Linux Audio

Check our new training course

Loading...
v6.2
   1/*
   2 * Copyright (C) 2001 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
   9#include "dm-rq.h"
  10
  11#include <linux/module.h>
  12#include <linux/vmalloc.h>
  13#include <linux/blkdev.h>
  14#include <linux/blk-integrity.h>
  15#include <linux/namei.h>
  16#include <linux/ctype.h>
  17#include <linux/string.h>
  18#include <linux/slab.h>
  19#include <linux/interrupt.h>
  20#include <linux/mutex.h>
  21#include <linux/delay.h>
  22#include <linux/atomic.h>
  23#include <linux/blk-mq.h>
  24#include <linux/mount.h>
  25#include <linux/dax.h>
  26
  27#define DM_MSG_PREFIX "table"
  28
 
  29#define NODE_SIZE L1_CACHE_BYTES
  30#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
  31#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
  32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  33/*
  34 * Similar to ceiling(log_size(n))
  35 */
  36static unsigned int int_log(unsigned int n, unsigned int base)
  37{
  38	int result = 0;
  39
  40	while (n > 1) {
  41		n = dm_div_up(n, base);
  42		result++;
  43	}
  44
  45	return result;
  46}
  47
  48/*
  49 * Calculate the index of the child node of the n'th node k'th key.
  50 */
  51static inline unsigned int get_child(unsigned int n, unsigned int k)
  52{
  53	return (n * CHILDREN_PER_NODE) + k;
  54}
  55
  56/*
  57 * Return the n'th node of level l from table t.
  58 */
  59static inline sector_t *get_node(struct dm_table *t,
  60				 unsigned int l, unsigned int n)
  61{
  62	return t->index[l] + (n * KEYS_PER_NODE);
  63}
  64
  65/*
  66 * Return the highest key that you could lookup from the n'th
  67 * node on level l of the btree.
  68 */
  69static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
  70{
  71	for (; l < t->depth - 1; l++)
  72		n = get_child(n, CHILDREN_PER_NODE - 1);
  73
  74	if (n >= t->counts[l])
  75		return (sector_t) - 1;
  76
  77	return get_node(t, l, n)[KEYS_PER_NODE - 1];
  78}
  79
  80/*
  81 * Fills in a level of the btree based on the highs of the level
  82 * below it.
  83 */
  84static int setup_btree_index(unsigned int l, struct dm_table *t)
  85{
  86	unsigned int n, k;
  87	sector_t *node;
  88
  89	for (n = 0U; n < t->counts[l]; n++) {
  90		node = get_node(t, l, n);
  91
  92		for (k = 0U; k < KEYS_PER_NODE; k++)
  93			node[k] = high(t, l + 1, get_child(n, k));
  94	}
  95
  96	return 0;
  97}
  98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  99/*
 100 * highs, and targets are managed as dynamic arrays during a
 101 * table load.
 102 */
 103static int alloc_targets(struct dm_table *t, unsigned int num)
 104{
 105	sector_t *n_highs;
 106	struct dm_target *n_targets;
 107
 108	/*
 109	 * Allocate both the target array and offset array at once.
 
 
 110	 */
 111	n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
 112			   GFP_KERNEL);
 113	if (!n_highs)
 114		return -ENOMEM;
 115
 116	n_targets = (struct dm_target *) (n_highs + num);
 117
 118	memset(n_highs, -1, sizeof(*n_highs) * num);
 119	kvfree(t->highs);
 120
 121	t->num_allocated = num;
 122	t->highs = n_highs;
 123	t->targets = n_targets;
 124
 125	return 0;
 126}
 127
 128int dm_table_create(struct dm_table **result, fmode_t mode,
 129		    unsigned num_targets, struct mapped_device *md)
 130{
 131	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
 132
 133	if (!t)
 134		return -ENOMEM;
 135
 136	INIT_LIST_HEAD(&t->devices);
 
 137
 138	if (!num_targets)
 139		num_targets = KEYS_PER_NODE;
 140
 141	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
 142
 143	if (!num_targets) {
 144		kfree(t);
 145		return -ENOMEM;
 146	}
 147
 148	if (alloc_targets(t, num_targets)) {
 149		kfree(t);
 150		return -ENOMEM;
 151	}
 152
 153	t->type = DM_TYPE_NONE;
 154	t->mode = mode;
 155	t->md = md;
 156	*result = t;
 157	return 0;
 158}
 159
 160static void free_devices(struct list_head *devices, struct mapped_device *md)
 161{
 162	struct list_head *tmp, *next;
 163
 164	list_for_each_safe(tmp, next, devices) {
 165		struct dm_dev_internal *dd =
 166		    list_entry(tmp, struct dm_dev_internal, list);
 167		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
 168		       dm_device_name(md), dd->dm_dev->name);
 169		dm_put_table_device(md, dd->dm_dev);
 170		kfree(dd);
 171	}
 172}
 173
 174static void dm_table_destroy_crypto_profile(struct dm_table *t);
 175
 176void dm_table_destroy(struct dm_table *t)
 177{
 
 
 178	if (!t)
 179		return;
 180
 181	/* free the indexes */
 182	if (t->depth >= 2)
 183		kvfree(t->index[t->depth - 2]);
 184
 185	/* free the targets */
 186	for (unsigned int i = 0; i < t->num_targets; i++) {
 187		struct dm_target *ti = dm_table_get_target(t, i);
 188
 189		if (ti->type->dtr)
 190			ti->type->dtr(ti);
 191
 192		dm_put_target_type(ti->type);
 193	}
 194
 195	kvfree(t->highs);
 196
 197	/* free the device list */
 198	free_devices(&t->devices, t->md);
 199
 200	dm_free_md_mempools(t->mempools);
 201
 202	dm_table_destroy_crypto_profile(t);
 203
 204	kfree(t);
 205}
 206
 207/*
 208 * See if we've already got a device in the list.
 209 */
 210static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
 211{
 212	struct dm_dev_internal *dd;
 213
 214	list_for_each_entry (dd, l, list)
 215		if (dd->dm_dev->bdev->bd_dev == dev)
 216			return dd;
 217
 218	return NULL;
 219}
 220
 221/*
 222 * If possible, this checks an area of a destination device is invalid.
 223 */
 224static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
 225				  sector_t start, sector_t len, void *data)
 226{
 
 227	struct queue_limits *limits = data;
 228	struct block_device *bdev = dev->bdev;
 229	sector_t dev_size = bdev_nr_sectors(bdev);
 
 230	unsigned short logical_block_size_sectors =
 231		limits->logical_block_size >> SECTOR_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 232
 233	if (!dev_size)
 234		return 0;
 235
 236	if ((start >= dev_size) || (start + len > dev_size)) {
 237		DMERR("%s: %pg too small for target: "
 238		      "start=%llu, len=%llu, dev_size=%llu",
 239		      dm_device_name(ti->table->md), bdev,
 240		      (unsigned long long)start,
 241		      (unsigned long long)len,
 242		      (unsigned long long)dev_size);
 243		return 1;
 244	}
 245
 246	/*
 247	 * If the target is mapped to zoned block device(s), check
 248	 * that the zones are not partially mapped.
 249	 */
 250	if (bdev_is_zoned(bdev)) {
 251		unsigned int zone_sectors = bdev_zone_sectors(bdev);
 252
 253		if (start & (zone_sectors - 1)) {
 254			DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg",
 255			      dm_device_name(ti->table->md),
 256			      (unsigned long long)start,
 257			      zone_sectors, bdev);
 258			return 1;
 259		}
 260
 261		/*
 262		 * Note: The last zone of a zoned block device may be smaller
 263		 * than other zones. So for a target mapping the end of a
 264		 * zoned block device with such a zone, len would not be zone
 265		 * aligned. We do not allow such last smaller zone to be part
 266		 * of the mapping here to ensure that mappings with multiple
 267		 * devices do not end up with a smaller zone in the middle of
 268		 * the sector range.
 269		 */
 270		if (len & (zone_sectors - 1)) {
 271			DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg",
 272			      dm_device_name(ti->table->md),
 273			      (unsigned long long)len,
 274			      zone_sectors, bdev);
 275			return 1;
 276		}
 277	}
 278
 279	if (logical_block_size_sectors <= 1)
 280		return 0;
 281
 282	if (start & (logical_block_size_sectors - 1)) {
 283		DMERR("%s: start=%llu not aligned to h/w "
 284		      "logical block size %u of %pg",
 285		      dm_device_name(ti->table->md),
 286		      (unsigned long long)start,
 287		      limits->logical_block_size, bdev);
 288		return 1;
 289	}
 290
 291	if (len & (logical_block_size_sectors - 1)) {
 292		DMERR("%s: len=%llu not aligned to h/w "
 293		      "logical block size %u of %pg",
 294		      dm_device_name(ti->table->md),
 295		      (unsigned long long)len,
 296		      limits->logical_block_size, bdev);
 297		return 1;
 298	}
 299
 300	return 0;
 301}
 302
 303/*
 304 * This upgrades the mode on an already open dm_dev, being
 305 * careful to leave things as they were if we fail to reopen the
 306 * device and not to touch the existing bdev field in case
 307 * it is accessed concurrently.
 308 */
 309static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
 310			struct mapped_device *md)
 311{
 312	int r;
 313	struct dm_dev *old_dev, *new_dev;
 314
 315	old_dev = dd->dm_dev;
 316
 317	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
 318				dd->dm_dev->mode | new_mode, &new_dev);
 319	if (r)
 320		return r;
 321
 322	dd->dm_dev = new_dev;
 323	dm_put_table_device(md, old_dev);
 324
 325	return 0;
 326}
 327
 328/*
 329 * Convert the path to a device
 330 */
 331dev_t dm_get_dev_t(const char *path)
 332{
 333	dev_t dev;
 
 334
 335	if (lookup_bdev(path, &dev))
 
 336		dev = name_to_dev_t(path);
 
 
 
 
 
 337	return dev;
 338}
 339EXPORT_SYMBOL_GPL(dm_get_dev_t);
 340
 341/*
 342 * Add a device to the list, or just increment the usage count if
 343 * it's already present.
 344 */
 345int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
 346		  struct dm_dev **result)
 347{
 348	int r;
 349	dev_t dev;
 350	unsigned int major, minor;
 351	char dummy;
 352	struct dm_dev_internal *dd;
 353	struct dm_table *t = ti->table;
 354
 355	BUG_ON(!t);
 356
 357	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
 358		/* Extract the major/minor numbers */
 359		dev = MKDEV(major, minor);
 360		if (MAJOR(dev) != major || MINOR(dev) != minor)
 361			return -EOVERFLOW;
 362	} else {
 363		dev = dm_get_dev_t(path);
 364		if (!dev)
 365			return -ENODEV;
 366	}
 367
 368	dd = find_device(&t->devices, dev);
 369	if (!dd) {
 370		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
 371		if (!dd)
 372			return -ENOMEM;
 373
 374		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
 375			kfree(dd);
 376			return r;
 377		}
 378
 379		refcount_set(&dd->count, 1);
 380		list_add(&dd->list, &t->devices);
 381		goto out;
 382
 383	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
 384		r = upgrade_mode(dd, mode, t->md);
 385		if (r)
 386			return r;
 387	}
 388	refcount_inc(&dd->count);
 389out:
 390	*result = dd->dm_dev;
 391	return 0;
 392}
 393EXPORT_SYMBOL(dm_get_device);
 394
 395static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
 396				sector_t start, sector_t len, void *data)
 397{
 398	struct queue_limits *limits = data;
 399	struct block_device *bdev = dev->bdev;
 400	struct request_queue *q = bdev_get_queue(bdev);
 
 401
 402	if (unlikely(!q)) {
 403		DMWARN("%s: Cannot set limits for nonexistent device %pg",
 404		       dm_device_name(ti->table->md), bdev);
 405		return 0;
 406	}
 407
 408	if (blk_stack_limits(limits, &q->limits,
 409			get_start_sect(bdev) + start) < 0)
 410		DMWARN("%s: adding target device %pg caused an alignment inconsistency: "
 411		       "physical_block_size=%u, logical_block_size=%u, "
 412		       "alignment_offset=%u, start=%llu",
 413		       dm_device_name(ti->table->md), bdev,
 414		       q->limits.physical_block_size,
 415		       q->limits.logical_block_size,
 416		       q->limits.alignment_offset,
 417		       (unsigned long long) start << SECTOR_SHIFT);
 
 
 
