Loading...
1/*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm-core.h"
9#include "dm-rq.h"
10
11#include <linux/module.h>
12#include <linux/vmalloc.h>
13#include <linux/blkdev.h>
14#include <linux/blk-integrity.h>
15#include <linux/namei.h>
16#include <linux/ctype.h>
17#include <linux/string.h>
18#include <linux/slab.h>
19#include <linux/interrupt.h>
20#include <linux/mutex.h>
21#include <linux/delay.h>
22#include <linux/atomic.h>
23#include <linux/blk-mq.h>
24#include <linux/mount.h>
25#include <linux/dax.h>
26
27#define DM_MSG_PREFIX "table"
28
29#define NODE_SIZE L1_CACHE_BYTES
30#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
31#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
32
33/*
34 * Similar to ceiling(log_size(n))
35 */
36static unsigned int int_log(unsigned int n, unsigned int base)
37{
38 int result = 0;
39
40 while (n > 1) {
41 n = dm_div_up(n, base);
42 result++;
43 }
44
45 return result;
46}
47
48/*
49 * Calculate the index of the child node of the n'th node k'th key.
50 */
51static inline unsigned int get_child(unsigned int n, unsigned int k)
52{
53 return (n * CHILDREN_PER_NODE) + k;
54}
55
56/*
57 * Return the n'th node of level l from table t.
58 */
59static inline sector_t *get_node(struct dm_table *t,
60 unsigned int l, unsigned int n)
61{
62 return t->index[l] + (n * KEYS_PER_NODE);
63}
64
65/*
66 * Return the highest key that you could lookup from the n'th
67 * node on level l of the btree.
68 */
69static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
70{
71 for (; l < t->depth - 1; l++)
72 n = get_child(n, CHILDREN_PER_NODE - 1);
73
74 if (n >= t->counts[l])
75 return (sector_t) - 1;
76
77 return get_node(t, l, n)[KEYS_PER_NODE - 1];
78}
79
80/*
81 * Fills in a level of the btree based on the highs of the level
82 * below it.
83 */
84static int setup_btree_index(unsigned int l, struct dm_table *t)
85{
86 unsigned int n, k;
87 sector_t *node;
88
89 for (n = 0U; n < t->counts[l]; n++) {
90 node = get_node(t, l, n);
91
92 for (k = 0U; k < KEYS_PER_NODE; k++)
93 node[k] = high(t, l + 1, get_child(n, k));
94 }
95
96 return 0;
97}
98
99/*
100 * highs, and targets are managed as dynamic arrays during a
101 * table load.
102 */
103static int alloc_targets(struct dm_table *t, unsigned int num)
104{
105 sector_t *n_highs;
106 struct dm_target *n_targets;
107
108 /*
109 * Allocate both the target array and offset array at once.
110 */
111 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
112 GFP_KERNEL);
113 if (!n_highs)
114 return -ENOMEM;
115
116 n_targets = (struct dm_target *) (n_highs + num);
117
118 memset(n_highs, -1, sizeof(*n_highs) * num);
119 kvfree(t->highs);
120
121 t->num_allocated = num;
122 t->highs = n_highs;
123 t->targets = n_targets;
124
125 return 0;
126}
127
128int dm_table_create(struct dm_table **result, fmode_t mode,
129 unsigned num_targets, struct mapped_device *md)
130{
131 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
132
133 if (!t)
134 return -ENOMEM;
135
136 INIT_LIST_HEAD(&t->devices);
137
138 if (!num_targets)
139 num_targets = KEYS_PER_NODE;
140
141 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
142
143 if (!num_targets) {
144 kfree(t);
145 return -ENOMEM;
146 }
147
148 if (alloc_targets(t, num_targets)) {
149 kfree(t);
150 return -ENOMEM;
151 }
152
153 t->type = DM_TYPE_NONE;
154 t->mode = mode;
155 t->md = md;
156 *result = t;
157 return 0;
158}
159
160static void free_devices(struct list_head *devices, struct mapped_device *md)
161{
162 struct list_head *tmp, *next;
163
164 list_for_each_safe(tmp, next, devices) {
165 struct dm_dev_internal *dd =
166 list_entry(tmp, struct dm_dev_internal, list);
167 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
168 dm_device_name(md), dd->dm_dev->name);
169 dm_put_table_device(md, dd->dm_dev);
170 kfree(dd);
171 }
172}
173
174static void dm_table_destroy_crypto_profile(struct dm_table *t);
175
176void dm_table_destroy(struct dm_table *t)
177{
178 if (!t)
179 return;
180
181 /* free the indexes */
182 if (t->depth >= 2)
183 kvfree(t->index[t->depth - 2]);
184
185 /* free the targets */
186 for (unsigned int i = 0; i < t->num_targets; i++) {
187 struct dm_target *ti = dm_table_get_target(t, i);
188
189 if (ti->type->dtr)
190 ti->type->dtr(ti);
191
192 dm_put_target_type(ti->type);
193 }
194
195 kvfree(t->highs);
196
197 /* free the device list */
198 free_devices(&t->devices, t->md);
199
200 dm_free_md_mempools(t->mempools);
201
202 dm_table_destroy_crypto_profile(t);
203
204 kfree(t);
205}
206
207/*
208 * See if we've already got a device in the list.
209 */
210static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
211{
212 struct dm_dev_internal *dd;
213
214 list_for_each_entry (dd, l, list)
215 if (dd->dm_dev->bdev->bd_dev == dev)
216 return dd;
217
218 return NULL;
219}
220
221/*
222 * If possible, this checks an area of a destination device is invalid.
223 */
224static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
225 sector_t start, sector_t len, void *data)
226{
227 struct queue_limits *limits = data;
228 struct block_device *bdev = dev->bdev;
229 sector_t dev_size = bdev_nr_sectors(bdev);
230 unsigned short logical_block_size_sectors =
231 limits->logical_block_size >> SECTOR_SHIFT;
232
233 if (!dev_size)
234 return 0;
235
236 if ((start >= dev_size) || (start + len > dev_size)) {
237 DMERR("%s: %pg too small for target: "
238 "start=%llu, len=%llu, dev_size=%llu",
239 dm_device_name(ti->table->md), bdev,
240 (unsigned long long)start,
241 (unsigned long long)len,
242 (unsigned long long)dev_size);
243 return 1;
244 }
245
246 /*
247 * If the target is mapped to zoned block device(s), check
248 * that the zones are not partially mapped.
249 */
250 if (bdev_is_zoned(bdev)) {
251 unsigned int zone_sectors = bdev_zone_sectors(bdev);
252
253 if (start & (zone_sectors - 1)) {
254 DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg",
255 dm_device_name(ti->table->md),
256 (unsigned long long)start,
257 zone_sectors, bdev);
258 return 1;
259 }
260
261 /*
262 * Note: The last zone of a zoned block device may be smaller
263 * than other zones. So for a target mapping the end of a
264 * zoned block device with such a zone, len would not be zone
265 * aligned. We do not allow such last smaller zone to be part
266 * of the mapping here to ensure that mappings with multiple
267 * devices do not end up with a smaller zone in the middle of
268 * the sector range.
269 */
270 if (len & (zone_sectors - 1)) {
271 DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg",
272 dm_device_name(ti->table->md),
273 (unsigned long long)len,
274 zone_sectors, bdev);
275 return 1;
276 }
277 }
278
279 if (logical_block_size_sectors <= 1)
280 return 0;
281
282 if (start & (logical_block_size_sectors - 1)) {
283 DMERR("%s: start=%llu not aligned to h/w "
284 "logical block size %u of %pg",
285 dm_device_name(ti->table->md),
286 (unsigned long long)start,
287 limits->logical_block_size, bdev);
288 return 1;
289 }
290
291 if (len & (logical_block_size_sectors - 1)) {
292 DMERR("%s: len=%llu not aligned to h/w "
293 "logical block size %u of %pg",
294 dm_device_name(ti->table->md),
295 (unsigned long long)len,
296 limits->logical_block_size, bdev);
297 return 1;
298 }
299
300 return 0;
301}
302
303/*
304 * This upgrades the mode on an already open dm_dev, being
305 * careful to leave things as they were if we fail to reopen the
306 * device and not to touch the existing bdev field in case
307 * it is accessed concurrently.
308 */
309static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
310 struct mapped_device *md)
311{
312 int r;
313 struct dm_dev *old_dev, *new_dev;
314
315 old_dev = dd->dm_dev;
316
317 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
318 dd->dm_dev->mode | new_mode, &new_dev);
319 if (r)
320 return r;
321
322 dd->dm_dev = new_dev;
323 dm_put_table_device(md, old_dev);
324
325 return 0;
326}
327
328/*
329 * Convert the path to a device
330 */
331dev_t dm_get_dev_t(const char *path)
332{
333 dev_t dev;
334
335 if (lookup_bdev(path, &dev))
336 dev = name_to_dev_t(path);
337 return dev;
338}
339EXPORT_SYMBOL_GPL(dm_get_dev_t);
340
341/*
342 * Add a device to the list, or just increment the usage count if
343 * it's already present.
344 */
345int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
346 struct dm_dev **result)
347{
348 int r;
349 dev_t dev;
350 unsigned int major, minor;
351 char dummy;
352 struct dm_dev_internal *dd;
353 struct dm_table *t = ti->table;
354
355 BUG_ON(!t);
356
357 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
358 /* Extract the major/minor numbers */
359 dev = MKDEV(major, minor);
360 if (MAJOR(dev) != major || MINOR(dev) != minor)
361 return -EOVERFLOW;
362 } else {
363 dev = dm_get_dev_t(path);
364 if (!dev)
365 return -ENODEV;
366 }
367
368 dd = find_device(&t->devices, dev);
369 if (!dd) {
370 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
371 if (!dd)
372 return -ENOMEM;
373
374 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
375 kfree(dd);
376 return r;
377 }
378
379 refcount_set(&dd->count, 1);
380 list_add(&dd->list, &t->devices);
381 goto out;
382
383 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
384 r = upgrade_mode(dd, mode, t->md);
385 if (r)
386 return r;
387 }
388 refcount_inc(&dd->count);
389out:
390 *result = dd->dm_dev;
391 return 0;
392}
393EXPORT_SYMBOL(dm_get_device);
394
395static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
396 sector_t start, sector_t len, void *data)
397{
398 struct queue_limits *limits = data;
399 struct block_device *bdev = dev->bdev;
400 struct request_queue *q = bdev_get_queue(bdev);
401
402 if (unlikely(!q)) {
403 DMWARN("%s: Cannot set limits for nonexistent device %pg",
404 dm_device_name(ti->table->md), bdev);
405 return 0;
406 }
407
408 if (blk_stack_limits(limits, &q->limits,
409 get_start_sect(bdev) + start) < 0)
410 DMWARN("%s: adding target device %pg caused an alignment inconsistency: "
411 "physical_block_size=%u, logical_block_size=%u, "
412 "alignment_offset=%u, start=%llu",
413 dm_device_name(ti->table->md), bdev,
414 q->limits.physical_block_size,
415 q->limits.logical_block_size,
416 q->limits.alignment_offset,
417 (unsigned long long) start << SECTOR_SHIFT);
418 return 0;
419}
420
421/*
422 * Decrement a device's use count and remove it if necessary.
423 */
424void dm_put_device(struct dm_target *ti, struct dm_dev *d)
425{
426 int found = 0;
427 struct list_head *devices = &ti->table->devices;
428 struct dm_dev_internal *dd;
429
430 list_for_each_entry(dd, devices, list) {
431 if (dd->dm_dev == d) {
432 found = 1;
433 break;
434 }
435 }
436 if (!found) {
437 DMERR("%s: device %s not in table devices list",
438 dm_device_name(ti->table->md), d->name);
439 return;
440 }
441 if (refcount_dec_and_test(&dd->count)) {
442 dm_put_table_device(ti->table->md, d);
443 list_del(&dd->list);
444 kfree(dd);
445 }
446}
447EXPORT_SYMBOL(dm_put_device);
448
449/*
450 * Checks to see if the target joins onto the end of the table.
451 */
452static int adjoin(struct dm_table *t, struct dm_target *ti)
453{
454 struct dm_target *prev;
455
456 if (!t->num_targets)
457 return !ti->begin;
458
459 prev = &t->targets[t->num_targets - 1];
460 return (ti->begin == (prev->begin + prev->len));
461}
462
463/*
464 * Used to dynamically allocate the arg array.
465 *
466 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
467 * process messages even if some device is suspended. These messages have a
468 * small fixed number of arguments.
469 *
470 * On the other hand, dm-switch needs to process bulk data using messages and
471 * excessive use of GFP_NOIO could cause trouble.
472 */
473static char **realloc_argv(unsigned *size, char **old_argv)
474{
475 char **argv;
476 unsigned new_size;
477 gfp_t gfp;
478
479 if (*size) {
480 new_size = *size * 2;
481 gfp = GFP_KERNEL;
482 } else {
483 new_size = 8;
484 gfp = GFP_NOIO;
485 }
486 argv = kmalloc_array(new_size, sizeof(*argv), gfp);
487 if (argv && old_argv) {
488 memcpy(argv, old_argv, *size * sizeof(*argv));
489 *size = new_size;
490 }
491
492 kfree(old_argv);
493 return argv;
494}
495
496/*
497 * Destructively splits up the argument list to pass to ctr.
498 */
499int dm_split_args(int *argc, char ***argvp, char *input)
500{
501 char *start, *end = input, *out, **argv = NULL;
502 unsigned array_size = 0;
503
504 *argc = 0;
505
506 if (!input) {
507 *argvp = NULL;
508 return 0;
509 }
510
511 argv = realloc_argv(&array_size, argv);
512 if (!argv)
513 return -ENOMEM;
514
515 while (1) {
516 /* Skip whitespace */
517 start = skip_spaces(end);
518
519 if (!*start)
520 break; /* success, we hit the end */
521
522 /* 'out' is used to remove any back-quotes */
523 end = out = start;
524 while (*end) {
525 /* Everything apart from '\0' can be quoted */
526 if (*end == '\\' && *(end + 1)) {
527 *out++ = *(end + 1);
528 end += 2;
529 continue;
530 }
531
532 if (isspace(*end))
533 break; /* end of token */
534
535 *out++ = *end++;
536 }
537
538 /* have we already filled the array ? */
539 if ((*argc + 1) > array_size) {
540 argv = realloc_argv(&array_size, argv);
541 if (!argv)
542 return -ENOMEM;
543 }
544
545 /* we know this is whitespace */
546 if (*end)
547 end++;
548
549 /* terminate the string and put it in the array */
550 *out = '\0';
551 argv[*argc] = start;
552 (*argc)++;
553 }
554
555 *argvp = argv;
556 return 0;
557}
558
559/*
560 * Impose necessary and sufficient conditions on a devices's table such
561 * that any incoming bio which respects its logical_block_size can be
562 * processed successfully. If it falls across the boundary between
563 * two or more targets, the size of each piece it gets split into must
564 * be compatible with the logical_block_size of the target processing it.
565 */
566static int validate_hardware_logical_block_alignment(struct dm_table *t,
567 struct queue_limits *limits)
568{
569 /*
570 * This function uses arithmetic modulo the logical_block_size
571 * (in units of 512-byte sectors).
572 */
573 unsigned short device_logical_block_size_sects =
574 limits->logical_block_size >> SECTOR_SHIFT;
575
576 /*
577 * Offset of the start of the next table entry, mod logical_block_size.
