));
2014	bio_list_init(&bio_list);
2015
2016	/* For recovery, we need to read all sectors including P/Q. */
2017	ret = alloc_rbio_pages(rbio);
2018	if (ret < 0)
2019		goto out;
2020
2021	index_rbio_pages(rbio);
2022
2023	ret = recover_assemble_read_bios(rbio, &bio_list);
2024	if (ret < 0)
2025		goto out;
2026
2027	submit_read_bios(rbio, &bio_list);
2028	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2029
2030	ret = recover_sectors(rbio);
2031
2032out:
2033	while ((bio = bio_list_pop(&bio_list)))
2034		bio_put(bio);
2035
2036	return ret;
2037}
 
 
 
 
 
 
 
 
2038
2039static void recover_rbio_work(struct work_struct *work)
2040{
2041	struct btrfs_raid_bio *rbio;
2042	int ret;
2043
2044	rbio = container_of(work, struct btrfs_raid_bio, work);
 
 
 
 
 
 
2045
2046	ret = lock_stripe_add(rbio);
2047	if (ret == 0) {
2048		ret = recover_rbio(rbio);
2049		rbio_orig_end_io(rbio, errno_to_blk_status(ret));
 
 
2050	}
2051}
2052
2053static void recover_rbio_work_locked(struct work_struct *work)
2054{
2055	struct btrfs_raid_bio *rbio;
2056	int ret;
2057
2058	rbio = container_of(work, struct btrfs_raid_bio, work);
2059
2060	ret = recover_rbio(rbio);
2061	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2062}
2063
2064static void set_rbio_raid6_extra_error(struct btrfs_raid_bio *rbio, int mirror_num)
2065{
2066	bool found = false;
2067	int sector_nr;
2068
2069	/*
2070	 * This is for RAID6 extra recovery tries, thus mirror number should
2071	 * be large than 2.
2072	 * Mirror 1 means read from data stripes. Mirror 2 means rebuild using
2073	 * RAID5 methods.
2074	 */
2075	ASSERT(mirror_num > 2);
2076	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2077		int found_errors;
2078		int faila;
2079		int failb;
2080
2081		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2082							 &faila, &failb);
2083		/* This vertical stripe doesn't have errors. */
2084		if (!found_errors)
2085			continue;
2086
2087		/*
2088		 * If we found errors, there should be only one error marked
2089		 * by previous set_rbio_range_error().
2090		 */
2091		ASSERT(found_errors == 1);
2092		found = true;
2093
2094		/* Now select another stripe to mark as error. */
2095		failb = rbio->real_stripes - (mirror_num - 1);
2096		if (failb <= faila)
2097			failb--;
2098
2099		/* Set the extra bit in error bitmap. */
2100		if (failb >= 0)
2101			set_bit(failb * rbio->stripe_nsectors + sector_nr,
2102				rbio->error_bitmap);
2103	}
 
 
2104
2105	/* We should found at least one vertical stripe with error.*/
2106	ASSERT(found);
 
 
 
2107}
2108
2109/*
2110 * the main entry point for reads from the higher layers.  This
2111 * is really only called when the normal read path had a failure,
2112 * so we assume the bio they send down corresponds to a failed part
2113 * of the drive.
2114 */
2115void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc,
2116			   int mirror_num)
 
2117{
2118	struct btrfs_fs_info *fs_info = bioc->fs_info;
2119	struct btrfs_raid_bio *rbio;
 
2120
2121	rbio = alloc_rbio(fs_info, bioc);
2122	if (IS_ERR(rbio)) {
2123		bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
2124		bio_endio(bio);
2125		return;
2126	}
2127
2128	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2129	rbio_add_bio(rbio, bio);
2130
2131	set_rbio_range_error(rbio, bio);
2132
2133	/*
2134	 * Loop retry:
2135	 * for 'mirror == 2', reconstruct from all other stripes.
2136	 * for 'mirror_num > 2', select a stripe to fail on every retry.
2137	 */
2138	if (mirror_num > 2)
2139		set_rbio_raid6_extra_error(rbio, mirror_num);
2140
2141	start_async_work(rbio, recover_rbio_work);
2142}
2143
2144static void fill_data_csums(struct btrfs_raid_bio *rbio)
2145{
2146	struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
2147	struct btrfs_root *csum_root = btrfs_csum_root(fs_info,
2148						       rbio->bioc->raid_map[0]);
2149	const u64 start = rbio->bioc->raid_map[0];
2150	const u32 len = (rbio->nr_data * rbio->stripe_nsectors) <<
2151			fs_info->sectorsize_bits;
2152	int ret;
2153
2154	/* The rbio should not have its csum buffer initialized. */
2155	ASSERT(!rbio->csum_buf && !rbio->csum_bitmap);
2156
2157	/*
2158	 * Skip the csum search if:
2159	 *
2160	 * - The rbio doesn't belong to data block groups
2161	 *   Then we are doing IO for tree blocks, no need to search csums.
2162	 *
2163	 * - The rbio belongs to mixed block groups
2164	 *   This is to avoid deadlock, as we're already holding the full
2165	 *   stripe lock, if we trigger a metadata read, and it needs to do
2166	 *   raid56 recovery, we will deadlock.
2167	 */
2168	if (!(rbio->bioc->map_type & BTRFS_BLOCK_GROUP_DATA) ||
2169	    rbio->bioc->map_type & BTRFS_BLOCK_GROUP_METADATA)
2170		return;
2171
2172	rbio->csum_buf = kzalloc(rbio->nr_data * rbio->stripe_nsectors *
2173				 fs_info->csum_size, GFP_NOFS);
2174	rbio->csum_bitmap = bitmap_zalloc(rbio->nr_data * rbio->stripe_nsectors,
2175					  GFP_NOFS);
2176	if (!rbio->csum_buf || !rbio->csum_bitmap) {
2177		ret = -ENOMEM;
2178		goto error;
2179	}
2180
2181	ret = btrfs_lookup_csums_bitmap(csum_root, start, start + len - 1,
2182					rbio->csum_buf, rbio->csum_bitmap);
2183	if (ret < 0)
2184		goto error;
2185	if (bitmap_empty(rbio->csum_bitmap, len >> fs_info->sectorsize_bits))
2186		goto no_csum;
2187	return;
2188
2189error:
2190	/*
2191	 * We failed to allocate memory or grab the csum, but it's not fatal,
2192	 * we can still continue.  But better to warn users that RMW is no
2193	 * longer safe for this particular sub-stripe write.
2194	 */
2195	btrfs_warn_rl(fs_info,
2196"sub-stripe write for full stripe %llu is not safe, failed to get csum: %d",
2197			rbio->bioc->raid_map[0], ret);
2198no_csum:
2199	kfree(rbio->csum_buf);
2200	bitmap_free(rbio->csum_bitmap);
2201	rbio->csum_buf = NULL;
2202	rbio->csum_bitmap = NULL;
2203}
2204
2205static int rmw_read_wait_recover(struct btrfs_raid_bio *rbio)
2206{
2207	struct bio_list bio_list;
2208	struct bio *bio;
2209	int ret;
2210
2211	bio_list_init(&bio_list);
2212
2213	/*
2214	 * Fill the data csums we need for data verification.  We need to fill
2215	 * the csum_bitmap/csum_buf first, as our endio function will try to
2216	 * verify the data sectors.
2217	 */
2218	fill_data_csums(rbio);
2219
2220	ret = rmw_assemble_read_bios(rbio, &bio_list);
2221	if (ret < 0)
2222		goto out;
2223
2224	submit_read_bios(rbio, &bio_list);
2225	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2226
2227	/*
2228	 * We may or may not have any corrupted sectors (including missing dev
2229	 * and csum mismatch), just let recover_sectors() to handle them all.
2230	 */
2231	ret = recover_sectors(rbio);
2232	return ret;
2233out:
2234	while ((bio = bio_list_pop(&bio_list)))
2235		bio_put(bio);
2236
2237	return ret;
2238}
2239
2240static void raid_wait_write_end_io(struct bio *bio)
2241{
2242	struct btrfs_raid_bio *rbio = bio->bi_private;
2243	blk_status_t err = bio->bi_status;
2244
2245	if (err)
2246		rbio_update_error_bitmap(rbio, bio);
2247	bio_put(bio);
2248	if (atomic_dec_and_test(&rbio->stripes_pending))
2249		wake_up(&rbio->io_wait);
2250}
2251
2252static void submit_write_bios(struct btrfs_raid_bio *rbio,
2253			      struct bio_list *bio_list)
2254{
2255	struct bio *bio;
2256
2257	atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
2258	while ((bio = bio_list_pop(bio_list))) {
2259		bio->bi_end_io = raid_wait_write_end_io;
2260
2261		if (trace_raid56_write_stripe_enabled()) {
2262			struct raid56_bio_trace_info trace_info = { 0 };
2263
2264			bio_get_trace_info(rbio, bio, &trace_info);
2265			trace_raid56_write_stripe(rbio, bio, &trace_info);
2266		}
2267		submit_bio(bio);
 
 
 
2268	}
2269}
2270
2271/*
2272 * To determine if we need to read any sector from the disk.
2273 * Should only be utilized in RMW path, to skip cached rbio.
2274 */
2275static bool need_read_stripe_sectors(struct btrfs_raid_bio *rbio)
2276{
2277	int i;
2278
2279	for (i = 0; i < rbio->nr_data * rbio->stripe_nsectors; i++) {
2280		struct sector_ptr *sector = &rbio->stripe_sectors[i];
2281
2282		/*
2283		 * We have a sector which doesn't have page nor uptodate,
2284		 * thus this rbio can not be cached one, as cached one must
2285		 * have all its data sectors present and uptodate.
2286		 */
2287		if (!sector->page || !sector->uptodate)
2288			return true;
2289	}
2290	return false;
2291}
2292
2293static int rmw_rbio(struct btrfs_raid_bio *rbio)
2294{
2295	struct bio_list bio_list;
2296	int sectornr;
2297	int ret = 0;
2298
2299	/*
2300	 * Allocate the pages for parity first, as P/Q pages will always be
2301	 * needed for both full-stripe and sub-stripe writes.
2302	 */
2303	ret = alloc_rbio_parity_pages(rbio);
2304	if (ret < 0)
2305		return ret;
2306
2307	/*
2308	 * Either full stripe write, or we have every data sector already
2309	 * cached, can go to write path immediately.
2310	 */
2311	if (rbio_is_full(rbio) || !need_read_stripe_sectors(rbio))
2312		goto write;
2313
2314	/*
2315	 * Now we're doing sub-stripe write, also need all data stripes to do
2316	 * the full RMW.
2317	 */
2318	ret = alloc_rbio_data_pages(rbio);
2319	if (ret < 0)
2320		return ret;
2321
2322	index_rbio_pages(rbio);
2323
2324	ret = rmw_read_wait_recover(rbio);
2325	if (ret < 0)
2326		return ret;
2327
2328write:
2329	/*
2330	 * At this stage we're not allowed to add any new bios to the
2331	 * bio list any more, anyone else that wants to change this stripe
2332	 * needs to do their own rmw.
 
 
 
 
 
 
 
 
 
2333	 */
2334	spin_lock_irq(&rbio->bio_list_lock);
2335	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
2336	spin_unlock_irq(&rbio->bio_list_lock);
2337
2338	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2339
2340	index_rbio_pages(rbio);
2341
2342	/*
2343	 * We don't cache full rbios because we're assuming
2344	 * the higher layers are unlikely to use this area of
2345	 * the disk again soon.  If they do use it again,
2346	 * hopefully they will send another full bio.
2347	 */
2348	if (!rbio_is_full(rbio))
2349		cache_rbio_pages(rbio);
2350	else
2351		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2352
2353	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++)
2354		generate_pq_vertical(rbio, sectornr);
2355
2356	bio_list_init(&bio_list);
2357	ret = rmw_assemble_write_bios(rbio, &bio_list);
2358	if (ret < 0)
2359		return ret;
2360
2361	/* We should have at least one bio assembled. */
2362	ASSERT(bio_list_size(&bio_list));
2363	submit_write_bios(rbio, &bio_list);
2364	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2365
2366	/* We may have more errors than our tolerance during the read. */
2367	for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
2368		int found_errors;
2369
2370		found_errors = get_rbio_veritical_errors(rbio, sectornr, NULL, NULL);
2371		if (found_errors > rbio->bioc->max_errors) {
2372			ret = -EIO;
2373			break;
2374		}
2375	}
2376	return ret;
2377}
2378
2379static void rmw_rbio_work(struct work_struct *work)
2380{
2381	struct btrfs_raid_bio *rbio;
2382	int ret;
2383
2384	rbio = container_of(work, struct btrfs_raid_bio, work);
2385
2386	ret = lock_stripe_add(rbio);
2387	if (ret == 0) {
2388		ret = rmw_rbio(rbio);
2389		rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2390	}
2391}
2392
2393static void rmw_rbio_work_locked(struct work_struct *work)
2394{
2395	struct btrfs_raid_bio *rbio;
2396	int ret;
2397
2398	rbio = container_of(work, struct btrfs_raid_bio, work);
2399
2400	ret = rmw_rbio(rbio);
2401	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2402}
2403
2404/*
2405 * The following code is used to scrub/replace the parity stripe
2406 *
2407 * Caller must have already increased bio_counter for getting @bioc.
2408 *
2409 * Note: We need make sure all the pages that add into the scrub/replace
2410 * raid bio are correct and not be changed during the scrub/replace. That
2411 * is those pages just hold metadata or file data with checksum.
2412 */
2413
2414struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio,
2415				struct btrfs_io_context *bioc,
2416				struct btrfs_device *scrub_dev,
2417				unsigned long *dbitmap, int stripe_nsectors)
 
2418{
2419	struct btrfs_fs_info *fs_info = bioc->fs_info;
2420	struct btrfs_raid_bio *rbio;
2421	int i;
2422
2423	rbio = alloc_rbio(fs_info, bioc);
2424	if (IS_ERR(rbio))
2425		return NULL;
2426	bio_list_add(&rbio->bio_list, bio);
2427	/*
2428	 * This is a special bio which is used to hold the completion handler
2429	 * and make the scrub rbio is similar to the other types
2430	 */
2431	ASSERT(!bio->bi_iter.bi_size);
2432	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2433
2434	/*
2435	 * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted
2436	 * to the end position, so this search can start from the first parity
2437	 * stripe.
2438	 */
2439	for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2440		if (bioc->stripes[i].dev == scrub_dev) {
2441			rbio->scrubp = i;
2442			break;
2443		}
2444	}
2445	ASSERT(i < rbio->real_stripes);
2446
2447	bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors);
 