 418	return 0;
 419}
 420
 421/*
 422 * Decrement a device's use count and remove it if necessary.
 423 */
 424void dm_put_device(struct dm_target *ti, struct dm_dev *d)
 425{
 426	int found = 0;
 427	struct list_head *devices = &ti->table->devices;
 428	struct dm_dev_internal *dd;
 429
 430	list_for_each_entry(dd, devices, list) {
 431		if (dd->dm_dev == d) {
 432			found = 1;
 433			break;
 434		}
 435	}
 436	if (!found) {
 437		DMERR("%s: device %s not in table devices list",
 438		      dm_device_name(ti->table->md), d->name);
 439		return;
 440	}
 441	if (refcount_dec_and_test(&dd->count)) {
 442		dm_put_table_device(ti->table->md, d);
 443		list_del(&dd->list);
 444		kfree(dd);
 445	}
 446}
 447EXPORT_SYMBOL(dm_put_device);
 448
 449/*
 450 * Checks to see if the target joins onto the end of the table.
 451 */
 452static int adjoin(struct dm_table *t, struct dm_target *ti)
 453{
 454	struct dm_target *prev;
 455
 456	if (!t->num_targets)
 457		return !ti->begin;
 458
 459	prev = &t->targets[t->num_targets - 1];
 460	return (ti->begin == (prev->begin + prev->len));
 461}
 462
 463/*
 464 * Used to dynamically allocate the arg array.
 465 *
 466 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
 467 * process messages even if some device is suspended. These messages have a
 468 * small fixed number of arguments.
 469 *
 470 * On the other hand, dm-switch needs to process bulk data using messages and
 471 * excessive use of GFP_NOIO could cause trouble.
 472 */
 473static char **realloc_argv(unsigned *size, char **old_argv)
 474{
 475	char **argv;
 476	unsigned new_size;
 477	gfp_t gfp;
 478
 479	if (*size) {
 480		new_size = *size * 2;
 481		gfp = GFP_KERNEL;
 482	} else {
 483		new_size = 8;
 484		gfp = GFP_NOIO;
 485	}
 486	argv = kmalloc_array(new_size, sizeof(*argv), gfp);
 487	if (argv && old_argv) {
 488		memcpy(argv, old_argv, *size * sizeof(*argv));
 489		*size = new_size;
 490	}
 491
 492	kfree(old_argv);
 493	return argv;
 494}
 495
 496/*
 497 * Destructively splits up the argument list to pass to ctr.
 498 */
 499int dm_split_args(int *argc, char ***argvp, char *input)
 500{
 501	char *start, *end = input, *out, **argv = NULL;
 502	unsigned array_size = 0;
 503
 504	*argc = 0;
 505
 506	if (!input) {
 507		*argvp = NULL;
 508		return 0;
 509	}
 510
 511	argv = realloc_argv(&array_size, argv);
 512	if (!argv)
 513		return -ENOMEM;
 514
 515	while (1) {
 516		/* Skip whitespace */
 517		start = skip_spaces(end);
 518
 519		if (!*start)
 520			break;	/* success, we hit the end */
 521
 522		/* 'out' is used to remove any back-quotes */
 523		end = out = start;
 524		while (*end) {
 525			/* Everything apart from '\0' can be quoted */
 526			if (*end == '\\' && *(end + 1)) {
 527				*out++ = *(end + 1);
 528				end += 2;
 529				continue;
 530			}
 531
 532			if (isspace(*end))
 533				break;	/* end of token */
 534
 535			*out++ = *end++;
 536		}
 537
 538		/* have we already filled the array ? */
 539		if ((*argc + 1) > array_size) {
 540			argv = realloc_argv(&array_size, argv);
 541			if (!argv)
 542				return -ENOMEM;
 543		}
 544
 545		/* we know this is whitespace */
 546		if (*end)
 547			end++;
 548
 549		/* terminate the string and put it in the array */
 550		*out = '\0';
 551		argv[*argc] = start;
 552		(*argc)++;
 553	}
 554
 555	*argvp = argv;
 556	return 0;
 557}
 558
 559/*
 560 * Impose necessary and sufficient conditions on a devices's table such
 561 * that any incoming bio which respects its logical_block_size can be
 562 * processed successfully.  If it falls across the boundary between
 563 * two or more targets, the size of each piece it gets split into must
 564 * be compatible with the logical_block_size of the target processing it.
 565 */
 566static int validate_hardware_logical_block_alignment(struct dm_table *t,
 567						     struct queue_limits *limits)
 568{
 569	/*
 570	 * This function uses arithmetic modulo the logical_block_size
 571	 * (in units of 512-byte sectors).
 572	 */
 573	unsigned short device_logical_block_size_sects =
 574		limits->logical_block_size >> SECTOR_SHIFT;
 575
 576	/*
 577	 * Offset of the start of the next table entry, mod logical_block_size.
 578	 */
 579	unsigned short next_target_start = 0;
 580
 581	/*
 582	 * Given an aligned bio that extends beyond the end of a
 583	 * target, how many sectors must the next target handle?
 584	 */
 585	unsigned short remaining = 0;
 586
 587	struct dm_target *ti;
 588	struct queue_limits ti_limits;
 589	unsigned int i;
 590
 591	/*
 592	 * Check each entry in the table in turn.
 593	 */
 594	for (i = 0; i < t->num_targets; i++) {
 595		ti = dm_table_get_target(t, i);
 596
 597		blk_set_stacking_limits(&ti_limits);
 598
 599		/* combine all target devices' limits */
 600		if (ti->type->iterate_devices)
 601			ti->type->iterate_devices(ti, dm_set_device_limits,
 602						  &ti_limits);
 603
 604		/*
 605		 * If the remaining sectors fall entirely within this
 606		 * table entry are they compatible with its logical_block_size?
 607		 */
 608		if (remaining < ti->len &&
 609		    remaining & ((ti_limits.logical_block_size >>
 610				  SECTOR_SHIFT) - 1))
 611			break;	/* Error */
 612
 613		next_target_start =
 614		    (unsigned short) ((next_target_start + ti->len) &
 615				      (device_logical_block_size_sects - 1));
 616		remaining = next_target_start ?
 617		    device_logical_block_size_sects - next_target_start : 0;
 618	}
 619
 620	if (remaining) {
 621		DMERR("%s: table line %u (start sect %llu len %llu) "
 622		      "not aligned to h/w logical block size %u",
 623		      dm_device_name(t->md), i,
 624		      (unsigned long long) ti->begin,
 625		      (unsigned long long) ti->len,
 626		      limits->logical_block_size);
 627		return -EINVAL;
 628	}
 629
 630	return 0;
 631}
 632
 633int dm_table_add_target(struct dm_table *t, const char *type,
 634			sector_t start, sector_t len, char *params)
 635{
 636	int r = -EINVAL, argc;
 637	char **argv;
 638	struct dm_target *ti;
 639
 640	if (t->singleton) {
 641		DMERR("%s: target type %s must appear alone in table",
 642		      dm_device_name(t->md), t->targets->type->name);
 643		return -EINVAL;
 644	}
 645
 646	BUG_ON(t->num_targets >= t->num_allocated);
 647
 648	ti = t->targets + t->num_targets;
 649	memset(ti, 0, sizeof(*ti));
 650
 651	if (!len) {
 652		DMERR("%s: zero-length target", dm_device_name(t->md));
 653		return -EINVAL;
 654	}
 655
 656	ti->type = dm_get_target_type(type);
 657	if (!ti->type) {
 658		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
 659		return -EINVAL;
 660	}
 661
 662	if (dm_target_needs_singleton(ti->type)) {
 663		if (t->num_targets) {
 664			ti->error = "singleton target type must appear alone in table";
 665			goto bad;
 666		}
 667		t->singleton = true;
 668	}
 669
 670	if (dm_target_always_writeable(ti->type) && !(t->mode & FMODE_WRITE)) {
 671		ti->error = "target type may not be included in a read-only table";
 672		goto bad;
 673	}
 674
 675	if (t->immutable_target_type) {
 676		if (t->immutable_target_type != ti->type) {
 677			ti->error = "immutable target type cannot be mixed with other target types";
 678			goto bad;
 679		}
 680	} else if (dm_target_is_immutable(ti->type)) {
 681		if (t->num_targets) {
 682			ti->error = "immutable target type cannot be mixed with other target types";
 683			goto bad;
 684		}
 685		t->immutable_target_type = ti->type;
 686	}
 687
 688	if (dm_target_has_integrity(ti->type))
 689		t->integrity_added = 1;
 690
 691	ti->table = t;
 692	ti->begin = start;
 693	ti->len = len;
 694	ti->error = "Unknown error";
 695
 696	/*
 697	 * Does this target adjoin the previous one ?
 698	 */
 699	if (!adjoin(t, ti)) {
 700		ti->error = "Gap in table";
 701		goto bad;
 702	}
 703
 704	r = dm_split_args(&argc, &argv, params);
 705	if (r) {
 706		ti->error = "couldn't split parameters";
 707		goto bad;
 708	}
 709
 710	r = ti->type->ctr(ti, argc, argv);
 711	kfree(argv);
 712	if (r)
 713		goto bad;
 714
 715	t->highs[t->num_targets++] = ti->begin + ti->len - 1;
 716
 717	if (!ti->num_discard_bios && ti->discards_supported)
 718		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
 719		       dm_device_name(t->md), type);
 720
 721	if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key))
 722		static_branch_enable(&swap_bios_enabled);
 723
 724	return 0;
 725
 726 bad:
 727	DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r));
 728	dm_put_target_type(ti->type);
 729	return r;
 730}
 731
 732/*
 733 * Target argument parsing helpers.
 734 */
 735static int validate_next_arg(const struct dm_arg *arg,
 736			     struct dm_arg_set *arg_set,
 737			     unsigned *value, char **error, unsigned grouped)
 738{
 739	const char *arg_str = dm_shift_arg(arg_set);
 740	char dummy;
 741
 742	if (!arg_str ||
 743	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
 744	    (*value < arg->min) ||
 745	    (*value > arg->max) ||
 746	    (grouped && arg_set->argc < *value)) {
 747		*error = arg->error;
 748		return -EINVAL;
 749	}
 750
 751	return 0;
 752}
 753
 754int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
 755		unsigned *value, char **error)
 756{
 757	return validate_next_arg(arg, arg_set, value, error, 0);
 758}
 759EXPORT_SYMBOL(dm_read_arg);
 760
 761int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
 762		      unsigned *value, char **error)
 763{
 764	return validate_next_arg(arg, arg_set, value, error, 1);
 765}
 766EXPORT_SYMBOL(dm_read_arg_group);
 767
 768const char *dm_shift_arg(struct dm_arg_set *as)
 769{
 770	char *r;
 771
 772	if (as->argc) {
 773		as->argc--;
 774		r = *as->argv;
 775		as->argv++;
 776		return r;
 777	}
 778
 779	return NULL;
 780}
 781EXPORT_SYMBOL(dm_shift_arg);
 782
 783void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
 784{
 785	BUG_ON(as->argc < num_args);
 786	as->argc -= num_args;
 787	as->argv += num_args;
 788}
 789EXPORT_SYMBOL(dm_consume_args);
 790
 791static bool __table_type_bio_based(enum dm_queue_mode table_type)
 792{
 793	return (table_type == DM_TYPE_BIO_BASED ||
 794		table_type == DM_TYPE_DAX_BIO_BASED);
 
 795}
 796
 797static bool __table_type_request_based(enum dm_queue_mode table_type)
 798{
 799	return table_type == DM_TYPE_REQUEST_BASED;
 
 800}
 801
 802void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
 803{
 804	t->type = type;
 805}
 806EXPORT_SYMBOL_GPL(dm_table_set_type);
 807
 808/* validate the dax capability of the target device span */
 809static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
 810			sector_t start, sector_t len, void *data)
 811{
 812	if (dev->dax_dev)
 813		return false;
 814
 815	DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
 816	return true;
 817}
 818
 819/* Check devices support synchronous DAX */
 820static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
 821					      sector_t start, sector_t len, void *data)
 822{
 823	return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
 824}
 825
 826static bool dm_table_supports_dax(struct dm_table *t,
 827				  iterate_devices_callout_fn iterate_fn)
 828{
 829	/* Ensure that all targets support DAX. */
 830	for (unsigned int i = 0; i < t->num_targets; i++) {
 831		struct dm_target *ti = dm_table_get_target(t, i);
 832
 833		if (!ti->type->direct_access)
 834			return false;
 835
 836		if (!ti->type->iterate_devices ||
 837		    ti->type->iterate_devices(ti, iterate_fn, NULL))
 838			return false;
 839	}
 840
 841	return true;
 842}
 843
 844static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
 845				  sector_t start, sector_t len, void *data)
 
 
 
 
 
 
 
 846{
 847	struct block_device *bdev = dev->bdev;
 848	struct request_queue *q = bdev_get_queue(bdev);
 849
 850	/* request-based cannot stack on partitions! */
 851	if (bdev_is_partition(bdev))
 852		return false;
 
 853
 854	return queue_is_mq(q);
 855}
 856
 857static int dm_table_determine_type(struct dm_table *t)
 858{
 
 859	unsigned bio_based = 0, request_based = 0, hybrid = 0;
 860	struct dm_target *ti;
 
 861	struct list_head *devices = dm_table_get_devices(t);
 862	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
 863
 864	if (t->type != DM_TYPE_NONE) {
 865		/* target already set the table's type */
 866		if (t->type == DM_TYPE_BIO_BASED) {
 867			/* possibly upgrade to a variant of bio-based */
 868			goto verify_bio_based;
 869		}
 870		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
 
 871		goto verify_rq_based;
 872	}
 873
 874	for (unsigned int i = 0; i < t->num_targets; i++) {
 875		ti = dm_table_get_target(t, i);
 876		if (dm_target_hybrid(ti))
 877			hybrid = 1;
 878		else if (dm_target_request_based(ti))
 879			request_based = 1;
 880		else
 881			bio_based = 1;
 882
 883		if (bio_based && request_based) {
 884			DMERR("Inconsistent table: different target types"
 885			      " can't be mixed up");
 886			return -EINVAL;
 887		}
 888	}
 889
 890	if (hybrid && !bio_based && !request_based) {
 891		/*
 892		 * The targets can work either way.
 893		 * Determine the type from the live device.
 894		 * Default to bio-based if device is new.
 895		 */
 896		if (__table_type_request_based(live_md_type))
 897			request_based = 1;
 898		else
 899			bio_based = 1;
 900	}
 901
 902	if (bio_based) {
 903verify_bio_based:
 904		/* We must use this table as bio-based */
 905		t->type = DM_TYPE_BIO_BASED;
 906		if (dm_table_supports_dax(t, device_not_dax_capable) ||
 907		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
 908			t->type = DM_TYPE_DAX_BIO_BASED;
 
 
 
 
 
 
 
 
 
 909		}
 910		return 0;
 911	}
 912
 913	BUG_ON(!request_based); /* No targets in this table */
 914
 
 
 
 
 915	t->type = DM_TYPE_REQUEST_BASED;
 916
 917verify_rq_based:
 918	/*
 919	 * Request-based dm supports only tables that have a single target now.
 920	 * To support multiple targets, request splitting support is needed,
 921	 * and that needs lots of changes in the block-layer.
 922	 * (e.g. request completion process for partial completion.)
 923	 */
 924	if (t->num_targets > 1) {
 925		DMERR("request-based DM doesn't support multiple targets");
 
 926		return -EINVAL;
 927	}
 928
 929	if (list_empty(devices)) {
 930		int srcu_idx;
 931		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
 932
 933		/* inherit live table's type */
 934		if (live_table)
 935			t->type = live_table->type;
 
 
 936		dm_put_live_table(t->md, srcu_idx);
 937		return 0;
 938	}
 939
 940	ti = dm_table_get_immutable_target(t);
 941	if (!ti) {
 942		DMERR("table load rejected: immutable target is required");
 943		return -EINVAL;
 944	} else if (ti->max_io_len) {
 945		DMERR("table load rejected: immutable target that splits IO is not supported");
 946		return -EINVAL;
 947	}
 948
 949	/* Non-request-stackable devices can't be used for request-based dm */
 950	if (!ti->type->iterate_devices ||
 951	    !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) {
 952		DMERR("table load rejected: including non-request-stackable devices");
 953		return -EINVAL;
 954	}
 
 
 
 
 
 
 
 
 
 
 
 955
 956	return 0;
 957}
 958
 959enum dm_queue_mode dm_table_get_type(struct dm_table *t)
 960{
 961	return t->type;
 962}
 963
 964struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
 965{
 966	return t->immutable_target_type;
 967}
 968
 969struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
 970{
 971	/* Immutable target is implicitly a singleton */
 972	if (t->num_targets > 1 ||
 973	    !dm_target_is_immutable(t->targets[0].type))
 974		return NULL;
 975
 976	return t->targets;
 977}
 978
 979struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
 980{
 981	for (unsigned int i = 0; i < t->num_targets; i++) {
 982		struct dm_target *ti = dm_table_get_target(t, i);
 983
 
 
 984		if (dm_target_is_wildcard(ti->type))
 985			return ti;
 986	}
 987
 988	return NULL;
 989}
 990
 991bool dm_table_bio_based(struct dm_table *t)
 992{
 993	return __table_type_bio_based(dm_table_get_type(t));
 994}
 995
 996bool dm_table_request_based(struct dm_table *t)
 997{
 998	return __table_type_request_based(dm_table_get_type(t));
 999}
1000
1001static bool dm_table_supports_poll(struct dm_table *t);
 
 
 
1002
1003static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1004{
1005	enum dm_queue_mode type = dm_table_get_type(t);
1006	unsigned int per_io_data_size = 0, front_pad, io_front_pad;
1007	unsigned int min_pool_size = 0, pool_size;
1008	struct dm_md_mempools *pools;
 
1009
1010	if (unlikely(type == DM_TYPE_NONE)) {
1011		DMERR("no table type is set, can't allocate mempools");
1012		return -EINVAL;
1013	}
1014
1015	pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
1016	if (!pools)
1017		return -ENOMEM;
1018
1019	if (type == DM_TYPE_REQUEST_BASED) {
1020		pool_size = dm_get_reserved_rq_based_ios();
1021		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
1022		goto init_bs;
1023	}
1024
1025	for (unsigned int i = 0; i < t->num_targets; i++) {
1026		struct dm_target *ti = dm_table_get_target(t, i);
1027
1028		per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1029		min_pool_size = max(min_pool_size, ti->num_flush_bios);
1030	}
1031	pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
1032	front_pad = roundup(per_io_data_size,
1033		__alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
1034
1035	io_front_pad = roundup(per_io_data_size,
1036		__alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
1037	if (bioset_init(&pools->io_bs, pool_size, io_front_pad,
1038			dm_table_supports_poll(t) ? BIOSET_PERCPU_CACHE : 0))
1039		goto out_free_pools;
1040	if (t->integrity_supported &&
1041	    bioset_integrity_create(&pools->io_bs, pool_size))
1042		goto out_free_pools;
1043init_bs:
1044	if (bioset_init(&pools->bs, pool_size, front_pad, 0))
1045		goto out_free_pools;
1046	if (t->integrity_supported &&
1047	    bioset_integrity_create(&pools->bs, pool_size))
1048		goto out_free_pools;
1049
1050	t->mempools = pools;
1051	return 0;
 
 
 
 
 
 
 
