Loading...
1/*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm-core.h"
9#include "dm-rq.h"
10
11#include <linux/module.h>
12#include <linux/vmalloc.h>
13#include <linux/blkdev.h>
14#include <linux/blk-integrity.h>
15#include <linux/namei.h>
16#include <linux/ctype.h>
17#include <linux/string.h>
18#include <linux/slab.h>
19#include <linux/interrupt.h>
20#include <linux/mutex.h>
21#include <linux/delay.h>
22#include <linux/atomic.h>
23#include <linux/blk-mq.h>
24#include <linux/mount.h>
25#include <linux/dax.h>
26
27#define DM_MSG_PREFIX "table"
28
29#define NODE_SIZE L1_CACHE_BYTES
30#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
31#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
32
33/*
34 * Similar to ceiling(log_size(n))
35 */
36static unsigned int int_log(unsigned int n, unsigned int base)
37{
38 int result = 0;
39
40 while (n > 1) {
41 n = dm_div_up(n, base);
42 result++;
43 }
44
45 return result;
46}
47
48/*
49 * Calculate the index of the child node of the n'th node k'th key.
50 */
51static inline unsigned int get_child(unsigned int n, unsigned int k)
52{
53 return (n * CHILDREN_PER_NODE) + k;
54}
55
56/*
57 * Return the n'th node of level l from table t.
58 */
59static inline sector_t *get_node(struct dm_table *t,
60 unsigned int l, unsigned int n)
61{
62 return t->index[l] + (n * KEYS_PER_NODE);
63}
64
65/*
66 * Return the highest key that you could lookup from the n'th
67 * node on level l of the btree.
68 */
69static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
70{
71 for (; l < t->depth - 1; l++)
72 n = get_child(n, CHILDREN_PER_NODE - 1);
73
74 if (n >= t->counts[l])
75 return (sector_t) - 1;
76
77 return get_node(t, l, n)[KEYS_PER_NODE - 1];
78}
79
80/*
81 * Fills in a level of the btree based on the highs of the level
82 * below it.
83 */
84static int setup_btree_index(unsigned int l, struct dm_table *t)
85{
86 unsigned int n, k;
87 sector_t *node;
88
89 for (n = 0U; n < t->counts[l]; n++) {
90 node = get_node(t, l, n);
91
92 for (k = 0U; k < KEYS_PER_NODE; k++)
93 node[k] = high(t, l + 1, get_child(n, k));
94 }
95
96 return 0;
97}
98
99/*
100 * highs, and targets are managed as dynamic arrays during a
101 * table load.
102 */
103static int alloc_targets(struct dm_table *t, unsigned int num)
104{
105 sector_t *n_highs;
106 struct dm_target *n_targets;
107
108 /*
109 * Allocate both the target array and offset array at once.
110 */
111 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
112 GFP_KERNEL);
113 if (!n_highs)
114 return -ENOMEM;
115
116 n_targets = (struct dm_target *) (n_highs + num);
117
118 memset(n_highs, -1, sizeof(*n_highs) * num);
119 kvfree(t->highs);
120
121 t->num_allocated = num;
122 t->highs = n_highs;
123 t->targets = n_targets;
124
125 return 0;
126}
127
128int dm_table_create(struct dm_table **result, fmode_t mode,
129 unsigned num_targets, struct mapped_device *md)
130{
131 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
132
133 if (!t)
134 return -ENOMEM;
135
136 INIT_LIST_HEAD(&t->devices);
137
138 if (!num_targets)
139 num_targets = KEYS_PER_NODE;
140
141 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
142
143 if (!num_targets) {
144 kfree(t);
145 return -ENOMEM;
146 }
147
148 if (alloc_targets(t, num_targets)) {
149 kfree(t);
150 return -ENOMEM;
151 }
152
153 t->type = DM_TYPE_NONE;
154 t->mode = mode;
155 t->md = md;
156 *result = t;
157 return 0;
158}
159
160static void free_devices(struct list_head *devices, struct mapped_device *md)
161{
162 struct list_head *tmp, *next;
163
164 list_for_each_safe(tmp, next, devices) {
165 struct dm_dev_internal *dd =
166 list_entry(tmp, struct dm_dev_internal, list);
167 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
168 dm_device_name(md), dd->dm_dev->name);
169 dm_put_table_device(md, dd->dm_dev);
170 kfree(dd);
171 }
172}
173
174static void dm_table_destroy_crypto_profile(struct dm_table *t);
175
176void dm_table_destroy(struct dm_table *t)
177{
178 if (!t)
179 return;
180
181 /* free the indexes */
182 if (t->depth >= 2)
183 kvfree(t->index[t->depth - 2]);
184
185 /* free the targets */
186 for (unsigned int i = 0; i < t->num_targets; i++) {
187 struct dm_target *ti = dm_table_get_target(t, i);
188
189 if (ti->type->dtr)
190 ti->type->dtr(ti);
191
192 dm_put_target_type(ti->type);
193 }
194
195 kvfree(t->highs);
196
197 /* free the device list */
198 free_devices(&t->devices, t->md);
199
200 dm_free_md_mempools(t->mempools);
201
202 dm_table_destroy_crypto_profile(t);
203
204 kfree(t);
205}
206
207/*
208 * See if we've already got a device in the list.
209 */
210static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
211{
212 struct dm_dev_internal *dd;
213
214 list_for_each_entry (dd, l, list)
215 if (dd->dm_dev->bdev->bd_dev == dev)
216 return dd;
217
218 return NULL;
219}
220
221/*
222 * If possible, this checks an area of a destination device is invalid.
223 */
224static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
225 sector_t start, sector_t len, void *data)
226{
227 struct queue_limits *limits = data;
228 struct block_device *bdev = dev->bdev;
229 sector_t dev_size = bdev_nr_sectors(bdev);
230 unsigned short logical_block_size_sectors =
231 limits->logical_block_size >> SECTOR_SHIFT;
232
233 if (!dev_size)
234 return 0;
235
236 if ((start >= dev_size) || (start + len > dev_size)) {
237 DMERR("%s: %pg too small for target: "
238 "start=%llu, len=%llu, dev_size=%llu",
239 dm_device_name(ti->table->md), bdev,
240 (unsigned long long)start,
241 (unsigned long long)len,
242 (unsigned long long)dev_size);
243 return 1;
244 }
245
246 /*
247 * If the target is mapped to zoned block device(s), check
248 * that the zones are not partially mapped.
249 */
250 if (bdev_is_zoned(bdev)) {
251 unsigned int zone_sectors = bdev_zone_sectors(bdev);
252
253 if (start & (zone_sectors - 1)) {
254 DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg",
255 dm_device_name(ti->table->md),
256 (unsigned long long)start,
257 zone_sectors, bdev);
258 return 1;
259 }
260
261 /*
262 * Note: The last zone of a zoned block device may be smaller
263 * than other zones. So for a target mapping the end of a
264 * zoned block device with such a zone, len would not be zone
265 * aligned. We do not allow such last smaller zone to be part
266 * of the mapping here to ensure that mappings with multiple
267 * devices do not end up with a smaller zone in the middle of
268 * the sector range.
269 */
270 if (len & (zone_sectors - 1)) {
271 DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg",
272 dm_device_name(ti->table->md),
273 (unsigned long long)len,
274 zone_sectors, bdev);
275 return 1;
276 }
277 }
278
279 if (logical_block_size_sectors <= 1)
280 return 0;
281
282 if (start & (logical_block_size_sectors - 1)) {
283 DMERR("%s: start=%llu not aligned to h/w "
284 "logical block size %u of %pg",
285 dm_device_name(ti->table->md),
286 (unsigned long long)start,
287 limits->logical_block_size, bdev);
288 return 1;
289 }
290
291 if (len & (logical_block_size_sectors - 1)) {
292 DMERR("%s: len=%llu not aligned to h/w "
293 "logical block size %u of %pg",
294 dm_device_name(ti->table->md),
295 (unsigned long long)len,
296 limits->logical_block_size, bdev);
297 return 1;
298 }
299
300 return 0;
301}
302
303/*
304 * This upgrades the mode on an already open dm_dev, being
305 * careful to leave things as they were if we fail to reopen the
306 * device and not to touch the existing bdev field in case
307 * it is accessed concurrently.
308 */
309static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
310 struct mapped_device *md)
311{
312 int r;
313 struct dm_dev *old_dev, *new_dev;
314
315 old_dev = dd->dm_dev;
316
317 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
318 dd->dm_dev->mode | new_mode, &new_dev);
319 if (r)
320 return r;
321
322 dd->dm_dev = new_dev;
323 dm_put_table_device(md, old_dev);
324
325 return 0;
326}
327
328/*
329 * Convert the path to a device
330 */
331dev_t dm_get_dev_t(const char *path)
332{
333 dev_t dev;
334
335 if (lookup_bdev(path, &dev))
336 dev = name_to_dev_t(path);
337 return dev;
338}
339EXPORT_SYMBOL_GPL(dm_get_dev_t);
340
341/*
342 * Add a device to the list, or just increment the usage count if
343 * it's already present.
344 */
345int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
346 struct dm_dev **result)
347{
348 int r;
349 dev_t dev;
350 unsigned int major, minor;
351 char dummy;
352 struct dm_dev_internal *dd;
353 struct dm_table *t = ti->table;
354
355 BUG_ON(!t);
356
357 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
358 /* Extract the major/minor numbers */
359 dev = MKDEV(major, minor);
360 if (MAJOR(dev) != major || MINOR(dev) != minor)
361 return -EOVERFLOW;
362 } else {
363 dev = dm_get_dev_t(path);
364 if (!dev)
365 return -ENODEV;
366 }
367
368 dd = find_device(&t->devices, dev);
369 if (!dd) {
370 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
371 if (!dd)
372 return -ENOMEM;
373
374 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
375 kfree(dd);
376 return r;
377 }
378
379 refcount_set(&dd->count, 1);
380 list_add(&dd->list, &t->devices);
381 goto out;
382
383 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
384 r = upgrade_mode(dd, mode, t->md);
385 if (r)
386 return r;
387 }
388 refcount_inc(&dd->count);
389out:
390 *result = dd->dm_dev;
391 return 0;
392}
393EXPORT_SYMBOL(dm_get_device);
394
395static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
396 sector_t start, sector_t len, void *data)
397{
398 struct queue_limits *limits = data;
399 struct block_device *bdev = dev->bdev;
400 struct request_queue *q = bdev_get_queue(bdev);
401
402 if (unlikely(!q)) {
403 DMWARN("%s: Cannot set limits for nonexistent device %pg",
404 dm_device_name(ti->table->md), bdev);
405 return 0;
406 }
407
408 if (blk_stack_limits(limits, &q->limits,
409 get_start_sect(bdev) + start) < 0)
410 DMWARN("%s: adding target device %pg caused an alignment inconsistency: "
411 "physical_block_size=%u, logical_block_size=%u, "
412 "alignment_offset=%u, start=%llu",
413 dm_device_name(ti->table->md), bdev,
414 q->limits.physical_block_size,
415 q->limits.logical_block_size,
416 q->limits.alignment_offset,
417 (unsigned long long) start << SECTOR_SHIFT);
418 return 0;
419}
420
421/*
422 * Decrement a device's use count and remove it if necessary.
423 */
424void dm_put_device(struct dm_target *ti, struct dm_dev *d)
425{
426 int found = 0;
427 struct list_head *devices = &ti->table->devices;
428 struct dm_dev_internal *dd;
429
430 list_for_each_entry(dd, devices, list) {
431 if (dd->dm_dev == d) {
432 found = 1;
433 break;
434 }
435 }
436 if (!found) {
437 DMERR("%s: device %s not in table devices list",
438 dm_device_name(ti->table->md), d->name);
439 return;
440 }
441 if (refcount_dec_and_test(&dd->count)) {
442 dm_put_table_device(ti->table->md, d);
443 list_del(&dd->list);
444 kfree(dd);
445 }
446}
447EXPORT_SYMBOL(dm_put_device);
448
449/*
450 * Checks to see if the target joins onto the end of the table.
451 */
452static int adjoin(struct dm_table *t, struct dm_target *ti)
453{
454 struct dm_target *prev;
455
456 if (!t->num_targets)
457 return !ti->begin;
458
459 prev = &t->targets[t->num_targets - 1];
460 return (ti->begin == (prev->begin + prev->len));
461}
462
463/*
464 * Used to dynamically allocate the arg array.
465 *
466 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
467 * process messages even if some device is suspended. These messages have a
468 * small fixed number of arguments.
469 *
470 * On the other hand, dm-switch needs to process bulk data using messages and
471 * excessive use of GFP_NOIO could cause trouble.
472 */
473static char **realloc_argv(unsigned *size, char **old_argv)
474{
475 char **argv;
476 unsigned new_size;
477 gfp_t gfp;
478
479 if (*size) {
480 new_size = *size * 2;
481 gfp = GFP_KERNEL;
482 } else {
483 new_size = 8;
484 gfp = GFP_NOIO;
485 }
486 argv = kmalloc_array(new_size, sizeof(*argv), gfp);
487 if (argv && old_argv) {
488 memcpy(argv, old_argv, *size * sizeof(*argv));
489 *size = new_size;
490 }
491
492 kfree(old_argv);
493 return argv;
494}
495
496/*
497 * Destructively splits up the argument list to pass to ctr.
498 */
499int dm_split_args(int *argc, char ***argvp, char *input)
500{
501 char *start, *end = input, *out, **argv = NULL;
502 unsigned array_size = 0;
503
504 *argc = 0;
505
506 if (!input) {
507 *argvp = NULL;
508 return 0;
509 }
510
511 argv = realloc_argv(&array_size, argv);
512 if (!argv)
513 return -ENOMEM;
514
515 while (1) {
516 /* Skip whitespace */
517 start = skip_spaces(end);
518
519 if (!*start)
520 break; /* success, we hit the end */
521
522 /* 'out' is used to remove any back-quotes */
523 end = out = start;
524 while (*end) {
525 /* Everything apart from '\0' can be quoted */
526 if (*end == '\\' && *(end + 1)) {
527 *out++ = *(end + 1);
528 end += 2;
529 continue;
530 }
531
532 if (isspace(*end))
533 break; /* end of token */
534
535 *out++ = *end++;
536 }
537
538 /* have we already filled the array ? */
539 if ((*argc + 1) > array_size) {
540 argv = realloc_argv(&array_size, argv);
541 if (!argv)
542 return -ENOMEM;
543 }
544
545 /* we know this is whitespace */
546 if (*end)
547 end++;
548
549 /* terminate the string and put it in the array */
550 *out = '\0';
551 argv[*argc] = start;
552 (*argc)++;
553 }
554
555 *argvp = argv;
556 return 0;
557}
558
559/*
560 * Impose necessary and sufficient conditions on a devices's table such
561 * that any incoming bio which respects its logical_block_size can be
562 * processed successfully. If it falls across the boundary between
563 * two or more targets, the size of each piece it gets split into must
564 * be compatible with the logical_block_size of the target processing it.
565 */
566static int validate_hardware_logical_block_alignment(struct dm_table *t,
567 struct queue_limits *limits)
568{
569 /*
570 * This function uses arithmetic modulo the logical_block_size
571 * (in units of 512-byte sectors).
