Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Handle async block request by crypto hardware engine.
  4 *
  5 * Copyright (C) 2016 Linaro, Inc.
  6 *
  7 * Author: Baolin Wang <baolin.wang@linaro.org>
  8 */
  9
 10#include <linux/err.h>
 11#include <linux/delay.h>
 12#include <linux/device.h>
 13#include <crypto/engine.h>
 14#include <uapi/linux/sched/types.h>
 15#include "internal.h"
 16
 17#define CRYPTO_ENGINE_MAX_QLEN 10
 18
 19/**
 20 * crypto_finalize_request - finalize one request if the request is done
 21 * @engine: the hardware engine
 22 * @req: the request need to be finalized
 23 * @err: error number
 24 */
 25static void crypto_finalize_request(struct crypto_engine *engine,
 26				    struct crypto_async_request *req, int err)
 27{
 28	unsigned long flags;
 29	bool finalize_req = false;
 30	int ret;
 31	struct crypto_engine_ctx *enginectx;
 32
 33	/*
 34	 * If hardware cannot enqueue more requests
 35	 * and retry mechanism is not supported
 36	 * make sure we are completing the current request
 37	 */
 38	if (!engine->retry_support) {
 39		spin_lock_irqsave(&engine->queue_lock, flags);
 40		if (engine->cur_req == req) {
 41			finalize_req = true;
 42			engine->cur_req = NULL;
 43		}
 44		spin_unlock_irqrestore(&engine->queue_lock, flags);
 45	}
 46
 47	if (finalize_req || engine->retry_support) {
 48		enginectx = crypto_tfm_ctx(req->tfm);
 49		if (enginectx->op.prepare_request &&
 50		    enginectx->op.unprepare_request) {
 51			ret = enginectx->op.unprepare_request(engine, req);
 52			if (ret)
 53				dev_err(engine->dev, "failed to unprepare request\n");
 54		}
 55	}
 56	lockdep_assert_in_softirq();
 57	req->complete(req, err);
 58
 59	kthread_queue_work(engine->kworker, &engine->pump_requests);
 60}
 61
 62/**
 63 * crypto_pump_requests - dequeue one request from engine queue to process
 64 * @engine: the hardware engine
 65 * @in_kthread: true if we are in the context of the request pump thread
 66 *
 67 * This function checks if there is any request in the engine queue that
 68 * needs processing and if so call out to the driver to initialize hardware
 69 * and handle each request.
 70 */
 71static void crypto_pump_requests(struct crypto_engine *engine,
 72				 bool in_kthread)
 73{
 74	struct crypto_async_request *async_req, *backlog;
 75	unsigned long flags;
 76	bool was_busy = false;
 77	int ret;
 78	struct crypto_engine_ctx *enginectx;
 79
 80	spin_lock_irqsave(&engine->queue_lock, flags);
 81
 82	/* Make sure we are not already running a request */
 83	if (!engine->retry_support && engine->cur_req)
 84		goto out;
 85
 86	/* If another context is idling then defer */
 87	if (engine->idling) {
 88		kthread_queue_work(engine->kworker, &engine->pump_requests);
 89		goto out;
 90	}
 91
 92	/* Check if the engine queue is idle */
 93	if (!crypto_queue_len(&engine->queue) || !engine->running) {
 94		if (!engine->busy)
 95			goto out;
 96
 97		/* Only do teardown in the thread */
 98		if (!in_kthread) {
 99			kthread_queue_work(engine->kworker,
100					   &engine->pump_requests);
101			goto out;
102		}
103
104		engine->busy = false;
105		engine->idling = true;
106		spin_unlock_irqrestore(&engine->queue_lock, flags);
107
108		if (engine->unprepare_crypt_hardware &&
109		    engine->unprepare_crypt_hardware(engine))
110			dev_err(engine->dev, "failed to unprepare crypt hardware\n");
111
112		spin_lock_irqsave(&engine->queue_lock, flags);
113		engine->idling = false;
114		goto out;
115	}
116
117start_request:
118	/* Get the fist request from the engine queue to handle */
119	backlog = crypto_get_backlog(&engine->queue);
120	async_req = crypto_dequeue_request(&engine->queue);
121	if (!async_req)
122		goto out;
123
124	/*
125	 * If hardware doesn't support the retry mechanism,
126	 * keep track of the request we are processing now.
127	 * We'll need it on completion (crypto_finalize_request).
128	 */
129	if (!engine->retry_support)
130		engine->cur_req = async_req;
131
132	if (backlog)
133		backlog->complete(backlog, -EINPROGRESS);
134
135	if (engine->busy)
136		was_busy = true;
137	else
138		engine->busy = true;
139
140	spin_unlock_irqrestore(&engine->queue_lock, flags);
141
142	/* Until here we get the request need to be encrypted successfully */
143	if (!was_busy && engine->prepare_crypt_hardware) {
144		ret = engine->prepare_crypt_hardware(engine);
145		if (ret) {
146			dev_err(engine->dev, "failed to prepare crypt hardware\n");
147			goto req_err_2;
148		}
149	}
150
151	enginectx = crypto_tfm_ctx(async_req->tfm);
152
153	if (enginectx->op.prepare_request) {
154		ret = enginectx->op.prepare_request(engine, async_req);
155		if (ret) {
156			dev_err(engine->dev, "failed to prepare request: %d\n",
157				ret);
158			goto req_err_2;
159		}
160	}
161	if (!enginectx->op.do_one_request) {
162		dev_err(engine->dev, "failed to do request\n");
163		ret = -EINVAL;
164		goto req_err_1;
165	}
166
167	ret = enginectx->op.do_one_request(engine, async_req);
168
169	/* Request unsuccessfully executed by hardware */