578 */
579 unsigned short next_target_start = 0;
580
581 /*
582 * Given an aligned bio that extends beyond the end of a
583 * target, how many sectors must the next target handle?
584 */
585 unsigned short remaining = 0;
586
587 struct dm_target *ti;
588 struct queue_limits ti_limits;
589 unsigned int i;
590
591 /*
592 * Check each entry in the table in turn.
593 */
594 for (i = 0; i < t->num_targets; i++) {
595 ti = dm_table_get_target(t, i);
596
597 blk_set_stacking_limits(&ti_limits);
598
599 /* combine all target devices' limits */
600 if (ti->type->iterate_devices)
601 ti->type->iterate_devices(ti, dm_set_device_limits,
602 &ti_limits);
603
604 /*
605 * If the remaining sectors fall entirely within this
606 * table entry are they compatible with its logical_block_size?
607 */
608 if (remaining < ti->len &&
609 remaining & ((ti_limits.logical_block_size >>
610 SECTOR_SHIFT) - 1))
611 break; /* Error */
612
613 next_target_start =
614 (unsigned short) ((next_target_start + ti->len) &
615 (device_logical_block_size_sects - 1));
616 remaining = next_target_start ?
617 device_logical_block_size_sects - next_target_start : 0;
618 }
619
620 if (remaining) {
621 DMERR("%s: table line %u (start sect %llu len %llu) "
622 "not aligned to h/w logical block size %u",
623 dm_device_name(t->md), i,
624 (unsigned long long) ti->begin,
625 (unsigned long long) ti->len,
626 limits->logical_block_size);
627 return -EINVAL;
628 }
629
630 return 0;
631}
632
633int dm_table_add_target(struct dm_table *t, const char *type,
634 sector_t start, sector_t len, char *params)
635{
636 int r = -EINVAL, argc;
637 char **argv;
638 struct dm_target *ti;
639
640 if (t->singleton) {
641 DMERR("%s: target type %s must appear alone in table",
642 dm_device_name(t->md), t->targets->type->name);
643 return -EINVAL;
644 }
645
646 BUG_ON(t->num_targets >= t->num_allocated);
647
648 ti = t->targets + t->num_targets;
649 memset(ti, 0, sizeof(*ti));
650
651 if (!len) {
652 DMERR("%s: zero-length target", dm_device_name(t->md));
653 return -EINVAL;
654 }
655
656 ti->type = dm_get_target_type(type);
657 if (!ti->type) {
658 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
659 return -EINVAL;
660 }
661
662 if (dm_target_needs_singleton(ti->type)) {
663 if (t->num_targets) {
664 ti->error = "singleton target type must appear alone in table";
665 goto bad;
666 }
667 t->singleton = true;
668 }
669
670 if (dm_target_always_writeable(ti->type) && !(t->mode & FMODE_WRITE)) {
671 ti->error = "target type may not be included in a read-only table";
672 goto bad;
673 }
674
675 if (t->immutable_target_type) {
676 if (t->immutable_target_type != ti->type) {
677 ti->error = "immutable target type cannot be mixed with other target types";
678 goto bad;
679 }
680 } else if (dm_target_is_immutable(ti->type)) {
681 if (t->num_targets) {
682 ti->error = "immutable target type cannot be mixed with other target types";
683 goto bad;
684 }
685 t->immutable_target_type = ti->type;
686 }
687
688 if (dm_target_has_integrity(ti->type))
689 t->integrity_added = 1;
690
691 ti->table = t;
692 ti->begin = start;
693 ti->len = len;
694 ti->error = "Unknown error";
695
696 /*
697 * Does this target adjoin the previous one ?
698 */
699 if (!adjoin(t, ti)) {
700 ti->error = "Gap in table";
701 goto bad;
702 }
703
704 r = dm_split_args(&argc, &argv, params);
705 if (r) {
706 ti->error = "couldn't split parameters";
707 goto bad;
708 }
709
710 r = ti->type->ctr(ti, argc, argv);
711 kfree(argv);
712 if (r)
713 goto bad;
714
715 t->highs[t->num_targets++] = ti->begin + ti->len - 1;
716
717 if (!ti->num_discard_bios && ti->discards_supported)
718 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
719 dm_device_name(t->md), type);
720
721 if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key))
722 static_branch_enable(&swap_bios_enabled);
723
724 return 0;
725
726 bad:
727 DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r));
728 dm_put_target_type(ti->type);
729 return r;
730}
731
732/*
733 * Target argument parsing helpers.
734 */
735static int validate_next_arg(const struct dm_arg *arg,
736 struct dm_arg_set *arg_set,
737 unsigned *value, char **error, unsigned grouped)
738{
739 const char *arg_str = dm_shift_arg(arg_set);
740 char dummy;
741
742 if (!arg_str ||
743 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
744 (*value < arg->min) ||
745 (*value > arg->max) ||
746 (grouped && arg_set->argc < *value)) {
747 *error = arg->error;
748 return -EINVAL;
749 }
750
751 return 0;
752}
753
754int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
755 unsigned *value, char **error)
756{
757 return validate_next_arg(arg, arg_set, value, error, 0);
758}
759EXPORT_SYMBOL(dm_read_arg);
760
761int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
762 unsigned *value, char **error)
763{
764 return validate_next_arg(arg, arg_set, value, error, 1);
765}
766EXPORT_SYMBOL(dm_read_arg_group);
767
768const char *dm_shift_arg(struct dm_arg_set *as)
769{
770 char *r;
771
772 if (as->argc) {
773 as->argc--;
774 r = *as->argv;
775 as->argv++;
776 return r;
777 }
778
779 return NULL;
780}
781EXPORT_SYMBOL(dm_shift_arg);
782
783void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
784{
785 BUG_ON(as->argc < num_args);
786 as->argc -= num_args;
787 as->argv += num_args;
788}
789EXPORT_SYMBOL(dm_consume_args);
790
791static bool __table_type_bio_based(enum dm_queue_mode table_type)
792{
793 return (table_type == DM_TYPE_BIO_BASED ||
794 table_type == DM_TYPE_DAX_BIO_BASED);
795}
796
797static bool __table_type_request_based(enum dm_queue_mode table_type)
798{
799 return table_type == DM_TYPE_REQUEST_BASED;
800}
801
802void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
803{
804 t->type = type;
805}
806EXPORT_SYMBOL_GPL(dm_table_set_type);
807
808/* validate the dax capability of the target device span */
809static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
810 sector_t start, sector_t len, void *data)
811{
812 if (dev->dax_dev)
813 return false;
814
815 DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
816 return true;
817}
818
819/* Check devices support synchronous DAX */
820static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
821 sector_t start, sector_t len, void *data)
822{
823 return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
824}
825
826static bool dm_table_supports_dax(struct dm_table *t,
827 iterate_devices_callout_fn iterate_fn)
828{
829 /* Ensure that all targets support DAX. */
830 for (unsigned int i = 0; i < t->num_targets; i++) {
831 struct dm_target *ti = dm_table_get_target(t, i);
832
833 if (!ti->type->direct_access)
834 return false;
835
836 if (!ti->type->iterate_devices ||
837 ti->type->iterate_devices(ti, iterate_fn, NULL))
838 return false;
839 }
840
841 return true;
842}
843
844static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
845 sector_t start, sector_t len, void *data)
846{
847 struct block_device *bdev = dev->bdev;
848 struct request_queue *q = bdev_get_queue(bdev);
849
850 /* request-based cannot stack on partitions! */
851 if (bdev_is_partition(bdev))
852 return false;
853
854 return queue_is_mq(q);
855}
856
857static int dm_table_determine_type(struct dm_table *t)
858{
859 unsigned bio_based = 0, request_based = 0, hybrid = 0;
860 struct dm_target *ti;
861 struct list_head *devices = dm_table_get_devices(t);
862 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
863
864 if (t->type != DM_TYPE_NONE) {
865 /* target already set the table's type */
866 if (t->type == DM_TYPE_BIO_BASED) {
867 /* possibly upgrade to a variant of bio-based */
868 goto verify_bio_based;
869 }
870 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
871 goto verify_rq_based;
872 }
873
874 for (unsigned int i = 0; i < t->num_targets; i++) {
875 ti = dm_table_get_target(t, i);
876 if (dm_target_hybrid(ti))
877 hybrid = 1;
878 else if (dm_target_request_based(ti))
879 request_based = 1;
880 else
881 bio_based = 1;
882
883 if (bio_based && request_based) {
884 DMERR("Inconsistent table: different target types"
885 " can't be mixed up");
886 return -EINVAL;
887 }
888 }
889
890 if (hybrid && !bio_based && !request_based) {
891 /*
892 * The targets can work either way.
893 * Determine the type from the live device.
894 * Default to bio-based if device is new.
895 */
896 if (__table_type_request_based(live_md_type))
897 request_based = 1;
898 else
899 bio_based = 1;
900 }
901
902 if (bio_based) {
903verify_bio_based:
904 /* We must use this table as bio-based */
905 t->type = DM_TYPE_BIO_BASED;
906 if (dm_table_supports_dax(t, device_not_dax_capable) ||
907 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
908 t->type = DM_TYPE_DAX_BIO_BASED;
909 }
910 return 0;
911 }
912
913 BUG_ON(!request_based); /* No targets in this table */
914
915 t->type = DM_TYPE_REQUEST_BASED;
916
917verify_rq_based:
918 /*
919 * Request-based dm supports only tables that have a single target now.
920 * To support multiple targets, request splitting support is needed,
921 * and that needs lots of changes in the block-layer.
922 * (e.g. request completion process for partial completion.)
923 */
924 if (t->num_targets > 1) {
925 DMERR("request-based DM doesn't support multiple targets");
926 return -EINVAL;
927 }
928
929 if (list_empty(devices)) {
930 int srcu_idx;
931 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
932
933 /* inherit live table's type */
934 if (live_table)
935 t->type = live_table->type;
936 dm_put_live_table(t->md, srcu_idx);
937 return 0;
938 }
939
940 ti = dm_table_get_immutable_target(t);
941 if (!ti) {
942 DMERR("table load rejected: immutable target is required");
943 return -EINVAL;
944 } else if (ti->max_io_len) {
945 DMERR("table load rejected: immutable target that splits IO is not supported");
946 return -EINVAL;
947 }
948
949 /* Non-request-stackable devices can't be used for request-based dm */
950 if (!ti->type->iterate_devices ||
951 !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) {
952 DMERR("table load rejected: including non-request-stackable devices");
953 return -EINVAL;
954 }
955
956 return 0;
957}
958
959enum dm_queue_mode dm_table_get_type(struct dm_table *t)
960{
961 return t->type;
962}
963
964struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
965{
966 return t->immutable_target_type;
967}
968
969struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
970{
971 /* Immutable target is implicitly a singleton */
972 if (t->num_targets > 1 ||
973 !dm_target_is_immutable(t->targets[0].type))
974 return NULL;
975
976 return t->targets;
977}
978
979struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
980{
981 for (unsigned int i = 0; i < t->num_targets; i++) {
982 struct dm_target *ti = dm_table_get_target(t, i);
983
984 if (dm_target_is_wildcard(ti->type))
985 return ti;
986 }
987
988 return NULL;
989}
990
991bool dm_table_bio_based(struct dm_table *t)
992{
993 return __table_type_bio_based(dm_table_get_type(t));
994}
995
996bool dm_table_request_based(struct dm_table *t)
997{
998 return __table_type_request_based(dm_table_get_type(t));
999}
1000
1001static bool dm_table_supports_poll(struct dm_table *t);
1002
1003static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1004{
1005 enum dm_queue_mode type = dm_table_get_type(t);
1006 unsigned int per_io_data_size = 0, front_pad, io_front_pad;
1007 unsigned int min_pool_size = 0, pool_size;
1008 struct dm_md_mempools *pools;
1009
1010 if (unlikely(type == DM_TYPE_NONE)) {
1011 DMERR("no table type is set, can't allocate mempools");
1012 return -EINVAL;
1013 }
1014
1015 pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
1016 if (!pools)
1017 return -ENOMEM;
1018
1019 if (type == DM_TYPE_REQUEST_BASED) {
1020 pool_size = dm_get_reserved_rq_based_ios();
1021 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
1022 goto init_bs;
1023 }
1024
1025 for (unsigned int i = 0; i < t->num_targets; i++) {
1026 struct dm_target *ti = dm_table_get_target(t, i);
1027
1028 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1029 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1030 }
1031 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
1032 front_pad = roundup(per_io_data_size,
1033 __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
1034
1035 io_front_pad = roundup(per_io_data_size,
1036 __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
1037 if (bioset_init(&pools->io_bs, pool_size, io_front_pad,
1038 dm_table_supports_poll(t) ? BIOSET_PERCPU_CACHE : 0))
1039 goto out_free_pools;
1040 if (t->integrity_supported &&
1041 bioset_integrity_create(&pools->io_bs, pool_size))
1042 goto out_free_pools;
1043init_bs:
1044 if (bioset_init(&pools->bs, pool_size, front_pad, 0))
1045 goto out_free_pools;
1046 if (t->integrity_supported &&
1047 bioset_integrity_create(&pools->bs, pool_size))
1048 goto out_free_pools;
1049
1050 t->mempools = pools;
1051 return 0;
1052
1053out_free_pools:
1054 dm_free_md_mempools(pools);
1055 return -ENOMEM;
1056}
1057
1058static int setup_indexes(struct dm_table *t)
1059{
1060 int i;
1061 unsigned int total = 0;
1062 sector_t *indexes;
1063
1064 /* allocate the space for *all* the indexes */
1065 for (i = t->depth - 2; i >= 0; i--) {
1066 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1067 total += t->counts[i];
1068 }
1069
1070 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1071 if (!indexes)
1072 return -ENOMEM;
1073
1074 /* set up internal nodes, bottom-up */
1075 for (i = t->depth - 2; i >= 0; i--) {
1076 t->index[i] = indexes;
1077 indexes += (KEYS_PER_NODE * t->counts[i]);
1078 setup_btree_index(i, t);
1079 }
1080
1081 return 0;
1082}
1083
1084/*
1085 * Builds the btree to index the map.
1086 */
1087static int dm_table_build_index(struct dm_table *t)
1088{
1089 int r = 0;
1090 unsigned int leaf_nodes;
1091
1092 /* how many indexes will the btree have ? */
1093 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1094 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1095
1096 /* leaf layer has already been set up */
1097 t->counts[t->depth - 1] = leaf_nodes;
1098 t->index[t->depth - 1] = t->highs;
1099
1100 if (t->depth >= 2)
1101 r = setup_indexes(t);
1102
1103 return r;
1104}
1105
1106static bool integrity_profile_exists(struct gendisk *disk)
1107{
1108 return !!blk_get_integrity(disk);
1109}
1110
1111/*
1112 * Get a disk whose integrity profile reflects the table's profile.
1113 * Returns NULL if integrity support was inconsistent or unavailable.