572 */
573 unsigned short device_logical_block_size_sects =
574 limits->logical_block_size >> SECTOR_SHIFT;
575
576 /*
577 * Offset of the start of the next table entry, mod logical_block_size.
578 */
579 unsigned short next_target_start = 0;
580
581 /*
582 * Given an aligned bio that extends beyond the end of a
583 * target, how many sectors must the next target handle?
584 */
585 unsigned short remaining = 0;
586
587 struct dm_target *ti;
588 struct queue_limits ti_limits;
589 unsigned int i;
590
591 /*
592 * Check each entry in the table in turn.
593 */
594 for (i = 0; i < t->num_targets; i++) {
595 ti = dm_table_get_target(t, i);
596
597 blk_set_stacking_limits(&ti_limits);
598
599 /* combine all target devices' limits */
600 if (ti->type->iterate_devices)
601 ti->type->iterate_devices(ti, dm_set_device_limits,
602 &ti_limits);
603
604 /*
605 * If the remaining sectors fall entirely within this
606 * table entry are they compatible with its logical_block_size?
607 */
608 if (remaining < ti->len &&
609 remaining & ((ti_limits.logical_block_size >>
610 SECTOR_SHIFT) - 1))
611 break; /* Error */
612
613 next_target_start =
614 (unsigned short) ((next_target_start + ti->len) &
615 (device_logical_block_size_sects - 1));
616 remaining = next_target_start ?
617 device_logical_block_size_sects - next_target_start : 0;
618 }
619
620 if (remaining) {
621 DMERR("%s: table line %u (start sect %llu len %llu) "
622 "not aligned to h/w logical block size %u",
623 dm_device_name(t->md), i,
624 (unsigned long long) ti->begin,
625 (unsigned long long) ti->len,
626 limits->logical_block_size);
627 return -EINVAL;
628 }
629
630 return 0;
631}
632
633int dm_table_add_target(struct dm_table *t, const char *type,
634 sector_t start, sector_t len, char *params)
635{
636 int r = -EINVAL, argc;
637 char **argv;
638 struct dm_target *ti;
639
640 if (t->singleton) {
641 DMERR("%s: target type %s must appear alone in table",
642 dm_device_name(t->md), t->targets->type->name);
643 return -EINVAL;
644 }
645
646 BUG_ON(t->num_targets >= t->num_allocated);
647
648 ti = t->targets + t->num_targets;
649 memset(ti, 0, sizeof(*ti));
650
651 if (!len) {
652 DMERR("%s: zero-length target", dm_device_name(t->md));
653 return -EINVAL;
654 }
655
656 ti->type = dm_get_target_type(type);
657 if (!ti->type) {
658 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
659 return -EINVAL;
660 }
661
662 if (dm_target_needs_singleton(ti->type)) {
663 if (t->num_targets) {
664 ti->error = "singleton target type must appear alone in table";
665 goto bad;
666 }
667 t->singleton = true;
668 }
669
670 if (dm_target_always_writeable(ti->type) && !(t->mode & FMODE_WRITE)) {
671 ti->error = "target type may not be included in a read-only table";
672 goto bad;
673 }
674
675 if (t->immutable_target_type) {
676 if (t->immutable_target_type != ti->type) {
677 ti->error = "immutable target type cannot be mixed with other target types";
678 goto bad;
679 }
680 } else if (dm_target_is_immutable(ti->type)) {
681 if (t->num_targets) {
682 ti->error = "immutable target type cannot be mixed with other target types";
683 goto bad;
684 }
685 t->immutable_target_type = ti->type;
686 }
687
688 if (dm_target_has_integrity(ti->type))
689 t->integrity_added = 1;
690
691 ti->table = t;
692 ti->begin = start;
693 ti->len = len;
694 ti->error = "Unknown error";
695
696 /*
697 * Does this target adjoin the previous one ?
698 */
699 if (!adjoin(t, ti)) {
700 ti->error = "Gap in table";
701 goto bad;
702 }
703
704 r = dm_split_args(&argc, &argv, params);
705 if (r) {
706 ti->error = "couldn't split parameters";
707 goto bad;
708 }
709
710 r = ti->type->ctr(ti, argc, argv);
711 kfree(argv);
712 if (r)
713 goto bad;
714
715 t->highs[t->num_targets++] = ti->begin + ti->len - 1;
716
717 if (!ti->num_discard_bios && ti->discards_supported)
718 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
719 dm_device_name(t->md), type);
720
721 if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key))
722 static_branch_enable(&swap_bios_enabled);
723
724 return 0;
725
726 bad:
727 DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r));
728 dm_put_target_type(ti->type);
729 return r;
730}
731
732/*
733 * Target argument parsing helpers.
734 */
735static int validate_next_arg(const struct dm_arg *arg,
736 struct dm_arg_set *arg_set,
737 unsigned *value, char **error, unsigned grouped)
738{
739 const char *arg_str = dm_shift_arg(arg_set);
740 char dummy;
741
742 if (!arg_str ||
743 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
744 (*value < arg->min) ||
745 (*value > arg->max) ||
746 (grouped && arg_set->argc < *value)) {
747 *error = arg->error;
748 return -EINVAL;
749 }
750
751 return 0;
752}
753
754int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
755 unsigned *value, char **error)
756{
757 return validate_next_arg(arg, arg_set, value, error, 0);
758}
759EXPORT_SYMBOL(dm_read_arg);
760
761int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
762 unsigned *value, char **error)
763{
764 return validate_next_arg(arg, arg_set, value, error, 1);
765}
766EXPORT_SYMBOL(dm_read_arg_group);
767
768const char *dm_shift_arg(struct dm_arg_set *as)
769{
770 char *r;
771
772 if (as->argc) {
773 as->argc--;
774 r = *as->argv;
775 as->argv++;
776 return r;
777 }
778
779 return NULL;
780}
781EXPORT_SYMBOL(dm_shift_arg);
782
783void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
784{
785 BUG_ON(as->argc < num_args);
786 as->argc -= num_args;
787 as->argv += num_args;
788}
789EXPORT_SYMBOL(dm_consume_args);
790
791static bool __table_type_bio_based(enum dm_queue_mode table_type)
792{
793 return (table_type == DM_TYPE_BIO_BASED ||
794 table_type == DM_TYPE_DAX_BIO_BASED);
795}
796
797static bool __table_type_request_based(enum dm_queue_mode table_type)
798{
799 return table_type == DM_TYPE_REQUEST_BASED;
800}
801
802void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
803{
804 t->type = type;
805}
806EXPORT_SYMBOL_GPL(dm_table_set_type);
807
808/* validate the dax capability of the target device span */
809static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
810 sector_t start, sector_t len, void *data)
811{
812 if (dev->dax_dev)
813 return false;
814
815 DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
816 return true;
817}
818
819/* Check devices support synchronous DAX */
820static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
821 sector_t start, sector_t len, void *data)
822{
823 return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
824}
825
826static bool dm_table_supports_dax(struct dm_table *t,
827 iterate_devices_callout_fn iterate_fn)
828{
829 /* Ensure that all targets support DAX. */
830 for (unsigned int i = 0; i < t->num_targets; i++) {
831 struct dm_target *ti = dm_table_get_target(t, i);
832
833 if (!ti->type->direct_access)
834 return false;
835
836 if (!ti->type->iterate_devices ||
837 ti->type->iterate_devices(ti, iterate_fn, NULL))
838 return false;
839 }
840
841 return true;
842}
843
844static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
845 sector_t start, sector_t len, void *data)
846{
847 struct block_device *bdev = dev->bdev;
848 struct request_queue *q = bdev_get_queue(bdev);
849
850 /* request-based cannot stack on partitions! */
851 if (bdev_is_partition(bdev))
852 return false;
853
854 return queue_is_mq(q);
855}
856
857static int dm_table_determine_type(struct dm_table *t)
858{
859 unsigned bio_based = 0, request_based = 0, hybrid = 0;
860 struct dm_target *ti;
861 struct list_head *devices = dm_table_get_devices(t);
862 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
863
864 if (t->type != DM_TYPE_NONE) {
865 /* target already set the table's type */
866 if (t->type == DM_TYPE_BIO_BASED) {
867 /* possibly upgrade to a variant of bio-based */
868 goto verify_bio_based;
869 }
870 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
871 goto verify_rq_based;
872 }
873
874 for (unsigned int i = 0; i < t->num_targets; i++) {
875 ti = dm_table_get_target(t, i);
876 if (dm_target_hybrid(ti))
877 hybrid = 1;
878 else if (dm_target_request_based(ti))
879 request_based = 1;
880 else
881 bio_based = 1;
882
883 if (bio_based && request_based) {
884 DMERR("Inconsistent table: different target types"
885 " can't be mixed up");
886 return -EINVAL;
887 }
888 }
889
890 if (hybrid && !bio_based && !request_based) {
891 /*
892 * The targets can work either way.
893 * Determine the type from the live device.
894 * Default to bio-based if device is new.
895 */
896 if (__table_type_request_based(live_md_type))
897 request_based = 1;
898 else
899 bio_based = 1;
900 }
901
902 if (bio_based) {
903verify_bio_based:
904 /* We must use this table as bio-based */
905 t->type = DM_TYPE_BIO_BASED;
906 if (dm_table_supports_dax(t, device_not_dax_capable) ||
907 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
908 t->type = DM_TYPE_DAX_BIO_BASED;
909 }
910 return 0;
911 }
912
913 BUG_ON(!request_based); /* No targets in this table */
914
915 t->type = DM_TYPE_REQUEST_BASED;
916
917verify_rq_based:
918 /*
919 * Request-based dm supports only tables that have a single target now.
920 * To support multiple targets, request splitting support is needed,
921 * and that needs lots of changes in the block-layer.
922 * (e.g. request completion process for partial completion.)
923 */
924 if (t->num_targets > 1) {
925 DMERR("request-based DM doesn't support multiple targets");
926 return -EINVAL;
927 }
928
929 if (list_empty(devices)) {
930 int srcu_idx;
931 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
932
933 /* inherit live table's type */
934 if (live_table)
935 t->type = live_table->type;
936 dm_put_live_table(t->md, srcu_idx);
937 return 0;
938 }
939
940 ti = dm_table_get_immutable_target(t);
941 if (!ti) {
942 DMERR("table load rejected: immutable target is required");
943 return -EINVAL;
944 } else if (ti->max_io_len) {
945 DMERR("table load rejected: immutable target that splits IO is not supported");
946 return -EINVAL;
947 }
948
949 /* Non-request-stackable devices can't be used for request-based dm */
950 if (!ti->type->iterate_devices ||
951 !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) {
952 DMERR("table load rejected: including non-request-stackable devices");
953 return -EINVAL;
954 }
955
956 return 0;
957}
958
959enum dm_queue_mode dm_table_get_type(struct dm_table *t)
960{
961 return t->type;
962}
963
964struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
965{
966 return t->immutable_target_type;
967}
968
969struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
970{
971 /* Immutable target is implicitly a singleton */
972 if (t->num_targets > 1 ||
973 !dm_target_is_immutable(t->targets[0].type))
974 return NULL;
975
976 return t->targets;
977}
978
979struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
980{
981 for (unsigned int i = 0; i < t->num_targets; i++) {
982 struct dm_target *ti = dm_table_get_target(t, i);
983
984 if (dm_target_is_wildcard(ti->type))
985 return ti;
986 }
987
988 return NULL;
989}
990
991bool dm_table_bio_based(struct dm_table *t)
992{
993 return __table_type_bio_based(dm_table_get_type(t));
994}
995
996bool dm_table_request_based(struct dm_table *t)
997{
998 return __table_type_request_based(dm_table_get_type(t));
999}
1000
1001static bool dm_table_supports_poll(struct dm_table *t);
1002
1003static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1004{
1005 enum dm_queue_mode type = dm_table_get_type(t);
1006 unsigned int per_io_data_size = 0, front_pad, io_front_pad;
1007 unsigned int min_pool_size = 0, pool_size;
1008 struct dm_md_mempools *pools;
1009
1010 if (unlikely(type == DM_TYPE_NONE)) {
1011 DMERR("no table type is set, can't allocate mempools");
1012 return -EINVAL;
1013 }
1014
1015 pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
1016 if (!pools)
1017 return -ENOMEM;
1018
1019 if (type == DM_TYPE_REQUEST_BASED) {
1020 pool_size = dm_get_reserved_rq_based_ios();
1021 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
1022 goto init_bs;
1023 }
1024
1025 for (unsigned int i = 0; i < t->num_targets; i++) {
1026 struct dm_target *ti = dm_table_get_target(t, i);
1027
1028 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1029 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1030 }
1031 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
1032 front_pad = roundup(per_io_data_size,
1033 __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
1034
1035 io_front_pad = roundup(per_io_data_size,
1036 __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
1037 if (bioset_init(&pools->io_bs, pool_size, io_front_pad,
1038 dm_table_supports_poll(t) ? BIOSET_PERCPU_CACHE : 0))
1039 goto out_free_pools;
1040 if (t->integrity_supported &&
1041 bioset_integrity_create(&pools->io_bs, pool_size))
1042 goto out_free_pools;
1043init_bs:
1044 if (bioset_init(&pools->bs, pool_size, front_pad, 0))
1045 goto out_free_pools;
1046 if (t->integrity_supported &&
1047 bioset_integrity_create(&pools->bs, pool_size))
1048 goto out_free_pools;
1049
1050 t->mempools = pools;
1051 return 0;
1052
1053out_free_pools:
1054 dm_free_md_mempools(pools);
1055 return -ENOMEM;
1056}
1057
1058static int setup_indexes(struct dm_table *t)
1059{
1060 int i;
1061 unsigned int total = 0;
1062 sector_t *indexes;
1063
1064 /* allocate the space for *all* the indexes */
1065 for (i = t->depth - 2; i >= 0; i--) {
1066 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1067 total += t->counts[i];
1068 }
1069
1070 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1071 if (!indexes)
1072 return -ENOMEM;
1073
1074 /* set up internal nodes, bottom-up */
1075 for (i = t->depth - 2; i >= 0; i--) {
1076 t->index[i] = indexes;
1077 indexes += (KEYS_PER_NODE * t->counts[i]);
1078 setup_btree_index(i, t);
1079 }
1080
1081 return 0;
1082}
1083
1084/*
1085 * Builds the btree to index the map.
1086 */
1087static int dm_table_build_index(struct dm_table *t)
1088{
1089 int r = 0;
1090 unsigned int leaf_nodes;
1091
1092 /* how many indexes will the btree have ? */
1093 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1094 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1095
1096 /* leaf layer has already been set up */
1097 t->counts[t->depth - 1] = leaf_nodes;
1098 t->index[t->depth - 1] = t->highs;
1099
1100 if (t->depth >= 2)
1101 r = setup_indexes(t);
1102
1103 return r;
1104}
1105
1106static bool integrity_profile_exists(struct gendisk *disk)
1107{
1108 return !!blk_get_integrity(disk);
1109}
1110
1111/*
1112 * Get a disk whose integrity profile reflects the table's profile.