170	if (ret < 0) {
171		/*
172		 * If hardware queue is full (-ENOSPC), requeue request
173		 * regardless of backlog flag.
174		 * Otherwise, unprepare and complete the request.
175		 */
176		if (!engine->retry_support ||
177		    (ret != -ENOSPC)) {
178			dev_err(engine->dev,
179				"Failed to do one request from queue: %d\n",
180				ret);
181			goto req_err_1;
182		}
183		/*
184		 * If retry mechanism is supported,
185		 * unprepare current request and
186		 * enqueue it back into crypto-engine queue.
187		 */
188		if (enginectx->op.unprepare_request) {
189			ret = enginectx->op.unprepare_request(engine,
190							      async_req);
191			if (ret)
192				dev_err(engine->dev,
193					"failed to unprepare request\n");
194		}
195		spin_lock_irqsave(&engine->queue_lock, flags);
196		/*
197		 * If hardware was unable to execute request, enqueue it
198		 * back in front of crypto-engine queue, to keep the order
199		 * of requests.
200		 */
201		crypto_enqueue_request_head(&engine->queue, async_req);
202
203		kthread_queue_work(engine->kworker, &engine->pump_requests);
204		goto out;
205	}
206
207	goto retry;
208
209req_err_1:
210	if (enginectx->op.unprepare_request) {
211		ret = enginectx->op.unprepare_request(engine, async_req);
212		if (ret)
213			dev_err(engine->dev, "failed to unprepare request\n");
214	}
215
216req_err_2:
217	async_req->complete(async_req, ret);
218
219retry:
220	/* If retry mechanism is supported, send new requests to engine */
221	if (engine->retry_support) {
222		spin_lock_irqsave(&engine->queue_lock, flags);
223		goto start_request;
224	}
225	return;
226
227out:
228	spin_unlock_irqrestore(&engine->queue_lock, flags);
229
230	/*
231	 * Batch requests is possible only if
232	 * hardware can enqueue multiple requests
233	 */
234	if (engine->do_batch_requests) {
235		ret = engine->do_batch_requests(engine);
236		if (ret)
237			dev_err(engine->dev, "failed to do batch requests: %d\n",
238				ret);
239	}
240
241	return;
242}
243
244static void crypto_pump_work(struct kthread_work *work)
245{
246	struct crypto_engine *engine =
247		container_of(work, struct crypto_engine, pump_requests);
248
249	crypto_pump_requests(engine, true);
250}
251
252/**
253 * crypto_transfer_request - transfer the new request into the engine queue
254 * @engine: the hardware engine
255 * @req: the request need to be listed into the engine queue
256 * @need_pump: indicates whether queue the pump of request to kthread_work
257 */
258static int crypto_transfer_request(struct crypto_engine *engine,
259				   struct crypto_async_request *req,
260				   bool need_pump)
261{
262	unsigned long flags;
263	int ret;
264
265	spin_lock_irqsave(&engine->queue_lock, flags);
266
267	if (!engine->running) {
268		spin_unlock_irqrestore(&engine->queue_lock, flags);
269		return -ESHUTDOWN;
270	}
271
272	ret = crypto_enqueue_request(&engine->queue, req);
273
274	if (!engine->busy && need_pump)
275		kthread_queue_work(engine->kworker, &engine->pump_requests);
276
277	spin_unlock_irqrestore(&engine->queue_lock, flags);
278	return ret;
279}
280
281/**
282 * crypto_transfer_request_to_engine - transfer one request to list
283 * into the engine queue
284 * @engine: the hardware engine
285 * @req: the request need to be listed into the engine queue
286 */
287static int crypto_transfer_request_to_engine(struct crypto_engine *engine,
288					     struct crypto_async_request *req)
289{
290	return crypto_transfer_request(engine, req, true);
291}
292
293/**
294 * crypto_transfer_aead_request_to_engine - transfer one aead_request
295 * to list into the engine queue
296 * @engine: the hardware engine
297 * @req: the request need to be listed into the engine queue
298 */
299int crypto_transfer_aead_request_to_engine(struct crypto_engine *engine,
300					   struct aead_request *req)
301{
302	return crypto_transfer_request_to_engine(engine, &req->base);
303}
304EXPORT_SYMBOL_GPL(crypto_transfer_aead_request_to_engine);
305
306/**
307 * crypto_transfer_akcipher_request_to_engine - transfer one akcipher_request
308 * to list into the engine queue
309 * @engine: the hardware engine
310 * @req: the request need to be listed into the engine queue
311 */
312int crypto_transfer_akcipher_request_to_engine(struct crypto_engine *engine,
313					       struct akcipher_request *req)
314{
315	return crypto_transfer_request_to_engine(engine, &req->base);
316}
317EXPORT_SYMBOL_GPL(crypto_transfer_akcipher_request_to_engine);
318
319/**
320 * crypto_transfer_hash_request_to_engine - transfer one ahash_request
321 * to list into the engine queue
322 * @engine: the hardware engine
323 * @req: the request need to be listed into the engine queue
324 */
325int crypto_transfer_hash_request_to_engine(struct crypto_engine *engine,
326					   struct ahash_request *req)
327{
328	return crypto_transfer_request_to_engine(engine, &req->base);
329}
330EXPORT_SYMBOL_GPL(crypto_transfer_hash_request_to_engine);
331
332/**