 
 
 
2448	return rbio;
2449}
2450
2451/* Used for both parity scrub and missing. */
2452void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2453			    unsigned int pgoff, u64 logical)
2454{
2455	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2456	int stripe_offset;
2457	int index;
2458
2459	ASSERT(logical >= rbio->bioc->raid_map[0]);
2460	ASSERT(logical + sectorsize <= rbio->bioc->raid_map[0] +
2461				       BTRFS_STRIPE_LEN * rbio->nr_data);
2462	stripe_offset = (int)(logical - rbio->bioc->raid_map[0]);
2463	index = stripe_offset / sectorsize;
2464	rbio->bio_sectors[index].page = page;
2465	rbio->bio_sectors[index].pgoff = pgoff;
2466}
2467
2468/*
2469 * We just scrub the parity that we have correct data on the same horizontal,
2470 * so we needn't allocate all pages for all the stripes.
2471 */
2472static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2473{
2474	const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2475	int total_sector_nr;
 
 
2476
2477	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2478	     total_sector_nr++) {
2479		struct page *page;
2480		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2481		int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT;
2482
2483		if (!test_bit(sectornr, &rbio->dbitmap))
2484			continue;
2485		if (rbio->stripe_pages[index])
2486			continue;
2487		page = alloc_page(GFP_NOFS);
2488		if (!page)
2489			return -ENOMEM;
2490		rbio->stripe_pages[index] = page;
2491	}
2492	index_stripe_sectors(rbio);
2493	return 0;
2494}
2495
2496static int finish_parity_scrub(struct btrfs_raid_bio *rbio, int need_check)
 
2497{
2498	struct btrfs_io_context *bioc = rbio->bioc;
2499	const u32 sectorsize = bioc->fs_info->sectorsize;
2500	void **pointers = rbio->finish_pointers;
2501	unsigned long *pbitmap = &rbio->finish_pbitmap;
2502	int nr_data = rbio->nr_data;
2503	int stripe;
2504	int sectornr;
2505	bool has_qstripe;
2506	struct sector_ptr p_sector = { 0 };
2507	struct sector_ptr q_sector = { 0 };
 
2508	struct bio_list bio_list;
2509	struct bio *bio;
2510	int is_replace = 0;
2511	int ret;
2512
2513	bio_list_init(&bio_list);
2514
2515	if (rbio->real_stripes - rbio->nr_data == 1)
2516		has_qstripe = false;
2517	else if (rbio->real_stripes - rbio->nr_data == 2)
2518		has_qstripe = true;
2519	else
 
2520		BUG();
 
2521
2522	if (bioc->num_tgtdevs && bioc->tgtdev_map[rbio->scrubp]) {
2523		is_replace = 1;
2524		bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors);
2525	}
2526
2527	/*
2528	 * Because the higher layers(scrubber) are unlikely to
2529	 * use this area of the disk again soon, so don't cache
2530	 * it.
2531	 */
2532	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2533
2534	if (!need_check)
2535		goto writeback;
2536
2537	p_sector.page = alloc_page(GFP_NOFS);
2538	if (!p_sector.page)
2539		return -ENOMEM;
2540	p_sector.pgoff = 0;
2541	p_sector.uptodate = 1;
2542
2543	if (has_qstripe) {
2544		/* RAID6, allocate and map temp space for the Q stripe */
2545		q_sector.page = alloc_page(GFP_NOFS);
2546		if (!q_sector.page) {
2547			__free_page(p_sector.page);
2548			p_sector.page = NULL;
2549			return -ENOMEM;
2550		}
2551		q_sector.pgoff = 0;
2552		q_sector.uptodate = 1;
2553		pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page);
2554	}
2555
2556	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2557
2558	/* Map the parity stripe just once */
2559	pointers[nr_data] = kmap_local_page(p_sector.page);
2560
2561	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2562		struct sector_ptr *sector;
2563		void *parity;
2564
2565		/* first collect one page from each data stripe */
2566		for (stripe = 0; stripe < nr_data; stripe++) {
2567			sector = sector_in_rbio(rbio, stripe, sectornr, 0);
2568			pointers[stripe] = kmap_local_page(sector->page) +
2569					   sector->pgoff;
2570		}
2571
2572		if (has_qstripe) {
2573			/* RAID6, call the library function to fill in our P/Q */
2574			raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
 
 
 
 
 
 
 
 
 
2575						pointers);
2576		} else {
2577			/* raid5 */
2578			memcpy(pointers[nr_data], pointers[0], sectorsize);
2579			run_xor(pointers + 1, nr_data - 1, sectorsize);
2580		}
2581
2582		/* Check scrubbing parity and repair it */
2583		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2584		parity = kmap_local_page(sector->page) + sector->pgoff;
2585		if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0)
2586			memcpy(parity, pointers[rbio->scrubp], sectorsize);
2587		else
2588			/* Parity is right, needn't writeback */
2589			bitmap_clear(&rbio->dbitmap, sectornr, 1);
2590		kunmap_local(parity);
2591
2592		for (stripe = nr_data - 1; stripe >= 0; stripe--)
2593			kunmap_local(pointers[stripe]);
2594	}
2595
2596	kunmap_local(pointers[nr_data]);
2597	__free_page(p_sector.page);
2598	p_sector.page = NULL;
2599	if (q_sector.page) {
2600		kunmap_local(pointers[rbio->real_stripes - 1]);
2601		__free_page(q_sector.page);
2602		q_sector.page = NULL;
2603	}
2604
2605writeback:
2606	/*
2607	 * time to start writing.  Make bios for everything from the
2608	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2609	 * everything else.
2610	 */
2611	for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2612		struct sector_ptr *sector;
2613
2614		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2615		ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp,
2616					 sectornr, REQ_OP_WRITE);
2617		if (ret)
2618			goto cleanup;
2619	}
2620
2621	if (!is_replace)
2622		goto submit_write;
2623
2624	for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) {
2625		struct sector_ptr *sector;
2626
2627		sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2628		ret = rbio_add_io_sector(rbio, &bio_list, sector,
2629				       bioc->tgtdev_map[rbio->scrubp],
2630				       sectornr, REQ_OP_WRITE);
2631		if (ret)
2632			goto cleanup;
2633	}
2634
2635submit_write:
2636	submit_write_bios(rbio, &bio_list);
2637	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2638
2639cleanup:
2640	while ((bio = bio_list_pop(&bio_list)))
2641		bio_put(bio);
2642	return ret;
2643}
2644
2645static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2646{
2647	if (stripe >= 0 && stripe < rbio->nr_data)
2648		return 1;
2649	return 0;
2650}
2651
2652static int recover_scrub_rbio(struct btrfs_raid_bio *rbio)
 
 
 
 
 
 
 
2653{
2654	void **pointers = NULL;
2655	void **unmap_array = NULL;
2656	int sector_nr;
2657	int ret = 0;
2658
2659	/*
2660	 * @pointers array stores the pointer for each sector.
2661	 *
2662	 * @unmap_array stores copy of pointers that does not get reordered
2663	 * during reconstruction so that kunmap_local works.
2664	 */
2665	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2666	unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2667	if (!pointers || !unmap_array) {
2668		ret = -ENOMEM;
2669		goto out;
2670	}
2671
2672	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2673		int dfail = 0, failp = -1;
2674		int faila;
2675		int failb;
2676		int found_errors;
2677
2678		found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2679							 &faila, &failb);
2680		if (found_errors > rbio->bioc->max_errors) {
2681			ret = -EIO;
2682			goto out;
2683		}
2684		if (found_errors == 0)
2685			continue;
2686
2687		/* We should have at least one error here. */
2688		ASSERT(faila >= 0 || failb >= 0);
2689
2690		if (is_data_stripe(rbio, faila))
2691			dfail++;
2692		else if (is_parity_stripe(faila))
2693			failp = faila;
2694
2695		if (is_data_stripe(rbio, failb))
2696			dfail++;
2697		else if (is_parity_stripe(failb))
2698			failp = failb;
 
2699		/*
2700		 * Because we can not use a scrubbing parity to repair the
2701		 * data, so the capability of the repair is declined.  (In the
2702		 * case of RAID5, we can not repair anything.)
2703		 */
2704		if (dfail > rbio->bioc->max_errors - 1) {
2705			ret = -EIO;
2706			goto out;
2707		}
2708		/*
2709		 * If all data is good, only parity is correctly, just repair
2710		 * the parity, no need to recover data stripes.
2711		 */
2712		if (dfail == 0)
2713			continue;
 
 
2714
2715		/*
2716		 * Here means we got one corrupted data stripe and one
2717		 * corrupted parity on RAID6, if the corrupted parity is
2718		 * scrubbing parity, luckily, use the other one to repair the
2719		 * data, or we can not repair the data stripe.
2720		 */
2721		if (failp != rbio->scrubp) {
2722			ret = -EIO;
2723			goto out;
2724		}
2725
2726		ret = recover_vertical(rbio, sector_nr, pointers, unmap_array);
2727		if (ret < 0)
2728			goto out;
2729	}
2730out:
2731	kfree(pointers);
2732	kfree(unmap_array);
2733	return ret;
2734}
2735
2736static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio,
2737				    struct bio_list *bio_list)
 
 
 
 
 
 
 
2738{
2739	struct bio *bio;
2740	int total_sector_nr;
2741	int ret = 0;
2742
2743	ASSERT(bio_list_size(bio_list) == 0);
2744
2745	/* Build a list of bios to read all the missing parts. */
2746	for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2747	     total_sector_nr++) {
2748		int sectornr = total_sector_nr % rbio->stripe_nsectors;
2749		int stripe = total_sector_nr / rbio->stripe_nsectors;
2750		struct sector_ptr *sector;
2751
2752		/* No data in the vertical stripe, no need to read. */
2753		if (!test_bit(sectornr, &rbio->dbitmap))
2754			continue;
 
2755
2756		/*
2757		 * We want to find all the sectors missing from the rbio and
2758		 * read them from the disk. If sector_in_rbio() finds a sector
2759		 * in the bio list we don't need to read it off the stripe.
2760		 */
2761		sector = sector_in_rbio(rbio, stripe, sectornr, 1);
2762		if (sector)
2763			continue;
2764
2765		sector = rbio_stripe_sector(rbio, stripe, sectornr);
2766		/*
2767		 * The bio cache may have handed us an uptodate sector.  If so,
2768		 * use it.
2769		 */
2770		if (sector->uptodate)
2771			continue;
2772
2773		ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
2774					 sectornr, REQ_OP_READ);
2775		if (ret)
2776			goto error;
2777	}
2778	return 0;
2779error:
2780	while ((bio = bio_list_pop(bio_list)))
2781		bio_put(bio);
2782	return ret;
2783}
2784
2785static int scrub_rbio(struct btrfs_raid_bio *rbio)
2786{
2787	bool need_check = false;
2788	struct bio_list bio_list;
2789	int sector_nr;
2790	int ret;
 
 
2791	struct bio *bio;
2792
2793	bio_list_init(&bio_list);
2794
2795	ret = alloc_rbio_essential_pages(rbio);
2796	if (ret)
2797		goto cleanup;
2798
2799	bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2800
2801	ret = scrub_assemble_read_bios(rbio, &bio_list);
2802	if (ret < 0)
2803		goto cleanup;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2804
2805	submit_read_bios(rbio, &bio_list);
2806	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
 
 
 
 
 
2807
2808	/* We may have some failures, recover the failed sectors first. */
2809	ret = recover_scrub_rbio(rbio);
2810	if (ret < 0)
2811		goto cleanup;
 
 
 
 
 
 
 
 
 
 
 
 
 
2812
2813	/*
2814	 * We have every sector properly prepared. Can finish the scrub
2815	 * and writeback the good content.
2816	 */
2817	ret = finish_parity_scrub(rbio, need_check);
2818	wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2819	for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2820		int found_errors;
2821
2822		found_errors = get_rbio_veritical_errors(rbio, sector_nr, NULL, NULL);
2823		if (found_errors > rbio->bioc->max_errors) {
2824			ret = -EIO;
2825			break;
2826		}
 
 
 
 
 
 
 
2827	}
2828	return ret;
 
2829
2830cleanup:
2831	while ((bio = bio_list_pop(&bio_list)))
2832		bio_put(bio);
2833
2834	return ret;
 
2835}
2836
2837static void scrub_rbio_work_locked(struct work_struct *work)
2838{
2839	struct btrfs_raid_bio *rbio;
2840	int ret;
2841
2842	rbio = container_of(work, struct btrfs_raid_bio, work);
2843	ret = scrub_rbio(rbio);
2844	rbio_orig_end_io(rbio, errno_to_blk_status(ret));
 
 
 
 
 
 
 
 
2845}
2846
2847void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2848{
2849	if (!lock_stripe_add(rbio))
2850		start_async_work(rbio, scrub_rbio_work_locked);
2851}
2852
2853/* The following code is used for dev replace of a missing RAID 5/6 device. */
2854
2855struct btrfs_raid_bio *
2856raid56_alloc_missing_rbio(struct bio *bio, struct btrfs_io_context *bioc)
 
2857{
2858	struct btrfs_fs_info *fs_info = bioc->fs_info;
2859	struct btrfs_raid_bio *rbio;
2860
2861	rbio = alloc_rbio(fs_info, bioc);
2862	if (IS_ERR(rbio))
2863		return NULL;
2864
2865	rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2866	bio_list_add(&rbio->bio_list, bio);
2867	/*
2868	 * This is a special bio which is used to hold the completion handler
2869	 * and make the scrub rbio is similar to the other types
2870	 */
2871	ASSERT(!bio->bi_iter.bi_size);
2872
2873	set_rbio_range_error(rbio, bio);
 
 
 
 
 
2874
2875	return rbio;
2876}
2877
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2878void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2879{
2880	start_async_work(rbio, recover_rbio_work);
 