1052
1053out_free_pools:
1054	dm_free_md_mempools(pools);
1055	return -ENOMEM;
1056}
1057
1058static int setup_indexes(struct dm_table *t)
1059{
1060	int i;
1061	unsigned int total = 0;
1062	sector_t *indexes;
1063
1064	/* allocate the space for *all* the indexes */
1065	for (i = t->depth - 2; i >= 0; i--) {
1066		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1067		total += t->counts[i];
1068	}
1069
1070	indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1071	if (!indexes)
1072		return -ENOMEM;
1073
1074	/* set up internal nodes, bottom-up */
1075	for (i = t->depth - 2; i >= 0; i--) {
1076		t->index[i] = indexes;
1077		indexes += (KEYS_PER_NODE * t->counts[i]);
1078		setup_btree_index(i, t);
1079	}
1080
1081	return 0;
1082}
1083
1084/*
1085 * Builds the btree to index the map.
1086 */
1087static int dm_table_build_index(struct dm_table *t)
1088{
1089	int r = 0;
1090	unsigned int leaf_nodes;
1091
1092	/* how many indexes will the btree have ? */
1093	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1094	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1095
1096	/* leaf layer has already been set up */
1097	t->counts[t->depth - 1] = leaf_nodes;
1098	t->index[t->depth - 1] = t->highs;
1099
1100	if (t->depth >= 2)
1101		r = setup_indexes(t);
1102
1103	return r;
1104}
1105
1106static bool integrity_profile_exists(struct gendisk *disk)
1107{
1108	return !!blk_get_integrity(disk);
1109}
1110
1111/*
1112 * Get a disk whose integrity profile reflects the table's profile.
1113 * Returns NULL if integrity support was inconsistent or unavailable.
1114 */
1115static struct gendisk *dm_table_get_integrity_disk(struct dm_table *t)
1116{
1117	struct list_head *devices = dm_table_get_devices(t);
1118	struct dm_dev_internal *dd = NULL;
1119	struct gendisk *prev_disk = NULL, *template_disk = NULL;
 
1120
1121	for (unsigned int i = 0; i < t->num_targets; i++) {
1122		struct dm_target *ti = dm_table_get_target(t, i);
1123
1124		if (!dm_target_passes_integrity(ti->type))
1125			goto no_integrity;
1126	}
1127
1128	list_for_each_entry(dd, devices, list) {
1129		template_disk = dd->dm_dev->bdev->bd_disk;
1130		if (!integrity_profile_exists(template_disk))
1131			goto no_integrity;
1132		else if (prev_disk &&
1133			 blk_integrity_compare(prev_disk, template_disk) < 0)
1134			goto no_integrity;
1135		prev_disk = template_disk;
1136	}
1137
1138	return template_disk;
1139
1140no_integrity:
1141	if (prev_disk)
1142		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1143		       dm_device_name(t->md),
1144		       prev_disk->disk_name,
1145		       template_disk->disk_name);
1146	return NULL;
1147}
1148
1149/*
1150 * Register the mapped device for blk_integrity support if the
1151 * underlying devices have an integrity profile.  But all devices may
1152 * not have matching profiles (checking all devices isn't reliable
1153 * during table load because this table may use other DM device(s) which
1154 * must be resumed before they will have an initialized integity
1155 * profile).  Consequently, stacked DM devices force a 2 stage integrity
1156 * profile validation: First pass during table load, final pass during
1157 * resume.
1158 */
1159static int dm_table_register_integrity(struct dm_table *t)
1160{
1161	struct mapped_device *md = t->md;
1162	struct gendisk *template_disk = NULL;
1163
1164	/* If target handles integrity itself do not register it here. */
1165	if (t->integrity_added)
1166		return 0;
1167
1168	template_disk = dm_table_get_integrity_disk(t);
1169	if (!template_disk)
1170		return 0;
1171
1172	if (!integrity_profile_exists(dm_disk(md))) {
1173		t->integrity_supported = true;
1174		/*
1175		 * Register integrity profile during table load; we can do
1176		 * this because the final profile must match during resume.
1177		 */
1178		blk_integrity_register(dm_disk(md),
1179				       blk_get_integrity(template_disk));
1180		return 0;
1181	}
1182
1183	/*
1184	 * If DM device already has an initialized integrity
1185	 * profile the new profile should not conflict.
1186	 */
1187	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1188		DMERR("%s: conflict with existing integrity profile: "
1189		      "%s profile mismatch",
1190		      dm_device_name(t->md),
1191		      template_disk->disk_name);
1192		return 1;
1193	}
1194
1195	/* Preserve existing integrity profile */
1196	t->integrity_supported = true;
1197	return 0;
1198}
1199
1200#ifdef CONFIG_BLK_INLINE_ENCRYPTION
1201
1202struct dm_crypto_profile {
1203	struct blk_crypto_profile profile;
1204	struct mapped_device *md;
1205};
1206
1207struct dm_keyslot_evict_args {
1208	const struct blk_crypto_key *key;
1209	int err;
1210};
1211
1212static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1213				     sector_t start, sector_t len, void *data)
1214{
1215	struct dm_keyslot_evict_args *args = data;
1216	int err;
1217
1218	err = blk_crypto_evict_key(dev->bdev, args->key);
1219	if (!args->err)
1220		args->err = err;
1221	/* Always try to evict the key from all devices. */
1222	return 0;
1223}
1224
1225/*
1226 * When an inline encryption key is evicted from a device-mapper device, evict
1227 * it from all the underlying devices.
1228 */
1229static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1230			    const struct blk_crypto_key *key, unsigned int slot)
1231{
1232	struct mapped_device *md =
1233		container_of(profile, struct dm_crypto_profile, profile)->md;
1234	struct dm_keyslot_evict_args args = { key };
1235	struct dm_table *t;
1236	int srcu_idx;
1237
1238	t = dm_get_live_table(md, &srcu_idx);
1239	if (!t)
1240		return 0;
1241
1242	for (unsigned int i = 0; i < t->num_targets; i++) {
1243		struct dm_target *ti = dm_table_get_target(t, i);
1244
1245		if (!ti->type->iterate_devices)
1246			continue;
1247		ti->type->iterate_devices(ti, dm_keyslot_evict_callback, &args);
1248	}
1249
1250	dm_put_live_table(md, srcu_idx);
1251	return args.err;
1252}
1253
1254static int
1255device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1256				     sector_t start, sector_t len, void *data)
1257{
1258	struct blk_crypto_profile *parent = data;
1259	struct blk_crypto_profile *child =
1260		bdev_get_queue(dev->bdev)->crypto_profile;
1261
1262	blk_crypto_intersect_capabilities(parent, child);
1263	return 0;
1264}
1265
1266void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1267{
1268	struct dm_crypto_profile *dmcp = container_of(profile,
1269						      struct dm_crypto_profile,
1270						      profile);
1271
1272	if (!profile)
1273		return;
1274
1275	blk_crypto_profile_destroy(profile);
1276	kfree(dmcp);
1277}
1278
1279static void dm_table_destroy_crypto_profile(struct dm_table *t)
1280{
1281	dm_destroy_crypto_profile(t->crypto_profile);
1282	t->crypto_profile = NULL;
1283}
1284
1285/*
1286 * Constructs and initializes t->crypto_profile with a crypto profile that
1287 * represents the common set of crypto capabilities of the devices described by
1288 * the dm_table.  However, if the constructed crypto profile doesn't support all
1289 * crypto capabilities that are supported by the current mapped_device, it
1290 * returns an error instead, since we don't support removing crypto capabilities
1291 * on table changes.  Finally, if the constructed crypto profile is "empty" (has
1292 * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1293 */
1294static int dm_table_construct_crypto_profile(struct dm_table *t)
1295{
1296	struct dm_crypto_profile *dmcp;
1297	struct blk_crypto_profile *profile;
1298	unsigned int i;
1299	bool empty_profile = true;
1300
1301	dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1302	if (!dmcp)
1303		return -ENOMEM;
1304	dmcp->md = t->md;
1305
1306	profile = &dmcp->profile;
1307	blk_crypto_profile_init(profile, 0);
1308	profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1309	profile->max_dun_bytes_supported = UINT_MAX;
1310	memset(profile->modes_supported, 0xFF,
1311	       sizeof(profile->modes_supported));
1312
1313	for (i = 0; i < t->num_targets; i++) {
1314		struct dm_target *ti = dm_table_get_target(t, i);
1315
1316		if (!dm_target_passes_crypto(ti->type)) {
1317			blk_crypto_intersect_capabilities(profile, NULL);
1318			break;
1319		}
1320		if (!ti->type->iterate_devices)
1321			continue;
1322		ti->type->iterate_devices(ti,
1323					  device_intersect_crypto_capabilities,
1324					  profile);
1325	}
1326
1327	if (t->md->queue &&
1328	    !blk_crypto_has_capabilities(profile,
1329					 t->md->queue->crypto_profile)) {
1330		DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1331		dm_destroy_crypto_profile(profile);
1332		return -EINVAL;
1333	}
1334
1335	/*
1336	 * If the new profile doesn't actually support any crypto capabilities,
1337	 * we may as well represent it with a NULL profile.
1338	 */
1339	for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1340		if (profile->modes_supported[i]) {
1341			empty_profile = false;
1342			break;
1343		}
1344	}
1345
1346	if (empty_profile) {
1347		dm_destroy_crypto_profile(profile);
1348		profile = NULL;
1349	}
1350
1351	/*
1352	 * t->crypto_profile is only set temporarily while the table is being
1353	 * set up, and it gets set to NULL after the profile has been
1354	 * transferred to the request_queue.
1355	 */
1356	t->crypto_profile = profile;
1357
1358	return 0;
1359}
1360
1361static void dm_update_crypto_profile(struct request_queue *q,
1362				     struct dm_table *t)
1363{
1364	if (!t->crypto_profile)
1365		return;
1366
1367	/* Make the crypto profile less restrictive. */
1368	if (!q->crypto_profile) {
1369		blk_crypto_register(t->crypto_profile, q);
1370	} else {
1371		blk_crypto_update_capabilities(q->crypto_profile,
1372					       t->crypto_profile);
1373		dm_destroy_crypto_profile(t->crypto_profile);
1374	}
1375	t->crypto_profile = NULL;
1376}
1377
1378#else /* CONFIG_BLK_INLINE_ENCRYPTION */
1379
1380static int dm_table_construct_crypto_profile(struct dm_table *t)
1381{
1382	return 0;
1383}
1384
1385void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1386{
1387}
1388
1389static void dm_table_destroy_crypto_profile(struct dm_table *t)
1390{
1391}
1392
1393static void dm_update_crypto_profile(struct request_queue *q,
1394				     struct dm_table *t)
1395{
1396}
1397
1398#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1399
1400/*
1401 * Prepares the table for use by building the indices,
1402 * setting the type, and allocating mempools.
1403 */
1404int dm_table_complete(struct dm_table *t)
1405{
1406	int r;
1407
1408	r = dm_table_determine_type(t);
1409	if (r) {
1410		DMERR("unable to determine table type");
1411		return r;
1412	}
1413
1414	r = dm_table_build_index(t);
1415	if (r) {
1416		DMERR("unable to build btrees");
1417		return r;
1418	}
1419
1420	r = dm_table_register_integrity(t);
1421	if (r) {
1422		DMERR("could not register integrity profile.");
1423		return r;
1424	}
1425
1426	r = dm_table_construct_crypto_profile(t);
1427	if (r) {
1428		DMERR("could not construct crypto profile.");
1429		return r;
1430	}
1431
1432	r = dm_table_alloc_md_mempools(t, t->md);
1433	if (r)
1434		DMERR("unable to allocate mempools");
1435
1436	return r;
1437}
1438
1439static DEFINE_MUTEX(_event_lock);
1440void dm_table_event_callback(struct dm_table *t,
1441			     void (*fn)(void *), void *context)
1442{
1443	mutex_lock(&_event_lock);
1444	t->event_fn = fn;
1445	t->event_context = context;
1446	mutex_unlock(&_event_lock);
1447}
1448
1449void dm_table_event(struct dm_table *t)
1450{
 
 
 
 
 
 
1451	mutex_lock(&_event_lock);
1452	if (t->event_fn)
1453		t->event_fn(t->event_context);
1454	mutex_unlock(&_event_lock);
1455}
1456EXPORT_SYMBOL(dm_table_event);
1457
1458inline sector_t dm_table_get_size(struct dm_table *t)
1459{
1460	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1461}
1462EXPORT_SYMBOL(dm_table_get_size);
1463
 
 
 
 
 
 
 
 
1464/*
1465 * Search the btree for the correct target.
1466 *
1467 * Caller should check returned pointer for NULL
1468 * to trap I/O beyond end of device.
1469 */
1470struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1471{
1472	unsigned int l, n = 0, k = 0;
1473	sector_t *node;
1474
1475	if (unlikely(sector >= dm_table_get_size(t)))
1476		return NULL;
1477
1478	for (l = 0; l < t->depth; l++) {
1479		n = get_child(n, k);
1480		node = get_node(t, l, n);
1481
1482		for (k = 0; k < KEYS_PER_NODE; k++)
1483			if (node[k] >= sector)
1484				break;
1485	}
1486
1487	return &t->targets[(KEYS_PER_NODE * n) + k];
1488}
1489
1490static int device_not_poll_capable(struct dm_target *ti, struct dm_dev *dev,
1491				   sector_t start, sector_t len, void *data)
1492{
1493	struct request_queue *q = bdev_get_queue(dev->bdev);
1494
1495	return !test_bit(QUEUE_FLAG_POLL, &q->queue_flags);
1496}
1497
1498/*
1499 * type->iterate_devices() should be called when the sanity check needs to
1500 * iterate and check all underlying data devices. iterate_devices() will
1501 * iterate all underlying data devices until it encounters a non-zero return
1502 * code, returned by whether the input iterate_devices_callout_fn, or
1503 * iterate_devices() itself internally.
1504 *
1505 * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1506 * iterate multiple underlying devices internally, in which case a non-zero
1507 * return code returned by iterate_devices_callout_fn will stop the iteration
1508 * in advance.
1509 *
1510 * Cases requiring _any_ underlying device supporting some kind of attribute,
1511 * should use the iteration structure like dm_table_any_dev_attr(), or call
1512 * it directly. @func should handle semantics of positive examples, e.g.
1513 * capable of something.
1514 *
1515 * Cases requiring _all_ underlying devices supporting some kind of attribute,
1516 * should use the iteration structure like dm_table_supports_nowait() or
1517 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1518 * uses an @anti_func that handle semantics of counter examples, e.g. not
1519 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1520 */
1521static bool dm_table_any_dev_attr(struct dm_table *t,
1522				  iterate_devices_callout_fn func, void *data)
1523{
1524	for (unsigned int i = 0; i < t->num_targets; i++) {
1525		struct dm_target *ti = dm_table_get_target(t, i);
1526
1527		if (ti->type->iterate_devices &&
1528		    ti->type->iterate_devices(ti, func, data))
1529			return true;
1530        }
1531
1532	return false;
1533}
1534
1535static int count_device(struct dm_target *ti, struct dm_dev *dev,
1536			sector_t start, sector_t len, void *data)
1537{
1538	unsigned *num_devices = data;
1539
1540	(*num_devices)++;
1541
1542	return 0;
1543}
1544
1545static bool dm_table_supports_poll(struct dm_table *t)
1546{
1547	for (unsigned int i = 0; i < t->num_targets; i++) {
1548		struct dm_target *ti = dm_table_get_target(t, i);
1549
1550		if (!ti->type->iterate_devices ||
1551		    ti->type->iterate_devices(ti, device_not_poll_capable, NULL))
1552			return false;
1553	}
1554
1555	return true;
1556}
1557
1558/*
1559 * Check whether a table has no data devices attached using each
1560 * target's iterate_devices method.
1561 * Returns false if the result is unknown because a target doesn't
1562 * support iterate_devices.
1563 */
1564bool dm_table_has_no_data_devices(struct dm_table *t)
1565{
1566	for (unsigned int i = 0; i < t->num_targets; i++) {
1567		struct dm_target *ti = dm_table_get_target(t, i);
1568		unsigned num_devices = 0;
 