333 * crypto_transfer_kpp_request_to_engine - transfer one kpp_request to list
334 * into the engine queue
335 * @engine: the hardware engine
336 * @req: the request need to be listed into the engine queue
337 */
338int crypto_transfer_kpp_request_to_engine(struct crypto_engine *engine,
339					  struct kpp_request *req)
340{
341	return crypto_transfer_request_to_engine(engine, &req->base);
342}
343EXPORT_SYMBOL_GPL(crypto_transfer_kpp_request_to_engine);
344
345/**
346 * crypto_transfer_skcipher_request_to_engine - transfer one skcipher_request
347 * to list into the engine queue
348 * @engine: the hardware engine
349 * @req: the request need to be listed into the engine queue
350 */
351int crypto_transfer_skcipher_request_to_engine(struct crypto_engine *engine,
352					       struct skcipher_request *req)
353{
354	return crypto_transfer_request_to_engine(engine, &req->base);
355}
356EXPORT_SYMBOL_GPL(crypto_transfer_skcipher_request_to_engine);
357
358/**
359 * crypto_finalize_aead_request - finalize one aead_request if
360 * the request is done
361 * @engine: the hardware engine
362 * @req: the request need to be finalized
363 * @err: error number
364 */
365void crypto_finalize_aead_request(struct crypto_engine *engine,
366				  struct aead_request *req, int err)
367{
368	return crypto_finalize_request(engine, &req->base, err);
369}
370EXPORT_SYMBOL_GPL(crypto_finalize_aead_request);
371
372/**
373 * crypto_finalize_akcipher_request - finalize one akcipher_request if
374 * the request is done
375 * @engine: the hardware engine
376 * @req: the request need to be finalized
377 * @err: error number
378 */
379void crypto_finalize_akcipher_request(struct crypto_engine *engine,
380				      struct akcipher_request *req, int err)
381{
382	return crypto_finalize_request(engine, &req->base, err);
383}
384EXPORT_SYMBOL_GPL(crypto_finalize_akcipher_request);
385
386/**
387 * crypto_finalize_hash_request - finalize one ahash_request if
388 * the request is done
389 * @engine: the hardware engine
390 * @req: the request need to be finalized
391 * @err: error number
392 */
393void crypto_finalize_hash_request(struct crypto_engine *engine,
394				  struct ahash_request *req, int err)
395{
396	return crypto_finalize_request(engine, &req->base, err);
397}
398EXPORT_SYMBOL_GPL(crypto_finalize_hash_request);
399
400/**
401 * crypto_finalize_kpp_request - finalize one kpp_request if the request is done
402 * @engine: the hardware engine
403 * @req: the request need to be finalized
404 * @err: error number
405 */
406void crypto_finalize_kpp_request(struct crypto_engine *engine,
407				 struct kpp_request *req, int err)
408{
409	return crypto_finalize_request(engine, &req->base, err);
410}
411EXPORT_SYMBOL_GPL(crypto_finalize_kpp_request);
412
413/**
414 * crypto_finalize_skcipher_request - finalize one skcipher_request if
415 * the request is done
416 * @engine: the hardware engine
417 * @req: the request need to be finalized
418 * @err: error number
419 */
420void crypto_finalize_skcipher_request(struct crypto_engine *engine,
421				      struct skcipher_request *req, int err)
422{
423	return crypto_finalize_request(engine, &req->base, err);
424}
425EXPORT_SYMBOL_GPL(crypto_finalize_skcipher_request);
426
427/**
428 * crypto_engine_start - start the hardware engine
429 * @engine: the hardware engine need to be started
430 *
431 * Return 0 on success, else on fail.
432 */
433int crypto_engine_start(struct crypto_engine *engine)
434{
435	unsigned long flags;
436
437	spin_lock_irqsave(&engine->queue_lock, flags);
438
439	if (engine->running || engine->busy) {
440		spin_unlock_irqrestore(&engine->queue_lock, flags);
441		return -EBUSY;
442	}
443
444	engine->running = true;
445	spin_unlock_irqrestore(&engine->queue_lock, flags);
446
447	kthread_queue_work(engine->kworker, &engine->pump_requests);
448
449	return 0;
450}
451EXPORT_SYMBOL_GPL(crypto_engine_start);
452
453/**
454 * crypto_engine_stop - stop the hardware engine
455 * @engine: the hardware engine need to be stopped
456 *
457 * Return 0 on success, else on fail.
458 */
459int crypto_engine_stop(struct crypto_engine *engine)
460{
461	unsigned long flags;
462	unsigned int limit = 500;
463	int ret = 0;
464
465	spin_lock_irqsave(&engine->queue_lock, flags);
466
467	/*
468	 * If the engine queue is not empty or the engine is on busy state,
469	 * we need to wait for a while to pump the requests of engine queue.
470	 */
471	while ((crypto_queue_len(&engine->queue) || engine->busy) && limit--) {
472		spin_unlock_irqrestore(&engine->queue_lock, flags);
473		msleep(20);
474		spin_lock_irqsave(&engine->queue_lock, flags);
475	}
476
477	if (crypto_queue_len(&engine->queue) || engine->busy)
478		ret = -EBUSY;
479	else
480		engine->running = false;
481
482	spin_unlock_irqrestore(&engine->queue_lock, flags);
483
484	if (ret)
485		dev_warn(engine->dev, "could not stop engine\n");
486
487	return ret;
488}
489EXPORT_SYMBOL_GPL(crypto_engine_stop);
490
491/**
492 * crypto_engine_alloc_init_and_set - allocate crypto hardware engine structure
