Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2014, Fuzhou Rockchip Electronics Co., Ltd
   4 * Author: Addy Ke <addy.ke@rock-chips.com>
   5 */
   6
   7#include <linux/clk.h>
   8#include <linux/dmaengine.h>
   9#include <linux/interrupt.h>
  10#include <linux/module.h>
  11#include <linux/of.h>
  12#include <linux/pinctrl/consumer.h>
  13#include <linux/platform_device.h>
  14#include <linux/spi/spi.h>
  15#include <linux/pm_runtime.h>
  16#include <linux/scatterlist.h>
  17
  18#define DRIVER_NAME "rockchip-spi"
  19
  20#define ROCKCHIP_SPI_CLR_BITS(reg, bits) \
  21		writel_relaxed(readl_relaxed(reg) & ~(bits), reg)
  22#define ROCKCHIP_SPI_SET_BITS(reg, bits) \
  23		writel_relaxed(readl_relaxed(reg) | (bits), reg)
  24
  25/* SPI register offsets */
  26#define ROCKCHIP_SPI_CTRLR0			0x0000
  27#define ROCKCHIP_SPI_CTRLR1			0x0004
  28#define ROCKCHIP_SPI_SSIENR			0x0008
  29#define ROCKCHIP_SPI_SER			0x000c
  30#define ROCKCHIP_SPI_BAUDR			0x0010
  31#define ROCKCHIP_SPI_TXFTLR			0x0014
  32#define ROCKCHIP_SPI_RXFTLR			0x0018
  33#define ROCKCHIP_SPI_TXFLR			0x001c
  34#define ROCKCHIP_SPI_RXFLR			0x0020
  35#define ROCKCHIP_SPI_SR				0x0024
  36#define ROCKCHIP_SPI_IPR			0x0028
  37#define ROCKCHIP_SPI_IMR			0x002c
  38#define ROCKCHIP_SPI_ISR			0x0030
  39#define ROCKCHIP_SPI_RISR			0x0034
  40#define ROCKCHIP_SPI_ICR			0x0038
  41#define ROCKCHIP_SPI_DMACR			0x003c
  42#define ROCKCHIP_SPI_DMATDLR			0x0040
  43#define ROCKCHIP_SPI_DMARDLR			0x0044
  44#define ROCKCHIP_SPI_VERSION			0x0048
  45#define ROCKCHIP_SPI_TXDR			0x0400
  46#define ROCKCHIP_SPI_RXDR			0x0800
  47
  48/* Bit fields in CTRLR0 */
  49#define CR0_DFS_OFFSET				0
  50#define CR0_DFS_4BIT				0x0
  51#define CR0_DFS_8BIT				0x1
  52#define CR0_DFS_16BIT				0x2
  53
  54#define CR0_CFS_OFFSET				2
  55
  56#define CR0_SCPH_OFFSET				6
  57
  58#define CR0_SCPOL_OFFSET			7
  59
  60#define CR0_CSM_OFFSET				8
  61#define CR0_CSM_KEEP				0x0
  62/* ss_n be high for half sclk_out cycles */
  63#define CR0_CSM_HALF				0X1
  64/* ss_n be high for one sclk_out cycle */
  65#define CR0_CSM_ONE					0x2
  66
  67/* ss_n to sclk_out delay */
  68#define CR0_SSD_OFFSET				10
  69/*
  70 * The period between ss_n active and
  71 * sclk_out active is half sclk_out cycles
  72 */
  73#define CR0_SSD_HALF				0x0
  74/*
  75 * The period between ss_n active and
  76 * sclk_out active is one sclk_out cycle
  77 */
  78#define CR0_SSD_ONE					0x1
  79
  80#define CR0_EM_OFFSET				11
  81#define CR0_EM_LITTLE				0x0
  82#define CR0_EM_BIG					0x1
  83
  84#define CR0_FBM_OFFSET				12
  85#define CR0_FBM_MSB					0x0
  86#define CR0_FBM_LSB					0x1
  87
  88#define CR0_BHT_OFFSET				13
  89#define CR0_BHT_16BIT				0x0
  90#define CR0_BHT_8BIT				0x1
  91
  92#define CR0_RSD_OFFSET				14
  93#define CR0_RSD_MAX				0x3
  94
  95#define CR0_FRF_OFFSET				16
  96#define CR0_FRF_SPI					0x0
  97#define CR0_FRF_SSP					0x1
  98#define CR0_FRF_MICROWIRE			0x2
  99
 100#define CR0_XFM_OFFSET				18
 101#define CR0_XFM_MASK				(0x03 << SPI_XFM_OFFSET)
 102#define CR0_XFM_TR					0x0
 103#define CR0_XFM_TO					0x1
 104#define CR0_XFM_RO					0x2
 105
 106#define CR0_OPM_OFFSET				20
 107#define CR0_OPM_MASTER				0x0
 108#define CR0_OPM_SLAVE				0x1
 109
 110#define CR0_SOI_OFFSET				23
 111
 112#define CR0_MTM_OFFSET				0x21
 113
 114/* Bit fields in SER, 2bit */
 115#define SER_MASK					0x3
 116
 117/* Bit fields in BAUDR */
 118#define BAUDR_SCKDV_MIN				2
 119#define BAUDR_SCKDV_MAX				65534
 120
 121/* Bit fields in SR, 6bit */
 122#define SR_MASK						0x3f
 123#define SR_BUSY						(1 << 0)
 124#define SR_TF_FULL					(1 << 1)
 125#define SR_TF_EMPTY					(1 << 2)
 126#define SR_RF_EMPTY					(1 << 3)
 127#define SR_RF_FULL					(1 << 4)
 128#define SR_SLAVE_TX_BUSY				(1 << 5)
 129
 130/* Bit fields in ISR, IMR, ISR, RISR, 5bit */
 131#define INT_MASK					0x1f
 132#define INT_TF_EMPTY				(1 << 0)
 133#define INT_TF_OVERFLOW				(1 << 1)
 134#define INT_RF_UNDERFLOW			(1 << 2)
 135#define INT_RF_OVERFLOW				(1 << 3)
 136#define INT_RF_FULL				(1 << 4)
 137#define INT_CS_INACTIVE				(1 << 6)
 138
 139/* Bit fields in ICR, 4bit */
 140#define ICR_MASK					0x0f
 141#define ICR_ALL						(1 << 0)
 142#define ICR_RF_UNDERFLOW			(1 << 1)
 143#define ICR_RF_OVERFLOW				(1 << 2)
 144#define ICR_TF_OVERFLOW				(1 << 3)
 145
 146/* Bit fields in DMACR */
 147#define RF_DMA_EN					(1 << 0)
 148#define TF_DMA_EN					(1 << 1)
 149
 150/* Driver state flags */
 151#define RXDMA					(1 << 0)
 152#define TXDMA					(1 << 1)
 153
 154/* sclk_out: spi master internal logic in rk3x can support 50Mhz */
 155#define MAX_SCLK_OUT				50000000U
 156
 157/*
 158 * SPI_CTRLR1 is 16-bits, so we should support lengths of 0xffff + 1. However,
 159 * the controller seems to hang when given 0x10000, so stick with this for now.
 160 */
 161#define ROCKCHIP_SPI_MAX_TRANLEN		0xffff
 162
 163/* 2 for native cs, 2 for cs-gpio */
 164#define ROCKCHIP_SPI_MAX_CS_NUM			4
 165#define ROCKCHIP_SPI_VER2_TYPE1			0x05EC0002
 166#define ROCKCHIP_SPI_VER2_TYPE2			0x00110002
 167
 168#define ROCKCHIP_AUTOSUSPEND_TIMEOUT		2000
 169
 170struct rockchip_spi {
 171	struct device *dev;
 172
 173	struct clk *spiclk;
 174	struct clk *apb_pclk;
 175
 176	void __iomem *regs;
 177	dma_addr_t dma_addr_rx;
 178	dma_addr_t dma_addr_tx;
 179
 180	const void *tx;
 181	void *rx;
 182	unsigned int tx_left;
 183	unsigned int rx_left;
 184
 185	atomic_t state;
 186
 187	/*depth of the FIFO buffer */
 188	u32 fifo_len;
 189	/* frequency of spiclk */
 190	u32 freq;
 191
 192	u8 n_bytes;
 193	u8 rsd;
 194
 195	bool cs_asserted[ROCKCHIP_SPI_MAX_CS_NUM];
 196
 197	bool slave_abort;
 198	bool cs_inactive; /* spi slave tansmition stop when cs inactive */
 199	bool cs_high_supported; /* native CS supports active-high polarity */
 200
 201	struct spi_transfer *xfer; /* Store xfer temporarily */
 202};
 203
 204static inline void spi_enable_chip(struct rockchip_spi *rs, bool enable)
 205{
 206	writel_relaxed((enable ? 1U : 0U), rs->regs + ROCKCHIP_SPI_SSIENR);
 207}
 208
 209static inline void wait_for_tx_idle(struct rockchip_spi *rs, bool slave_mode)
 210{
 211	unsigned long timeout = jiffies + msecs_to_jiffies(5);
 212
 213	do {
 214		if (slave_mode) {
 215			if (!(readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_SLAVE_TX_BUSY) &&
 216			    !((readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_BUSY)))
 217				return;
 218		} else {
 219			if (!(readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_BUSY))
 220				return;
 221		}
 222	} while (!time_after(jiffies, timeout));
 223
 224	dev_warn(rs->dev, "spi controller is in busy state!\n");
 225}
 226
 227static u32 get_fifo_len(struct rockchip_spi *rs)
 228{
 229	u32 ver;
 230
 231	ver = readl_relaxed(rs->regs + ROCKCHIP_SPI_VERSION);
 232
 233	switch (ver) {
 234	case ROCKCHIP_SPI_VER2_TYPE1:
 235	case ROCKCHIP_SPI_VER2_TYPE2:
 236		return 64;
 237	default:
 238		return 32;
 239	}
 240}
 241
 242static void rockchip_spi_set_cs(struct spi_device *spi, bool enable)
 243{
 244	struct spi_controller *ctlr = spi->controller;
 245	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
 246	bool cs_asserted = spi->mode & SPI_CS_HIGH ? enable : !enable;
 247
 248	/* Return immediately for no-op */
 249	if (cs_asserted == rs->cs_asserted[spi->chip_select])
 250		return;
 251
 252	if (cs_asserted) {
 253		/* Keep things powered as long as CS is asserted */
 254		pm_runtime_get_sync(rs->dev);
 255
 256		if (spi->cs_gpiod)
 257			ROCKCHIP_SPI_SET_BITS(rs->regs + ROCKCHIP_SPI_SER, 1);
 258		else
 259			ROCKCHIP_SPI_SET_BITS(rs->regs + ROCKCHIP_SPI_SER, BIT(spi->chip_select));
 260	} else {
 261		if (spi->cs_gpiod)
 262			ROCKCHIP_SPI_CLR_BITS(rs->regs + ROCKCHIP_SPI_SER, 1);
 263		else
 264			ROCKCHIP_SPI_CLR_BITS(rs->regs + ROCKCHIP_SPI_SER, BIT(spi->chip_select));
 265
 266		/* Drop reference from when we first asserted CS */
 267		pm_runtime_put(rs->dev);
 268	}
 269
 270	rs->cs_asserted[spi->chip_select] = cs_asserted;
 271}
 272
 273static void rockchip_spi_handle_err(struct spi_controller *ctlr,
 274				    struct spi_message *msg)
 275{
 276	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
 277
 278	/* stop running spi transfer
 279	 * this also flushes both rx and tx fifos
 280	 */
 281	spi_enable_chip(rs, false);
 282
 283	/* make sure all interrupts are masked and status cleared */
 284	writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR);
 285	writel_relaxed(0xffffffff, rs->regs + ROCKCHIP_SPI_ICR);
 286
 287	if (atomic_read(&rs->state) & TXDMA)
 288		dmaengine_terminate_async(ctlr->dma_tx);
 289
 290	if (atomic_read(&rs->state) & RXDMA)
 291		dmaengine_terminate_async(ctlr->dma_rx);
 292}
 293
 294static void rockchip_spi_pio_writer(struct rockchip_spi *rs)
 295{
 296	u32 tx_free = rs->fifo_len - readl_relaxed(rs->regs + ROCKCHIP_SPI_TXFLR);
 297	u32 words = min(rs->tx_left, tx_free);
 298
 299	rs->tx_left -= words;
 300	for (; words; words--) {
 301		u32 txw;
 302
 303		if (rs->n_bytes == 1)
 304			txw = *(u8 *)rs->tx;
 305		else
 306			txw = *(u16 *)rs->tx;
 307
 308		writel_relaxed(txw, rs->regs + ROCKCHIP_SPI_TXDR);
 309		rs->tx += rs->n_bytes;
 310	}
 311}
 312
 313static void rockchip_spi_pio_reader(struct rockchip_spi *rs)
 314{
 315	u32 words = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFLR);
 316	u32 rx_left = (rs->rx_left > words) ? rs->rx_left - words : 0;
 317
 318	/* the hardware doesn't allow us to change fifo threshold
 319	 * level while spi is enabled, so instead make sure to leave
 320	 * enough words in the rx fifo to get the last interrupt
 321	 * exactly when all words have been received
 322	 */
 323	if (rx_left) {
 324		u32 ftl = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFTLR) + 1;
 325
 326		if (rx_left < ftl) {
 327			rx_left = ftl;
 328			words = rs->rx_left - rx_left;
 329		}
 330	}
 331
 332	rs->rx_left = rx_left;
 333	for (; words; words--) {
 334		u32 rxw = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXDR);
 335
 336		if (!rs->rx)
 337			continue;
 338
 339		if (rs->n_bytes == 1)
 340			*(u8 *)rs->rx = (u8)rxw;
 341		else
 342			*(u16 *)rs->rx = (u16)rxw;
 343		rs->rx += rs->n_bytes;
 344	}
 345}
 346
 347static irqreturn_t rockchip_spi_isr(int irq, void *dev_id)
 348{
 349	struct spi_controller *ctlr = dev_id;
 350	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
 351
 352	/* When int_cs_inactive comes, spi slave abort */
 353	if (rs->cs_inactive && readl_relaxed(rs->regs + ROCKCHIP_SPI_IMR) & INT_CS_INACTIVE) {
 354		ctlr->slave_abort(ctlr);
 355		writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR);
 356		writel_relaxed(0xffffffff, rs->regs + ROCKCHIP_SPI_ICR);
 357
 358		return IRQ_HANDLED;
 359	}
 360
 361	if (rs->tx_left)
 362		rockchip_spi_pio_writer(rs);
 363
 364	rockchip_spi_pio_reader(rs);
 365	if (!rs->rx_left) {
 366		spi_enable_chip(rs, false);
 367		writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR);
 368		writel_relaxed(0xffffffff, rs->regs + ROCKCHIP_SPI_ICR);
 369		spi_finalize_current_transfer(ctlr);
 370	}
 371
 372	return IRQ_HANDLED;
 373}
 374
 375static int rockchip_spi_prepare_irq(struct rockchip_spi *rs,
 376				    struct spi_controller *ctlr,
 377				    struct spi_transfer *xfer)
 378{
 379	rs->tx = xfer->tx_buf;
 380	rs->rx = xfer->rx_buf;
 381	rs->tx_left = rs->tx ? xfer->len / rs->n_bytes : 0;
 382	rs->rx_left = xfer->len / rs->n_bytes;
 383
 384	writel_relaxed(0xffffffff, rs->regs + ROCKCHIP_SPI_ICR);
 385
 386	spi_enable_chip(rs, true);
 387
 388	if (rs->tx_left)
 389		rockchip_spi_pio_writer(rs);
 390
 391	if (rs->cs_inactive)
 392		writel_relaxed(INT_RF_FULL | INT_CS_INACTIVE, rs->regs + ROCKCHIP_SPI_IMR);
 393	else
 394		writel_relaxed(INT_RF_FULL, rs->regs + ROCKCHIP_SPI_IMR);
 395
 396	/* 1 means the transfer is in progress */
 397	return 1;
 398}
 399
 400static void rockchip_spi_dma_rxcb(void *data)
 401{
 402	struct spi_controller *ctlr = data;
 403	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
 404	int state = atomic_fetch_andnot(RXDMA, &rs->state);
 405
 406	if (state & TXDMA && !rs->slave_abort)
 407		return;
 408
 409	if (rs->cs_inactive)
 410		writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR);
 411
 412	spi_enable_chip(rs, false);
 413	spi_finalize_current_transfer(ctlr);
 414}
 415
 416static void rockchip_spi_dma_txcb(void *data)
 417{
 418	struct spi_controller *ctlr = data;
 419	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
 420	int state = atomic_fetch_andnot(TXDMA, &rs->state);
 421
 422	if (state & RXDMA && !rs->slave_abort)
 423		return;
 424
 425	/* Wait until the FIFO data completely. */
 426	wait_for_tx_idle(rs, ctlr->slave);
 427
 428	spi_enable_chip(rs, false);
 429	spi_finalize_current_transfer(ctlr);
 430}
 431
 432static u32 rockchip_spi_calc_burst_size(u32 data_len)
 433{
 434	u32 i;
 435
 436	/* burst size: 1, 2, 4, 8 */
 437	for (i = 1; i < 8; i <<= 1) {
 438		if (data_len & i)
 439			break;
 440	}
 441
 442	return i;
 443}
 444
 445static int rockchip_spi_prepare_dma(struct rockchip_spi *rs,
 446		struct spi_controller *ctlr, struct spi_transfer *xfer)
 447{
 448	struct dma_async_tx_descriptor *rxdesc, *txdesc;
 449
 450	atomic_set(&rs->state, 0);
 451
 452	rs->tx = xfer->tx_buf;
 453	rs->rx = xfer->rx_buf;
 454
 455	rxdesc = NULL;
 456	if (xfer->rx_buf) {
 457		struct dma_slave_config rxconf = {
 458			.direction = DMA_DEV_TO_MEM,
 459			.src_addr = rs->dma_addr_rx,
 460			.src_addr_width = rs->n_bytes,
 461			.src_maxburst = rockchip_spi_calc_burst_size(xfer->len / rs->n_bytes),
 