1113 * Returns NULL if integrity support was inconsistent or unavailable.
1114 */
1115static struct gendisk *dm_table_get_integrity_disk(struct dm_table *t)
1116{
1117 struct list_head *devices = dm_table_get_devices(t);
1118 struct dm_dev_internal *dd = NULL;
1119 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1120
1121 for (unsigned int i = 0; i < t->num_targets; i++) {
1122 struct dm_target *ti = dm_table_get_target(t, i);
1123
1124 if (!dm_target_passes_integrity(ti->type))
1125 goto no_integrity;
1126 }
1127
1128 list_for_each_entry(dd, devices, list) {
1129 template_disk = dd->dm_dev->bdev->bd_disk;
1130 if (!integrity_profile_exists(template_disk))
1131 goto no_integrity;
1132 else if (prev_disk &&
1133 blk_integrity_compare(prev_disk, template_disk) < 0)
1134 goto no_integrity;
1135 prev_disk = template_disk;
1136 }
1137
1138 return template_disk;
1139
1140no_integrity:
1141 if (prev_disk)
1142 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1143 dm_device_name(t->md),
1144 prev_disk->disk_name,
1145 template_disk->disk_name);
1146 return NULL;
1147}
1148
1149/*
1150 * Register the mapped device for blk_integrity support if the
1151 * underlying devices have an integrity profile. But all devices may
1152 * not have matching profiles (checking all devices isn't reliable
1153 * during table load because this table may use other DM device(s) which
1154 * must be resumed before they will have an initialized integity
1155 * profile). Consequently, stacked DM devices force a 2 stage integrity
1156 * profile validation: First pass during table load, final pass during
1157 * resume.
1158 */
1159static int dm_table_register_integrity(struct dm_table *t)
1160{
1161 struct mapped_device *md = t->md;
1162 struct gendisk *template_disk = NULL;
1163
1164 /* If target handles integrity itself do not register it here. */
1165 if (t->integrity_added)
1166 return 0;
1167
1168 template_disk = dm_table_get_integrity_disk(t);
1169 if (!template_disk)
1170 return 0;
1171
1172 if (!integrity_profile_exists(dm_disk(md))) {
1173 t->integrity_supported = true;
1174 /*
1175 * Register integrity profile during table load; we can do
1176 * this because the final profile must match during resume.
1177 */
1178 blk_integrity_register(dm_disk(md),
1179 blk_get_integrity(template_disk));
1180 return 0;
1181 }
1182
1183 /*
1184 * If DM device already has an initialized integrity
1185 * profile the new profile should not conflict.
1186 */
1187 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1188 DMERR("%s: conflict with existing integrity profile: "
1189 "%s profile mismatch",
1190 dm_device_name(t->md),
1191 template_disk->disk_name);
1192 return 1;
1193 }
1194
1195 /* Preserve existing integrity profile */
1196 t->integrity_supported = true;
1197 return 0;
1198}
1199
1200#ifdef CONFIG_BLK_INLINE_ENCRYPTION
1201
1202struct dm_crypto_profile {
1203 struct blk_crypto_profile profile;
1204 struct mapped_device *md;
1205};
1206
1207struct dm_keyslot_evict_args {
1208 const struct blk_crypto_key *key;
1209 int err;
1210};
1211
1212static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1213 sector_t start, sector_t len, void *data)
1214{
1215 struct dm_keyslot_evict_args *args = data;
1216 int err;
1217
1218 err = blk_crypto_evict_key(dev->bdev, args->key);
1219 if (!args->err)
1220 args->err = err;
1221 /* Always try to evict the key from all devices. */
1222 return 0;
1223}
1224
1225/*
1226 * When an inline encryption key is evicted from a device-mapper device, evict
1227 * it from all the underlying devices.
1228 */
1229static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1230 const struct blk_crypto_key *key, unsigned int slot)
1231{
1232 struct mapped_device *md =
1233 container_of(profile, struct dm_crypto_profile, profile)->md;
1234 struct dm_keyslot_evict_args args = { key };
1235 struct dm_table *t;
1236 int srcu_idx;
1237
1238 t = dm_get_live_table(md, &srcu_idx);
1239 if (!t)
1240 return 0;
1241
1242 for (unsigned int i = 0; i < t->num_targets; i++) {
1243 struct dm_target *ti = dm_table_get_target(t, i);
1244
1245 if (!ti->type->iterate_devices)
1246 continue;
1247 ti->type->iterate_devices(ti, dm_keyslot_evict_callback, &args);
1248 }
1249
1250 dm_put_live_table(md, srcu_idx);
1251 return args.err;
1252}
1253
1254static int
1255device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1256 sector_t start, sector_t len, void *data)
1257{
1258 struct blk_crypto_profile *parent = data;
1259 struct blk_crypto_profile *child =
1260 bdev_get_queue(dev->bdev)->crypto_profile;
1261
1262 blk_crypto_intersect_capabilities(parent, child);
1263 return 0;
1264}
1265
1266void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1267{
1268 struct dm_crypto_profile *dmcp = container_of(profile,
1269 struct dm_crypto_profile,
1270 profile);
1271
1272 if (!profile)
1273 return;
1274
1275 blk_crypto_profile_destroy(profile);
1276 kfree(dmcp);
1277}
1278
1279static void dm_table_destroy_crypto_profile(struct dm_table *t)
1280{
1281 dm_destroy_crypto_profile(t->crypto_profile);
1282 t->crypto_profile = NULL;
1283}
1284
1285/*
1286 * Constructs and initializes t->crypto_profile with a crypto profile that
1287 * represents the common set of crypto capabilities of the devices described by
1288 * the dm_table. However, if the constructed crypto profile doesn't support all
1289 * crypto capabilities that are supported by the current mapped_device, it
1290 * returns an error instead, since we don't support removing crypto capabilities
1291 * on table changes. Finally, if the constructed crypto profile is "empty" (has
1292 * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1293 */
1294static int dm_table_construct_crypto_profile(struct dm_table *t)
1295{
1296 struct dm_crypto_profile *dmcp;
1297 struct blk_crypto_profile *profile;
1298 unsigned int i;
1299 bool empty_profile = true;
1300
1301 dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1302 if (!dmcp)
1303 return -ENOMEM;
1304 dmcp->md = t->md;
1305
1306 profile = &dmcp->profile;
1307 blk_crypto_profile_init(profile, 0);
1308 profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1309 profile->max_dun_bytes_supported = UINT_MAX;
1310 memset(profile->modes_supported, 0xFF,
1311 sizeof(profile->modes_supported));
1312
1313 for (i = 0; i < t->num_targets; i++) {
1314 struct dm_target *ti = dm_table_get_target(t, i);
1315
1316 if (!dm_target_passes_crypto(ti->type)) {
1317 blk_crypto_intersect_capabilities(profile, NULL);
1318 break;
1319 }
1320 if (!ti->type->iterate_devices)
1321 continue;
1322 ti->type->iterate_devices(ti,
1323 device_intersect_crypto_capabilities,
1324 profile);
1325 }
1326
1327 if (t->md->queue &&
1328 !blk_crypto_has_capabilities(profile,
1329 t->md->queue->crypto_profile)) {
1330 DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1331 dm_destroy_crypto_profile(profile);
1332 return -EINVAL;
1333 }
1334
1335 /*
1336 * If the new profile doesn't actually support any crypto capabilities,
1337 * we may as well represent it with a NULL profile.
1338 */
1339 for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1340 if (profile->modes_supported[i]) {
1341 empty_profile = false;
1342 break;
1343 }
1344 }
1345
1346 if (empty_profile) {
1347 dm_destroy_crypto_profile(profile);
1348 profile = NULL;
1349 }
1350
1351 /*
1352 * t->crypto_profile is only set temporarily while the table is being
1353 * set up, and it gets set to NULL after the profile has been
1354 * transferred to the request_queue.
1355 */
1356 t->crypto_profile = profile;
1357
1358 return 0;
1359}
1360
1361static void dm_update_crypto_profile(struct request_queue *q,
1362 struct dm_table *t)
1363{
1364 if (!t->crypto_profile)
1365 return;
1366
1367 /* Make the crypto profile less restrictive. */
1368 if (!q->crypto_profile) {
1369 blk_crypto_register(t->crypto_profile, q);
1370 } else {
1371 blk_crypto_update_capabilities(q->crypto_profile,
1372 t->crypto_profile);
1373 dm_destroy_crypto_profile(t->crypto_profile);
1374 }
1375 t->crypto_profile = NULL;
1376}
1377
1378#else /* CONFIG_BLK_INLINE_ENCRYPTION */
1379
1380static int dm_table_construct_crypto_profile(struct dm_table *t)
1381{
1382 return 0;
1383}
1384
1385void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1386{
1387}
1388
1389static void dm_table_destroy_crypto_profile(struct dm_table *t)
1390{
1391}
1392
1393static void dm_update_crypto_profile(struct request_queue *q,
1394 struct dm_table *t)
1395{
1396}
1397
1398#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1399
1400/*
1401 * Prepares the table for use by building the indices,
1402 * setting the type, and allocating mempools.
1403 */
1404int dm_table_complete(struct dm_table *t)
1405{
1406 int r;
1407
1408 r = dm_table_determine_type(t);
1409 if (r) {
1410 DMERR("unable to determine table type");
1411 return r;
1412 }
1413
1414 r = dm_table_build_index(t);
1415 if (r) {
1416 DMERR("unable to build btrees");
1417 return r;
1418 }
1419
1420 r = dm_table_register_integrity(t);
1421 if (r) {
1422 DMERR("could not register integrity profile.");
1423 return r;
1424 }
1425
1426 r = dm_table_construct_crypto_profile(t);
1427 if (r) {
1428 DMERR("could not construct crypto profile.");
1429 return r;
1430 }
1431
1432 r = dm_table_alloc_md_mempools(t, t->md);
1433 if (r)
1434 DMERR("unable to allocate mempools");
1435
1436 return r;
1437}
1438
1439static DEFINE_MUTEX(_event_lock);
1440void dm_table_event_callback(struct dm_table *t,
1441 void (*fn)(void *), void *context)
1442{
1443 mutex_lock(&_event_lock);
1444 t->event_fn = fn;
1445 t->event_context = context;
1446 mutex_unlock(&_event_lock);
1447}
1448
1449void dm_table_event(struct dm_table *t)
1450{
1451 mutex_lock(&_event_lock);
1452 if (t->event_fn)
1453 t->event_fn(t->event_context);
1454 mutex_unlock(&_event_lock);
1455}
1456EXPORT_SYMBOL(dm_table_event);
1457
1458inline sector_t dm_table_get_size(struct dm_table *t)
1459{
1460 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1461}
1462EXPORT_SYMBOL(dm_table_get_size);
1463
1464/*
1465 * Search the btree for the correct target.
1466 *
1467 * Caller should check returned pointer for NULL
1468 * to trap I/O beyond end of device.
1469 */
1470struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1471{
1472 unsigned int l, n = 0, k = 0;
1473 sector_t *node;
1474
1475 if (unlikely(sector >= dm_table_get_size(t)))
1476 return NULL;
1477
1478 for (l = 0; l < t->depth; l++) {
1479 n = get_child(n, k);
1480 node = get_node(t, l, n);
1481
1482 for (k = 0; k < KEYS_PER_NODE; k++)
1483 if (node[k] >= sector)
1484 break;
1485 }
1486
1487 return &t->targets[(KEYS_PER_NODE * n) + k];
1488}
1489
1490static int device_not_poll_capable(struct dm_target *ti, struct dm_dev *dev,
1491 sector_t start, sector_t len, void *data)
1492{
1493 struct request_queue *q = bdev_get_queue(dev->bdev);
1494
1495 return !test_bit(QUEUE_FLAG_POLL, &q->queue_flags);
1496}
1497
1498/*
1499 * type->iterate_devices() should be called when the sanity check needs to
1500 * iterate and check all underlying data devices. iterate_devices() will
1501 * iterate all underlying data devices until it encounters a non-zero return
1502 * code, returned by whether the input iterate_devices_callout_fn, or
1503 * iterate_devices() itself internally.
1504 *
1505 * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1506 * iterate multiple underlying devices internally, in which case a non-zero
1507 * return code returned by iterate_devices_callout_fn will stop the iteration
1508 * in advance.
1509 *
1510 * Cases requiring _any_ underlying device supporting some kind of attribute,
1511 * should use the iteration structure like dm_table_any_dev_attr(), or call
1512 * it directly. @func should handle semantics of positive examples, e.g.
1513 * capable of something.
1514 *
1515 * Cases requiring _all_ underlying devices supporting some kind of attribute,
1516 * should use the iteration structure like dm_table_supports_nowait() or
1517 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1518 * uses an @anti_func that handle semantics of counter examples, e.g. not
1519 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1520 */
1521static bool dm_table_any_dev_attr(struct dm_table *t,
1522 iterate_devices_callout_fn func, void *data)
1523{
1524 for (unsigned int i = 0; i < t->num_targets; i++) {
1525 struct dm_target *ti = dm_table_get_target(t, i);
1526
1527 if (ti->type->iterate_devices &&
1528 ti->type->iterate_devices(ti, func, data))
1529 return true;
1530 }
1531
1532 return false;
1533}
1534
1535static int count_device(struct dm_target *ti, struct dm_dev *dev,
1536 sector_t start, sector_t len, void *data)
1537{
1538 unsigned *num_devices = data;
1539
1540 (*num_devices)++;
1541
1542 return 0;
1543}
1544
1545static bool dm_table_supports_poll(struct dm_table *t)
1546{
1547 for (unsigned int i = 0; i < t->num_targets; i++) {
1548 struct dm_target *ti = dm_table_get_target(t, i);
1549
1550 if (!ti->type->iterate_devices ||
1551 ti->type->iterate_devices(ti, device_not_poll_capable, NULL))
1552 return false;
1553 }
1554
1555 return true;
1556}
1557
1558/*
1559 * Check whether a table has no data devices attached using each
1560 * target's iterate_devices method.
1561 * Returns false if the result is unknown because a target doesn't
1562 * support iterate_devices.
1563 */
1564bool dm_table_has_no_data_devices(struct dm_table *t)
1565{
1566 for (unsigned int i = 0; i < t->num_targets; i++) {
1567 struct dm_target *ti = dm_table_get_target(t, i);
1568 unsigned num_devices = 0;
1569
1570 if (!ti->type->iterate_devices)
1571 return false;
1572
1573 ti->type->iterate_devices(ti, count_device, &num_devices);
1574 if (num_devices)
1575 return false;
1576 }
1577
1578 return true;
1579}
1580
1581static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1582 sector_t start, sector_t len, void *data)
1583{
1584 struct request_queue *q = bdev_get_queue(dev->bdev);
1585 enum blk_zoned_model *zoned_model = data;
1586
1587 return blk_queue_zoned_model(q) != *zoned_model;
1588}
1589
1590/*
1591 * Check the device zoned model based on the target feature flag. If the target
1592 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1593 * also accepted but all devices must have the same zoned model. If the target
1594 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1595 * zoned model with all zoned devices having the same zone size.