1114 */
1115static struct gendisk *dm_table_get_integrity_disk(struct dm_table *t)
1116{
1117 struct list_head *devices = dm_table_get_devices(t);
1118 struct dm_dev_internal *dd = NULL;
1119 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1120
1121 for (unsigned int i = 0; i < t->num_targets; i++) {
1122 struct dm_target *ti = dm_table_get_target(t, i);
1123
1124 if (!dm_target_passes_integrity(ti->type))
1125 goto no_integrity;
1126 }
1127
1128 list_for_each_entry(dd, devices, list) {
1129 template_disk = dd->dm_dev->bdev->bd_disk;
1130 if (!integrity_profile_exists(template_disk))
1131 goto no_integrity;
1132 else if (prev_disk &&
1133 blk_integrity_compare(prev_disk, template_disk) < 0)
1134 goto no_integrity;
1135 prev_disk = template_disk;
1136 }
1137
1138 return template_disk;
1139
1140no_integrity:
1141 if (prev_disk)
1142 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1143 dm_device_name(t->md),
1144 prev_disk->disk_name,
1145 template_disk->disk_name);
1146 return NULL;
1147}
1148
1149/*
1150 * Register the mapped device for blk_integrity support if the
1151 * underlying devices have an integrity profile. But all devices may
1152 * not have matching profiles (checking all devices isn't reliable
1153 * during table load because this table may use other DM device(s) which
1154 * must be resumed before they will have an initialized integity
1155 * profile). Consequently, stacked DM devices force a 2 stage integrity
1156 * profile validation: First pass during table load, final pass during
1157 * resume.
1158 */
1159static int dm_table_register_integrity(struct dm_table *t)
1160{
1161 struct mapped_device *md = t->md;
1162 struct gendisk *template_disk = NULL;
1163
1164 /* If target handles integrity itself do not register it here. */
1165 if (t->integrity_added)
1166 return 0;
1167
1168 template_disk = dm_table_get_integrity_disk(t);
1169 if (!template_disk)
1170 return 0;
1171
1172 if (!integrity_profile_exists(dm_disk(md))) {
1173 t->integrity_supported = true;
1174 /*
1175 * Register integrity profile during table load; we can do
1176 * this because the final profile must match during resume.
1177 */
1178 blk_integrity_register(dm_disk(md),
1179 blk_get_integrity(template_disk));
1180 return 0;
1181 }
1182
1183 /*
1184 * If DM device already has an initialized integrity
1185 * profile the new profile should not conflict.
1186 */
1187 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1188 DMERR("%s: conflict with existing integrity profile: "
1189 "%s profile mismatch",
1190 dm_device_name(t->md),
1191 template_disk->disk_name);
1192 return 1;
1193 }
1194
1195 /* Preserve existing integrity profile */
1196 t->integrity_supported = true;
1197 return 0;
1198}
1199
1200#ifdef CONFIG_BLK_INLINE_ENCRYPTION
1201
1202struct dm_crypto_profile {
1203 struct blk_crypto_profile profile;
1204 struct mapped_device *md;
1205};
1206
1207struct dm_keyslot_evict_args {
1208 const struct blk_crypto_key *key;
1209 int err;
1210};
1211
1212static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1213 sector_t start, sector_t len, void *data)
1214{
1215 struct dm_keyslot_evict_args *args = data;
1216 int err;
1217
1218 err = blk_crypto_evict_key(dev->bdev, args->key);
1219 if (!args->err)
1220 args->err = err;
1221 /* Always try to evict the key from all devices. */
1222 return 0;
1223}
1224
1225/*
1226 * When an inline encryption key is evicted from a device-mapper device, evict
1227 * it from all the underlying devices.
1228 */
1229static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1230 const struct blk_crypto_key *key, unsigned int slot)
1231{
1232 struct mapped_device *md =
1233 container_of(profile, struct dm_crypto_profile, profile)->md;
1234 struct dm_keyslot_evict_args args = { key };
1235 struct dm_table *t;
1236 int srcu_idx;
1237
1238 t = dm_get_live_table(md, &srcu_idx);
1239 if (!t)
1240 return 0;
1241
1242 for (unsigned int i = 0; i < t->num_targets; i++) {
1243 struct dm_target *ti = dm_table_get_target(t, i);
1244
1245 if (!ti->type->iterate_devices)
1246 continue;
1247 ti->type->iterate_devices(ti, dm_keyslot_evict_callback, &args);
1248 }
1249
1250 dm_put_live_table(md, srcu_idx);
1251 return args.err;
1252}
1253
1254static int
1255device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1256 sector_t start, sector_t len, void *data)
1257{
1258 struct blk_crypto_profile *parent = data;
1259 struct blk_crypto_profile *child =
1260 bdev_get_queue(dev->bdev)->crypto_profile;
1261
1262 blk_crypto_intersect_capabilities(parent, child);
1263 return 0;
1264}
1265
1266void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1267{
1268 struct dm_crypto_profile *dmcp = container_of(profile,
1269 struct dm_crypto_profile,
1270 profile);
1271
1272 if (!profile)
1273 return;
1274
1275 blk_crypto_profile_destroy(profile);
1276 kfree(dmcp);
1277}
1278
1279static void dm_table_destroy_crypto_profile(struct dm_table *t)
1280{
1281 dm_destroy_crypto_profile(t->crypto_profile);
1282 t->crypto_profile = NULL;
1283}
1284
1285/*
1286 * Constructs and initializes t->crypto_profile with a crypto profile that
1287 * represents the common set of crypto capabilities of the devices described by
1288 * the dm_table. However, if the constructed crypto profile doesn't support all
1289 * crypto capabilities that are supported by the current mapped_device, it
1290 * returns an error instead, since we don't support removing crypto capabilities
1291 * on table changes. Finally, if the constructed crypto profile is "empty" (has
1292 * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1293 */
1294static int dm_table_construct_crypto_profile(struct dm_table *t)
1295{
1296 struct dm_crypto_profile *dmcp;
1297 struct blk_crypto_profile *profile;
1298 unsigned int i;
1299 bool empty_profile = true;
1300
1301 dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1302 if (!dmcp)
1303 return -ENOMEM;
1304 dmcp->md = t->md;
1305
1306 profile = &dmcp->profile;
1307 blk_crypto_profile_init(profile, 0);
1308 profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1309 profile->max_dun_bytes_supported = UINT_MAX;
1310 memset(profile->modes_supported, 0xFF,
1311 sizeof(profile->modes_supported));
1312
1313 for (i = 0; i < t->num_targets; i++) {
1314 struct dm_target *ti = dm_table_get_target(t, i);
1315
1316 if (!dm_target_passes_crypto(ti->type)) {
1317 blk_crypto_intersect_capabilities(profile, NULL);
1318 break;
1319 }
1320 if (!ti->type->iterate_devices)
1321 continue;
1322 ti->type->iterate_devices(ti,
1323 device_intersect_crypto_capabilities,
1324 profile);
1325 }
1326
1327 if (t->md->queue &&
1328 !blk_crypto_has_capabilities(profile,
1329 t->md->queue->crypto_profile)) {
1330 DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1331 dm_destroy_crypto_profile(profile);
1332 return -EINVAL;
1333 }
1334
1335 /*
1336 * If the new profile doesn't actually support any crypto capabilities,
1337 * we may as well represent it with a NULL profile.
1338 */
1339 for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1340 if (profile->modes_supported[i]) {
1341 empty_profile = false;
1342 break;
1343 }
1344 }
1345
1346 if (empty_profile) {
1347 dm_destroy_crypto_profile(profile);
1348 profile = NULL;
1349 }
1350
1351 /*
1352 * t->crypto_profile is only set temporarily while the table is being
1353 * set up, and it gets set to NULL after the profile has been
1354 * transferred to the request_queue.
1355 */
1356 t->crypto_profile = profile;
1357
1358 return 0;
1359}
1360
1361static void dm_update_crypto_profile(struct request_queue *q,
1362 struct dm_table *t)
1363{
1364 if (!t->crypto_profile)
1365 return;
1366
1367 /* Make the crypto profile less restrictive. */
1368 if (!q->crypto_profile) {
1369 blk_crypto_register(t->crypto_profile, q);
1370 } else {
1371 blk_crypto_update_capabilities(q->crypto_profile,
1372 t->crypto_profile);
1373 dm_destroy_crypto_profile(t->crypto_profile);
1374 }
1375 t->crypto_profile = NULL;
1376}
1377
1378#else /* CONFIG_BLK_INLINE_ENCRYPTION */
1379
1380static int dm_table_construct_crypto_profile(struct dm_table *t)
1381{
1382 return 0;
1383}
1384
1385void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1386{
1387}
1388
1389static void dm_table_destroy_crypto_profile(struct dm_table *t)
1390{
1391}
1392
1393static void dm_update_crypto_profile(struct request_queue *q,
1394 struct dm_table *t)
1395{
1396}
1397
1398#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1399
1400/*
1401 * Prepares the table for use by building the indices,
1402 * setting the type, and allocating mempools.
1403 */
1404int dm_table_complete(struct dm_table *t)
1405{
1406 int r;
1407
1408 r = dm_table_determine_type(t);
1409 if (r) {
1410 DMERR("unable to determine table type");
1411 return r;
1412 }
1413
1414 r = dm_table_build_index(t);
1415 if (r) {
1416 DMERR("unable to build btrees");
1417 return r;
1418 }
1419
1420 r = dm_table_register_integrity(t);
1421 if (r) {
1422 DMERR("could not register integrity profile.");
1423 return r;
1424 }
1425
1426 r = dm_table_construct_crypto_profile(t);
1427 if (r) {
1428 DMERR("could not construct crypto profile.");
1429 return r;
1430 }
1431
1432 r = dm_table_alloc_md_mempools(t, t->md);
1433 if (r)
1434 DMERR("unable to allocate mempools");
1435
1436 return r;
1437}
1438
1439static DEFINE_MUTEX(_event_lock);
1440void dm_table_event_callback(struct dm_table *t,
1441 void (*fn)(void *), void *context)
1442{
1443 mutex_lock(&_event_lock);
1444 t->event_fn = fn;
1445 t->event_context = context;
1446 mutex_unlock(&_event_lock);
1447}
1448
1449void dm_table_event(struct dm_table *t)
1450{
1451 mutex_lock(&_event_lock);
1452 if (t->event_fn)
1453 t->event_fn(t->event_context);
1454 mutex_unlock(&_event_lock);
1455}
1456EXPORT_SYMBOL(dm_table_event);
1457
1458inline sector_t dm_table_get_size(struct dm_table *t)
1459{
1460 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1461}
1462EXPORT_SYMBOL(dm_table_get_size);
1463
1464/*
1465 * Search the btree for the correct target.
1466 *
1467 * Caller should check returned pointer for NULL
1468 * to trap I/O beyond end of device.
1469 */
1470struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1471{
1472 unsigned int l, n = 0, k = 0;
1473 sector_t *node;
1474
1475 if (unlikely(sector >= dm_table_get_size(t)))
1476 return NULL;
1477
1478 for (l = 0; l < t->depth; l++) {
1479 n = get_child(n, k);
1480 node = get_node(t, l, n);
1481
1482 for (k = 0; k < KEYS_PER_NODE; k++)
1483 if (node[k] >= sector)
1484 break;
1485 }
1486
1487 return &t->targets[(KEYS_PER_NODE * n) + k];
1488}
1489
1490static int device_not_poll_capable(struct dm_target *ti, struct dm_dev *dev,
1491 sector_t start, sector_t len, void *data)
1492{
1493 struct request_queue *q = bdev_get_queue(dev->bdev);
1494
1495 return !test_bit(QUEUE_FLAG_POLL, &q->queue_flags);
1496}
1497
1498/*
1499 * type->iterate_devices() should be called when the sanity check needs to
1500 * iterate and check all underlying data devices. iterate_devices() will
1501 * iterate all underlying data devices until it encounters a non-zero return
1502 * code, returned by whether the input iterate_devices_callout_fn, or
1503 * iterate_devices() itself internally.
1504 *
1505 * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1506 * iterate multiple underlying devices internally, in which case a non-zero
1507 * return code returned by iterate_devices_callout_fn will stop the iteration
1508 * in advance.
1509 *
1510 * Cases requiring _any_ underlying device supporting some kind of attribute,
1511 * should use the iteration structure like dm_table_any_dev_attr(), or call
1512 * it directly. @func should handle semantics of positive examples, e.g.
1513 * capable of something.
1514 *
1515 * Cases requiring _all_ underlying devices supporting some kind of attribute,
1516 * should use the iteration structure like dm_table_supports_nowait() or
1517 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1518 * uses an @anti_func that handle semantics of counter examples, e.g. not
1519 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1520 */
1521static bool dm_table_any_dev_attr(struct dm_table *t,
1522 iterate_devices_callout_fn func, void *data)
1523{
1524 for (unsigned int i = 0; i < t->num_targets; i++) {
1525 struct dm_target *ti = dm_table_get_target(t, i);
1526
1527 if (ti->type->iterate_devices &&
1528 ti->type->iterate_devices(ti, func, data))
1529 return true;
1530 }
1531
1532 return false;
1533}
1534
1535static int count_device(struct dm_target *ti, struct dm_dev *dev,
1536 sector_t start, sector_t len, void *data)
1537{
1538 unsigned *num_devices = data;
1539
1540 (*num_devices)++;
1541
1542 return 0;
1543}
1544
1545static bool dm_table_supports_poll(struct dm_table *t)
1546{
1547 for (unsigned int i = 0; i < t->num_targets; i++) {
1548 struct dm_target *ti = dm_table_get_target(t, i);
1549
1550 if (!ti->type->iterate_devices ||
1551 ti->type->iterate_devices(ti, device_not_poll_capable, NULL))
1552 return false;
1553 }
1554
1555 return true;
1556}
1557
1558/*
1559 * Check whether a table has no data devices attached using each
1560 * target's iterate_devices method.
1561 * Returns false if the result is unknown because a target doesn't
1562 * support iterate_devices.
1563 */
1564bool dm_table_has_no_data_devices(struct dm_table *t)
1565{
1566 for (unsigned int i = 0; i < t->num_targets; i++) {
1567 struct dm_target *ti = dm_table_get_target(t, i);
1568 unsigned num_devices = 0;
1569
1570 if (!ti->type->iterate_devices)
1571 return false;
1572
1573 ti->type->iterate_devices(ti, count_device, &num_devices);
1574 if (num_devices)
1575 return false;
1576 }
1577
1578 return true;
1579}
1580
1581static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1582 sector_t start, sector_t len, void *data)
1583{
1584 struct request_queue *q = bdev_get_queue(dev->bdev);
1585 enum blk_zoned_model *zoned_model = data;
1586
1587 return blk_queue_zoned_model(q) != *zoned_model;
1588}
1589
1590/*
1591 * Check the device zoned model based on the target feature flag. If the target
1592 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1593 * also accepted but all devices must have the same zoned model. If the target
1594 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1595 * zoned model with all zoned devices having the same zone size.
1596 */
1597static bool dm_table_supports_zoned_model(struct dm_table *t,
1598 enum blk_zoned_model zoned_model)
1599{
1600 for (unsigned int i = 0; i < t->num_targets; i++) {
1601 struct dm_target *ti = dm_table_get_target(t, i);
1602
1603 if (dm_target_supports_zoned_hm(ti->type)) {
1604 if (!ti->type->iterate_devices ||
1605 ti->type->iterate_devices(ti, device_not_zoned_model,
1606 &zoned_model))
1607 return false;
1608 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1609 if (zoned_model == BLK_ZONED_HM)
1610 return false;
1611 }
1612 }
1613
1614 return true;
1615}
1616
1617static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1618 sector_t start, sector_t len, void *data)
1619{
1620 unsigned int *zone_sectors = data;
1621
1622 if (!bdev_is_zoned(dev->bdev))
1623 return 0;
1624 return bdev_zone_sectors(dev->bdev) != *zone_sectors;
1625}
1626
1627/*
1628 * Check consistency of zoned model and zone sectors across all targets. For
1629 * zone sectors, if the destination device is a zoned block device, it shall
1630 * have the specified zone_sectors.