 462		};
 463
 464		dmaengine_slave_config(ctlr->dma_rx, &rxconf);
 465
 466		rxdesc = dmaengine_prep_slave_sg(
 467				ctlr->dma_rx,
 468				xfer->rx_sg.sgl, xfer->rx_sg.nents,
 469				DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
 470		if (!rxdesc)
 471			return -EINVAL;
 472
 473		rxdesc->callback = rockchip_spi_dma_rxcb;
 474		rxdesc->callback_param = ctlr;
 475	}
 476
 477	txdesc = NULL;
 478	if (xfer->tx_buf) {
 479		struct dma_slave_config txconf = {
 480			.direction = DMA_MEM_TO_DEV,
 481			.dst_addr = rs->dma_addr_tx,
 482			.dst_addr_width = rs->n_bytes,
 483			.dst_maxburst = rs->fifo_len / 4,
 484		};
 485
 486		dmaengine_slave_config(ctlr->dma_tx, &txconf);
 487
 488		txdesc = dmaengine_prep_slave_sg(
 489				ctlr->dma_tx,
 490				xfer->tx_sg.sgl, xfer->tx_sg.nents,
 491				DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
 492		if (!txdesc) {
 493			if (rxdesc)
 494				dmaengine_terminate_sync(ctlr->dma_rx);
 495			return -EINVAL;
 496		}
 497
 498		txdesc->callback = rockchip_spi_dma_txcb;
 499		txdesc->callback_param = ctlr;
 500	}
 501
 502	/* rx must be started before tx due to spi instinct */
 503	if (rxdesc) {
 504		atomic_or(RXDMA, &rs->state);
 505		ctlr->dma_rx->cookie = dmaengine_submit(rxdesc);
 506		dma_async_issue_pending(ctlr->dma_rx);
 507	}
 508
 509	if (rs->cs_inactive)
 510		writel_relaxed(INT_CS_INACTIVE, rs->regs + ROCKCHIP_SPI_IMR);
 511
 512	spi_enable_chip(rs, true);
 513
 514	if (txdesc) {
 515		atomic_or(TXDMA, &rs->state);
 516		dmaengine_submit(txdesc);
 517		dma_async_issue_pending(ctlr->dma_tx);
 518	}
 519
 520	/* 1 means the transfer is in progress */
 521	return 1;
 522}
 523
 524static int rockchip_spi_config(struct rockchip_spi *rs,
 525		struct spi_device *spi, struct spi_transfer *xfer,
 526		bool use_dma, bool slave_mode)
 527{
 528	u32 cr0 = CR0_FRF_SPI  << CR0_FRF_OFFSET
 529		| CR0_BHT_8BIT << CR0_BHT_OFFSET
 530		| CR0_SSD_ONE  << CR0_SSD_OFFSET
 531		| CR0_EM_BIG   << CR0_EM_OFFSET;
 532	u32 cr1;
 533	u32 dmacr = 0;
 534
 535	if (slave_mode)
 536		cr0 |= CR0_OPM_SLAVE << CR0_OPM_OFFSET;
 537	rs->slave_abort = false;
 538
 539	cr0 |= rs->rsd << CR0_RSD_OFFSET;
 540	cr0 |= (spi->mode & 0x3U) << CR0_SCPH_OFFSET;
 541	if (spi->mode & SPI_LSB_FIRST)
 542		cr0 |= CR0_FBM_LSB << CR0_FBM_OFFSET;
 543	if (spi->mode & SPI_CS_HIGH)
 544		cr0 |= BIT(spi->chip_select) << CR0_SOI_OFFSET;
 545
 546	if (xfer->rx_buf && xfer->tx_buf)
 547		cr0 |= CR0_XFM_TR << CR0_XFM_OFFSET;
 548	else if (xfer->rx_buf)
 549		cr0 |= CR0_XFM_RO << CR0_XFM_OFFSET;
 550	else if (use_dma)
 551		cr0 |= CR0_XFM_TO << CR0_XFM_OFFSET;
 552
 553	switch (xfer->bits_per_word) {
 554	case 4:
 555		cr0 |= CR0_DFS_4BIT << CR0_DFS_OFFSET;
 556		cr1 = xfer->len - 1;
 557		break;
 558	case 8:
 559		cr0 |= CR0_DFS_8BIT << CR0_DFS_OFFSET;
 560		cr1 = xfer->len - 1;
 561		break;
 562	case 16:
 563		cr0 |= CR0_DFS_16BIT << CR0_DFS_OFFSET;
 564		cr1 = xfer->len / 2 - 1;
 565		break;
 566	default:
 567		/* we only whitelist 4, 8 and 16 bit words in
 568		 * ctlr->bits_per_word_mask, so this shouldn't
 569		 * happen
 570		 */
 571		dev_err(rs->dev, "unknown bits per word: %d\n",
 572			xfer->bits_per_word);
 573		return -EINVAL;
 574	}
 575
 576	if (use_dma) {
 577		if (xfer->tx_buf)
 578			dmacr |= TF_DMA_EN;
 579		if (xfer->rx_buf)
 580			dmacr |= RF_DMA_EN;
 581	}
 582
 583	writel_relaxed(cr0, rs->regs + ROCKCHIP_SPI_CTRLR0);
 584	writel_relaxed(cr1, rs->regs + ROCKCHIP_SPI_CTRLR1);
 585
 586	/* unfortunately setting the fifo threshold level to generate an
 587	 * interrupt exactly when the fifo is full doesn't seem to work,
 588	 * so we need the strict inequality here
 589	 */
 590	if ((xfer->len / rs->n_bytes) < rs->fifo_len)
 591		writel_relaxed(xfer->len / rs->n_bytes - 1, rs->regs + ROCKCHIP_SPI_RXFTLR);
 592	else
 593		writel_relaxed(rs->fifo_len / 2 - 1, rs->regs + ROCKCHIP_SPI_RXFTLR);
 594
 595	writel_relaxed(rs->fifo_len / 2 - 1, rs->regs + ROCKCHIP_SPI_DMATDLR);
 596	writel_relaxed(rockchip_spi_calc_burst_size(xfer->len / rs->n_bytes) - 1,
 597		       rs->regs + ROCKCHIP_SPI_DMARDLR);
 598	writel_relaxed(dmacr, rs->regs + ROCKCHIP_SPI_DMACR);
 599
 600	/* the hardware only supports an even clock divisor, so
 601	 * round divisor = spiclk / speed up to nearest even number
 602	 * so that the resulting speed is <= the requested speed
 603	 */
 604	writel_relaxed(2 * DIV_ROUND_UP(rs->freq, 2 * xfer->speed_hz),
 605			rs->regs + ROCKCHIP_SPI_BAUDR);
 606
 607	return 0;
 608}
 609
 610static size_t rockchip_spi_max_transfer_size(struct spi_device *spi)
 611{
 612	return ROCKCHIP_SPI_MAX_TRANLEN;
 613}
 614
 615static int rockchip_spi_slave_abort(struct spi_controller *ctlr)
 616{
 617	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
 618	u32 rx_fifo_left;
 619	struct dma_tx_state state;
 620	enum dma_status status;
 621
 622	/* Get current dma rx point */
 623	if (atomic_read(&rs->state) & RXDMA) {
 624		dmaengine_pause(ctlr->dma_rx);
 625		status = dmaengine_tx_status(ctlr->dma_rx, ctlr->dma_rx->cookie, &state);
 626		if (status == DMA_ERROR) {
 627			rs->rx = rs->xfer->rx_buf;
 628			rs->xfer->len = 0;
 629			rx_fifo_left = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFLR);
 630			for (; rx_fifo_left; rx_fifo_left--)
 631				readl_relaxed(rs->regs + ROCKCHIP_SPI_RXDR);
 632			goto out;
 633		} else {
 634			rs->rx += rs->xfer->len - rs->n_bytes * state.residue;
 635		}
 636	}
 637
 638	/* Get the valid data left in rx fifo and set rs->xfer->len real rx size */
 639	if (rs->rx) {
 640		rx_fifo_left = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFLR);
 641		for (; rx_fifo_left; rx_fifo_left--) {
 642			u32 rxw = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXDR);
 643
 644			if (rs->n_bytes == 1)
 645				*(u8 *)rs->rx = (u8)rxw;
 646			else
 647				*(u16 *)rs->rx = (u16)rxw;
 648			rs->rx += rs->n_bytes;
 649		}
 650		rs->xfer->len = (unsigned int)(rs->rx - rs->xfer->rx_buf);
 651	}
 652
 653out:
 654	if (atomic_read(&rs->state) & RXDMA)
 655		dmaengine_terminate_sync(ctlr->dma_rx);
 656	if (atomic_read(&rs->state) & TXDMA)
 657		dmaengine_terminate_sync(ctlr->dma_tx);
 658	atomic_set(&rs->state, 0);
 659	spi_enable_chip(rs, false);
 660	rs->slave_abort = true;
 661	spi_finalize_current_transfer(ctlr);
 662
 663	return 0;
 664}
 665
 666static int rockchip_spi_transfer_one(
 667		struct spi_controller *ctlr,
 668		struct spi_device *spi,
 669		struct spi_transfer *xfer)
 670{
 671	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
 672	int ret;
 673	bool use_dma;
 674
 675	/* Zero length transfers won't trigger an interrupt on completion */
 676	if (!xfer->len) {
 677		spi_finalize_current_transfer(ctlr);
 678		return 1;
 679	}
 680
 681	WARN_ON(readl_relaxed(rs->regs + ROCKCHIP_SPI_SSIENR) &&
 682		(readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_BUSY));
 683
 684	if (!xfer->tx_buf && !xfer->rx_buf) {
 685		dev_err(rs->dev, "No buffer for transfer\n");
 686		return -EINVAL;
 687	}
 688
 689	if (xfer->len > ROCKCHIP_SPI_MAX_TRANLEN) {
 690		dev_err(rs->dev, "Transfer is too long (%d)\n", xfer->len);
 691		return -EINVAL;
 692	}
 693
 694	rs->n_bytes = xfer->bits_per_word <= 8 ? 1 : 2;
 695	rs->xfer = xfer;
 696	use_dma = ctlr->can_dma ? ctlr->can_dma(ctlr, spi, xfer) : false;
 697
 698	ret = rockchip_spi_config(rs, spi, xfer, use_dma, ctlr->slave);
 699	if (ret)
 700		return ret;
 701
 702	if (use_dma)
 703		return rockchip_spi_prepare_dma(rs, ctlr, xfer);
 704
 705	return rockchip_spi_prepare_irq(rs, ctlr, xfer);
 706}
 707
 708static bool rockchip_spi_can_dma(struct spi_controller *ctlr,
 709				 struct spi_device *spi,
 710				 struct spi_transfer *xfer)
 711{
 712	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
 713	unsigned int bytes_per_word = xfer->bits_per_word <= 8 ? 1 : 2;
 714
 715	/* if the numbor of spi words to transfer is less than the fifo
 716	 * length we can just fill the fifo and wait for a single irq,
 717	 * so don't bother setting up dma
 718	 */
 719	return xfer->len / bytes_per_word >= rs->fifo_len;
 720}
 721
 722static int rockchip_spi_setup(struct spi_device *spi)