2881}
v4.6
 
   1/*
   2 * Copyright (C) 2012 Fusion-io  All rights reserved.
   3 * Copyright (C) 2012 Intel Corp. All rights reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public
   7 * License v2 as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  12 * General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public
  15 * License along with this program; if not, write to the
  16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17 * Boston, MA 021110-1307, USA.
  18 */
 
  19#include <linux/sched.h>
  20#include <linux/wait.h>
  21#include <linux/bio.h>
  22#include <linux/slab.h>
  23#include <linux/buffer_head.h>
  24#include <linux/blkdev.h>
  25#include <linux/random.h>
  26#include <linux/iocontext.h>
  27#include <linux/capability.h>
  28#include <linux/ratelimit.h>
  29#include <linux/kthread.h>
  30#include <linux/raid/pq.h>
  31#include <linux/hash.h>
  32#include <linux/list_sort.h>
  33#include <linux/raid/xor.h>
  34#include <linux/vmalloc.h>
  35#include <asm/div64.h>
 
  36#include "ctree.h"
  37#include "extent_map.h"
  38#include "disk-io.h"
  39#include "transaction.h"
  40#include "print-tree.h"
  41#include "volumes.h"
  42#include "raid56.h"
  43#include "async-thread.h"
  44#include "check-integrity.h"
  45#include "rcu-string.h"
  46
  47/* set when additional merges to this rbio are not allowed */
  48#define RBIO_RMW_LOCKED_BIT	1
  49
  50/*
  51 * set when this rbio is sitting in the hash, but it is just a cache
  52 * of past RMW
  53 */
  54#define RBIO_CACHE_BIT		2
  55
  56/*
  57 * set when it is safe to trust the stripe_pages for caching
  58 */
  59#define RBIO_CACHE_READY_BIT	3
  60
  61#define RBIO_CACHE_SIZE 1024
  62
  63enum btrfs_rbio_ops {
  64	BTRFS_RBIO_WRITE,
  65	BTRFS_RBIO_READ_REBUILD,
  66	BTRFS_RBIO_PARITY_SCRUB,
  67	BTRFS_RBIO_REBUILD_MISSING,
  68};
  69
  70struct btrfs_raid_bio {
  71	struct btrfs_fs_info *fs_info;
  72	struct btrfs_bio *bbio;
  73
  74	/* while we're doing rmw on a stripe
  75	 * we put it into a hash table so we can
  76	 * lock the stripe and merge more rbios
  77	 * into it.
  78	 */
  79	struct list_head hash_list;
 
 
  80
  81	/*
  82	 * LRU list for the stripe cache
  83	 */
  84	struct list_head stripe_cache;
 
 
 
 
  85
  86	/*
  87	 * for scheduling work in the helper threads
  88	 */
  89	struct btrfs_work work;
 
 
 
 
 
 
  90
  91	/*
  92	 * bio list and bio_list_lock are used
  93	 * to add more bios into the stripe
  94	 * in hopes of avoiding the full rmw
  95	 */
  96	struct bio_list bio_list;
  97	spinlock_t bio_list_lock;
  98
  99	/* also protected by the bio_list_lock, the
 100	 * plug list is used by the plugging code
 101	 * to collect partial bios while plugged.  The
 102	 * stripe locking code also uses it to hand off
 103	 * the stripe lock to the next pending IO
 104	 */
 105	struct list_head plug_list;
 106
 107	/*
 108	 * flags that tell us if it is safe to
 109	 * merge with this bio
 110	 */
 111	unsigned long flags;
 
 
 
 112
 113	/* size of each individual stripe on disk */
 114	int stripe_len;
 
 115
 116	/* number of data stripes (no p/q) */
 117	int nr_data;
 118
 119	int real_stripes;
 
 
 120
 121	int stripe_npages;
 122	/*
 123	 * set if we're doing a parity rebuild
 124	 * for a read from higher up, which is handled
 125	 * differently from a parity rebuild as part of
 126	 * rmw
 127	 */
 128	enum btrfs_rbio_ops operation;
 129
 130	/* first bad stripe */
 131	int faila;
 
 
 132
 133	/* second bad stripe (for raid6 use) */
 134	int failb;
 135
 136	int scrubp;
 137	/*
 138	 * number of pages needed to represent the full
 139	 * stripe
 140	 */
 141	int nr_pages;
 142
 143	/*
 144	 * size of all the bios in the bio_list.  This
 145	 * helps us decide if the rbio maps to a full
 146	 * stripe or not
 147	 */
 148	int bio_list_bytes;
 149
 150	int generic_bio_cnt;
 151
 152	atomic_t refs;
 153
 154	atomic_t stripes_pending;
 155
 156	atomic_t error;
 157	/*
 158	 * these are two arrays of pointers.  We allocate the
 159	 * rbio big enough to hold them both and setup their
 160	 * locations when the rbio is allocated
 161	 */
 162
 163	/* pointers to pages that we allocated for
 164	 * reading/writing stripes directly from the disk (including P/Q)
 165	 */
 166	struct page **stripe_pages;
 167
 168	/*
 169	 * pointers to the pages in the bio_list.  Stored
 170	 * here for faster lookup
 171	 */
 172	struct page **bio_pages;
 173
 174	/*
 175	 * bitmap to record which horizontal stripe has data
 176	 */
 177	unsigned long *dbitmap;
 178};
 179
 180static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
 181static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
 182static void rmw_work(struct btrfs_work *work);
 183static void read_rebuild_work(struct btrfs_work *work);
 184static void async_rmw_stripe(struct btrfs_raid_bio *rbio);
 185static void async_read_rebuild(struct btrfs_raid_bio *rbio);
 186static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
 187static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
 188static void __free_raid_bio(struct btrfs_raid_bio *rbio);
 189static void index_rbio_pages(struct btrfs_raid_bio *rbio);
 190static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
 191
 192static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
 193					 int need_check);
 194static void async_scrub_parity(struct btrfs_raid_bio *rbio);
 195
 196/*
 197 * the stripe hash table is used for locking, and to collect
 198 * bios in hopes of making a full stripe
 199 */
 200int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
 201{
 202	struct btrfs_stripe_hash_table *table;
 203	struct btrfs_stripe_hash_table *x;
 204	struct btrfs_stripe_hash *cur;
 205	struct btrfs_stripe_hash *h;
 206	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
 207	int i;
 208	int table_size;
 209
 210	if (info->stripe_hash_table)
 211		return 0;
 212
 213	/*
 214	 * The table is large, starting with order 4 and can go as high as
 215	 * order 7 in case lock debugging is turned on.
 216	 *
 217	 * Try harder to allocate and fallback to vmalloc to lower the chance
 218	 * of a failing mount.
 219	 */
 220	table_size = sizeof(*table) + sizeof(*h) * num_entries;
 221	table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
 222	if (!table) {
 223		table = vzalloc(table_size);
 224		if (!table)
 225			return -ENOMEM;
 226	}
 227
 228	spin_lock_init(&table->cache_lock);
 229	INIT_LIST_HEAD(&table->stripe_cache);
 230
 231	h = table->table;
 232
 233	for (i = 0; i < num_entries; i++) {
 234		cur = h + i;
 235		INIT_LIST_HEAD(&cur->hash_list);
 236		spin_lock_init(&cur->lock);
 237		init_waitqueue_head(&cur->wait);
 238	}
 239
 240	x = cmpxchg(&info->stripe_hash_table, NULL, table);
 241	if (x)
 242		kvfree(x);
 243	return 0;
 244}
 245
 246/*
 247 * caching an rbio means to copy anything from the
 248 * bio_pages array into the stripe_pages array.  We
 249 * use the page uptodate bit in the stripe cache array
 250 * to indicate if it has valid data
 251 *
 252 * once the caching is done, we set the cache ready
 253 * bit.
 254 */
 255static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
 256{
 257	int i;
 258	char *s;
 259	char *d;
 260	int ret;
 261
 262	ret = alloc_rbio_pages(rbio);
 263	if (ret)
 264		return;
 265
 266	for (i = 0; i < rbio->nr_pages; i++) {
 267		if (!rbio->bio_pages[i])
 
 
 
 
 
 
 
 
 268			continue;
 
 269
 270		s = kmap(rbio->bio_pages[i]);
 271		d = kmap(rbio->stripe_pages[i]);
 272
 273		memcpy(d, s, PAGE_SIZE);
 274
 275		kunmap(rbio->bio_pages[i]);
 276		kunmap(rbio->stripe_pages[i]);
 277		SetPageUptodate(rbio->stripe_pages[i]);
 278	}
 279	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
 280}
 281
 282/*
 283 * we hash on the first logical address of the stripe
 284 */
 285static int rbio_bucket(struct btrfs_raid_bio *rbio)
 286{
 287	u64 num = rbio->bbio->raid_map[0];
 288
 289	/*
 290	 * we shift down quite a bit.  We're using byte
 291	 * addressing, and most of the lower bits are zeros.
 292	 * This tends to upset hash_64, and it consistently
 293	 * returns just one or two different values.
 294	 *
 295	 * shifting off the lower bits fixes things.
 296	 */
 297	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
 298}
 299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 300/*
 301 * stealing an rbio means taking all the uptodate pages from the stripe
 302 * array in the source rbio and putting them into the destination rbio
 
 
 
 303 */
 304static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
 305{
 306	int i;
 307	struct page *s;
 308	struct page *d;
 309
 310	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
 311		return;
 312
 313	for (i = 0; i < dest->nr_pages; i++) {
 314		s = src->stripe_pages[i];
 315		if (!s || !PageUptodate(s)) {
 
 
 
 
 
 316			continue;
 317		}
 318
 319		d = dest->stripe_pages[i];
 320		if (d)
 321			__free_page(d);
 322
 323		dest->stripe_pages[i] = s;
 324		src->stripe_pages[i] = NULL;
 
 325	}
 
 
 326}
 327
 328/*
 329 * merging means we take the bio_list from the victim and
 330 * splice it into the destination.  The victim should
 331 * be discarded afterwards.
 332 *
 333 * must be called with dest->rbio_list_lock held
 334 */
 335static void merge_rbio(struct btrfs_raid_bio *dest,
 336		       struct btrfs_raid_bio *victim)
 337{
 338	bio_list_merge(&dest->bio_list, &victim->bio_list);
 339	dest->bio_list_bytes += victim->bio_list_bytes;
 340	dest->generic_bio_cnt += victim->generic_bio_cnt;
 
 
 341	bio_list_init(&victim->bio_list);
 342}
 343
 344/*
 345 * used to prune items that are in the cache.  The caller
 346 * must hold the hash table lock.
 347 */
 348static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 349{
 350	int bucket = rbio_bucket(rbio);
 351	struct btrfs_stripe_hash_table *table;
 352	struct btrfs_stripe_hash *h;
 353	int freeit = 0;
 354
 355	/*
 356	 * check the bit again under the hash table lock.
 357	 */
 358	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 359		return;
 360
 361	table = rbio->fs_info->stripe_hash_table;
 362	h = table->table + bucket;
 363
 364	/* hold the lock for the bucket because we may be
 365	 * removing it from the hash table
 366	 */
 367	spin_lock(&h->lock);
 368
 369	/*
 370	 * hold the lock for the bio list because we need
 371	 * to make sure the bio list is empty
 372	 */
 373	spin_lock(&rbio->bio_list_lock);
 374
 375	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 376		list_del_init(&rbio->stripe_cache);
 377		table->cache_size -= 1;
 378		freeit = 1;
 379
 380		/* if the bio list isn't empty, this rbio is
 381		 * still involved in an IO.  We take it out
 382		 * of the cache list, and drop the ref that
 383		 * was held for the list.
 384		 *
 385		 * If the bio_list was empty, we also remove
 386		 * the rbio from the hash_table, and drop
 387		 * the corresponding ref
 388		 */
 389		if (bio_list_empty(&rbio->bio_list)) {
 390			if (!list_empty(&rbio->hash_list)) {
 391				list_del_init(&rbio->hash_list);
 392				atomic_dec(&rbio->refs);
 393				BUG_ON(!list_empty(&rbio->plug_list));
 394			}
 395		}
 396	}
 397
 398	spin_unlock(&rbio->bio_list_lock);
 399	spin_unlock(&h->lock);
 400
 401	if (freeit)
 402		__free_raid_bio(rbio);
 403}
 404
 405/*
 406 * prune a given rbio from the cache
 407 */
 408static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
 409{
 410	struct btrfs_stripe_hash_table *table;
 411	unsigned long flags;
 412
 413	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
 414		return;
 415
 416	table = rbio->fs_info->stripe_hash_table;
 417
 418	spin_lock_irqsave(&table->cache_lock, flags);
 419	__remove_rbio_from_cache(rbio);
 420	spin_unlock_irqrestore(&table->cache_lock, flags);
 421}
 422
 423/*
 424 * remove everything in the cache
 425 */
 426static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
 427{
 428	struct btrfs_stripe_hash_table *table;
 429	unsigned long flags;
 430	struct btrfs_raid_bio *rbio;
 431
 432	table = info->stripe_hash_table;
 433
 434	spin_lock_irqsave(&table->cache_lock, flags);
 435	while (!list_empty(&table->stripe_cache)) {
 436		rbio = list_entry(table->stripe_cache.next,
 437				  struct btrfs_raid_bio,
 438				  stripe_cache);
 439		__remove_rbio_from_cache(rbio);
 440	}
 441	spin_unlock_irqrestore(&table->cache_lock, flags);
 442}
 443
 444/*
 445 * remove all cached entries and free the hash table
 446 * used by unmount
 447 */
 448void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
 449{
 450	if (!info->stripe_hash_table)
 451		return;
 452	btrfs_clear_rbio_cache(info);
 453	kvfree(info->stripe_hash_table);
 454	info->stripe_hash_table = NULL;
 455}
 456
 457/*
 458 * insert an rbio into the stripe cache.  It
 459 * must have already been prepared by calling
 460 * cache_rbio_pages
 461 *
 462 * If this rbio was already cached, it gets
 463 * moved to the front of the lru.
 464 *
 465 * If the size of the rbio cache is too big, we
 466 * prune an item.
 467 */
 468static void cache_rbio(struct btrfs_raid_bio *rbio)
 469{
 470	struct btrfs_stripe_hash_table *table;
 471	unsigned long flags;
 472
 473	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
 474		return;
 475
 476	table = rbio->fs_info->stripe_hash_table;
 477
 478	spin_lock_irqsave(&table->cache_lock, flags);
 479	spin_lock(&rbio->bio_list_lock);
 480
 481	/* bump our ref if we were not in the list before */
 482	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
 483		atomic_inc(&rbio->refs);
 484
 485	if (!list_empty(&rbio->stripe_cache)){
 486		list_move(&rbio->stripe_cache, &table->stripe_cache);
 487	} else {
 488		list_add(&rbio->stripe_cache, &table->stripe_cache);
 489		table->cache_size += 1;
 490	}
 491
 492	spin_unlock(&rbio->bio_list_lock);
 493
 494	if (table->cache_size > RBIO_CACHE_SIZE) {
 495		struct btrfs_raid_bio *found;
 496
 497		found = list_entry(table->stripe_cache.prev,
 498				  struct btrfs_raid_bio,
 499				  stripe_cache);
 500
 501		if (found != rbio)
 502			__remove_rbio_from_cache(found);
 503	}
 504
 505	spin_unlock_irqrestore(&table->cache_lock, flags);
 506}
 507
 508/*
 509 * helper function to run the xor_blocks api.  It is only
 510 * able to do MAX_XOR_BLOCKS at a time, so we need to
 511 * loop through.
 512 */
 513static void run_xor(void **pages, int src_cnt, ssize_t len)
 514{
 515	int src_off = 0;
 516	int xor_src_cnt = 0;
 517	void *dest = pages[src_cnt];
 518
 519	while(src_cnt > 0) {
 520		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
 521		xor_blocks(xor_src_cnt, len, dest, pages + src_off);
 522
 523		src_cnt -= xor_src_cnt;
 524		src_off += xor_src_cnt;
 525	}
 526}
 527
 528/*
 529 * returns true if the bio list inside this rbio
 530 * covers an entire stripe (no rmw required).
 531 * Must be called with the bio list lock held, or
 532 * at a time when you know it is impossible to add
 533 * new bios into the list
 534 */
 535static int __rbio_is_full(struct btrfs_raid_bio *rbio)
 536{
 