1631 */
1632static int validate_hardware_zoned_model(struct dm_table *t,
1633 enum blk_zoned_model zoned_model,
1634 unsigned int zone_sectors)
1635{
1636 if (zoned_model == BLK_ZONED_NONE)
1637 return 0;
1638
1639 if (!dm_table_supports_zoned_model(t, zoned_model)) {
1640 DMERR("%s: zoned model is not consistent across all devices",
1641 dm_device_name(t->md));
1642 return -EINVAL;
1643 }
1644
1645 /* Check zone size validity and compatibility */
1646 if (!zone_sectors || !is_power_of_2(zone_sectors))
1647 return -EINVAL;
1648
1649 if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) {
1650 DMERR("%s: zone sectors is not consistent across all zoned devices",
1651 dm_device_name(t->md));
1652 return -EINVAL;
1653 }
1654
1655 return 0;
1656}
1657
1658/*
1659 * Establish the new table's queue_limits and validate them.
1660 */
1661int dm_calculate_queue_limits(struct dm_table *t,
1662 struct queue_limits *limits)
1663{
1664 struct queue_limits ti_limits;
1665 enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1666 unsigned int zone_sectors = 0;
1667
1668 blk_set_stacking_limits(limits);
1669
1670 for (unsigned int i = 0; i < t->num_targets; i++) {
1671 struct dm_target *ti = dm_table_get_target(t, i);
1672
1673 blk_set_stacking_limits(&ti_limits);
1674
1675 if (!ti->type->iterate_devices)
1676 goto combine_limits;
1677
1678 /*
1679 * Combine queue limits of all the devices this target uses.
1680 */
1681 ti->type->iterate_devices(ti, dm_set_device_limits,
1682 &ti_limits);
1683
1684 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1685 /*
1686 * After stacking all limits, validate all devices
1687 * in table support this zoned model and zone sectors.
1688 */
1689 zoned_model = ti_limits.zoned;
1690 zone_sectors = ti_limits.chunk_sectors;
1691 }
1692
1693 /* Set I/O hints portion of queue limits */
1694 if (ti->type->io_hints)
1695 ti->type->io_hints(ti, &ti_limits);
1696
1697 /*
1698 * Check each device area is consistent with the target's
1699 * overall queue limits.
1700 */
1701 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1702 &ti_limits))
1703 return -EINVAL;
1704
1705combine_limits:
1706 /*
1707 * Merge this target's queue limits into the overall limits
1708 * for the table.
1709 */
1710 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1711 DMWARN("%s: adding target device "
1712 "(start sect %llu len %llu) "
1713 "caused an alignment inconsistency",
1714 dm_device_name(t->md),
1715 (unsigned long long) ti->begin,
1716 (unsigned long long) ti->len);
1717 }
1718
1719 /*
1720 * Verify that the zoned model and zone sectors, as determined before
1721 * any .io_hints override, are the same across all devices in the table.
1722 * - this is especially relevant if .io_hints is emulating a disk-managed
1723 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1724 * BUT...
1725 */
1726 if (limits->zoned != BLK_ZONED_NONE) {
1727 /*
1728 * ...IF the above limits stacking determined a zoned model
1729 * validate that all of the table's devices conform to it.
1730 */
1731 zoned_model = limits->zoned;
1732 zone_sectors = limits->chunk_sectors;
1733 }
1734 if (validate_hardware_zoned_model(t, zoned_model, zone_sectors))
1735 return -EINVAL;
1736
1737 return validate_hardware_logical_block_alignment(t, limits);
1738}
1739
1740/*
1741 * Verify that all devices have an integrity profile that matches the
1742 * DM device's registered integrity profile. If the profiles don't
1743 * match then unregister the DM device's integrity profile.
1744 */
1745static void dm_table_verify_integrity(struct dm_table *t)
1746{
1747 struct gendisk *template_disk = NULL;
1748
1749 if (t->integrity_added)
1750 return;
1751
1752 if (t->integrity_supported) {
1753 /*
1754 * Verify that the original integrity profile
1755 * matches all the devices in this table.
1756 */
1757 template_disk = dm_table_get_integrity_disk(t);
1758 if (template_disk &&
1759 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1760 return;
1761 }
1762
1763 if (integrity_profile_exists(dm_disk(t->md))) {
1764 DMWARN("%s: unable to establish an integrity profile",
1765 dm_device_name(t->md));
1766 blk_integrity_unregister(dm_disk(t->md));
1767 }
1768}
1769
1770static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1771 sector_t start, sector_t len, void *data)
1772{
1773 unsigned long flush = (unsigned long) data;
1774 struct request_queue *q = bdev_get_queue(dev->bdev);
1775
1776 return (q->queue_flags & flush);
1777}
1778
1779static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1780{
1781 /*
1782 * Require at least one underlying device to support flushes.
1783 * t->devices includes internal dm devices such as mirror logs
1784 * so we need to use iterate_devices here, which targets
1785 * supporting flushes must provide.
1786 */
1787 for (unsigned int i = 0; i < t->num_targets; i++) {
1788 struct dm_target *ti = dm_table_get_target(t, i);
1789
1790 if (!ti->num_flush_bios)
1791 continue;
1792
1793 if (ti->flush_supported)
1794 return true;
1795
1796 if (ti->type->iterate_devices &&
1797 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1798 return true;
1799 }
1800
1801 return false;
1802}
1803
1804static int device_dax_write_cache_enabled(struct dm_target *ti,
1805 struct dm_dev *dev, sector_t start,
1806 sector_t len, void *data)
1807{
1808 struct dax_device *dax_dev = dev->dax_dev;
1809
1810 if (!dax_dev)
1811 return false;
1812
1813 if (dax_write_cache_enabled(dax_dev))
1814 return true;
1815 return false;
1816}
1817
1818static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1819 sector_t start, sector_t len, void *data)
1820{
1821 return !bdev_nonrot(dev->bdev);
1822}
1823
1824static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1825 sector_t start, sector_t len, void *data)
1826{
1827 struct request_queue *q = bdev_get_queue(dev->bdev);
1828
1829 return !blk_queue_add_random(q);
1830}
1831
1832static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1833 sector_t start, sector_t len, void *data)
1834{
1835 struct request_queue *q = bdev_get_queue(dev->bdev);
1836
1837 return !q->limits.max_write_zeroes_sectors;
1838}
1839
1840static bool dm_table_supports_write_zeroes(struct dm_table *t)
1841{
1842 for (unsigned int i = 0; i < t->num_targets; i++) {
1843 struct dm_target *ti = dm_table_get_target(t, i);
1844
1845 if (!ti->num_write_zeroes_bios)
1846 return false;
1847
1848 if (!ti->type->iterate_devices ||
1849 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1850 return false;
1851 }
1852
1853 return true;
1854}
1855
1856static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1857 sector_t start, sector_t len, void *data)
1858{
1859 return !bdev_nowait(dev->bdev);
1860}
1861
1862static bool dm_table_supports_nowait(struct dm_table *t)
1863{
1864 for (unsigned int i = 0; i < t->num_targets; i++) {
1865 struct dm_target *ti = dm_table_get_target(t, i);
1866
1867 if (!dm_target_supports_nowait(ti->type))
1868 return false;
1869
1870 if (!ti->type->iterate_devices ||
1871 ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1872 return false;
1873 }
1874
1875 return true;
1876}
1877
1878static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1879 sector_t start, sector_t len, void *data)
1880{
1881 return !bdev_max_discard_sectors(dev->bdev);
1882}
1883
1884static bool dm_table_supports_discards(struct dm_table *t)
1885{
1886 for (unsigned int i = 0; i < t->num_targets; i++) {
1887 struct dm_target *ti = dm_table_get_target(t, i);
1888
1889 if (!ti->num_discard_bios)
1890 return false;
1891
1892 /*
1893 * Either the target provides discard support (as implied by setting
1894 * 'discards_supported') or it relies on _all_ data devices having
1895 * discard support.
1896 */
1897 if (!ti->discards_supported &&
1898 (!ti->type->iterate_devices ||
1899 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1900 return false;
1901 }
1902
1903 return true;
1904}
1905
1906static int device_not_secure_erase_capable(struct dm_target *ti,
1907 struct dm_dev *dev, sector_t start,
1908 sector_t len, void *data)
1909{
1910 return !bdev_max_secure_erase_sectors(dev->bdev);
1911}
1912
1913static bool dm_table_supports_secure_erase(struct dm_table *t)
1914{
1915 for (unsigned int i = 0; i < t->num_targets; i++) {
1916 struct dm_target *ti = dm_table_get_target(t, i);
1917
1918 if (!ti->num_secure_erase_bios)
1919 return false;
1920
1921 if (!ti->type->iterate_devices ||
1922 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1923 return false;
1924 }
1925
1926 return true;
1927}
1928
1929static int device_requires_stable_pages(struct dm_target *ti,
1930 struct dm_dev *dev, sector_t start,
1931 sector_t len, void *data)
1932{
1933 return bdev_stable_writes(dev->bdev);
1934}
1935
1936int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1937 struct queue_limits *limits)
1938{
1939 bool wc = false, fua = false;
1940 int r;
1941
1942 /*
1943 * Copy table's limits to the DM device's request_queue
1944 */
1945 q->limits = *limits;
1946
1947 if (dm_table_supports_nowait(t))
1948 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1949 else
1950 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1951
1952 if (!dm_table_supports_discards(t)) {
1953 q->limits.max_discard_sectors = 0;
1954 q->limits.max_hw_discard_sectors = 0;
1955 q->limits.discard_granularity = 0;
1956 q->limits.discard_alignment = 0;
1957 q->limits.discard_misaligned = 0;
1958 }
1959
1960 if (!dm_table_supports_secure_erase(t))
1961 q->limits.max_secure_erase_sectors = 0;
1962
1963 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1964 wc = true;
1965 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1966 fua = true;
1967 }
1968 blk_queue_write_cache(q, wc, fua);
1969
1970 if (dm_table_supports_dax(t, device_not_dax_capable)) {
1971 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1972 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
1973 set_dax_synchronous(t->md->dax_dev);
1974 }
1975 else
1976 blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1977
1978 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
1979 dax_write_cache(t->md->dax_dev, true);
1980
1981 /* Ensure that all underlying devices are non-rotational. */
1982 if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
1983 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1984 else
1985 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1986
1987 if (!dm_table_supports_write_zeroes(t))
1988 q->limits.max_write_zeroes_sectors = 0;
1989
1990 dm_table_verify_integrity(t);
1991
1992 /*
1993 * Some devices don't use blk_integrity but still want stable pages
1994 * because they do their own checksumming.
1995 * If any underlying device requires stable pages, a table must require
1996 * them as well. Only targets that support iterate_devices are considered:
1997 * don't want error, zero, etc to require stable pages.
1998 */
1999 if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
2000 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
2001 else
2002 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
2003
2004 /*
2005 * Determine whether or not this queue's I/O timings contribute
2006 * to the entropy pool, Only request-based targets use this.
2007 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
2008 * have it set.
2009 */
2010 if (blk_queue_add_random(q) &&
2011 dm_table_any_dev_attr(t, device_is_not_random, NULL))
2012 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2013
2014 /*
2015 * For a zoned target, setup the zones related queue attributes
2016 * and resources necessary for zone append emulation if necessary.
2017 */
2018 if (blk_queue_is_zoned(q)) {
2019 r = dm_set_zones_restrictions(t, q);
2020 if (r)
2021 return r;
2022 if (!static_key_enabled(&zoned_enabled.key))
2023 static_branch_enable(&zoned_enabled);
2024 }
2025
2026 dm_update_crypto_profile(q, t);
2027 disk_update_readahead(t->md->disk);
2028
2029 /*
2030 * Check for request-based device is left to
2031 * dm_mq_init_request_queue()->blk_mq_init_allocated_queue().
2032 *
2033 * For bio-based device, only set QUEUE_FLAG_POLL when all
2034 * underlying devices supporting polling.
2035 */
2036 if (__table_type_bio_based(t->type)) {
2037 if (dm_table_supports_poll(t))
2038 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2039 else
2040 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
2041 }
2042
2043 return 0;
2044}
2045
2046struct list_head *dm_table_get_devices(struct dm_table *t)
2047{
2048 return &t->devices;
2049}
2050
2051fmode_t dm_table_get_mode(struct dm_table *t)
2052{
2053 return t->mode;
2054}
2055EXPORT_SYMBOL(dm_table_get_mode);
2056
2057enum suspend_mode {
2058 PRESUSPEND,
2059 PRESUSPEND_UNDO,
2060 POSTSUSPEND,
2061};
2062
2063static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2064{
2065 lockdep_assert_held(&t->md->suspend_lock);
2066
2067 for (unsigned int i = 0; i < t->num_targets; i++) {
2068 struct dm_target *ti = dm_table_get_target(t, i);
2069
2070 switch (mode) {
2071 case PRESUSPEND:
2072 if (ti->type->presuspend)
2073 ti->type->presuspend(ti);
2074 break;
2075 case PRESUSPEND_UNDO:
2076 if (ti->type->presuspend_undo)
2077 ti->type->presuspend_undo(ti);
2078 break;
2079 case POSTSUSPEND:
2080 if (ti->type->postsuspend)
2081 ti->type->postsuspend(ti);
2082 break;
2083 }
2084 }
2085}
2086
2087void dm_table_presuspend_targets(struct dm_table *t)
2088{
2089 if (!t)
2090 return;
2091
2092 suspend_targets(t, PRESUSPEND);
2093}
2094
2095void dm_table_presuspend_undo_targets(struct dm_table *t)
2096{
2097 if (!t)
2098 return;
2099
2100 suspend_targets(t, PRESUSPEND_UNDO);
2101}
2102
2103void dm_table_postsuspend_targets(struct dm_table *t)
2104{
2105 if (!t)
2106 return;
2107
2108 suspend_targets(t, POSTSUSPEND);
2109}
2110
2111int dm_table_resume_targets(struct dm_table *t)
2112{
2113 unsigned int i;
2114 int r = 0;
2115
2116 lockdep_assert_held(&t->md->suspend_lock);
2117
2118 for (i = 0; i < t->num_targets; i++) {
2119 struct dm_target *ti = dm_table_get_target(t, i);
2120
2121 if (!ti->type->preresume)
2122 continue;
2123
2124 r = ti->type->preresume(ti);
2125 if (r) {
2126 DMERR("%s: %s: preresume failed, error = %d",
2127 dm_device_name(t->md), ti->type->name, r);
2128 return r;
2129 }
2130 }
2131
2132 for (i = 0; i < t->num_targets; i++) {
2133 struct dm_target *ti = dm_table_get_target(t, i);
2134
2135 if (ti->type->resume)
2136 ti->type->resume(ti);
2137 }
2138
2139 return 0;
2140}
2141
2142struct mapped_device *dm_table_get_md(struct dm_table *t)
2143{
2144 return t->md;
2145}
2146EXPORT_SYMBOL(dm_table_get_md);
2147
2148const char *dm_table_device_name(struct dm_table *t)
2149{
2150 return dm_device_name(t->md);
2151}
2152EXPORT_SYMBOL_GPL(dm_table_device_name);
2153
2154void dm_table_run_md_queue_async(struct dm_table *t)
2155{
2156 if (!dm_table_request_based(t))
2157 return;
2158
2159 if (t->md->queue)
2160 blk_mq_run_hw_queues(t->md->queue, true);
2161}
2162EXPORT_SYMBOL(dm_table_run_md_queue_async);
2163
1/*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm-core.h"
9
10#include <linux/module.h>
11#include <linux/vmalloc.h>
12#include <linux/blkdev.h>
13#include <linux/namei.h>
14#include <linux/ctype.h>
15#include <linux/string.h>
16#include <linux/slab.h>
17#include <linux/interrupt.h>
18#include <linux/mutex.h>
19#include <linux/delay.h>
20#include <linux/atomic.h>
21#include <linux/blk-mq.h>
22#include <linux/mount.h>
23#include <linux/dax.h>
24
25#define DM_MSG_PREFIX "table"
26
27#define NODE_SIZE L1_CACHE_BYTES
28#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30
31/*
32 * Similar to ceiling(log_size(n))
33 */
34static unsigned int int_log(unsigned int n, unsigned int base)
35{
36 int result = 0;
37
38 while (n > 1) {
39 n = dm_div_up(n, base);
40 result++;
41 }
42
43 return result;
44}
45
46/*
47 * Calculate the index of the child node of the n'th node k'th key.