 723{
 724	struct rockchip_spi *rs = spi_controller_get_devdata(spi->controller);
 725	u32 cr0;
 726
 727	if (!spi->cs_gpiod && (spi->mode & SPI_CS_HIGH) && !rs->cs_high_supported) {
 728		dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
 729		return -EINVAL;
 730	}
 731
 732	pm_runtime_get_sync(rs->dev);
 733
 734	cr0 = readl_relaxed(rs->regs + ROCKCHIP_SPI_CTRLR0);
 735
 736	cr0 &= ~(0x3 << CR0_SCPH_OFFSET);
 737	cr0 |= ((spi->mode & 0x3) << CR0_SCPH_OFFSET);
 738	if (spi->mode & SPI_CS_HIGH && spi->chip_select <= 1)
 739		cr0 |= BIT(spi->chip_select) << CR0_SOI_OFFSET;
 740	else if (spi->chip_select <= 1)
 741		cr0 &= ~(BIT(spi->chip_select) << CR0_SOI_OFFSET);
 742
 743	writel_relaxed(cr0, rs->regs + ROCKCHIP_SPI_CTRLR0);
 744
 745	pm_runtime_put(rs->dev);
 746
 747	return 0;
 748}
 749
 750static int rockchip_spi_probe(struct platform_device *pdev)
 751{
 752	int ret;
 753	struct rockchip_spi *rs;
 754	struct spi_controller *ctlr;
 755	struct resource *mem;
 756	struct device_node *np = pdev->dev.of_node;
 757	u32 rsd_nsecs, num_cs;
 758	bool slave_mode;
 759
 760	slave_mode = of_property_read_bool(np, "spi-slave");
 761
 762	if (slave_mode)
 763		ctlr = spi_alloc_slave(&pdev->dev,
 764				sizeof(struct rockchip_spi));
 765	else
 766		ctlr = spi_alloc_master(&pdev->dev,
 767				sizeof(struct rockchip_spi));
 768
 769	if (!ctlr)
 770		return -ENOMEM;
 771
 772	platform_set_drvdata(pdev, ctlr);
 773
 774	rs = spi_controller_get_devdata(ctlr);
 775	ctlr->slave = slave_mode;
 776
 777	/* Get basic io resource and map it */
 778	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 779	rs->regs = devm_ioremap_resource(&pdev->dev, mem);
 780	if (IS_ERR(rs->regs)) {
 781		ret =  PTR_ERR(rs->regs);
 782		goto err_put_ctlr;
 783	}
 784
 785	rs->apb_pclk = devm_clk_get(&pdev->dev, "apb_pclk");
 786	if (IS_ERR(rs->apb_pclk)) {
 787		dev_err(&pdev->dev, "Failed to get apb_pclk\n");
 788		ret = PTR_ERR(rs->apb_pclk);
 789		goto err_put_ctlr;
 790	}
 791
 792	rs->spiclk = devm_clk_get(&pdev->dev, "spiclk");
 793	if (IS_ERR(rs->spiclk)) {
 794		dev_err(&pdev->dev, "Failed to get spi_pclk\n");
 795		ret = PTR_ERR(rs->spiclk);
 796		goto err_put_ctlr;
 797	}
 798
 799	ret = clk_prepare_enable(rs->apb_pclk);
 800	if (ret < 0) {
 801		dev_err(&pdev->dev, "Failed to enable apb_pclk\n");
 802		goto err_put_ctlr;
 803	}
 804
 805	ret = clk_prepare_enable(rs->spiclk);
 806	if (ret < 0) {
 807		dev_err(&pdev->dev, "Failed to enable spi_clk\n");
 808		goto err_disable_apbclk;
 809	}
 810
 811	spi_enable_chip(rs, false);
 812
 813	ret = platform_get_irq(pdev, 0);
 814	if (ret < 0)
 815		goto err_disable_spiclk;
 816
 817	ret = devm_request_threaded_irq(&pdev->dev, ret, rockchip_spi_isr, NULL,
 818			IRQF_ONESHOT, dev_name(&pdev->dev), ctlr);
 819	if (ret)
 820		goto err_disable_spiclk;
 821
 822	rs->dev = &pdev->dev;
 823	rs->freq = clk_get_rate(rs->spiclk);
 824
 825	if (!of_property_read_u32(pdev->dev.of_node, "rx-sample-delay-ns",
 826				  &rsd_nsecs)) {
 827		/* rx sample delay is expressed in parent clock cycles (max 3) */
 828		u32 rsd = DIV_ROUND_CLOSEST(rsd_nsecs * (rs->freq >> 8),
 829				1000000000 >> 8);
 830		if (!rsd) {
 831			dev_warn(rs->dev, "%u Hz are too slow to express %u ns delay\n",
 832					rs->freq, rsd_nsecs);
 833		} else if (rsd > CR0_RSD_MAX) {
 834			rsd = CR0_RSD_MAX;
 835			dev_warn(rs->dev, "%u Hz are too fast to express %u ns delay, clamping at %u ns\n",
 836					rs->freq, rsd_nsecs,
 837					CR0_RSD_MAX * 1000000000U / rs->freq);
 838		}
 839		rs->rsd = rsd;
 840	}
 841
 842	rs->fifo_len = get_fifo_len(rs);
 843	if (!rs->fifo_len) {
 844		dev_err(&pdev->dev, "Failed to get fifo length\n");
 845		ret = -EINVAL;
 846		goto err_disable_spiclk;
 847	}
 848
 849	pm_runtime_set_autosuspend_delay(&pdev->dev, ROCKCHIP_AUTOSUSPEND_TIMEOUT);
 850	pm_runtime_use_autosuspend(&pdev->dev);
 851	pm_runtime_set_active(&pdev->dev);
 852	pm_runtime_enable(&pdev->dev);
 853
 854	ctlr->auto_runtime_pm = true;
 855	ctlr->bus_num = pdev->id;
 856	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_LSB_FIRST;
 857	if (slave_mode) {
 858		ctlr->mode_bits |= SPI_NO_CS;
 859		ctlr->slave_abort = rockchip_spi_slave_abort;
 860	} else {
 861		ctlr->flags = SPI_MASTER_GPIO_SS;
 862		ctlr->max_native_cs = ROCKCHIP_SPI_MAX_CS_NUM;
 863		/*
 864		 * rk spi0 has two native cs, spi1..5 one cs only
 865		 * if num-cs is missing in the dts, default to 1
 866		 */
 867		if (of_property_read_u32(np, "num-cs", &num_cs))
 868			num_cs = 1;
 869		ctlr->num_chipselect = num_cs;
 870		ctlr->use_gpio_descriptors = true;
 871	}
 872	ctlr->dev.of_node = pdev->dev.of_node;
 873	ctlr->bits_per_word_mask = SPI_BPW_MASK(16) | SPI_BPW_MASK(8) | SPI_BPW_MASK(4);
 874	ctlr->min_speed_hz = rs->freq / BAUDR_SCKDV_MAX;
 875	ctlr->max_speed_hz = min(rs->freq / BAUDR_SCKDV_MIN, MAX_SCLK_OUT);
 876
 877	ctlr->setup = rockchip_spi_setup;
 878	ctlr->set_cs = rockchip_spi_set_cs;
 879	ctlr->transfer_one = rockchip_spi_transfer_one;
 880	ctlr->max_transfer_size = rockchip_spi_max_transfer_size;
 881	ctlr->handle_err = rockchip_spi_handle_err;
 882
 883	ctlr->dma_tx = dma_request_chan(rs->dev, "tx");
 884	if (IS_ERR(ctlr->dma_tx)) {
 885		/* Check tx to see if we need defer probing driver */
 886		if (PTR_ERR(ctlr->dma_tx) == -EPROBE_DEFER) {
 887			ret = -EPROBE_DEFER;
 888			goto err_disable_pm_runtime;
 889		}
 890		dev_warn(rs->dev, "Failed to request TX DMA channel\n");
 891		ctlr->dma_tx = NULL;
 892	}
 893
 894	ctlr->dma_rx = dma_request_chan(rs->dev, "rx");
 895	if (IS_ERR(ctlr->dma_rx)) {
 896		if (PTR_ERR(ctlr->dma_rx) == -EPROBE_DEFER) {
 897			ret = -EPROBE_DEFER;
 898			goto err_free_dma_tx;
 899		}
 900		dev_warn(rs->dev, "Failed to request RX DMA channel\n");
 901		ctlr->dma_rx = NULL;
 902	}
 903
 904	if (ctlr->dma_tx && ctlr->dma_rx) {
 905		rs->dma_addr_tx = mem->start + ROCKCHIP_SPI_TXDR;
 906		rs->dma_addr_rx = mem->start + ROCKCHIP_SPI_RXDR;
 907		ctlr->can_dma = rockchip_spi_can_dma;
 908	}
 909
 910	switch (readl_relaxed(rs->regs + ROCKCHIP_SPI_VERSION)) {
 911	case ROCKCHIP_SPI_VER2_TYPE2:
 912		rs->cs_high_supported = true;
 913		ctlr->mode_bits |= SPI_CS_HIGH;
 914		if (ctlr->can_dma && slave_mode)
 915			rs->cs_inactive = true;
 916		else
 917			rs->cs_inactive = false;
 918		break;
 919	default:
 920		rs->cs_inactive = false;
 921		break;
 922	}
 923
 924	ret = devm_spi_register_controller(&pdev->dev, ctlr);
 925	if (ret < 0) {
 926		dev_err(&pdev->dev, "Failed to register controller\n");
 927		goto err_free_dma_rx;
 928	}
 929
 930	return 0;
 931
 932err_free_dma_rx:
 933	if (ctlr->dma_rx)
 934		dma_release_channel(ctlr->dma_rx);
 935err_free_dma_tx:
 936	if (ctlr->dma_tx)
 937		dma_release_channel(ctlr->dma_tx);
 938err_disable_pm_runtime:
 939	pm_runtime_disable(&pdev->dev);
 940err_disable_spiclk:
 941	clk_disable_unprepare(rs->spiclk);
 942err_disable_apbclk:
 943	clk_disable_unprepare(rs->apb_pclk);
 944err_put_ctlr:
 945	spi_controller_put(ctlr);
 946
 947	return ret;
 948}
 949
 950static int rockchip_spi_remove(struct platform_device *pdev)
 951{
 952	struct spi_controller *ctlr = spi_controller_get(platform_get_drvdata(pdev));
 953	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
 954
 955	pm_runtime_get_sync(&pdev->dev);
 956
 957	clk_disable_unprepare(rs->spiclk);
 958	clk_disable_unprepare(rs->apb_pclk);
 959
 960	pm_runtime_put_noidle(&pdev->dev);
 961	pm_runtime_disable(&pdev->dev);
 962	pm_runtime_set_suspended(&pdev->dev);
 963
 964	if (ctlr->dma_tx)
 965		dma_release_channel(ctlr->dma_tx);
 966	if (ctlr->dma_rx)
 967		dma_release_channel(ctlr->dma_rx);
 968
 969	spi_controller_put(ctlr);
 970
 971	return 0;
 972}
 973
 974#ifdef CONFIG_PM_SLEEP
 975static int rockchip_spi_suspend(struct device *dev)
 976{
 977	int ret;
 978	struct spi_controller *ctlr = dev_get_drvdata(dev);
 979	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
 980
 981	ret = spi_controller_suspend(ctlr);
 982	if (ret < 0)
 983		return ret;
 984
 985	clk_disable_unprepare(rs->spiclk);
 986	clk_disable_unprepare(rs->apb_pclk);
 