 537	unsigned long size = rbio->bio_list_bytes;
 538	int ret = 1;
 539
 540	if (size != rbio->nr_data * rbio->stripe_len)
 
 541		ret = 0;
 
 
 542
 543	BUG_ON(size > rbio->nr_data * rbio->stripe_len);
 544	return ret;
 545}
 546
 547static int rbio_is_full(struct btrfs_raid_bio *rbio)
 548{
 549	unsigned long flags;
 550	int ret;
 551
 552	spin_lock_irqsave(&rbio->bio_list_lock, flags);
 553	ret = __rbio_is_full(rbio);
 554	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
 555	return ret;
 556}
 557
 558/*
 559 * returns 1 if it is safe to merge two rbios together.
 560 * The merging is safe if the two rbios correspond to
 561 * the same stripe and if they are both going in the same
 562 * direction (read vs write), and if neither one is
 563 * locked for final IO
 564 *
 565 * The caller is responsible for locking such that
 566 * rmw_locked is safe to test
 567 */
 568static int rbio_can_merge(struct btrfs_raid_bio *last,
 569			  struct btrfs_raid_bio *cur)
 570{
 571	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
 572	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
 573		return 0;
 574
 575	/*
 576	 * we can't merge with cached rbios, since the
 577	 * idea is that when we merge the destination
 578	 * rbio is going to run our IO for us.  We can
 579	 * steal from cached rbio's though, other functions
 580	 * handle that.
 581	 */
 582	if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
 583	    test_bit(RBIO_CACHE_BIT, &cur->flags))
 584		return 0;
 585
 586	if (last->bbio->raid_map[0] !=
 587	    cur->bbio->raid_map[0])
 588		return 0;
 589
 590	/* we can't merge with different operations */
 591	if (last->operation != cur->operation)
 592		return 0;
 593	/*
 594	 * We've need read the full stripe from the drive.
 595	 * check and repair the parity and write the new results.
 596	 *
 597	 * We're not allowed to add any new bios to the
 598	 * bio list here, anyone else that wants to
 599	 * change this stripe needs to do their own rmw.
 600	 */
 601	if (last->operation == BTRFS_RBIO_PARITY_SCRUB ||
 602	    cur->operation == BTRFS_RBIO_PARITY_SCRUB)
 603		return 0;
 604
 605	if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
 606	    cur->operation == BTRFS_RBIO_REBUILD_MISSING)
 607		return 0;
 608
 609	return 1;
 610}
 611
 612static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
 613				  int index)
 
 614{
 615	return stripe * rbio->stripe_npages + index;
 
 
 
 616}
 617
 618/*
 619 * these are just the pages from the rbio array, not from anything
 620 * the FS sent down to us
 621 */
 622static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
 623				     int index)
 624{
 625	return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
 
 626}
 627
 628/*
 629 * helper to index into the pstripe
 630 */
 631static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
 632{
 633	return rbio_stripe_page(rbio, rbio->nr_data, index);
 634}
 635
 636/*
 637 * helper to index into the qstripe, returns null
 638 * if there is no qstripe
 639 */
 640static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
 641{
 642	if (rbio->nr_data + 1 == rbio->real_stripes)
 643		return NULL;
 644	return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
 645}
 646
 647/*
 648 * The first stripe in the table for a logical address
 649 * has the lock.  rbios are added in one of three ways:
 650 *
 651 * 1) Nobody has the stripe locked yet.  The rbio is given
 652 * the lock and 0 is returned.  The caller must start the IO
 653 * themselves.
 654 *
 655 * 2) Someone has the stripe locked, but we're able to merge
 656 * with the lock owner.  The rbio is freed and the IO will
 657 * start automatically along with the existing rbio.  1 is returned.
 658 *
 659 * 3) Someone has the stripe locked, but we're not able to merge.
 660 * The rbio is added to the lock owner's plug list, or merged into
 661 * an rbio already on the plug list.  When the lock owner unlocks,
 662 * the next rbio on the list is run and the IO is started automatically.
 663 * 1 is returned
 664 *
 665 * If we return 0, the caller still owns the rbio and must continue with
 666 * IO submission.  If we return 1, the caller must assume the rbio has
 667 * already been freed.
 668 */
 669static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
 670{
 671	int bucket = rbio_bucket(rbio);
 672	struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
 673	struct btrfs_raid_bio *cur;
 674	struct btrfs_raid_bio *pending;
 675	unsigned long flags;
 676	DEFINE_WAIT(wait);
 677	struct btrfs_raid_bio *freeit = NULL;
 678	struct btrfs_raid_bio *cache_drop = NULL;
 679	int ret = 0;
 680	int walk = 0;
 
 681
 682	spin_lock_irqsave(&h->lock, flags);
 683	list_for_each_entry(cur, &h->hash_list, hash_list) {
 684		walk++;
 685		if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) {
 686			spin_lock(&cur->bio_list_lock);
 687
 688			/* can we steal this cached rbio's pages? */
 689			if (bio_list_empty(&cur->bio_list) &&
 690			    list_empty(&cur->plug_list) &&
 691			    test_bit(RBIO_CACHE_BIT, &cur->flags) &&
 692			    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
 693				list_del_init(&cur->hash_list);
 694				atomic_dec(&cur->refs);
 
 
 
 
 
 
 
 
 695
 696				steal_rbio(cur, rbio);
 697				cache_drop = cur;
 698				spin_unlock(&cur->bio_list_lock);
 
 
 
 
 
 699
 700				goto lockit;
 701			}
 702
 703			/* can we merge into the lock owner? */
 704			if (rbio_can_merge(cur, rbio)) {
 705				merge_rbio(cur, rbio);
 
 
 
 
 
 706				spin_unlock(&cur->bio_list_lock);
 707				freeit = rbio;
 708				ret = 1;
 709				goto out;
 710			}
 
 711
 712
 713			/*
 714			 * we couldn't merge with the running
 715			 * rbio, see if we can merge with the
 716			 * pending ones.  We don't have to
 717			 * check for rmw_locked because there
 718			 * is no way they are inside finish_rmw
 719			 * right now
 720			 */
 721			list_for_each_entry(pending, &cur->plug_list,
 722					    plug_list) {
 723				if (rbio_can_merge(pending, rbio)) {
 724					merge_rbio(pending, rbio);
 725					spin_unlock(&cur->bio_list_lock);
 726					freeit = rbio;
 727					ret = 1;
 728					goto out;
 729				}
 730			}
 731
 732			/* no merging, put us on the tail of the plug list,
 733			 * our rbio will be started with the currently
 734			 * running rbio unlocks
 735			 */
 736			list_add_tail(&rbio->plug_list, &cur->plug_list);
 737			spin_unlock(&cur->bio_list_lock);
 738			ret = 1;
 739			goto out;
 740		}
 741	}
 742lockit:
 743	atomic_inc(&rbio->refs);
 744	list_add(&rbio->hash_list, &h->hash_list);
 745out:
 746	spin_unlock_irqrestore(&h->lock, flags);
 747	if (cache_drop)
 748		remove_rbio_from_cache(cache_drop);
 749	if (freeit)
 750		__free_raid_bio(freeit);
 751	return ret;
 752}
 753
 
 
 754/*
 755 * called as rmw or parity rebuild is completed.  If the plug list has more
 756 * rbios waiting for this stripe, the next one on the list will be started
 757 */
 758static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
 759{
 760	int bucket;
 761	struct btrfs_stripe_hash *h;
 762	unsigned long flags;
 763	int keep_cache = 0;
 764
 765	bucket = rbio_bucket(rbio);
 766	h = rbio->fs_info->stripe_hash_table->table + bucket;
 767
 768	if (list_empty(&rbio->plug_list))
 769		cache_rbio(rbio);
 770
 771	spin_lock_irqsave(&h->lock, flags);
 772	spin_lock(&rbio->bio_list_lock);
 773
 774	if (!list_empty(&rbio->hash_list)) {
 775		/*
 776		 * if we're still cached and there is no other IO
 777		 * to perform, just leave this rbio here for others
 778		 * to steal from later
 779		 */
 780		if (list_empty(&rbio->plug_list) &&
 781		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
 782			keep_cache = 1;
 783			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
 784			BUG_ON(!bio_list_empty(&rbio->bio_list));
 785			goto done;
 786		}
 787
 788		list_del_init(&rbio->hash_list);
 789		atomic_dec(&rbio->refs);
 790
 791		/*
 792		 * we use the plug list to hold all the rbios
 793		 * waiting for the chance to lock this stripe.
 794		 * hand the lock over to one of them.
 795		 */
 796		if (!list_empty(&rbio->plug_list)) {
 797			struct btrfs_raid_bio *next;
 798			struct list_head *head = rbio->plug_list.next;
 799
 800			next = list_entry(head, struct btrfs_raid_bio,
 801					  plug_list);
 802
 803			list_del_init(&rbio->plug_list);
 804
 805			list_add(&next->hash_list, &h->hash_list);
 806			atomic_inc(&next->refs);
 807			spin_unlock(&rbio->bio_list_lock);
 808			spin_unlock_irqrestore(&h->lock, flags);
 809
 810			if (next->operation == BTRFS_RBIO_READ_REBUILD)
 811				async_read_rebuild(next);
 812			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
 813				steal_rbio(rbio, next);
 814				async_read_rebuild(next);
 815			} else if (next->operation == BTRFS_RBIO_WRITE) {
 816				steal_rbio(rbio, next);
 817				async_rmw_stripe(next);
 818			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
 819				steal_rbio(rbio, next);
 820				async_scrub_parity(next);
 821			}
 822
 823			goto done_nolock;
 824			/*
 825			 * The barrier for this waitqueue_active is not needed,
 826			 * we're protected by h->lock and can't miss a wakeup.
 827			 */
 828		} else if (waitqueue_active(&h->wait)) {
 829			spin_unlock(&rbio->bio_list_lock);
 830			spin_unlock_irqrestore(&h->lock, flags);
 831			wake_up(&h->wait);
 832			goto done_nolock;
 833		}
 834	}
 835done:
 836	spin_unlock(&rbio->bio_list_lock);
 837	spin_unlock_irqrestore(&h->lock, flags);
 838
 839done_nolock:
 840	if (!keep_cache)
 841		remove_rbio_from_cache(rbio);
 842}
 843
 844static void __free_raid_bio(struct btrfs_raid_bio *rbio)
 845{
 846	int i;
 847
 848	WARN_ON(atomic_read(&rbio->refs) < 0);
 849	if (!atomic_dec_and_test(&rbio->refs))
 850		return;
 851
 852	WARN_ON(!list_empty(&rbio->stripe_cache));
 853	WARN_ON(!list_empty(&rbio->hash_list));
 854	WARN_ON(!bio_list_empty(&rbio->bio_list));
 855
 856	for (i = 0; i < rbio->nr_pages; i++) {
 857		if (rbio->stripe_pages[i]) {
 858			__free_page(rbio->stripe_pages[i]);
 859			rbio->stripe_pages[i] = NULL;
 860		}
 861	}
 862
 863	btrfs_put_bbio(rbio->bbio);
 864	kfree(rbio);
 865}
 866
 867static void free_raid_bio(struct btrfs_raid_bio *rbio)
 868{
 869	unlock_stripe(rbio);
 870	__free_raid_bio(rbio);
 871}
 872
 873/*
 874 * this frees the rbio and runs through all the bios in the
 875 * bio_list and calls end_io on them
 876 */
 877static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err)
 878{
 879	struct bio *cur = bio_list_get(&rbio->bio_list);
 880	struct bio *next;
 881
 882	if (rbio->generic_bio_cnt)
 883		btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
 884
 885	free_raid_bio(rbio);
 886
 887	while (cur) {
 888		next = cur->bi_next;
 889		cur->bi_next = NULL;
 890		cur->bi_error = err;
 891		bio_endio(cur);
 892		cur = next;
 893	}
 894}
 895
 896/*
 897 * end io function used by finish_rmw.  When we finally
 898 * get here, we've written a full stripe
 899 */
 900static void raid_write_end_io(struct bio *bio)
 901{
 902	struct btrfs_raid_bio *rbio = bio->bi_private;
 903	int err = bio->bi_error;
 904	int max_errors;
 905
 906	if (err)
 907		fail_bio_stripe(rbio, bio);
 