 
1569
1570		if (!ti->type->iterate_devices)
1571			return false;
1572
 
1573		ti->type->iterate_devices(ti, count_device, &num_devices);
1574		if (num_devices)
1575			return false;
1576	}
1577
1578	return true;
1579}
1580
1581static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1582				  sector_t start, sector_t len, void *data)
1583{
1584	struct request_queue *q = bdev_get_queue(dev->bdev);
1585	enum blk_zoned_model *zoned_model = data;
1586
1587	return blk_queue_zoned_model(q) != *zoned_model;
1588}
1589
1590/*
1591 * Check the device zoned model based on the target feature flag. If the target
1592 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1593 * also accepted but all devices must have the same zoned model. If the target
1594 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1595 * zoned model with all zoned devices having the same zone size.
1596 */
1597static bool dm_table_supports_zoned_model(struct dm_table *t,
1598					  enum blk_zoned_model zoned_model)
1599{
1600	for (unsigned int i = 0; i < t->num_targets; i++) {
1601		struct dm_target *ti = dm_table_get_target(t, i);
1602
1603		if (dm_target_supports_zoned_hm(ti->type)) {
1604			if (!ti->type->iterate_devices ||
1605			    ti->type->iterate_devices(ti, device_not_zoned_model,
1606						      &zoned_model))
1607				return false;
1608		} else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1609			if (zoned_model == BLK_ZONED_HM)
1610				return false;
1611		}
 
1612	}
1613
1614	return true;
1615}
1616
1617static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1618					   sector_t start, sector_t len, void *data)
1619{
 
1620	unsigned int *zone_sectors = data;
1621
1622	if (!bdev_is_zoned(dev->bdev))
1623		return 0;
1624	return bdev_zone_sectors(dev->bdev) != *zone_sectors;
1625}
1626
1627/*
1628 * Check consistency of zoned model and zone sectors across all targets. For
1629 * zone sectors, if the destination device is a zoned block device, it shall
1630 * have the specified zone_sectors.
1631 */
1632static int validate_hardware_zoned_model(struct dm_table *t,
 
 
 
 
 
 
 
 
 
 
 
 
1633					 enum blk_zoned_model zoned_model,
1634					 unsigned int zone_sectors)
1635{
1636	if (zoned_model == BLK_ZONED_NONE)
1637		return 0;
1638
1639	if (!dm_table_supports_zoned_model(t, zoned_model)) {
1640		DMERR("%s: zoned model is not consistent across all devices",
1641		      dm_device_name(t->md));
1642		return -EINVAL;
1643	}
1644
1645	/* Check zone size validity and compatibility */
1646	if (!zone_sectors || !is_power_of_2(zone_sectors))
1647		return -EINVAL;
1648
1649	if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) {
1650		DMERR("%s: zone sectors is not consistent across all zoned devices",
1651		      dm_device_name(t->md));
1652		return -EINVAL;
1653	}
1654
1655	return 0;
1656}
1657
1658/*
1659 * Establish the new table's queue_limits and validate them.
1660 */
1661int dm_calculate_queue_limits(struct dm_table *t,
1662			      struct queue_limits *limits)
1663{
 
1664	struct queue_limits ti_limits;
 
1665	enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1666	unsigned int zone_sectors = 0;
1667
1668	blk_set_stacking_limits(limits);
1669
1670	for (unsigned int i = 0; i < t->num_targets; i++) {
1671		struct dm_target *ti = dm_table_get_target(t, i);
1672
1673		blk_set_stacking_limits(&ti_limits);
1674
 
 
1675		if (!ti->type->iterate_devices)
1676			goto combine_limits;
1677
1678		/*
1679		 * Combine queue limits of all the devices this target uses.
1680		 */
1681		ti->type->iterate_devices(ti, dm_set_device_limits,
1682					  &ti_limits);
1683
1684		if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1685			/*
1686			 * After stacking all limits, validate all devices
1687			 * in table support this zoned model and zone sectors.
1688			 */
1689			zoned_model = ti_limits.zoned;
1690			zone_sectors = ti_limits.chunk_sectors;
1691		}
1692
1693		/* Set I/O hints portion of queue limits */
1694		if (ti->type->io_hints)
1695			ti->type->io_hints(ti, &ti_limits);
1696
1697		/*
1698		 * Check each device area is consistent with the target's
1699		 * overall queue limits.
1700		 */
1701		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1702					      &ti_limits))
1703			return -EINVAL;
1704
1705combine_limits:
1706		/*
1707		 * Merge this target's queue limits into the overall limits
1708		 * for the table.
1709		 */
1710		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1711			DMWARN("%s: adding target device "
1712			       "(start sect %llu len %llu) "
1713			       "caused an alignment inconsistency",
1714			       dm_device_name(t->md),
1715			       (unsigned long long) ti->begin,
1716			       (unsigned long long) ti->len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1717	}
1718
1719	/*
1720	 * Verify that the zoned model and zone sectors, as determined before
1721	 * any .io_hints override, are the same across all devices in the table.
1722	 * - this is especially relevant if .io_hints is emulating a disk-managed
1723	 *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1724	 * BUT...
1725	 */
1726	if (limits->zoned != BLK_ZONED_NONE) {
1727		/*
1728		 * ...IF the above limits stacking determined a zoned model
1729		 * validate that all of the table's devices conform to it.
1730		 */
1731		zoned_model = limits->zoned;
1732		zone_sectors = limits->chunk_sectors;
1733	}
1734	if (validate_hardware_zoned_model(t, zoned_model, zone_sectors))
1735		return -EINVAL;
1736
1737	return validate_hardware_logical_block_alignment(t, limits);
1738}
1739
1740/*
1741 * Verify that all devices have an integrity profile that matches the
1742 * DM device's registered integrity profile.  If the profiles don't
1743 * match then unregister the DM device's integrity profile.
1744 */
1745static void dm_table_verify_integrity(struct dm_table *t)
1746{
1747	struct gendisk *template_disk = NULL;
1748
1749	if (t->integrity_added)
1750		return;
1751
1752	if (t->integrity_supported) {
1753		/*
1754		 * Verify that the original integrity profile
1755		 * matches all the devices in this table.
1756		 */
1757		template_disk = dm_table_get_integrity_disk(t);
1758		if (template_disk &&
1759		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1760			return;
1761	}
1762
1763	if (integrity_profile_exists(dm_disk(t->md))) {
1764		DMWARN("%s: unable to establish an integrity profile",
1765		       dm_device_name(t->md));
1766		blk_integrity_unregister(dm_disk(t->md));
1767	}
1768}
1769
1770static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1771				sector_t start, sector_t len, void *data)
1772{
1773	unsigned long flush = (unsigned long) data;
1774	struct request_queue *q = bdev_get_queue(dev->bdev);
1775
1776	return (q->queue_flags & flush);
1777}
1778
1779static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1780{
 
 
 
1781	/*
1782	 * Require at least one underlying device to support flushes.
1783	 * t->devices includes internal dm devices such as mirror logs
1784	 * so we need to use iterate_devices here, which targets
1785	 * supporting flushes must provide.
1786	 */
1787	for (unsigned int i = 0; i < t->num_targets; i++) {
1788		struct dm_target *ti = dm_table_get_target(t, i);
1789
1790		if (!ti->num_flush_bios)
1791			continue;
1792
1793		if (ti->flush_supported)
1794			return true;
1795
1796		if (ti->type->iterate_devices &&
1797		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1798			return true;
1799	}
1800
1801	return false;
1802}
1803
1804static int device_dax_write_cache_enabled(struct dm_target *ti,
1805					  struct dm_dev *dev, sector_t start,
1806					  sector_t len, void *data)
1807{
1808	struct dax_device *dax_dev = dev->dax_dev;
1809
1810	if (!dax_dev)
1811		return false;
1812
1813	if (dax_write_cache_enabled(dax_dev))
1814		return true;
1815	return false;
1816}
1817
1818static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1819				sector_t start, sector_t len, void *data)
1820{
1821	return !bdev_nonrot(dev->bdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1822}
1823
1824static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1825			     sector_t start, sector_t len, void *data)
1826{
1827	struct request_queue *q = bdev_get_queue(dev->bdev);
1828
1829	return !blk_queue_add_random(q);
1830}
1831
1832static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1833					   sector_t start, sector_t len, void *data)
1834{
1835	struct request_queue *q = bdev_get_queue(dev->bdev);
1836
1837	return !q->limits.max_write_zeroes_sectors;
1838}
1839
1840static bool dm_table_supports_write_zeroes(struct dm_table *t)
 
1841{
1842	for (unsigned int i = 0; i < t->num_targets; i++) {
1843		struct dm_target *ti = dm_table_get_target(t, i);
1844
1845		if (!ti->num_write_zeroes_bios)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1846			return false;
1847
1848		if (!ti->type->iterate_devices ||
1849		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1850			return false;
1851	}
1852
1853	return true;
1854}
1855
1856static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1857				     sector_t start, sector_t len, void *data)
1858{
1859	return !bdev_nowait(dev->bdev);
 
 
1860}
1861
1862static bool dm_table_supports_nowait(struct dm_table *t)
1863{
1864	for (unsigned int i = 0; i < t->num_targets; i++) {
1865		struct dm_target *ti = dm_table_get_target(t, i);
 
 
 
1866
1867		if (!dm_target_supports_nowait(ti->type))
1868			return false;
1869
1870		if (!ti->type->iterate_devices ||
1871		    ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1872			return false;
1873	}
1874
1875	return true;
1876}
1877
1878static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1879				      sector_t start, sector_t len, void *data)
1880{
1881	return !bdev_max_discard_sectors(dev->bdev);
 
 
1882}
1883
1884static bool dm_table_supports_discards(struct dm_table *t)
1885{
1886	for (unsigned int i = 0; i < t->num_targets; i++) {
1887		struct dm_target *ti = dm_table_get_target(t, i);
 
 
 
1888
1889		if (!ti->num_discard_bios)
1890			return false;
1891
1892		/*
1893		 * Either the target provides discard support (as implied by setting
1894		 * 'discards_supported') or it relies on _all_ data devices having
1895		 * discard support.
1896		 */
1897		if (!ti->discards_supported &&
1898		    (!ti->type->iterate_devices ||
1899		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1900			return false;
1901	}
1902
1903	return true;
1904}
1905
1906static int device_not_secure_erase_capable(struct dm_target *ti,
1907					   struct dm_dev *dev, sector_t start,
1908					   sector_t len, void *data)
1909{
1910	return !bdev_max_secure_erase_sectors(dev->bdev);
 
 
1911}
1912
1913static bool dm_table_supports_secure_erase(struct dm_table *t)
1914{
1915	for (unsigned int i = 0; i < t->num_targets; i++) {
1916		struct dm_target *ti = dm_table_get_target(t, i);
 
 
 
1917
1918		if (!ti->num_secure_erase_bios)
1919			return false;
1920
1921		if (!ti->type->iterate_devices ||
1922		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1923			return false;
1924	}
1925
1926	return true;
1927}
1928
1929static int device_requires_stable_pages(struct dm_target *ti,
1930					struct dm_dev *dev, sector_t start,
1931					sector_t len, void *data)
1932{
1933	return bdev_stable_writes(dev->bdev);
1934}
1935
1936int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1937			      struct queue_limits *limits)
1938{
1939	bool wc = false, fua = false;
1940	int r;
1941
1942	/*
1943	 * Copy table's limits to the DM device's request_queue
1944	 */
1945	q->limits = *limits;
1946
1947	if (dm_table_supports_nowait(t))
1948		blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1949	else
1950		blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1951
1952	if (!dm_table_supports_discards(t)) {
 
 
1953		q->limits.max_discard_sectors = 0;
1954		q->limits.max_hw_discard_sectors = 0;
1955		q->limits.discard_granularity = 0;
1956		q->limits.discard_alignment = 0;
1957		q->limits.discard_misaligned = 0;
1958	}
 
1959
1960	if (!dm_table_supports_secure_erase(t))
1961		q->limits.max_secure_erase_sectors = 0;
1962
1963	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1964		wc = true;
1965		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1966			fua = true;
1967	}
1968	blk_queue_write_cache(q, wc, fua);
1969
1970	if (dm_table_supports_dax(t, device_not_dax_capable)) {
1971		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1972		if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
1973			set_dax_synchronous(t->md->dax_dev);
1974	}
1975	else
1976		blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1977
1978	if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
1979		dax_write_cache(t->md->dax_dev, true);
1980
1981	/* Ensure that all underlying devices are non-rotational. */
1982	if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
1983		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1984	else
1985		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
 
 
1986
 
 
1987	if (!dm_table_supports_write_zeroes(t))
1988		q->limits.max_write_zeroes_sectors = 0;
1989
1990	dm_table_verify_integrity(t);
1991
1992	/*
1993	 * Some devices don't use blk_integrity but still want stable pages
1994	 * because they do their own checksumming.
1995	 * If any underlying device requires stable pages, a table must require
1996	 * them as well.  Only targets that support iterate_devices are considered:
1997	 * don't want error, zero, etc to require stable pages.
1998	 */
1999	if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
2000		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
2001	else
2002		blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
 
 
2003
2004	/*
2005	 * Determine whether or not this queue's I/O timings contribute
2006	 * to the entropy pool, Only request-based targets use this.
2007	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
2008	 * have it set.
2009	 */
2010	if (blk_queue_add_random(q) &&
2011	    dm_table_any_dev_attr(t, device_is_not_random, NULL))
2012		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
 
2013
2014	/*
2015	 * For a zoned target, setup the zones related queue attributes
2016	 * and resources necessary for zone append emulation if necessary.
2017	 */
2018	if (blk_queue_is_zoned(q)) {
2019		r = dm_set_zones_restrictions(t, q);
2020		if (r)
2021			return r;
2022		if (!static_key_enabled(&zoned_enabled.key))
2023			static_branch_enable(&zoned_enabled);
2024	}
2025
2026	dm_update_crypto_profile(q, t);
2027	disk_update_readahead(t->md->disk);
2028
2029	/*
2030	 * Check for request-based device is left to
2031	 * dm_mq_init_request_queue()->blk_mq_init_allocated_queue().
2032	 *
2033	 * For bio-based device, only set QUEUE_FLAG_POLL when all
2034	 * underlying devices supporting polling.
2035	 */
2036	if (__table_type_bio_based(t->type)) {
2037		if (dm_table_supports_poll(t))
2038			blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2039		else
2040			blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
2041	}
2042
2043	return 0;
2044}
2045
2046struct list_head *dm_table_get_devices(struct dm_table *t)
2047{
2048	return &t->devices;
2049}
2050
2051fmode_t dm_table_get_mode(struct dm_table *t)
2052{
2053	return t->mode;
2054}
2055EXPORT_SYMBOL(dm_table_get_mode);
2056
2057enum suspend_mode {
2058	PRESUSPEND,
2059	PRESUSPEND_UNDO,
2060	POSTSUSPEND,
2061};
2062
2063static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2064{
2065	lockdep_assert_held(&t->md->suspend_lock);
 
2066
2067	for (unsigned int i = 0; i < t->num_targets; i++) {
2068		struct dm_target *ti = dm_table_get_target(t, i);
2069
 
2070		switch (mode) {
2071		case PRESUSPEND:
2072			if (ti->type->presuspend)
2073				ti->type->presuspend(ti);
2074			break;
2075		case PRESUSPEND_UNDO:
2076			if (ti->type->presuspend_undo)
2077				ti->type->presuspend_undo(ti);
2078			break;
2079		case POSTSUSPEND:
2080			if (ti->type->postsuspend)
2081				ti->type->postsuspend(ti);
2082			break;
2083		}
 