493 * and initialize it by setting the maximum number of entries in the software
494 * crypto-engine queue.
495 * @dev: the device attached with one hardware engine
496 * @retry_support: whether hardware has support for retry mechanism
497 * @cbk_do_batch: pointer to a callback function to be invoked when executing
498 *                a batch of requests.
499 *                This has the form:
500 *                callback(struct crypto_engine *engine)
501 *                where:
502 *                @engine: the crypto engine structure.
503 * @rt: whether this queue is set to run as a realtime task
504 * @qlen: maximum size of the crypto-engine queue
505 *
506 * This must be called from context that can sleep.
507 * Return: the crypto engine structure on success, else NULL.
508 */
509struct crypto_engine *crypto_engine_alloc_init_and_set(struct device *dev,
510						       bool retry_support,
511						       int (*cbk_do_batch)(struct crypto_engine *engine),
512						       bool rt, int qlen)
513{
514	struct crypto_engine *engine;
515
516	if (!dev)
517		return NULL;
518
519	engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL);
520	if (!engine)
521		return NULL;
522
523	engine->dev = dev;
524	engine->rt = rt;
525	engine->running = false;
526	engine->busy = false;
527	engine->idling = false;
528	engine->retry_support = retry_support;
529	engine->priv_data = dev;
530	/*
531	 * Batch requests is possible only if
532	 * hardware has support for retry mechanism.
533	 */
534	engine->do_batch_requests = retry_support ? cbk_do_batch : NULL;
535
536	snprintf(engine->name, sizeof(engine->name),
537		 "%s-engine", dev_name(dev));
538
539	crypto_init_queue(&engine->queue, qlen);
540	spin_lock_init(&engine->queue_lock);
541
542	engine->kworker = kthread_create_worker(0, "%s", engine->name);
543	if (IS_ERR(engine->kworker)) {
544		dev_err(dev, "failed to create crypto request pump task\n");
545		return NULL;
546	}
547	kthread_init_work(&engine->pump_requests, crypto_pump_work);
548
549	if (engine->rt) {
550		dev_info(dev, "will run requests pump with realtime priority\n");
551		sched_set_fifo(engine->kworker->task);
552	}
553
554	return engine;
555}
556EXPORT_SYMBOL_GPL(crypto_engine_alloc_init_and_set);
557
558/**
559 * crypto_engine_alloc_init - allocate crypto hardware engine structure and
560 * initialize it.
561 * @dev: the device attached with one hardware engine
562 * @rt: whether this queue is set to run as a realtime task
563 *
564 * This must be called from context that can sleep.
565 * Return: the crypto engine structure on success, else NULL.
566 */
567struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt)
568{
569	return crypto_engine_alloc_init_and_set(dev, false, NULL, rt,
570						CRYPTO_ENGINE_MAX_QLEN);
571}
572EXPORT_SYMBOL_GPL(crypto_engine_alloc_init);
573
574/**
575 * crypto_engine_exit - free the resources of hardware engine when exit
576 * @engine: the hardware engine need to be freed
577 *
578 * Return 0 for success.
579 */
580int crypto_engine_exit(struct crypto_engine *engine)
581{
582	int ret;
583
584	ret = crypto_engine_stop(engine);
585	if (ret)
586		return ret;
587
588	kthread_destroy_worker(engine->kworker);
589
590	return 0;
591}
592EXPORT_SYMBOL_GPL(crypto_engine_exit);
593
594MODULE_LICENSE("GPL");
595MODULE_DESCRIPTION("Crypto hardware engine framework");
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Handle async block request by crypto hardware engine.
  4 *
  5 * Copyright (C) 2016 Linaro, Inc.
  6 *
  7 * Author: Baolin Wang <baolin.wang@linaro.org>
  8 */
  9
 10#include <linux/err.h>
 11#include <linux/delay.h>
 12#include <linux/device.h>
 13#include <crypto/engine.h>
 14#include <uapi/linux/sched/types.h>
 15#include "internal.h"
 16
 17#define CRYPTO_ENGINE_MAX_QLEN 10
 18
 19/**
 20 * crypto_finalize_request - finalize one request if the request is done
 21 * @engine: the hardware engine
 22 * @req: the request need to be finalized
 23 * @err: error number
 24 */
 25static void crypto_finalize_request(struct crypto_engine *engine,
 26				    struct crypto_async_request *req, int err)
 27{
 28	unsigned long flags;
 29	bool finalize_req = false;
 30	int ret;
 31	struct crypto_engine_ctx *enginectx;
 32
 33	/*
 34	 * If hardware cannot enqueue more requests
 35	 * and retry mechanism is not supported
 36	 * make sure we are completing the current request
 37	 */
 38	if (!engine->retry_support) {
 39		spin_lock_irqsave(&engine->queue_lock, flags);
 40		if (engine->cur_req == req) {
 41			finalize_req = true;
 42			engine->cur_req = NULL;
 43		}
 44		spin_unlock_irqrestore(&engine->queue_lock, flags);
 45	}
 46
 47	if (finalize_req || engine->retry_support) {
 48		enginectx = crypto_tfm_ctx(req->tfm);
 49		if (enginectx->op.prepare_request &&
 50		    enginectx->op.unprepare_request) {
 51			ret = enginectx->op.unprepare_request(engine, req);
 52			if (ret)
 53				dev_err(engine->dev, "failed to unprepare request\n");
 54		}
 55	}
 