 
 908
 909	bio_put(bio);
 
 
 
 
 
 910
 911	if (!atomic_dec_and_test(&rbio->stripes_pending))
 912		return;
 913
 914	err = 0;
 915
 916	/* OK, we have read all the stripes we need to. */
 917	max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
 918		     0 : rbio->bbio->max_errors;
 919	if (atomic_read(&rbio->error) > max_errors)
 920		err = -EIO;
 
 921
 922	rbio_orig_end_io(rbio, err);
 
 
 923}
 924
 925/*
 926 * the read/modify/write code wants to use the original bio for
 927 * any pages it included, and then use the rbio for everything
 928 * else.  This function decides if a given index (stripe number)
 929 * and page number in that stripe fall inside the original bio
 930 * or the rbio.
 931 *
 932 * if you set bio_list_only, you'll get a NULL back for any ranges
 933 * that are outside the bio_list
 
 
 
 934 *
 935 * This doesn't take any refs on anything, you get a bare page pointer
 936 * and the caller must bump refs as required.
 937 *
 938 * You must call index_rbio_pages once before you can trust
 939 * the answers from this function.
 940 */
 941static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
 942				 int index, int pagenr, int bio_list_only)
 
 943{
 944	int chunk_page;
 945	struct page *p = NULL;
 946
 947	chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
 
 
 
 
 948
 949	spin_lock_irq(&rbio->bio_list_lock);
 950	p = rbio->bio_pages[chunk_page];
 
 
 
 
 
 
 
 951	spin_unlock_irq(&rbio->bio_list_lock);
 952
 953	if (p || bio_list_only)
 954		return p;
 955
 956	return rbio->stripe_pages[chunk_page];
 957}
 958
 959/*
 960 * number of pages we need for the entire stripe across all the
 961 * drives
 962 */
 963static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
 964{
 965	return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
 966}
 967
 968/*
 969 * allocation and initial setup for the btrfs_raid_bio.  Not
 970 * this does not allocate any pages for rbio->pages.
 971 */
 972static struct btrfs_raid_bio *alloc_rbio(struct btrfs_root *root,
 973			  struct btrfs_bio *bbio, u64 stripe_len)
 974{
 
 
 
 
 
 
 975	struct btrfs_raid_bio *rbio;
 976	int nr_data = 0;
 977	int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
 978	int num_pages = rbio_nr_pages(stripe_len, real_stripes);
 979	int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
 980	void *p;
 981
 982	rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 +
 983		       DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) *
 984		       sizeof(long), GFP_NOFS);
 
 985	if (!rbio)
 986		return ERR_PTR(-ENOMEM);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 987
 988	bio_list_init(&rbio->bio_list);
 
 989	INIT_LIST_HEAD(&rbio->plug_list);
 990	spin_lock_init(&rbio->bio_list_lock);
 991	INIT_LIST_HEAD(&rbio->stripe_cache);
 992	INIT_LIST_HEAD(&rbio->hash_list);
 993	rbio->bbio = bbio;
 994	rbio->fs_info = root->fs_info;
 995	rbio->stripe_len = stripe_len;
 996	rbio->nr_pages = num_pages;
 
 997	rbio->real_stripes = real_stripes;
 998	rbio->stripe_npages = stripe_npages;
 999	rbio->faila = -1;
1000	rbio->failb = -1;
1001	atomic_set(&rbio->refs, 1);
1002	atomic_set(&rbio->error, 0);
1003	atomic_set(&rbio->stripes_pending, 0);
1004
1005	/*
1006	 * the stripe_pages and bio_pages array point to the extra
1007	 * memory we allocated past the end of the rbio
1008	 */
1009	p = rbio + 1;
1010	rbio->stripe_pages = p;
1011	rbio->bio_pages = p + sizeof(struct page *) * num_pages;
1012	rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2;
1013
1014	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1015		nr_data = real_stripes - 1;
1016	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1017		nr_data = real_stripes - 2;
1018	else
1019		BUG();
1020
1021	rbio->nr_data = nr_data;
1022	return rbio;
1023}
1024
1025/* allocate pages for all the stripes in the bio, including parity */
1026static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1027{
1028	int i;
1029	struct page *page;
1030
1031	for (i = 0; i < rbio->nr_pages; i++) {
1032		if (rbio->stripe_pages[i])
1033			continue;
1034		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1035		if (!page)
1036			return -ENOMEM;
1037		rbio->stripe_pages[i] = page;
1038	}
1039	return 0;
1040}
1041
1042/* only allocate pages for p/q stripes */
1043static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1044{
1045	int i;
1046	struct page *page;
 
 
 
 
 
 
 
 
 
1047
1048	i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
 
 
 
 
 
 
 
 
 
 
1049
1050	for (; i < rbio->nr_pages; i++) {
1051		if (rbio->stripe_pages[i])
1052			continue;
1053		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1054		if (!page)
1055			return -ENOMEM;
1056		rbio->stripe_pages[i] = page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1057	}
1058	return 0;
1059}
1060
1061/*
1062 * add a single page from a specific stripe into our list of bios for IO
1063 * this will try to merge into existing bios if possible, and returns
1064 * zero if all went well.
1065 */
1066static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1067			    struct bio_list *bio_list,
1068			    struct page *page,
1069			    int stripe_nr,
1070			    unsigned long page_index,
1071			    unsigned long bio_max_len)
 
1072{
 
1073	struct bio *last = bio_list->tail;
1074	u64 last_end = 0;
1075	int ret;
1076	struct bio *bio;
1077	struct btrfs_bio_stripe *stripe;
1078	u64 disk_start;
1079
1080	stripe = &rbio->bbio->stripes[stripe_nr];
1081	disk_start = stripe->physical + (page_index << PAGE_SHIFT);
 
 
 
 
 
 
 
 
 
1082
1083	/* if the device is missing, just fail this stripe */
1084	if (!stripe->dev->bdev)
1085		return fail_rbio_index(rbio, stripe_nr);
 
 
 
 
 
 
 
 
 
 
 
1086
1087	/* see if we can add this page onto our existing bio */
1088	if (last) {
1089		last_end = (u64)last->bi_iter.bi_sector << 9;
1090		last_end += last->bi_iter.bi_size;
1091
1092		/*
1093		 * we can't merge these if they are from different
1094		 * devices or if they are not contiguous
1095		 */
1096		if (last_end == disk_start && stripe->dev->bdev &&
1097		    !last->bi_error &&
1098		    last->bi_bdev == stripe->dev->bdev) {
1099			ret = bio_add_page(last, page, PAGE_SIZE, 0);
1100			if (ret == PAGE_SIZE)
 
1101				return 0;
1102		}
1103	}
1104
1105	/* put a new bio on the list */
1106	bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1);
1107	if (!bio)
1108		return -ENOMEM;
1109
1110	bio->bi_iter.bi_size = 0;
1111	bio->bi_bdev = stripe->dev->bdev;
1112	bio->bi_iter.bi_sector = disk_start >> 9;
 
1113
1114	bio_add_page(bio, page, PAGE_SIZE, 0);
1115	bio_list_add(bio_list, bio);
1116	return 0;
1117}
1118
1119/*
1120 * while we're doing the read/modify/write cycle, we could
1121 * have errors in reading pages off the disk.  This checks
1122 * for errors and if we're not able to read the page it'll
1123 * trigger parity reconstruction.  The rmw will be finished
1124 * after we've reconstructed the failed stripes
1125 */
1126static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1127{
1128	if (rbio->faila >= 0 || rbio->failb >= 0) {
1129		BUG_ON(rbio->faila == rbio->real_stripes - 1);
1130		__raid56_parity_recover(rbio);
1131	} else {
1132		finish_rmw(rbio);
 
 
 
 
 
 
1133	}
1134}
1135
1136/*
1137 * helper function to walk our bio list and populate the bio_pages array with
1138 * the result.  This seems expensive, but it is faster than constantly
1139 * searching through the bio list as we setup the IO in finish_rmw or stripe
1140 * reconstruction.
1141 *
1142 * This must be called before you trust the answers from page_in_rbio
1143 */
1144static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1145{
1146	struct bio *bio;
1147	u64 start;
1148	unsigned long stripe_offset;
1149	unsigned long page_index;
1150	struct page *p;
1151	int i;
1152
1153	spin_lock_irq(&rbio->bio_list_lock);
1154	bio_list_for_each(bio, &rbio->bio_list) {
1155		start = (u64)bio->bi_iter.bi_sector << 9;
1156		stripe_offset = start - rbio->bbio->raid_map[0];
1157		page_index = stripe_offset >> PAGE_SHIFT;
1158
1159		for (i = 0; i < bio->bi_vcnt; i++) {
1160			p = bio->bi_io_vec[i].bv_page;
1161			rbio->bio_pages[page_index + i] = p;
1162		}
1163	}
1164	spin_unlock_irq(&rbio->bio_list_lock);
1165}
1166
1167/*
1168 * this is called from one of two situations.  We either
1169 * have a full stripe from the higher layers, or we've read all
1170 * the missing bits off disk.
1171 *
1172 * This will calculate the parity and then send down any
1173 * changed blocks.
1174 */
1175static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1176{
1177	struct btrfs_bio *bbio = rbio->bbio;
1178	void *pointers[rbio->real_stripes];
1179	int nr_data = rbio->nr_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1180	int stripe;
1181	int pagenr;
1182	int p_stripe = -1;
1183	int q_stripe = -1;
1184	struct bio_list bio_list;
1185	struct bio *bio;
1186	int ret;
 
 
 
 
 
 
 
1187
1188	bio_list_init(&bio_list);
 
 
 
 
 
 
 
 
1189
1190	if (rbio->real_stripes - rbio->nr_data == 1) {
1191		p_stripe = rbio->real_stripes - 1;
1192	} else if (rbio->real_stripes - rbio->nr_data == 2) {
1193		p_stripe = rbio->real_stripes - 2;
1194		q_stripe = rbio->real_stripes - 1;
1195	} else {
1196		BUG();
 
 
1197	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1198
1199	/* at this point we either have a full stripe,
1200	 * or we've read the full stripe from the drive.
1201	 * recalculate the parity and write the new results.
1202	 *
1203	 * We're not allowed to add any new bios to the
1204	 * bio list here, anyone else that wants to
1205	 * change this stripe needs to do their own rmw.
1206	 */
1207	spin_lock_irq(&rbio->bio_list_lock);
1208	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1209	spin_unlock_irq(&rbio->bio_list_lock);
1210
1211	atomic_set(&rbio->error, 0);
 
1212
1213	/*
1214	 * now that we've set rmw_locked, run through the
1215	 * bio list one last time and map the page pointers
1216	 *
1217	 * We don't cache full rbios because we're assuming
1218	 * the higher layers are unlikely to use this area of
1219	 * the disk again soon.  If they do use it again,
1220	 * hopefully they will send another full bio.
1221	 */
1222	index_rbio_pages(rbio);
1223	if (!rbio_is_full(rbio))
1224		cache_rbio_pages(rbio);
1225	else
1226		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1227
1228	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1229		struct page *p;
1230		/* first collect one page from each data stripe */
1231		for (stripe = 0; stripe < nr_data; stripe++) {
1232			p = page_in_rbio(rbio, stripe, pagenr, 0);
1233			pointers[stripe] = kmap(p);
1234		}
1235
1236		/* then add the parity stripe */
1237		p = rbio_pstripe_page(rbio, pagenr);
1238		SetPageUptodate(p);
1239		pointers[stripe++] = kmap(p);
1240
1241		if (q_stripe != -1) {
 
 
1242
1243			/*
1244			 * raid6, add the qstripe and call the
1245			 * library function to fill in our p/q
1246			 */
1247			p = rbio_qstripe_page(rbio, pagenr);
1248			SetPageUptodate(p);
1249			pointers[stripe++] = kmap(p);
1250
1251			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
1252						pointers);
1253		} else {
1254			/* raid5 */
1255			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
1256			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
1257		}
1258
1259
1260		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
1261			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
 
1262	}
1263
1264	/*
1265	 * time to start writing.  Make bios for everything from the
1266	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
1267	 * everything else.
1268	 */
1269	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1270		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1271			struct page *page;
1272			if (stripe < rbio->nr_data) {
1273				page = page_in_rbio(rbio, stripe, pagenr, 1);
1274				if (!page)
1275					continue;
1276			} else {
1277			       page = rbio_stripe_page(rbio, stripe, pagenr);
1278			}
1279
1280			ret = rbio_add_io_page(rbio, &bio_list,
1281				       page, stripe, pagenr, rbio->stripe_len);
1282			if (ret)
1283				goto cleanup;
1284		}
1285	}
1286
1287	if (likely(!bbio->num_tgtdevs))
1288		goto write_data;
1289
1290	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1291		if (!bbio->tgtdev_map[stripe])
 
 
 
 
 
1292			continue;
 
1293
1294		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1295			struct page *page;
1296			if (stripe < rbio->nr_data) {
1297				page = page_in_rbio(rbio, stripe, pagenr, 1);
1298				if (!page)
1299					continue;
1300			} else {
1301			       page = rbio_stripe_page(rbio, stripe, pagenr);
1302			}
1303
1304			ret = rbio_add_io_page(rbio, &bio_list, page,
1305					       rbio->bbio->tgtdev_map[stripe],
1306					       pagenr, rbio->stripe_len);
1307			if (ret)
1308				goto cleanup;
 
1309		}
1310	}
1311
1312write_data:
1313	atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1314	BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
1315
1316	while (1) {
1317		bio = bio_list_pop(&bio_list);
1318		if (!bio)
1319			break;
1320
1321		bio->bi_private = rbio;
1322		bio->bi_end_io = raid_write_end_io;
1323		submit_bio(WRITE, bio);
1324	}
1325	return;
1326
1327cleanup:
1328	rbio_orig_end_io(rbio, -EIO);
 
 
 