1596 */
1597static bool dm_table_supports_zoned_model(struct dm_table *t,
1598 enum blk_zoned_model zoned_model)
1599{
1600 for (unsigned int i = 0; i < t->num_targets; i++) {
1601 struct dm_target *ti = dm_table_get_target(t, i);
1602
1603 if (dm_target_supports_zoned_hm(ti->type)) {
1604 if (!ti->type->iterate_devices ||
1605 ti->type->iterate_devices(ti, device_not_zoned_model,
1606 &zoned_model))
1607 return false;
1608 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1609 if (zoned_model == BLK_ZONED_HM)
1610 return false;
1611 }
1612 }
1613
1614 return true;
1615}
1616
1617static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1618 sector_t start, sector_t len, void *data)
1619{
1620 unsigned int *zone_sectors = data;
1621
1622 if (!bdev_is_zoned(dev->bdev))
1623 return 0;
1624 return bdev_zone_sectors(dev->bdev) != *zone_sectors;
1625}
1626
1627/*
1628 * Check consistency of zoned model and zone sectors across all targets. For
1629 * zone sectors, if the destination device is a zoned block device, it shall
1630 * have the specified zone_sectors.
1631 */
1632static int validate_hardware_zoned_model(struct dm_table *t,
1633 enum blk_zoned_model zoned_model,
1634 unsigned int zone_sectors)
1635{
1636 if (zoned_model == BLK_ZONED_NONE)
1637 return 0;
1638
1639 if (!dm_table_supports_zoned_model(t, zoned_model)) {
1640 DMERR("%s: zoned model is not consistent across all devices",
1641 dm_device_name(t->md));
1642 return -EINVAL;
1643 }
1644
1645 /* Check zone size validity and compatibility */
1646 if (!zone_sectors || !is_power_of_2(zone_sectors))
1647 return -EINVAL;
1648
1649 if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) {
1650 DMERR("%s: zone sectors is not consistent across all zoned devices",
1651 dm_device_name(t->md));
1652 return -EINVAL;
1653 }
1654
1655 return 0;
1656}
1657
1658/*
1659 * Establish the new table's queue_limits and validate them.
1660 */
1661int dm_calculate_queue_limits(struct dm_table *t,
1662 struct queue_limits *limits)
1663{
1664 struct queue_limits ti_limits;
1665 enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1666 unsigned int zone_sectors = 0;
1667
1668 blk_set_stacking_limits(limits);
1669
1670 for (unsigned int i = 0; i < t->num_targets; i++) {
1671 struct dm_target *ti = dm_table_get_target(t, i);
1672
1673 blk_set_stacking_limits(&ti_limits);
1674
1675 if (!ti->type->iterate_devices)
1676 goto combine_limits;
1677
1678 /*
1679 * Combine queue limits of all the devices this target uses.
1680 */
1681 ti->type->iterate_devices(ti, dm_set_device_limits,
1682 &ti_limits);
1683
1684 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1685 /*
1686 * After stacking all limits, validate all devices
1687 * in table support this zoned model and zone sectors.
1688 */
1689 zoned_model = ti_limits.zoned;
1690 zone_sectors = ti_limits.chunk_sectors;
1691 }
1692
1693 /* Set I/O hints portion of queue limits */
1694 if (ti->type->io_hints)
1695 ti->type->io_hints(ti, &ti_limits);
1696
1697 /*
1698 * Check each device area is consistent with the target's
1699 * overall queue limits.
1700 */
1701 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1702 &ti_limits))
1703 return -EINVAL;
1704
1705combine_limits:
1706 /*
1707 * Merge this target's queue limits into the overall limits
1708 * for the table.
1709 */
1710 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1711 DMWARN("%s: adding target device "
1712 "(start sect %llu len %llu) "
1713 "caused an alignment inconsistency",
1714 dm_device_name(t->md),
1715 (unsigned long long) ti->begin,
1716 (unsigned long long) ti->len);
1717 }
1718
1719 /*
1720 * Verify that the zoned model and zone sectors, as determined before
1721 * any .io_hints override, are the same across all devices in the table.
1722 * - this is especially relevant if .io_hints is emulating a disk-managed
1723 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1724 * BUT...
1725 */
1726 if (limits->zoned != BLK_ZONED_NONE) {
1727 /*
1728 * ...IF the above limits stacking determined a zoned model
1729 * validate that all of the table's devices conform to it.
1730 */
1731 zoned_model = limits->zoned;
1732 zone_sectors = limits->chunk_sectors;
1733 }
1734 if (validate_hardware_zoned_model(t, zoned_model, zone_sectors))
1735 return -EINVAL;
1736
1737 return validate_hardware_logical_block_alignment(t, limits);
1738}
1739
1740/*
1741 * Verify that all devices have an integrity profile that matches the
1742 * DM device's registered integrity profile. If the profiles don't
1743 * match then unregister the DM device's integrity profile.
1744 */
1745static void dm_table_verify_integrity(struct dm_table *t)
1746{
1747 struct gendisk *template_disk = NULL;
1748
1749 if (t->integrity_added)
1750 return;
1751
1752 if (t->integrity_supported) {
1753 /*
1754 * Verify that the original integrity profile
1755 * matches all the devices in this table.
1756 */
1757 template_disk = dm_table_get_integrity_disk(t);
1758 if (template_disk &&
1759 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1760 return;
1761 }
1762
1763 if (integrity_profile_exists(dm_disk(t->md))) {
1764 DMWARN("%s: unable to establish an integrity profile",
1765 dm_device_name(t->md));
1766 blk_integrity_unregister(dm_disk(t->md));
1767 }
1768}
1769
1770static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1771 sector_t start, sector_t len, void *data)
1772{
1773 unsigned long flush = (unsigned long) data;
1774 struct request_queue *q = bdev_get_queue(dev->bdev);
1775
1776 return (q->queue_flags & flush);
1777}
1778
1779static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1780{
1781 /*
1782 * Require at least one underlying device to support flushes.
1783 * t->devices includes internal dm devices such as mirror logs
1784 * so we need to use iterate_devices here, which targets
1785 * supporting flushes must provide.
1786 */
1787 for (unsigned int i = 0; i < t->num_targets; i++) {
1788 struct dm_target *ti = dm_table_get_target(t, i);
1789
1790 if (!ti->num_flush_bios)
1791 continue;
1792
1793 if (ti->flush_supported)
1794 return true;
1795
1796 if (ti->type->iterate_devices &&
1797 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1798 return true;
1799 }
1800
1801 return false;
1802}
1803
1804static int device_dax_write_cache_enabled(struct dm_target *ti,
1805 struct dm_dev *dev, sector_t start,
1806 sector_t len, void *data)
1807{
1808 struct dax_device *dax_dev = dev->dax_dev;
1809
1810 if (!dax_dev)
1811 return false;
1812
1813 if (dax_write_cache_enabled(dax_dev))
1814 return true;
1815 return false;
1816}
1817
1818static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1819 sector_t start, sector_t len, void *data)
1820{
1821 return !bdev_nonrot(dev->bdev);
1822}
1823
1824static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1825 sector_t start, sector_t len, void *data)
1826{
1827 struct request_queue *q = bdev_get_queue(dev->bdev);
1828
1829 return !blk_queue_add_random(q);
1830}
1831
1832static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1833 sector_t start, sector_t len, void *data)
1834{
1835 struct request_queue *q = bdev_get_queue(dev->bdev);
1836
1837 return !q->limits.max_write_zeroes_sectors;
1838}
1839
1840static bool dm_table_supports_write_zeroes(struct dm_table *t)
1841{
1842 for (unsigned int i = 0; i < t->num_targets; i++) {
1843 struct dm_target *ti = dm_table_get_target(t, i);
1844
1845 if (!ti->num_write_zeroes_bios)
1846 return false;
1847
1848 if (!ti->type->iterate_devices ||
1849 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1850 return false;
1851 }
1852
1853 return true;
1854}
1855
1856static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1857 sector_t start, sector_t len, void *data)
1858{
1859 return !bdev_nowait(dev->bdev);
1860}
1861
1862static bool dm_table_supports_nowait(struct dm_table *t)
1863{
1864 for (unsigned int i = 0; i < t->num_targets; i++) {
1865 struct dm_target *ti = dm_table_get_target(t, i);
1866
1867 if (!dm_target_supports_nowait(ti->type))
1868 return false;
1869
1870 if (!ti->type->iterate_devices ||
1871 ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1872 return false;
1873 }
1874
1875 return true;
1876}
1877
1878static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1879 sector_t start, sector_t len, void *data)
1880{
1881 return !bdev_max_discard_sectors(dev->bdev);
1882}
1883
1884static bool dm_table_supports_discards(struct dm_table *t)
1885{
1886 for (unsigned int i = 0; i < t->num_targets; i++) {
1887 struct dm_target *ti = dm_table_get_target(t, i);
1888
1889 if (!ti->num_discard_bios)
1890 return false;
1891
1892 /*
1893 * Either the target provides discard support (as implied by setting
1894 * 'discards_supported') or it relies on _all_ data devices having
1895 * discard support.
1896 */
1897 if (!ti->discards_supported &&
1898 (!ti->type->iterate_devices ||
1899 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1900 return false;
1901 }
1902
1903 return true;
1904}
1905
1906static int device_not_secure_erase_capable(struct dm_target *ti,
1907 struct dm_dev *dev, sector_t start,
1908 sector_t len, void *data)
1909{
1910 return !bdev_max_secure_erase_sectors(dev->bdev);
1911}
1912
1913static bool dm_table_supports_secure_erase(struct dm_table *t)
1914{
1915 for (unsigned int i = 0; i < t->num_targets; i++) {
1916 struct dm_target *ti = dm_table_get_target(t, i);
1917
1918 if (!ti->num_secure_erase_bios)
1919 return false;
1920
1921 if (!ti->type->iterate_devices ||
1922 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1923 return false;
1924 }
1925
1926 return true;
1927}
1928
1929static int device_requires_stable_pages(struct dm_target *ti,
1930 struct dm_dev *dev, sector_t start,
1931 sector_t len, void *data)
1932{
1933 return bdev_stable_writes(dev->bdev);
1934}
1935
1936int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1937 struct queue_limits *limits)
1938{
1939 bool wc = false, fua = false;
1940 int r;
1941
1942 /*
1943 * Copy table's limits to the DM device's request_queue
1944 */
1945 q->limits = *limits;
1946
1947 if (dm_table_supports_nowait(t))
1948 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1949 else
1950 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1951
1952 if (!dm_table_supports_discards(t)) {
1953 q->limits.max_discard_sectors = 0;
1954 q->limits.max_hw_discard_sectors = 0;
1955 q->limits.discard_granularity = 0;
1956 q->limits.discard_alignment = 0;
1957 q->limits.discard_misaligned = 0;
1958 }
1959
1960 if (!dm_table_supports_secure_erase(t))
1961 q->limits.max_secure_erase_sectors = 0;
1962
1963 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1964 wc = true;
1965 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1966 fua = true;
1967 }
1968 blk_queue_write_cache(q, wc, fua);
1969
1970 if (dm_table_supports_dax(t, device_not_dax_capable)) {
1971 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1972 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
1973 set_dax_synchronous(t->md->dax_dev);
1974 }
1975 else
1976 blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
1977
1978 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
1979 dax_write_cache(t->md->dax_dev, true);
1980
1981 /* Ensure that all underlying devices are non-rotational. */
1982 if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
1983 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1984 else
1985 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1986
1987 if (!dm_table_supports_write_zeroes(t))
1988 q->limits.max_write_zeroes_sectors = 0;
1989
1990 dm_table_verify_integrity(t);
1991
1992 /*
1993 * Some devices don't use blk_integrity but still want stable pages
1994 * because they do their own checksumming.
1995 * If any underlying device requires stable pages, a table must require
1996 * them as well. Only targets that support iterate_devices are considered:
1997 * don't want error, zero, etc to require stable pages.
1998 */
1999 if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
2000 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
2001 else
2002 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
2003
2004 /*
2005 * Determine whether or not this queue's I/O timings contribute
2006 * to the entropy pool, Only request-based targets use this.
2007 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
2008 * have it set.
2009 */
2010 if (blk_queue_add_random(q) &&
2011 dm_table_any_dev_attr(t, device_is_not_random, NULL))
2012 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2013
2014 /*
2015 * For a zoned target, setup the zones related queue attributes
2016 * and resources necessary for zone append emulation if necessary.
2017 */
2018 if (blk_queue_is_zoned(q)) {
2019 r = dm_set_zones_restrictions(t, q);
2020 if (r)
2021 return r;
2022 if (!static_key_enabled(&zoned_enabled.key))
2023 static_branch_enable(&zoned_enabled);
2024 }
2025
2026 dm_update_crypto_profile(q, t);
2027 disk_update_readahead(t->md->disk);
2028
2029 /*
2030 * Check for request-based device is left to
2031 * dm_mq_init_request_queue()->blk_mq_init_allocated_queue().
2032 *
2033 * For bio-based device, only set QUEUE_FLAG_POLL when all
2034 * underlying devices supporting polling.