 56	req->complete(req, err);
 57
 58	kthread_queue_work(engine->kworker, &engine->pump_requests);
 59}
 60
 61/**
 62 * crypto_pump_requests - dequeue one request from engine queue to process
 63 * @engine: the hardware engine
 64 * @in_kthread: true if we are in the context of the request pump thread
 65 *
 66 * This function checks if there is any request in the engine queue that
 67 * needs processing and if so call out to the driver to initialize hardware
 68 * and handle each request.
 69 */
 70static void crypto_pump_requests(struct crypto_engine *engine,
 71				 bool in_kthread)
 72{
 73	struct crypto_async_request *async_req, *backlog;
 74	unsigned long flags;
 75	bool was_busy = false;
 76	int ret;
 77	struct crypto_engine_ctx *enginectx;
 78
 79	spin_lock_irqsave(&engine->queue_lock, flags);
 80
 81	/* Make sure we are not already running a request */
 82	if (!engine->retry_support && engine->cur_req)
 83		goto out;
 84
 85	/* If another context is idling then defer */
 86	if (engine->idling) {
 87		kthread_queue_work(engine->kworker, &engine->pump_requests);
 88		goto out;
 89	}
 90
 91	/* Check if the engine queue is idle */
 92	if (!crypto_queue_len(&engine->queue) || !engine->running) {
 93		if (!engine->busy)
 94			goto out;
 95
 96		/* Only do teardown in the thread */
 97		if (!in_kthread) {
 98			kthread_queue_work(engine->kworker,
 99					   &engine->pump_requests);
100			goto out;
101		}
102
103		engine->busy = false;
104		engine->idling = true;
105		spin_unlock_irqrestore(&engine->queue_lock, flags);
106
107		if (engine->unprepare_crypt_hardware &&
108		    engine->unprepare_crypt_hardware(engine))
109			dev_err(engine->dev, "failed to unprepare crypt hardware\n");
110
111		spin_lock_irqsave(&engine->queue_lock, flags);
112		engine->idling = false;
113		goto out;
114	}
115
116start_request:
117	/* Get the fist request from the engine queue to handle */
118	backlog = crypto_get_backlog(&engine->queue);
119	async_req = crypto_dequeue_request(&engine->queue);
120	if (!async_req)
121		goto out;
122
123	/*
124	 * If hardware doesn't support the retry mechanism,
125	 * keep track of the request we are processing now.
126	 * We'll need it on completion (crypto_finalize_request).
127	 */
128	if (!engine->retry_support)
129		engine->cur_req = async_req;
130
131	if (backlog)
132		backlog->complete(backlog, -EINPROGRESS);
133
134	if (engine->busy)
135		was_busy = true;
136	else
137		engine->busy = true;
138
139	spin_unlock_irqrestore(&engine->queue_lock, flags);
140
141	/* Until here we get the request need to be encrypted successfully */
142	if (!was_busy && engine->prepare_crypt_hardware) {
143		ret = engine->prepare_crypt_hardware(engine);
144		if (ret) {
145			dev_err(engine->dev, "failed to prepare crypt hardware\n");
146			goto req_err_2;
147		}
148	}
149
150	enginectx = crypto_tfm_ctx(async_req->tfm);
151
152	if (enginectx->op.prepare_request) {
153		ret = enginectx->op.prepare_request(engine, async_req);
154		if (ret) {
155			dev_err(engine->dev, "failed to prepare request: %d\n",
156				ret);
157			goto req_err_2;
158		}
159	}
160	if (!enginectx->op.do_one_request) {
161		dev_err(engine->dev, "failed to do request\n");
162		ret = -EINVAL;
163		goto req_err_1;
164	}
165
166	ret = enginectx->op.do_one_request(engine, async_req);
167
168	/* Request unsuccessfully executed by hardware */
169	if (ret < 0) {
170		/*
171		 * If hardware queue is full (-ENOSPC), requeue request
172		 * regardless of backlog flag.
173		 * Otherwise, unprepare and complete the request.
174		 */
175		if (!engine->retry_support ||
176		    (ret != -ENOSPC)) {
177			dev_err(engine->dev,
178				"Failed to do one request from queue: %d\n",
179				ret);
180			goto req_err_1;
181		}
182		/*
183		 * If retry mechanism is supported,
184		 * unprepare current request and
185		 * enqueue it back into crypto-engine queue.
186		 */
187		if (enginectx->op.unprepare_request) {
188			ret = enginectx->op.unprepare_request(engine,
189							      async_req);
190			if (ret)
191				dev_err(engine->dev,
192					"failed to unprepare request\n");
193		}
194		spin_lock_irqsave(&engine->queue_lock, flags);
195		/*
196		 * If hardware was unable to execute request, enqueue it
197		 * back in front of crypto-engine queue, to keep the order
198		 * of requests.
199		 */
200		crypto_enqueue_request_head(&engine->queue, async_req);
201
202		kthread_queue_work(engine->kworker, &engine->pump_requests);
203		goto out;
204	}
205
206	goto retry;
207
208req_err_1:
209	if (enginectx->op.unprepare_request) {
210		ret = enginectx->op.unprepare_request(engine, async_req);
211		if (ret)
212			dev_err(engine->dev, "failed to unprepare request\n");
213	}
214
215req_err_2:
216	async_req->complete(async_req, ret);
217
218retry:
219	/* If retry mechanism is supported, send new requests to engine */
220	if (engine->retry_support) {
221		spin_lock_irqsave(&engine->queue_lock, flags);
222		goto start_request;
223	}
224	return;
225
226out:
227	spin_unlock_irqrestore(&engine->queue_lock, flags);
228
229	/*
230	 * Batch requests is possible only if
231	 * hardware can enqueue multiple requests
232	 */
233	if (engine->do_batch_requests) {
234		ret = engine->do_batch_requests(engine);
235		if (ret)
236			dev_err(engine->dev, "failed to do batch requests: %d\n",
237				ret);
238	}
239
240	return;
241}
242
243static void crypto_pump_work(struct kthread_work *work)
244{
245	struct crypto_engine *engine =
246		container_of(work, struct crypto_engine, pump_requests);
247
248	crypto_pump_requests(engine, true);
249}
250
251/**
252 * crypto_transfer_request - transfer the new request into the engine queue
253 * @engine: the hardware engine
254 * @req: the request need to be listed into the engine queue
 