2084	}
2085}
2086
2087void dm_table_presuspend_targets(struct dm_table *t)
2088{
2089	if (!t)
2090		return;
2091
2092	suspend_targets(t, PRESUSPEND);
2093}
2094
2095void dm_table_presuspend_undo_targets(struct dm_table *t)
2096{
2097	if (!t)
2098		return;
2099
2100	suspend_targets(t, PRESUSPEND_UNDO);
2101}
2102
2103void dm_table_postsuspend_targets(struct dm_table *t)
2104{
2105	if (!t)
2106		return;
2107
2108	suspend_targets(t, POSTSUSPEND);
2109}
2110
2111int dm_table_resume_targets(struct dm_table *t)
2112{
2113	unsigned int i;
2114	int r = 0;
2115
2116	lockdep_assert_held(&t->md->suspend_lock);
2117
2118	for (i = 0; i < t->num_targets; i++) {
2119		struct dm_target *ti = dm_table_get_target(t, i);
2120
2121		if (!ti->type->preresume)
2122			continue;
2123
2124		r = ti->type->preresume(ti);
2125		if (r) {
2126			DMERR("%s: %s: preresume failed, error = %d",
2127			      dm_device_name(t->md), ti->type->name, r);
2128			return r;
2129		}
2130	}
2131
2132	for (i = 0; i < t->num_targets; i++) {
2133		struct dm_target *ti = dm_table_get_target(t, i);
2134
2135		if (ti->type->resume)
2136			ti->type->resume(ti);
2137	}
2138
2139	return 0;
2140}
2141
2142struct mapped_device *dm_table_get_md(struct dm_table *t)
2143{
2144	return t->md;
2145}
2146EXPORT_SYMBOL(dm_table_get_md);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2147
2148const char *dm_table_device_name(struct dm_table *t)
 
 
 
 
 
 
 
2149{
2150	return dm_device_name(t->md);
2151}
2152EXPORT_SYMBOL_GPL(dm_table_device_name);
2153
2154void dm_table_run_md_queue_async(struct dm_table *t)
2155{
 
 
 
 
2156	if (!dm_table_request_based(t))
2157		return;
2158
2159	if (t->md->queue)
2160		blk_mq_run_hw_queues(t->md->queue, true);
 
 
 
 
 
 
 
 
 
2161}
2162EXPORT_SYMBOL(dm_table_run_md_queue_async);
2163
v4.17
   1/*
   2 * Copyright (C) 2001 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
 
   9
  10#include <linux/module.h>
  11#include <linux/vmalloc.h>
  12#include <linux/blkdev.h>
 
  13#include <linux/namei.h>
  14#include <linux/ctype.h>
  15#include <linux/string.h>
  16#include <linux/slab.h>
  17#include <linux/interrupt.h>
  18#include <linux/mutex.h>
  19#include <linux/delay.h>
  20#include <linux/atomic.h>
  21#include <linux/blk-mq.h>
  22#include <linux/mount.h>
  23#include <linux/dax.h>
  24
  25#define DM_MSG_PREFIX "table"
  26
  27#define MAX_DEPTH 16
  28#define NODE_SIZE L1_CACHE_BYTES
  29#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
  30#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
  31
  32struct dm_table {
  33	struct mapped_device *md;
  34	enum dm_queue_mode type;
  35
  36	/* btree table */
  37	unsigned int depth;
  38	unsigned int counts[MAX_DEPTH];	/* in nodes */
  39	sector_t *index[MAX_DEPTH];
  40
  41	unsigned int num_targets;
  42	unsigned int num_allocated;
  43	sector_t *highs;
  44	struct dm_target *targets;
  45
  46	struct target_type *immutable_target_type;
  47
  48	bool integrity_supported:1;
  49	bool singleton:1;
  50	bool all_blk_mq:1;
  51	unsigned integrity_added:1;
  52
  53	/*
  54	 * Indicates the rw permissions for the new logical
  55	 * device.  This should be a combination of FMODE_READ
  56	 * and FMODE_WRITE.
  57	 */
  58	fmode_t mode;
  59
  60	/* a list of devices used by this table */
  61	struct list_head devices;
  62
  63	/* events get handed up using this callback */
  64	void (*event_fn)(void *);
  65	void *event_context;
  66
  67	struct dm_md_mempools *mempools;
  68
  69	struct list_head target_callbacks;
  70};
  71
  72/*
  73 * Similar to ceiling(log_size(n))
  74 */
  75static unsigned int int_log(unsigned int n, unsigned int base)
  76{
  77	int result = 0;
  78
  79	while (n > 1) {
  80		n = dm_div_up(n, base);
  81		result++;
  82	}
  83
  84	return result;
  85}
  86
  87/*
  88 * Calculate the index of the child node of the n'th node k'th key.
  89 */
  90static inline unsigned int get_child(unsigned int n, unsigned int k)
  91{
  92	return (n * CHILDREN_PER_NODE) + k;
  93}
  94
  95/*
  96 * Return the n'th node of level l from table t.
  97 */
  98static inline sector_t *get_node(struct dm_table *t,
  99				 unsigned int l, unsigned int n)
 100{
 101	return t->index[l] + (n * KEYS_PER_NODE);
 102}
 103
 104/*
 105 * Return the highest key that you could lookup from the n'th
 106 * node on level l of the btree.
 107 */
 108static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
 109{
 110	for (; l < t->depth - 1; l++)
 111		n = get_child(n, CHILDREN_PER_NODE - 1);
 112
 113	if (n >= t->counts[l])
 114		return (sector_t) - 1;
 115
 116	return get_node(t, l, n)[KEYS_PER_NODE - 1];
 117}
 118
 119/*
 120 * Fills in a level of the btree based on the highs of the level
 121 * below it.
 122 */
 123static int setup_btree_index(unsigned int l, struct dm_table *t)
 124{
 125	unsigned int n, k;
 126	sector_t *node;
 127
 128	for (n = 0U; n < t->counts[l]; n++) {
 129		node = get_node(t, l, n);
 130
 131		for (k = 0U; k < KEYS_PER_NODE; k++)
 132			node[k] = high(t, l + 1, get_child(n, k));
 133	}
 134
 135	return 0;
 136}
 137
 138void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
 139{
 140	unsigned long size;
 141	void *addr;
 142
 143	/*
 144	 * Check that we're not going to overflow.
 145	 */
 146	if (nmemb > (ULONG_MAX / elem_size))
 147		return NULL;
 148
 149	size = nmemb * elem_size;
 150	addr = vzalloc(size);
 151
 152	return addr;
 153}
 154EXPORT_SYMBOL(dm_vcalloc);
 155
 156/*
 157 * highs, and targets are managed as dynamic arrays during a
 158 * table load.
 159 */
 160static int alloc_targets(struct dm_table *t, unsigned int num)
 161{
 162	sector_t *n_highs;
 163	struct dm_target *n_targets;
 164
 165	/*
 166	 * Allocate both the target array and offset array at once.
 167	 * Append an empty entry to catch sectors beyond the end of
 168	 * the device.
 169	 */
 170	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
 171					  sizeof(sector_t));
 172	if (!n_highs)
 173		return -ENOMEM;
 174
 175	n_targets = (struct dm_target *) (n_highs + num);
 176
 177	memset(n_highs, -1, sizeof(*n_highs) * num);
 178	vfree(t->highs);
 179
 180	t->num_allocated = num;
 181	t->highs = n_highs;
 182	t->targets = n_targets;
 183
 184	return 0;
 185}
 186
 187int dm_table_create(struct dm_table **result, fmode_t mode,
 188		    unsigned num_targets, struct mapped_device *md)
 189{
 190	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
 191
 192	if (!t)
 193		return -ENOMEM;
 194
 195	INIT_LIST_HEAD(&t->devices);
 196	INIT_LIST_HEAD(&t->target_callbacks);
 197
 198	if (!num_targets)
 199		num_targets = KEYS_PER_NODE;
 200
 201	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
 202
 203	if (!num_targets) {
 204		kfree(t);
 205		return -ENOMEM;
 206	}
 207
 208	if (alloc_targets(t, num_targets)) {
 209		kfree(t);
 210		return -ENOMEM;
 211	}
 212
 213	t->type = DM_TYPE_NONE;
 214	t->mode = mode;
 215	t->md = md;
 216	*result = t;
 217	return 0;
 218}
 219
 220static void free_devices(struct list_head *devices, struct mapped_device *md)
 221{
 222	struct list_head *tmp, *next;
 223
 224	list_for_each_safe(tmp, next, devices) {
 225		struct dm_dev_internal *dd =
 226		    list_entry(tmp, struct dm_dev_internal, list);
 227		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
 228		       dm_device_name(md), dd->dm_dev->name);
 229		dm_put_table_device(md, dd->dm_dev);
 230		kfree(dd);
 231	}
 232}
 233
 
 
 234void dm_table_destroy(struct dm_table *t)
 235{
 236	unsigned int i;
 237
 238	if (!t)
 239		return;
 240
 241	/* free the indexes */
 242	if (t->depth >= 2)
 243		vfree(t->index[t->depth - 2]);
 244
 245	/* free the targets */
 246	for (i = 0; i < t->num_targets; i++) {
 247		struct dm_target *tgt = t->targets + i;
 248
 249		if (tgt->type->dtr)
 250			tgt->type->dtr(tgt);
 251
 252		dm_put_target_type(tgt->type);
 253	}
 254
 255	vfree(t->highs);
 256
 257	/* free the device list */
 258	free_devices(&t->devices, t->md);
 259
 260	dm_free_md_mempools(t->mempools);
 261
 
 
 262	kfree(t);
 263}
 264
 265/*
 266 * See if we've already got a device in the list.
 267 */
 268static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
 269{
 270	struct dm_dev_internal *dd;
 271
 272	list_for_each_entry (dd, l, list)
 273		if (dd->dm_dev->bdev->bd_dev == dev)
 274			return dd;
 275
 276	return NULL;
 277}
 278
 279/*
 280 * If possible, this checks an area of a destination device is invalid.
 281 */
 282static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
 283				  sector_t start, sector_t len, void *data)
 284{
 285	struct request_queue *q;
 286	struct queue_limits *limits = data;
 287	struct block_device *bdev = dev->bdev;
 288	sector_t dev_size =
 289		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
 290	unsigned short logical_block_size_sectors =
 291		limits->logical_block_size >> SECTOR_SHIFT;
 292	char b[BDEVNAME_SIZE];
 293
 294	/*
 295	 * Some devices exist without request functions,
 296	 * such as loop devices not yet bound to backing files.
 297	 * Forbid the use of such devices.
 298	 */
 299	q = bdev_get_queue(bdev);
 300	if (!q || !q->make_request_fn) {
 301		DMWARN("%s: %s is not yet initialised: "
 302		       "start=%llu, len=%llu, dev_size=%llu",
 303		       dm_device_name(ti->table->md), bdevname(bdev, b),
 304		       (unsigned long long)start,
 305		       (unsigned long long)len,
 306		       (unsigned long long)dev_size);
 307		return 1;
 308	}
 309
 310	if (!dev_size)
 311		return 0;
 312
 313	if ((start >= dev_size) || (start + len > dev_size)) {
 314		DMWARN("%s: %s too small for target: "
 315		       "start=%llu, len=%llu, dev_size=%llu",
 316		       dm_device_name(ti->table->md), bdevname(bdev, b),
 317		       (unsigned long long)start,
 318		       (unsigned long long)len,
 319		       (unsigned long long)dev_size);
 320		return 1;
 321	}
 322
 323	/*
 324	 * If the target is mapped to zoned block device(s), check
 325	 * that the zones are not partially mapped.
 326	 */
 327	if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
 328		unsigned int zone_sectors = bdev_zone_sectors(bdev);
 329
 330		if (start & (zone_sectors - 1)) {
 331			DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
 332			       dm_device_name(ti->table->md),
 333			       (unsigned long long)start,
 334			       zone_sectors, bdevname(bdev, b));
 335			return 1;
 336		}
 337
 338		/*
 339		 * Note: The last zone of a zoned block device may be smaller
 340		 * than other zones. So for a target mapping the end of a
 341		 * zoned block device with such a zone, len would not be zone
 342		 * aligned. We do not allow such last smaller zone to be part
 343		 * of the mapping here to ensure that mappings with multiple
 344		 * devices do not end up with a smaller zone in the middle of
 345		 * the sector range.
 346		 */
 347		if (len & (zone_sectors - 1)) {
 348			DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
 349			       dm_device_name(ti->table->md),
 350			       (unsigned long long)len,
 351			       zone_sectors, bdevname(bdev, b));
 352			return 1;
 353		}
 354	}
 355
 356	if (logical_block_size_sectors <= 1)
 357		return 0;
 358
 359	if (start & (logical_block_size_sectors - 1)) {
 360		DMWARN("%s: start=%llu not aligned to h/w "
 361		       "logical block size %u of %s",
 362		       dm_device_name(ti->table->md),
 363		       (unsigned long long)start,
 364		       limits->logical_block_size, bdevname(bdev, b));
 365		return 1;
 366	}
 367
 368	if (len & (logical_block_size_sectors - 1)) {
 369		DMWARN("%s: len=%llu not aligned to h/w "
 370		       "logical block size %u of %s",
 371		       dm_device_name(ti->table->md),
 372		       (unsigned long long)len,
 373		       limits->logical_block_size, bdevname(bdev, b));
 374		return 1;
 375	}
 376
 377	return 0;
 378}
 379
 380/*
 381 * This upgrades the mode on an already open dm_dev, being
 382 * careful to leave things as they were if we fail to reopen the
 383 * device and not to touch the existing bdev field in case
 384 * it is accessed concurrently inside dm_table_any_congested().
 385 */
 386static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
 387			struct mapped_device *md)
 388{
 389	int r;
 390	struct dm_dev *old_dev, *new_dev;
 391
 392	old_dev = dd->dm_dev;
 393
 394	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
 395				dd->dm_dev->mode | new_mode, &new_dev);
 396	if (r)
 397		return r;
 398
 399	dd->dm_dev = new_dev;
 400	dm_put_table_device(md, old_dev);
 401
 402	return 0;
 403}
 404
 405/*
 406 * Convert the path to a device
 407 */
 408dev_t dm_get_dev_t(const char *path)
 409{
 410	dev_t dev;
 411	struct block_device *bdev;
 412
 413	bdev = lookup_bdev(path);
 414	if (IS_ERR(bdev))
 415		dev = name_to_dev_t(path);
 416	else {
 417		dev = bdev->bd_dev;
 418		bdput(bdev);
 419	}
 420
 421	return dev;
 422}
 423EXPORT_SYMBOL_GPL(dm_get_dev_t);
 424
 425/*
 426 * Add a device to the list, or just increment the usage count if
 427 * it's already present.
 428 */
 429int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
 430		  struct dm_dev **result)
 431{
 432	int r;
 433	dev_t dev;
 
 
 434	struct dm_dev_internal *dd;
 435	struct dm_table *t = ti->table;
 436
 437	BUG_ON(!t);
 438
 439	dev = dm_get_dev_t(path);
 440	if (!dev)
 441		return -ENODEV;
 
 
 
 
 
 
 
 442
 443	dd = find_device(&t->devices, dev);
 444	if (!dd) {
 445		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
 446		if (!dd)
 447			return -ENOMEM;
 448
 449		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
 450			kfree(dd);
 451			return r;
 452		}
 453
 454		refcount_set(&dd->count, 1);
 455		list_add(&dd->list, &t->devices);
 456		goto out;
 457
 458	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
 459		r = upgrade_mode(dd, mode, t->md);
 460		if (r)
 461			return r;
 462	}
 463	refcount_inc(&dd->count);
 464out:
 465	*result = dd->dm_dev;
 466	return 0;
 467}
 468EXPORT_SYMBOL(dm_get_device);
 469
 470static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
 471				sector_t start, sector_t len, void *data)
 472{
 473	struct queue_limits *limits = data;
 474	struct block_device *bdev = dev->bdev;
 475	struct request_queue *q = bdev_get_queue(bdev);
 476	char b[BDEVNAME_SIZE];
 477
 478	if (unlikely(!q)) {
 479		DMWARN("%s: Cannot set limits for nonexistent device %s",
 480		       dm_device_name(ti->table->md), bdevname(bdev, b));
 481		return 0;
 482	}
 483
 484	if (bdev_stack_limits(limits, bdev, start) < 0)
 485		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
 