2035 */
2036 if (__table_type_bio_based(t->type)) {
2037 if (dm_table_supports_poll(t))
2038 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2039 else
2040 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
2041 }
2042
2043 return 0;
2044}
2045
2046struct list_head *dm_table_get_devices(struct dm_table *t)
2047{
2048 return &t->devices;
2049}
2050
2051fmode_t dm_table_get_mode(struct dm_table *t)
2052{
2053 return t->mode;
2054}
2055EXPORT_SYMBOL(dm_table_get_mode);
2056
2057enum suspend_mode {
2058 PRESUSPEND,
2059 PRESUSPEND_UNDO,
2060 POSTSUSPEND,
2061};
2062
2063static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2064{
2065 lockdep_assert_held(&t->md->suspend_lock);
2066
2067 for (unsigned int i = 0; i < t->num_targets; i++) {
2068 struct dm_target *ti = dm_table_get_target(t, i);
2069
2070 switch (mode) {
2071 case PRESUSPEND:
2072 if (ti->type->presuspend)
2073 ti->type->presuspend(ti);
2074 break;
2075 case PRESUSPEND_UNDO:
2076 if (ti->type->presuspend_undo)
2077 ti->type->presuspend_undo(ti);
2078 break;
2079 case POSTSUSPEND:
2080 if (ti->type->postsuspend)
2081 ti->type->postsuspend(ti);
2082 break;
2083 }
2084 }
2085}
2086
2087void dm_table_presuspend_targets(struct dm_table *t)
2088{
2089 if (!t)
2090 return;
2091
2092 suspend_targets(t, PRESUSPEND);
2093}
2094
2095void dm_table_presuspend_undo_targets(struct dm_table *t)
2096{
2097 if (!t)
2098 return;
2099
2100 suspend_targets(t, PRESUSPEND_UNDO);
2101}
2102
2103void dm_table_postsuspend_targets(struct dm_table *t)
2104{
2105 if (!t)
2106 return;
2107
2108 suspend_targets(t, POSTSUSPEND);
2109}
2110
2111int dm_table_resume_targets(struct dm_table *t)
2112{
2113 unsigned int i;
2114 int r = 0;
2115
2116 lockdep_assert_held(&t->md->suspend_lock);
2117
2118 for (i = 0; i < t->num_targets; i++) {
2119 struct dm_target *ti = dm_table_get_target(t, i);
2120
2121 if (!ti->type->preresume)
2122 continue;
2123
2124 r = ti->type->preresume(ti);
2125 if (r) {
2126 DMERR("%s: %s: preresume failed, error = %d",
2127 dm_device_name(t->md), ti->type->name, r);
2128 return r;
2129 }
2130 }
2131
2132 for (i = 0; i < t->num_targets; i++) {
2133 struct dm_target *ti = dm_table_get_target(t, i);
2134
2135 if (ti->type->resume)
2136 ti->type->resume(ti);
2137 }
2138
2139 return 0;
2140}
2141
2142struct mapped_device *dm_table_get_md(struct dm_table *t)
2143{
2144 return t->md;
2145}
2146EXPORT_SYMBOL(dm_table_get_md);
2147
2148const char *dm_table_device_name(struct dm_table *t)
2149{
2150 return dm_device_name(t->md);
2151}
2152EXPORT_SYMBOL_GPL(dm_table_device_name);
2153
2154void dm_table_run_md_queue_async(struct dm_table *t)
2155{
2156 if (!dm_table_request_based(t))
2157 return;
2158
2159 if (t->md->queue)
2160 blk_mq_run_hw_queues(t->md->queue, true);
2161}
2162EXPORT_SYMBOL(dm_table_run_md_queue_async);
2163
1/*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8#include "dm-core.h"
9
10#include <linux/module.h>
11#include <linux/vmalloc.h>
12#include <linux/blkdev.h>
13#include <linux/namei.h>
14#include <linux/ctype.h>
15#include <linux/string.h>
16#include <linux/slab.h>
17#include <linux/interrupt.h>
18#include <linux/mutex.h>
19#include <linux/delay.h>
20#include <linux/atomic.h>
21#include <linux/blk-mq.h>
22#include <linux/mount.h>
23#include <linux/dax.h>
24
25#define DM_MSG_PREFIX "table"
26
27#define MAX_DEPTH 16
28#define NODE_SIZE L1_CACHE_BYTES
29#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
30#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
31
32struct dm_table {
33 struct mapped_device *md;
34 enum dm_queue_mode type;
35
36 /* btree table */
37 unsigned int depth;
38 unsigned int counts[MAX_DEPTH]; /* in nodes */
39 sector_t *index[MAX_DEPTH];
40
41 unsigned int num_targets;
42 unsigned int num_allocated;
43 sector_t *highs;
44 struct dm_target *targets;
45
46 struct target_type *immutable_target_type;
47
48 bool integrity_supported:1;
49 bool singleton:1;
50 bool all_blk_mq:1;
51 unsigned integrity_added:1;
52
53 /*
54 * Indicates the rw permissions for the new logical
55 * device. This should be a combination of FMODE_READ
56 * and FMODE_WRITE.
57 */
58 fmode_t mode;
59
60 /* a list of devices used by this table */
61 struct list_head devices;
62
63 /* events get handed up using this callback */
64 void (*event_fn)(void *);
65 void *event_context;
66
67 struct dm_md_mempools *mempools;
68
69 struct list_head target_callbacks;
70};
71
72/*
73 * Similar to ceiling(log_size(n))
74 */
75static unsigned int int_log(unsigned int n, unsigned int base)
76{
77 int result = 0;
78
79 while (n > 1) {
80 n = dm_div_up(n, base);
81 result++;
82 }
83
84 return result;
85}
86
87/*
88 * Calculate the index of the child node of the n'th node k'th key.
89 */
90static inline unsigned int get_child(unsigned int n, unsigned int k)
91{
92 return (n * CHILDREN_PER_NODE) + k;
93}
94
95/*
96 * Return the n'th node of level l from table t.
97 */
98static inline sector_t *get_node(struct dm_table *t,
99 unsigned int l, unsigned int n)
100{
101 return t->index[l] + (n * KEYS_PER_NODE);
102}
103
104/*
105 * Return the highest key that you could lookup from the n'th
106 * node on level l of the btree.
107 */
108static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
109{
110 for (; l < t->depth - 1; l++)
111 n = get_child(n, CHILDREN_PER_NODE - 1);
112
113 if (n >= t->counts[l])
114 return (sector_t) - 1;
115
116 return get_node(t, l, n)[KEYS_PER_NODE - 1];
117}
118
119/*
120 * Fills in a level of the btree based on the highs of the level
121 * below it.
122 */
123static int setup_btree_index(unsigned int l, struct dm_table *t)
124{
125 unsigned int n, k;
126 sector_t *node;
127
128 for (n = 0U; n < t->counts[l]; n++) {
129 node = get_node(t, l, n);
130
131 for (k = 0U; k < KEYS_PER_NODE; k++)
132 node[k] = high(t, l + 1, get_child(n, k));
133 }
134
135 return 0;
136}
137
138void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
139{
140 unsigned long size;
141 void *addr;
142
143 /*
144 * Check that we're not going to overflow.
145 */
146 if (nmemb > (ULONG_MAX / elem_size))
147 return NULL;
148
149 size = nmemb * elem_size;
150 addr = vzalloc(size);
151
152 return addr;
153}
154EXPORT_SYMBOL(dm_vcalloc);
155
156/*
157 * highs, and targets are managed as dynamic arrays during a
158 * table load.
159 */
160static int alloc_targets(struct dm_table *t, unsigned int num)
161{
162 sector_t *n_highs;
163 struct dm_target *n_targets;
164
165 /*
166 * Allocate both the target array and offset array at once.
167 * Append an empty entry to catch sectors beyond the end of
168 * the device.
169 */
170 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
171 sizeof(sector_t));
172 if (!n_highs)
173 return -ENOMEM;
174
175 n_targets = (struct dm_target *) (n_highs + num);
176
177 memset(n_highs, -1, sizeof(*n_highs) * num);
178 vfree(t->highs);
179
180 t->num_allocated = num;
181 t->highs = n_highs;
182 t->targets = n_targets;
183
184 return 0;
185}
186
187int dm_table_create(struct dm_table **result, fmode_t mode,
188 unsigned num_targets, struct mapped_device *md)
189{
190 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
191
192 if (!t)
193 return -ENOMEM;
194
195 INIT_LIST_HEAD(&t->devices);
196 INIT_LIST_HEAD(&t->target_callbacks);
197
198 if (!num_targets)
199 num_targets = KEYS_PER_NODE;
200
201 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
202
203 if (!num_targets) {
204 kfree(t);
205 return -ENOMEM;
206 }
207
208 if (alloc_targets(t, num_targets)) {
209 kfree(t);
210 return -ENOMEM;
211 }
212
213 t->type = DM_TYPE_NONE;
214 t->mode = mode;
215 t->md = md;
216 *result = t;
217 return 0;
218}
219
220static void free_devices(struct list_head *devices, struct mapped_device *md)
221{
222 struct list_head *tmp, *next;
223
224 list_for_each_safe(tmp, next, devices) {
225 struct dm_dev_internal *dd =
226 list_entry(tmp, struct dm_dev_internal, list);
227 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
228 dm_device_name(md), dd->dm_dev->name);
229 dm_put_table_device(md, dd->dm_dev);
230 kfree(dd);
231 }
232}
233
234void dm_table_destroy(struct dm_table *t)
235{
236 unsigned int i;
237
238 if (!t)
239 return;
240
241 /* free the indexes */
242 if (t->depth >= 2)
243 vfree(t->index[t->depth - 2]);
244
245 /* free the targets */
246 for (i = 0; i < t->num_targets; i++) {
247 struct dm_target *tgt = t->targets + i;
248
249 if (tgt->type->dtr)
250 tgt->type->dtr(tgt);
251
252 dm_put_target_type(tgt->type);
253 }
254
255 vfree(t->highs);
256
257 /* free the device list */
258 free_devices(&t->devices, t->md);
259
260 dm_free_md_mempools(t->mempools);
261
262 kfree(t);
263}
264
265/*
266 * See if we've already got a device in the list.
267 */
268static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
269{
270 struct dm_dev_internal *dd;
271
272 list_for_each_entry (dd, l, list)
273 if (dd->dm_dev->bdev->bd_dev == dev)
274 return dd;
275
276 return NULL;
277}
278
279/*
280 * If possible, this checks an area of a destination device is invalid.
281 */
282static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
283 sector_t start, sector_t len, void *data)
284{
285 struct request_queue *q;
286 struct queue_limits *limits = data;
287 struct block_device *bdev = dev->bdev;
288 sector_t dev_size =
289 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
290 unsigned short logical_block_size_sectors =
291 limits->logical_block_size >> SECTOR_SHIFT;
292 char b[BDEVNAME_SIZE];
293
294 /*
295 * Some devices exist without request functions,
296 * such as loop devices not yet bound to backing files.
297 * Forbid the use of such devices.
298 */
299 q = bdev_get_queue(bdev);
300 if (!q || !q->make_request_fn) {
301 DMWARN("%s: %s is not yet initialised: "
302 "start=%llu, len=%llu, dev_size=%llu",
303 dm_device_name(ti->table->md), bdevname(bdev, b),
304 (unsigned long long)start,
305 (unsigned long long)len,
306 (unsigned long long)dev_size);
307 return 1;
308 }
309
310 if (!dev_size)
311 return 0;
312
313 if ((start >= dev_size) || (start + len > dev_size)) {
314 DMWARN("%s: %s too small for target: "
315 "start=%llu, len=%llu, dev_size=%llu",
316 dm_device_name(ti->table->md), bdevname(bdev, b),
317 (unsigned long long)start,
318 (unsigned long long)len,
319 (unsigned long long)dev_size);
320 return 1;
321 }
322
323 /*
324 * If the target is mapped to zoned block device(s), check
325 * that the zones are not partially mapped.
326 */
327 if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
328 unsigned int zone_sectors = bdev_zone_sectors(bdev);
329
330 if (start & (zone_sectors - 1)) {
331 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
332 dm_device_name(ti->table->md),
333 (unsigned long long)start,
334 zone_sectors, bdevname(bdev, b));
335 return 1;
336 }
337
338 /*
339 * Note: The last zone of a zoned block device may be smaller
340 * than other zones. So for a target mapping the end of a
341 * zoned block device with such a zone, len would not be zone
342 * aligned. We do not allow such last smaller zone to be part
343 * of the mapping here to ensure that mappings with multiple
344 * devices do not end up with a smaller zone in the middle of
345 * the sector range.
346 */
347 if (len & (zone_sectors - 1)) {
348 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
349 dm_device_name(ti->table->md),
350 (unsigned long long)len,
351 zone_sectors, bdevname(bdev, b));
352 return 1;
353 }
354 }
355
356 if (logical_block_size_sectors <= 1)
357 return 0;
358
359 if (start & (logical_block_size_sectors - 1)) {
360 DMWARN("%s: start=%llu not aligned to h/w "
361 "logical block size %u of %s",
362 dm_device_name(ti->table->md),
363 (unsigned long long)start,
364 limits->logical_block_size, bdevname(bdev, b));
365 return 1;
366 }
367
368 if (len & (logical_block_size_sectors - 1)) {
369 DMWARN("%s: len=%llu not aligned to h/w "
370 "logical block size %u of %s",
371 dm_device_name(ti->table->md),
372 (unsigned long long)len,
373 limits->logical_block_size, bdevname(bdev, b));
374 return 1;
375 }
376
377 return 0;
378}
379
380/*
381 * This upgrades the mode on an already open dm_dev, being
382 * careful to leave things as they were if we fail to reopen the
383 * device and not to touch the existing bdev field in case
384 * it is accessed concurrently inside dm_table_any_congested().
385 */
386static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
387 struct mapped_device *md)
388{
389 int r;
390 struct dm_dev *old_dev, *new_dev;
391
392 old_dev = dd->dm_dev;
393
394 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
395 dd->dm_dev->mode | new_mode, &new_dev);
396 if (r)
397 return r;
398
399 dd->dm_dev = new_dev;
400 dm_put_table_device(md, old_dev);
401
402 return 0;
403}
404
405/*
406 * Convert the path to a device
407 */
408dev_t dm_get_dev_t(const char *path)
409{
410 dev_t dev;
411 struct block_device *bdev;
412
413 bdev = lookup_bdev(path);
414 if (IS_ERR(bdev))
415 dev = name_to_dev_t(path);
416 else {
417 dev = bdev->bd_dev;
418 bdput(bdev);
419 }
420
421 return dev;
422}
423EXPORT_SYMBOL_GPL(dm_get_dev_t);
424
425/*
426 * Add a device to the list, or just increment the usage count if
427 * it's already present.
428 */
429int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
430 struct dm_dev **result)
431{
432 int r;
433 dev_t dev;
434 struct dm_dev_internal *dd;
435 struct dm_table *t = ti->table;
436
437 BUG_ON(!t);
438
439 dev = dm_get_dev_t(path);
440 if (!dev)
441 return -ENODEV;
442
443 dd = find_device(&t->devices, dev);
444 if (!dd) {
445 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
446 if (!dd)
447 return -ENOMEM;
448
449 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
450 kfree(dd);
451 return r;
452 }
453
454 refcount_set(&dd->count, 1);
455 list_add(&dd->list, &t->devices);
456 goto out;
457
458 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
459 r = upgrade_mode(dd, mode, t->md);
460 if (r)
461 return r;
462 }
463 refcount_inc(&dd->count);
464out:
465 *result = dd->dm_dev;
466 return 0;
467}
468EXPORT_SYMBOL(dm_get_device);
469
470static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
471 sector_t start, sector_t len, void *data)
472{
473 struct queue_limits *limits = data;
474 struct block_device *bdev = dev->bdev;
475 struct request_queue *q = bdev_get_queue(bdev);
476 char b[BDEVNAME_SIZE];
477
478 if (unlikely(!q)) {
479 DMWARN("%s: Cannot set limits for nonexistent device %s",
480 dm_device_name(ti->table->md), bdevname(bdev, b));
481 return 0;
482 }
483
484 if (bdev_stack_limits(limits, bdev, start) < 0)
485 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
486 "physical_block_size=%u, logical_block_size=%u, "
487 "alignment_offset=%u, start=%llu",
488 dm_device_name(ti->table->md), bdevname(bdev, b),
489 q->limits.physical_block_size,
490 q->limits.logical_block_size,
491 q->limits.alignment_offset,
492 (unsigned long long) start << SECTOR_SHIFT);
493
494 limits->zoned = blk_queue_zoned_model(q);
495
496 return 0;
497}
498
499/*
500 * Decrement a device's use count and remove it if necessary.
501 */
502void dm_put_device(struct dm_target *ti, struct dm_dev *d)
503{
504 int found = 0;
505 struct list_head *devices = &ti->table->devices;
506 struct dm_dev_internal *dd;
507
508 list_for_each_entry(dd, devices, list) {
509 if (dd->dm_dev == d) {
510 found = 1;
511 break;
512 }
513 }
514 if (!found) {
515 DMWARN("%s: device %s not in table devices list",
516 dm_device_name(ti->table->md), d->name);
517 return;
518 }
519 if (refcount_dec_and_test(&dd->count)) {
520 dm_put_table_device(ti->table->md, d);
521 list_del(&dd->list);
522 kfree(dd);
523 }
524}
525EXPORT_SYMBOL(dm_put_device);
526
527/*
528 * Checks to see if the target joins onto the end of the table.