255 */
256static int crypto_transfer_request(struct crypto_engine *engine,
257				   struct crypto_async_request *req,
258				   bool need_pump)
259{
260	unsigned long flags;
261	int ret;
262
263	spin_lock_irqsave(&engine->queue_lock, flags);
264
265	if (!engine->running) {
266		spin_unlock_irqrestore(&engine->queue_lock, flags);
267		return -ESHUTDOWN;
268	}
269
270	ret = crypto_enqueue_request(&engine->queue, req);
271
272	if (!engine->busy && need_pump)
273		kthread_queue_work(engine->kworker, &engine->pump_requests);
274
275	spin_unlock_irqrestore(&engine->queue_lock, flags);
276	return ret;
277}
278
279/**
280 * crypto_transfer_request_to_engine - transfer one request to list
281 * into the engine queue
282 * @engine: the hardware engine
283 * @req: the request need to be listed into the engine queue
284 */
285static int crypto_transfer_request_to_engine(struct crypto_engine *engine,
286					     struct crypto_async_request *req)
287{
288	return crypto_transfer_request(engine, req, true);
289}
290
291/**
292 * crypto_transfer_aead_request_to_engine - transfer one aead_request
293 * to list into the engine queue
294 * @engine: the hardware engine
295 * @req: the request need to be listed into the engine queue
296 */
297int crypto_transfer_aead_request_to_engine(struct crypto_engine *engine,
298					   struct aead_request *req)
299{
300	return crypto_transfer_request_to_engine(engine, &req->base);
301}
302EXPORT_SYMBOL_GPL(crypto_transfer_aead_request_to_engine);
303
304/**
305 * crypto_transfer_akcipher_request_to_engine - transfer one akcipher_request
306 * to list into the engine queue
307 * @engine: the hardware engine
308 * @req: the request need to be listed into the engine queue
309 */
310int crypto_transfer_akcipher_request_to_engine(struct crypto_engine *engine,
311					       struct akcipher_request *req)
312{
313	return crypto_transfer_request_to_engine(engine, &req->base);
314}
315EXPORT_SYMBOL_GPL(crypto_transfer_akcipher_request_to_engine);
316
317/**
318 * crypto_transfer_hash_request_to_engine - transfer one ahash_request
319 * to list into the engine queue
320 * @engine: the hardware engine
321 * @req: the request need to be listed into the engine queue
322 */
323int crypto_transfer_hash_request_to_engine(struct crypto_engine *engine,
324					   struct ahash_request *req)
325{
326	return crypto_transfer_request_to_engine(engine, &req->base);
327}
328EXPORT_SYMBOL_GPL(crypto_transfer_hash_request_to_engine);
329
330/**
 