 486		       "physical_block_size=%u, logical_block_size=%u, "
 487		       "alignment_offset=%u, start=%llu",
 488		       dm_device_name(ti->table->md), bdevname(bdev, b),
 489		       q->limits.physical_block_size,
 490		       q->limits.logical_block_size,
 491		       q->limits.alignment_offset,
 492		       (unsigned long long) start << SECTOR_SHIFT);
 493
 494	limits->zoned = blk_queue_zoned_model(q);
 495
 496	return 0;
 497}
 498
 499/*
 500 * Decrement a device's use count and remove it if necessary.
 501 */
 502void dm_put_device(struct dm_target *ti, struct dm_dev *d)
 503{
 504	int found = 0;
 505	struct list_head *devices = &ti->table->devices;
 506	struct dm_dev_internal *dd;
 507
 508	list_for_each_entry(dd, devices, list) {
 509		if (dd->dm_dev == d) {
 510			found = 1;
 511			break;
 512		}
 513	}
 514	if (!found) {
 515		DMWARN("%s: device %s not in table devices list",
 516		       dm_device_name(ti->table->md), d->name);
 517		return;
 518	}
 519	if (refcount_dec_and_test(&dd->count)) {
 520		dm_put_table_device(ti->table->md, d);
 521		list_del(&dd->list);
 522		kfree(dd);
 523	}
 524}
 525EXPORT_SYMBOL(dm_put_device);
 526
 527/*
 528 * Checks to see if the target joins onto the end of the table.
 529 */
 530static int adjoin(struct dm_table *table, struct dm_target *ti)
 531{
 532	struct dm_target *prev;
 533
 534	if (!table->num_targets)
 535		return !ti->begin;
 536
 537	prev = &table->targets[table->num_targets - 1];
 538	return (ti->begin == (prev->begin + prev->len));
 539}
 540
 541/*
 542 * Used to dynamically allocate the arg array.
 543 *
 544 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
 545 * process messages even if some device is suspended. These messages have a
 546 * small fixed number of arguments.
 547 *
 548 * On the other hand, dm-switch needs to process bulk data using messages and
 549 * excessive use of GFP_NOIO could cause trouble.
 550 */
 551static char **realloc_argv(unsigned *array_size, char **old_argv)
 552{
 553	char **argv;
 554	unsigned new_size;
 555	gfp_t gfp;
 556
 557	if (*array_size) {
 558		new_size = *array_size * 2;
 559		gfp = GFP_KERNEL;
 560	} else {
 561		new_size = 8;
 562		gfp = GFP_NOIO;
 563	}
 564	argv = kmalloc(new_size * sizeof(*argv), gfp);
 565	if (argv) {
 566		memcpy(argv, old_argv, *array_size * sizeof(*argv));
 567		*array_size = new_size;
 568	}
 569
 570	kfree(old_argv);
 571	return argv;
 572}
 573
 574/*
 575 * Destructively splits up the argument list to pass to ctr.
 576 */
 577int dm_split_args(int *argc, char ***argvp, char *input)
 578{
 579	char *start, *end = input, *out, **argv = NULL;
 580	unsigned array_size = 0;
 581
 582	*argc = 0;
 583
 584	if (!input) {
 585		*argvp = NULL;
 586		return 0;
 587	}
 588
 589	argv = realloc_argv(&array_size, argv);
 590	if (!argv)
 591		return -ENOMEM;
 592
 593	while (1) {
 594		/* Skip whitespace */
 595		start = skip_spaces(end);
 596
 597		if (!*start)
 598			break;	/* success, we hit the end */
 599
 600		/* 'out' is used to remove any back-quotes */
 601		end = out = start;
 602		while (*end) {
 603			/* Everything apart from '\0' can be quoted */
 604			if (*end == '\\' && *(end + 1)) {
 605				*out++ = *(end + 1);
 606				end += 2;
 607				continue;
 608			}
 609
 610			if (isspace(*end))
 611				break;	/* end of token */
 612
 613			*out++ = *end++;
 614		}
 615
 616		/* have we already filled the array ? */
 617		if ((*argc + 1) > array_size) {
 618			argv = realloc_argv(&array_size, argv);
 619			if (!argv)
 620				return -ENOMEM;
 621		}
 622
 623		/* we know this is whitespace */
 624		if (*end)
 625			end++;
 626
 627		/* terminate the string and put it in the array */
 628		*out = '\0';
 629		argv[*argc] = start;
 630		(*argc)++;
 631	}
 632
 633	*argvp = argv;
 634	return 0;
 635}
 636
 637/*
 638 * Impose necessary and sufficient conditions on a devices's table such
 639 * that any incoming bio which respects its logical_block_size can be
 640 * processed successfully.  If it falls across the boundary between
 641 * two or more targets, the size of each piece it gets split into must
 642 * be compatible with the logical_block_size of the target processing it.
 643 */
 644static int validate_hardware_logical_block_alignment(struct dm_table *table,
 645						 struct queue_limits *limits)
 646{
 647	/*
 648	 * This function uses arithmetic modulo the logical_block_size
 649	 * (in units of 512-byte sectors).
 650	 */
 651	unsigned short device_logical_block_size_sects =
 652		limits->logical_block_size >> SECTOR_SHIFT;
 653
 654	/*
 655	 * Offset of the start of the next table entry, mod logical_block_size.
 656	 */
 657	unsigned short next_target_start = 0;
 658
 659	/*
 660	 * Given an aligned bio that extends beyond the end of a
 661	 * target, how many sectors must the next target handle?
 662	 */
 663	unsigned short remaining = 0;
 664
 665	struct dm_target *uninitialized_var(ti);
 666	struct queue_limits ti_limits;
 667	unsigned i;
 668
 669	/*
 670	 * Check each entry in the table in turn.
 671	 */
 672	for (i = 0; i < dm_table_get_num_targets(table); i++) {
 673		ti = dm_table_get_target(table, i);
 674
 675		blk_set_stacking_limits(&ti_limits);
 676
 677		/* combine all target devices' limits */
 678		if (ti->type->iterate_devices)
 679			ti->type->iterate_devices(ti, dm_set_device_limits,
 680						  &ti_limits);
 681
 682		/*
 683		 * If the remaining sectors fall entirely within this
 684		 * table entry are they compatible with its logical_block_size?
 685		 */
 686		if (remaining < ti->len &&
 687		    remaining & ((ti_limits.logical_block_size >>
 688				  SECTOR_SHIFT) - 1))
 689			break;	/* Error */
 690
 691		next_target_start =
 692		    (unsigned short) ((next_target_start + ti->len) &
 693				      (device_logical_block_size_sects - 1));
 694		remaining = next_target_start ?
 695		    device_logical_block_size_sects - next_target_start : 0;
 696	}
 697
 698	if (remaining) {
 699		DMWARN("%s: table line %u (start sect %llu len %llu) "
 700		       "not aligned to h/w logical block size %u",
 701		       dm_device_name(table->md), i,
 702		       (unsigned long long) ti->begin,
 703		       (unsigned long long) ti->len,
 704		       limits->logical_block_size);
 705		return -EINVAL;
 706	}
 707
 708	return 0;
 709}
 710
 711int dm_table_add_target(struct dm_table *t, const char *type,
 712			sector_t start, sector_t len, char *params)
 713{
 714	int r = -EINVAL, argc;
 715	char **argv;
 716	struct dm_target *tgt;
 717
 718	if (t->singleton) {
 719		DMERR("%s: target type %s must appear alone in table",
 720		      dm_device_name(t->md), t->targets->type->name);
 721		return -EINVAL;
 722	}
 723
 724	BUG_ON(t->num_targets >= t->num_allocated);
 725
 726	tgt = t->targets + t->num_targets;
 727	memset(tgt, 0, sizeof(*tgt));
 728
 729	if (!len) {
 730		DMERR("%s: zero-length target", dm_device_name(t->md));
 731		return -EINVAL;
 732	}
 733
 734	tgt->type = dm_get_target_type(type);
 735	if (!tgt->type) {
 736		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
 737		return -EINVAL;
 738	}
 739
 740	if (dm_target_needs_singleton(tgt->type)) {
 741		if (t->num_targets) {
 742			tgt->error = "singleton target type must appear alone in table";
 743			goto bad;
 744		}
 745		t->singleton = true;
 746	}
 747
 748	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
 749		tgt->error = "target type may not be included in a read-only table";
 750		goto bad;
 751	}
 752
 753	if (t->immutable_target_type) {
 754		if (t->immutable_target_type != tgt->type) {
 755			tgt->error = "immutable target type cannot be mixed with other target types";
 756			goto bad;
 757		}
 758	} else if (dm_target_is_immutable(tgt->type)) {
 759		if (t->num_targets) {
 760			tgt->error = "immutable target type cannot be mixed with other target types";
 761			goto bad;
 762		}
 763		t->immutable_target_type = tgt->type;
 764	}
 765
 766	if (dm_target_has_integrity(tgt->type))
 767		t->integrity_added = 1;
 768
 769	tgt->table = t;
 770	tgt->begin = start;
 771	tgt->len = len;
 772	tgt->error = "Unknown error";
 773
 774	/*
 775	 * Does this target adjoin the previous one ?
 776	 */
 777	if (!adjoin(t, tgt)) {
 778		tgt->error = "Gap in table";
 779		goto bad;
 780	}
 781
 782	r = dm_split_args(&argc, &argv, params);
 783	if (r) {
 784		tgt->error = "couldn't split parameters (insufficient memory)";
 785		goto bad;
 786	}
 787
 788	r = tgt->type->ctr(tgt, argc, argv);
 789	kfree(argv);
 790	if (r)
 791		goto bad;
 792
 793	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
 794
 795	if (!tgt->num_discard_bios && tgt->discards_supported)
 796		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
 797		       dm_device_name(t->md), type);
 798
 
 
 
 799	return 0;
 800
 801 bad:
 802	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
 803	dm_put_target_type(tgt->type);
 804	return r;
 805}
 806
 807/*
 808 * Target argument parsing helpers.
 809 */
 810static int validate_next_arg(const struct dm_arg *arg,
 811			     struct dm_arg_set *arg_set,
 812			     unsigned *value, char **error, unsigned grouped)
 813{
 814	const char *arg_str = dm_shift_arg(arg_set);
 815	char dummy;
 816
 817	if (!arg_str ||
 818	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
 819	    (*value < arg->min) ||
 820	    (*value > arg->max) ||
 821	    (grouped && arg_set->argc < *value)) {
 822		*error = arg->error;
 823		return -EINVAL;
 824	}
 825
 826	return 0;
 827}
 828
 829int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
 830		unsigned *value, char **error)
 831{
 832	return validate_next_arg(arg, arg_set, value, error, 0);
 833}
 834EXPORT_SYMBOL(dm_read_arg);
 835
 836int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
 837		      unsigned *value, char **error)
 838{
 839	return validate_next_arg(arg, arg_set, value, error, 1);
 840}
 841EXPORT_SYMBOL(dm_read_arg_group);
 842
 843const char *dm_shift_arg(struct dm_arg_set *as)
 844{
 845	char *r;
 846
 847	if (as->argc) {
 848		as->argc--;
 849		r = *as->argv;
 850		as->argv++;
 851		return r;
 852	}
 853
 854	return NULL;
 855}
 856EXPORT_SYMBOL(dm_shift_arg);
 857
 858void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
 859{
 860	BUG_ON(as->argc < num_args);
 861	as->argc -= num_args;
 862	as->argv += num_args;
 863}
 864EXPORT_SYMBOL(dm_consume_args);
 865
 866static bool __table_type_bio_based(enum dm_queue_mode table_type)
 867{
 868	return (table_type == DM_TYPE_BIO_BASED ||
 869		table_type == DM_TYPE_DAX_BIO_BASED ||
 870		table_type == DM_TYPE_NVME_BIO_BASED);
 871}
 872
 873static bool __table_type_request_based(enum dm_queue_mode table_type)
 874{
 875	return (table_type == DM_TYPE_REQUEST_BASED ||
 876		table_type == DM_TYPE_MQ_REQUEST_BASED);
 877}
 878
 879void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
 880{
 881	t->type = type;
 882}
 883EXPORT_SYMBOL_GPL(dm_table_set_type);
 884
 885static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
 886			       sector_t start, sector_t len, void *data)
 
 887{
 888	struct request_queue *q = bdev_get_queue(dev->bdev);
 
 889
 890	return q && blk_queue_dax(q);
 
 891}
 892
 893static bool dm_table_supports_dax(struct dm_table *t)
 
 
 894{
 895	struct dm_target *ti;
 896	unsigned i;
 897
 
 
 