48 */
49static inline unsigned int get_child(unsigned int n, unsigned int k)
50{
51 return (n * CHILDREN_PER_NODE) + k;
52}
53
54/*
55 * Return the n'th node of level l from table t.
56 */
57static inline sector_t *get_node(struct dm_table *t,
58 unsigned int l, unsigned int n)
59{
60 return t->index[l] + (n * KEYS_PER_NODE);
61}
62
63/*
64 * Return the highest key that you could lookup from the n'th
65 * node on level l of the btree.
66 */
67static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
68{
69 for (; l < t->depth - 1; l++)
70 n = get_child(n, CHILDREN_PER_NODE - 1);
71
72 if (n >= t->counts[l])
73 return (sector_t) - 1;
74
75 return get_node(t, l, n)[KEYS_PER_NODE - 1];
76}
77
78/*
79 * Fills in a level of the btree based on the highs of the level
80 * below it.
81 */
82static int setup_btree_index(unsigned int l, struct dm_table *t)
83{
84 unsigned int n, k;
85 sector_t *node;
86
87 for (n = 0U; n < t->counts[l]; n++) {
88 node = get_node(t, l, n);
89
90 for (k = 0U; k < KEYS_PER_NODE; k++)
91 node[k] = high(t, l + 1, get_child(n, k));
92 }
93
94 return 0;
95}
96
97/*
98 * highs, and targets are managed as dynamic arrays during a
99 * table load.
100 */
101static int alloc_targets(struct dm_table *t, unsigned int num)
102{
103 sector_t *n_highs;
104 struct dm_target *n_targets;
105
106 /*
107 * Allocate both the target array and offset array at once.
108 */
109 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
110 GFP_KERNEL);
111 if (!n_highs)
112 return -ENOMEM;
113
114 n_targets = (struct dm_target *) (n_highs + num);
115
116 memset(n_highs, -1, sizeof(*n_highs) * num);
117 kvfree(t->highs);
118
119 t->num_allocated = num;
120 t->highs = n_highs;
121 t->targets = n_targets;
122
123 return 0;
124}
125
126int dm_table_create(struct dm_table **result, fmode_t mode,
127 unsigned num_targets, struct mapped_device *md)
128{
129 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
130
131 if (!t)
132 return -ENOMEM;
133
134 INIT_LIST_HEAD(&t->devices);
135
136 if (!num_targets)
137 num_targets = KEYS_PER_NODE;
138
139 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
140
141 if (!num_targets) {
142 kfree(t);
143 return -ENOMEM;
144 }
145
146 if (alloc_targets(t, num_targets)) {
147 kfree(t);
148 return -ENOMEM;
149 }
150
151 t->type = DM_TYPE_NONE;
152 t->mode = mode;
153 t->md = md;
154 *result = t;
155 return 0;
156}
157
158static void free_devices(struct list_head *devices, struct mapped_device *md)
159{
160 struct list_head *tmp, *next;
161
162 list_for_each_safe(tmp, next, devices) {
163 struct dm_dev_internal *dd =
164 list_entry(tmp, struct dm_dev_internal, list);
165 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
166 dm_device_name(md), dd->dm_dev->name);
167 dm_put_table_device(md, dd->dm_dev);
168 kfree(dd);
169 }
170}
171
172static void dm_table_destroy_keyslot_manager(struct dm_table *t);
173
174void dm_table_destroy(struct dm_table *t)
175{
176 unsigned int i;
177
178 if (!t)
179 return;
180
181 /* free the indexes */
182 if (t->depth >= 2)
183 kvfree(t->index[t->depth - 2]);
184
185 /* free the targets */
186 for (i = 0; i < t->num_targets; i++) {
187 struct dm_target *tgt = t->targets + i;
188
189 if (tgt->type->dtr)
190 tgt->type->dtr(tgt);
191
192 dm_put_target_type(tgt->type);
193 }
194
195 kvfree(t->highs);
196
197 /* free the device list */
198 free_devices(&t->devices, t->md);
199
200 dm_free_md_mempools(t->mempools);
201
202 dm_table_destroy_keyslot_manager(t);
203
204 kfree(t);
205}
206
207/*
208 * See if we've already got a device in the list.
209 */
210static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
211{
212 struct dm_dev_internal *dd;
213
214 list_for_each_entry (dd, l, list)
215 if (dd->dm_dev->bdev->bd_dev == dev)
216 return dd;
217
218 return NULL;
219}
220
221/*
222 * If possible, this checks an area of a destination device is invalid.
223 */
224static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
225 sector_t start, sector_t len, void *data)
226{
227 struct queue_limits *limits = data;
228 struct block_device *bdev = dev->bdev;
229 sector_t dev_size =
230 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
231 unsigned short logical_block_size_sectors =
232 limits->logical_block_size >> SECTOR_SHIFT;
233 char b[BDEVNAME_SIZE];
234
235 if (!dev_size)
236 return 0;
237
238 if ((start >= dev_size) || (start + len > dev_size)) {
239 DMWARN("%s: %s too small for target: "
240 "start=%llu, len=%llu, dev_size=%llu",
241 dm_device_name(ti->table->md), bdevname(bdev, b),
242 (unsigned long long)start,
243 (unsigned long long)len,
244 (unsigned long long)dev_size);
245 return 1;
246 }
247
248 /*
249 * If the target is mapped to zoned block device(s), check
250 * that the zones are not partially mapped.
251 */
252 if (bdev_is_zoned(bdev)) {
253 unsigned int zone_sectors = bdev_zone_sectors(bdev);
254
255 if (start & (zone_sectors - 1)) {
256 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
257 dm_device_name(ti->table->md),
258 (unsigned long long)start,
259 zone_sectors, bdevname(bdev, b));
260 return 1;
261 }
262
263 /*
264 * Note: The last zone of a zoned block device may be smaller
265 * than other zones. So for a target mapping the end of a
266 * zoned block device with such a zone, len would not be zone
267 * aligned. We do not allow such last smaller zone to be part
268 * of the mapping here to ensure that mappings with multiple
269 * devices do not end up with a smaller zone in the middle of
270 * the sector range.
271 */
272 if (len & (zone_sectors - 1)) {
273 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
274 dm_device_name(ti->table->md),
275 (unsigned long long)len,
276 zone_sectors, bdevname(bdev, b));
277 return 1;
278 }
279 }
280
281 if (logical_block_size_sectors <= 1)
282 return 0;
283
284 if (start & (logical_block_size_sectors - 1)) {
285 DMWARN("%s: start=%llu not aligned to h/w "
286 "logical block size %u of %s",
287 dm_device_name(ti->table->md),
288 (unsigned long long)start,
289 limits->logical_block_size, bdevname(bdev, b));
290 return 1;
291 }
292
293 if (len & (logical_block_size_sectors - 1)) {
294 DMWARN("%s: len=%llu not aligned to h/w "
295 "logical block size %u of %s",
296 dm_device_name(ti->table->md),
297 (unsigned long long)len,
298 limits->logical_block_size, bdevname(bdev, b));
299 return 1;
300 }
301
302 return 0;
303}
304
305/*
306 * This upgrades the mode on an already open dm_dev, being
307 * careful to leave things as they were if we fail to reopen the
308 * device and not to touch the existing bdev field in case
309 * it is accessed concurrently.
310 */
311static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
312 struct mapped_device *md)
313{
314 int r;
315 struct dm_dev *old_dev, *new_dev;
316
317 old_dev = dd->dm_dev;
318
319 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
320 dd->dm_dev->mode | new_mode, &new_dev);
321 if (r)
322 return r;
323
324 dd->dm_dev = new_dev;
325 dm_put_table_device(md, old_dev);
326
327 return 0;
328}
329
330/*
331 * Convert the path to a device
332 */
333dev_t dm_get_dev_t(const char *path)
334{
335 dev_t dev;
336
337 if (lookup_bdev(path, &dev))
338 dev = name_to_dev_t(path);
339 return dev;
340}
341EXPORT_SYMBOL_GPL(dm_get_dev_t);
342
343/*
344 * Add a device to the list, or just increment the usage count if
345 * it's already present.
346 */
347int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
348 struct dm_dev **result)
349{
350 int r;
351 dev_t dev;
352 unsigned int major, minor;
353 char dummy;
354 struct dm_dev_internal *dd;
355 struct dm_table *t = ti->table;
356
357 BUG_ON(!t);
358
359 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
360 /* Extract the major/minor numbers */
361 dev = MKDEV(major, minor);
362 if (MAJOR(dev) != major || MINOR(dev) != minor)
363 return -EOVERFLOW;
364 } else {
365 dev = dm_get_dev_t(path);
366 if (!dev)
367 return -ENODEV;
368 }
369
370 dd = find_device(&t->devices, dev);
371 if (!dd) {
372 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
373 if (!dd)
374 return -ENOMEM;
375
376 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
377 kfree(dd);
378 return r;
379 }
380
381 refcount_set(&dd->count, 1);
382 list_add(&dd->list, &t->devices);
383 goto out;
384
385 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
386 r = upgrade_mode(dd, mode, t->md);
387 if (r)
388 return r;
389 }
390 refcount_inc(&dd->count);
391out:
392 *result = dd->dm_dev;
393 return 0;
394}
395EXPORT_SYMBOL(dm_get_device);
396
397static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
398 sector_t start, sector_t len, void *data)
399{
400 struct queue_limits *limits = data;
401 struct block_device *bdev = dev->bdev;
402 struct request_queue *q = bdev_get_queue(bdev);
403 char b[BDEVNAME_SIZE];
404
405 if (unlikely(!q)) {
406 DMWARN("%s: Cannot set limits for nonexistent device %s",
407 dm_device_name(ti->table->md), bdevname(bdev, b));
408 return 0;
409 }
410
411 if (blk_stack_limits(limits, &q->limits,
412 get_start_sect(bdev) + start) < 0)
413 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
414 "physical_block_size=%u, logical_block_size=%u, "
415 "alignment_offset=%u, start=%llu",
416 dm_device_name(ti->table->md), bdevname(bdev, b),
417 q->limits.physical_block_size,
418 q->limits.logical_block_size,
419 q->limits.alignment_offset,
420 (unsigned long long) start << SECTOR_SHIFT);
421 return 0;
422}
423
424/*
425 * Decrement a device's use count and remove it if necessary.
426 */
427void dm_put_device(struct dm_target *ti, struct dm_dev *d)
428{
429 int found = 0;
430 struct list_head *devices = &ti->table->devices;
431 struct dm_dev_internal *dd;
432
433 list_for_each_entry(dd, devices, list) {
434 if (dd->dm_dev == d) {
435 found = 1;
436 break;
437 }
438 }
439 if (!found) {
440 DMWARN("%s: device %s not in table devices list",
441 dm_device_name(ti->table->md), d->name);
442 return;
443 }
444 if (refcount_dec_and_test(&dd->count)) {
445 dm_put_table_device(ti->table->md, d);
446 list_del(&dd->list);
447 kfree(dd);
448 }
449}
450EXPORT_SYMBOL(dm_put_device);
451
452/*
453 * Checks to see if the target joins onto the end of the table.
454 */
455static int adjoin(struct dm_table *table, struct dm_target *ti)
456{
457 struct dm_target *prev;
458
459 if (!table->num_targets)
460 return !ti->begin;
461
462 prev = &table->targets[table->num_targets - 1];
463 return (ti->begin == (prev->begin + prev->len));
464}
465
466/*
467 * Used to dynamically allocate the arg array.
468 *
469 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
470 * process messages even if some device is suspended. These messages have a
471 * small fixed number of arguments.
472 *
473 * On the other hand, dm-switch needs to process bulk data using messages and
474 * excessive use of GFP_NOIO could cause trouble.
475 */
476static char **realloc_argv(unsigned *size, char **old_argv)
477{
478 char **argv;
479 unsigned new_size;
480 gfp_t gfp;
481
482 if (*size) {
483 new_size = *size * 2;
484 gfp = GFP_KERNEL;
485 } else {
486 new_size = 8;
487 gfp = GFP_NOIO;
488 }
489 argv = kmalloc_array(new_size, sizeof(*argv), gfp);
490 if (argv && old_argv) {
491 memcpy(argv, old_argv, *size * sizeof(*argv));
492 *size = new_size;
493 }
494
495 kfree(old_argv);
496 return argv;
497}
498
499/*
500 * Destructively splits up the argument list to pass to ctr.
501 */
502int dm_split_args(int *argc, char ***argvp, char *input)
503{
504 char *start, *end = input, *out, **argv = NULL;
505 unsigned array_size = 0;
506
507 *argc = 0;
508
509 if (!input) {
510 *argvp = NULL;
511 return 0;
512 }
513
514 argv = realloc_argv(&array_size, argv);
515 if (!argv)
516 return -ENOMEM;
517
518 while (1) {
519 /* Skip whitespace */
520 start = skip_spaces(end);
521
522 if (!*start)
523 break; /* success, we hit the end */
524
525 /* 'out' is used to remove any back-quotes */
526 end = out = start;
527 while (*end) {
528 /* Everything apart from '\0' can be quoted */
529 if (*end == '\\' && *(end + 1)) {
530 *out++ = *(end + 1);
531 end += 2;
532 continue;
533 }
534
535 if (isspace(*end))
536 break; /* end of token */
537
538 *out++ = *end++;
539 }
540
541 /* have we already filled the array ? */
542 if ((*argc + 1) > array_size) {
543 argv = realloc_argv(&array_size, argv);
544 if (!argv)
545 return -ENOMEM;
546 }
547
548 /* we know this is whitespace */
549 if (*end)
550 end++;
551
552 /* terminate the string and put it in the array */
553 *out = '\0';
554 argv[*argc] = start;
555 (*argc)++;
556 }
557
558 *argvp = argv;
559 return 0;
560}
561
562/*
563 * Impose necessary and sufficient conditions on a devices's table such
564 * that any incoming bio which respects its logical_block_size can be
565 * processed successfully. If it falls across the boundary between
566 * two or more targets, the size of each piece it gets split into must
567 * be compatible with the logical_block_size of the target processing it.
568 */
569static int validate_hardware_logical_block_alignment(struct dm_table *table,
570 struct queue_limits *limits)
571{
572 /*
573 * This function uses arithmetic modulo the logical_block_size
574 * (in units of 512-byte sectors).
575 */
576 unsigned short device_logical_block_size_sects =
577 limits->logical_block_size >> SECTOR_SHIFT;
578
579 /*
580 * Offset of the start of the next table entry, mod logical_block_size.
581 */
582 unsigned short next_target_start = 0;
583
584 /*
585 * Given an aligned bio that extends beyond the end of a
586 * target, how many sectors must the next target handle?