 987
 988	pinctrl_pm_select_sleep_state(dev);
 989
 990	return 0;
 991}
 992
 993static int rockchip_spi_resume(struct device *dev)
 994{
 995	int ret;
 996	struct spi_controller *ctlr = dev_get_drvdata(dev);
 997	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
 998
 999	pinctrl_pm_select_default_state(dev);
1000
1001	ret = clk_prepare_enable(rs->apb_pclk);
1002	if (ret < 0)
1003		return ret;
1004
1005	ret = clk_prepare_enable(rs->spiclk);
1006	if (ret < 0)
1007		clk_disable_unprepare(rs->apb_pclk);
1008
1009	ret = spi_controller_resume(ctlr);
1010	if (ret < 0) {
1011		clk_disable_unprepare(rs->spiclk);
1012		clk_disable_unprepare(rs->apb_pclk);
1013	}
1014
1015	return 0;
1016}
1017#endif /* CONFIG_PM_SLEEP */
1018
1019#ifdef CONFIG_PM
1020static int rockchip_spi_runtime_suspend(struct device *dev)
1021{
1022	struct spi_controller *ctlr = dev_get_drvdata(dev);
1023	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
1024
1025	clk_disable_unprepare(rs->spiclk);
1026	clk_disable_unprepare(rs->apb_pclk);
1027
1028	return 0;
1029}
1030
1031static int rockchip_spi_runtime_resume(struct device *dev)
1032{
1033	int ret;
1034	struct spi_controller *ctlr = dev_get_drvdata(dev);
1035	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
1036
1037	ret = clk_prepare_enable(rs->apb_pclk);
1038	if (ret < 0)
1039		return ret;
1040
1041	ret = clk_prepare_enable(rs->spiclk);
1042	if (ret < 0)
1043		clk_disable_unprepare(rs->apb_pclk);
1044
1045	return 0;
1046}
1047#endif /* CONFIG_PM */
1048
1049static const struct dev_pm_ops rockchip_spi_pm = {
1050	SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(rockchip_spi_suspend, rockchip_spi_resume)
1051	SET_RUNTIME_PM_OPS(rockchip_spi_runtime_suspend,
1052			   rockchip_spi_runtime_resume, NULL)
1053};
1054
1055static const struct of_device_id rockchip_spi_dt_match[] = {
1056	{ .compatible = "rockchip,px30-spi", },
1057	{ .compatible = "rockchip,rk3036-spi", },
1058	{ .compatible = "rockchip,rk3066-spi", },
1059	{ .compatible = "rockchip,rk3188-spi", },
1060	{ .compatible = "rockchip,rk3228-spi", },
1061	{ .compatible = "rockchip,rk3288-spi", },
1062	{ .compatible = "rockchip,rk3308-spi", },
1063	{ .compatible = "rockchip,rk3328-spi", },
1064	{ .compatible = "rockchip,rk3368-spi", },
1065	{ .compatible = "rockchip,rk3399-spi", },
1066	{ .compatible = "rockchip,rv1108-spi", },
1067	{ .compatible = "rockchip,rv1126-spi", },
1068	{ },
1069};
1070MODULE_DEVICE_TABLE(of, rockchip_spi_dt_match);
1071
1072static struct platform_driver rockchip_spi_driver = {
1073	.driver = {
1074		.name	= DRIVER_NAME,
1075		.pm = &rockchip_spi_pm,
1076		.of_match_table = of_match_ptr(rockchip_spi_dt_match),
1077	},
1078	.probe = rockchip_spi_probe,
1079	.remove = rockchip_spi_remove,
1080};
1081
1082module_platform_driver(rockchip_spi_driver);
1083
1084MODULE_AUTHOR("Addy Ke <addy.ke@rock-chips.com>");
1085MODULE_DESCRIPTION("ROCKCHIP SPI Controller Driver");
1086MODULE_LICENSE("GPL v2");
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (c) 2014, Fuzhou Rockchip Electronics Co., Ltd
  4 * Author: Addy Ke <addy.ke@rock-chips.com>
  5 */
  6
  7#include <linux/clk.h>
  8#include <linux/dmaengine.h>
  9#include <linux/interrupt.h>
 10#include <linux/module.h>
 11#include <linux/of.h>
 12#include <linux/pinctrl/consumer.h>
 13#include <linux/platform_device.h>
 14#include <linux/spi/spi.h>
 15#include <linux/pm_runtime.h>
 16#include <linux/scatterlist.h>
 17
 18#define DRIVER_NAME "rockchip-spi"
 19
 20#define ROCKCHIP_SPI_CLR_BITS(reg, bits) \
 21		writel_relaxed(readl_relaxed(reg) & ~(bits), reg)
 22#define ROCKCHIP_SPI_SET_BITS(reg, bits) \
 23		writel_relaxed(readl_relaxed(reg) | (bits), reg)
 24
 25/* SPI register offsets */
 26#define ROCKCHIP_SPI_CTRLR0			0x0000
 27#define ROCKCHIP_SPI_CTRLR1			0x0004
 28#define ROCKCHIP_SPI_SSIENR			0x0008
 29#define ROCKCHIP_SPI_SER			0x000c
 30#define ROCKCHIP_SPI_BAUDR			0x0010
 31#define ROCKCHIP_SPI_TXFTLR			0x0014
 32#define ROCKCHIP_SPI_RXFTLR			0x0018
 33#define ROCKCHIP_SPI_TXFLR			0x001c
 34#define ROCKCHIP_SPI_RXFLR			0x0020
 35#define ROCKCHIP_SPI_SR				0x0024
 36#define ROCKCHIP_SPI_IPR			0x0028
 37#define ROCKCHIP_SPI_IMR			0x002c
 38#define ROCKCHIP_SPI_ISR			0x0030
 39#define ROCKCHIP_SPI_RISR			0x0034
 40#define ROCKCHIP_SPI_ICR			0x0038
 41#define ROCKCHIP_SPI_DMACR			0x003c
 42#define ROCKCHIP_SPI_DMATDLR			0x0040
 43#define ROCKCHIP_SPI_DMARDLR			0x0044
 44#define ROCKCHIP_SPI_VERSION			0x0048
 45#define ROCKCHIP_SPI_TXDR			0x0400
 46#define ROCKCHIP_SPI_RXDR			0x0800
 47
 48/* Bit fields in CTRLR0 */
 49#define CR0_DFS_OFFSET				0
 50#define CR0_DFS_4BIT				0x0
 51#define CR0_DFS_8BIT				0x1
 52#define CR0_DFS_16BIT				0x2
 53
 54#define CR0_CFS_OFFSET				2
 55
 56#define CR0_SCPH_OFFSET				6
 57
 58#define CR0_SCPOL_OFFSET			7
 59
 60#define CR0_CSM_OFFSET				8
 61#define CR0_CSM_KEEP				0x0
 62/* ss_n be high for half sclk_out cycles */
 63#define CR0_CSM_HALF				0X1
 64/* ss_n be high for one sclk_out cycle */
 65#define CR0_CSM_ONE					0x2
 66
 67/* ss_n to sclk_out delay */
 68#define CR0_SSD_OFFSET				10
 69/*
 70 * The period between ss_n active and
 71 * sclk_out active is half sclk_out cycles
 72 */
 73#define CR0_SSD_HALF				0x0
 74/*
 75 * The period between ss_n active and
 76 * sclk_out active is one sclk_out cycle
 77 */
 78#define CR0_SSD_ONE					0x1
 79
 80#define CR0_EM_OFFSET				11
 81#define CR0_EM_LITTLE				0x0
 82#define CR0_EM_BIG					0x1
 83
 84#define CR0_FBM_OFFSET				12
 85#define CR0_FBM_MSB					0x0
 86#define CR0_FBM_LSB					0x1
 87
 88#define CR0_BHT_OFFSET				13
 89#define CR0_BHT_16BIT				0x0
 90#define CR0_BHT_8BIT				0x1
 91
 92#define CR0_RSD_OFFSET				14
 93#define CR0_RSD_MAX				0x3
 94
 95#define CR0_FRF_OFFSET				16
 96#define CR0_FRF_SPI					0x0
 97#define CR0_FRF_SSP					0x1
 98#define CR0_FRF_MICROWIRE			0x2
 99
100#define CR0_XFM_OFFSET				18
101#define CR0_XFM_MASK				(0x03 << SPI_XFM_OFFSET)
102#define CR0_XFM_TR					0x0
103#define CR0_XFM_TO					0x1
104#define CR0_XFM_RO					0x2
105
106#define CR0_OPM_OFFSET				20
107#define CR0_OPM_MASTER				0x0
108#define CR0_OPM_SLAVE				0x1
109
110#define CR0_SOI_OFFSET				23
111
112#define CR0_MTM_OFFSET				0x21
113
114/* Bit fields in SER, 2bit */
115#define SER_MASK					0x3
116
117/* Bit fields in BAUDR */
118#define BAUDR_SCKDV_MIN				2
119#define BAUDR_SCKDV_MAX				65534
120
121/* Bit fields in SR, 6bit */
122#define SR_MASK						0x3f
123#define SR_BUSY						(1 << 0)
124#define SR_TF_FULL					(1 << 1)
125#define SR_TF_EMPTY					(1 << 2)
126#define SR_RF_EMPTY					(1 << 3)
127#define SR_RF_FULL					(1 << 4)
128#define SR_SLAVE_TX_BUSY				(1 << 5)
129
130/* Bit fields in ISR, IMR, ISR, RISR, 5bit */
131#define INT_MASK					0x1f
132#define INT_TF_EMPTY				(1 << 0)
133#define INT_TF_OVERFLOW				(1 << 1)
134#define INT_RF_UNDERFLOW			(1 << 2)
135#define INT_RF_OVERFLOW				(1 << 3)
136#define INT_RF_FULL					(1 << 4)
 