 
 
 
 
 
 
 
 
 
 
 
 
331 * crypto_transfer_skcipher_request_to_engine - transfer one skcipher_request
332 * to list into the engine queue
333 * @engine: the hardware engine
334 * @req: the request need to be listed into the engine queue
335 */
336int crypto_transfer_skcipher_request_to_engine(struct crypto_engine *engine,
337					       struct skcipher_request *req)
338{
339	return crypto_transfer_request_to_engine(engine, &req->base);
340}
341EXPORT_SYMBOL_GPL(crypto_transfer_skcipher_request_to_engine);
342
343/**
344 * crypto_finalize_aead_request - finalize one aead_request if
345 * the request is done
346 * @engine: the hardware engine
347 * @req: the request need to be finalized
348 * @err: error number
349 */
350void crypto_finalize_aead_request(struct crypto_engine *engine,
351				  struct aead_request *req, int err)
352{
353	return crypto_finalize_request(engine, &req->base, err);
354}
355EXPORT_SYMBOL_GPL(crypto_finalize_aead_request);
356
357/**
358 * crypto_finalize_akcipher_request - finalize one akcipher_request if
359 * the request is done
360 * @engine: the hardware engine
361 * @req: the request need to be finalized
362 * @err: error number
363 */
364void crypto_finalize_akcipher_request(struct crypto_engine *engine,
365				      struct akcipher_request *req, int err)
366{
367	return crypto_finalize_request(engine, &req->base, err);
368}
369EXPORT_SYMBOL_GPL(crypto_finalize_akcipher_request);
370
371/**
372 * crypto_finalize_hash_request - finalize one ahash_request if
373 * the request is done
374 * @engine: the hardware engine
375 * @req: the request need to be finalized
376 * @err: error number
377 */
378void crypto_finalize_hash_request(struct crypto_engine *engine,
379				  struct ahash_request *req, int err)
380{
381	return crypto_finalize_request(engine, &req->base, err);
382}
383EXPORT_SYMBOL_GPL(crypto_finalize_hash_request);
 
 
 
 
 
 
 
 
 
 
 
 
 