1329}
1330
1331/*
1332 * helper to find the stripe number for a given bio.  Used to figure out which
1333 * stripe has failed.  This expects the bio to correspond to a physical disk,
1334 * so it looks up based on physical sector numbers.
1335 */
1336static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1337			   struct bio *bio)
1338{
1339	u64 physical = bio->bi_iter.bi_sector;
1340	u64 stripe_start;
1341	int i;
1342	struct btrfs_bio_stripe *stripe;
1343
1344	physical <<= 9;
1345
1346	for (i = 0; i < rbio->bbio->num_stripes; i++) {
1347		stripe = &rbio->bbio->stripes[i];
1348		stripe_start = stripe->physical;
1349		if (physical >= stripe_start &&
1350		    physical < stripe_start + rbio->stripe_len &&
1351		    bio->bi_bdev == stripe->dev->bdev) {
1352			return i;
 
 
 
 
 
 
 
 
 
 
 
 
 
1353		}
 
1354	}
1355	return -1;
1356}
1357
1358/*
1359 * helper to find the stripe number for a given
1360 * bio (before mapping).  Used to figure out which stripe has
1361 * failed.  This looks up based on logical block numbers.
1362 */
1363static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1364				   struct bio *bio)
 
1365{
1366	u64 logical = bio->bi_iter.bi_sector;
1367	u64 stripe_start;
1368	int i;
1369
1370	logical <<= 9;
 
1371
1372	for (i = 0; i < rbio->nr_data; i++) {
1373		stripe_start = rbio->bbio->raid_map[i];
1374		if (logical >= stripe_start &&
1375		    logical < stripe_start + rbio->stripe_len) {
1376			return i;
1377		}
1378	}
1379	return -1;
1380}
1381
1382/*
1383 * returns -EIO if we had too many failures
 
1384 */
1385static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1386{
1387	unsigned long flags;
1388	int ret = 0;
 
1389
1390	spin_lock_irqsave(&rbio->bio_list_lock, flags);
1391
1392	/* we already know this stripe is bad, move on */
1393	if (rbio->faila == failed || rbio->failb == failed)
1394		goto out;
1395
1396	if (rbio->faila == -1) {
1397		/* first failure on this rbio */
1398		rbio->faila = failed;
1399		atomic_inc(&rbio->error);
1400	} else if (rbio->failb == -1) {
1401		/* second failure on this rbio */
1402		rbio->failb = failed;
1403		atomic_inc(&rbio->error);
1404	} else {
1405		ret = -EIO;
1406	}
1407out:
1408	spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1409
1410	return ret;
1411}
1412
1413/*
1414 * helper to fail a stripe based on a physical disk
1415 * bio.
1416 */
1417static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1418			   struct bio *bio)
1419{
1420	int failed = find_bio_stripe(rbio, bio);
 
1421
1422	if (failed < 0)
1423		return -EIO;
1424
1425	return fail_rbio_index(rbio, failed);
 
 
 
 
 
 
 
 
1426}
1427
1428/*
1429 * this sets each page in the bio uptodate.  It should only be used on private
1430 * rbio pages, nothing that comes in from the higher layers
1431 */
1432static void set_bio_pages_uptodate(struct bio *bio)
1433{
 
 
 
 
1434	int i;
1435	struct page *p;
1436
1437	for (i = 0; i < bio->bi_vcnt; i++) {
1438		p = bio->bi_io_vec[i].bv_page;
1439		SetPageUptodate(p);
1440	}
 
 
 
 
 
 
 
 
1441}
1442
1443/*
1444 * end io for the read phase of the rmw cycle.  All the bios here are physical
1445 * stripe bios we've read from the disk so we can recalculate the parity of the
1446 * stripe.
1447 *
1448 * This will usually kick off finish_rmw once all the bios are read in, but it
1449 * may trigger parity reconstruction if we had any errors along the way
1450 */
1451static void raid_rmw_end_io(struct bio *bio)
1452{
1453	struct btrfs_raid_bio *rbio = bio->bi_private;
 
 
 
1454
1455	if (bio->bi_error)
1456		fail_bio_stripe(rbio, bio);
1457	else
1458		set_bio_pages_uptodate(bio);
1459
1460	bio_put(bio);
1461
1462	if (!atomic_dec_and_test(&rbio->stripes_pending))
1463		return;
1464
1465	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
1466		goto cleanup;
1467
1468	/*
1469	 * this will normally call finish_rmw to start our write
1470	 * but if there are any failed stripes we'll reconstruct
1471	 * from parity first
1472	 */
1473	validate_rbio_for_rmw(rbio);
1474	return;
1475
1476cleanup:
 
 
1477
1478	rbio_orig_end_io(rbio, -EIO);
 
 
 
 
 
1479}
1480
1481static void async_rmw_stripe(struct btrfs_raid_bio *rbio)
1482{
1483	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1484			rmw_work, NULL, NULL);
1485
1486	btrfs_queue_work(rbio->fs_info->rmw_workers,
1487			 &rbio->work);
1488}
 
 
 
1489
1490static void async_read_rebuild(struct btrfs_raid_bio *rbio)
1491{
1492	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
1493			read_rebuild_work, NULL, NULL);
1494
1495	btrfs_queue_work(rbio->fs_info->rmw_workers,
1496			 &rbio->work);
1497}
1498
1499/*
1500 * the stripe must be locked by the caller.  It will
1501 * unlock after all the writes are done
1502 */
1503static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1504{
1505	int bios_to_read = 0;
1506	struct bio_list bio_list;
1507	int ret;
1508	int pagenr;
1509	int stripe;
1510	struct bio *bio;
1511
1512	bio_list_init(&bio_list);
 
 
1513
1514	ret = alloc_rbio_pages(rbio);
1515	if (ret)
1516		goto cleanup;
1517
1518	index_rbio_pages(rbio);
1519
1520	atomic_set(&rbio->error, 0);
1521	/*
1522	 * build a list of bios to read all the missing parts of this
1523	 * stripe
1524	 */
1525	for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1526		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
1527			struct page *page;
1528			/*
1529			 * we want to find all the pages missing from
1530			 * the rbio and read them from the disk.  If
1531			 * page_in_rbio finds a page in the bio list
1532			 * we don't need to read it off the stripe.
1533			 */
1534			page = page_in_rbio(rbio, stripe, pagenr, 1);
1535			if (page)
1536				continue;
1537
1538			page = rbio_stripe_page(rbio, stripe, pagenr);
1539			/*
1540			 * the bio cache may have handed us an uptodate
1541			 * page.  If so, be happy and use it
1542			 */
1543			if (PageUptodate(page))
1544				continue;
1545
1546			ret = rbio_add_io_page(rbio, &bio_list, page,
1547				       stripe, pagenr, rbio->stripe_len);
1548			if (ret)
1549				goto cleanup;
1550		}
 
1551	}
 
1552
1553	bios_to_read = bio_list_size(&bio_list);
1554	if (!bios_to_read) {
1555		/*
1556		 * this can happen if others have merged with
1557		 * us, it means there is nothing left to read.
1558		 * But if there are missing devices it may not be
1559		 * safe to do the full stripe write yet.
1560		 */
1561		goto finish;
1562	}
1563
1564	/*
1565	 * the bbio may be freed once we submit the last bio.  Make sure
1566	 * not to touch it after that
 
 
1567	 */
1568	atomic_set(&rbio->stripes_pending, bios_to_read);
1569	while (1) {
1570		bio = bio_list_pop(&bio_list);
1571		if (!bio)
1572			break;
1573
1574		bio->bi_private = rbio;
1575		bio->bi_end_io = raid_rmw_end_io;
1576
1577		btrfs_bio_wq_end_io(rbio->fs_info, bio,
1578				    BTRFS_WQ_ENDIO_RAID56);
1579
1580		submit_bio(READ, bio);
1581	}
1582	/* the actual write will happen once the reads are done */
1583	return 0;
1584
1585cleanup:
1586	rbio_orig_end_io(rbio, -EIO);
1587	return -EIO;
1588
1589finish:
1590	validate_rbio_for_rmw(rbio);
1591	return 0;
1592}
1593
1594/*
1595 * if the upper layers pass in a full stripe, we thank them by only allocating
1596 * enough pages to hold the parity, and sending it all down quickly.
1597 */
1598static int full_stripe_write(struct btrfs_raid_bio *rbio)
1599{
 
1600	int ret;
1601
1602	ret = alloc_rbio_parity_pages(rbio);
1603	if (ret) {
1604		__free_raid_bio(rbio);
1605		return ret;
1606	}
1607
1608	ret = lock_stripe_add(rbio);
1609	if (ret == 0)
1610		finish_rmw(rbio);
1611	return 0;
1612}
1613
1614/*
1615 * partial stripe writes get handed over to async helpers.
1616 * We're really hoping to merge a few more writes into this
1617 * rbio before calculating new parity
1618 */
1619static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1620{
1621	int ret;
1622
1623	ret = lock_stripe_add(rbio);
1624	if (ret == 0)
1625		async_rmw_stripe(rbio);
1626	return 0;
1627}
1628
1629/*
1630 * sometimes while we were reading from the drive to
1631 * recalculate parity, enough new bios come into create
1632 * a full stripe.  So we do a check here to see if we can
1633 * go directly to finish_rmw
1634 */
1635static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1636{
1637	/* head off into rmw land if we don't have a full stripe */
1638	if (!rbio_is_full(rbio))
1639		return partial_stripe_write(rbio);
1640	return full_stripe_write(rbio);
1641}
1642
1643/*
1644 * We use plugging call backs to collect full stripes.
1645 * Any time we get a partial stripe write while plugged
1646 * we collect it into a list.  When the unplug comes down,
1647 * we sort the list by logical block number and merge
1648 * everything we can into the same rbios
1649 */
1650struct btrfs_plug_cb {
1651	struct blk_plug_cb cb;
1652	struct btrfs_fs_info *info;
1653	struct list_head rbio_list;
1654	struct btrfs_work work;
1655};
1656
1657/*
1658 * rbios on the plug list are sorted for easier merging.
1659 */
1660static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
 
1661{
1662	struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1663						 plug_list);
1664	struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1665						 plug_list);
1666	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1667	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1668
1669	if (a_sector < b_sector)
1670		return -1;
1671	if (a_sector > b_sector)
1672		return 1;
1673	return 0;
1674}
1675
1676static void run_plug(struct btrfs_plug_cb *plug)
1677{
 
1678	struct btrfs_raid_bio *cur;
1679	struct btrfs_raid_bio *last = NULL;
1680
1681	/*
1682	 * sort our plug list then try to merge
1683	 * everything we can in hopes of creating full
1684	 * stripes.
1685	 */
1686	list_sort(NULL, &plug->rbio_list, plug_cmp);
 
1687	while (!list_empty(&plug->rbio_list)) {
1688		cur = list_entry(plug->rbio_list.next,
1689				 struct btrfs_raid_bio, plug_list);
1690		list_del_init(&cur->plug_list);
1691
1692		if (rbio_is_full(cur)) {
1693			/* we have a full stripe, send it down */
1694			full_stripe_write(cur);
1695			continue;
1696		}
1697		if (last) {
1698			if (rbio_can_merge(last, cur)) {
1699				merge_rbio(last, cur);
1700				__free_raid_bio(cur);
1701				continue;
1702
1703			}
1704			__raid56_parity_write(last);
1705		}
1706		last = cur;
1707	}
1708	if (last) {
1709		__raid56_parity_write(last);
1710	}
1711	kfree(plug);
1712}
1713
1714/*
1715 * if the unplug comes from schedule, we have to push the
1716 * work off to a helper thread
1717 */
1718static void unplug_work(struct btrfs_work *work)
1719{
1720	struct btrfs_plug_cb *plug;
1721	plug = container_of(work, struct btrfs_plug_cb, work);
1722	run_plug(plug);
1723}
1724
1725static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1726{
1727	struct btrfs_plug_cb *plug;
1728	plug = container_of(cb, struct btrfs_plug_cb, cb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1729
1730	if (from_schedule) {
1731		btrfs_init_work(&plug->work, btrfs_rmw_helper,
1732				unplug_work, NULL, NULL);
1733		btrfs_queue_work(plug->info->rmw_workers,
1734				 &plug->work);
1735		return;
1736	}
1737	run_plug(plug);
1738}
1739
1740/*
1741 * our main entry point for writes from the rest of the FS.
1742 */
1743int raid56_parity_write(struct btrfs_root *root, struct bio *bio,
1744			struct btrfs_bio *bbio, u64 stripe_len)
1745{
 
1746	struct btrfs_raid_bio *rbio;
1747	struct btrfs_plug_cb *plug = NULL;
1748	struct blk_plug_cb *cb;
1749	int ret;
1750
1751	rbio = alloc_rbio(root, bbio, stripe_len);
1752	if (IS_ERR(rbio)) {
1753		btrfs_put_bbio(bbio);
1754		return PTR_ERR(rbio);
1755	}
1756	bio_list_add(&rbio->bio_list, bio);
1757	rbio->bio_list_bytes = bio->bi_iter.bi_size;
1758	rbio->operation = BTRFS_RBIO_WRITE;
1759
1760	btrfs_bio_counter_inc_noblocked(root->fs_info);
1761	rbio->generic_bio_cnt = 1;
1762
1763	/*
1764	 * don't plug on full rbios, just get them out the door
1765	 * as quickly as we can
1766	 */
1767	if (rbio_is_full(rbio)) {
1768		ret = full_stripe_write(rbio);
1769		if (ret)
1770			btrfs_bio_counter_dec(root->fs_info);
1771		return ret;
1772	}
1773
1774	cb = blk_check_plugged(btrfs_raid_unplug, root->fs_info,
1775			       sizeof(*plug));
1776	if (cb) {
1777		plug = container_of(cb, struct btrfs_plug_cb, cb);
1778		if (!plug->info) {
1779			plug->info = root->fs_info;
1780			INIT_LIST_HEAD(&plug->rbio_list);
1781		}
1782		list_add_tail(&rbio->plug_list, &plug->rbio_list);
1783		ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1784	} else {
1785		ret = __raid56_parity_write(rbio);
1786		if (ret)
1787			btrfs_bio_counter_dec(root->fs_info);
1788	}
 
 
 
 
 
 
 