529 */
530static int adjoin(struct dm_table *table, struct dm_target *ti)
531{
532 struct dm_target *prev;
533
534 if (!table->num_targets)
535 return !ti->begin;
536
537 prev = &table->targets[table->num_targets - 1];
538 return (ti->begin == (prev->begin + prev->len));
539}
540
541/*
542 * Used to dynamically allocate the arg array.
543 *
544 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
545 * process messages even if some device is suspended. These messages have a
546 * small fixed number of arguments.
547 *
548 * On the other hand, dm-switch needs to process bulk data using messages and
549 * excessive use of GFP_NOIO could cause trouble.
550 */
551static char **realloc_argv(unsigned *array_size, char **old_argv)
552{
553 char **argv;
554 unsigned new_size;
555 gfp_t gfp;
556
557 if (*array_size) {
558 new_size = *array_size * 2;
559 gfp = GFP_KERNEL;
560 } else {
561 new_size = 8;
562 gfp = GFP_NOIO;
563 }
564 argv = kmalloc(new_size * sizeof(*argv), gfp);
565 if (argv) {
566 memcpy(argv, old_argv, *array_size * sizeof(*argv));
567 *array_size = new_size;
568 }
569
570 kfree(old_argv);
571 return argv;
572}
573
574/*
575 * Destructively splits up the argument list to pass to ctr.
576 */
577int dm_split_args(int *argc, char ***argvp, char *input)
578{
579 char *start, *end = input, *out, **argv = NULL;
580 unsigned array_size = 0;
581
582 *argc = 0;
583
584 if (!input) {
585 *argvp = NULL;
586 return 0;
587 }
588
589 argv = realloc_argv(&array_size, argv);
590 if (!argv)
591 return -ENOMEM;
592
593 while (1) {
594 /* Skip whitespace */
595 start = skip_spaces(end);
596
597 if (!*start)
598 break; /* success, we hit the end */
599
600 /* 'out' is used to remove any back-quotes */
601 end = out = start;
602 while (*end) {
603 /* Everything apart from '\0' can be quoted */
604 if (*end == '\\' && *(end + 1)) {
605 *out++ = *(end + 1);
606 end += 2;
607 continue;
608 }
609
610 if (isspace(*end))
611 break; /* end of token */
612
613 *out++ = *end++;
614 }
615
616 /* have we already filled the array ? */
617 if ((*argc + 1) > array_size) {
618 argv = realloc_argv(&array_size, argv);
619 if (!argv)
620 return -ENOMEM;
621 }
622
623 /* we know this is whitespace */
624 if (*end)
625 end++;
626
627 /* terminate the string and put it in the array */
628 *out = '\0';
629 argv[*argc] = start;
630 (*argc)++;
631 }
632
633 *argvp = argv;
634 return 0;
635}
636
637/*
638 * Impose necessary and sufficient conditions on a devices's table such
639 * that any incoming bio which respects its logical_block_size can be
640 * processed successfully. If it falls across the boundary between
641 * two or more targets, the size of each piece it gets split into must
642 * be compatible with the logical_block_size of the target processing it.
643 */
644static int validate_hardware_logical_block_alignment(struct dm_table *table,
645 struct queue_limits *limits)
646{
647 /*
648 * This function uses arithmetic modulo the logical_block_size
649 * (in units of 512-byte sectors).
650 */
651 unsigned short device_logical_block_size_sects =
652 limits->logical_block_size >> SECTOR_SHIFT;
653
654 /*
655 * Offset of the start of the next table entry, mod logical_block_size.
656 */
657 unsigned short next_target_start = 0;
658
659 /*
660 * Given an aligned bio that extends beyond the end of a
661 * target, how many sectors must the next target handle?
662 */
663 unsigned short remaining = 0;
664
665 struct dm_target *uninitialized_var(ti);
666 struct queue_limits ti_limits;
667 unsigned i;
668
669 /*
670 * Check each entry in the table in turn.
671 */
672 for (i = 0; i < dm_table_get_num_targets(table); i++) {
673 ti = dm_table_get_target(table, i);
674
675 blk_set_stacking_limits(&ti_limits);
676
677 /* combine all target devices' limits */
678 if (ti->type->iterate_devices)
679 ti->type->iterate_devices(ti, dm_set_device_limits,
680 &ti_limits);
681
682 /*
683 * If the remaining sectors fall entirely within this
684 * table entry are they compatible with its logical_block_size?
685 */
686 if (remaining < ti->len &&
687 remaining & ((ti_limits.logical_block_size >>
688 SECTOR_SHIFT) - 1))
689 break; /* Error */
690
691 next_target_start =
692 (unsigned short) ((next_target_start + ti->len) &
693 (device_logical_block_size_sects - 1));
694 remaining = next_target_start ?
695 device_logical_block_size_sects - next_target_start : 0;
696 }
697
698 if (remaining) {
699 DMWARN("%s: table line %u (start sect %llu len %llu) "
700 "not aligned to h/w logical block size %u",
701 dm_device_name(table->md), i,
702 (unsigned long long) ti->begin,
703 (unsigned long long) ti->len,
704 limits->logical_block_size);
705 return -EINVAL;
706 }
707
708 return 0;
709}
710
711int dm_table_add_target(struct dm_table *t, const char *type,
712 sector_t start, sector_t len, char *params)
713{
714 int r = -EINVAL, argc;
715 char **argv;
716 struct dm_target *tgt;
717
718 if (t->singleton) {
719 DMERR("%s: target type %s must appear alone in table",
720 dm_device_name(t->md), t->targets->type->name);
721 return -EINVAL;
722 }
723
724 BUG_ON(t->num_targets >= t->num_allocated);
725
726 tgt = t->targets + t->num_targets;
727 memset(tgt, 0, sizeof(*tgt));
728
729 if (!len) {
730 DMERR("%s: zero-length target", dm_device_name(t->md));
731 return -EINVAL;
732 }
733
734 tgt->type = dm_get_target_type(type);
735 if (!tgt->type) {
736 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
737 return -EINVAL;
738 }
739
740 if (dm_target_needs_singleton(tgt->type)) {
741 if (t->num_targets) {
742 tgt->error = "singleton target type must appear alone in table";
743 goto bad;
744 }
745 t->singleton = true;
746 }
747
748 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
749 tgt->error = "target type may not be included in a read-only table";
750 goto bad;
751 }
752
753 if (t->immutable_target_type) {
754 if (t->immutable_target_type != tgt->type) {
755 tgt->error = "immutable target type cannot be mixed with other target types";
756 goto bad;
757 }
758 } else if (dm_target_is_immutable(tgt->type)) {
759 if (t->num_targets) {
760 tgt->error = "immutable target type cannot be mixed with other target types";
761 goto bad;
762 }
763 t->immutable_target_type = tgt->type;
764 }
765
766 if (dm_target_has_integrity(tgt->type))
767 t->integrity_added = 1;
768
769 tgt->table = t;
770 tgt->begin = start;
771 tgt->len = len;
772 tgt->error = "Unknown error";
773
774 /*
775 * Does this target adjoin the previous one ?
776 */
777 if (!adjoin(t, tgt)) {
778 tgt->error = "Gap in table";
779 goto bad;
780 }
781
782 r = dm_split_args(&argc, &argv, params);
783 if (r) {
784 tgt->error = "couldn't split parameters (insufficient memory)";
785 goto bad;
786 }
787
788 r = tgt->type->ctr(tgt, argc, argv);
789 kfree(argv);
790 if (r)
791 goto bad;
792
793 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
794
795 if (!tgt->num_discard_bios && tgt->discards_supported)
796 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
797 dm_device_name(t->md), type);
798
799 return 0;
800
801 bad:
802 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
803 dm_put_target_type(tgt->type);
804 return r;
805}
806
807/*
808 * Target argument parsing helpers.
809 */
810static int validate_next_arg(const struct dm_arg *arg,
811 struct dm_arg_set *arg_set,
812 unsigned *value, char **error, unsigned grouped)
813{
814 const char *arg_str = dm_shift_arg(arg_set);
815 char dummy;
816
817 if (!arg_str ||
818 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
819 (*value < arg->min) ||
820 (*value > arg->max) ||
821 (grouped && arg_set->argc < *value)) {
822 *error = arg->error;
823 return -EINVAL;
824 }
825
826 return 0;
827}
828
829int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
830 unsigned *value, char **error)
831{
832 return validate_next_arg(arg, arg_set, value, error, 0);
833}
834EXPORT_SYMBOL(dm_read_arg);
835
836int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
837 unsigned *value, char **error)
838{
839 return validate_next_arg(arg, arg_set, value, error, 1);
840}
841EXPORT_SYMBOL(dm_read_arg_group);
842
843const char *dm_shift_arg(struct dm_arg_set *as)
844{
845 char *r;
846
847 if (as->argc) {
848 as->argc--;
849 r = *as->argv;
850 as->argv++;
851 return r;
852 }
853
854 return NULL;
855}
856EXPORT_SYMBOL(dm_shift_arg);
857
858void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
859{
860 BUG_ON(as->argc < num_args);
861 as->argc -= num_args;
862 as->argv += num_args;
863}
864EXPORT_SYMBOL(dm_consume_args);
865
866static bool __table_type_bio_based(enum dm_queue_mode table_type)
867{
868 return (table_type == DM_TYPE_BIO_BASED ||
869 table_type == DM_TYPE_DAX_BIO_BASED ||
870 table_type == DM_TYPE_NVME_BIO_BASED);
871}
872
873static bool __table_type_request_based(enum dm_queue_mode table_type)
874{
875 return (table_type == DM_TYPE_REQUEST_BASED ||
876 table_type == DM_TYPE_MQ_REQUEST_BASED);
877}
878
879void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
880{
881 t->type = type;
882}
883EXPORT_SYMBOL_GPL(dm_table_set_type);
884
885static int device_supports_dax(struct dm_target *ti, struct dm_dev *dev,
886 sector_t start, sector_t len, void *data)
887{
888 struct request_queue *q = bdev_get_queue(dev->bdev);
889
890 return q && blk_queue_dax(q);
891}
892
893static bool dm_table_supports_dax(struct dm_table *t)
894{
895 struct dm_target *ti;
896 unsigned i;
897
898 /* Ensure that all targets support DAX. */
899 for (i = 0; i < dm_table_get_num_targets(t); i++) {
900 ti = dm_table_get_target(t, i);
901
902 if (!ti->type->direct_access)
903 return false;
904
905 if (!ti->type->iterate_devices ||
906 !ti->type->iterate_devices(ti, device_supports_dax, NULL))
907 return false;
908 }
909
910 return true;
911}
912
913static bool dm_table_does_not_support_partial_completion(struct dm_table *t);
914
915struct verify_rq_based_data {
916 unsigned sq_count;
917 unsigned mq_count;
918};
919
920static int device_is_rq_based(struct dm_target *ti, struct dm_dev *dev,
921 sector_t start, sector_t len, void *data)
922{
923 struct request_queue *q = bdev_get_queue(dev->bdev);
924 struct verify_rq_based_data *v = data;
925
926 if (q->mq_ops)
927 v->mq_count++;
928 else
929 v->sq_count++;
930
931 return queue_is_rq_based(q);
932}
933
934static int dm_table_determine_type(struct dm_table *t)
935{
936 unsigned i;
937 unsigned bio_based = 0, request_based = 0, hybrid = 0;
938 struct verify_rq_based_data v = {.sq_count = 0, .mq_count = 0};
939 struct dm_target *tgt;
940 struct list_head *devices = dm_table_get_devices(t);
941 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
942
943 if (t->type != DM_TYPE_NONE) {
944 /* target already set the table's type */
945 if (t->type == DM_TYPE_BIO_BASED) {
946 /* possibly upgrade to a variant of bio-based */
947 goto verify_bio_based;
948 }
949 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
950 BUG_ON(t->type == DM_TYPE_NVME_BIO_BASED);
951 goto verify_rq_based;
952 }
953
954 for (i = 0; i < t->num_targets; i++) {
955 tgt = t->targets + i;
956 if (dm_target_hybrid(tgt))
957 hybrid = 1;
958 else if (dm_target_request_based(tgt))
959 request_based = 1;
960 else
961 bio_based = 1;
962
963 if (bio_based && request_based) {
964 DMERR("Inconsistent table: different target types"
965 " can't be mixed up");
966 return -EINVAL;
967 }
968 }
969
970 if (hybrid && !bio_based && !request_based) {
971 /*
972 * The targets can work either way.
973 * Determine the type from the live device.
974 * Default to bio-based if device is new.
975 */
976 if (__table_type_request_based(live_md_type))
977 request_based = 1;
978 else
979 bio_based = 1;
980 }
981
982 if (bio_based) {
983verify_bio_based:
984 /* We must use this table as bio-based */
985 t->type = DM_TYPE_BIO_BASED;
986 if (dm_table_supports_dax(t) ||
987 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
988 t->type = DM_TYPE_DAX_BIO_BASED;
989 } else {
990 /* Check if upgrading to NVMe bio-based is valid or required */
991 tgt = dm_table_get_immutable_target(t);
992 if (tgt && !tgt->max_io_len && dm_table_does_not_support_partial_completion(t)) {
993 t->type = DM_TYPE_NVME_BIO_BASED;
994 goto verify_rq_based; /* must be stacked directly on NVMe (blk-mq) */
995 } else if (list_empty(devices) && live_md_type == DM_TYPE_NVME_BIO_BASED) {
996 t->type = DM_TYPE_NVME_BIO_BASED;
997 }
998 }
999 return 0;
1000 }
1001
1002 BUG_ON(!request_based); /* No targets in this table */
1003
1004 /*
1005 * The only way to establish DM_TYPE_MQ_REQUEST_BASED is by
1006 * having a compatible target use dm_table_set_type.
1007 */
1008 t->type = DM_TYPE_REQUEST_BASED;
1009
1010verify_rq_based:
1011 /*
1012 * Request-based dm supports only tables that have a single target now.
1013 * To support multiple targets, request splitting support is needed,
1014 * and that needs lots of changes in the block-layer.
1015 * (e.g. request completion process for partial completion.)