384
385/**
386 * crypto_finalize_skcipher_request - finalize one skcipher_request if
387 * the request is done
388 * @engine: the hardware engine
389 * @req: the request need to be finalized
390 * @err: error number
391 */
392void crypto_finalize_skcipher_request(struct crypto_engine *engine,
393				      struct skcipher_request *req, int err)
394{
395	return crypto_finalize_request(engine, &req->base, err);
396}
397EXPORT_SYMBOL_GPL(crypto_finalize_skcipher_request);
398
399/**
400 * crypto_engine_start - start the hardware engine
401 * @engine: the hardware engine need to be started
402 *
403 * Return 0 on success, else on fail.
404 */
405int crypto_engine_start(struct crypto_engine *engine)
406{
407	unsigned long flags;
408
409	spin_lock_irqsave(&engine->queue_lock, flags);
410
411	if (engine->running || engine->busy) {
412		spin_unlock_irqrestore(&engine->queue_lock, flags);
413		return -EBUSY;
414	}
415
416	engine->running = true;
417	spin_unlock_irqrestore(&engine->queue_lock, flags);
418
419	kthread_queue_work(engine->kworker, &engine->pump_requests);
420
421	return 0;
422}
423EXPORT_SYMBOL_GPL(crypto_engine_start);
424
425/**
426 * crypto_engine_stop - stop the hardware engine
427 * @engine: the hardware engine need to be stopped
428 *
429 * Return 0 on success, else on fail.
430 */
431int crypto_engine_stop(struct crypto_engine *engine)
432{
433	unsigned long flags;
434	unsigned int limit = 500;
435	int ret = 0;
436
437	spin_lock_irqsave(&engine->queue_lock, flags);
438
439	/*
440	 * If the engine queue is not empty or the engine is on busy state,
441	 * we need to wait for a while to pump the requests of engine queue.
442	 */
443	while ((crypto_queue_len(&engine->queue) || engine->busy) && limit--) {
444		spin_unlock_irqrestore(&engine->queue_lock, flags);
445		msleep(20);
446		spin_lock_irqsave(&engine->queue_lock, flags);
447	}
448
449	if (crypto_queue_len(&engine->queue) || engine->busy)
450		ret = -EBUSY;
451	else
452		engine->running = false;
453
454	spin_unlock_irqrestore(&engine->queue_lock, flags);
455
456	if (ret)
457		dev_warn(engine->dev, "could not stop engine\n");
458
459	return ret;
460}
461EXPORT_SYMBOL_GPL(crypto_engine_stop);
462
463/**
464 * crypto_engine_alloc_init_and_set - allocate crypto hardware engine structure
465 * and initialize it by setting the maximum number of entries in the software
466 * crypto-engine queue.
467 * @dev: the device attached with one hardware engine
468 * @retry_support: whether hardware has support for retry mechanism
469 * @cbk_do_batch: pointer to a callback function to be invoked when executing
470 *                a batch of requests.
471 *                This has the form:
472 *                callback(struct crypto_engine *engine)
473 *                where:
474 *                @engine: the crypto engine structure.
475 * @rt: whether this queue is set to run as a realtime task
476 * @qlen: maximum size of the crypto-engine queue
477 *
478 * This must be called from context that can sleep.
479 * Return: the crypto engine structure on success, else NULL.
480 */
481struct crypto_engine *crypto_engine_alloc_init_and_set(struct device *dev,
482						       bool retry_support,
483						       int (*cbk_do_batch)(struct crypto_engine *engine),
484						       bool rt, int qlen)
485{
486	struct crypto_engine *engine;
487
488	if (!dev)
489		return NULL;
490
491	engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL);
492	if (!engine)
493		return NULL;
494
495	engine->dev = dev;
496	engine->rt = rt;
497	engine->running = false;
498	engine->busy = false;
499	engine->idling = false;
500	engine->retry_support = retry_support;
501	engine->priv_data = dev;
502	/*
503	 * Batch requests is possible only if
504	 * hardware has support for retry mechanism.
505	 */
506	engine->do_batch_requests = retry_support ? cbk_do_batch : NULL;
507
508	snprintf(engine->name, sizeof(engine->name),
509		 "%s-engine", dev_name(dev));
510
511	crypto_init_queue(&engine->queue, qlen);
512	spin_lock_init(&engine->queue_lock);
513
514	engine->kworker = kthread_create_worker(0, "%s", engine->name);
515	if (IS_ERR(engine->kworker)) {
516		dev_err(dev, "failed to create crypto request pump task\n");
517		return NULL;
518	}
519	kthread_init_work(&engine->pump_requests, crypto_pump_work);
520
521	if (engine->rt) {
522		dev_info(dev, "will run requests pump with realtime priority\n");
523		sched_set_fifo(engine->kworker->task);
524	}
525
526	return engine;
527}
528EXPORT_SYMBOL_GPL(crypto_engine_alloc_init_and_set);
529
530/**
531 * crypto_engine_alloc_init - allocate crypto hardware engine structure and
532 * initialize it.
533 * @dev: the device attached with one hardware engine
534 * @rt: whether this queue is set to run as a realtime task
535 *
536 * This must be called from context that can sleep.
537 * Return: the crypto engine structure on success, else NULL.
538 */
539struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt)
540{
541	return crypto_engine_alloc_init_and_set(dev, false, NULL, rt,
542						CRYPTO_ENGINE_MAX_QLEN);
543}
544EXPORT_SYMBOL_GPL(crypto_engine_alloc_init);
545
546/**
547 * crypto_engine_exit - free the resources of hardware engine when exit
548 * @engine: the hardware engine need to be freed
549 *
550 * Return 0 for success.
551 */
552int crypto_engine_exit(struct crypto_engine *engine)
553{
554	int ret;
555
556	ret = crypto_engine_stop(engine);
557	if (ret)
558		return ret;
559
560	kthread_destroy_worker(engine->kworker);
561
562	return 0;
563}
564EXPORT_SYMBOL_GPL(crypto_engine_exit);
565
566MODULE_LICENSE("GPL");
567MODULE_DESCRIPTION("Crypto hardware engine framework");