 898	/* Ensure that all targets support DAX. */
 899	for (i = 0; i < dm_table_get_num_targets(t); i++) {
 900		ti = dm_table_get_target(t, i);
 901
 902		if (!ti->type->direct_access)
 903			return false;
 904
 905		if (!ti->type->iterate_devices ||
 906		    !ti->type->iterate_devices(ti, device_supports_dax, NULL))
 907			return false;
 908	}
 909
 910	return true;
 911}
 912
 913static bool dm_table_does_not_support_partial_completion(struct dm_table *t);
 914
 915struct verify_rq_based_data {
 916	unsigned sq_count;
 917	unsigned mq_count;
 918};
 919
 920static int device_is_rq_based(struct dm_target *ti, struct dm_dev *dev,
 921			      sector_t start, sector_t len, void *data)
 922{
 923	struct request_queue *q = bdev_get_queue(dev->bdev);
 924	struct verify_rq_based_data *v = data;
 925
 926	if (q->mq_ops)
 927		v->mq_count++;
 928	else
 929		v->sq_count++;
 930
 931	return queue_is_rq_based(q);
 932}
 933
 934static int dm_table_determine_type(struct dm_table *t)
 935{
 936	unsigned i;
 937	unsigned bio_based = 0, request_based = 0, hybrid = 0;
 938	struct verify_rq_based_data v = {.sq_count = 0, .mq_count = 0};
 939	struct dm_target *tgt;
 940	struct list_head *devices = dm_table_get_devices(t);
 941	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
 942
 943	if (t->type != DM_TYPE_NONE) {
 944		/* target already set the table's type */
 945		if (t->type == DM_TYPE_BIO_BASED) {
 946			/* possibly upgrade to a variant of bio-based */
 947			goto verify_bio_based;
 948		}
 949		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
 950		BUG_ON(t->type == DM_TYPE_NVME_BIO_BASED);
 951		goto verify_rq_based;
 952	}
 953
 954	for (i = 0; i < t->num_targets; i++) {
 955		tgt = t->targets + i;
 956		if (dm_target_hybrid(tgt))
 957			hybrid = 1;
 958		else if (dm_target_request_based(tgt))
 959			request_based = 1;
 960		else
 961			bio_based = 1;
 962
 963		if (bio_based && request_based) {
 964			DMERR("Inconsistent table: different target types"
 965			      " can't be mixed up");
 966			return -EINVAL;
 967		}
 968	}
 969
 970	if (hybrid && !bio_based && !request_based) {
 971		/*
 972		 * The targets can work either way.
 973		 * Determine the type from the live device.
 974		 * Default to bio-based if device is new.
 975		 */
 976		if (__table_type_request_based(live_md_type))
 977			request_based = 1;
 978		else
 979			bio_based = 1;
 980	}
 981
 982	if (bio_based) {
 983verify_bio_based:
 984		/* We must use this table as bio-based */
 985		t->type = DM_TYPE_BIO_BASED;
 986		if (dm_table_supports_dax(t) ||
 987		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
 988			t->type = DM_TYPE_DAX_BIO_BASED;
 989		} else {
 990			/* Check if upgrading to NVMe bio-based is valid or required */
 991			tgt = dm_table_get_immutable_target(t);
 992			if (tgt && !tgt->max_io_len && dm_table_does_not_support_partial_completion(t)) {
 993				t->type = DM_TYPE_NVME_BIO_BASED;
 994				goto verify_rq_based; /* must be stacked directly on NVMe (blk-mq) */
 995			} else if (list_empty(devices) && live_md_type == DM_TYPE_NVME_BIO_BASED) {
 996				t->type = DM_TYPE_NVME_BIO_BASED;
 997			}
 998		}
 999		return 0;
1000	}
1001
1002	BUG_ON(!request_based); /* No targets in this table */
1003
1004	/*
1005	 * The only way to establish DM_TYPE_MQ_REQUEST_BASED is by
1006	 * having a compatible target use dm_table_set_type.
1007	 */
1008	t->type = DM_TYPE_REQUEST_BASED;
1009
1010verify_rq_based:
1011	/*
1012	 * Request-based dm supports only tables that have a single target now.
1013	 * To support multiple targets, request splitting support is needed,
1014	 * and that needs lots of changes in the block-layer.
1015	 * (e.g. request completion process for partial completion.)
1016	 */
1017	if (t->num_targets > 1) {
1018		DMERR("%s DM doesn't support multiple targets",
1019		      t->type == DM_TYPE_NVME_BIO_BASED ? "nvme bio-based" : "request-based");
1020		return -EINVAL;
1021	}
1022
1023	if (list_empty(devices)) {
1024		int srcu_idx;
1025		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
1026
1027		/* inherit live table's type and all_blk_mq */
1028		if (live_table) {
1029			t->type = live_table->type;
1030			t->all_blk_mq = live_table->all_blk_mq;
1031		}
1032		dm_put_live_table(t->md, srcu_idx);
1033		return 0;
1034	}
1035
1036	tgt = dm_table_get_immutable_target(t);
1037	if (!tgt) {
1038		DMERR("table load rejected: immutable target is required");
1039		return -EINVAL;
1040	} else if (tgt->max_io_len) {
1041		DMERR("table load rejected: immutable target that splits IO is not supported");
1042		return -EINVAL;
1043	}
1044
1045	/* Non-request-stackable devices can't be used for request-based dm */
1046	if (!tgt->type->iterate_devices ||
1047	    !tgt->type->iterate_devices(tgt, device_is_rq_based, &v)) {
1048		DMERR("table load rejected: including non-request-stackable devices");
1049		return -EINVAL;
1050	}
1051	if (v.sq_count && v.mq_count) {
1052		DMERR("table load rejected: not all devices are blk-mq request-stackable");
1053		return -EINVAL;
1054	}
1055	t->all_blk_mq = v.mq_count > 0;
1056
1057	if (!t->all_blk_mq &&
1058	    (t->type == DM_TYPE_MQ_REQUEST_BASED || t->type == DM_TYPE_NVME_BIO_BASED)) {
1059		DMERR("table load rejected: all devices are not blk-mq request-stackable");
1060		return -EINVAL;
1061	}
1062
1063	return 0;
1064}
1065
1066enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1067{
1068	return t->type;
1069}
1070
1071struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1072{
1073	return t->immutable_target_type;
1074}
1075
1076struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1077{
1078	/* Immutable target is implicitly a singleton */
1079	if (t->num_targets > 1 ||
1080	    !dm_target_is_immutable(t->targets[0].type))
1081		return NULL;
1082
1083	return t->targets;
1084}
1085
1086struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1087{
1088	struct dm_target *ti;
1089	unsigned i;
1090
1091	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1092		ti = dm_table_get_target(t, i);
1093		if (dm_target_is_wildcard(ti->type))
1094			return ti;
1095	}
1096
1097	return NULL;
1098}
1099
1100bool dm_table_bio_based(struct dm_table *t)
1101{
1102	return __table_type_bio_based(dm_table_get_type(t));
1103}
1104
1105bool dm_table_request_based(struct dm_table *t)
1106{
1107	return __table_type_request_based(dm_table_get_type(t));
1108}
1109
1110bool dm_table_all_blk_mq_devices(struct dm_table *t)
1111{
1112	return t->all_blk_mq;
1113}
1114
1115static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1116{
1117	enum dm_queue_mode type = dm_table_get_type(t);
1118	unsigned per_io_data_size = 0;
1119	unsigned min_pool_size = 0;
1120	struct dm_target *ti;
1121	unsigned i;
1122
1123	if (unlikely(type == DM_TYPE_NONE)) {
1124		DMWARN("no table type is set, can't allocate mempools");
1125		return -EINVAL;
1126	}
1127
1128	if (__table_type_bio_based(type))
1129		for (i = 0; i < t->num_targets; i++) {
1130			ti = t->targets + i;
1131			per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1132			min_pool_size = max(min_pool_size, ti->num_flush_bios);
1133		}
 
 
 
 
 
 
1134
1135	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1136					   per_io_data_size, min_pool_size);
1137	if (!t->mempools)
1138		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1139
 
1140	return 0;
1141}
1142
1143void dm_table_free_md_mempools(struct dm_table *t)
1144{
1145	dm_free_md_mempools(t->mempools);
1146	t->mempools = NULL;
1147}
1148
1149struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1150{
1151	return t->mempools;
1152}
1153
1154static int setup_indexes(struct dm_table *t)
1155{
1156	int i;
1157	unsigned int total = 0;
1158	sector_t *indexes;
1159
1160	/* allocate the space for *all* the indexes */
1161	for (i = t->depth - 2; i >= 0; i--) {
1162		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1163		total += t->counts[i];
1164	}
1165
1166	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1167	if (!indexes)
1168		return -ENOMEM;
1169
1170	/* set up internal nodes, bottom-up */
1171	for (i = t->depth - 2; i >= 0; i--) {
1172		t->index[i] = indexes;
1173		indexes += (KEYS_PER_NODE * t->counts[i]);
1174		setup_btree_index(i, t);
1175	}
1176
1177	return 0;
1178}
1179
1180/*
1181 * Builds the btree to index the map.
1182 */
1183static int dm_table_build_index(struct dm_table *t)
1184{
1185	int r = 0;
1186	unsigned int leaf_nodes;
1187
1188	/* how many indexes will the btree have ? */
1189	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1190	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1191
1192	/* leaf layer has already been set up */
1193	t->counts[t->depth - 1] = leaf_nodes;
1194	t->index[t->depth - 1] = t->highs;
1195
1196	if (t->depth >= 2)
1197		r = setup_indexes(t);
1198
1199	return r;
1200}
1201
1202static bool integrity_profile_exists(struct gendisk *disk)
1203{
1204	return !!blk_get_integrity(disk);
1205}
1206
1207/*
1208 * Get a disk whose integrity profile reflects the table's profile.
1209 * Returns NULL if integrity support was inconsistent or unavailable.
1210 */
1211static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1212{
1213	struct list_head *devices = dm_table_get_devices(t);
1214	struct dm_dev_internal *dd = NULL;
1215	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1216	unsigned i;
1217
1218	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1219		struct dm_target *ti = dm_table_get_target(t, i);
 
1220		if (!dm_target_passes_integrity(ti->type))
1221			goto no_integrity;
1222	}
1223
1224	list_for_each_entry(dd, devices, list) {
1225		template_disk = dd->dm_dev->bdev->bd_disk;
1226		if (!integrity_profile_exists(template_disk))
1227			goto no_integrity;
1228		else if (prev_disk &&
1229			 blk_integrity_compare(prev_disk, template_disk) < 0)
1230			goto no_integrity;
1231		prev_disk = template_disk;
1232	}
1233
1234	return template_disk;
1235
1236no_integrity:
1237	if (prev_disk)
1238		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1239		       dm_device_name(t->md),
1240		       prev_disk->disk_name,
1241		       template_disk->disk_name);
1242	return NULL;
1243}
1244
1245/*
1246 * Register the mapped device for blk_integrity support if the
1247 * underlying devices have an integrity profile.  But all devices may
1248 * not have matching profiles (checking all devices isn't reliable
1249 * during table load because this table may use other DM device(s) which
1250 * must be resumed before they will have an initialized integity
1251 * profile).  Consequently, stacked DM devices force a 2 stage integrity
1252 * profile validation: First pass during table load, final pass during
1253 * resume.
1254 */
1255static int dm_table_register_integrity(struct dm_table *t)
1256{
1257	struct mapped_device *md = t->md;
1258	struct gendisk *template_disk = NULL;
1259
1260	/* If target handles integrity itself do not register it here. */
1261	if (t->integrity_added)
1262		return 0;
1263
1264	template_disk = dm_table_get_integrity_disk(t);
1265	if (!template_disk)
1266		return 0;
1267
1268	if (!integrity_profile_exists(dm_disk(md))) {
1269		t->integrity_supported = true;
1270		/*
1271		 * Register integrity profile during table load; we can do
1272		 * this because the final profile must match during resume.
1273		 */
1274		blk_integrity_register(dm_disk(md),
1275				       blk_get_integrity(template_disk));
1276		return 0;
1277	}
1278
1279	/*
1280	 * If DM device already has an initialized integrity
1281	 * profile the new profile should not conflict.
1282	 */
1283	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1284		DMWARN("%s: conflict with existing integrity profile: "
1285		       "%s profile mismatch",
1286		       dm_device_name(t->md),
1287		       template_disk->disk_name);
1288		return 1;
1289	}
1290
1291	/* Preserve existing integrity profile */
1292	t->integrity_supported = true;
1293	return 0;
1294}
1295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1296/*
1297 * Prepares the table for use by building the indices,
1298 * setting the type, and allocating mempools.
1299 */
1300int dm_table_complete(struct dm_table *t)
1301{
1302	int r;
1303
1304	r = dm_table_determine_type(t);
1305	if (r) {
1306		DMERR("unable to determine table type");
1307		return r;
1308	}
1309
1310	r = dm_table_build_index(t);
1311	if (r) {
1312		DMERR("unable to build btrees");
1313		return r;
1314	}
1315
1316	r = dm_table_register_integrity(t);
1317	if (r) {
1318		DMERR("could not register integrity profile.");
1319		return r;
1320	}
1321
 
 
 
 
 
 
1322	r = dm_table_alloc_md_mempools(t, t->md);
1323	if (r)
1324		DMERR("unable to allocate mempools");
1325
1326	return r;
1327}
1328
1329static DEFINE_MUTEX(_event_lock);
1330void dm_table_event_callback(struct dm_table *t,
1331			     void (*fn)(void *), void *context)
1332{
1333	mutex_lock(&_event_lock);
1334	t->event_fn = fn;
1335	t->event_context = context;
1336	mutex_unlock(&_event_lock);
1337}
1338
1339void dm_table_event(struct dm_table *t)
1340{
1341	/*
1342	 * You can no longer call dm_table_event() from interrupt
1343	 * context, use a bottom half instead.
1344	 */
1345	BUG_ON(in_interrupt());
1346
1347	mutex_lock(&_event_lock);
1348	if (t->event_fn)
1349		t->event_fn(t->event_context);
1350	mutex_unlock(&_event_lock);
1351}
1352EXPORT_SYMBOL(dm_table_event);
1353
1354sector_t dm_table_get_size(struct dm_table *t)
1355{
1356	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1357}
1358EXPORT_SYMBOL(dm_table_get_size);
1359
1360struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1361{
1362	if (index >= t->num_targets)
1363		return NULL;
1364
1365	return t->targets + index;
1366}
1367
1368/*
1369 * Search the btree for the correct target.
1370 *
1371 * Caller should check returned pointer with dm_target_is_valid()
1372 * to trap I/O beyond end of device.
1373 */
1374struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1375{
1376	unsigned int l, n = 0, k = 0;
1377	sector_t *node;
1378
 
 
 
1379	for (l = 0; l < t->depth; l++) {
1380		n = get_child(n, k);
1381		node = get_node(t, l, n);
1382
1383		for (k = 0; k < KEYS_PER_NODE; k++)
1384			if (node[k] >= sector)
1385				break;
1386	}
1387
1388	return &t->targets[(KEYS_PER_NODE * n) + k];
1389}
1390
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1391static int count_device(struct dm_target *ti, struct dm_dev *dev,
1392			sector_t start, sector_t len, void *data)
1393{
1394	unsigned *num_devices = data;
1395
1396	(*num_devices)++;
1397
1398	return 0;
1399}
1400
 
 
 
 
 
 
 
 
 
 
 
 
 
1401/*
1402 * Check whether a table has no data devices attached using each
1403 * target's iterate_devices method.
1404 * Returns false if the result is unknown because a target doesn't
1405 * support iterate_devices.
1406 */
1407bool dm_table_has_no_data_devices(struct dm_table *table)
1408{
1409	struct dm_target *ti;
1410	unsigned i, num_devices;
1411
1412	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1413		ti = dm_table_get_target(table, i);
1414
1415		if (!ti->type->iterate_devices)
1416			return false;
1417
1418		num_devices = 0;
1419		ti->type->iterate_devices(ti, count_device, &num_devices);
1420		if (num_devices)
1421			return false;
1422	}
1423
1424	return true;
1425}
1426
1427static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1428				 sector_t start, sector_t len, void *data)
1429{
1430	struct request_queue *q = bdev_get_queue(dev->bdev);
1431	enum blk_zoned_model *zoned_model = data;
1432
1433	return q && blk_queue_zoned_model(q) == *zoned_model;
1434}
1435
 
 
 
 
 
 
 
1436static bool dm_table_supports_zoned_model(struct dm_table *t,
1437					  enum blk_zoned_model zoned_model)
1438{
1439	struct dm_target *ti;
1440	unsigned i;
1441
1442	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1443		ti = dm_table_get_target(t, i);
1444
1445		if (zoned_model == BLK_ZONED_HM &&
1446		    !dm_target_supports_zoned_hm(ti->type))
1447			return false;
1448
1449		if (!ti->type->iterate_devices ||
1450		    !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1451			return false;
1452	}
1453
1454	return true;
1455}
1456
1457static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1458				       sector_t start, sector_t len, void *data)
1459{
1460	struct request_queue *q = bdev_get_queue(dev->bdev);
1461	unsigned int *zone_sectors = data;
1462
1463	return q && blk_queue_zone_sectors(q) == *zone_sectors;
 
 
1464}
1465
1466static bool dm_table_matches_zone_sectors(struct dm_table *t,
1467					  unsigned int zone_sectors)
1468{
1469	struct dm_target *ti;
1470	unsigned i;
1471
1472	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1473		ti = dm_table_get_target(t, i);
1474
1475		if (!ti->type->iterate_devices ||
1476		    !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1477			return false;
1478	}
1479
1480	return true;
1481}
1482
1483static int validate_hardware_zoned_model(struct dm_table *table,
1484					 enum blk_zoned_model zoned_model,
1485					 unsigned int zone_sectors)
1486{
1487	if (zoned_model == BLK_ZONED_NONE)
1488		return 0;
1489
1490	if (!dm_table_supports_zoned_model(table, zoned_model)) {
1491		DMERR("%s: zoned model is not consistent across all devices",
1492		      dm_device_name(table->md));
1493		return -EINVAL;
1494	}
1495
1496	/* Check zone size validity and compatibility */
1497	if (!zone_sectors || !is_power_of_2(zone_sectors))
1498		return -EINVAL;
1499
1500	if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1501		DMERR("%s: zone sectors is not consistent across all devices",
1502		      dm_device_name(table->md));
1503		return -EINVAL;
1504	}
1505
1506	return 0;
1507}
1508
1509/*
1510 * Establish the new table's queue_limits and validate them.
1511 */
1512int dm_calculate_queue_limits(struct dm_table *table,
1513			      struct queue_limits *limits)
1514{
1515	struct dm_target *ti;
1516	struct queue_limits ti_limits;
1517	unsigned i;
1518	enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1519	unsigned int zone_sectors = 0;
1520
1521	blk_set_stacking_limits(limits);
1522
1523	for (i = 0; i < dm_table_get_num_targets(table); i++) {
 