137
138/* Bit fields in ICR, 4bit */
139#define ICR_MASK					0x0f
140#define ICR_ALL						(1 << 0)
141#define ICR_RF_UNDERFLOW			(1 << 1)
142#define ICR_RF_OVERFLOW				(1 << 2)
143#define ICR_TF_OVERFLOW				(1 << 3)
144
145/* Bit fields in DMACR */
146#define RF_DMA_EN					(1 << 0)
147#define TF_DMA_EN					(1 << 1)
148
149/* Driver state flags */
150#define RXDMA					(1 << 0)
151#define TXDMA					(1 << 1)
152
153/* sclk_out: spi master internal logic in rk3x can support 50Mhz */
154#define MAX_SCLK_OUT				50000000U
155
156/*
157 * SPI_CTRLR1 is 16-bits, so we should support lengths of 0xffff + 1. However,
158 * the controller seems to hang when given 0x10000, so stick with this for now.
159 */
160#define ROCKCHIP_SPI_MAX_TRANLEN		0xffff
161
162/* 2 for native cs, 2 for cs-gpio */
163#define ROCKCHIP_SPI_MAX_CS_NUM			4
164#define ROCKCHIP_SPI_VER2_TYPE1			0x05EC0002
165#define ROCKCHIP_SPI_VER2_TYPE2			0x00110002
166
167#define ROCKCHIP_AUTOSUSPEND_TIMEOUT		2000
168
169struct rockchip_spi {
170	struct device *dev;
171
172	struct clk *spiclk;
173	struct clk *apb_pclk;
174
175	void __iomem *regs;
176	dma_addr_t dma_addr_rx;
177	dma_addr_t dma_addr_tx;
178
179	const void *tx;
180	void *rx;
181	unsigned int tx_left;
182	unsigned int rx_left;
183
184	atomic_t state;
185
186	/*depth of the FIFO buffer */
187	u32 fifo_len;
188	/* frequency of spiclk */
189	u32 freq;
190
191	u8 n_bytes;
192	u8 rsd;
193
194	bool cs_asserted[ROCKCHIP_SPI_MAX_CS_NUM];
195
196	bool slave_abort;
 