1016 */
1017 if (t->num_targets > 1) {
1018 DMERR("%s DM doesn't support multiple targets",
1019 t->type == DM_TYPE_NVME_BIO_BASED ? "nvme bio-based" : "request-based");
1020 return -EINVAL;
1021 }
1022
1023 if (list_empty(devices)) {
1024 int srcu_idx;
1025 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
1026
1027 /* inherit live table's type and all_blk_mq */
1028 if (live_table) {
1029 t->type = live_table->type;
1030 t->all_blk_mq = live_table->all_blk_mq;
1031 }
1032 dm_put_live_table(t->md, srcu_idx);
1033 return 0;
1034 }
1035
1036 tgt = dm_table_get_immutable_target(t);
1037 if (!tgt) {
1038 DMERR("table load rejected: immutable target is required");
1039 return -EINVAL;
1040 } else if (tgt->max_io_len) {
1041 DMERR("table load rejected: immutable target that splits IO is not supported");
1042 return -EINVAL;
1043 }
1044
1045 /* Non-request-stackable devices can't be used for request-based dm */
1046 if (!tgt->type->iterate_devices ||
1047 !tgt->type->iterate_devices(tgt, device_is_rq_based, &v)) {
1048 DMERR("table load rejected: including non-request-stackable devices");
1049 return -EINVAL;
1050 }
1051 if (v.sq_count && v.mq_count) {
1052 DMERR("table load rejected: not all devices are blk-mq request-stackable");
1053 return -EINVAL;
1054 }
1055 t->all_blk_mq = v.mq_count > 0;
1056
1057 if (!t->all_blk_mq &&
1058 (t->type == DM_TYPE_MQ_REQUEST_BASED || t->type == DM_TYPE_NVME_BIO_BASED)) {
1059 DMERR("table load rejected: all devices are not blk-mq request-stackable");
1060 return -EINVAL;
1061 }
1062
1063 return 0;
1064}
1065
1066enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1067{
1068 return t->type;
1069}
1070
1071struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1072{
1073 return t->immutable_target_type;
1074}
1075
1076struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1077{
1078 /* Immutable target is implicitly a singleton */
1079 if (t->num_targets > 1 ||
1080 !dm_target_is_immutable(t->targets[0].type))
1081 return NULL;
1082
1083 return t->targets;
1084}
1085
1086struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1087{
1088 struct dm_target *ti;
1089 unsigned i;
1090
1091 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1092 ti = dm_table_get_target(t, i);
1093 if (dm_target_is_wildcard(ti->type))
1094 return ti;
1095 }
1096
1097 return NULL;
1098}
1099
1100bool dm_table_bio_based(struct dm_table *t)
1101{
1102 return __table_type_bio_based(dm_table_get_type(t));
1103}
1104
1105bool dm_table_request_based(struct dm_table *t)
1106{
1107 return __table_type_request_based(dm_table_get_type(t));
1108}
1109
1110bool dm_table_all_blk_mq_devices(struct dm_table *t)
1111{
1112 return t->all_blk_mq;
1113}
1114
1115static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1116{
1117 enum dm_queue_mode type = dm_table_get_type(t);
1118 unsigned per_io_data_size = 0;
1119 unsigned min_pool_size = 0;
1120 struct dm_target *ti;
1121 unsigned i;
1122
1123 if (unlikely(type == DM_TYPE_NONE)) {
1124 DMWARN("no table type is set, can't allocate mempools");
1125 return -EINVAL;
1126 }
1127
1128 if (__table_type_bio_based(type))
1129 for (i = 0; i < t->num_targets; i++) {
1130 ti = t->targets + i;
1131 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1132 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1133 }
1134
1135 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1136 per_io_data_size, min_pool_size);
1137 if (!t->mempools)
1138 return -ENOMEM;
1139
1140 return 0;
1141}
1142
1143void dm_table_free_md_mempools(struct dm_table *t)
1144{
1145 dm_free_md_mempools(t->mempools);
1146 t->mempools = NULL;
1147}
1148
1149struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1150{
1151 return t->mempools;
1152}
1153
1154static int setup_indexes(struct dm_table *t)
1155{
1156 int i;
1157 unsigned int total = 0;
1158 sector_t *indexes;
1159
1160 /* allocate the space for *all* the indexes */
1161 for (i = t->depth - 2; i >= 0; i--) {
1162 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1163 total += t->counts[i];
1164 }
1165
1166 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1167 if (!indexes)
1168 return -ENOMEM;
1169
1170 /* set up internal nodes, bottom-up */
1171 for (i = t->depth - 2; i >= 0; i--) {
1172 t->index[i] = indexes;
1173 indexes += (KEYS_PER_NODE * t->counts[i]);
1174 setup_btree_index(i, t);
1175 }
1176
1177 return 0;
1178}
1179
1180/*
1181 * Builds the btree to index the map.
1182 */
1183static int dm_table_build_index(struct dm_table *t)
1184{
1185 int r = 0;
1186 unsigned int leaf_nodes;
1187
1188 /* how many indexes will the btree have ? */
1189 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1190 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1191
1192 /* leaf layer has already been set up */
1193 t->counts[t->depth - 1] = leaf_nodes;
1194 t->index[t->depth - 1] = t->highs;
1195
1196 if (t->depth >= 2)
1197 r = setup_indexes(t);
1198
1199 return r;
1200}
1201
1202static bool integrity_profile_exists(struct gendisk *disk)
1203{
1204 return !!blk_get_integrity(disk);
1205}
1206
1207/*
1208 * Get a disk whose integrity profile reflects the table's profile.
1209 * Returns NULL if integrity support was inconsistent or unavailable.
1210 */
1211static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1212{
1213 struct list_head *devices = dm_table_get_devices(t);
1214 struct dm_dev_internal *dd = NULL;
1215 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1216 unsigned i;
1217
1218 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1219 struct dm_target *ti = dm_table_get_target(t, i);
1220 if (!dm_target_passes_integrity(ti->type))
1221 goto no_integrity;
1222 }
1223
1224 list_for_each_entry(dd, devices, list) {
1225 template_disk = dd->dm_dev->bdev->bd_disk;
1226 if (!integrity_profile_exists(template_disk))
1227 goto no_integrity;
1228 else if (prev_disk &&
1229 blk_integrity_compare(prev_disk, template_disk) < 0)
1230 goto no_integrity;
1231 prev_disk = template_disk;
1232 }
1233
1234 return template_disk;
1235
1236no_integrity:
1237 if (prev_disk)
1238 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1239 dm_device_name(t->md),
1240 prev_disk->disk_name,
1241 template_disk->disk_name);
1242 return NULL;
1243}
1244
1245/*
1246 * Register the mapped device for blk_integrity support if the
1247 * underlying devices have an integrity profile. But all devices may
1248 * not have matching profiles (checking all devices isn't reliable
1249 * during table load because this table may use other DM device(s) which
1250 * must be resumed before they will have an initialized integity
1251 * profile). Consequently, stacked DM devices force a 2 stage integrity
1252 * profile validation: First pass during table load, final pass during
1253 * resume.
1254 */
1255static int dm_table_register_integrity(struct dm_table *t)
1256{
1257 struct mapped_device *md = t->md;
1258 struct gendisk *template_disk = NULL;
1259
1260 /* If target handles integrity itself do not register it here. */
1261 if (t->integrity_added)
1262 return 0;
1263
1264 template_disk = dm_table_get_integrity_disk(t);
1265 if (!template_disk)
1266 return 0;
1267
1268 if (!integrity_profile_exists(dm_disk(md))) {
1269 t->integrity_supported = true;
1270 /*
1271 * Register integrity profile during table load; we can do
1272 * this because the final profile must match during resume.
1273 */
1274 blk_integrity_register(dm_disk(md),
1275 blk_get_integrity(template_disk));
1276 return 0;
1277 }
1278
1279 /*
1280 * If DM device already has an initialized integrity
1281 * profile the new profile should not conflict.
1282 */
1283 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1284 DMWARN("%s: conflict with existing integrity profile: "
1285 "%s profile mismatch",
1286 dm_device_name(t->md),
1287 template_disk->disk_name);
1288 return 1;
1289 }
1290
1291 /* Preserve existing integrity profile */
1292 t->integrity_supported = true;
1293 return 0;
1294}
1295
1296/*
1297 * Prepares the table for use by building the indices,
1298 * setting the type, and allocating mempools.
1299 */
1300int dm_table_complete(struct dm_table *t)
1301{
1302 int r;
1303
1304 r = dm_table_determine_type(t);
1305 if (r) {
1306 DMERR("unable to determine table type");
1307 return r;
1308 }
1309
1310 r = dm_table_build_index(t);
1311 if (r) {
1312 DMERR("unable to build btrees");
1313 return r;
1314 }
1315
1316 r = dm_table_register_integrity(t);
1317 if (r) {
1318 DMERR("could not register integrity profile.");
1319 return r;
1320 }
1321
1322 r = dm_table_alloc_md_mempools(t, t->md);
1323 if (r)
1324 DMERR("unable to allocate mempools");
1325
1326 return r;
1327}
1328
1329static DEFINE_MUTEX(_event_lock);
1330void dm_table_event_callback(struct dm_table *t,
1331 void (*fn)(void *), void *context)
1332{
1333 mutex_lock(&_event_lock);
1334 t->event_fn = fn;
1335 t->event_context = context;
1336 mutex_unlock(&_event_lock);
1337}
1338
1339void dm_table_event(struct dm_table *t)
1340{
1341 /*
1342 * You can no longer call dm_table_event() from interrupt
1343 * context, use a bottom half instead.
1344 */
1345 BUG_ON(in_interrupt());
1346
1347 mutex_lock(&_event_lock);
1348 if (t->event_fn)
1349 t->event_fn(t->event_context);
1350 mutex_unlock(&_event_lock);
1351}
1352EXPORT_SYMBOL(dm_table_event);
1353
1354sector_t dm_table_get_size(struct dm_table *t)
1355{
1356 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1357}
1358EXPORT_SYMBOL(dm_table_get_size);
1359
1360struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1361{
1362 if (index >= t->num_targets)
1363 return NULL;
1364
1365 return t->targets + index;
1366}
1367
1368/*
1369 * Search the btree for the correct target.
1370 *
1371 * Caller should check returned pointer with dm_target_is_valid()
1372 * to trap I/O beyond end of device.
1373 */
1374struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1375{
1376 unsigned int l, n = 0, k = 0;
1377 sector_t *node;
1378
1379 for (l = 0; l < t->depth; l++) {
1380 n = get_child(n, k);
1381 node = get_node(t, l, n);
1382
1383 for (k = 0; k < KEYS_PER_NODE; k++)
1384 if (node[k] >= sector)
1385 break;
1386 }
1387
1388 return &t->targets[(KEYS_PER_NODE * n) + k];
1389}
1390
1391static int count_device(struct dm_target *ti, struct dm_dev *dev,
1392 sector_t start, sector_t len, void *data)
1393{
1394 unsigned *num_devices = data;
1395
1396 (*num_devices)++;
1397
1398 return 0;
1399}
1400
1401/*
1402 * Check whether a table has no data devices attached using each
1403 * target's iterate_devices method.
1404 * Returns false if the result is unknown because a target doesn't
1405 * support iterate_devices.
1406 */
1407bool dm_table_has_no_data_devices(struct dm_table *table)
1408{
1409 struct dm_target *ti;
1410 unsigned i, num_devices;
1411
1412 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1413 ti = dm_table_get_target(table, i);
1414
1415 if (!ti->type->iterate_devices)
1416 return false;
1417
1418 num_devices = 0;
1419 ti->type->iterate_devices(ti, count_device, &num_devices);
1420 if (num_devices)
1421 return false;
1422 }
1423
1424 return true;
1425}
1426
1427static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1428 sector_t start, sector_t len, void *data)
1429{
1430 struct request_queue *q = bdev_get_queue(dev->bdev);
1431 enum blk_zoned_model *zoned_model = data;
1432
1433 return q && blk_queue_zoned_model(q) == *zoned_model;
1434}
1435
1436static bool dm_table_supports_zoned_model(struct dm_table *t,
1437 enum blk_zoned_model zoned_model)
1438{
1439 struct dm_target *ti;
1440 unsigned i;
1441
1442 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1443 ti = dm_table_get_target(t, i);
1444
1445 if (zoned_model == BLK_ZONED_HM &&
1446 !dm_target_supports_zoned_hm(ti->type))
1447 return false;
1448
1449 if (!ti->type->iterate_devices ||
1450 !ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
1451 return false;
1452 }
1453
1454 return true;
1455}
1456
1457static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1458 sector_t start, sector_t len, void *data)
1459{
1460 struct request_queue *q = bdev_get_queue(dev->bdev);
1461 unsigned int *zone_sectors = data;
1462
1463 return q && blk_queue_zone_sectors(q) == *zone_sectors;
1464}
1465
1466static bool dm_table_matches_zone_sectors(struct dm_table *t,
1467 unsigned int zone_sectors)
1468{
1469 struct dm_target *ti;
1470 unsigned i;
1471
1472 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1473 ti = dm_table_get_target(t, i);
1474
1475 if (!ti->type->iterate_devices ||
1476 !ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
1477 return false;
1478 }
1479
1480 return true;
1481}
1482
1483static int validate_hardware_zoned_model(struct dm_table *table,
1484 enum blk_zoned_model zoned_model,
1485 unsigned int zone_sectors)
1486{
1487 if (zoned_model == BLK_ZONED_NONE)
1488 return 0;
1489
1490 if (!dm_table_supports_zoned_model(table, zoned_model)) {
1491 DMERR("%s: zoned model is not consistent across all devices",
1492 dm_device_name(table->md));
1493 return -EINVAL;
1494 }
1495
1496 /* Check zone size validity and compatibility */
1497 if (!zone_sectors || !is_power_of_2(zone_sectors))
1498 return -EINVAL;
1499
1500 if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
1501 DMERR("%s: zone sectors is not consistent across all devices",
1502 dm_device_name(table->md));
1503 return -EINVAL;
1504 }
1505
1506 return 0;
1507}
1508
1509/*
1510 * Establish the new table's queue_limits and validate them.
1511 */
1512int dm_calculate_queue_limits(struct dm_table *table,
1513 struct queue_limits *limits)
1514{
1515 struct dm_target *ti;
1516 struct queue_limits ti_limits;
1517 unsigned i;
1518 enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1519 unsigned int zone_sectors = 0;
1520
1521 blk_set_stacking_limits(limits);
1522
1523 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1524 blk_set_stacking_limits(&ti_limits);
1525
1526 ti = dm_table_get_target(table, i);
1527
1528 if (!ti->type->iterate_devices)
1529 goto combine_limits;
1530
1531 /*
1532 * Combine queue limits of all the devices this target uses.
1533 */
1534 ti->type->iterate_devices(ti, dm_set_device_limits,
1535 &ti_limits);
1536
1537 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1538 /*
1539 * After stacking all limits, validate all devices
1540 * in table support this zoned model and zone sectors.
1541 */
1542 zoned_model = ti_limits.zoned;
1543 zone_sectors = ti_limits.chunk_sectors;
1544 }
1545
1546 /* Set I/O hints portion of queue limits */
1547 if (ti->type->io_hints)
1548 ti->type->io_hints(ti, &ti_limits);
1549
1550 /*
1551 * Check each device area is consistent with the target's
1552 * overall queue limits.
1553 */
1554 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1555 &ti_limits))
1556 return -EINVAL;
1557
1558combine_limits:
1559 /*
1560 * Merge this target's queue limits into the overall limits
1561 * for the table.