 
1789	return ret;
1790}
1791
1792/*
1793 * all parity reconstruction happens here.  We've read in everything
1794 * we can find from the drives and this does the heavy lifting of
1795 * sorting the good from the bad.
1796 */
1797static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1798{
1799	int pagenr, stripe;
1800	void **pointers;
1801	int faila = -1, failb = -1;
1802	struct page *page;
1803	int err;
1804	int i;
 
 
 
1805
1806	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1807	if (!pointers) {
1808		err = -ENOMEM;
1809		goto cleanup_io;
1810	}
 
 
1811
1812	faila = rbio->faila;
1813	failb = rbio->failb;
 
 
 
 
 
 
1814
1815	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1816	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1817		spin_lock_irq(&rbio->bio_list_lock);
1818		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1819		spin_unlock_irq(&rbio->bio_list_lock);
1820	}
1821
1822	index_rbio_pages(rbio);
1823
1824	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
 
 
 
 
1825		/*
1826		 * Now we just use bitmap to mark the horizontal stripes in
1827		 * which we have data when doing parity scrub.
1828		 */
1829		if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1830		    !test_bit(pagenr, rbio->dbitmap))
1831			continue;
 
 
 
 
 
 
 
 
1832
1833		/* setup our array of pointers with pages
1834		 * from each stripe
1835		 */
1836		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
 
 
 
 
 
 
 
 
1837			/*
1838			 * if we're rebuilding a read, we have to use
1839			 * pages from the bio list
1840			 */
1841			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1842			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1843			    (stripe == faila || stripe == failb)) {
1844				page = page_in_rbio(rbio, stripe, pagenr, 0);
1845			} else {
1846				page = rbio_stripe_page(rbio, stripe, pagenr);
1847			}
1848			pointers[stripe] = kmap(page);
1849		}
1850
1851		/* all raid6 handling here */
1852		if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1853			/*
1854			 * single failure, rebuild from parity raid5
1855			 * style
1856			 */
1857			if (failb < 0) {
1858				if (faila == rbio->nr_data) {
1859					/*
1860					 * Just the P stripe has failed, without
1861					 * a bad data or Q stripe.
1862					 * TODO, we should redo the xor here.
1863					 */
1864					err = -EIO;
1865					goto cleanup;
1866				}
1867				/*
1868				 * a single failure in raid6 is rebuilt
1869				 * in the pstripe code below
 
1870				 */
1871				goto pstripe;
1872			}
1873
1874			/* make sure our ps and qs are in order */
1875			if (faila > failb) {
1876				int tmp = failb;
1877				failb = faila;
1878				faila = tmp;
1879			}
1880
1881			/* if the q stripe is failed, do a pstripe reconstruction
1882			 * from the xors.
1883			 * If both the q stripe and the P stripe are failed, we're
1884			 * here due to a crc mismatch and we can't give them the
1885			 * data they want
1886			 */
1887			if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1888				if (rbio->bbio->raid_map[faila] ==
1889				    RAID5_P_STRIPE) {
1890					err = -EIO;
1891					goto cleanup;
1892				}
1893				/*
1894				 * otherwise we have one bad data stripe and
1895				 * a good P stripe.  raid5!
1896				 */
1897				goto pstripe;
1898			}
1899
1900			if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
1901				raid6_datap_recov(rbio->real_stripes,
1902						  PAGE_SIZE, faila, pointers);
1903			} else {
1904				raid6_2data_recov(rbio->real_stripes,
1905						  PAGE_SIZE, faila, failb,
1906						  pointers);
1907			}
1908		} else {
1909			void *p;
 
 
 
 
1910
1911			/* rebuild from P stripe here (raid5 or raid6) */
1912			BUG_ON(failb != -1);
1913pstripe:
1914			/* Copy parity block into failed block to start with */
1915			memcpy(pointers[faila],
1916			       pointers[rbio->nr_data],
1917			       PAGE_SIZE);
1918
1919			/* rearrange the pointer array */
1920			p = pointers[faila];
1921			for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1922				pointers[stripe] = pointers[stripe + 1];
1923			pointers[rbio->nr_data - 1] = p;
1924
1925			/* xor in the rest */
1926			run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
1927		}
1928		/* if we're doing this rebuild as part of an rmw, go through
1929		 * and set all of our private rbio pages in the
1930		 * failed stripes as uptodate.  This way finish_rmw will
1931		 * know they can be trusted.  If this was a read reconstruction,
1932		 * other endio functions will fiddle the uptodate bits
1933		 */
1934		if (rbio->operation == BTRFS_RBIO_WRITE) {
1935			for (i = 0;  i < rbio->stripe_npages; i++) {
1936				if (faila != -1) {
1937					page = rbio_stripe_page(rbio, faila, i);
1938					SetPageUptodate(page);
1939				}
1940				if (failb != -1) {
1941					page = rbio_stripe_page(rbio, failb, i);
1942					SetPageUptodate(page);
1943				}
1944			}
1945		}
1946		for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1947			/*
1948			 * if we're rebuilding a read, we have to use
1949			 * pages from the bio list
1950			 */
1951			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1952			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
1953			    (stripe == faila || stripe == failb)) {
1954				page = page_in_rbio(rbio, stripe, pagenr, 0);
1955			} else {
1956				page = rbio_stripe_page(rbio, stripe, pagenr);
1957			}
1958			kunmap(page);
1959		}
1960	}
1961
1962	err = 0;
1963cleanup:
1964	kfree(pointers);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1965
1966cleanup_io:
1967	if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1968		if (err == 0)
1969			cache_rbio_pages(rbio);
1970		else
1971			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
1972
1973		rbio_orig_end_io(rbio, err);
1974	} else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
1975		rbio_orig_end_io(rbio, err);
1976	} else if (err == 0) {
1977		rbio->faila = -1;
1978		rbio->failb = -1;
1979
1980		if (rbio->operation == BTRFS_RBIO_WRITE)
1981			finish_rmw(rbio);
1982		else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
1983			finish_parity_scrub(rbio, 0);
1984		else
1985			BUG();
1986	} else {
1987		rbio_orig_end_io(rbio, err);
1988	}
 
 
 
 
 
1989}
1990
1991/*
1992 * This is called only for stripes we've read from disk to
1993 * reconstruct the parity.
1994 */
1995static void raid_recover_end_io(struct bio *bio)
1996{
1997	struct btrfs_raid_bio *rbio = bio->bi_private;
 
 
1998
 
1999	/*
2000	 * we only read stripe pages off the disk, set them
2001	 * up to date if there were no errors
 
 
 
 
2002	 */
2003	if (bio->bi_error)
2004		fail_bio_stripe(rbio, bio);
2005	else
2006		set_bio_pages_uptodate(bio);
2007	bio_put(bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2008
2009	if (!atomic_dec_and_test(&rbio->stripes_pending))
2010		return;
 
 
 
 
 
 
 
 
2011
2012	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2013		rbio_orig_end_io(rbio, -EIO);
2014	else
2015		__raid_recover_end_io(rbio);
2016}
2017
2018/*
2019 * reads everything we need off the disk to reconstruct
2020 * the parity. endio handlers trigger final reconstruction
2021 * when the IO is done.
2022 *
2023 * This is used both for reads from the higher layers and for
2024 * parity construction required to finish a rmw cycle.
2025 */
2026static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2027{
2028	int bios_to_read = 0;
2029	struct bio_list bio_list;
 
2030	int ret;
2031	int pagenr;
2032	int stripe;
2033	struct bio *bio;
2034
 
 
 
 
 
2035	bio_list_init(&bio_list);
2036
 
2037	ret = alloc_rbio_pages(rbio);
2038	if (ret)
2039		goto cleanup;
 
 
 
 
 
 
 
 
 
 
 
2040
2041	atomic_set(&rbio->error, 0);
 
 
2042
2043	/*
2044	 * read everything that hasn't failed.  Thanks to the
2045	 * stripe cache, it is possible that some or all of these
2046	 * pages are going to be uptodate.
2047	 */
2048	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2049		if (rbio->faila == stripe || rbio->failb == stripe) {
2050			atomic_inc(&rbio->error);
2051			continue;
2052		}
2053
2054		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2055			struct page *p;
 
 
2056
2057			/*
2058			 * the rmw code may have already read this
2059			 * page in
2060			 */
2061			p = rbio_stripe_page(rbio, stripe, pagenr);
2062			if (PageUptodate(p))
2063				continue;
2064
2065			ret = rbio_add_io_page(rbio, &bio_list,
2066				       rbio_stripe_page(rbio, stripe, pagenr),
2067				       stripe, pagenr, rbio->stripe_len);
2068			if (ret < 0)
2069				goto cleanup;
2070		}
2071	}
 
2072
2073	bios_to_read = bio_list_size(&bio_list);
2074	if (!bios_to_read) {
2075		/*
2076		 * we might have no bios to read just because the pages
2077		 * were up to date, or we might have no bios to read because
2078		 * the devices were gone.
2079		 */
2080		if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
2081			__raid_recover_end_io(rbio);
2082			goto out;
2083		} else {
2084			goto cleanup;
2085		}
2086	}
 
2087
2088	/*
2089	 * the bbio may be freed once we submit the last bio.  Make sure
2090	 * not to touch it after that
 
 
2091	 */
2092	atomic_set(&rbio->stripes_pending, bios_to_read);
2093	while (1) {
2094		bio = bio_list_pop(&bio_list);
2095		if (!bio)
2096			break;
2097
2098		bio->bi_private = rbio;
2099		bio->bi_end_io = raid_recover_end_io;
 
 
 
2100
2101		btrfs_bio_wq_end_io(rbio->fs_info, bio,
2102				    BTRFS_WQ_ENDIO_RAID56);
 
 
 
 
2103
2104		submit_bio(READ, bio);
 
 
 
 
 
 
 
 
2105	}
2106out:
2107	return 0;
2108
2109cleanup:
2110	if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2111	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
2112		rbio_orig_end_io(rbio, -EIO);
2113	return -EIO;
2114}
2115
2116/*
2117 * the main entry point for reads from the higher layers.  This
2118 * is really only called when the normal read path had a failure,
2119 * so we assume the bio they send down corresponds to a failed part
2120 * of the drive.
2121 */
2122int raid56_parity_recover(struct btrfs_root *root, struct bio *bio,
2123			  struct btrfs_bio *bbio, u64 stripe_len,
2124			  int mirror_num, int generic_io)
2125{
 
2126	struct btrfs_raid_bio *rbio;
2127	int ret;
2128
2129	rbio = alloc_rbio(root, bbio, stripe_len);
2130	if (IS_ERR(rbio)) {
2131		if (generic_io)
2132			btrfs_put_bbio(bbio);
2133		return PTR_ERR(rbio);
2134	}
2135
2136	rbio->operation = BTRFS_RBIO_READ_REBUILD;
2137	bio_list_add(&rbio->bio_list, bio);
2138	rbio->bio_list_bytes = bio->bi_iter.bi_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2139
2140	rbio->faila = find_logical_bio_stripe(rbio, bio);
2141	if (rbio->faila == -1) {
2142		BUG();
2143		if (generic_io)
2144			btrfs_put_bbio(bbio);
2145		kfree(rbio);
2146		return -EIO;
2147	}
 
 
 
 
 
 
 
 
 
 
 
 
2148
2149	if (generic_io) {
2150		btrfs_bio_counter_inc_noblocked(root->fs_info);
2151		rbio->generic_bio_cnt = 1;
2152	} else {
2153		btrfs_get_bbio(bbio);
 
 
2154	}
 
 
 
 
 
 
 
 
2155
2156	/*
2157	 * reconstruct from the q stripe if they are
2158	 * asking for mirror 3
2159	 */
2160	if (mirror_num == 3)
2161		rbio->failb = rbio->real_stripes - 2;
 
2162
2163	ret = lock_stripe_add(rbio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2164
 
2165	/*
2166	 * __raid56_parity_recover will end the bio with
2167	 * any errors it hits.  We don't want to return
2168	 * its error value up the stack because our caller
2169	 * will end up calling bio_endio with any nonzero
2170	 * return
2171	 */
2172	if (ret == 0)
2173		__raid56_parity_recover(rbio);
2174	/*
2175	 * our rbio has been added to the list of
2176	 * rbios that will be handled after the
2177	 * currently lock owner is done
2178	 */
2179	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2181}
2182
2183static void rmw_work(struct btrfs_work *work)
2184{
2185	struct btrfs_raid_bio *rbio;
 
2186
2187	rbio = container_of(work, struct btrfs_raid_bio, work);
2188	raid56_rmw_stripe(rbio);
 
 
 
 
 
2189}
2190
2191static void read_rebuild_work(struct btrfs_work *work)
2192{
2193	struct btrfs_raid_bio *rbio;
 
2194
2195	rbio = container_of(work, struct btrfs_raid_bio, work);
2196	__raid56_parity_recover(rbio);
 
 
2197}
2198
2199/*
2200 * The following code is used to scrub/replace the parity stripe
2201 *
 
 
2202 * Note: We need make sure all the pages that add into the scrub/replace
2203 * raid bio are correct and not be changed during the scrub/replace. That
2204 * is those pages just hold metadata or file data with checksum.
2205 */
2206
2207struct btrfs_raid_bio *
2208raid56_parity_alloc_scrub_rbio(struct btrfs_root *root, struct bio *bio,
2209			       struct btrfs_bio *bbio, u64 stripe_len,
2210			       struct btrfs_device *scrub_dev,
2211			       unsigned long *dbitmap, int stripe_nsectors)
2212{
 
2213	struct btrfs_raid_bio *rbio;
2214	int i;
2215
2216	rbio = alloc_rbio(root, bbio, stripe_len);
2217	if (IS_ERR(rbio))
2218		return NULL;
2219	bio_list_add(&rbio->bio_list, bio);
2220	/*
2221	 * This is a special bio which is used to hold the completion handler
2222	 * and make the scrub rbio is similar to the other types
2223	 */
2224	ASSERT(!bio->bi_iter.bi_size);
2225	rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2226
2227	for (i = 0; i < rbio->real_stripes; i++) {
2228		if (bbio->stripes[i].dev == scrub_dev) {
 
 
 
 
 