 
 
 
197};
198
199static inline void spi_enable_chip(struct rockchip_spi *rs, bool enable)
200{
201	writel_relaxed((enable ? 1U : 0U), rs->regs + ROCKCHIP_SPI_SSIENR);
202}
203
204static inline void wait_for_tx_idle(struct rockchip_spi *rs, bool slave_mode)
205{
206	unsigned long timeout = jiffies + msecs_to_jiffies(5);
207
208	do {
209		if (slave_mode) {
210			if (!(readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_SLAVE_TX_BUSY) &&
211			    !((readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_BUSY)))
212				return;
213		} else {
214			if (!(readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_BUSY))
215				return;
216		}
217	} while (!time_after(jiffies, timeout));
218
219	dev_warn(rs->dev, "spi controller is in busy state!\n");
220}
221
222static u32 get_fifo_len(struct rockchip_spi *rs)
223{
224	u32 ver;
225
226	ver = readl_relaxed(rs->regs + ROCKCHIP_SPI_VERSION);
227
228	switch (ver) {
229	case ROCKCHIP_SPI_VER2_TYPE1:
230	case ROCKCHIP_SPI_VER2_TYPE2:
231		return 64;
232	default:
233		return 32;
234	}
235}
236
237static void rockchip_spi_set_cs(struct spi_device *spi, bool enable)
238{
239	struct spi_controller *ctlr = spi->controller;
240	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
241	bool cs_asserted = spi->mode & SPI_CS_HIGH ? enable : !enable;
242
243	/* Return immediately for no-op */
244	if (cs_asserted == rs->cs_asserted[spi->chip_select])
245		return;
246
247	if (cs_asserted) {
248		/* Keep things powered as long as CS is asserted */
249		pm_runtime_get_sync(rs->dev);
250
251		if (spi->cs_gpiod)
252			ROCKCHIP_SPI_SET_BITS(rs->regs + ROCKCHIP_SPI_SER, 1);
253		else
254			ROCKCHIP_SPI_SET_BITS(rs->regs + ROCKCHIP_SPI_SER, BIT(spi->chip_select));
255	} else {
256		if (spi->cs_gpiod)
257			ROCKCHIP_SPI_CLR_BITS(rs->regs + ROCKCHIP_SPI_SER, 1);
258		else
259			ROCKCHIP_SPI_CLR_BITS(rs->regs + ROCKCHIP_SPI_SER, BIT(spi->chip_select));
260
261		/* Drop reference from when we first asserted CS */
262		pm_runtime_put(rs->dev);
263	}
264
265	rs->cs_asserted[spi->chip_select] = cs_asserted;
266}
267
268static void rockchip_spi_handle_err(struct spi_controller *ctlr,
269				    struct spi_message *msg)
270{
271	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
272
273	/* stop running spi transfer
274	 * this also flushes both rx and tx fifos
275	 */
276	spi_enable_chip(rs, false);
277
278	/* make sure all interrupts are masked */
279	writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR);
 
280
281	if (atomic_read(&rs->state) & TXDMA)
282		dmaengine_terminate_async(ctlr->dma_tx);
283
284	if (atomic_read(&rs->state) & RXDMA)
285		dmaengine_terminate_async(ctlr->dma_rx);
286}
287
288static void rockchip_spi_pio_writer(struct rockchip_spi *rs)
289{
290	u32 tx_free = rs->fifo_len - readl_relaxed(rs->regs + ROCKCHIP_SPI_TXFLR);
291	u32 words = min(rs->tx_left, tx_free);
292
293	rs->tx_left -= words;
294	for (; words; words--) {
295		u32 txw;
296
297		if (rs->n_bytes == 1)
298			txw = *(u8 *)rs->tx;
299		else
300			txw = *(u16 *)rs->tx;
301
302		writel_relaxed(txw, rs->regs + ROCKCHIP_SPI_TXDR);
303		rs->tx += rs->n_bytes;
304	}
305}
306
307static void rockchip_spi_pio_reader(struct rockchip_spi *rs)
308{
309	u32 words = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFLR);
310	u32 rx_left = (rs->rx_left > words) ? rs->rx_left - words : 0;
311
312	/* the hardware doesn't allow us to change fifo threshold
313	 * level while spi is enabled, so instead make sure to leave
314	 * enough words in the rx fifo to get the last interrupt
315	 * exactly when all words have been received
316	 */
317	if (rx_left) {
318		u32 ftl = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFTLR) + 1;
319
320		if (rx_left < ftl) {
321			rx_left = ftl;
322			words = rs->rx_left - rx_left;
323		}
324	}
325
326	rs->rx_left = rx_left;
327	for (; words; words--) {
328		u32 rxw = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXDR);
329
330		if (!rs->rx)
331			continue;
332
333		if (rs->n_bytes == 1)
334			*(u8 *)rs->rx = (u8)rxw;
335		else
336			*(u16 *)rs->rx = (u16)rxw;
337		rs->rx += rs->n_bytes;
338	}
339}
340
341static irqreturn_t rockchip_spi_isr(int irq, void *dev_id)
342{
343	struct spi_controller *ctlr = dev_id;
344	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
345
 
 
 
 
 
 
 
 
 
346	if (rs->tx_left)
347		rockchip_spi_pio_writer(rs);
348
349	rockchip_spi_pio_reader(rs);
350	if (!rs->rx_left) {
351		spi_enable_chip(rs, false);
352		writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR);
 
353		spi_finalize_current_transfer(ctlr);
354	}
355
356	return IRQ_HANDLED;
357}
358
359static int rockchip_spi_prepare_irq(struct rockchip_spi *rs,
360		struct spi_transfer *xfer)
 
361{
362	rs->tx = xfer->tx_buf;
363	rs->rx = xfer->rx_buf;
364	rs->tx_left = rs->tx ? xfer->len / rs->n_bytes : 0;
365	rs->rx_left = xfer->len / rs->n_bytes;
366
367	writel_relaxed(INT_RF_FULL, rs->regs + ROCKCHIP_SPI_IMR);
 
368	spi_enable_chip(rs, true);
369
370	if (rs->tx_left)
371		rockchip_spi_pio_writer(rs);
372
 
 
 
 
 
373	/* 1 means the transfer is in progress */
374	return 1;
375}
376
377static void rockchip_spi_dma_rxcb(void *data)
378{
379	struct spi_controller *ctlr = data;
380	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
381	int state = atomic_fetch_andnot(RXDMA, &rs->state);
382
383	if (state & TXDMA && !rs->slave_abort)
384		return;
385
 
 
 
386	spi_enable_chip(rs, false);
387	spi_finalize_current_transfer(ctlr);
388}
389
390static void rockchip_spi_dma_txcb(void *data)
391{
392	struct spi_controller *ctlr = data;
393	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
394	int state = atomic_fetch_andnot(TXDMA, &rs->state);
395
396	if (state & RXDMA && !rs->slave_abort)
397		return;
398
399	/* Wait until the FIFO data completely. */
400	wait_for_tx_idle(rs, ctlr->slave);
401
402	spi_enable_chip(rs, false);
403	spi_finalize_current_transfer(ctlr);
404}
405
406static u32 rockchip_spi_calc_burst_size(u32 data_len)
407{
408	u32 i;
409
410	/* burst size: 1, 2, 4, 8 */
411	for (i = 1; i < 8; i <<= 1) {
412		if (data_len & i)
413			break;
414	}
415
416	return i;
417}
418
419static int rockchip_spi_prepare_dma(struct rockchip_spi *rs,
420		struct spi_controller *ctlr, struct spi_transfer *xfer)
421{
422	struct dma_async_tx_descriptor *rxdesc, *txdesc;
423
424	atomic_set(&rs->state, 0);
425
 
 
 
426	rxdesc = NULL;
427	if (xfer->rx_buf) {
428		struct dma_slave_config rxconf = {
429			.direction = DMA_DEV_TO_MEM,
430			.src_addr = rs->dma_addr_rx,
431			.src_addr_width = rs->n_bytes,
432			.src_maxburst = rockchip_spi_calc_burst_size(xfer->len /
433								     rs->n_bytes),
434		};
435
436		dmaengine_slave_config(ctlr->dma_rx, &rxconf);
437
438		rxdesc = dmaengine_prep_slave_sg(
439				ctlr->dma_rx,
440				xfer->rx_sg.sgl, xfer->rx_sg.nents,
441				DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
442		if (!rxdesc)
443			return -EINVAL;
444
445		rxdesc->callback = rockchip_spi_dma_rxcb;
446		rxdesc->callback_param = ctlr;
447	}
448
449	txdesc = NULL;
450	if (xfer->tx_buf) {
451		struct dma_slave_config txconf = {
452			.direction = DMA_MEM_TO_DEV,
453			.dst_addr = rs->dma_addr_tx,
454			.dst_addr_width = rs->n_bytes,
455			.dst_maxburst = rs->fifo_len / 4,
456		};
457
458		dmaengine_slave_config(ctlr->dma_tx, &txconf);
459
460		txdesc = dmaengine_prep_slave_sg(
461				ctlr->dma_tx,
462				xfer->tx_sg.sgl, xfer->tx_sg.nents,
463				DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
464		if (!txdesc) {
465			if (rxdesc)
466				dmaengine_terminate_sync(ctlr->dma_rx);
467			return -EINVAL;
468		}
469
470		txdesc->callback = rockchip_spi_dma_txcb;
471		txdesc->callback_param = ctlr;
472	}
473
474	/* rx must be started before tx due to spi instinct */
475	if (rxdesc) {
476		atomic_or(RXDMA, &rs->state);
477		dmaengine_submit(rxdesc);
478		dma_async_issue_pending(ctlr->dma_rx);
479	}
480
 