1562 */
1563 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1564 DMWARN("%s: adding target device "
1565 "(start sect %llu len %llu) "
1566 "caused an alignment inconsistency",
1567 dm_device_name(table->md),
1568 (unsigned long long) ti->begin,
1569 (unsigned long long) ti->len);
1570
1571 /*
1572 * FIXME: this should likely be moved to blk_stack_limits(), would
1573 * also eliminate limits->zoned stacking hack in dm_set_device_limits()
1574 */
1575 if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1576 /*
1577 * By default, the stacked limits zoned model is set to
1578 * BLK_ZONED_NONE in blk_set_stacking_limits(). Update
1579 * this model using the first target model reported
1580 * that is not BLK_ZONED_NONE. This will be either the
1581 * first target device zoned model or the model reported
1582 * by the target .io_hints.
1583 */
1584 limits->zoned = ti_limits.zoned;
1585 }
1586 }
1587
1588 /*
1589 * Verify that the zoned model and zone sectors, as determined before
1590 * any .io_hints override, are the same across all devices in the table.
1591 * - this is especially relevant if .io_hints is emulating a disk-managed
1592 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1593 * BUT...
1594 */
1595 if (limits->zoned != BLK_ZONED_NONE) {
1596 /*
1597 * ...IF the above limits stacking determined a zoned model
1598 * validate that all of the table's devices conform to it.
1599 */
1600 zoned_model = limits->zoned;
1601 zone_sectors = limits->chunk_sectors;
1602 }
1603 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1604 return -EINVAL;
1605
1606 return validate_hardware_logical_block_alignment(table, limits);
1607}
1608
1609/*
1610 * Verify that all devices have an integrity profile that matches the
1611 * DM device's registered integrity profile. If the profiles don't
1612 * match then unregister the DM device's integrity profile.
1613 */
1614static void dm_table_verify_integrity(struct dm_table *t)
1615{
1616 struct gendisk *template_disk = NULL;
1617
1618 if (t->integrity_added)
1619 return;
1620
1621 if (t->integrity_supported) {
1622 /*
1623 * Verify that the original integrity profile
1624 * matches all the devices in this table.
1625 */
1626 template_disk = dm_table_get_integrity_disk(t);
1627 if (template_disk &&
1628 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1629 return;
1630 }
1631
1632 if (integrity_profile_exists(dm_disk(t->md))) {
1633 DMWARN("%s: unable to establish an integrity profile",
1634 dm_device_name(t->md));
1635 blk_integrity_unregister(dm_disk(t->md));
1636 }
1637}
1638
1639static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1640 sector_t start, sector_t len, void *data)
1641{
1642 unsigned long flush = (unsigned long) data;
1643 struct request_queue *q = bdev_get_queue(dev->bdev);
1644
1645 return q && (q->queue_flags & flush);
1646}
1647
1648static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1649{
1650 struct dm_target *ti;
1651 unsigned i;
1652
1653 /*
1654 * Require at least one underlying device to support flushes.
1655 * t->devices includes internal dm devices such as mirror logs
1656 * so we need to use iterate_devices here, which targets
1657 * supporting flushes must provide.
1658 */
1659 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1660 ti = dm_table_get_target(t, i);
1661
1662 if (!ti->num_flush_bios)
1663 continue;
1664
1665 if (ti->flush_supported)
1666 return true;
1667
1668 if (ti->type->iterate_devices &&
1669 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1670 return true;
1671 }
1672
1673 return false;
1674}
1675
1676static int device_dax_write_cache_enabled(struct dm_target *ti,
1677 struct dm_dev *dev, sector_t start,
1678 sector_t len, void *data)
1679{
1680 struct dax_device *dax_dev = dev->dax_dev;
1681
1682 if (!dax_dev)
1683 return false;
1684
1685 if (dax_write_cache_enabled(dax_dev))
1686 return true;
1687 return false;
1688}
1689
1690static int dm_table_supports_dax_write_cache(struct dm_table *t)
1691{
1692 struct dm_target *ti;
1693 unsigned i;
1694
1695 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1696 ti = dm_table_get_target(t, i);
1697
1698 if (ti->type->iterate_devices &&
1699 ti->type->iterate_devices(ti,
1700 device_dax_write_cache_enabled, NULL))
1701 return true;
1702 }
1703
1704 return false;
1705}
1706
1707static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
1708 sector_t start, sector_t len, void *data)
1709{
1710 struct request_queue *q = bdev_get_queue(dev->bdev);
1711
1712 return q && blk_queue_nonrot(q);
1713}
1714
1715static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1716 sector_t start, sector_t len, void *data)
1717{
1718 struct request_queue *q = bdev_get_queue(dev->bdev);
1719
1720 return q && !blk_queue_add_random(q);
1721}
1722
1723static int queue_supports_sg_merge(struct dm_target *ti, struct dm_dev *dev,
1724 sector_t start, sector_t len, void *data)
1725{
1726 struct request_queue *q = bdev_get_queue(dev->bdev);
1727
1728 return q && !test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags);
1729}
1730
1731static bool dm_table_all_devices_attribute(struct dm_table *t,
1732 iterate_devices_callout_fn func)
1733{
1734 struct dm_target *ti;
1735 unsigned i;
1736
1737 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1738 ti = dm_table_get_target(t, i);
1739
1740 if (!ti->type->iterate_devices ||
1741 !ti->type->iterate_devices(ti, func, NULL))
1742 return false;
1743 }
1744
1745 return true;
1746}
1747
1748static int device_no_partial_completion(struct dm_target *ti, struct dm_dev *dev,
1749 sector_t start, sector_t len, void *data)
1750{
1751 char b[BDEVNAME_SIZE];
1752
1753 /* For now, NVMe devices are the only devices of this class */
1754 return (strncmp(bdevname(dev->bdev, b), "nvme", 4) == 0);
1755}
1756
1757static bool dm_table_does_not_support_partial_completion(struct dm_table *t)
1758{
1759 return dm_table_all_devices_attribute(t, device_no_partial_completion);
1760}
1761
1762static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1763 sector_t start, sector_t len, void *data)
1764{
1765 struct request_queue *q = bdev_get_queue(dev->bdev);
1766
1767 return q && !q->limits.max_write_same_sectors;
1768}
1769
1770static bool dm_table_supports_write_same(struct dm_table *t)
1771{
1772 struct dm_target *ti;
1773 unsigned i;
1774
1775 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1776 ti = dm_table_get_target(t, i);
1777
1778 if (!ti->num_write_same_bios)
1779 return false;
1780
1781 if (!ti->type->iterate_devices ||
1782 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1783 return false;
1784 }
1785
1786 return true;
1787}
1788
1789static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1790 sector_t start, sector_t len, void *data)
1791{
1792 struct request_queue *q = bdev_get_queue(dev->bdev);
1793
1794 return q && !q->limits.max_write_zeroes_sectors;
1795}
1796
1797static bool dm_table_supports_write_zeroes(struct dm_table *t)
1798{
1799 struct dm_target *ti;
1800 unsigned i = 0;
1801
1802 while (i < dm_table_get_num_targets(t)) {
1803 ti = dm_table_get_target(t, i++);
1804
1805 if (!ti->num_write_zeroes_bios)
1806 return false;
1807
1808 if (!ti->type->iterate_devices ||
1809 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1810 return false;
1811 }
1812
1813 return true;
1814}
1815
1816static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1817 sector_t start, sector_t len, void *data)
1818{
1819 struct request_queue *q = bdev_get_queue(dev->bdev);
1820
1821 return q && !blk_queue_discard(q);
1822}
1823
1824static bool dm_table_supports_discards(struct dm_table *t)
1825{
1826 struct dm_target *ti;
1827 unsigned i;
1828
1829 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1830 ti = dm_table_get_target(t, i);
1831
1832 if (!ti->num_discard_bios)
1833 return false;
1834
1835 /*
1836 * Either the target provides discard support (as implied by setting
1837 * 'discards_supported') or it relies on _all_ data devices having
1838 * discard support.
1839 */
1840 if (!ti->discards_supported &&
1841 (!ti->type->iterate_devices ||
1842 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1843 return false;
1844 }
1845
1846 return true;
1847}
1848
1849static int device_not_secure_erase_capable(struct dm_target *ti,
1850 struct dm_dev *dev, sector_t start,
1851 sector_t len, void *data)
1852{
1853 struct request_queue *q = bdev_get_queue(dev->bdev);
1854
1855 return q && !blk_queue_secure_erase(q);
1856}
1857
1858static bool dm_table_supports_secure_erase(struct dm_table *t)
1859{
1860 struct dm_target *ti;
1861 unsigned int i;
1862
1863 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1864 ti = dm_table_get_target(t, i);
1865
1866 if (!ti->num_secure_erase_bios)
1867 return false;
1868
1869 if (!ti->type->iterate_devices ||
1870 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1871 return false;
1872 }
1873
1874 return true;
1875}
1876
1877void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1878 struct queue_limits *limits)
1879{
1880 bool wc = false, fua = false;
1881
1882 /*
1883 * Copy table's limits to the DM device's request_queue
1884 */
1885 q->limits = *limits;
1886
1887 if (!dm_table_supports_discards(t)) {
1888 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1889 /* Must also clear discard limits... */
1890 q->limits.max_discard_sectors = 0;
1891 q->limits.max_hw_discard_sectors = 0;
1892 q->limits.discard_granularity = 0;
1893 q->limits.discard_alignment = 0;
1894 q->limits.discard_misaligned = 0;
1895 } else
1896 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
1897
1898 if (dm_table_supports_secure_erase(t))
1899 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
1900
1901 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
1902 wc = true;
1903 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
1904 fua = true;
1905 }
1906 blk_queue_write_cache(q, wc, fua);
1907
1908 if (dm_table_supports_dax(t))
1909 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
1910 if (dm_table_supports_dax_write_cache(t))
1911 dax_write_cache(t->md->dax_dev, true);
1912
1913 /* Ensure that all underlying devices are non-rotational. */
1914 if (dm_table_all_devices_attribute(t, device_is_nonrot))
1915 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1916 else
1917 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1918
1919 if (!dm_table_supports_write_same(t))
1920 q->limits.max_write_same_sectors = 0;
1921 if (!dm_table_supports_write_zeroes(t))
1922 q->limits.max_write_zeroes_sectors = 0;
1923
1924 if (dm_table_all_devices_attribute(t, queue_supports_sg_merge))
1925 blk_queue_flag_clear(QUEUE_FLAG_NO_SG_MERGE, q);
1926 else
1927 blk_queue_flag_set(QUEUE_FLAG_NO_SG_MERGE, q);
1928
1929 dm_table_verify_integrity(t);
1930
1931 /*
1932 * Determine whether or not this queue's I/O timings contribute
1933 * to the entropy pool, Only request-based targets use this.
1934 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1935 * have it set.
1936 */
1937 if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
1938 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
1939}
1940
1941unsigned int dm_table_get_num_targets(struct dm_table *t)
1942{
1943 return t->num_targets;
1944}
1945
1946struct list_head *dm_table_get_devices(struct dm_table *t)
1947{
1948 return &t->devices;
1949}
1950
1951fmode_t dm_table_get_mode(struct dm_table *t)
1952{
1953 return t->mode;
1954}
1955EXPORT_SYMBOL(dm_table_get_mode);
1956
1957enum suspend_mode {
1958 PRESUSPEND,
1959 PRESUSPEND_UNDO,
1960 POSTSUSPEND,
1961};
1962
1963static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1964{
1965 int i = t->num_targets;
1966 struct dm_target *ti = t->targets;
1967
1968 lockdep_assert_held(&t->md->suspend_lock);
1969
1970 while (i--) {
1971 switch (mode) {
1972 case PRESUSPEND:
1973 if (ti->type->presuspend)
1974 ti->type->presuspend(ti);
1975 break;
1976 case PRESUSPEND_UNDO:
1977 if (ti->type->presuspend_undo)
1978 ti->type->presuspend_undo(ti);
1979 break;
1980 case POSTSUSPEND:
1981 if (ti->type->postsuspend)
1982 ti->type->postsuspend(ti);
1983 break;
1984 }
1985 ti++;
1986 }
1987}
1988
1989void dm_table_presuspend_targets(struct dm_table *t)
1990{
1991 if (!t)
1992 return;
1993
1994 suspend_targets(t, PRESUSPEND);
1995}
1996
1997void dm_table_presuspend_undo_targets(struct dm_table *t)
1998{
1999 if (!t)
2000 return;
2001
2002 suspend_targets(t, PRESUSPEND_UNDO);
2003}
2004
2005void dm_table_postsuspend_targets(struct dm_table *t)
2006{
2007 if (!t)
2008 return;
2009
2010 suspend_targets(t, POSTSUSPEND);
2011}
2012
2013int dm_table_resume_targets(struct dm_table *t)
2014{
2015 int i, r = 0;
2016
2017 lockdep_assert_held(&t->md->suspend_lock);
2018
2019 for (i = 0; i < t->num_targets; i++) {
2020 struct dm_target *ti = t->targets + i;
2021
2022 if (!ti->type->preresume)
2023 continue;
2024
2025 r = ti->type->preresume(ti);
2026 if (r) {
2027 DMERR("%s: %s: preresume failed, error = %d",
2028 dm_device_name(t->md), ti->type->name, r);
2029 return r;
2030 }
2031 }
2032
2033 for (i = 0; i < t->num_targets; i++) {
2034 struct dm_target *ti = t->targets + i;
2035
2036 if (ti->type->resume)
2037 ti->type->resume(ti);
2038 }
2039
2040 return 0;
2041}
2042
2043void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
2044{
2045 list_add(&cb->list, &t->target_callbacks);
2046}
2047EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
2048
2049int dm_table_any_congested(struct dm_table *t, int bdi_bits)
2050{
2051 struct dm_dev_internal *dd;
2052 struct list_head *devices = dm_table_get_devices(t);
2053 struct dm_target_callbacks *cb;
2054 int r = 0;
2055
2056 list_for_each_entry(dd, devices, list) {
2057 struct request_queue *q = bdev_get_queue(dd->dm_dev->bdev);
2058 char b[BDEVNAME_SIZE];
2059
2060 if (likely(q))
2061 r |= bdi_congested(q->backing_dev_info, bdi_bits);
2062 else
2063 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
2064 dm_device_name(t->md),
2065 bdevname(dd->dm_dev->bdev, b));
2066 }
2067
2068 list_for_each_entry(cb, &t->target_callbacks, list)
2069 if (cb->congested_fn)
2070 r |= cb->congested_fn(cb, bdi_bits);
2071
2072 return r;
2073}
2074
2075struct mapped_device *dm_table_get_md(struct dm_table *t)
2076{
2077 return t->md;
2078}
2079EXPORT_SYMBOL(dm_table_get_md);
2080
2081void dm_table_run_md_queue_async(struct dm_table *t)
2082{
2083 struct mapped_device *md;
2084 struct request_queue *queue;
2085 unsigned long flags;
2086
2087 if (!dm_table_request_based(t))
2088 return;
2089
2090 md = dm_table_get_md(t);
2091 queue = dm_get_md_queue(md);
2092 if (queue) {
2093 if (queue->mq_ops)
2094 blk_mq_run_hw_queues(queue, true);
2095 else {
2096 spin_lock_irqsave(queue->queue_lock, flags);
2097 blk_run_queue_async(queue);
2098 spin_unlock_irqrestore(queue->queue_lock, flags);
2099 }
2100 }
2101}
2102EXPORT_SYMBOL(dm_table_run_md_queue_async);
2103