 
1524		blk_set_stacking_limits(&ti_limits);
1525
1526		ti = dm_table_get_target(table, i);
1527
1528		if (!ti->type->iterate_devices)
1529			goto combine_limits;
1530
1531		/*
1532		 * Combine queue limits of all the devices this target uses.
1533		 */
1534		ti->type->iterate_devices(ti, dm_set_device_limits,
1535					  &ti_limits);
1536
1537		if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1538			/*
1539			 * After stacking all limits, validate all devices
1540			 * in table support this zoned model and zone sectors.
1541			 */
1542			zoned_model = ti_limits.zoned;
1543			zone_sectors = ti_limits.chunk_sectors;
1544		}
1545
1546		/* Set I/O hints portion of queue limits */
1547		if (ti->type->io_hints)
1548			ti->type->io_hints(ti, &ti_limits);
1549
1550		/*
1551		 * Check each device area is consistent with the target's
1552		 * overall queue limits.
1553		 */
1554		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1555					      &ti_limits))
1556			return -EINVAL;
1557
1558combine_limits:
1559		/*
1560		 * Merge this target's queue limits into the overall limits
1561		 * for the table.
1562		 */
1563		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1564			DMWARN("%s: adding target device "
1565			       "(start sect %llu len %llu) "
1566			       "caused an alignment inconsistency",
1567			       dm_device_name(table->md),
1568			       (unsigned long long) ti->begin,
1569			       (unsigned long long) ti->len);
1570
1571		/*
1572		 * FIXME: this should likely be moved to blk_stack_limits(), would
1573		 * also eliminate limits->zoned stacking hack in dm_set_device_limits()
1574		 */
1575		if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1576			/*
1577			 * By default, the stacked limits zoned model is set to
1578			 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update
1579			 * this model using the first target model reported
1580			 * that is not BLK_ZONED_NONE. This will be either the
1581			 * first target device zoned model or the model reported
1582			 * by the target .io_hints.
1583			 */
1584			limits->zoned = ti_limits.zoned;
1585		}
1586	}
1587
1588	/*
1589	 * Verify that the zoned model and zone sectors, as determined before
1590	 * any .io_hints override, are the same across all devices in the table.
1591	 * - this is especially relevant if .io_hints is emulating a disk-managed
1592	 *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1593	 * BUT...
1594	 */
1595	if (limits->zoned != BLK_ZONED_NONE) {
1596		/*
1597		 * ...IF the above limits stacking determined a zoned model
1598		 * validate that all of the table's devices conform to it.
1599		 */
1600		zoned_model = limits->zoned;
1601		zone_sectors = limits->chunk_sectors;
1602	}
1603	if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1604		return -EINVAL;
1605
1606	return validate_hardware_logical_block_alignment(table, limits);
1607}
1608
1609/*
1610 * Verify that all devices have an integrity profile that matches the
1611 * DM device's registered integrity profile.  If the profiles don't
1612 * match then unregister the DM device's integrity profile.
1613 */
1614static void dm_table_verify_integrity(struct dm_table *t)
1615{
1616	struct gendisk *template_disk = NULL;
1617
1618	if (t->integrity_added)
1619		return;
1620
1621	if (t->integrity_supported) {
1622		/*
1623		 * Verify that the original integrity profile
1624		 * matches all the devices in this table.
1625		 */
1626		template_disk = dm_table_get_integrity_disk(t);
1627		if (template_disk &&
1628		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1629			return;
1630	}
1631
1632	if (integrity_profile_exists(dm_disk(t->md))) {
1633		DMWARN("%s: unable to establish an integrity profile",
1634		       dm_device_name(t->md));
1635		blk_integrity_unregister(dm_disk(t->md));
1636	}
1637}
1638
1639static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1640				sector_t start, sector_t len, void *data)
1641{
1642	unsigned long flush = (unsigned long) data;
1643	struct request_queue *q = bdev_get_queue(dev->bdev);
1644
1645	return q && (q->queue_flags & flush);
1646}
1647
1648static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1649{
1650	struct dm_target *ti;
1651	unsigned i;
1652
1653	/*
1654	 * Require at least one underlying device to support flushes.
1655	 * t->devices includes internal dm devices such as mirror logs
1656	 * so we need to use iterate_devices here, which targets
1657	 * supporting flushes must provide.
1658	 */
1659	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1660		ti = dm_table_get_target(t, i);
1661
1662		if (!ti->num_flush_bios)
1663			continue;
1664
1665		if (ti->flush_supported)
1666			return true;
1667
1668		if (ti->type->iterate_devices &&
1669		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1670			return true;
1671	}
1672
1673	return false;
1674}
1675
1676static int device_dax_write_cache_enabled(struct dm_target *ti,
1677					  struct dm_dev *dev, sector_t start,
1678					  sector_t len, void *data)
1679{
1680	struct dax_device *dax_dev = dev->dax_dev;
1681
1682	if (!dax_dev)
1683		return false;
1684
1685	if (dax_write_cache_enabled(dax_dev))
1686		return true;
1687	return false;
1688}
1689
1690static int dm_table_supports_dax_write_cache(struct dm_table *t)
 
1691{
1692	struct dm_target *ti;
1693	unsigned i;
1694
1695	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1696		ti = dm_table_get_target(t, i);
1697
1698		if (ti->type->iterate_devices &&
1699		    ti->type->iterate_devices(ti,
1700				device_dax_write_cache_enabled, NULL))
1701			return true;
1702	}
1703
1704	return false;
1705}
1706
1707static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1708			    sector_t start, sector_t len, void *data)
1709{
1710	struct request_queue *q = bdev_get_queue(dev->bdev);
1711
1712	return q && blk_queue_nonrot(q);
1713}
1714
1715static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1716			     sector_t start, sector_t len, void *data)
1717{
1718	struct request_queue *q = bdev_get_queue(dev->bdev);
1719
1720	return q && !blk_queue_add_random(q);
1721}
1722
1723static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1724				   sector_t start, sector_t len, void *data)
1725{
1726	struct request_queue *q = bdev_get_queue(dev->bdev);
1727
1728	return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1729}
1730
1731static bool dm_table_all_devices_attribute(struct dm_table *t,
1732					   iterate_devices_callout_fn func)
1733{
1734	struct dm_target *ti;
1735	unsigned i;
1736
1737	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1738		ti = dm_table_get_target(t, i);
1739
1740		if (!ti->type->iterate_devices ||
1741		    !ti->type->iterate_devices(ti, func, NULL))
1742			return false;
1743	}
1744
1745	return true;
1746}
1747
1748static int device_no_partial_completion(struct dm_target *ti, struct dm_dev *dev,
1749					sector_t start, sector_t len, void *data)
1750{
1751	char b[BDEVNAME_SIZE];
1752
1753	/* For now, NVMe devices are the only devices of this class */
1754	return (strncmp(bdevname(dev->bdev, b), "nvme", 4) == 0);
1755}
1756
1757static bool dm_table_does_not_support_partial_completion(struct dm_table *t)
1758{
1759	return dm_table_all_devices_attribute(t, device_no_partial_completion);
1760}
1761
1762static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1763					 sector_t start, sector_t len, void *data)
1764{
1765	struct request_queue *q = bdev_get_queue(dev->bdev);
1766
1767	return q && !q->limits.max_write_same_sectors;
1768}
1769
1770static bool dm_table_supports_write_same(struct dm_table *t)
1771{
1772	struct dm_target *ti;
1773	unsigned i;
1774
1775	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1776		ti = dm_table_get_target(t, i);
1777
1778		if (!ti->num_write_same_bios)
1779			return false;
1780
1781		if (!ti->type->iterate_devices ||
1782		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1783			return false;
1784	}
1785
1786	return true;
1787}
1788
1789static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1790					   sector_t start, sector_t len, void *data)
1791{
1792	struct request_queue *q = bdev_get_queue(dev->bdev);
1793
1794	return q && !q->limits.max_write_zeroes_sectors;
1795}
1796
1797static bool dm_table_supports_write_zeroes(struct dm_table *t)
1798{
1799	struct dm_target *ti;
1800	unsigned i = 0;
1801
1802	while (i < dm_table_get_num_targets(t)) {
1803		ti = dm_table_get_target(t, i++);
1804
1805		if (!ti->num_write_zeroes_bios)
1806			return false;
1807
1808		if (!ti->type->iterate_devices ||
1809		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1810			return false;
1811	}
1812
1813	return true;
1814}
1815
1816static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1817				      sector_t start, sector_t len, void *data)
1818{
1819	struct request_queue *q = bdev_get_queue(dev->bdev);
1820
1821	return q && !blk_queue_discard(q);
1822}
1823
1824static bool dm_table_supports_discards(struct dm_table *t)
1825{
1826	struct dm_target *ti;
1827	unsigned i;
1828
1829	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1830		ti = dm_table_get_target(t, i);
1831
1832		if (!ti->num_discard_bios)
1833			return false;
1834
1835		/*
1836		 * Either the target provides discard support (as implied by setting
1837		 * 'discards_supported') or it relies on _all_ data devices having
1838		 * discard support.
1839		 */
1840		if (!ti->discards_supported &&
1841		    (!ti->type->iterate_devices ||
1842		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1843			return false;
1844	}
1845
1846	return true;
1847}
1848
1849static int device_not_secure_erase_capable(struct dm_target *ti,
1850					   struct dm_dev *dev, sector_t start,
1851					   sector_t len, void *data)
1852{
1853	struct request_queue *q = bdev_get_queue(dev->bdev);
1854
1855	return q && !blk_queue_secure_erase(q);
1856}
1857
1858static bool dm_table_supports_secure_erase(struct dm_table *t)
1859{
1860	struct dm_target *ti;
1861	unsigned int i;
1862
1863	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1864		ti = dm_table_get_target(t, i);
1865
1866		if (!ti->num_secure_erase_bios)
1867			return false;
1868
1869		if (!ti->type->iterate_devices ||
1870		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1871			return false;
1872	}
1873
1874	return true;
1875}
1876
1877void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1878			       struct queue_limits *limits)
 
 
 
 
 
 
 
1879{
1880	bool wc = false, fua = false;
 
1881
1882	/*
1883	 * Copy table's limits to the DM device's request_queue
1884	 */
1885	q->limits = *limits;
1886
 
 
 
 
 
1887	if (!dm_table_supports_discards(t)) {
1888		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1889		/* Must also clear discard limits... */
1890		q->limits.max_discard_sectors = 0;
1891		q->limits.max_hw_discard_sectors = 0;
1892		q->limits.discard_granularity = 0;
1893		q->limits.discard_alignment = 0;
1894		q->limits.discard_misaligned = 0;
1895	} else
1896		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
1897
1898	if (dm_table_supports_secure_erase(t))
1899		blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
1900
1901	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1902		wc = true;
1903		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1904			fua = true;
1905	}
1906	blk_queue_write_cache(q, wc, fua);
1907
1908	if (dm_table_supports_dax(t))
1909		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1910	if (dm_table_supports_dax_write_cache(t))
 
 
 
 
 
 
1911		dax_write_cache(t->md->dax_dev, true);
1912
1913	/* Ensure that all underlying devices are non-rotational. */
1914	if (dm_table_all_devices_attribute(t, device_is_nonrot))
 
 
1915		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1916	else
1917		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1918
1919	if (!dm_table_supports_write_same(t))
1920		q->limits.max_write_same_sectors = 0;
1921	if (!dm_table_supports_write_zeroes(t))
1922		q->limits.max_write_zeroes_sectors = 0;
1923
1924	if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1925		blk_queue_flag_clear(QUEUE_FLAG_NO_SG_MERGE, q);
 
 
 
 
 
 
 
 
 
1926	else
1927		blk_queue_flag_set(QUEUE_FLAG_NO_SG_MERGE, q);
1928
1929	dm_table_verify_integrity(t);
1930
1931	/*
1932	 * Determine whether or not this queue's I/O timings contribute
1933	 * to the entropy pool, Only request-based targets use this.
1934	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1935	 * have it set.
1936	 */
1937	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
 
1938		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
1939}
1940
1941unsigned int dm_table_get_num_targets(struct dm_table *t)
1942{
1943	return t->num_targets;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1944}
1945
1946struct list_head *dm_table_get_devices(struct dm_table *t)
1947{
1948	return &t->devices;
1949}
1950
1951fmode_t dm_table_get_mode(struct dm_table *t)
1952{
1953	return t->mode;
1954}
1955EXPORT_SYMBOL(dm_table_get_mode);
1956
1957enum suspend_mode {
1958	PRESUSPEND,
1959	PRESUSPEND_UNDO,
1960	POSTSUSPEND,
1961};
1962
1963static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1964{
1965	int i = t->num_targets;
1966	struct dm_target *ti = t->targets;
1967
1968	lockdep_assert_held(&t->md->suspend_lock);
 
1969
1970	while (i--) {
1971		switch (mode) {
1972		case PRESUSPEND:
1973			if (ti->type->presuspend)
1974				ti->type->presuspend(ti);
1975			break;
1976		case PRESUSPEND_UNDO:
1977			if (ti->type->presuspend_undo)
1978				ti->type->presuspend_undo(ti);
1979			break;
1980		case POSTSUSPEND:
1981			if (ti->type->postsuspend)
1982				ti->type->postsuspend(ti);
1983			break;
1984		}
1985		ti++;
1986	}
1987}
1988
1989void dm_table_presuspend_targets(struct dm_table *t)
1990{
1991	if (!t)
1992		return;
1993
1994	suspend_targets(t, PRESUSPEND);
1995}
1996
1997void dm_table_presuspend_undo_targets(struct dm_table *t)
1998{
1999	if (!t)
2000		return;
2001
2002	suspend_targets(t, PRESUSPEND_UNDO);
2003}
2004
2005void dm_table_postsuspend_targets(struct dm_table *t)
2006{
2007	if (!t)
2008		return;
2009
2010	suspend_targets(t, POSTSUSPEND);
2011}
2012
2013int dm_table_resume_targets(struct dm_table *t)
2014{
2015	int i, r = 0;
 
2016
2017	lockdep_assert_held(&t->md->suspend_lock);
2018
2019	for (i = 0; i < t->num_targets; i++) {
2020		struct dm_target *ti = t->targets + i;
2021
2022		if (!ti->type->preresume)
2023			continue;
2024
2025		r = ti->type->preresume(ti);
2026		if (r) {
2027			DMERR("%s: %s: preresume failed, error = %d",
2028			      dm_device_name(t->md), ti->type->name, r);
2029			return r;
2030		}
2031	}
2032
2033	for (i = 0; i < t->num_targets; i++) {
2034		struct dm_target *ti = t->targets + i;
2035
2036		if (ti->type->resume)
2037			ti->type->resume(ti);
2038	}
2039
2040	return 0;
2041}
2042
2043void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
2044{
2045	list_add(&cb->list, &t->target_callbacks);
2046}
2047EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
2048
2049int dm_table_any_congested(struct dm_table *t, int bdi_bits)
2050{
2051	struct dm_dev_internal *dd;
2052	struct list_head *devices = dm_table_get_devices(t);
2053	struct dm_target_callbacks *cb;
2054	int r = 0;
2055
2056	list_for_each_entry(dd, devices, list) {
2057		struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
2058		char b[BDEVNAME_SIZE];
2059
2060		if (likely(q))
2061			r |= bdi_congested(q->backing_dev_info, bdi_bits);
2062		else
2063			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
2064				     dm_device_name(t->md),
2065				     bdevname(dd->dm_dev->bdev, b));
2066	}
2067
2068	list_for_each_entry(cb, &t->target_callbacks, list)
2069		if (cb->congested_fn)
2070			r |= cb->congested_fn(cb, bdi_bits);
2071
2072	return r;
2073}
2074
2075struct mapped_device *dm_table_get_md(struct dm_table *t)
2076{
2077	return t->md;
2078}
2079EXPORT_SYMBOL(dm_table_get_md);
2080
2081void dm_table_run_md_queue_async(struct dm_table *t)
2082{
2083	struct mapped_device *md;
2084	struct request_queue *queue;
2085	unsigned long flags;
2086
2087	if (!dm_table_request_based(t))
2088		return;
2089
2090	md = dm_table_get_md(t);
2091	queue = dm_get_md_queue(md);
2092	if (queue) {
2093		if (queue->mq_ops)
2094			blk_mq_run_hw_queues(queue, true);
2095		else {
2096			spin_lock_irqsave(queue->queue_lock, flags);
2097			blk_run_queue_async(queue);
2098			spin_unlock_irqrestore(queue->queue_lock, flags);
2099		}
2100	}
2101}
2102EXPORT_SYMBOL(dm_table_run_md_queue_async);
2103