2229			rbio->scrubp = i;
2230			break;
2231		}
2232	}
 
2233
2234	/* Now we just support the sectorsize equals to page size */
2235	ASSERT(root->sectorsize == PAGE_SIZE);
2236	ASSERT(rbio->stripe_npages == stripe_nsectors);
2237	bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2238
2239	return rbio;
2240}
2241
2242/* Used for both parity scrub and missing. */
2243void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2244			    u64 logical)
2245{
 
2246	int stripe_offset;
2247	int index;
2248
2249	ASSERT(logical >= rbio->bbio->raid_map[0]);
2250	ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
2251				rbio->stripe_len * rbio->nr_data);
2252	stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
2253	index = stripe_offset >> PAGE_SHIFT;
2254	rbio->bio_pages[index] = page;
 
2255}
2256
2257/*
2258 * We just scrub the parity that we have correct data on the same horizontal,
2259 * so we needn't allocate all pages for all the stripes.
2260 */
2261static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2262{
2263	int i;
2264	int bit;
2265	int index;
2266	struct page *page;
2267
2268	for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2269		for (i = 0; i < rbio->real_stripes; i++) {
2270			index = i * rbio->stripe_npages + bit;
2271			if (rbio->stripe_pages[index])
2272				continue;
2273
2274			page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2275			if (!page)
2276				return -ENOMEM;
2277			rbio->stripe_pages[index] = page;
2278		}
 
 
 
2279	}
 
2280	return 0;
2281}
2282
2283static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2284					 int need_check)
2285{
2286	struct btrfs_bio *bbio = rbio->bbio;
2287	void *pointers[rbio->real_stripes];
2288	DECLARE_BITMAP(pbitmap, rbio->stripe_npages);
 
2289	int nr_data = rbio->nr_data;
2290	int stripe;
2291	int pagenr;
2292	int p_stripe = -1;
2293	int q_stripe = -1;
2294	struct page *p_page = NULL;
2295	struct page *q_page = NULL;
2296	struct bio_list bio_list;
2297	struct bio *bio;
2298	int is_replace = 0;
2299	int ret;
2300
2301	bio_list_init(&bio_list);
2302
2303	if (rbio->real_stripes - rbio->nr_data == 1) {
2304		p_stripe = rbio->real_stripes - 1;
2305	} else if (rbio->real_stripes - rbio->nr_data == 2) {
2306		p_stripe = rbio->real_stripes - 2;
2307		q_stripe = rbio->real_stripes - 1;
2308	} else {
2309		BUG();
2310	}
2311
2312	if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2313		is_replace = 1;
2314		bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2315	}
2316
2317	/*
2318	 * Because the higher layers(scrubber) are unlikely to
2319	 * use this area of the disk again soon, so don't cache
2320	 * it.
2321	 */
2322	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2323
2324	if (!need_check)
2325		goto writeback;
2326
2327	p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2328	if (!p_page)
2329		goto cleanup;
2330	SetPageUptodate(p_page);
 
2331
2332	if (q_stripe != -1) {
2333		q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2334		if (!q_page) {
2335			__free_page(p_page);
2336			goto cleanup;
 
 
2337		}
2338		SetPageUptodate(q_page);
 
 
2339	}
2340
2341	atomic_set(&rbio->error, 0);
 
 
 
2342
2343	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2344		struct page *p;
2345		void *parity;
 
2346		/* first collect one page from each data stripe */
2347		for (stripe = 0; stripe < nr_data; stripe++) {
2348			p = page_in_rbio(rbio, stripe, pagenr, 0);
2349			pointers[stripe] = kmap(p);
 
2350		}
2351
2352		/* then add the parity stripe */
2353		pointers[stripe++] = kmap(p_page);
2354
2355		if (q_stripe != -1) {
2356
2357			/*
2358			 * raid6, add the qstripe and call the
2359			 * library function to fill in our p/q
2360			 */
2361			pointers[stripe++] = kmap(q_page);
2362
2363			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
2364						pointers);
2365		} else {
2366			/* raid5 */
2367			memcpy(pointers[nr_data], pointers[0], PAGE_SIZE);
2368			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
2369		}
2370
2371		/* Check scrubbing pairty and repair it */
2372		p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2373		parity = kmap(p);
2374		if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
2375			memcpy(parity, pointers[rbio->scrubp], PAGE_SIZE);
2376		else
2377			/* Parity is right, needn't writeback */
2378			bitmap_clear(rbio->dbitmap, pagenr, 1);
2379		kunmap(p);
2380
2381		for (stripe = 0; stripe < rbio->real_stripes; stripe++)
2382			kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
2383	}
2384
2385	__free_page(p_page);
2386	if (q_page)
2387		__free_page(q_page);
 
 
 
 
 
2388
2389writeback:
2390	/*
2391	 * time to start writing.  Make bios for everything from the
2392	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore
2393	 * everything else.
2394	 */
2395	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2396		struct page *page;
2397
2398		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2399		ret = rbio_add_io_page(rbio, &bio_list,
2400			       page, rbio->scrubp, pagenr, rbio->stripe_len);
2401		if (ret)
2402			goto cleanup;
2403	}
2404
2405	if (!is_replace)
2406		goto submit_write;
2407
2408	for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2409		struct page *page;
2410
2411		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2412		ret = rbio_add_io_page(rbio, &bio_list, page,
2413				       bbio->tgtdev_map[rbio->scrubp],
2414				       pagenr, rbio->stripe_len);
2415		if (ret)
2416			goto cleanup;
2417	}
2418
2419submit_write:
2420	nr_data = bio_list_size(&bio_list);
2421	if (!nr_data) {
2422		/* Every parity is right */
2423		rbio_orig_end_io(rbio, 0);
2424		return;
2425	}
2426
2427	atomic_set(&rbio->stripes_pending, nr_data);
2428
2429	while (1) {
2430		bio = bio_list_pop(&bio_list);
2431		if (!bio)
2432			break;
2433
2434		bio->bi_private = rbio;
2435		bio->bi_end_io = raid_write_end_io;
2436		submit_bio(WRITE, bio);
2437	}
2438	return;
2439
2440cleanup:
2441	rbio_orig_end_io(rbio, -EIO);
 
 
2442}
2443
2444static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2445{
2446	if (stripe >= 0 && stripe < rbio->nr_data)
2447		return 1;
2448	return 0;
2449}
2450
2451/*
2452 * While we're doing the parity check and repair, we could have errors
2453 * in reading pages off the disk.  This checks for errors and if we're
2454 * not able to read the page it'll trigger parity reconstruction.  The
2455 * parity scrub will be finished after we've reconstructed the failed
2456 * stripes
2457 */
2458static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2459{
2460	if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2461		goto cleanup;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2462
2463	if (rbio->faila >= 0 || rbio->failb >= 0) {
2464		int dfail = 0, failp = -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2465
2466		if (is_data_stripe(rbio, rbio->faila))
2467			dfail++;
2468		else if (is_parity_stripe(rbio->faila))
2469			failp = rbio->faila;
2470
2471		if (is_data_stripe(rbio, rbio->failb))
2472			dfail++;
2473		else if (is_parity_stripe(rbio->failb))
2474			failp = rbio->failb;
2475
2476		/*
2477		 * Because we can not use a scrubbing parity to repair
2478		 * the data, so the capability of the repair is declined.
2479		 * (In the case of RAID5, we can not repair anything)
2480		 */
2481		if (dfail > rbio->bbio->max_errors - 1)
2482			goto cleanup;
2483
 
2484		/*
2485		 * If all data is good, only parity is correctly, just
2486		 * repair the parity.
2487		 */
2488		if (dfail == 0) {
2489			finish_parity_scrub(rbio, 0);
2490			return;
2491		}
2492
2493		/*
2494		 * Here means we got one corrupted data stripe and one
2495		 * corrupted parity on RAID6, if the corrupted parity
2496		 * is scrubbing parity, luckly, use the other one to repair
2497		 * the data, or we can not repair the data stripe.
2498		 */
2499		if (failp != rbio->scrubp)
2500			goto cleanup;
 
 
2501
2502		__raid_recover_end_io(rbio);
2503	} else {
2504		finish_parity_scrub(rbio, 1);
2505	}
2506	return;
2507
2508cleanup:
2509	rbio_orig_end_io(rbio, -EIO);
2510}
2511
2512/*
2513 * end io for the read phase of the rmw cycle.  All the bios here are physical
2514 * stripe bios we've read from the disk so we can recalculate the parity of the
2515 * stripe.
2516 *
2517 * This will usually kick off finish_rmw once all the bios are read in, but it
2518 * may trigger parity reconstruction if we had any errors along the way
2519 */
2520static void raid56_parity_scrub_end_io(struct bio *bio)
2521{
2522	struct btrfs_raid_bio *rbio = bio->bi_private;
 
 
 
 
 
 
 
 
 
 
 
2523
2524	if (bio->bi_error)
2525		fail_bio_stripe(rbio, bio);
2526	else
2527		set_bio_pages_uptodate(bio);
2528
2529	bio_put(bio);
 
 
 
 
 
 
 
2530
2531	if (!atomic_dec_and_test(&rbio->stripes_pending))
2532		return;
 
 
 
 
 
2533
2534	/*
2535	 * this will normally call finish_rmw to start our write
2536	 * but if there are any failed stripes we'll reconstruct
2537	 * from parity first
2538	 */
2539	validate_rbio_for_parity_scrub(rbio);
 
 
 
 
2540}
2541
2542static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2543{
2544	int bios_to_read = 0;
2545	struct bio_list bio_list;
 
2546	int ret;
2547	int pagenr;
2548	int stripe;
2549	struct bio *bio;
2550
 
 
2551	ret = alloc_rbio_essential_pages(rbio);
2552	if (ret)
2553		goto cleanup;
2554
2555	bio_list_init(&bio_list);
2556
2557	atomic_set(&rbio->error, 0);
2558	/*
2559	 * build a list of bios to read all the missing parts of this
2560	 * stripe
2561	 */
2562	for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
2563		for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2564			struct page *page;
2565			/*
2566			 * we want to find all the pages missing from
2567			 * the rbio and read them from the disk.  If
2568			 * page_in_rbio finds a page in the bio list
2569			 * we don't need to read it off the stripe.
2570			 */
2571			page = page_in_rbio(rbio, stripe, pagenr, 1);
2572			if (page)
2573				continue;
2574
2575			page = rbio_stripe_page(rbio, stripe, pagenr);
2576			/*
2577			 * the bio cache may have handed us an uptodate
2578			 * page.  If so, be happy and use it
2579			 */
2580			if (PageUptodate(page))
2581				continue;
2582
2583			ret = rbio_add_io_page(rbio, &bio_list, page,
2584				       stripe, pagenr, rbio->stripe_len);
2585			if (ret)
2586				goto cleanup;
2587		}
2588	}
2589
2590	bios_to_read = bio_list_size(&bio_list);
2591	if (!bios_to_read) {
2592		/*
2593		 * this can happen if others have merged with
2594		 * us, it means there is nothing left to read.
2595		 * But if there are missing devices it may not be
2596		 * safe to do the full stripe write yet.
2597		 */
2598		goto finish;
2599	}
2600
2601	/*
2602	 * the bbio may be freed once we submit the last bio.  Make sure
2603	 * not to touch it after that
2604	 */
2605	atomic_set(&rbio->stripes_pending, bios_to_read);
2606	while (1) {
2607		bio = bio_list_pop(&bio_list);
2608		if (!bio)
 
 
 
 
2609			break;
2610
2611		bio->bi_private = rbio;
2612		bio->bi_end_io = raid56_parity_scrub_end_io;
2613
2614		btrfs_bio_wq_end_io(rbio->fs_info, bio,
2615				    BTRFS_WQ_ENDIO_RAID56);
2616
2617		submit_bio(READ, bio);
2618	}
2619	/* the actual write will happen once the reads are done */
2620	return;
2621
2622cleanup:
2623	rbio_orig_end_io(rbio, -EIO);
2624	return;
2625
2626finish:
2627	validate_rbio_for_parity_scrub(rbio);
2628}
2629
2630static void scrub_parity_work(struct btrfs_work *work)
2631{
2632	struct btrfs_raid_bio *rbio;
 
2633
2634	rbio = container_of(work, struct btrfs_raid_bio, work);
2635	raid56_parity_scrub_stripe(rbio);
2636}
2637
2638static void async_scrub_parity(struct btrfs_raid_bio *rbio)
2639{
2640	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2641			scrub_parity_work, NULL, NULL);
2642
2643	btrfs_queue_work(rbio->fs_info->rmw_workers,
2644			 &rbio->work);
2645}
2646
2647void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2648{
2649	if (!lock_stripe_add(rbio))
2650		async_scrub_parity(rbio);
2651}
2652
2653/* The following code is used for dev replace of a missing RAID 5/6 device. */
2654
2655struct btrfs_raid_bio *
2656raid56_alloc_missing_rbio(struct btrfs_root *root, struct bio *bio,
2657			  struct btrfs_bio *bbio, u64 length)
2658{
 
2659	struct btrfs_raid_bio *rbio;
2660
2661	rbio = alloc_rbio(root, bbio, length);
2662	if (IS_ERR(rbio))
2663		return NULL;
2664
2665	rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2666	bio_list_add(&rbio->bio_list, bio);
2667	/*
2668	 * This is a special bio which is used to hold the completion handler
2669	 * and make the scrub rbio is similar to the other types
2670	 */
2671	ASSERT(!bio->bi_iter.bi_size);
2672
2673	rbio->faila = find_logical_bio_stripe(rbio, bio);
2674	if (rbio->faila == -1) {
2675		BUG();
2676		kfree(rbio);
2677		return NULL;
2678	}
2679
2680	return rbio;
2681}
2682
2683static void missing_raid56_work(struct btrfs_work *work)
2684{
2685	struct btrfs_raid_bio *rbio;
2686
2687	rbio = container_of(work, struct btrfs_raid_bio, work);
2688	__raid56_parity_recover(rbio);
2689}
2690
2691static void async_missing_raid56(struct btrfs_raid_bio *rbio)
2692{
2693	btrfs_init_work(&rbio->work, btrfs_rmw_helper,
2694			missing_raid56_work, NULL, NULL);
2695
2696	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
2697}
2698
2699void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2700{
2701	if (!lock_stripe_add(rbio))
2702		async_missing_raid56(rbio);
2703}