587 */
588 unsigned short remaining = 0;
589
590 struct dm_target *ti;
591 struct queue_limits ti_limits;
592 unsigned i;
593
594 /*
595 * Check each entry in the table in turn.
596 */
597 for (i = 0; i < dm_table_get_num_targets(table); i++) {
598 ti = dm_table_get_target(table, i);
599
600 blk_set_stacking_limits(&ti_limits);
601
602 /* combine all target devices' limits */
603 if (ti->type->iterate_devices)
604 ti->type->iterate_devices(ti, dm_set_device_limits,
605 &ti_limits);
606
607 /*
608 * If the remaining sectors fall entirely within this
609 * table entry are they compatible with its logical_block_size?
610 */
611 if (remaining < ti->len &&
612 remaining & ((ti_limits.logical_block_size >>
613 SECTOR_SHIFT) - 1))
614 break; /* Error */
615
616 next_target_start =
617 (unsigned short) ((next_target_start + ti->len) &
618 (device_logical_block_size_sects - 1));
619 remaining = next_target_start ?
620 device_logical_block_size_sects - next_target_start : 0;
621 }
622
623 if (remaining) {
624 DMWARN("%s: table line %u (start sect %llu len %llu) "
625 "not aligned to h/w logical block size %u",
626 dm_device_name(table->md), i,
627 (unsigned long long) ti->begin,
628 (unsigned long long) ti->len,
629 limits->logical_block_size);
630 return -EINVAL;
631 }
632
633 return 0;
634}
635
636int dm_table_add_target(struct dm_table *t, const char *type,
637 sector_t start, sector_t len, char *params)
638{
639 int r = -EINVAL, argc;
640 char **argv;
641 struct dm_target *tgt;
642
643 if (t->singleton) {
644 DMERR("%s: target type %s must appear alone in table",
645 dm_device_name(t->md), t->targets->type->name);
646 return -EINVAL;
647 }
648
649 BUG_ON(t->num_targets >= t->num_allocated);
650
651 tgt = t->targets + t->num_targets;
652 memset(tgt, 0, sizeof(*tgt));
653
654 if (!len) {
655 DMERR("%s: zero-length target", dm_device_name(t->md));
656 return -EINVAL;
657 }
658
659 tgt->type = dm_get_target_type(type);
660 if (!tgt->type) {
661 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
662 return -EINVAL;
663 }
664
665 if (dm_target_needs_singleton(tgt->type)) {
666 if (t->num_targets) {
667 tgt->error = "singleton target type must appear alone in table";
668 goto bad;
669 }
670 t->singleton = true;
671 }
672
673 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
674 tgt->error = "target type may not be included in a read-only table";
675 goto bad;
676 }
677
678 if (t->immutable_target_type) {
679 if (t->immutable_target_type != tgt->type) {
680 tgt->error = "immutable target type cannot be mixed with other target types";
681 goto bad;
682 }
683 } else if (dm_target_is_immutable(tgt->type)) {
684 if (t->num_targets) {
685 tgt->error = "immutable target type cannot be mixed with other target types";
686 goto bad;
687 }
688 t->immutable_target_type = tgt->type;
689 }
690
691 if (dm_target_has_integrity(tgt->type))
692 t->integrity_added = 1;
693
694 tgt->table = t;
695 tgt->begin = start;
696 tgt->len = len;
697 tgt->error = "Unknown error";
698
699 /*
700 * Does this target adjoin the previous one ?
701 */
702 if (!adjoin(t, tgt)) {
703 tgt->error = "Gap in table";
704 goto bad;
705 }
706
707 r = dm_split_args(&argc, &argv, params);
708 if (r) {
709 tgt->error = "couldn't split parameters (insufficient memory)";
710 goto bad;
711 }
712
713 r = tgt->type->ctr(tgt, argc, argv);
714 kfree(argv);
715 if (r)
716 goto bad;
717
718 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
719
720 if (!tgt->num_discard_bios && tgt->discards_supported)
721 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
722 dm_device_name(t->md), type);
723
724 return 0;
725
726 bad:
727 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
728 dm_put_target_type(tgt->type);
729 return r;
730}
731
732/*
733 * Target argument parsing helpers.
734 */
735static int validate_next_arg(const struct dm_arg *arg,
736 struct dm_arg_set *arg_set,
737 unsigned *value, char **error, unsigned grouped)
738{
739 const char *arg_str = dm_shift_arg(arg_set);
740 char dummy;
741
742 if (!arg_str ||
743 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
744 (*value < arg->min) ||
745 (*value > arg->max) ||
746 (grouped && arg_set->argc < *value)) {
747 *error = arg->error;
748 return -EINVAL;
749 }
750
751 return 0;
752}
753
754int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
755 unsigned *value, char **error)
756{
757 return validate_next_arg(arg, arg_set, value, error, 0);
758}
759EXPORT_SYMBOL(dm_read_arg);
760
761int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
762 unsigned *value, char **error)
763{
764 return validate_next_arg(arg, arg_set, value, error, 1);
765}
766EXPORT_SYMBOL(dm_read_arg_group);
767
768const char *dm_shift_arg(struct dm_arg_set *as)
769{
770 char *r;
771
772 if (as->argc) {
773 as->argc--;
774 r = *as->argv;
775 as->argv++;
776 return r;
777 }
778
779 return NULL;
780}
781EXPORT_SYMBOL(dm_shift_arg);
782
783void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
784{
785 BUG_ON(as->argc < num_args);
786 as->argc -= num_args;
787 as->argv += num_args;
788}
789EXPORT_SYMBOL(dm_consume_args);
790
791static bool __table_type_bio_based(enum dm_queue_mode table_type)
792{
793 return (table_type == DM_TYPE_BIO_BASED ||
794 table_type == DM_TYPE_DAX_BIO_BASED);
795}
796
797static bool __table_type_request_based(enum dm_queue_mode table_type)
798{
799 return table_type == DM_TYPE_REQUEST_BASED;
800}
801
802void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
803{
804 t->type = type;
805}
806EXPORT_SYMBOL_GPL(dm_table_set_type);
807
808/* validate the dax capability of the target device span */
809int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
810 sector_t start, sector_t len, void *data)
811{
812 int blocksize = *(int *) data, id;
813 bool rc;
814
815 id = dax_read_lock();
816 rc = !dax_supported(dev->dax_dev, dev->bdev, blocksize, start, len);
817 dax_read_unlock(id);
818
819 return rc;
820}
821
822/* Check devices support synchronous DAX */
823static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
824 sector_t start, sector_t len, void *data)
825{
826 return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
827}
828
829bool dm_table_supports_dax(struct dm_table *t,
830 iterate_devices_callout_fn iterate_fn, int *blocksize)
831{
832 struct dm_target *ti;
833 unsigned i;
834
835 /* Ensure that all targets support DAX. */
836 for (i = 0; i < dm_table_get_num_targets(t); i++) {
837 ti = dm_table_get_target(t, i);
838
839 if (!ti->type->direct_access)
840 return false;
841
842 if (!ti->type->iterate_devices ||
843 ti->type->iterate_devices(ti, iterate_fn, blocksize))
844 return false;
845 }
846
847 return true;
848}
849
850static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
851 sector_t start, sector_t len, void *data)
852{
853 struct block_device *bdev = dev->bdev;
854 struct request_queue *q = bdev_get_queue(bdev);
855
856 /* request-based cannot stack on partitions! */
857 if (bdev_is_partition(bdev))
858 return false;
859
860 return queue_is_mq(q);
861}
862
863static int dm_table_determine_type(struct dm_table *t)
864{
865 unsigned i;
866 unsigned bio_based = 0, request_based = 0, hybrid = 0;
867 struct dm_target *tgt;
868 struct list_head *devices = dm_table_get_devices(t);
869 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
870 int page_size = PAGE_SIZE;
871
872 if (t->type != DM_TYPE_NONE) {
873 /* target already set the table's type */
874 if (t->type == DM_TYPE_BIO_BASED) {
875 /* possibly upgrade to a variant of bio-based */
876 goto verify_bio_based;
877 }
878 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
879 goto verify_rq_based;
880 }
881
882 for (i = 0; i < t->num_targets; i++) {
883 tgt = t->targets + i;
884 if (dm_target_hybrid(tgt))
885 hybrid = 1;
886 else if (dm_target_request_based(tgt))
887 request_based = 1;
888 else
889 bio_based = 1;
890
891 if (bio_based && request_based) {
892 DMERR("Inconsistent table: different target types"
893 " can't be mixed up");
894 return -EINVAL;
895 }
896 }
897
898 if (hybrid && !bio_based && !request_based) {
899 /*
900 * The targets can work either way.
901 * Determine the type from the live device.
902 * Default to bio-based if device is new.
903 */
904 if (__table_type_request_based(live_md_type))
905 request_based = 1;
906 else
907 bio_based = 1;
908 }
909
910 if (bio_based) {
911verify_bio_based:
912 /* We must use this table as bio-based */
913 t->type = DM_TYPE_BIO_BASED;
914 if (dm_table_supports_dax(t, device_not_dax_capable, &page_size) ||
915 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
916 t->type = DM_TYPE_DAX_BIO_BASED;
917 }
918 return 0;
919 }
920
921 BUG_ON(!request_based); /* No targets in this table */
922
923 t->type = DM_TYPE_REQUEST_BASED;
924
925verify_rq_based:
926 /*
927 * Request-based dm supports only tables that have a single target now.
928 * To support multiple targets, request splitting support is needed,
929 * and that needs lots of changes in the block-layer.
930 * (e.g. request completion process for partial completion.)
931 */
932 if (t->num_targets > 1) {
933 DMERR("request-based DM doesn't support multiple targets");
934 return -EINVAL;
935 }
936
937 if (list_empty(devices)) {
938 int srcu_idx;
939 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
940
941 /* inherit live table's type */
942 if (live_table)
943 t->type = live_table->type;
944 dm_put_live_table(t->md, srcu_idx);
945 return 0;
946 }
947
948 tgt = dm_table_get_immutable_target(t);
949 if (!tgt) {
950 DMERR("table load rejected: immutable target is required");
951 return -EINVAL;
952 } else if (tgt->max_io_len) {
953 DMERR("table load rejected: immutable target that splits IO is not supported");
954 return -EINVAL;
955 }
956
957 /* Non-request-stackable devices can't be used for request-based dm */
958 if (!tgt->type->iterate_devices ||
959 !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
960 DMERR("table load rejected: including non-request-stackable devices");
961 return -EINVAL;
962 }
963
964 return 0;
965}
966
967enum dm_queue_mode dm_table_get_type(struct dm_table *t)
968{
969 return t->type;
970}
971
972struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
973{
974 return t->immutable_target_type;
975}
976
977struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
978{
979 /* Immutable target is implicitly a singleton */
980 if (t->num_targets > 1 ||
981 !dm_target_is_immutable(t->targets[0].type))
982 return NULL;
983
984 return t->targets;
985}
986
987struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
988{
989 struct dm_target *ti;
990 unsigned i;
991
992 for (i = 0; i < dm_table_get_num_targets(t); i++) {
993 ti = dm_table_get_target(t, i);
994 if (dm_target_is_wildcard(ti->type))
995 return ti;
996 }
997
998 return NULL;
999}
1000
1001bool dm_table_bio_based(struct dm_table *t)
1002{
1003 return __table_type_bio_based(dm_table_get_type(t));
1004}
1005
1006bool dm_table_request_based(struct dm_table *t)
1007{
1008 return __table_type_request_based(dm_table_get_type(t));
1009}
1010
1011static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1012{
1013 enum dm_queue_mode type = dm_table_get_type(t);
1014 unsigned per_io_data_size = 0;
1015 unsigned min_pool_size = 0;
1016 struct dm_target *ti;
1017 unsigned i;
1018
1019 if (unlikely(type == DM_TYPE_NONE)) {
1020 DMWARN("no table type is set, can't allocate mempools");
1021 return -EINVAL;
1022 }
1023
1024 if (__table_type_bio_based(type))
1025 for (i = 0; i < t->num_targets; i++) {
1026 ti = t->targets + i;
1027 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1028 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1029 }
1030
1031 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1032 per_io_data_size, min_pool_size);
1033 if (!t->mempools)
1034 return -ENOMEM;
1035
1036 return 0;
1037}
1038
1039void dm_table_free_md_mempools(struct dm_table *t)
1040{
1041 dm_free_md_mempools(t->mempools);
1042 t->mempools = NULL;
1043}
1044
1045struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1046{
1047 return t->mempools;
1048}
1049
1050static int setup_indexes(struct dm_table *t)
1051{
1052 int i;
1053 unsigned int total = 0;
1054 sector_t *indexes;
1055
1056 /* allocate the space for *all* the indexes */
1057 for (i = t->depth - 2; i >= 0; i--) {
1058 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1059 total += t->counts[i];
1060 }
1061
1062 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1063 if (!indexes)
1064 return -ENOMEM;
1065
1066 /* set up internal nodes, bottom-up */
1067 for (i = t->depth - 2; i >= 0; i--) {
1068 t->index[i] = indexes;
1069 indexes += (KEYS_PER_NODE * t->counts[i]);
1070 setup_btree_index(i, t);
1071 }
1072
1073 return 0;
1074}
1075
1076/*
1077 * Builds the btree to index the map.
1078 */
1079static int dm_table_build_index(struct dm_table *t)
1080{
1081 int r = 0;
1082 unsigned int leaf_nodes;
1083
1084 /* how many indexes will the btree have ? */
1085 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1086 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1087
1088 /* leaf layer has already been set up */
1089 t->counts[t->depth - 1] = leaf_nodes;
1090 t->index[t->depth - 1] = t->highs;
1091
1092 if (t->depth >= 2)
1093 r = setup_indexes(t);
1094
1095 return r;
1096}
1097
1098static bool integrity_profile_exists(struct gendisk *disk)
1099{
1100 return !!blk_get_integrity(disk);
1101}
1102
1103/*
1104 * Get a disk whose integrity profile reflects the table's profile.
1105 * Returns NULL if integrity support was inconsistent or unavailable.
1106 */
1107static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1108{
1109 struct list_head *devices = dm_table_get_devices(t);
1110 struct dm_dev_internal *dd = NULL;
1111 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1112 unsigned i;
1113
1114 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1115 struct dm_target *ti = dm_table_get_target(t, i);
1116 if (!dm_target_passes_integrity(ti->type))
1117 goto no_integrity;
1118 }
1119
1120 list_for_each_entry(dd, devices, list) {
1121 template_disk = dd->dm_dev->bdev->bd_disk;
1122 if (!integrity_profile_exists(template_disk))
1123 goto no_integrity;
1124 else if (prev_disk &&
1125 blk_integrity_compare(prev_disk, template_disk) < 0)
1126 goto no_integrity;
1127 prev_disk = template_disk;
1128 }
1129
1130 return template_disk;
1131
1132no_integrity:
1133 if (prev_disk)
1134 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1135 dm_device_name(t->md),
1136 prev_disk->disk_name,
1137 template_disk->disk_name);
1138 return NULL;
1139}
1140
1141/*
1142 * Register the mapped device for blk_integrity support if the
1143 * underlying devices have an integrity profile. But all devices may
1144 * not have matching profiles (checking all devices isn't reliable
1145 * during table load because this table may use other DM device(s) which
1146 * must be resumed before they will have an initialized integity
1147 * profile). Consequently, stacked DM devices force a 2 stage integrity
1148 * profile validation: First pass during table load, final pass during
1149 * resume.