 
 
481	spi_enable_chip(rs, true);
482
483	if (txdesc) {
484		atomic_or(TXDMA, &rs->state);
485		dmaengine_submit(txdesc);
486		dma_async_issue_pending(ctlr->dma_tx);
487	}
488
489	/* 1 means the transfer is in progress */
490	return 1;
491}
492
493static int rockchip_spi_config(struct rockchip_spi *rs,
494		struct spi_device *spi, struct spi_transfer *xfer,
495		bool use_dma, bool slave_mode)
496{
497	u32 cr0 = CR0_FRF_SPI  << CR0_FRF_OFFSET
498		| CR0_BHT_8BIT << CR0_BHT_OFFSET
499		| CR0_SSD_ONE  << CR0_SSD_OFFSET
500		| CR0_EM_BIG   << CR0_EM_OFFSET;
501	u32 cr1;
502	u32 dmacr = 0;
503
504	if (slave_mode)
505		cr0 |= CR0_OPM_SLAVE << CR0_OPM_OFFSET;
506	rs->slave_abort = false;
507
508	cr0 |= rs->rsd << CR0_RSD_OFFSET;
509	cr0 |= (spi->mode & 0x3U) << CR0_SCPH_OFFSET;
510	if (spi->mode & SPI_LSB_FIRST)
511		cr0 |= CR0_FBM_LSB << CR0_FBM_OFFSET;
512	if (spi->mode & SPI_CS_HIGH)
513		cr0 |= BIT(spi->chip_select) << CR0_SOI_OFFSET;
514
515	if (xfer->rx_buf && xfer->tx_buf)
516		cr0 |= CR0_XFM_TR << CR0_XFM_OFFSET;
517	else if (xfer->rx_buf)
518		cr0 |= CR0_XFM_RO << CR0_XFM_OFFSET;
519	else if (use_dma)
520		cr0 |= CR0_XFM_TO << CR0_XFM_OFFSET;
521
522	switch (xfer->bits_per_word) {
523	case 4:
524		cr0 |= CR0_DFS_4BIT << CR0_DFS_OFFSET;
525		cr1 = xfer->len - 1;
526		break;
527	case 8:
528		cr0 |= CR0_DFS_8BIT << CR0_DFS_OFFSET;
529		cr1 = xfer->len - 1;
530		break;
531	case 16:
532		cr0 |= CR0_DFS_16BIT << CR0_DFS_OFFSET;
533		cr1 = xfer->len / 2 - 1;
534		break;
535	default:
536		/* we only whitelist 4, 8 and 16 bit words in
537		 * ctlr->bits_per_word_mask, so this shouldn't
538		 * happen
539		 */
540		dev_err(rs->dev, "unknown bits per word: %d\n",
541			xfer->bits_per_word);
542		return -EINVAL;
543	}
544
545	if (use_dma) {
546		if (xfer->tx_buf)
547			dmacr |= TF_DMA_EN;
548		if (xfer->rx_buf)
549			dmacr |= RF_DMA_EN;
550	}
551
552	writel_relaxed(cr0, rs->regs + ROCKCHIP_SPI_CTRLR0);
553	writel_relaxed(cr1, rs->regs + ROCKCHIP_SPI_CTRLR1);
554
555	/* unfortunately setting the fifo threshold level to generate an
556	 * interrupt exactly when the fifo is full doesn't seem to work,
557	 * so we need the strict inequality here
558	 */
559	if ((xfer->len / rs->n_bytes) < rs->fifo_len)
560		writel_relaxed(xfer->len / rs->n_bytes - 1, rs->regs + ROCKCHIP_SPI_RXFTLR);
561	else
562		writel_relaxed(rs->fifo_len / 2 - 1, rs->regs + ROCKCHIP_SPI_RXFTLR);
563
564	writel_relaxed(rs->fifo_len / 2 - 1, rs->regs + ROCKCHIP_SPI_DMATDLR);
565	writel_relaxed(rockchip_spi_calc_burst_size(xfer->len / rs->n_bytes) - 1,
566		       rs->regs + ROCKCHIP_SPI_DMARDLR);
567	writel_relaxed(dmacr, rs->regs + ROCKCHIP_SPI_DMACR);
568
569	/* the hardware only supports an even clock divisor, so
570	 * round divisor = spiclk / speed up to nearest even number
571	 * so that the resulting speed is <= the requested speed
572	 */
573	writel_relaxed(2 * DIV_ROUND_UP(rs->freq, 2 * xfer->speed_hz),
574			rs->regs + ROCKCHIP_SPI_BAUDR);
575
576	return 0;
577}
578
579static size_t rockchip_spi_max_transfer_size(struct spi_device *spi)
580{
581	return ROCKCHIP_SPI_MAX_TRANLEN;
582}
583
584static int rockchip_spi_slave_abort(struct spi_controller *ctlr)
585{
586	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
587
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
588	rs->slave_abort = true;
589	spi_finalize_current_transfer(ctlr);
590
591	return 0;
592}
593
594static int rockchip_spi_transfer_one(
595		struct spi_controller *ctlr,
596		struct spi_device *spi,
597		struct spi_transfer *xfer)
598{
599	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
600	int ret;
601	bool use_dma;
602
603	/* Zero length transfers won't trigger an interrupt on completion */
604	if (!xfer->len) {
605		spi_finalize_current_transfer(ctlr);
606		return 1;
607	}
608
609	WARN_ON(readl_relaxed(rs->regs + ROCKCHIP_SPI_SSIENR) &&
610		(readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_BUSY));
611
612	if (!xfer->tx_buf && !xfer->rx_buf) {
613		dev_err(rs->dev, "No buffer for transfer\n");
614		return -EINVAL;
615	}
616
617	if (xfer->len > ROCKCHIP_SPI_MAX_TRANLEN) {
618		dev_err(rs->dev, "Transfer is too long (%d)\n", xfer->len);
619		return -EINVAL;
620	}
621
622	rs->n_bytes = xfer->bits_per_word <= 8 ? 1 : 2;
623
624	use_dma = ctlr->can_dma ? ctlr->can_dma(ctlr, spi, xfer) : false;
625
626	ret = rockchip_spi_config(rs, spi, xfer, use_dma, ctlr->slave);
627	if (ret)
628		return ret;
629
630	if (use_dma)
631		return rockchip_spi_prepare_dma(rs, ctlr, xfer);
632
633	return rockchip_spi_prepare_irq(rs, xfer);
634}
635
636static bool rockchip_spi_can_dma(struct spi_controller *ctlr,
637				 struct spi_device *spi,
638				 struct spi_transfer *xfer)
639{
640	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
641	unsigned int bytes_per_word = xfer->bits_per_word <= 8 ? 1 : 2;
642
643	/* if the numbor of spi words to transfer is less than the fifo
644	 * length we can just fill the fifo and wait for a single irq,
645	 * so don't bother setting up dma
646	 */
647	return xfer->len / bytes_per_word >= rs->fifo_len;
648}
649
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
650static int rockchip_spi_probe(struct platform_device *pdev)
651{
652	int ret;
653	struct rockchip_spi *rs;
654	struct spi_controller *ctlr;
655	struct resource *mem;
656	struct device_node *np = pdev->dev.of_node;
657	u32 rsd_nsecs;
658	bool slave_mode;
659
660	slave_mode = of_property_read_bool(np, "spi-slave");
661
662	if (slave_mode)
663		ctlr = spi_alloc_slave(&pdev->dev,
664				sizeof(struct rockchip_spi));
665	else
666		ctlr = spi_alloc_master(&pdev->dev,
667				sizeof(struct rockchip_spi));
668
669	if (!ctlr)
670		return -ENOMEM;
671
672	platform_set_drvdata(pdev, ctlr);
673
674	rs = spi_controller_get_devdata(ctlr);
675	ctlr->slave = slave_mode;
676
677	/* Get basic io resource and map it */
678	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
679	rs->regs = devm_ioremap_resource(&pdev->dev, mem);
680	if (IS_ERR(rs->regs)) {
681		ret =  PTR_ERR(rs->regs);
682		goto err_put_ctlr;
683	}
684
685	rs->apb_pclk = devm_clk_get(&pdev->dev, "apb_pclk");
686	if (IS_ERR(rs->apb_pclk)) {
687		dev_err(&pdev->dev, "Failed to get apb_pclk\n");
688		ret = PTR_ERR(rs->apb_pclk);
689		goto err_put_ctlr;
690	}
691
692	rs->spiclk = devm_clk_get(&pdev->dev, "spiclk");
693	if (IS_ERR(rs->spiclk)) {
694		dev_err(&pdev->dev, "Failed to get spi_pclk\n");
695		ret = PTR_ERR(rs->spiclk);
696		goto err_put_ctlr;
697	}
698
699	ret = clk_prepare_enable(rs->apb_pclk);
700	if (ret < 0) {
701		dev_err(&pdev->dev, "Failed to enable apb_pclk\n");
702		goto err_put_ctlr;
703	}
704
705	ret = clk_prepare_enable(rs->spiclk);
706	if (ret < 0) {
707		dev_err(&pdev->dev, "Failed to enable spi_clk\n");
708		goto err_disable_apbclk;
709	}
710
711	spi_enable_chip(rs, false);
712
713	ret = platform_get_irq(pdev, 0);
714	if (ret < 0)
715		goto err_disable_spiclk;
716
717	ret = devm_request_threaded_irq(&pdev->dev, ret, rockchip_spi_isr, NULL,
718			IRQF_ONESHOT, dev_name(&pdev->dev), ctlr);
719	if (ret)
720		goto err_disable_spiclk;
721
722	rs->dev = &pdev->dev;
723	rs->freq = clk_get_rate(rs->spiclk);
724
725	if (!of_property_read_u32(pdev->dev.of_node, "rx-sample-delay-ns",
726				  &rsd_nsecs)) {
727		/* rx sample delay is expressed in parent clock cycles (max 3) */
728		u32 rsd = DIV_ROUND_CLOSEST(rsd_nsecs * (rs->freq >> 8),
729				1000000000 >> 8);
730		if (!rsd) {
731			dev_warn(rs->dev, "%u Hz are too slow to express %u ns delay\n",
732					rs->freq, rsd_nsecs);
733		} else if (rsd > CR0_RSD_MAX) {
734			rsd = CR0_RSD_MAX;
735			dev_warn(rs->dev, "%u Hz are too fast to express %u ns delay, clamping at %u ns\n",
736					rs->freq, rsd_nsecs,
737					CR0_RSD_MAX * 1000000000U / rs->freq);
738		}
739		rs->rsd = rsd;
740	}
741
742	rs->fifo_len = get_fifo_len(rs);
743	if (!rs->fifo_len) {
744		dev_err(&pdev->dev, "Failed to get fifo length\n");
745		ret = -EINVAL;
746		goto err_disable_spiclk;
747	}
748
749	pm_runtime_set_autosuspend_delay(&pdev->dev, ROCKCHIP_AUTOSUSPEND_TIMEOUT);
750	pm_runtime_use_autosuspend(&pdev->dev);
751	pm_runtime_set_active(&pdev->dev);
752	pm_runtime_enable(&pdev->dev);
753
754	ctlr->auto_runtime_pm = true;
755	ctlr->bus_num = pdev->id;
756	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_LSB_FIRST;
757	if (slave_mode) {
758		ctlr->mode_bits |= SPI_NO_CS;
759		ctlr->slave_abort = rockchip_spi_slave_abort;
760	} else {
761		ctlr->flags = SPI_MASTER_GPIO_SS;
762		ctlr->max_native_cs = ROCKCHIP_SPI_MAX_CS_NUM;
763		/*
764		 * rk spi0 has two native cs, spi1..5 one cs only
765		 * if num-cs is missing in the dts, default to 1
766		 */
767		if (of_property_read_u16(np, "num-cs", &ctlr->num_chipselect))
768			ctlr->num_chipselect = 1;
 
769		ctlr->use_gpio_descriptors = true;
770	}
771	ctlr->dev.of_node = pdev->dev.of_node;
772	ctlr->bits_per_word_mask = SPI_BPW_MASK(16) | SPI_BPW_MASK(8) | SPI_BPW_MASK(4);
773	ctlr->min_speed_hz = rs->freq / BAUDR_SCKDV_MAX;
774	ctlr->max_speed_hz = min(rs->freq / BAUDR_SCKDV_MIN, MAX_SCLK_OUT);
775
 
776	ctlr->set_cs = rockchip_spi_set_cs;
777	ctlr->transfer_one = rockchip_spi_transfer_one;
778	ctlr->max_transfer_size = rockchip_spi_max_transfer_size;
779	ctlr->handle_err = rockchip_spi_handle_err;
780
781	ctlr->dma_tx = dma_request_chan(rs->dev, "tx");
782	if (IS_ERR(ctlr->dma_tx)) {
783		/* Check tx to see if we need defer probing driver */
784		if (PTR_ERR(ctlr->dma_tx) == -EPROBE_DEFER) {
785			ret = -EPROBE_DEFER;
786			goto err_disable_pm_runtime;
787		}
788		dev_warn(rs->dev, "Failed to request TX DMA channel\n");
789		ctlr->dma_tx = NULL;
790	}
791
792	ctlr->dma_rx = dma_request_chan(rs->dev, "rx");
793	if (IS_ERR(ctlr->dma_rx)) {
794		if (PTR_ERR(ctlr->dma_rx) == -EPROBE_DEFER) {
795			ret = -EPROBE_DEFER;
796			goto err_free_dma_tx;
797		}
798		dev_warn(rs->dev, "Failed to request RX DMA channel\n");
799		ctlr->dma_rx = NULL;
800	}
801
802	if (ctlr->dma_tx && ctlr->dma_rx) {
803		rs->dma_addr_tx = mem->start + ROCKCHIP_SPI_TXDR;
804		rs->dma_addr_rx = mem->start + ROCKCHIP_SPI_RXDR;
805		ctlr->can_dma = rockchip_spi_can_dma;
806	}
807
808	switch (readl_relaxed(rs->regs + ROCKCHIP_SPI_VERSION)) {
809	case ROCKCHIP_SPI_VER2_TYPE2:
 
810		ctlr->mode_bits |= SPI_CS_HIGH;
 
 
 
 
811		break;
812	default:
 
813		break;
814	}
815
816	ret = devm_spi_register_controller(&pdev->dev, ctlr);
817	if (ret < 0) {
818		dev_err(&pdev->dev, "Failed to register controller\n");
819		goto err_free_dma_rx;
820	}
821
822	return 0;
823
824err_free_dma_rx:
825	if (ctlr->dma_rx)
826		dma_release_channel(ctlr->dma_rx);
827err_free_dma_tx:
828	if (ctlr->dma_tx)
829		dma_release_channel(ctlr->dma_tx);
830err_disable_pm_runtime:
831	pm_runtime_disable(&pdev->dev);
832err_disable_spiclk:
833	clk_disable_unprepare(rs->spiclk);
834err_disable_apbclk:
835	clk_disable_unprepare(rs->apb_pclk);
836err_put_ctlr:
837	spi_controller_put(ctlr);
838
839	return ret;
840}
841
842static int rockchip_spi_remove(struct platform_device *pdev)
843{
844	struct spi_controller *ctlr = spi_controller_get(platform_get_drvdata(pdev));
845	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
846
847	pm_runtime_get_sync(&pdev->dev);
848
849	clk_disable_unprepare(rs->spiclk);
850	clk_disable_unprepare(rs->apb_pclk);
851
852	pm_runtime_put_noidle(&pdev->dev);
853	pm_runtime_disable(&pdev->dev);
854	pm_runtime_set_suspended(&pdev->dev);
855
856	if (ctlr->dma_tx)
857		dma_release_channel(ctlr->dma_tx);
858	if (ctlr->dma_rx)
859		dma_release_channel(ctlr->dma_rx);
860
861	spi_controller_put(ctlr);
862
863	return 0;
864}
865
866#ifdef CONFIG_PM_SLEEP
867static int rockchip_spi_suspend(struct device *dev)
868{
869	int ret;
870	struct spi_controller *ctlr = dev_get_drvdata(dev);
 
871
872	ret = spi_controller_suspend(ctlr);
873	if (ret < 0)
874		return ret;
875
876	ret = pm_runtime_force_suspend(dev);
877	if (ret < 0)
878		return ret;
879
880	pinctrl_pm_select_sleep_state(dev);
881
882	return 0;
883}
884
885static int rockchip_spi_resume(struct device *dev)
886{
887	int ret;
888	struct spi_controller *ctlr = dev_get_drvdata(dev);
889	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
890
891	pinctrl_pm_select_default_state(dev);
892
893	ret = pm_runtime_force_resume(dev);
894	if (ret < 0)
895		return ret;
896
 
 
 
 
897	ret = spi_controller_resume(ctlr);
898	if (ret < 0) {
899		clk_disable_unprepare(rs->spiclk);
900		clk_disable_unprepare(rs->apb_pclk);
901	}
902
903	return 0;
904}
905#endif /* CONFIG_PM_SLEEP */
906
907#ifdef CONFIG_PM
908static int rockchip_spi_runtime_suspend(struct device *dev)
909{
910	struct spi_controller *ctlr = dev_get_drvdata(dev);
911	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
912
913	clk_disable_unprepare(rs->spiclk);
914	clk_disable_unprepare(rs->apb_pclk);
915
916	return 0;
917}
918
919static int rockchip_spi_runtime_resume(struct device *dev)
920{
921	int ret;
922	struct spi_controller *ctlr = dev_get_drvdata(dev);
923	struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
924
925	ret = clk_prepare_enable(rs->apb_pclk);
926	if (ret < 0)
927		return ret;
928
929	ret = clk_prepare_enable(rs->spiclk);
930	if (ret < 0)
931		clk_disable_unprepare(rs->apb_pclk);
932
933	return 0;
934}
935#endif /* CONFIG_PM */
936
937static const struct dev_pm_ops rockchip_spi_pm = {
938	SET_SYSTEM_SLEEP_PM_OPS(rockchip_spi_suspend, rockchip_spi_resume)
939	SET_RUNTIME_PM_OPS(rockchip_spi_runtime_suspend,
940			   rockchip_spi_runtime_resume, NULL)
941};
942
943static const struct of_device_id rockchip_spi_dt_match[] = {
944	{ .compatible = "rockchip,px30-spi", },
945	{ .compatible = "rockchip,rk3036-spi", },
946	{ .compatible = "rockchip,rk3066-spi", },
947	{ .compatible = "rockchip,rk3188-spi", },
948	{ .compatible = "rockchip,rk3228-spi", },
949	{ .compatible = "rockchip,rk3288-spi", },
950	{ .compatible = "rockchip,rk3308-spi", },
951	{ .compatible = "rockchip,rk3328-spi", },
952	{ .compatible = "rockchip,rk3368-spi", },
953	{ .compatible = "rockchip,rk3399-spi", },
954	{ .compatible = "rockchip,rv1108-spi", },
955	{ .compatible = "rockchip,rv1126-spi", },
956	{ },
957};
958MODULE_DEVICE_TABLE(of, rockchip_spi_dt_match);
959
960static struct platform_driver rockchip_spi_driver = {
961	.driver = {
962		.name	= DRIVER_NAME,
963		.pm = &rockchip_spi_pm,
964		.of_match_table = of_match_ptr(rockchip_spi_dt_match),
965	},
966	.probe = rockchip_spi_probe,
967	.remove = rockchip_spi_remove,
968};
969
970module_platform_driver(rockchip_spi_driver);
971
972MODULE_AUTHOR("Addy Ke <addy.ke@rock-chips.com>");
973MODULE_DESCRIPTION("ROCKCHIP SPI Controller Driver");
974MODULE_LICENSE("GPL v2");