1150 */
1151static int dm_table_register_integrity(struct dm_table *t)
1152{
1153 struct mapped_device *md = t->md;
1154 struct gendisk *template_disk = NULL;
1155
1156 /* If target handles integrity itself do not register it here. */
1157 if (t->integrity_added)
1158 return 0;
1159
1160 template_disk = dm_table_get_integrity_disk(t);
1161 if (!template_disk)
1162 return 0;
1163
1164 if (!integrity_profile_exists(dm_disk(md))) {
1165 t->integrity_supported = true;
1166 /*
1167 * Register integrity profile during table load; we can do
1168 * this because the final profile must match during resume.
1169 */
1170 blk_integrity_register(dm_disk(md),
1171 blk_get_integrity(template_disk));
1172 return 0;
1173 }
1174
1175 /*
1176 * If DM device already has an initialized integrity
1177 * profile the new profile should not conflict.
1178 */
1179 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1180 DMWARN("%s: conflict with existing integrity profile: "
1181 "%s profile mismatch",
1182 dm_device_name(t->md),
1183 template_disk->disk_name);
1184 return 1;
1185 }
1186
1187 /* Preserve existing integrity profile */
1188 t->integrity_supported = true;
1189 return 0;
1190}
1191
1192#ifdef CONFIG_BLK_INLINE_ENCRYPTION
1193
1194struct dm_keyslot_manager {
1195 struct blk_keyslot_manager ksm;
1196 struct mapped_device *md;
1197};
1198
1199struct dm_keyslot_evict_args {
1200 const struct blk_crypto_key *key;
1201 int err;
1202};
1203
1204static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1205 sector_t start, sector_t len, void *data)
1206{
1207 struct dm_keyslot_evict_args *args = data;
1208 int err;
1209
1210 err = blk_crypto_evict_key(bdev_get_queue(dev->bdev), args->key);
1211 if (!args->err)
1212 args->err = err;
1213 /* Always try to evict the key from all devices. */
1214 return 0;
1215}
1216
1217/*
1218 * When an inline encryption key is evicted from a device-mapper device, evict
1219 * it from all the underlying devices.
1220 */
1221static int dm_keyslot_evict(struct blk_keyslot_manager *ksm,
1222 const struct blk_crypto_key *key, unsigned int slot)
1223{
1224 struct dm_keyslot_manager *dksm = container_of(ksm,
1225 struct dm_keyslot_manager,
1226 ksm);
1227 struct mapped_device *md = dksm->md;
1228 struct dm_keyslot_evict_args args = { key };
1229 struct dm_table *t;
1230 int srcu_idx;
1231 int i;
1232 struct dm_target *ti;
1233
1234 t = dm_get_live_table(md, &srcu_idx);
1235 if (!t)
1236 return 0;
1237 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1238 ti = dm_table_get_target(t, i);
1239 if (!ti->type->iterate_devices)
1240 continue;
1241 ti->type->iterate_devices(ti, dm_keyslot_evict_callback, &args);
1242 }
1243 dm_put_live_table(md, srcu_idx);
1244 return args.err;
1245}
1246
1247static const struct blk_ksm_ll_ops dm_ksm_ll_ops = {
1248 .keyslot_evict = dm_keyslot_evict,
1249};
1250
1251static int device_intersect_crypto_modes(struct dm_target *ti,
1252 struct dm_dev *dev, sector_t start,
1253 sector_t len, void *data)
1254{
1255 struct blk_keyslot_manager *parent = data;
1256 struct blk_keyslot_manager *child = bdev_get_queue(dev->bdev)->ksm;
1257
1258 blk_ksm_intersect_modes(parent, child);
1259 return 0;
1260}
1261
1262void dm_destroy_keyslot_manager(struct blk_keyslot_manager *ksm)
1263{
1264 struct dm_keyslot_manager *dksm = container_of(ksm,
1265 struct dm_keyslot_manager,
1266 ksm);
1267
1268 if (!ksm)
1269 return;
1270
1271 blk_ksm_destroy(ksm);
1272 kfree(dksm);
1273}
1274
1275static void dm_table_destroy_keyslot_manager(struct dm_table *t)
1276{
1277 dm_destroy_keyslot_manager(t->ksm);
1278 t->ksm = NULL;
1279}
1280
1281/*
1282 * Constructs and initializes t->ksm with a keyslot manager that
1283 * represents the common set of crypto capabilities of the devices
1284 * described by the dm_table. However, if the constructed keyslot
1285 * manager does not support a superset of the crypto capabilities
1286 * supported by the current keyslot manager of the mapped_device,
1287 * it returns an error instead, since we don't support restricting
1288 * crypto capabilities on table changes. Finally, if the constructed
1289 * keyslot manager doesn't actually support any crypto modes at all,
1290 * it just returns NULL.
1291 */
1292static int dm_table_construct_keyslot_manager(struct dm_table *t)
1293{
1294 struct dm_keyslot_manager *dksm;
1295 struct blk_keyslot_manager *ksm;
1296 struct dm_target *ti;
1297 unsigned int i;
1298 bool ksm_is_empty = true;
1299
1300 dksm = kmalloc(sizeof(*dksm), GFP_KERNEL);
1301 if (!dksm)
1302 return -ENOMEM;
1303 dksm->md = t->md;
1304
1305 ksm = &dksm->ksm;
1306 blk_ksm_init_passthrough(ksm);
1307 ksm->ksm_ll_ops = dm_ksm_ll_ops;
1308 ksm->max_dun_bytes_supported = UINT_MAX;
1309 memset(ksm->crypto_modes_supported, 0xFF,
1310 sizeof(ksm->crypto_modes_supported));
1311
1312 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1313 ti = dm_table_get_target(t, i);
1314
1315 if (!dm_target_passes_crypto(ti->type)) {
1316 blk_ksm_intersect_modes(ksm, NULL);
1317 break;
1318 }
1319 if (!ti->type->iterate_devices)
1320 continue;
1321 ti->type->iterate_devices(ti, device_intersect_crypto_modes,
1322 ksm);
1323 }
1324
1325 if (t->md->queue && !blk_ksm_is_superset(ksm, t->md->queue->ksm)) {
1326 DMWARN("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1327 dm_destroy_keyslot_manager(ksm);
1328 return -EINVAL;
1329 }
1330
1331 /*
1332 * If the new KSM doesn't actually support any crypto modes, we may as
1333 * well represent it with a NULL ksm.
1334 */
1335 ksm_is_empty = true;
1336 for (i = 0; i < ARRAY_SIZE(ksm->crypto_modes_supported); i++) {
1337 if (ksm->crypto_modes_supported[i]) {
1338 ksm_is_empty = false;
1339 break;
1340 }
1341 }
1342
1343 if (ksm_is_empty) {
1344 dm_destroy_keyslot_manager(ksm);
1345 ksm = NULL;
1346 }
1347
1348 /*
1349 * t->ksm is only set temporarily while the table is being set
1350 * up, and it gets set to NULL after the capabilities have
1351 * been transferred to the request_queue.
1352 */
1353 t->ksm = ksm;
1354
1355 return 0;
1356}
1357
1358static void dm_update_keyslot_manager(struct request_queue *q,
1359 struct dm_table *t)
1360{
1361 if (!t->ksm)
1362 return;
1363
1364 /* Make the ksm less restrictive */
1365 if (!q->ksm) {
1366 blk_ksm_register(t->ksm, q);
1367 } else {
1368 blk_ksm_update_capabilities(q->ksm, t->ksm);
1369 dm_destroy_keyslot_manager(t->ksm);
1370 }
1371 t->ksm = NULL;
1372}
1373
1374#else /* CONFIG_BLK_INLINE_ENCRYPTION */
1375
1376static int dm_table_construct_keyslot_manager(struct dm_table *t)
1377{
1378 return 0;
1379}
1380
1381void dm_destroy_keyslot_manager(struct blk_keyslot_manager *ksm)
1382{
1383}
1384
1385static void dm_table_destroy_keyslot_manager(struct dm_table *t)
1386{
1387}
1388
1389static void dm_update_keyslot_manager(struct request_queue *q,
1390 struct dm_table *t)
1391{
1392}
1393
1394#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1395
1396/*
1397 * Prepares the table for use by building the indices,
1398 * setting the type, and allocating mempools.
1399 */
1400int dm_table_complete(struct dm_table *t)
1401{
1402 int r;
1403
1404 r = dm_table_determine_type(t);
1405 if (r) {
1406 DMERR("unable to determine table type");
1407 return r;
1408 }
1409
1410 r = dm_table_build_index(t);
1411 if (r) {
1412 DMERR("unable to build btrees");
1413 return r;
1414 }
1415
1416 r = dm_table_register_integrity(t);
1417 if (r) {
1418 DMERR("could not register integrity profile.");
1419 return r;
1420 }
1421
1422 r = dm_table_construct_keyslot_manager(t);
1423 if (r) {
1424 DMERR("could not construct keyslot manager.");
1425 return r;
1426 }
1427
1428 r = dm_table_alloc_md_mempools(t, t->md);
1429 if (r)
1430 DMERR("unable to allocate mempools");
1431
1432 return r;
1433}
1434
1435static DEFINE_MUTEX(_event_lock);
1436void dm_table_event_callback(struct dm_table *t,
1437 void (*fn)(void *), void *context)
1438{
1439 mutex_lock(&_event_lock);
1440 t->event_fn = fn;
1441 t->event_context = context;
1442 mutex_unlock(&_event_lock);
1443}
1444
1445void dm_table_event(struct dm_table *t)
1446{
1447 mutex_lock(&_event_lock);
1448 if (t->event_fn)
1449 t->event_fn(t->event_context);
1450 mutex_unlock(&_event_lock);
1451}
1452EXPORT_SYMBOL(dm_table_event);
1453
1454inline sector_t dm_table_get_size(struct dm_table *t)
1455{
1456 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1457}
1458EXPORT_SYMBOL(dm_table_get_size);
1459
1460struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1461{
1462 if (index >= t->num_targets)
1463 return NULL;
1464
1465 return t->targets + index;
1466}
1467
1468/*
1469 * Search the btree for the correct target.
1470 *
1471 * Caller should check returned pointer for NULL
1472 * to trap I/O beyond end of device.
1473 */
1474struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1475{
1476 unsigned int l, n = 0, k = 0;
1477 sector_t *node;
1478
1479 if (unlikely(sector >= dm_table_get_size(t)))
1480 return NULL;
1481
1482 for (l = 0; l < t->depth; l++) {
1483 n = get_child(n, k);
1484 node = get_node(t, l, n);
1485
1486 for (k = 0; k < KEYS_PER_NODE; k++)
1487 if (node[k] >= sector)
1488 break;
1489 }
1490
1491 return &t->targets[(KEYS_PER_NODE * n) + k];
1492}
1493
1494/*
1495 * type->iterate_devices() should be called when the sanity check needs to
1496 * iterate and check all underlying data devices. iterate_devices() will
1497 * iterate all underlying data devices until it encounters a non-zero return
1498 * code, returned by whether the input iterate_devices_callout_fn, or
1499 * iterate_devices() itself internally.
1500 *
1501 * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1502 * iterate multiple underlying devices internally, in which case a non-zero
1503 * return code returned by iterate_devices_callout_fn will stop the iteration
1504 * in advance.
1505 *
1506 * Cases requiring _any_ underlying device supporting some kind of attribute,
1507 * should use the iteration structure like dm_table_any_dev_attr(), or call
1508 * it directly. @func should handle semantics of positive examples, e.g.
1509 * capable of something.
1510 *
1511 * Cases requiring _all_ underlying devices supporting some kind of attribute,
1512 * should use the iteration structure like dm_table_supports_nowait() or
1513 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1514 * uses an @anti_func that handle semantics of counter examples, e.g. not
1515 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1516 */
1517static bool dm_table_any_dev_attr(struct dm_table *t,
1518 iterate_devices_callout_fn func, void *data)
1519{
1520 struct dm_target *ti;
1521 unsigned int i;
1522
1523 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1524 ti = dm_table_get_target(t, i);
1525
1526 if (ti->type->iterate_devices &&
1527 ti->type->iterate_devices(ti, func, data))
1528 return true;
1529 }
1530
1531 return false;
1532}
1533
1534static int count_device(struct dm_target *ti, struct dm_dev *dev,
1535 sector_t start, sector_t len, void *data)
1536{
1537 unsigned *num_devices = data;
1538
1539 (*num_devices)++;
1540
1541 return 0;
1542}
1543
1544/*
1545 * Check whether a table has no data devices attached using each
1546 * target's iterate_devices method.
1547 * Returns false if the result is unknown because a target doesn't
1548 * support iterate_devices.
1549 */
1550bool dm_table_has_no_data_devices(struct dm_table *table)
1551{
1552 struct dm_target *ti;
1553 unsigned i, num_devices;
1554
1555 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1556 ti = dm_table_get_target(table, i);
1557
1558 if (!ti->type->iterate_devices)
1559 return false;
1560
1561 num_devices = 0;
1562 ti->type->iterate_devices(ti, count_device, &num_devices);
1563 if (num_devices)
1564 return false;
1565 }
1566
1567 return true;
1568}
1569
1570static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1571 sector_t start, sector_t len, void *data)
1572{
1573 struct request_queue *q = bdev_get_queue(dev->bdev);
1574 enum blk_zoned_model *zoned_model = data;
1575
1576 return blk_queue_zoned_model(q) != *zoned_model;
1577}
1578
1579/*
1580 * Check the device zoned model based on the target feature flag. If the target
1581 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1582 * also accepted but all devices must have the same zoned model. If the target
1583 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1584 * zoned model with all zoned devices having the same zone size.
1585 */
1586static bool dm_table_supports_zoned_model(struct dm_table *t,
1587 enum blk_zoned_model zoned_model)
1588{
1589 struct dm_target *ti;
1590 unsigned i;
1591
1592 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1593 ti = dm_table_get_target(t, i);
1594
1595 if (dm_target_supports_zoned_hm(ti->type)) {
1596 if (!ti->type->iterate_devices ||
1597 ti->type->iterate_devices(ti, device_not_zoned_model,
1598 &zoned_model))
1599 return false;
1600 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1601 if (zoned_model == BLK_ZONED_HM)
1602 return false;
1603 }
1604 }
1605
1606 return true;
1607}
1608
1609static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1610 sector_t start, sector_t len, void *data)
1611{
1612 struct request_queue *q = bdev_get_queue(dev->bdev);
1613 unsigned int *zone_sectors = data;
1614
1615 if (!blk_queue_is_zoned(q))
1616 return 0;
1617
1618 return blk_queue_zone_sectors(q) != *zone_sectors;
1619}
1620
1621/*
1622 * Check consistency of zoned model and zone sectors across all targets. For
1623 * zone sectors, if the destination device is a zoned block device, it shall
1624 * have the specified zone_sectors.
1625 */
1626static int validate_hardware_zoned_model(struct dm_table *table,
1627 enum blk_zoned_model zoned_model,
1628 unsigned int zone_sectors)
1629{
1630 if (zoned_model == BLK_ZONED_NONE)
1631 return 0;
1632
1633 if (!dm_table_supports_zoned_model(table, zoned_model)) {
1634 DMERR("%s: zoned model is not consistent across all devices",
1635 dm_device_name(table->md));
1636 return -EINVAL;
1637 }
1638
1639 /* Check zone size validity and compatibility */
1640 if (!zone_sectors || !is_power_of_2(zone_sectors))
1641 return -EINVAL;
1642
1643 if (dm_table_any_dev_attr(table, device_not_matches_zone_sectors, &zone_sectors)) {
1644 DMERR("%s: zone sectors is not consistent across all zoned devices",
1645 dm_device_name(table->md));
1646 return -EINVAL;
1647 }
1648
1649 return 0;
1650}
1651
1652/*
1653 * Establish the new table's queue_limits and validate them.
1654 */
1655int dm_calculate_queue_limits(struct dm_table *table,
1656 struct queue_limits *limits)
1657{
1658 struct dm_target *ti;
1659 struct queue_limits ti_limits;
1660 unsigned i;
1661 enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1662 unsigned int zone_sectors = 0;
1663
1664 blk_set_stacking_limits(limits);
1665
1666 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1667 blk_set_stacking_limits(&ti_limits);
1668
1669 ti = dm_table_get_target(table, i);
1670
1671 if (!ti->type->iterate_devices)
1672 goto combine_limits;
1673
1674 /*
1675 * Combine queue limits of all the devices this target uses.
1676 */
1677 ti->type->iterate_devices(ti, dm_set_device_limits,
1678 &ti_limits);
1679
1680 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1681 /*
1682 * After stacking all limits, validate all devices
1683 * in table support this zoned model and zone sectors.
1684 */
1685 zoned_model = ti_limits.zoned;
1686 zone_sectors = ti_limits.chunk_sectors;
1687 }
1688
1689 /* Set I/O hints portion of queue limits */
1690 if (ti->type->io_hints)
1691 ti->type->io_hints(ti, &ti_limits);
1692
1693 /*
1694 * Check each device area is consistent with the target's
1695 * overall queue limits.
1696 */
1697 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1698 &ti_limits))
1699 return -EINVAL;
1700
1701combine_limits:
1702 /*
1703 * Merge this target's queue limits into the overall limits
1704 * for the table.
1705 */
1706 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1707 DMWARN("%s: adding target device "
1708 "(start sect %llu len %llu) "
1709 "caused an alignment inconsistency",
1710 dm_device_name(table->md),
1711 (unsigned long long) ti->begin,
1712 (unsigned long long) ti->len);
1713 }
1714
1715 /*
1716 * Verify that the zoned model and zone sectors, as determined before
1717 * any .io_hints override, are the same across all devices in the table.
1718 * - this is especially relevant if .io_hints is emulating a disk-managed
1719 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1720 * BUT...
1721 */
1722 if (limits->zoned != BLK_ZONED_NONE) {
1723 /*
1724 * ...IF the above limits stacking determined a zoned model
1725 * validate that all of the table's devices conform to it.
1726 */
1727 zoned_model = limits->zoned;
1728 zone_sectors = limits->chunk_sectors;
1729 }
1730 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1731 return -EINVAL;
1732
1733 return validate_hardware_logical_block_alignment(table, limits);
1734}
1735
1736/*
1737 * Verify that all devices have an integrity profile that matches the
1738 * DM device's registered integrity profile. If the profiles don't
1739 * match then unregister the DM device's integrity profile.
1740 */
1741static void dm_table_verify_integrity(struct dm_table *t)
1742{
1743 struct gendisk *template_disk = NULL;
1744
1745 if (t->integrity_added)
1746 return;
1747
1748 if (t->integrity_supported) {
1749 /*
1750 * Verify that the original integrity profile
1751 * matches all the devices in this table.
1752 */
1753 template_disk = dm_table_get_integrity_disk(t);
1754 if (template_disk &&
1755 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1756 return;
1757 }
1758
1759 if (integrity_profile_exists(dm_disk(t->md))) {
1760 DMWARN("%s: unable to establish an integrity profile",
1761 dm_device_name(t->md));
1762 blk_integrity_unregister(dm_disk(t->md));
1763 }
1764}
1765
1766static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1767 sector_t start, sector_t len, void *data)
1768{
1769 unsigned long flush = (unsigned long) data;
1770 struct request_queue *q = bdev_get_queue(dev->bdev);
1771
1772 return (q->queue_flags & flush);
1773}
1774
1775static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1776{
1777 struct dm_target *ti;
1778 unsigned i;
1779
1780 /*
1781 * Require at least one underlying device to support flushes.
1782 * t->devices includes internal dm devices such as mirror logs
1783 * so we need to use iterate_devices here, which targets
1784 * supporting flushes must provide.
1785 */
1786 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1787 ti = dm_table_get_target(t, i);
1788
1789 if (!ti->num_flush_bios)
1790 continue;
1791
1792 if (ti->flush_supported)
1793 return true;
1794
1795 if (ti->type->iterate_devices &&
1796 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1797 return true;
1798 }
1799
1800 return false;
1801}
1802
1803static int device_dax_write_cache_enabled(struct dm_target *ti,
1804 struct dm_dev *dev, sector_t start,
1805 sector_t len, void *data)
1806{
1807 struct dax_device *dax_dev = dev->dax_dev;
1808
1809 if (!dax_dev)
1810 return false;
1811
1812 if (dax_write_cache_enabled(dax_dev))
1813 return true;
1814 return false;
1815}
1816
1817static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1818 sector_t start, sector_t len, void *data)
1819{
1820 struct request_queue *q = bdev_get_queue(dev->bdev);
1821
1822 return !blk_queue_nonrot(q);
1823}
1824
1825static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1826 sector_t start, sector_t len, void *data)
1827{
1828 struct request_queue *q = bdev_get_queue(dev->bdev);
1829
1830 return !blk_queue_add_random(q);
1831}
1832
1833static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1834 sector_t start, sector_t len, void *data)
1835{
1836 struct request_queue *q = bdev_get_queue(dev->bdev);
1837
1838 return !q->limits.max_write_same_sectors;
1839}
1840
1841static bool dm_table_supports_write_same(struct dm_table *t)
1842{
1843 struct dm_target *ti;
1844 unsigned i;
1845
1846 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1847 ti = dm_table_get_target(t, i);
1848
1849 if (!ti->num_write_same_bios)
1850 return false;
1851
1852 if (!ti->type->iterate_devices ||
1853 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1854 return false;
1855 }
1856
1857 return true;
1858}
1859
1860static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1861 sector_t start, sector_t len, void *data)
1862{
1863 struct request_queue *q = bdev_get_queue(dev->bdev);
1864
1865 return !q->limits.max_write_zeroes_sectors;
1866}
1867
1868static bool dm_table_supports_write_zeroes(struct dm_table *t)
1869{
1870 struct dm_target *ti;
1871 unsigned i = 0;
1872
1873 while (i < dm_table_get_num_targets(t)) {
1874 ti = dm_table_get_target(t, i++);
1875
1876 if (!ti->num_write_zeroes_bios)
1877 return false;
1878
1879 if (!ti->type->iterate_devices ||
1880 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1881 return false;
1882 }
1883
1884 return true;
1885}
1886
1887static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1888 sector_t start, sector_t len, void *data)
1889{
1890 struct request_queue *q = bdev_get_queue(dev->bdev);
1891
1892 return !blk_queue_nowait(q);
1893}
1894
1895static bool dm_table_supports_nowait(struct dm_table *t)
1896{
1897 struct dm_target *ti;
1898 unsigned i = 0;
1899
1900 while (i < dm_table_get_num_targets(t)) {
1901 ti = dm_table_get_target(t, i++);
1902
1903 if (!dm_target_supports_nowait(ti->type))
1904 return false;
1905
1906 if (!ti->type->iterate_devices ||
1907 ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1908 return false;
1909 }
1910
1911 return true;
1912}
1913
1914static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1915 sector_t start, sector_t len, void *data)
1916{
1917 struct request_queue *q = bdev_get_queue(dev->bdev);
1918
1919 return !blk_queue_discard(q);
1920}
1921
1922static bool dm_table_supports_discards(struct dm_table *t)
1923{
1924 struct dm_target *ti;
1925 unsigned i;
1926
1927 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1928 ti = dm_table_get_target(t, i);
1929
1930 if (!ti->num_discard_bios)
1931 return false;
1932
1933 /*
1934 * Either the target provides discard support (as implied by setting
1935 * 'discards_supported') or it relies on _all_ data devices having
1936 * discard support.
1937 */
1938 if (!ti->discards_supported &&
1939 (!ti->type->iterate_devices ||
1940 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1941 return false;
1942 }
1943
1944 return true;
1945}
1946
1947static int device_not_secure_erase_capable(struct dm_target *ti,
1948 struct dm_dev *dev, sector_t start,
1949 sector_t len, void *data)
1950{
1951 struct request_queue *q = bdev_get_queue(dev->bdev);
1952
1953 return !blk_queue_secure_erase(q);
1954}
1955
1956static bool dm_table_supports_secure_erase(struct dm_table *t)
1957{
1958 struct dm_target *ti;
1959 unsigned int i;
1960
1961 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1962 ti = dm_table_get_target(t, i);
1963
1964 if (!ti->num_secure_erase_bios)
1965 return false;
1966
1967 if (!ti->type->iterate_devices ||
1968 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1969 return false;
1970 }
1971
1972 return true;
1973}
1974
1975static int device_requires_stable_pages(struct dm_target *ti,
1976 struct dm_dev *dev, sector_t start,
1977 sector_t len, void *data)
1978{
1979 struct request_queue *q = bdev_get_queue(dev->bdev);
1980
1981 return blk_queue_stable_writes(q);
1982}
1983
1984int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1985 struct queue_limits *limits)
1986{
1987 bool wc = false, fua = false;
1988 int page_size = PAGE_SIZE;
1989 int r;
1990
1991 /*
1992 * Copy table's limits to the DM device's request_queue
1993 */
1994 q->limits = *limits;
1995
1996 if (dm_table_supports_nowait(t))
1997 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1998 else
1999 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
2000
2001 if (!dm_table_supports_discards(t)) {
2002 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
2003 /* Must also clear discard limits... */
2004 q->limits.max_discard_sectors = 0;
2005 q->limits.max_hw_discard_sectors = 0;
2006 q->limits.discard_granularity = 0;
2007 q->limits.discard_alignment = 0;
2008 q->limits.discard_misaligned = 0;
2009 } else
2010 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
2011
2012 if (dm_table_supports_secure_erase(t))
2013 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
2014
2015 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
2016 wc = true;
2017 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
2018 fua = true;
2019 }
2020 blk_queue_write_cache(q, wc, fua);
2021
2022 if (dm_table_supports_dax(t, device_not_dax_capable, &page_size)) {
2023 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
2024 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable, NULL))
2025 set_dax_synchronous(t->md->dax_dev);
2026 }
2027 else
2028 blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
2029
2030 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
2031 dax_write_cache(t->md->dax_dev, true);
2032
2033 /* Ensure that all underlying devices are non-rotational. */
2034 if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
2035 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
2036 else
2037 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2038
2039 if (!dm_table_supports_write_same(t))
2040 q->limits.max_write_same_sectors = 0;
2041 if (!dm_table_supports_write_zeroes(t))
2042 q->limits.max_write_zeroes_sectors = 0;
2043
2044 dm_table_verify_integrity(t);
2045
2046 /*
2047 * Some devices don't use blk_integrity but still want stable pages
2048 * because they do their own checksumming.
2049 * If any underlying device requires stable pages, a table must require
2050 * them as well. Only targets that support iterate_devices are considered:
2051 * don't want error, zero, etc to require stable pages.
2052 */
2053 if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
2054 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
2055 else
2056 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
2057
2058 /*
2059 * Determine whether or not this queue's I/O timings contribute
2060 * to the entropy pool, Only request-based targets use this.
2061 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
2062 * have it set.
2063 */
2064 if (blk_queue_add_random(q) &&
2065 dm_table_any_dev_attr(t, device_is_not_random, NULL))
2066 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2067
2068 /*
2069 * For a zoned target, setup the zones related queue attributes
2070 * and resources necessary for zone append emulation if necessary.
2071 */
2072 if (blk_queue_is_zoned(q)) {
2073 r = dm_set_zones_restrictions(t, q);
2074 if (r)
2075 return r;
2076 }
2077
2078 dm_update_keyslot_manager(q, t);
2079 blk_queue_update_readahead(q);
2080
2081 return 0;
2082}
2083
2084unsigned int dm_table_get_num_targets(struct dm_table *t)
2085{
2086 return t->num_targets;
2087}
2088
2089struct list_head *dm_table_get_devices(struct dm_table *t)
2090{
2091 return &t->devices;
2092}
2093
2094fmode_t dm_table_get_mode(struct dm_table *t)
2095{
2096 return t->mode;
2097}
2098EXPORT_SYMBOL(dm_table_get_mode);
2099
2100enum suspend_mode {
2101 PRESUSPEND,
2102 PRESUSPEND_UNDO,
2103 POSTSUSPEND,
2104};
2105
2106static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2107{
2108 int i = t->num_targets;
2109 struct dm_target *ti = t->targets;
2110
2111 lockdep_assert_held(&t->md->suspend_lock);
2112
2113 while (i--) {
2114 switch (mode) {
2115 case PRESUSPEND:
2116 if (ti->type->presuspend)
2117 ti->type->presuspend(ti);
2118 break;
2119 case PRESUSPEND_UNDO:
2120 if (ti->type->presuspend_undo)
2121 ti->type->presuspend_undo(ti);
2122 break;
2123 case POSTSUSPEND:
2124 if (ti->type->postsuspend)
2125 ti->type->postsuspend(ti);
2126 break;
2127 }
2128 ti++;
2129 }
2130}
2131
2132void dm_table_presuspend_targets(struct dm_table *t)
2133{
2134 if (!t)
2135 return;
2136
2137 suspend_targets(t, PRESUSPEND);
2138}
2139
2140void dm_table_presuspend_undo_targets(struct dm_table *t)
2141{
2142 if (!t)
2143 return;
2144
2145 suspend_targets(t, PRESUSPEND_UNDO);
2146}
2147
2148void dm_table_postsuspend_targets(struct dm_table *t)
2149{
2150 if (!t)
2151 return;
2152
2153 suspend_targets(t, POSTSUSPEND);
2154}
2155
2156int dm_table_resume_targets(struct dm_table *t)
2157{
2158 int i, r = 0;
2159
2160 lockdep_assert_held(&t->md->suspend_lock);
2161
2162 for (i = 0; i < t->num_targets; i++) {
2163 struct dm_target *ti = t->targets + i;
2164
2165 if (!ti->type->preresume)
2166 continue;
2167
2168 r = ti->type->preresume(ti);
2169 if (r) {
2170 DMERR("%s: %s: preresume failed, error = %d",
2171 dm_device_name(t->md), ti->type->name, r);
2172 return r;
2173 }
2174 }
2175
2176 for (i = 0; i < t->num_targets; i++) {
2177 struct dm_target *ti = t->targets + i;
2178
2179 if (ti->type->resume)
2180 ti->type->resume(ti);
2181 }
2182
2183 return 0;
2184}
2185
2186struct mapped_device *dm_table_get_md(struct dm_table *t)
2187{
2188 return t->md;
2189}
2190EXPORT_SYMBOL(dm_table_get_md);
2191
2192const char *dm_table_device_name(struct dm_table *t)
2193{
2194 return dm_device_name(t->md);
2195}
2196EXPORT_SYMBOL_GPL(dm_table_device_name);
2197
2198void dm_table_run_md_queue_async(struct dm_table *t)
2199{
2200 if (!dm_table_request_based(t))
2201 return;
2202
2203 if (t->md->queue)
2204 blk_mq_run_hw_queues(t->md->queue, true);
2205}
2206EXPORT_SYMBOL(dm_table_run_md_queue_async);
2207